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Abstract 

The field of correlated electron systems has been one of the most widely studied 

areas of research in condensed-matter physics. Due to the Coulomb interactions between 

electrons in these systems, the collective states cannot be understood via one-electron 

approximation that one electron is embedded in a static mean field generated by other 

electrons. To theoretically describe correlated electron systems, the Hubbard model was 

proposed based on the tight-binding approximation from condensed-matter physics, 

which describes particles in a periodic potential. According to the ratio of the hopping 

integral 𝑡 and on-site interaction 𝑈 defined in the Hubbard model, correlated electron 

systems can be categorized as strongly and weakly correlated systems. 

For this thesis, we have performed elastic and inelastic neutron scattering 

measurements on one strongly correlated magnetic system, Sr2CuTe0.5W0.5O6, and two 

weakly correlated non-magnetic systems, (BA)2PbI4 (butylammonium lead iodide) and 

(PEA)2PbI4 (phenethyl-ammonium lead iodide). 

For Sr2CuTe0.5W0.5O6, using sub-K temperature and 20 μeV energy resolution neutron 

scattering experiments, we show that the system below 𝑇𝑓 = 1.7(1)  K exhibits an 

extremely weak frozen moment of 〈𝑆〉/𝑆~0.1 . Below 𝑇𝑓 the imaginary part of the 

dynamical susceptibility, 𝜒′′(ℏ𝜔), behaves linearly with ℏ𝜔 for ℏ𝜔 < 𝑘𝐵𝑇𝑓 where 𝑘𝐵 is 

the Boltzmann constant with the characteristic spin relaxation rate increasing with 

decreasing temperatures. Above 𝑇𝑓, 𝜒′′(ℏ𝜔) behaves as tan−1(ℏ𝜔/𝛤𝑚𝑖𝑛) at low energies 

indicating the presence of a distribution of the spin relaxation rate with the lower limit 
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𝛤𝑚𝑖𝑛, which behaves as a power law with temperature, 𝛤𝑚𝑖𝑛/|𝐽|  = (
𝑘𝐵 𝑇

|𝐽|
)

𝛼

, with |𝐽|~9 

meV and 𝛼 = 1.3(1). On the other hand, the spatial spin correlations are two-dimensional 

and short-range with an in-plane correlation length of 𝜉 ~ √2 𝑑𝑁𝑁 , where 𝑑𝑁𝑁  is the 

distance between the nearest-neighbor spins. Our results indicate that Sr2CuTe0.5W0.5O6 

transits from a gapless disorder-induced spin liquid to a new quantum state below 𝑇𝑓 , 

exhibiting a weak frozen moment and low energy dynamic susceptibility that is linear in 

energy consistent with a Halperin-Saslow-like excitation which is surprising for such a 

weak freezing in this highly fluctuating quantum regime. 

For the two non-magnetic weakly correlated systems, (BA)2PbI4 (butylammonium 

lead iodide) and (PEA)2PbI4 (phenethyl-ammonium lead iodide), by performing 

temperature-dependent wide energy-range (up to 600 meV) inelastic neutron scattering 

measurements and density-functional-theory (DFT) calculations, we identified the 

vibrational dynamics of both samples. We categorized their phonon modes into three 

different types based on the vibrational energy fractions of different atoms: inorganic 

modes (which consist of vibrational motions mostly of Pb and I), organic modes (which 

describe the vibrational motions of organic molecules), and hybrid modes (coupled 

vibrational motions between Pb-I network and organic molecules). 

With the help of quasi-elastic neutron scattering technique and group theory analysis, 

we characterized the rotational motions of organic molecules in both samples. In 

(BA)2PbI4, two types of rotational modes were revealed: the three-fold (C3) rotational 

modes of NH3 and CH3 groups; and the four-fold (C4) rotational mode of the entire 

molecule about the crystallographic c-axis, which only gets activated in its high-
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temperature structural phase (𝑇 > 275 K). Whereas in (PEA)2PbI4, only the C3 rotational 

of the NH3 group was identified. 

Based on the characterized rotational dynamics of both samples, we determined and 

separated the rotational contributions from the measured phonon intensities. We find that 

the low-energy inorganic modes of both samples have similar scattering intensities and 

temperature dependence, which is consistent with the fact that regardless of the different 

organic molecule configurations, the Pb-I networks of both samples are similar and hence 

the vibrational responses to the incident neutrons are expected to be similar. On the other 

hand, the scattering intensities of hybrid modes are quite different for the two samples. 

The much lower intensities of hybrid modes in (PEA)2PbI4 than in (BA)2PbI4 suggests 

that the tight stacking of PEA+ cations probably restrict their vibrational degrees of 

freedom and hence suppresses the vibrational response of hybrid modes to the incident 

neutrons. The temperature dependence of either inorganic phonon modes or hybrid 

phonon modes does not show predominant correlations with photoluminescence quantum 

yield (PLQY) indicated by their bromide equivalents that we assume to be similar with or 

same as the iodides. However, the rotational dynamics exhibits an excellent 

correspondence to PLQY that: below ~ 150 K when the rotational dynamics of both 

samples are frozen, both of their bromide equivalents’ PLQY stay at high levels (> 90%); 

while above 150 K, the rotational motion of organic molecules in (BA)2PbI4 get enhanced 

much faster than that in (PEA)2PbI4, which coincides with the faster decay of PLQY 

observed in (BA)2PbBr4. This correspondence indicates that the rotational dynamics of 

organic molecules in 2D HOIPs may dominate the optoelectronic performance such as 

PLQY. 
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Chapter 1    

Introduction  

 The field of correlated electron systems has been one of the most widely studied 

areas of research in condensed-matter physics. These compounds are typically made of 

simple blocks, such as a transition-metal ion centered in an octahedral of oxygen or 

halide cage forming a perovskite structure. The ensemble of these elements behaves in a 

complex manner leading to remarkable properties, such as metal-insulator transition and 

high-𝑇𝑐 superconductivity [1, 2]. Due to the non-negligible Coulomb interactions 

between electrons in these systems, the collective states cannot be understood via one-

electron approximation that one electron is embedded in a static mean field generated by 

other electrons. The interplay of interacting or ‘correlated’ electrons’ internal degrees of 

freedom, i.e. spin moment and charge, can exhibit a pool of non-trivial ordering 

phenomena. This interplay makes correlated electron systems quite sensitive to the 

external environment, such as magnetic field, temperature, pressure, or doping [3]. 

 To theoretically describe correlated electron systems, the Hubbard model [4] was 

proposed in 1963. The Hubbard model is based on the tight-binding approximation from 

condensed-matter physics, which describes particles in a periodic potential. The 

Hamiltonian is written in terms of Wannier states, which are localized states centered on 

each lattice site. Wannier states on neighboring sites are coupled, allowing particles on 

one site to ‘hop’ to another. Mathematically, the Hamiltonian is made up of two terms. 

The first term describes the kinetic energy of the system, parameterized by the so-called 
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hopping integral 𝑡. The second term is the on-site interaction of strength 𝑈. Written out in 

second quantization form for a simple 1D correlated electron system, the Hubbard 

Hamiltonian takes the format [5] 

�̂� = − ∑ 𝑡𝑖𝑗(�̂�𝑖,𝜎
+ �̂�𝑗,𝜎′ + �̂�𝑗,𝜎′

+ �̂�𝑖,𝜎)

𝑖,𝑗,𝜎,𝜎′

+ 𝑈 ∑ �̂�𝑖↑�̂�𝑖↓

𝑖

 

(Eq. 1) 

where �̂�𝑖,𝜎 = �̂�𝑖,𝜎
+ �̂�𝑖,𝜎 is the spin-density operator for spin 𝜎 on the 𝑖-th site. According to 

the ratio of the hopping integral and interaction strength 𝑡/𝑈, correlated electron 

systems can be generally categorized into two types: strongly correlated and weakly 

correlated systems. In the limit of 𝑡/𝑈 ≫ 1, the electron-electron interaction can be 

ignored, leaving the system equivalent to free electron gas, which is an extreme case for 

weakly correlated systems. On the other hand, a strongly correlated electron system can 

be described by a much larger Coulomb repulsion among electrons (𝑈 ≫ 𝑡). 

 

1.1 Strongly correlated systems 

 For strongly correlated systems, one of the emergent phenomena is the frustrated 

magnetism [6]. The term ‘frustrated’ describes systems where competing interactions 

cannot be satisfied simultaneously or dominant interactions are randomly distributed 

due to sophisticated behaviors of lattice ions and interacting electrons. 

 The studies of magnetic frustration began with the simplest antiferromagnets, a 

two-dimensional (2D) triangular lattice of Ising spins (of which the orientations are in 
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one of two states along one direction, i.e. ‘up’ or ‘down’). In 1950, Wannier showed that 

this system has a large degeneracy of ground states [7]. As shown in Fig. 1(A), with only 

antiferromagnetic (AF) nearest-neighbor interactions, the spins of the triangular lattice 

are frustrated due to its intrinsic symmetry. This is called ‘geometric frustration’, which 

is a prototype of magnetic frustration. 

 Another commonly seen competing-interaction example is the square lattice with 

competing nearest-neighbor (𝐽1) and next-nearest-neighbor (𝐽2) interactions (Fig. 1 

(B)(C)). The ground state of this model highly depends on the ratio of the interactions 

𝐽1/𝐽2. For 𝐽1 ≫ 𝐽2, the nearest neighbor spins are antiparallel, enforcing the parallel 

(ferromagnetic) alignments of next-nearest-neighbor spins. When 𝐽1 ≪ 𝐽2, the next-

nearest-neighbor spins are antiferromagnetically aligned. Things would get quite 

Fig. 1 Schematic of geometrical frustrations. 

(A) Triangular Ising spin lattice. Red arrows represent spin pointing up and blue 

arrows represent spin pointing down. ‘AF’ represents antiferromagnetic interactions. 

(B)(C) Square-lattice J1-J2 models, showing ground state spin configurations with J1 

>> J2 (B) and J1 << J2 (C). 
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complicated when 𝐽1 is comparable with 𝐽2 where the system is expected to have the 

highest degeneracy and strongest frustration.  

 Following this square lattice model, another type of frustrated magnets attracted 

extensive interests, called the interaction disordered magnets [8-12], where the system 

exhibits a random distribution of spin interactions instead of the ordered competing 

interactions. The interaction disorder in this type of magnets could be due to several 

reasons, such as site-disorder of the magnetic ions, random distribution of non-magnetic 

ions and doping of several types of non-magnetic ions.  

The disordered interactions could give rise to a large degeneracy of the ground 

state. Under particular circumstances, it can lead to an exotic state of matter, spin liquids, 

in which the spins are highly entangled and stay fluctuating well below its Curie-Weiss 

temperature at which the specific magnetic interactions in the material become 

paramagnetic upon heating. In a spin liquid, the frustration of spins can be characterized 

as classical and quantum. Classical frustrations predominate for large spins (spin 𝑆 much 

larger than the minimum 1/2) while quantum fluctuations play a prominent role in small 

spin systems where spin 𝑆 is comparable to 1/2. Strong quantum fluctuations result in a 

quantum spin liquid (QSL) where spins are highly entangled and pointing in random 

orientations [13]. As an extraordinary example of magnetic frustration, the concept of 

quantum spin liquid originates from Anderson’s 1973 paper [14] which describes an 

antiferromagnetic spin-1/2 triangular lattice exhibiting strong zero-fluctuations that 

prevent conventional magnetic long-range order. In 1987, QSL experienced an explosion 

of interest when it was related to high-temperature cuprate superconductors [15], the 

fractional quantum hall effect [16], and topological order [17-19]. Since then, extensive 
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work has been done in searching for QSL candidates in nature. Some QSL candidates are 

listed in Fig. 2. 

 

 

 

1.2 Weakly correlated systems 

 In weakly correlated electron systems, electrons experience relatively weaker 

Coulomb repulsion from other electrons and behaviors of single electron become easier 

to understand. As one of the centerpieces of weakly correlated electron systems, the class 

of optoelectronic materials has attracted extensive attention due to its ability of 

transferring energy in the forms of light or electricity, such as solar cells and light 

emitting devices. 

Fig. 2 Quantum spin liquid candidates. 

(A) 𝜅-(ET)2Cu2(CN)3, where ET is bis(ethylenedithio)tetrathiafulvalene Ref. [20-23]. 

(B) herbertsmithite [23-27]. (C) 𝛼-RuCl3 [23,28,29]. The figure is obtained from Ref. 

[23]. 
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Among the large number of optoelectronic materials, a special class of 

perovskites, called the hybrid organic-inorganic perovskites (HOIPs), has come to the 

forefront of the optoelectronic research field. Working as solar cells, three-dimensional 

(3D) HOIPs, for example MAPbI3 (methylammonium lead iodide), make themselves 

advantageous with their high defect tolerance [30, 31], comparable power conversion 

efficiency ~25% [32] to conventional silicon-based solar cells, and surprisingly low 

fabrication costs. As for the conventional silicon-based cells, extremely high temperature 

(over 2000 K) that is needed in the manufacturing of silicon wafers and a large amount of 

chemical waste that follow make it quite expensive. On the other hand, HOIPs are much 

cheaper: dissolving the two halide salts AX and BX2 in an organic solvent and 

evaporating the solution at relatively low temperatures, usually below 400 K, will form 

the perovskite crystals. 

 Another important application of HOIPs, especially for the low-dimensional 

HOIPs, is the light-emission diodes (LEDs). In the LED field, the most important factors 

are photoluminescence quantum yield (PLQY) and full-width-at-half-maximum 

(FWHM) of the emitted spectrum. Two-dimensional (2D) HOIPs possess self-assembled 

layered structures which induce dielectric- and quantum-confinement effects [33-38]. The 

strong confinements subsequently cause the formation of excitons with large binding 

energy (usually a few hundred meVs). Here, exciton is a quasi-particle formed by two 

oppositely charged carriers, i.e., an electron and a hole. Thus, during photo-excitation, 

large numbers of stable excitons will accumulate in the recombination centers which 

significantly improves the recombination efficiency and leads to high PLQY [33, 37, 38]. 

For example, Gong et al. [37] demonstrated that the 2D exfoliated single crystal, 
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(PEA)2PbBr4, can exhibit a maximum PLQY of 79 % along with a much narrower 

emission linewidth (FWHM of 20 nm compared with 75 nm for organic emitters). 

 

1.3 Neutron scattering 

 As mentioned above, correlated electron systems exhibit numerous exotic 

properties. Then the questions arise: How can we explore the microscopic mechanism 

behind them? How can we ‘observe’ the behaviors of atoms, spins, or charge carriers in 

these systems? To do that, we need a tool whose characteristic scale (etc. wavelength) is 

not larger than that of the microscopic object (typical atomic spacing is 2 Å in a solid). X-

rays, particle beams of electrons, neutron, and light atom scatterers can all have 

wavelength or de Broglie wavelengths of 1~10 Å. Neutrons make themselves 

extraordinary because they have no electric charge and hence can penetrate far deeper 

into solids than others. The neutron also has a magnetic moment which makes it the most 

effective way to directly probe the spatial and time-dependent spin correlations in 

magnetic systems via dipole-dipole interactions.  

In the neutron scattering process, the total energy and momentum are conserved. 

The momentum transfer from the neutron to the sample is defined as 𝑄 = 𝑘 − 𝑘′ where 𝑘 

and 𝑘′ are the wave vector of the incident and scattered neutron, respectively. The 

amount of energy the sample gained from neutron is ℏ𝜔 =
ℏ2

2𝑚
(𝑘2 − 𝑘′2

) where 𝑚 is the 

mass of the neutron. There are two types of scattering between neutrons and materials: 

nuclear scattering and magnetic scattering. The intensity of nuclear scattering is 

proportional to the spatial correlation function of nuclei [39] 
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𝜕2𝜎

𝜕Ω𝜕𝜔
=

𝑘′

𝑘

1

2𝜋ℏ
∑ 𝑏𝑗𝑏𝑗′̅̅ ̅̅ ̅̅ ∫ 〈exp(−𝑖𝑸 ∙ 𝑹𝑗(0)) exp(𝑖𝑸 ∙ 𝑹𝑗′(𝑡))〉 exp(−𝑖𝜔𝑡) 𝑑𝑡

∞

−∞𝑗𝑗′

 

(Eq. 2) 

where 𝑏𝑗 is the scattering length for the nuclei 𝑗. 

 The intensity of magnetic scattering is proportional to the spin-spin correlation 

function [39] 

𝜕2𝜎

𝜕Ω𝜕𝜔
=

(𝛾𝑟0)2

2𝜋ℏ

𝑘′

𝑘
 𝑁 |

1

2
𝑔𝑓(𝑸)|

2

∑(𝛿𝛼𝛽 − 𝑄�̂�𝑄�̂�) ∑ exp(𝑖𝑸 ∙ 𝒍)

𝑙𝛼𝛽

 

× ∫ 〈exp(−𝑖𝑸 ∙ 𝒖𝟎(0)) exp(𝑖𝑸 ∙ 𝒖𝑙(𝑡))〉
∞

−∞

 

× 〈𝑆0
𝛼(0)𝑆𝑙

𝛽(𝑡)〉 exp(−𝑖𝜔𝑡) 𝑑𝑡 

(Eq. 3) 

where 𝒖 = 𝑹 − 𝒍, 𝑔 ≈ 2, 𝑓(𝑸) is the magnetic form factor, 
𝛾𝑟0

2
= 0.2695 × 10−12 cm, 

𝛼, 𝛽 denote the Cartesian Coordinates 𝑥, 𝑦, and 𝑧, and 𝑄�̂�, 𝑄�̂� are the projections of the 

unit wave-vector �̂� on the Cartesian axes. 

 The nuclear scattering is widely used in crystal structure determination, rotational 

dynamics of organic molecules, and lattice vibrational dynamics. In real experimental 

data, the nuclear scattering intensity consists of two parts: coherent scattering and 

incoherent scattering. Assuming there is no correlation between the values of 𝑏 for any 

two nuclei 
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𝑏𝑗𝑏𝑗′̅̅ ̅̅ ̅̅ = (�̅�)
2

,    𝑗′ ≠ 𝑗 

𝑏𝑗𝑏𝑗′̅̅ ̅̅ ̅̅ = 𝑏2̅̅ ̅,        𝑗′ = 𝑗 

Then we have 

𝜕2𝜎

𝜕Ω𝜕𝜔
=

𝑘′

𝑘

1

2𝜋ℏ
(�̅�)

2
∑ ∫〈𝑗′, 𝑗〉 exp(−𝑖𝜔𝑡) 𝑑𝑡

𝑗𝑗′

+
𝑘′

𝑘

1

2𝜋ℏ
{𝑏2̅̅ ̅ − (�̅�)

2
} ∑ ∫〈𝑗, 𝑗〉 exp(−𝑖𝜔𝑡) 𝑑𝑡

𝑗

 

(Eq. 4) 

where 〈𝑗′, 𝑗〉 = 〈exp(−𝑖𝑸 ∙ 𝑹𝑗(0)) exp(𝑖𝑸 ∙ 𝑹𝑗′(𝑡))〉. 

The first term is known as coherent scattering cross-section. It depends on the 

correlation between the positions of different nuclei and the same nucleus at different 

times, thus it describes the nuclear interference.  The second term is called incoherent 

scattering which only contains the correlation between the positions of the same nucleus 

at different time. 

In crystal structure determination, elastic coherent scattering is manifested as 

sharp Bragg peaks.  

(
𝑑𝜎

𝑑Ω
)

𝑐𝑜ℎ,𝑒𝑙
=

𝑁(2𝜋)3

𝑣0
∑ 𝛿(𝑸 − 𝝉)|𝐹𝑁(𝑸)|2

𝜏

 

(Eq. 5) 

where 𝑣0 is the unit cell volume, 𝝉 is the reciprocal lattice vector for certain nuclear 

Bragg peak. 𝐹𝑁(𝑸) = ∑ 𝑏𝑑
̅̅ ̅ exp(𝑖𝑸 ∙ 𝒅) exp(−𝑊)𝑑  is known as the nuclear structure 
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factor, where 𝒅 is the position of certain atom in the unit cell and exp(−𝑊) is related to 

averaged atomic displacements, 𝑊 = 〈(𝑸 ∙ 𝒖)𝟐〉. By fitting the calculations to 

experimental scattering data, people can obtain the microscopic structural information of 

the target material. 

 As for the investigations of dynamics, quasi-elastic and inelastic neutron 

scattering help us characterize slow dynamics and collective vibrations, respectively. 

Slow dynamics include diffusion, molecule rotations, and atomic relaxation processes. A 

slow dynamic process with relaxation time 𝜏, which is then proportional to exp(−𝑡/𝜏), 

will be manifested as Lorentzian profile centered at the elastic channel (ℏ𝜔 = 0) after 

Fourier transformation from time domain to energy domain. Quasi-elastic scattering 

focuses on the region of small energy transfers with atoms of the sample, typically 

± 2 meV. These energy transfers originate from the interactions between neutrons and 

diffusing atoms or reorienting molecules over a time scale of 1~100 picoseconds [40]. 

Different methods can be used to analyze the experimental quasi-elastic data, such as 

phenomenological Lorentzian profile fitting to the momentum (Q)-integrated spectra, 

𝑆(ℏ𝜔), and more detailed modeling to 𝑆(𝑄, ℏ𝜔) along with group theory analysis. Note 

that when we analyze the relaxation process in the sample, we refer to the behaviors of 

the same atom at different times. Thus, we will focus on analyzing the incoherent 

scattering intensity of the materials. 

As for the collective vibrations, the energy and momentum conservation are 

transformed as  

ℏ2

2𝑚
(𝑘2 − 𝑘′2

) = ℏ𝜔𝑠, 𝑸 = 𝒌 − 𝒌′ = 𝝉 + 𝒒 
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where 𝒒 is the wavevector of certain vibrational normal mode 𝑠. This is called one-

phonon coherent scattering. To identify phonon modes from experimental spectra 

properly, we can perform density-functional-theory (DFT) calculations to solve the 

equation of vibrational motion in 3D space numerically. It outputs the vibrational 

energies and eigenvectors of different phonon modes so that we can characterize them via 

vibrational energy fractions of different atoms and visualize the detailed atomic motions. 

This helps us get a better view of the microscopic atomic world. 

 In addition to the nuclear scattering, the magnetic scattering also plays a 

significant role in exploring the microscopic condensed-matter world. As we said 

previously, the magnetic neutron scattering intensity comes from the interactions of 

neutrons’ magnetic moments with dipoles formed by unpaired electrons in the sample. 

Thus, it can offer us valuable information about the magnetic system, such as the 

magnetic spin order and spin excitations (etc. spin wave, magneto-vibrations). One of the 

most important applications of magnetic neutron scattering is magnetic neutron 

diffraction. It is used to determine the spatial distribution and orientations of the atomic 

magnetic moments in the magnetically ordered systems as a function of external 

parameters, such as temperature, pressure, or magnetic field. If someone would like to 

evaluate the magnetic excitations or fluctuations of the sample, inelastic magnetic 

neutron scattering helps a lot. It is the only technique that can directly probe the entire 

magnetic excitation spectrum. As a result, researchers prefer performing external-

parameter-dependent inelastic magnetic scattering measurements to study possible 

critical behaviors of spin correlations in the sample.  
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 For a powder sample, the magnetic neutron scattering probes the spherically 

averaged scattering function 

𝑆(𝑄, ℏ𝜔) = ∫
𝑑Ω

4𝜋

1

2
 ∑(𝛿𝛼𝛽 − 𝑄�̂�𝑄�̂�)𝑆𝛼𝛽(𝑸, ℏ𝜔)

𝛼𝛽

 

(Eq. 6) 

where  

𝑆𝛼𝛽(𝑸, ℏ𝜔) =
1

2𝜋ℏ
∑ exp(𝑖𝑸 ∙ 𝒍)

𝑙

∫ 〈𝑆0
𝛼(0)𝑆𝑙

𝛽(𝑡)〉 exp(−𝑖𝜔𝑡) 𝑑𝑡
∞

−∞

 

(Eq. 7) 

One has to be very careful that the measured intensity consists of various sources: 

background (in time-of-flight spectroscopy it is called ‘time-constant background’), 

neutron scattering from instrument or equipment (such as sample chamber), (nuclear and 

magnetic) scattering from the sample. The scattering from the sample is characterized as 

useful experimental data. To filter out the useful data, ‘empty-sample-can’ scans are 

usually performed. By directly subtracting the ‘empty-sample-can’ data from the raw 

data, one can get the effective data from the sample. Another method to get rid of the 

background signal in the raw data, under the circumstance that the ‘empty-sample-can’ 

scans are not performed, is to process the data based on the detailed balance condition 

[39], 𝑆(−𝜔, 𝑇) = 𝑒
−

ℏ𝜔

𝑘𝐵𝑇𝑆(𝜔, 𝑇). 

 First, we denote the raw intensity on the energy-lose side from a certain 𝑄-cut, 

(𝑄, 𝑄 + Δ𝑄), as 
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𝐼(𝜔, 𝑇) = 𝑏𝑘𝑔(𝜔) + 𝑆(𝜔, 𝑇) 

(Eq. 8) 

where 𝑏𝑘𝑔(𝜔) represents the background signal which does not satisfy the detailed 

balance condition. It contains the background counting, scattering from equipment, and 

nuclear and magnetic elastic scattering. 𝑆(𝜔, 𝑇) represents the scattering intensity which 

satisfies the detailed balance condition, including inelastic magnetic excitations and 

nuclear scattering (phonons). The quasi-elastic signal that diffuses beyond the elastic 

resolution channel is also included. For the energy-gain side, by applying the detailed 

balance condition, the intensity is written as 

𝐼(−𝜔, 𝑇) = 𝑏𝑘𝑔(−𝜔) + 𝑆(𝜔, 𝑇)𝑒
−

ℏ𝜔
𝑘𝐵𝑇 

(Eq. 9) 

Assuming the background signal 𝑏𝑘𝑔(±𝜔) is temperature-independent, with full energy 

range (±ℏ𝜔) data at multiple temperatures, we can extract the optimized 𝑆(𝜔, 𝑇) for 

certain ℏ𝜔 by minimizing the deviation  

𝐷𝑒𝑣 = ∑
[𝐼(𝜔, 𝑇) − 𝑏𝑘𝑔(𝜔) − 𝑆(𝜔, 𝑇)]2

𝜎2(𝜔, 𝑇)
𝑇

+
[𝐼(−𝜔, 𝑇) − 𝑏𝑘𝑔(−𝜔) − 𝑆(𝜔, 𝑇)𝑒−ℏ𝜔/𝑘𝐵𝑇 ]

2

𝜎2(−𝜔, 𝑇)
 

(Eq. 10) 

where 𝜎 is the error of the experimental data. To minimize the deviation, we take 

derivatives of 𝐷𝑒𝑣 with respect to unknown parameters (see details in Appendix 1). 
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 Another key point in magnetic neutron scattering data processing is the physical 

meaning of the intensity unit. The measured raw intensity is usually in a relative scaling, 

which is commonly called ‘arbitrary unit’. Sometimes obtaining only this relative 

intensity is sufficient. However, in order to better study the spin dynamics such as frozen 

spin moments, it is necessary to convert the relative magnetic scattering intensity into 

absolute units, such as in terms of magnetic moment 𝜇𝐵 or spin 𝑆. To transform the 

intensity into the absolute unit, one could use following references [41]: (1) nuclear 

Bragg peak intensity; (2) sample incoherent elastic scattering; (3) standard sample (such 

as vanadium) incoherent elastic scattering, and (4) sample phonon scattering. In our work 

for the strongly correlated system, we rescale the raw data into the absolute unit with 

respect to the nuclear Bragg peak intensity. To check the validity of the absolute unit 

normalization, one could refer to the sum rule (see details in Appendix 1) 

∫ ∫ �̃�(𝑄, 𝜔)𝑑𝑄𝑑𝜔
𝐵𝑍

∞

−∞

∫ 𝑑𝑄
𝐵𝑍

=
2

3
𝑆(𝑆 + 1)𝛿𝛼𝛽 

(Eq. 11) 

where �̃�(𝑄, 𝜔) is the rescaled intensity. 

 

 In this thesis, we reported our neutron scattering studies on a strongly correlated 

magnetic system, Sr2CuTe0.5W0.5O6, and two weakly correlated non-magnetic systems, 

(BA)2PbI4 (butylammonium lead iodide) and (PEA)2PbI4 (phenethyl-ammonium lead 

iodide). 
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 For Sr2CuTe0.5W0.5O6, a square-lattice magnet with super-exchange between S = 

1/2 Cu2+ spins mediated by randomly distributed Te and W ions, by using sub-K 

temperature and 20 μeV energy resolution neutron scattering experiments, we show that 

the system below 𝑇𝑓 = 1.7(1) K exhibits an extremely weak frozen moment of 

〈𝑆〉/𝑆~0.1. Below 𝑇𝑓 the imaginary part of the dynamical susceptibility, 𝜒′′(ℏ𝜔), 

behaves linearly with ℏ𝜔 for ℏ𝜔 < 𝑘𝐵𝑇𝑓 where 𝑘𝐵 is the Boltzmann constant with the 

characteristic spin relaxation rate increasing with decreasing temperatures. Above 𝑇𝑓, 

𝜒′′(ℏ𝜔) behaves as tan−1(ℏ𝜔/𝛤𝑚𝑖𝑛) at low energies indicating the presence of a 

distribution of the spin relaxation rate with the lower limit 𝛤𝑚𝑖𝑛, which behaves as a 

power law with temperature, 𝛤𝑚𝑖𝑛/|𝐽|  = (
𝑘𝐵 𝑇

|𝐽|
)

𝛼

, with |𝐽|~9 meV and 𝛼 = 1.3(1). On 

the other hand, the spatial spin correlations are two-dimensional and short-range with an 

in-plane correlation length of 𝜉 ~ √2 𝑑𝑁𝑁, where 𝑑𝑁𝑁 is the distance between the 

nearest-neighbor spins. Our results indicate that Sr2CuTe0.5W0.5O6 transits from a gapless 

disorder-induced spin liquid to a new quantum state below 𝑇𝑓, exhibiting a weak frozen 

moment and low energy dynamic susceptibility that is linear in energy consistent with a 

Halperin-Saslow-like excitation which is surprising for such a weak freezing in this 

highly fluctuating quantum regime. 

 For (BA)2PbI4 and (PEA)2PbI4, we attempted to link their crystal structural 

dynamics, such as molecular rotational dynamics and lattice vibrational dynamics, to 

their temperature-dependent photoluminescence quantum yield (PLQY) indicated by 

their bromide equivalents. By performing temperature-dependent quasi-elastic neutron 

scattering measurements and applying group theory analysis, we identified the rotational 
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modes of BA+ cation and PEA+ cation. The neutron scattering measurements and data 

analysis revealed two types of jump rotational modes for BA+ cation: the four-fold (C4) 

modes of the entire cation about the crystallographic c-axis, which only gets activated in 

the high-temperature phase (T > 275 K); the three-fold (C3) mode of NH3 and CH3 

terminal groups about their own symmetry axis throughout the temperature range. On the 

other hand, we proposed that within the interested temperature range in this study (7~300 

K), the PEA+ cation only possesses the C3 mode of its NH3 group. Furthermore, with 

wide energy-range temperature-dependent inelastic neutron scattering measurements 

(𝐸𝑖 = 10, 30, 62, 115, 250, 712 meV) and density-functional-theory (DFT) calculations, 

we evaluated phonon spectra for both samples and characterized their phonons into three 

types, i. e. inorganic modes, hybrid modes, and organic modes based on their vibrational 

energy fractions. 

 We examined the correlations between the device performance (PLQY) and 

structural dynamics for both samples by comparing their temperature dependence. The 

molecular rotational dynamics of the two samples are found to show an excellent 

correspondence to the PLQY indicated by their equivalents that we assume to be similar 

with or same as the iodides. We argue that the rotational motion of the charged molecules 

plays a more crucial role than the lattice vibrations in the optoelectronic properties of 

these 2D MHPs.  
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Chapter 2    

Spin correlations in Sr2CuTe0.5W0.5O6 

Recently, as an idealistic realization of the 𝑆 = 1/2 square-lattice 𝐽1 − 𝐽2 model, 

the double perovskite compound, Sr2CuTe1-xWxO6 has obtained revival interest due to its 

significant magnetic frustration away from its clean limit (x = 0 and 1), which further 

suggests that it could be an excellent spin liquid candidate. The crystal structure is shown 

in Fig. 3. It was reported that the difference of d orbital hybridizations of Te (4d10) and W 

(5d0) ions leads to dramatic changes in exchange interactions [42].  

 Let’s first look at the two parent compounds, 𝑥 = 0 and 𝑥 = 1. For Sr2CuTeO6 (x 

= 0), the previous neutron diffraction measurement [43] showed the Neel 

Fig. 3 Schematic of crystal structures of double perovskites Sr2CuTe1-xWxO6. 

(A) The B-site ordered double-perovskite crystal structure. (B) The square lattice 

formed by S = 1/2 Cu2+ ions with the view down the c-axis. The Te or W cation in the 

center determines the J1 and J2 interactions. The figure is extracted from Ref. [44]. 
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antiferromagnetic ordering where the nearest-neighbor spins are antiparallelly aligned in 

ab plane (Fig. 4 (A)), characterized by a propagation vector 𝒒𝒎 = (
1

2
,

1

2
, 0). The 

temperature-dependent measurements of the magnetic Bragg peak intensity showed the 

Neel temperature to be ~ 29 K. To evaluate the origin of the dominating nearest-neighbor 

(𝐽1) interactions, Koga et al. [43] started from the electron orbitals (Fig. 4 (B)) [42, 43]. 

They argued that the 𝑝𝑥 and 𝑝𝑦 orbitals of O2- will have strong overlaps with 𝑑𝑥2−𝑦2 

orbital of Te6+ ions and they form a molecular orbital. The 𝑑𝑥2−𝑦2 orbitals of Cu2+(1) and 

Cu2+(2) share the same molecular orbital in which case the two spins on them have to be 

antiparallel according to Pauli principle. This orbital coupling leads to antiferromagnetic 

interaction between Cu2+(1) and Cu2+(2) (𝐽1). Similar analysis applies to that between 

Cu2+(1) and Cu2+(3) (𝐽2). However, there are two paths for 𝐽1 but only one for 𝐽2 and each 

Fig. 4 Magnetic structure and orbital configurations of Sr2CuTeO6. 

(A) The Neel order magnetic structure with a wave vector qm = (1/2, 1/2, 0). (B) The 

electron orbital configurations related to Cu2+ - O2- - Te6+ - O2- - Cu2+. The figure is 

extracted from Ref. [43]. 
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path makes almost the same contributions. Therefore, it can be expected 𝐽1 will dominate 

in Sr2CuTeO6. 

  For Sr2CuWO6 (x = 1), another type of magnetic ordering, columnar 

antiferromagnetic ordering, was found below its Neel temperature ~ 24 K with a 

characteristic wave vector 𝒒𝒎 = (0,
1

2
,

1

2
) [45] (Fig. 5 (A)). In this case [42, 43], Koga et 

al. claimed that the W ion (5d0) makes significant differences to the orbital 

configurations. The 5p orbitals (𝑝𝑥, 𝑝𝑦) of W6+ ions overlap strongly with the p orbitals of 

O2- (Fig. 5 (B)). The 𝑝𝑥 − 𝑝𝑥 and 𝑝𝑦 − 𝑝𝑦 pairs form two different orthogonal molecular 

orbitals. The 𝑑𝑥2−𝑦2 orbitals of Cu2+(1) and Cu2+(2) couple to different molecular orbitals 

in which case their spins will align parallelly due to Hund’s rule. As a result, the Cu2+(1) 

– Cu2+(2) interaction will be ferromagnetic. Yet, for interaction between Cu2+(1) and 

Cu2+(3), they both couple to the same 𝑝𝑥 − 𝑝𝑥 molecule orbital, so their spins have to be 

Fig. 5 Magnetic structure and orbital configurations of Sr2CuWO6. 

(A) The columnar order magnetic structure with a wave vector qm = (0, 1/2, 1/2). (B) 

The electron orbital configurations related to Cu2+ - O2- - W6+ - O2- - Cu2+. The 

figures (A)(B) are extracted from Ref. [45] and Ref. [43], respectively. 
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aligned antiparallelly which indicates an antiferromagnetic interaction between them. The 

remaining weak antiferromagnetic interaction between Cu2+(1) and Cu2+ comes from the 

path Cu2+(1) - O2- - O2- - Cu2+(2) which skips the intermediate W ion. 

 To determine the interaction strengths in these two compounds, time-of-flight 

neutron scattering measurements have been carried out [46, 47]. As shown in Fig. 6, both 

Fig. 6 Magnetic excitations of Sr2CuTeO6 and Sr2CuWO6. 

(A) Measured magnetic excitations of Sr2CuTeO6 obtained by subtraction of 120 K 

from 2 K data using time-of-flight neutron scattering technique (top); a constant-Q cut 

(~ 1.7 Å-1) of the dynamic susceptibility with the solid red line showing the calculated 

intensity from spin-wave theory (bottom). (B) Measured magnetic intensity of 

Sr2CuWO6 at 6 K after phonon scattering subtraction with incident neutron energy 

𝐸𝑖 = 10 meV (top) and 45 meV (bottom). The figures (A)(B) are extracted from Ref. 

[46] and Ref. [47], respectively. 



 

21 

 

samples exhibit spin-wave like spectra features. Linear spin-wave theory calculations 

have been performed to reproduce the measured spectra. In Sr2CuTeO6 [46], the nearest-

neighbor interaction (𝐽1) is determined as -7.60(3) meV and 𝐽2 to be -0.60(3) meV. 

Whereas in Sr2CuWO6 [47], the optimized 𝐽1 is -1.2 meV and 𝐽2 is -9.5 meV. The 

measured data and reproduced calculations confirmed the different types of major 

interactions in the two parent compounds. 

 

  

Fig. 7 Schematic phase diagram of Sr2CuTe1-xWxO6. 

The black squares represent the measured Neel temperatures and the blue circles 

represent the lowest temperature measured for samples that remain dynamic. The 

figure is extracted from Ref. [44]. 
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After the characterization of the two parent compounds, people get more interested 

in the mixed compounds (0 < x < 1). By using muon spin rotation and relaxation method, 

Mustonen et al. [44, 48] characterized this full isostructural compound series which showed 

that when x = 0.1 ~ 0.6, the system exhibits no long-range magnetic order down to 1.5 K, 

especially for x = 0.5 where spins remain dynamic down to 19 mK (see Fig. 7 the phase 

diagram). Here, we emphasize that the muon spin rotation and relaxation method is a local 

probing technique and cannot tell us much about the global space and time correlations. 

Thus, we do not rely much on these results when we study the concentration-dependent 

magnetic properties of this compound series. What’s more, a specific heat study on 𝑥 = 

0.5 compound shows an anomaly in its temperature dependence, i. e. above ~1.5 K it is 

nearly linear in T while below 1.5 K it becomes quadratic to T [49]. This behavior 

signatures a possible magnetic phase transition into a frozen state below 1.5 K. In order to 

resolve the puzzling results indicated by the μSR and specific heat measurements, our 

group performed temperature-dependent time-of-flight measurements on x = 0.5 with three 

different neutron incident energies, 𝐸𝑖, using two different spectrometers at the Spallation 

Neutron Source (SNS) located at the Oak Ridge National Laboratory; 𝐸𝑖 = 1.55 and 3.32 

meV were used at the Cold Neutron Chopper Spectrometer (CNCS) [50] to focus on low 

energy excitations, and 𝐸𝑖 = 45 meV at the Fine-Resolution Fermi Chopper Spectrometer 

(SEQUOIA) [51] to probe high energy excitations up to the top of the magnetic energy 

band. We covered the critical temperature with the temperature range 0.25 K to 12 K with 

𝐸𝑖 = 1.55 meV which offers an excellent energy resolution of Δ𝐸𝐻𝑊𝐻𝑀 = 0.02 meV.  
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2.1 Magnetic excitation spectra 

Fig. 8 shows color contour maps of the inelastic neutron scattering cross section, 

𝑆(𝑄, ℏ𝜔), as a function of momentum transfer, 𝑄, and ℏ𝜔, acquired at 0.25 K with 𝐸𝑖 = 

1.55 and 3.32 meV, and at 5 K with 𝐸𝑖 = 45 meV. The 𝐸𝑖 = 45 meV data are shown only 

down to ~ 3 meV which corresponds to ~ 35 K and the magnetic excitations above 3 meV 

are expected to be similar at 5 K and 0.25 K. The figure shows that the magnetic excitations 

extend from at least 0.05 meV up to 20 meV. The intensity was normalized to obtain 

𝑆(𝑄, ℏ𝜔) in an absolute unit of 1/meV/Cu2+ by comparing the nuclear Bragg reflections to 

the calculated nuclear structure factors [41] (see details in Appendix. 1). The total signal 

from 0.05 to 20 meV, 
∫ ∫ 𝑆(𝑄,ℏ𝜔)/[𝑓(𝑄)]2𝑑(ℏ𝜔)𝑑𝑄

20 meV
0.05 meV𝐵𝑍

∫ 𝑑𝑄𝐵𝑍

, where 𝑓(𝑄) is the Cu2+ magnetic 

form factor, was estimated to be 0.5(1) which is consistent with the sum rule for the 

isotropic spin of 
2

3
𝑆(𝑆 + 1) = 0.5. 

As shown in the Fig. 8 (A), for ℏ𝜔 ≲ 7 meV the magnetic excitations exhibit a 

prominent peak at 𝑄 ~ 0.6 Å−1 . On the other hand, for ℏ𝜔 ≳ 7  meV the magnetic 

excitations are almost featureless in 𝑄, which is due to the Van Hove singularity of the top 

of the magnetic energy band from a powder sample. These overall features of 𝑆(𝑄, ℏ𝜔) 

can be understood as being due to a powder-averaged spin wave spectrum in a long range 

ordered magnetic state, similarly to the 𝑆(𝑄, ℏ𝜔) reported for the two mother compounds 

Sr2CuTeO6 [46] and Sr2CuWO6 [47], both of which exhibit long range order long range at 

low temperatures even though their ordered magnetic structures are different.  
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 If we closely examine the data of Sr2CuTe0.5W0.5O6, however, we notice a peculiar 

feature. Fig. 8 (B) shows the constant ℏ𝜔 cuts of 𝑆(𝑄, ℏ𝜔), 𝑆(𝑄), for four different energy 

ranges. For ℏ𝜔 ≳ 0.8 meV, 𝑆(𝑄) shows long ranged spin-wave-like features as discussed 

Fig. 8 Inelastic neutron scattering data of Sr2CuTe0.5W0.5O6 [52]. 

(A) Color contour maps of the neutron scattering intensity as a function of momentum 

transfer, 𝑄, and energy transfer, ℏ𝜔, measured with three different energies of 

incident neutrons, 𝐸𝑖 = 1.55 meV (bottom), 3.32 meV (middle) and 45 meV (top). 

The 𝐸𝑖 = 1.55 and 3.32 meV were collected at the Cold Neutron Chopper 

Spectrometer (CNCS) and the 𝐸𝑖 = 45 meV data were collected at the Fine-

Resolution Fermi Chopper Spectrometer (SEQUOIA) at SNS. (B) 𝑄-dependence of 

the inelastic neutron scattering intensity, 𝑆(𝑄) =
∫ 𝑆(𝑄,ℏ𝜔)𝑑(ℏ𝜔)

∫ 𝑑(ℏ𝜔)
, for four different ℏ𝜔 

integration ranges. The dashed lines represent the zero values of the corresponding 

constant-ℏ𝜔 cuts. 
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above, exhibiting a prominent peak at 𝑄 ~ 0.6 Å−1  for ℏ𝜔 ≲ 7 meV and being almost 

featureless for ℏ𝜔 ≳ 7 meV. Note that 𝑆(𝑄) for both 3 ≤ ℏ𝜔 ≤ 5 meV (blue triangles) 

and 0.8 ≤ ℏ𝜔 ≤ 2 meV (orange circles) are more or less symmetric about 𝑄 ~ 0.62 Å−1. 

On the other hand, the 𝑆(𝑄)  for 0.05 ≤ ℏ𝜔 ≤ 0.8  meV (black squares) is strikingly 

asymmetric in 𝑄 . This indicates that the very low energy spin fluctuations of 

Sr2CuTe0.5W0.5O6 are due to low-dimensional dynamic spin fluctuations. The dimensional 

crossover of the spin fluctuations from being three-dimensional to lower-dimensional and 

the low-dimensional low-energy spin fluctuations may hold a key in understanding the 

anomalous low temperature magnetic properties that previous studies reported for this 

system [44, 48, 49]. The focus of this work is to examine how the low energy excitations 

below ℏ𝜔 ~ 0.8 meV evolve as a function of temperature down to sub-K.  

The TOF measurements with 𝐸𝑖  = 1.55 meV were performed at nine different 

temperatures from 0.25 K to 12 K. Among them, Fig. 9 shows the 𝑆(𝑄, ℏ𝜔) for four 

temperatures, 7, 4, 1.7, and 0.25 K. At all temperatures, the low energy excitations are 

dominated by the gapless streak that is centered at 𝑄 ~ 0.62 Å−1. The measured scattering 

intensity indicates that the system is gapless down to the lowest energy ℏ𝜔 ~ 0.05 meV 

that can be accessed by the instrument energy resolution. Upon cooling from 7 K to 1.7 K, 

𝑆(𝑄, ℏ𝜔) increases in strength for low energies of ℏ𝜔 <  0.3 meV, and the spectral weight 

of 𝑆(𝑄, ℏ𝜔)  gradually shifts to lower energies. Surprisingly, however, upon further 

cooling from 1.7 K to 0.25 K, the strong low energy spin fluctuations below 0.2 meV 

become weak as shown as the red square symbols in Fig. 10 (A). The depletion of 𝑆(𝑄, ℏ𝜔) 

at low energies upon cooling is typically a signature of spin freezing or development of 

static order of spins.  
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 In order to investigate how the spectral weight of the low energy spin fluctuations 

evolve upon cooling, we integrated the scattering cross-section �̃� ≡

∫ ∫ 𝑆(𝑄, ℏ𝜔)/[𝑓(𝑄)]2𝑑(ℏ𝜔)𝑑𝑄
0.2 meV

0.05 meV

1.0 Å−1

0.4 Å−1  over a range of 𝑄  and ℏ𝜔  covering the 

prominent low energy peak centered at 0.6 Å−1 and plotted it as a function of 𝑇. As shown 

Fig. 9 Low energy spin fluctuations of Sr2CuTe0.5W0.5O6.[52] 

Color contour maps of the low energy magnetic neutron scattering cross section, 

𝑆(𝑄, ℏ𝜔), measured with 𝐸𝑖 = 1.55 meV, measured at (A) 0.25 K, (B) 1.70 K, (C) 

4.00 K, and (D) 7.00 K. The temperature independent background was determined by 

an algorithm (Appendix. 1)  using the detailed balance condition, 𝑆(𝑄, −ℏ𝜔) =

𝑒
−

ℏ𝜔

𝑘𝐵𝑇𝑆(𝑄, ℏ𝜔), and subtracted from the raw data to get 𝑆(𝑄, ℏ𝜔). 



 

27 

 

as the red square symbols in Fig. 10 (B), as 𝑇 decreases from 12 K to 2 K, the low energy 

spin fluctuations �̃� get gradually stronger. When 𝑇 decreases further from 2 K, however, 

the low energy spin fluctuations gradually weaken, transferring to the elastic channel (see 

Fig. 11). This strongly indicates that the spins indeed freeze below 𝑇𝑓  ~ 1.7(1) K. These 

findings starkly contradict the previous muon spin relaxation (μSR) study that reported a 

spin liquid state down to 19 mK [48]. How could the μSR measurements not be able to 

detect the spin freezing? The clue comes from the fact that the spin freezing is very weak: 

as shown in Fig. 10 (B), the frozen spectral weight is ∆�̃� =  �̃�(2 K) − �̃�(0.25 K) ≅ 0.003 

Fig. 10 Low energy spin fluctuations and spectral weights of Sr2CuTe0.5W0.5O6.[52] 

(A) The 𝑄-averaged neutron scattering intensity, 𝑆(ℏ𝜔) =
∫ 𝑆(𝑄,ℏ𝜔)𝑑𝑄

∫ 𝑑𝑄
, obtained with 

𝐸𝑖 = 1.55 meV at 0.25 K is shown after 𝑆(ℏ𝜔) at 1.7 K was subtracted. The 𝑄-

integration range for the red squares was 0.4 Å−1 < 𝑄 < 1.0 Å−1 including 𝑞𝑚 =

(
1

2
, 0, 0), while that for the black squares was 0.2 Å−1 < 𝑄 < 0.35 Å−1 below 𝑞𝑚. (B) 

the red squares represent the integrated spectral weights over an energy range of 

0.05 < ℏ𝜔 < 0.20 meV and a 𝑄 range of 0.4 Å−1 < 𝑄 < 1.0 Å−1 as a function of 

temperature, 𝐼𝑖𝑛𝑒𝑙 = �̃� ≡ ∫ ∫ 𝑆(𝑄, ℏ𝜔)/[𝑓(𝑄)]2𝑑(ℏ𝜔)𝑑𝑄
0.20 meV

0.05 meV

1.0 Å−1

0.4 Å−1 . 
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in the unit of 1/Cu2+. Thus, below 𝑇𝑓  only 0.6 % out of the total spectral weight of the 

isotropic spin that is 
2

3
𝑆(𝑆 + 1) = 0.5 is frozen and the rest is fluctuating. 

In order to study the nature of the weak spin freezing, we plotted the elastic 

magnetic scattering cross-section, 𝑆𝑒𝑙𝑎𝑠
𝑚𝑎𝑔(𝑄, 0.25 K) = ∫ 𝑆(𝑄, ℏ𝜔)𝑑(ℏ𝜔)

0.02 meV

−0.02 meV
 

measured at 0.25 K, after background subtraction. Here, background was determined by 

averaging similar elastic 𝑆𝑒𝑙𝑎𝑠(𝑄) measured at three different temperatures 4 K, 7 K, and 

Fig. 11 The elastic magnetic scattering cross section of Sr2CuTe0.5W0.5O6.[52] 

The elastic magnetic scattering signal 𝑆𝑒𝑙𝑎𝑠
𝑚𝑎𝑔(𝑄, 0.25 K) = ∫ 𝑆(𝑄, ℏ𝜔)𝑑(ℏ𝜔)

0.02 meV

−0.02 meV
 

was measured at 0.25 K after background subtraction. Here background was 

determined by averaging similar elastic 𝑆𝑒𝑙𝑎𝑠(𝑄) measured at three different 

temperatures 4 K, 7 K, and 12 K above 𝑇𝑓, to increase the statistics. The black solid 

line is the fit to the phenomenological model discussed later in the text. 
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12 K above 𝑇𝑓, to increase the statistics. As shown in Fig. 11,  𝑆𝑒𝑙𝑎𝑠
𝑚𝑎𝑔(𝑄, 0.25 K) exhibits 

an asymmetric broad peak at 𝑄 ~ 0.62 Å−1 similar to the low energy gapless excitations 

shown in Fig. 12. This implies that the static correlations of the frozen spins are basically 

the same as the dynamic correlations of the fluctuating moments. The black line is the fit 

to a phenomenological Lorentzian function with a two-dimensional correlation length of 

𝜉 = 12(6) Å  that will be explained in detail later. The large error of 𝜉 is due to the weak 

signal and poor statistics. 

 

2.2 Spatial correlations 

To investigate the nature of the critical spin fluctuations at low energies, we have 

generated constant- 𝑄  and constant- ℏ𝜔  cuts from 𝑆(𝑄, ℏ𝜔)  taken at nine different 

temperatures spanning the spin freezing transition. 𝑆(ℏ𝜔)  was then converted to the 

imaginary part of the dynamic susceptibility 𝜒"(ℏ𝜔)  using the fluctuation-dissipation 

theorem.  

First, shown in Fig. 12, note that 𝑆(𝑄) exhibits a prominent asymmetric peak with 

a maximum at 𝑄 ≈ 0.62 Å−1 that corresponds to 𝒒𝒎 = (
1

2
, 0,0), a sharp edge at lower 𝑄s, 

and a long tail at higher 𝑄s. There is another peak at 𝑄 ≈ 1.3 Å−1 that corresponds to 𝒒𝒎 =

(
1

2
, 1,0). Thus, the low energy spin fluctuations have a characteristic antiferromagnetic 

wavevector of 𝒒𝒎 = (
1

2
, 0,0). For a quantitative analysis of the spin dynamical correlation, 

we fit 𝑆(𝑄) to the product of the independent lattice-Lorentzian functions [53, 54],  
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𝑑𝜎(𝑸)

𝑑Ω
∝ |𝐹𝑚

⊥(𝑸)|2 ∏
sinh(𝜉𝛼

−1)

cosh(𝜉𝛼
−1) − cos[(𝒒𝒎 − 𝑸) ∙ �̂�𝛼]

𝛼

 .              

(Eq. 12) 

Fig. 12 𝑄-dependence of low energy spin fluctuations in Sr2CuTe0.5W0.5O6.[52] 

The 𝑄-dependence of the low energy neutron scattering intensity was obtained by 

averaging 𝑆(𝑄, ℏ𝜔) over 0.05 < ℏ𝜔 < 0.80 meV, 𝑆(𝑄, ℏ𝜔) =
∫ 𝑆(𝑄,ℏ𝜔)𝑑(ℏ𝜔)

0.80 meV
0.05 meV

∫ 𝑑(ℏ𝜔)
0.80 meV

0.05 meV

, 

at four different temperatures, 0.25 K (black squares), 1.70 K (red), 4.00 K (blue), and 

7.00 K (orange). The color-coded solid lines are the 𝑆(𝑄) fitting results to the 

Lorentzian function Eq. 12. Two characteristic wave vectors, 𝑞𝑚 = (
1

2
, 0, 0) and 

(
1

2
, 1, 0), are indexed with black arrows. 
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Here 𝐹𝑚
⊥(𝑸) = 𝑓(𝑄)Σ𝜈𝑴𝜈

⊥𝑒−𝑖𝑸∙𝒓𝜈 , where 𝑴𝜈  and 𝒓𝜈  are the staggered magnetic 

moment and the position of a Cu2+ ion at the site 𝜈, respectively, and 𝑓(𝑄) is the Cu2+ 

magnetic form factor. 𝜉𝛼  and �̂�𝛼  are the spin-correlation length and the unit cell lattice 

vector along the crystallographic axis (𝛼 = 𝑎, 𝑏, 𝑐), respectively. The detailed parameter 

settings can be found in Appendix. 1. The scattering cross-section was convoluted with the 

instrumental resolution to fit the data. In the fitting, we used two different correlation 

lengths, an isotropic in-plane correlation length, 𝜉 = 𝜉𝑎 = 𝜉𝑏 , and an out-of-plane 

correlation length, 𝜉𝑐. The fitting results are shown as the color-coded solid lines in Fig. 

12. For all the low temperatures considered, the out-of-plane 𝜉𝑐 was negligible, confirming 

the two-dimensionality of the critical spin fluctuations. Furthermore, as shown as black 

triangles in Fig. 14, the in-plane correlation length, 𝜉 , is very short, 𝜉 =

8.4(9) Å ~ √2 𝑑𝑁𝑁  at 0.25 K, in which 𝑑𝑁𝑁  is the distance between the nearest 

neighboring Cu2+ ions. And 𝜉 gets slightly shorter above 𝑇𝑓 :  𝜉 = 7.1(8) Å at 12 K. Thus, 

the critical spin fluctuations at low temperatures have very short two-dimensional 

correlations that fall off quickly when the distance between the spins goes beyond the 

distance between the second nearest neighbors. 

 

2.3 Dynamic susceptibility 

Fig. 13 shows 𝜒′′(ℏ𝜔). At 7 K which is far below the Curie-Weiss temperature of 

Sr2CuTe0.5W0.5O6,  |Θ𝐶𝑊| = 71 K [48] and well above 𝑇𝑓, the system is in a spin liquid 

state. In this state, as shown as the orange squres, 𝜒′′(ℏ𝜔), obtained by the flutuation-
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dissipation theorem 𝜒′′(ℏ𝜔) =
1

𝜋
(1 − 𝑒

−
ℏ𝜔

𝑘𝐵𝑇) 𝑆(ℏ𝜔), gradually increases with increasing 

ℏ𝜔. Upon cooling down to 1.7 K ≈ 𝑇𝑓, 𝜒′′(ℏ𝜔) softens, i.e., the spectral weight gradually 

Fig. 13 ℏ𝜔-dependence of low energy spin fluctuations in Sr2CuTe0.5W0.5O6.[52] 

The color squares are the energy dependence of the imaginary part of the dynamic 

susceptibility, 𝜒′′(ℏ𝜔) = (1 − 𝑒
−

ℏ𝜔

𝑘𝐵𝑇) 𝑆(ℏ𝜔), obtained by averaging and converting 

the inelastic neutron scattering intensity 𝑆(𝑄, ℏ𝜔) over 0.40 < 𝑄 < 1.00 Å−1, i.e. 

𝑆(ℏ𝜔) =
∫ 𝑆(𝑄,ℏ𝜔)𝑑𝑄

1.00 Å−1

0.40 Å−1

∫ 𝑑𝑄
1.00 Å−1

0.40 Å−1

, at 0.25 K (black), 1.70 K (red), 4.00 K (blue), and 7.00 K 

(orange). The color solid lines represent fits by the spectral weight function of an 

arctangent type, 𝑦 = 𝑦0 tan−1(ℏ𝜔/Γ𝑚𝑖𝑛), which gives the lower bound (𝛤𝑚𝑖𝑛) of the 

spin relaxation rates. The black dashed line represents the linear ℏ𝜔 dependence of 

low energy fluctuations up to ~0.15 meV. 
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shifts to lower energies. This low energy behavior is expected for a spin liquid since the 

energy scale of the low energy spin fluctuations in a spin liquid is temperature, 𝑘𝐵𝑇, where 

𝑘𝐵 ≈ 0.086 meV/K is the Boltzmann constant. For a quantitative analysis of the low 

energy fluctuations, we compare 𝜒′′(ℏ𝜔)  to a phenomenological function, 𝜒′′(ℏ𝜔) ∝

tan−1 (
ℏ𝜔

𝛤𝑚𝑖𝑛
), that assumes a broad distribution of spin relaxation rates with the lower limit 

Fig. 14 Spin correlation length and relaxation rate of the low energy spin fluctuations 

in Sr2CuTe0.5W0.5O6.[52] 

The black triangles are the correlation length, 𝜉, extracted from the 𝑆(𝑄) fitting in 

Fig. 12. The red circles are the lower limit of the spin relaxation rates, Γ𝑚𝑖𝑛, 

extracted from the 𝑦 = 𝑦0 tan−1(ℏ𝜔/Γ𝑚𝑖𝑛 ) fitting of the imaginary part of the 

dynamic susceptibility, 𝜒′′(ℏ𝜔), as a function of temperature. The read solid line 

represents the fitting results 
Γ𝑚𝑖𝑛

|𝐽|
= (

𝑘𝐵𝑇

|𝐽|
)

𝛼

as discussed in the text. 
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of 𝛤𝑚𝑖𝑛[55]. Fig. 14 shows the resulting 𝛤𝑚𝑖𝑛 in a log scale as a function of 𝑇 (see red 

circles). The red line is a fit to a function, 
𝛤𝑚𝑖𝑛

|𝐽|
= (

𝑘𝐵𝑇

|𝐽|
)

𝛼

, with an energy scale of the 

magnetic interactions, |𝐽| = 9(2) meV, and a power, 𝛼 = 1.3(1). The value of |𝐽| is close 

to the previously-reported value of the dominant magnetic interaction in this system [56], 

𝐽2~ − 9  meV. However, upon further cooling below 𝑇𝑓 , low-energy spin degrees of 

freedom get depleted in the frozen state (Fig. 10 (B)) where 𝜒′′(ℏ𝜔) ∝ ℏ𝜔 up to 𝑘𝐵𝑇𝑓  ≈ 

0.15 meV, as shown as the black squares and black dashed line in Fig. 13. The linear 

behavior of 𝜒′′(ℏ𝜔) ∝ ℏ𝜔 for ℏ𝜔 <  𝑘𝐵𝑇𝑓  is consistent with the quadratic behavior of 

specific heat [49], 𝐶(𝑇) ∝ 𝑇2 for 𝑘𝐵𝑇 <  𝑘𝐵𝑇𝑓.  

 

2.4 Spin jam state 

In a previous experimental study, the state above 𝑇𝑓 was regarded as a valence-

bond glass (VBG) [49, 57, 58]. The magnetic excitations, however, do not exhibit any 

singlet-to-triplet-excitations characteristic of valence bonds (see Fig. 8 and Refs. [14-16, 

18]). Rather, the magnetic excitations at high energies resemble spin-wave excitations of 

the ordered state of Sr2CuWO6, even though the excitations are smeared in energy [47, 

56]. Thus, we believe it is more appropriate to call the state of Sr2CuTe0.5W0.5O6 above 𝑇𝑓 

a disorder-induced glassy SL rather than VBG. Below 𝑇𝑓, 𝜒′′(ℏ𝜔) ∝ ℏ𝜔 and 𝐶𝑣(𝑇) ∝

𝑇2. Such behavior is consistent with linearly dispersing modes with density of state 

𝜌(𝜔) ∝ 𝜔𝐷−1 where 𝐷 is the magnetic dimensionality. In systems with rotationally 

invariant interactions, such modes appear as Goldstone modes that are a consequence of a 
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spontaneous symmetry breaking into a long range ordered state. However, such linearly 

dispersing modes can appear even in symmetry broken states without long range order, 

and such modes in Heisenberg spin glasses are called Halperin-Saslow (HS) modes [59, 

60]. These suggest that the frozen state is a quantum analog of a spin jam state, a glassy 

state typical for non-dilute frustrated magnets [61]. The spin jam is a distinct state from 

an ordinary spin glass of diluted magnets. The low energy spin dynamics of a spin jam is 

governed by the HS modes while those of a spin glass is by localized two-level energy 

states [59-61], leading to different memory effects [62]. The main assumptions in the 

Halperin-Saslow theory are the presence of some freezing as well as nonvanishing spin 

stiffness [59]. While the Halperin-Saslow scenario is an appealing direction to explain the 

experimental observations, it is unknown how effective such a mechanism can be in our 

system where the frozen moment is very small, 〈𝑆〉/𝑆 ∼ 0.1. This presents a theoretical 

challenge to fully understand the mechanism of the freezing of the disorder-induced SL 

and the possible extension of HS theory into this new highly fluctuating quantum regime. 
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Chapter 3 

(BA)2PbI4 & (PEA)2PbI4: Structural Dynamics 

and Optoelectronic Properties 

3.1 Experimental techniques 

 3.1.1 sample preparation 

 For this work, powder samples of (BA)2PbI4 and (PEA)2PbI4 were used. 

(BA)2PbI4. The synthesis of the (BA)2PbI4 powder sample was adopted from the 

method reported by Stoumpos et al. [63]. PbI2 was dissolved in a mixture of HI and 

H3PO2 under heating. An equal molar of BAI was then added to the solution. After 

dissolution, the heating and stirring were discontinued and the solution was left to cool to 

room temperature, when (BA)2PbI4 crystalized into orange plates. The crystals were 

collected by suction filtration and washed three times with ethyl ether before vacuum-

dried overnight. 

(PEA)2PbI4. For the preparation of the (PEA)2PbI4 powder samples, 

stoichiometric amounts of phenylethylamine iodide (Greatcell Solar) and lead iodide 

(99.9985%, Alfa Aesar) were dissolved in 𝛾-Butyrolactone (≥ 99%, Sigma Aldrich) and 

stirred overnight. This solution was then added dropwise into toluene (anhydrous, 99.8%, 

Sigma Aldrich) which acts as an antisolvent. This mixture was then sonicated to further 

crash out the perovskite powder. After centrifuging at 3000 rpm for 5 minutes, the 

supernatant was poured out. New toluene was added. This centrifuge and wash procedure 
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were repeated several times. Finally, the resulting powder was dried in vacuum 

overnight. 

All the samples were synthesized in the Choi Laboratory for Optoelectronic 

Nanomaterials of the Department of Chemical Engineering, University of Virginia. 

 

 

 3.1.2 Neutron scattering measurements 

Inelastic neutron scattering. Vibrational dynamics of (BA)2PbI4 and (PEA)2PbI4 

was studied by time-of-flight inelastic neutron scattering (INS) measurements up to 600 

meV using 4D-Space Access Neutron Spectrometer (4SEASONS) [64] at J-PARC. To 

cover the wide range of phonon spectra, six different incident energies (𝐸𝑖) were used 

(10, 30, 62, 115, 250, 712 meV). The data were collected during heating from 8 K to 300 

K. 

 

Quasi-elastic neutron scattering. The rotational dynamics of both samples was 

studied by performing quasi-elastic neutron scattering on the powder samples using the 

cold-neutron disk-chopper spectrometer (AMATERAS) [65] at Japan Proton Accelerator 

Research Complex (J-PARC). The incident neutron energy 𝐸𝑖 was set to be 3.3 meV 

which can provide an energy resolution of ~0.04 meV. The powder samples were loaded 

into an annular aluminum can which was mounted in a top loading closed cycle 

refrigerator (TL-CCR). The measurements were performed from 10 K to 300 K. 
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3.2 Theoretical data analysis and calculations 

3.2.1 Density Functional Theory Calculations 

Structure relaxation. First-principles density functional theory (DFT) calculations 

were performed to understand the microscopic nature of the vibrational modes and the 

experimental INS spectra of (BA)2PbI4 and (PEA)2PbI4. We used the Vienna ab initio 

Simulation Package (VASP) with projector augmented wave (PAW) method [66]. The 

PBE-type (Perdew-Burke-Ernzerhof) generalized gradient approximation is adopted for 

the exchange-correlation functional [67]. The initial structure of (BA)2PbI4 we used in 

DFT calculations is the orthorhombic (Pbca LT) structure obtained from Rietveld 

refinement [68]. For (PEA)2PbI4, the initial structure (triclinic, P-1) we used is obtained 

from single-crystal X-ray diffraction [69].  

 

Phonon band structure and phonon spectra simulation. The phonon band structures 

of the two samples were calculated with a 4×4×4 grid of the phonon momentum space and 

a 1×1×1 supercell size due to computing ability limitation. The phonon band structures 

were calculated along the high-symmetry q path: 𝛤(0,0,0) → 𝑋(1 2⁄ , 0,0) →

𝑆(1 2⁄ , 1 2⁄ , 0) → 𝑌(0, 1 2⁄ , 0) → 𝛤(0,0,0) → 𝑍(0,0, 1 2⁄ ) → 𝑈(1 2⁄ , 0, 1 2⁄ ) →

𝑅(1 2⁄ , 1 2⁄ , 1 2⁄ ) → 𝑇(0, 1 2⁄ , 1 2⁄ ) → 𝑍(0,0, 1 2⁄ ) for both samples. Furthermore, the 

phonon spectra were simulated for both (BA)2PbI4 and (PEA)2PbI4 using the third-part 

package, OCLIMAX [70]. Because of the low crystal symmetry (triclinic P-1) and large 
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number of atoms (188 per unit cell) of (PEA)2PbI4, imaginary phonon frequencies cannot 

be removed in DFT calculations, indicating that some intrinsic structure instability exist in 

this low-symmetry system. The structure instability will not significantly affect the hybrid 

modes and organic modes which contain less Pb-I lattice vibration than inorganic modes. 

 

Vibrational energy fraction. To understand and characterize the phonon modes, 

we have calculated the vibrational energy fractions for both samples. Vibrational energy 

fraction is defined as the energy contribution of each atomic type (𝐴𝑇 = Pb, I, N, C, H) 

𝐹𝐴𝑇(𝑠, 𝒒) =
∑ 𝑚𝑖𝜔𝑠(𝒒)2|𝒖𝑖(𝑠,𝒒)|2

𝑖∈𝐴𝑇

∑ 𝑚𝑖𝜔𝑠(𝒒)2|𝒖𝑖(𝑠,𝒒)|2
𝑖∈𝑎𝑙𝑙

. 

(Eq. 13) 

where 𝑠 and 𝒒 represent the phonon mode index and phonon wavevector, respectively. 

And 𝒖𝑖(𝑠, 𝒒) is the mean square root displacement of the i-th atom due to the activation of 

phonon mode 𝑠. 𝑚𝑖  is the mass of the i-th atom, and 𝜔𝑠(𝒒) is the eigen frequency of 

phonon mode 𝑠 at 𝒒. 

 

3.2.2 Rotational Mode Calculations 

The rotation model that accounts for the preferential molecular orientation is 

called jump model [40, 71]. The rotational dynamics of the organic cation is determined 

by its own symmetry and the local crystal symmetry. The possible rotational modes are 

described as the irreducible representations of the direct product Γ = 𝐶 ⊗ 𝑀 where 𝐶 and 

𝑀 are the point groups of the local crystal symmetry and the molecule symmetry, 



 

40 

 

respectively. In group theory, the static and dynamic structure factor for rotational 

motions of molecules in a crystal can be written as [71] 

𝑆𝑐𝑎𝑙(𝑄, ℏ𝜔) = 𝑒−〈𝑢2〉𝑄2
(∑ 𝐴𝛾(𝑄)

1

𝜋

𝜔𝛾

1 + 𝜔2𝜏𝛾
2

𝛾

)                                         

(Eq. 14) 

where the sum over 𝛾 runs over all the irreducible representations of the system group Γ, 

Γ𝛾; 𝑒−〈𝑢2〉𝑄2
 is the Debye Waller factor, 〈𝑢2〉 is the mean squared atomic displacement. 

For a polycrystalline sample, 𝐴𝛾(𝑄) is given by [71] 

𝐴𝛾(𝑄) =
𝑙𝛾

𝑔
∑ ∑ 𝜒𝛾

𝛼𝛽

𝛽

∑ ∑ 𝑗0(𝑄|𝑅 − 𝐶𝛼𝑀𝛽𝑅|)

𝑀𝛽𝐶𝛼𝛼

                                     

(Eq. 15) 

Here 𝑔 is the order of group Γ and 𝑙𝛾 is the dimensionality of Γ𝛾. The sums over 𝛼 and 𝛽 

run over all the classes of 𝐶 and 𝑀, respectively, and the sums over 𝐶𝛼 and 𝑀𝛽 run over 

all the rotations that belong to the crystal class, 𝛼, and to the molecule class, 𝛽, 

respectively. The characters of Γ𝛾, 𝜒𝛾
𝛼𝛽

,are the products of the characters of 𝐶𝛾𝐶 and 𝑀𝛾𝑀; 

𝜒𝛾
𝛼𝛽

= 𝜒𝛾𝐶
𝛼 𝜒𝛾𝑀

𝛽
. 𝑗0(𝑥) is the zeroth spherical Bessel function and, |𝑅 − 𝐶𝛼𝑀𝛽𝑅|, is the 

distance between the initial atom position 𝑅 and final atom position 𝐶𝛼𝑀𝛽𝑅, called the 

jump distance. The relaxation time for the Γ𝛾 mode, τ𝛾, is written as [71] 

1

τ𝛾
= ∑

𝑛𝛼

τ𝛼
(1 −

𝜒𝛾
𝛼𝑒

𝜒𝛾
𝐸𝑒)

𝛼

+ ∑
𝑛𝛽

τ𝛽
(1 −

𝜒𝛾
𝐸𝛽

𝜒𝛾
𝐸𝑒 )

𝛽
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(Eq. 16) 

where 𝑛𝛼, 𝑛𝛽 are the number of symmetry rotations of the classes, 𝛼 and 𝛽, respectively. 

𝐸 and 𝑒 represent the identity operations of 𝐶 and 𝑀, respectively. 

 To fit the quasi-elastic neutron scattering spectra, the calculated 𝑆𝑐𝑎𝑙(𝑄, ℏ𝜔) has 

to be convoluted with the instrument resolution. The phonon contributions cannot be 

ignored especially at high Ts. Then we have the fitting function as 

𝑆(𝑄, ℏ𝜔) = 𝐴𝑟𝑜𝑡 ∫ 𝑆𝑐𝑎𝑙(𝑄, ℏ𝜔 − ℏ𝜔′)𝑆𝑟𝑒𝑠(ℏ𝜔′)𝑑(ℏ𝜔′)
∞

−∞

+ 𝐴𝑣𝑖𝑏𝑄2𝑒−〈𝑢2〉𝑄2
                                 

(Eq. 17) 

where 𝑆𝑟𝑒𝑠(ℏ𝜔) is the instrument resolution function. 𝐴𝑟𝑜𝑡 and 𝐴𝑣𝑖𝑏 are the scaling 

factors for the rotational contributions and the vibrational contributions.  

 

 

 

3.3 Structural Dynamics and Optoelectronic properties 

3.3.1 Vibrational Dynamics  

The lattice vibrations of these ionic crystals have been reported to play a crucial 

role in their optoelectronic properties. Previous studies on 3D HOIPs suggest that their 

exotic optoelectronic properties arise from the extended charge carrier lifetimes, long 
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carrier diffusion lengths, and carrier protection from defects [72-77]. Relevant 

microscopic mechanisms include polaron formation (here, polaron is referred as a quasi-

particle which is formed by the Coulomb interaction between a free charge carrier and the 

ionic lattice) [78-85], electron-phonon coupling [37, 86-89], and phonon melting [72, 90, 

91]. For example, the electron-phonon coupling, i.e., the interaction between the charge 

carriers and the lattice vibrations, has been confirmed experimentally to lead to the blue-

shift of the electronic band gap in methylammonium lead iodide (MAPbI3) [92]. Also, the 

thermally induced changes in the line shape, linewidth, and intensity of the 

photoluminescence spectrum of various 2D HOIPs were attributed to electron-phonon 

coupling [37]. 

The so-called phonon melting describes a phenomenon where the phonon peaks 

that are well-defined in energy at low temperatures broaden upon heating and finally 

become a featureless continuum at high temperatures even though the system remains 

crystalline [91]. It is due to the softness of ionic bonds in the ionic crystals and hence 

called ‘crystal-liquid duality’. In 3D HOIPs, this lattice ‘softness’, coupled with the 

highly polar and ionic characters, means an electron or hole can efficiently couple to 

polar fluctuations and ion displacements, leading to the large polaron formation and the 

screening of the Coulomb potential. Thus, carrier scattering with charged defects and 

optical phonons is efficiently screened in the soft ionic perovskite structure [93]. 

In 2D HOIPs, things could get different due to the fact that majority charge 

carriers are in the form of excitons with large binding energies, instead of free carriers in 

3D HOIPs, due to the strong structure-induced quantum-confinement effects. Thus, 

investigating the vibrational dynamics in 2D HOIPs is of critical significance to 
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understanding the possible connections between the lattice vibration and optoelectronic 

properties of these low-dimensional ionic crystals. 

As the starting point of the vibrational dynamics study, the crystal structures of 

both samples are widely studied via neutron diffraction and single-crystal X-ray 

diffraction (Fig. 15) [68, 69]. In (BA)2PbI4, two structural phases were identified [68]: 

low-temperature (LT) orthorhombic Pbca phase (𝑇 < 275 K) and high-temperature (HT) 

orthorhombic Pbca phase. Besides the different relative magnitude of lattice constants for 

the two phases, the major difference lies in the orientation of BA+ molecules, i.e., the 

tilting angle between the BA+ chain molecule and the crystallographic c-axis (out-of-

Fig. 15 Schematic of crystal structure of (BA)2PbI4 and (PEA)2PbI4. 

The crystal structure of (BA)2PbI4 (A) and (PEA)2PbI4 (B). The gray, violet, cyan, 

brown, and pink spheres represent the Pb, I, N, C, and H atoms, respectively. 



 

44 

 

perovskite-layer). The tilting angle is ~ 41° in Pbca LT phase, while that in Pbca HT 

phase is 28°. The significant difference in the tilting angle will greatly influence the 

rotational dynamics of molecules in the two phases which will be discussed later. On the 

other hand, (PEA)2PbI4 exhibits a lower crystal symmetry (triclinic P-1) with more 

complicated atomic distributions. Unlike (BA)2PbI4 where BA+ molecules are off-site 

stacked, PEA+ molecules are nearly on-site stacked, repulsed by the massive benzene 

rings. The orientation of PEA+ molecule also undergoes a rotation between adjacent 

molecule layers. This peculiar stacking structure is expected to result in dramatically 

different device performance compared with (BA)2PbI4. We will use these crystal 

structures in our DFT calculations to identify the lattice vibration for both samples. 

To investigate the lattice vibrations, we first performed temperature-dependent 

inelastic neutron scattering (INS) measurements from 8 K up to 300 K at 4SEASON, J-

PARC with a series of incident neutron energies (𝐸𝑖 = 10, 30, 62, 115, 250, 712 meV) to 

cover the entire phonon spectra of the two samples. Fig. 16 and Fig. 17 show the 

vibrational dynamics identification results for (BA)2PbI4 and (PEA)2PbI4, respectively. 

Panels (A) show the inelastic neutron scattering spectra of (BA)2PbI4 taken at 10 K and 

of (PEA)2PbI4 taken at 8 K. Five different 𝐸𝑖 settings were plotted to show the entire 

phonon spectra up to ~ 600 meV with appropriate energy resolutions. The phonon spectra 

we plotted for both samples are in the absolute units, barn/meV, via normalization to 

elastic incoherent scattering intensity (see details in Appendix. 2). Many nearly 

dispersion-less peaks are exhibited in the contour maps. They are well defined in energy 

which means the collective vibrational motions are coherent over space and time. 
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Fig. 16 Experimental phonon spectra and DFT calculations of (BA)2PbI4. 

(A) shows the experimental phonon spectra of (BA)2PbI4 taken at 10 K with 𝐸𝑖 =

10, 30, 62, 115, 712 meV. The intensities of 𝐸𝑖 = 62, 115, and 712 meV are rescaled 

by 2, 3, and 12 respectively. (B) shows the simulated phonon spectra using software 

OCLIMAX. (C) presents the calculated phonon band structure along high-symmetry 

reciprocal 𝑸 points, Γ = (0, 0, 0), 𝑋 = (
1

2
, 0, 0), 𝑆 = (
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). (D) contains the vibrational 

energy fractions at the Γ point for each phonon mode of (BA)2PbI4. Here the gray, 

violet, cyan, brown, and pink spheres represent the energy fractions of Pb, I, N, C, 

and H atoms, respectively. 
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In order to identify the observed INS peaks, we have computed the atomic force 

constants based on the optimized low-temperature-phase crystal structure with the VASP 

package, and hence simulated the phonon spectra (Figs. 16, 17 panels (B)) using the 

software OCLIMAX and calculated phonon band (Figs. 16, 17 panels (C)) structures. 

Fig. 17 Experimental phonon spectra and DFT calculations of (PEA)2PbI4. 

(A) shows the experimental phonon spectra of (PEA)2PbI4 taken at 8 K with 𝐸𝑖 =

10, 30, 62, 115, 712 meV. The intensities of 𝐸𝑖 = 115 and 712 meV are rescaled by 2 

and 3 respectively. (B) shows the simulated phonon spectra using software 

OCLIMAX. (C) presents the calculated phonon band structure along high-symmetry 

reciprocal 𝑸 points, Γ = (0, 0, 0), 𝑋 = (
1

2
, 0, 0), 𝑆 = (

1

2
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1

2
, 0), 𝑌 = (0,
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), 𝑅 = (

1

2
,

1

2
,

1

2
), and 𝑇 = (0,

1

2
,

1

2
). (D) contains the vibrational 

energy fractions at the Γ point for each phonon mode of (PEA)2PbI4. Here the gray, 

violet, cyan, brown, and pink spheres represent the energy fractions of Pb, I, N, C, 

and H atoms, respectively. 
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The simulation matches with the experimental data quite well which increases the 

reliability of the phonon identification. 

 

We characterize the phonon modes into 3 different types: inorganic modes, hybrid 

modes, and organic modes in terms of the vibration energy fraction from different atoms 

(Figs. 16, 17 panels (D)). We take the summation of energy fractions of Pb and I as 

inorganic vibrational contribution 𝑉𝑃𝑏𝐼 and summarize the number of phonon modes 

within certain energy fraction intervals [𝑉𝑃𝑏𝐼 , 𝑉𝑃𝑏𝐼 + Δ𝑉] (Fig. 18). The distribution of 

phonon modes as a function of Pb-I energy fractions shows predominant cut-off 

behaviors and indicates that the appropriate threshold percentage for inorganic modes 

which consists of mostly Pb-I vibrations is ~70% for (BA)2PbI4 and ~65% for 

Fig. 18 Statistics of number of phonon modes with different Pb-I vibrational energy 

fractions for (BA)2PbI4 (A) and (PEA)2PbI4 (B). 

The vertical bars represent the number of phonon modes with certain Pb-I energy 

fractions [𝑉𝑃𝑏𝐼 , 𝑉𝑃𝑏𝐼 + Δ𝑉]. Vertical dash lines represent the threshold Pb-I energy 

fractions that separate the modes into inorganic modes (𝑉𝑃𝑏𝐼 > 70% for (BA)2PbI4 

and 65% for (PEA)2PbI4), organic modes (𝑉𝑃𝑏𝐼 < 2%), and hybrid modes. 
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(PEA)2PbI4. To distinguish the organic modes where molecular vibrations make most (or 

all) contributions, the corresponding threshold percentage 𝑉𝑃𝑏𝐼 is suggested to be ~ 2%, 

below which the extremely large numbers of organic modes come into the statistics. The 

rest are hence identified as hybrid modes. Based on this characterization of phonon 

modes, we find that for both samples: most of the inorganic modes lie in the energy range 

of < 10 meV; the hybrid modes mostly locate in the energy range of 10~30 meV; and the 

energies of organic modes are usually in a few decades or hundreds of meVs. 

 

 3.3.2 Rotational dynamics 

Before we move further, we emphasized that besides lattice vibrations, the 

rotation or reorientation of molecules in these materials may also make a difference. It 

has been experimentally shown that in 3D HOIPs, such as MAPbI3, the reorientation of 

the polarized molecules can impose an efficient screening on the band-edge charge 

carriers, hence assist the polaron formation, and lead to the prolonged charge carrier 

lifetime [83]. Consequently, it is natural to expect that in 2D HOIPs the rotation or 

reorientation of organic molecules could also play a non-negligible role in the system’s 

optoelectronic properties. Such relaxation process is experimentally manifested as 

diffusive signal from the elastic channel into the inelastic region. This rotational signal 

could merge with the low-energy acoustic and optical phonons of these materials (for 

example, the lowest energy of optical phonon modes at Γ point in (BA)2PbI4 is ~ 1.3 

meV). Therefore, to distinguish the rotational and vibration contributions and properly 

identify phonons for both samples, we need to analyze the rotational dynamics of these 

materials. 
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To study the rotational dynamics of both samples, we performed temperature-

dependent quasi-elastic neutron scattering (QENS) measurements at AMATERAS, J-

PARC, with an incident neutron energy of 3.3 meV and resolution of 0.04 meV. We 

rescaled the data to elastic incoherent scattering intensity (see Appendix. 2) for direct 

comparison between the two samples. Fig. 19 selects QENS data at 5 temperatures for 

each sample. At ~180 K, the neutron scattering intensity concentrates in the elastic 

channel for both samples. As the temperature increases, the elastic channel intensity 

quickly diffuses into quasi-elastic region for (BA)2PbI4, especially above 260 K (Fig. 19 

(D)(E)). But for (PEA)2PbI4, upon heating from 190 K to 310 K, only slight increments in 

quasi-elastic intensity (|ℏ𝜔| ≤ 0.3 meV) and enhancements of low-energy optical 

phonon intensity are observed. As mentioned in chapter 1, strong rotational relaxation or 

diffusion process would lead to high quasi-elastic neutron scattering intensity. The 

extremely different temperature-dependent behaviors QENS intensity of the two samples 

Fig. 19 Temperature-dependent quasi-elastic neutron scattering spectra of (BA)2PbI4 

(A-E) and (PEA)2PbI4 (F-J) upon heating. 
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indicate that above 180 K, the rotational dynamics in (BA)2PbI4 is much stronger than 

that in (PEA)2PbI4 with similar external conditions. 

 In order to better understand the rotational motions of organic cations, we applied 

group theory analysis based on the local crystal symmetry and molecular symmetry, and 

fit the QENS data with the jump model [71]. We previously proposed [68] for (BA)2PbI4 

that the BA+ cation possesses two types of jump rotational modes: the three-fold (C3) 

modes of the terminal NH3, CH3 groups which exist in both structural phases (phase 

transition at ~ 275 K); and the four-fold (C4) mode of the entire BA+ cation about the 

crystallographic c-axis which gets activated above the phase transition (Fig. 20 (A)(B)). 

On the other hand, we found that in (PEA)2PbI4, the C3 mode of the NH3 group alone can 

decently well explain the QENS data. The rotation of the benzene ring in PEA+ cation is 

forbidden due to the tight stacking of molecules (Fig. 20 (C)).  

Fig. 20 Visualization of rotational modes in (BA)2PbI4 and (PEA)2PbI4. 

(A)(B) show rotational modes of BA+ in low-T phase (A) where the C4 mode of the 

whole molecule about the crystallographic c-axis is forbidden, and in high-T phase 

(B) where the C4 mode gets activated. (C) C3 mode of NH3 in (PEA)2PbI4. 
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Based on the rotational calculations introduced in section 3.2.2, we fit the QENS 

data with corresponding jump model (Fig. 21 and Fig. 22, see details in Appendix. 3). At 

low temperatures (𝑇 < 275 K), for both samples, the elastic signal shows a gradual 

decrease with increasing 𝑄 (panel (A)), yet the low energy quasi-elastic signals show a 

weak bump centered at 𝑄 > 2 Å−1 (panel (B)(C)), which can be explained by the C3 

mode of NH3 or CH3 group. As the temperature reaches above 275 K, for (BA)2PbI4, the 

Fig. 21 Constant energy slices of QENS spectra and fittings of (BA)2PbI4. 

(A - C) the ℏ𝜔-integrated QENS data, 𝑆(𝑄), over three different energy ranges, 

−0.05 < ℏ𝜔 < 0.05 meV (A), 0.25 < ℏ𝜔 < 0.35 meV (B), 0.95 < ℏ𝜔 < 1.05 meV 

(C), with five selected temperatures, 180 K, 220 K, 260 K (low-T Pbca orthorhombic 

phase), 280 K, 300 K (high-T Pbca orthorhombic phase). The black dots are the 

measured data, and the colored solid lines are the model fitted QENS intensity.  
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elastic signal decays much faster with the quasi-elastic signal showing a broad peak 

around 1.5 Å−1. This peculiar 𝑄-dependence is captured by the appearance of the extra 

C4 rotation of the whole BA+ cation. Whereas for (PEA)2PbI4, the data stays similar with 

that at low temperatures except for a bit faster decay of elastic signal due to the decrease 

in the Debye-Waller factor. See fitted parameters in Table. S5 of Appendix. 3. 

 

Fig. 22 Constant energy slices of QENS spectra and fittings of (PEA)2PbI4. 

(A - C) the ℏ𝜔-integrated QENS data, 𝑆(𝑄), over three different energy ranges, 

−0.05 < ℏ𝜔 < 0.05 meV (A), 0.25 < ℏ𝜔 < 0.35 meV (B), 0.95 < ℏ𝜔 < 1.05 meV 

(C), with five selected temperatures, 190 K, 230 K, 270 K, 290 K, 310 K (triclinic P-1 

single phase). The black dots are the measured data, and the colored solid lines are 

the model fitted QENS intensity.  
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 3.3.3 Connections with optoelectronic properties 

We separated the rotational and vibrational contributions from the measured 

phonon spectra based on the previous rotational dynamics analysis. Fig. 23 shows the 

temperature-dependent 𝑄-integrated phonon spectra 𝑆(ℏ𝜔, 𝑇), with 𝐸𝑖 = 10 and 30 meV, 

up to 23 meV which covers all of the inorganic modes and most of the hybrid modes. 

After the normalization into absolute units with respect to the elastic incoherent scattering 

intensity, the two datasets can be connected with each other decently well around 7 meV. 

Fig. 23 𝑄-integrated phonon spectra of (BA)2PbI4 (A) and (PEA)2PbI4 (B) as a 

function of temperature. 

Two datasets with 𝐸𝑖 = 10 and 30 meV were connected at 7 meV after normalization 

into absolute units. The 𝑄-integration range is selected as 1.0~2.5 Å−1 which covers 

dominant phonon signal for both 𝐸𝑖s. The color dashed lines in the two panels are the 

estimated rotational contributions at corresponding temperatures as discussed in the 

main text. 
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Here, we emphasize that the high-energy organic modes describe the internal vibration of 

the organic molecules (stretching, tilting, twisting, etc.). They are less coupled to the 

external environment (excitons, free charges, ionic lattice, etc.) and hence are out of the 

discussion scope. 

 We applied the pure rotation term in the jump rotational model discussed in 

section 3.3.2 to the elastic incoherent scattering intensity of phonon spectra (see details in 

Appendix. 4) and estimated the rotation-related parameters (relaxation times and atomic 

displacements) via model fitting. The rotational contributions are hence determined as a 

function of temperature (color dashed lines in Fig. 23).  

 With the successful separation of rotational and vibrational contributions in our 

measured data, we try to find any possible relations that can link the structural dynamics 

to their optoelectronic properties. Fig. 24(B) shows the temperature dependent PLQY for 

(BA)2PbBr4 and (PEA)2PbBr4. Note that below ~ 150 K, the PLQYs of both bromides are 

similar and above 90%, and above 150 K, the PLQY of (BA)2PbBr4 decreases much 

faster than that of (PEA)2PbBr4 as the temperature increases (at room temperature 

(BA)2PbBr4 only possesses a PLQY of ~16% while that of (PEA)2PbBr4 is ~70%). By 

performing DFT calculations and using Raman spectroscopy, Gong et al. [37] proposed 

that the higher crystal rigidity in (PEA)2PbBr4 contributes to weaker electron-phonon 

coupling, less non-radiative recombination, and hence leads to higher PLQY at room 

temperature. Yet they did not explain the specific temperature dependences of PLQY in 

both samples. Based on our temperature-dependent neutron scattering data, we are able to 

examine the temperature-dependent connections between their structural dynamics and 

PLQY. 
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Fig. 24(A) shows the integrated phonon intensities of both samples after 

subtracting the rotational contributions. Two energy integration ranges are selected: 

1.5~4.0 meV (mostly inorganic modes) and 12~16 meV (hybrid modes). We find that the 

inorganic phonon modes for both samples have similar intensities and temperature 

dependence (red hollow and solid circles in Fig. 24(A)). It is consistent with the fact that 

Fig. 24 Temperature-dependent phonon intensities, rotational contributions and 

PLQY of 2D MHPs. 

(A) Temperature-dependent integrated phonon intensities of (BA)2PbI4 and 

(PEA)2PbI4 over certain energy ranges, 1.5 ≤ ℏ𝜔 ≤ 4.0 meV (circles) and 12 ≤

ℏ𝜔 ≤ 16 meV (triangles), and a 𝑄 range of 1~2.5 Å−1 after the subtraction of 

rotational contributions. (B) Blue circles show the rotational contributions of 

(BA)2PbI4 and (PEA)2PbI4 over the energy range of 1.5 ≤ ℏ𝜔 ≤ 4.0 meV and same 𝑄 

range. Blue dashed and solid lines represent the activation temperatures of rotational 

motions in (BA)2PbI4 and (PEA)2PbI4, respectively. Black squares represent the 

temperature-dependent PLQY of (BA)2PbBr4 and (PEA)2PbBr4 reported by Ref. [37]. 
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regardless of different organic configurations, the inorganic networks (Pb-I) of both 

layered-structure samples are similar, leading to similar vibrational response of inorganic 

modes, which consist of mostly the vibration of Pb-I sublattice, to the incident neutrons. 

On the other hand, the scattering intensities of hybrid modes (red hollow and solid 

triangles) are quite different for the two samples. The much lower intensities of hybrid 

modes in (PEA)2PbI4 than in (BA)2PbI4 suggests that the tight stacking of PEA+ cations 

probably restrict their vibrational degrees of freedom and hence suppresses the 

vibrational response of hybrid modes, where organic cation vibrations are coupled with 

the inorganic Pb-I network vibrations, to the incident neutrons. Nevertheless, the 

temperature dependence of either inorganic phonon modes or hybrid phonon modes does 

not show predominant correlations with the PLQY of their bromide counterparts (Fig. 

24(B)). 

In contrast with the vibrational dynamics, the estimated rotational contributions 

exhibit almost one-to-one correspondence to the PLQY indicated by their bromide 

equivalents that we assume to be similar with or same as the iodides (Fig. 24 (B)). Below 

~150 K, the rotational motions of organic molecules in both samples are almost frozen 

manifested by the extremely weak rotational intensities. In the same temperature range, 

the bromide counterparts of both samples show similar and high PLQY (> 90%). Upon 

heating above the activation temperatures (blue dashed and solid lines in Fig. 24 (B): 

~150 K for (BA)2PbI4, and ~200 K for (PEA)2PbI4), the rotational dynamics get activated 

and the rotational intensity increases much faster in (BA)2PbI4 than in (PEA)2PbI4, 

coinciding with the faster reduction of PLQY observed in (BA)2PbBr4. The activation 

temperatures are consistent with those at which the PLQY of the two bromides start to 
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decrease. This coincidence in the temperature dependence strongly indicates that the 

rotational dynamics of organic molecules in 2D MHPs plays a dominant role in their 

PLQY. We postulated a scenario for the detailed mechanism that in (BA)2PbI4 the much 

drastic rotational motions of charged organic molecules could interrupt the binding 

energy potential around the stable excitons, lower the energy barrier that the stable 

exciton takes to decompose into free charge carriers which fortifies exciton fissions and 

exposes charge carriers to more non-radiative scatterings from the environment (such as 

phonons), and hence suppresses the PLQY. 
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Chapter 4 

Summary 

In this thesis, we reported our neutron scattering studies on a strongly correlated 

magnetic system, Sr2CuTe0.5W0.5O6, and two weakly correlated non-magnetic systems, 

(BA)2PbI4 (butylammonium lead iodide) and (PEA)2PbI4 (phenethyl-ammonium lead 

iodide). 

For Sr2CuTe0.5W0.5O6, using the sub-K temperature and 20 μeV energy resolution 

neutron scattering experiments we show that the system transits from a gapless disorder-

induced spin liquid to a new quantum state below 𝑇𝑓~1.7(1) K with an extremely weak 

frozen moment of 〈𝑆〉/𝑆~0.1. The asymmetric momentum (𝑄) dependence of the low 

energy spin fluctuations and linearity of its dynamic susceptibility 𝜒′′(ℏ𝜔) with ℏ𝜔 for 

ℏ𝜔 < 𝑘𝐵𝑇𝑓 confirms the two-dimensionality of the system which is consistent with a 

Halperin-Saslow excitations. The phenomenological fitting to the 𝑄-dependence of low 

energy spin fluctuations reveals the short-range dynamical correlations with an in-plane 

correlation length of 𝜉 ~ √2 𝑑𝑁𝑁, where 𝑑𝑁𝑁 is the distance between the nearest neighbor 

spins. It is surprising to observe the extremely weak freezing in this highly fluctuating 

quantum regime which presents great theoretical challenges to fully understand its 

different magnetic phases. 

For the two non-magnetic weakly correlated systems, (BA)2PbI4 and (PEA)2PbI4, 

we characterized their rotational and vibrational dynamics by using time-of-flight neutron 

scattering experimental techniques, and theoretical tools such as group theory analysis 

and density-functional-theory calculations. In (BA)2PbI4, two types of rotational modes 
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were revealed: the three-fold (C3) rotational modes of NH3 and CH3 groups; and the four-

fold (C4) rotational mode of the entire molecule about the crystallographic c-axis, which 

only gets activated in its high-temperature structural phase (𝑇 > 275 K). Whereas in 

(PEA)2PbI4, only the C3 rotational of the NH3 group was identified. 

Based on the characterized rotational dynamics of both samples, we extracted the 

rotational contributions from the measured neutron scattering spectra. We find that the 

vibrational dynamics of both samples do not show predominant correlations with the 

PLQY indicated by their bromide equivalents that we assume to be similar with or same 

as the iodides. On the other hand, the rotational dynamics exhibits a surprising 

correspondence to PLQY that: below ~ 150 K when the rotational dynamics of both 

samples are frozen, the PLQY of their bromide equivalents stay at high levels (> 90%); 

while above 150 K, the rotational motion of organic molecules in (BA)2PbI4 get enhanced 

much faster than that in (PEA)2PbI4, which coincides with the faster decay of PLQY 

observed in (BA)2PbBr4. The excellent correspondence suggests that it is the rotational 

dynamics of organic molecules in 2D MHPs that dominate the optoelectronic 

performance such as PLQY. 
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Appendix 1. 

Magnetic Scattering Experimental Details 

This appendix shows the magnetic sum rule and method of normalizing magnetic 

scattering intensity in absolute units according to nuclear Bragg peak intensity. The 

temperature-independent background determination method and the details of the 

phenomenological 𝑆(𝑄) model fittings are also listed. 

 

1. Temperature independent background determination algorithm 

 To avoid confusion, we use 𝐼(𝑄, ℏ𝜔, 𝑇) to denote the raw measured data, 

𝑏𝑘𝑔(𝑄, ℏ𝜔) as the temperature-independent background, and 𝑆(𝑄, ℏ𝜔, 𝑇) as the 

magnetic intensity we evaluate. The core formalism in this algorithm is to apply the 

detailed balance condition on 𝑆(𝑄, ℏ𝜔, 𝑇): 

𝐼(𝑄, ℏ𝜔, 𝑇) = 𝑏𝑘𝑔(𝑄, ℏ𝜔) + 𝑆(𝑄, ℏ𝜔, 𝑇) 

𝐼(𝑄, −ℏ𝜔, 𝑇) = 𝑏𝑘𝑔(𝑄, −ℏ𝜔) + 𝑆(𝑄, ℏ𝜔, 𝑇)𝑒−ℏ𝜔/𝑘𝐵𝑇 

(Eq. 18) 

Since the detailed balance condition of the powder averaged data does not depend on 

momentum (𝑄), we slice the data into many 𝑄 cuts and focus on the ℏ𝜔 dependence of 

each cut. Choose appropriate binning size of ℏ𝜔 to get symmetric spectrum (ℏ𝜔𝑚𝑎𝑥 =

ℏ|𝜔𝑚𝑖𝑛|). For each 𝑄 cut, assuming the sliced data consists of 𝐼(ℏ𝜔, 𝑇), 𝑏𝑘𝑔(ℏ𝜔), and 

𝑆(ℏ𝜔, 𝑇). Then we set up the deviation function for each ℏ𝜔 
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𝐷𝑒𝑣(ℏ𝜔 ) = ∑
(𝐼(ℏ𝜔, 𝑇𝑖) − 𝑏𝑘𝑔(ℏ𝜔) − 𝑆(ℏ𝜔, 𝑇𝑖))

2

𝜎2(ℏ𝜔, 𝑇𝑖)
𝑖

+ ∑
(𝐼(−ℏ𝜔, 𝑇𝑖) − 𝑏𝑘𝑔(−ℏ𝜔) − 𝑒−ℏ𝜔/𝑘𝐵𝑇𝑖𝑆(ℏ𝜔, 𝑇𝑖))

2

𝜎2(−ℏ𝜔, 𝑇𝑖)
𝑖

 

(Eq. 19) 

where 𝑇𝑖 is the temperature of the dataset. 𝜎(ℏ𝜔, 𝑇𝑖) is the data error bar at ℏ𝜔 in 

corresponding 𝑄 cut of the corresponding temperatures. The optimized results will give 

the minimum of this deviation function. Thus, we take the partial derivative with respect 

to each unknown variable: 

𝜕𝐷𝑒𝑣

𝜕𝑏𝑘𝑔(ℏ𝜔)
= 0,         

𝜕𝐷𝑒𝑣

𝜕𝑏𝑘𝑔(−ℏ𝜔)
= 0,

𝜕𝐷𝑒𝑣

𝜕𝑆(ℏ𝜔, 𝑇𝑖)
= 0 

(Eq. 20) 

Consequently, we will get n+2 equations involving the n+2 unknown variables (assume 

we have unknown variables: 𝑏𝑘𝑔(ℏ𝜔), 𝑏𝑘𝑔(−ℏ𝜔), 𝑆(ℏ𝜔, 𝑇𝑖), 𝑖 = 1,2, … , 𝑛). Make the 

determinant of the coefficient matrix of these equations to be 0, we can get the optimized 

results that follow the detailed balance condition, 𝑆𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑(ℏ𝜔 > 0), and the 

temperature-independent background 𝑏𝑘𝑔(±ℏ𝜔). Apply this algorithm to each 𝑄 cut, we 

finally obtain the background-subtracted magnetic intensity 𝑆𝑏𝑘𝑔−𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑒𝑑(𝑄, ℏ𝜔 > 0). 

Note that in time-of-flight experiments, the resolution window in general may deviate 

from the detailed balance condition due to the instrument limitations, thus this algorithm 

works well down to the instrument resolution limit (|ℏ𝜔| ≥ 𝐸𝑟𝑒𝑠). 
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2. Sum rule for the dynamic spin structure factor 

For a system of identical magnetic atoms with spin 𝑆, the magnetic scattering cross-

section is described by 

𝑑2𝜎(𝑸, ℏ𝜔)

𝑑Ω𝑑(ℏ𝜔)
= 𝑁

𝑘𝑓

𝑘𝑖

(𝛾𝑟0)2𝑓2(𝑸) ∑
𝑔𝛼

2

𝑔𝛽

2
(𝛿𝛼𝛽 − �̂�𝛼�̂�𝛽)𝑆𝛼𝛽(𝑸, ℏ𝜔)

𝛼,𝛽

   

(Eq. 21) 

𝑆𝛼𝛽(𝑸, ℏ𝜔) is called the dynamical spin structure factor, 

𝑆𝛼𝛽(𝑸, ℏ𝜔) = ∫ 𝑒−𝑖𝜔𝑡
1

𝑁
∑ 〈𝑒

−𝑖𝑸∙(𝑹𝑗−𝑹
𝑗′)

𝑆𝑗
𝛼(0)𝑆

𝑗′
𝛽(𝑡)〉

𝑑𝑡

2𝜋ℏ
 

𝑗,𝑗′

 
∞

−∞

 

(Eq. 22) 

The above results refer to the ideal rigid lattice, and do not account for the lattice’s 

thermal vibrations or the structural disorder. These effects can be accounted for by 

multiplying the magnetic cross-section with the Debye-Waller factor, 𝑒−2𝑊(𝑄). 

 To evaluate the sum rule of the dynamic spin structure factor, we first integrate 

𝑆𝛼𝛽(𝑸, ℏ𝜔) over the entire energy range, 

           𝑆𝛼𝛽(𝑸) ≡ ∫ 𝑆𝛼𝛽(𝑸, ℏ𝜔)𝑑(ℏ𝜔)
∞

−∞

= ∫ 𝑑(ℏ𝜔) ∫ 𝑒−𝑖𝜔𝑡
1

𝑁
∑ 〈𝑒

−𝑖𝑸∙(𝑹𝑗−𝑹
𝑗′)

𝑆𝑗
𝛼(0)𝑆

𝑗′
𝛽(𝑡)〉

𝑑𝑡

2𝜋ℏ
 

𝑗,𝑗′

 
∞

−∞

∞

−∞

 

(Eq. 23) 
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In the double integral (Eq. 23), we first do the ℏ𝜔 integral, 

1

2𝜋ℏ
∫ 𝑒−𝑖𝜔𝑡𝑑(ℏ𝜔)

∞

−∞

= 𝛿(𝑡) 

(Eq. 24) 

then, we evaluate the time integral, 

𝑆𝛼𝛽(𝑸) =
1

𝑁
∑ 〈𝑒

−𝑖𝑸∙(𝑹𝑗−𝑹
𝑗′)

𝑆𝑗
𝛼(0)𝑆

𝑗′
𝛽(0)〉 

𝑗,𝑗′

=
1

𝑁
〈𝑆𝑸

𝛼𝑆−𝑸
𝛽 〉 

(Eq. 25) 

where 𝑆𝑸
𝛼 = ∑ 𝑒−𝑖𝑸∙𝑹𝑗𝑆𝑗

𝛼
𝑗  is the lattice Fourier transformation of the lattice spin 

operators. Integrating Eq. 25 over the 1st Brillouin zone and taking the trace over the spin 

indices, 𝛼 = 𝛽, yields the sum rule, 

∑
∫  𝑆𝛼𝛼(𝑸)𝑑3𝑸𝐵𝑍

∫ 𝑑3𝑸
𝐵𝑍

=

𝛼

∑
1

𝑁
 ∫〈𝑆𝑸

𝛼𝑆−𝑸
𝛼 〉

𝑉0

(2𝜋)3
𝑑3𝑸

𝛼

=
1

𝑁
 ∑ 〈(𝑆𝑗

𝛼)
2

〉

𝑗,𝛼

 

            = ∑〈(𝑆𝛼)2〉

𝛼

= 〈𝑺𝟐〉 = 𝑆(𝑆 + 1) 

(Eq. 26) 

Here 𝑉0 is the volume of the crystal unit cell. 

In summary, the sum rule for the integral spectral weight of 𝑆𝛼𝛽(𝑸, ℏ𝜔) is 

∑ ∫ ∫ 𝑆𝛼𝛼(𝑸, ℏ𝜔)
𝑉0

(2𝜋)3
𝑑3𝑸𝐵𝑍𝑑(ℏ𝜔)

∞

−∞𝛼

= 𝑆(𝑆 + 1) 

(Eq. 27) 
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In our case, the total spectra weight is evaluated to be 
2

3
𝑆(𝑆 + 1) as discussed in session 3 

below. 

 

3. Normalization 

Magnetic neutron scattering cross-section from a powder sample with a single 

species of magnetic atoms can be written as [39, 41] 

𝑑2𝜎

𝑑Ω𝑑(ℏ𝜔)
= 𝑁

𝑘𝑓

𝑘𝑖

(𝛾𝑟0)2 {
1

2
𝑔𝑓(𝑄)}

2

𝑒−2𝑊�̃�(𝑄, ℏ𝜔) 

(Eq. 28) 

where �̃�(𝑄, ℏ𝜔) = ∫
𝑑Ω

4𝜋
∑ (𝛿𝛼,𝛽 − �̂�𝛼�̂�𝛽)𝑆𝛼𝛽(𝑸, ℏ𝜔)𝛼,𝛽 , 

𝛾𝑟0

2
= 0.2695 × 10−12 cm, 𝑔 ≈

2, 𝑒−2𝑊 is the Debye-Waller factor, and 𝑓(𝑄) is the magnetic form factor. Here 

𝑆𝛼𝛽(𝑸, ℏ𝜔) is the dynamic spin structure factor in section 2. 

 After the monitor normalization and 
𝑘𝑓

𝑘𝑖
 modification in time-of-flight 

spectrometer, the reduced neutron scattering intensity becomes 

𝐼(𝑸, ℏ𝜔) = ∫ 𝑑(ℏ𝜔0) ∫ 𝑑𝑄0𝑁(𝛾𝑟0)2 {
1

2
𝑔𝑓(𝑄)}

2

𝑒−2𝑊�̃�(𝑄, ℏ𝜔)𝑅(𝑄0, ℏ𝜔0, 𝑄, ℏ𝜔)
∞

−∞

 

(Eq. 29) 

where 𝑅(𝑄0, ℏ𝜔0, 𝑄, ℏ𝜔) is the instrument resolution function. With the assumption that 

�̃�(𝑄, ℏ𝜔) is relatively smooth and the resolution function varies much more rapidly in the 
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region of interest, we can make the necessary approximation to decouple the resolution 

function and �̃�(𝑄, ℏ𝜔), 

𝐼(𝑸, ℏ𝜔) = 𝑁(𝛾𝑟0)2 {
1

2
𝑔𝑓(𝑄)}

2

𝑒−2𝑊�̃�(𝑄, ℏ𝜔)𝑅0 

(Eq. 30) 

where 𝑅0 = ∫ 𝑑(ℏ𝜔0) ∫ 𝑑𝑄0
∞

−∞
𝑅(𝑄0, ℏ𝜔0, 𝑄, ℏ𝜔) is the resolution volume, which would 

be only instrument – dependent. 

 After putting all things together, we finally obtain 

�̃�(𝑄, ℏ𝜔) =
𝐼(𝑸, ℏ𝜔)

(𝛾𝑟0)2 {
1
2 𝑔𝑓(𝑄)}

2

𝑒−2𝑊𝑁𝑅0

 

(Eq. 31) 

Here �̃�(𝑄, ℏ𝜔) has a unit of meV−1 or eV−1. In the case of multiple magnetic atoms in 

one crystal unit cell, we need to divide �̃�(𝑄, ℏ𝜔) by the number of magnetic atoms, 𝑁𝑚.  

 In most cases, �̃�(𝑄, ℏ𝜔) discussed above is the normalized magnetic spectra with 

absolute units that people correspond to. In order to normalize the magnetic spectra, we 

still need the product of the resolution volume and the number of unit cells, 𝑁𝑅0. It can 

be calculated using the nuclear Bragg peaks. 

 The nuclear Bragg scattering cross section is  

𝑑2𝜎

𝑑Ω𝑑(ℏ𝜔)
= 𝑁

(2𝜋)3

𝑉0
∑ 𝛿3(𝑸 − 𝝉)|𝐹𝑁(𝝉)|2𝛿(ℏ𝜔)

𝝉
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(Eq. 32) 

where 𝑉0 is the volume of the crystal unit cell, 𝝉 is the nuclear Brag peak position, and 

𝐹𝑁(𝝉) is the nuclear structure factor of Bragg peak 𝝉.  

When the sample is powder, 

𝑑2𝜎

𝑑Ω𝑑(ℏ𝜔)
= 𝑁

(2𝜋)3

𝑉0
∑

𝛿(𝑄 − 𝜏)

4𝜋𝜏2
𝑛𝜏|𝐹𝑁(𝝉)|2𝛿(ℏ𝜔)

𝜏

 

(Eq. 33) 

where 𝑛𝜏 is the multiplicity of Bragg peaks with 𝜏. The monitor-normalized intensity of 

the Bragg peak around 𝜏 is 

𝐼𝑁(𝑄, ℏ𝜔) = ∫ 𝑑𝑄0 ∫ 𝑑(ℏ𝜔0)𝑁
(2𝜋)3

𝑉0

𝛿(𝑄0 − 𝜏)

4𝜋𝜏2
𝑛𝜏|𝐹𝑁(𝝉)|2𝛿(ℏ𝜔0)𝑅(𝑄0, 𝑄, ℏ𝜔0, ℏ𝜔) 

= 𝑁
(2𝜋)3

𝑉0

𝑛𝜏

4𝜋𝜏2
|𝐹𝑁(𝝉)|2𝑅(𝑄 − 𝜏, ℏ𝜔) 

(Eq. 34) 

where 𝑅(𝑄0, 𝑄, ℏ𝜔0, ℏ𝜔) is the instrument resolution function. Integrating 𝐼𝑁 over both 

the energy transfer and momentum transfer with the approximation that 𝑅(𝑄 − 𝜏) does 

not depend on 𝜏, we obtain 

∫ 𝑑𝑄
𝑄2

𝑄1

∫ 𝑑(ℏ𝜔)𝐼𝑁(𝑄, ℏ𝜔)
∞

−∞

= 𝑁 ∫ 𝑑𝑄
𝑄2

𝑄1

∫ 𝑑(ℏ𝜔)𝑅(𝑄, ℏ𝜔) ∑
(2𝜋)3

𝑉0

𝑛𝜏

4𝜋𝜏2
|𝐹𝑁(𝝉)|2

𝑄1<𝜏<𝑄2

∞

−∞

 

(Eq. 35) 
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In that the momentum resolution is much smaller than the momentum integration range, 

we can make the approximation ∫ 𝑅(𝑄, ℏ𝜔)𝑑𝑄
𝑄2

𝑄1
≈ ∫ 𝑅(𝑄, ℏ𝜔)𝑑𝑄

∞

−∞
. Then 

𝑁𝑅0 = 𝑁 ∫ 𝑑𝑄
𝑄2

𝑄1

∫ 𝑑(ℏ𝜔)𝑅(𝑄, ℏ𝜔)
∞

−∞

=
∫ 𝑑𝑄

𝑄2

𝑄1
∫ 𝑑(ℏ𝜔)𝐼𝑁(𝑄, ℏ𝜔)

∞

−∞

∑
(2𝜋)3

𝑉0

𝑛𝜏

4𝜋𝜏2 |𝐹𝑁(𝝉)|2
𝑄1<𝜏<𝑄2

 

(Eq. 36) 

Using the normalization constant, 𝑁𝑅0, we can transfer the raw data into absolute units. 

In our paper, when we discuss the 𝑄 dependence or energy dependence of the data in 

absolute units, we refer to 𝑆(𝑄, ℏ𝜔) = 𝑓2(𝑄)�̃�(𝑄, ℏ𝜔). When we evaluate the spectral 

weight or frozen spin degrees, we calculate �̃�(𝑄, ℏ𝜔) related values.  

In the isotropic fluctuation case (our case), �̃�(𝑄, ℏ𝜔) = 2𝑆𝑥𝑥(𝑄, ℏ𝜔) =

2𝑆𝑦𝑦(𝑄, ℏ𝜔) = 2𝑆𝑧𝑧(𝑄, ℏ𝜔). Due to the orientation isotropy, we have 

∫ 𝑑𝑄 ∫ 𝑆𝑥𝑥(𝑄,ℏ𝜔)𝑑(ℏ𝜔)
𝐵𝑍

∫ 𝑑𝑄𝐵𝑍

=
1

3
𝑆(𝑆 + 1), thus the total spectra weight of our data is 

∫ 𝑑𝑄 ∫ �̃�(𝑄,ℏ𝜔)𝑑(ℏ𝜔)
𝐵𝑍

∫ 𝑑𝑄𝐵𝑍

=
2

3
𝑆(𝑆 + 1). 
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4. 𝑺(𝑸) model fitting 

 We use the lattice-Lorentzian functions to fit the 𝑄-dependence of low-energy 

spin fluctuations. The fitted parameters are the correlation lengths along three principal 

axes. Due to the two-dimensional features and tetragonal structural symmetry of the 

system, we presume 𝜉𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 → 0 and 𝜉𝑥 = 𝜉𝑦 = 𝜉𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 = 𝜉. One thing that 

needs clarifications is that the ‘plane’ in the term ‘in-plane’ here refers to the x-y plane 

Fig. 25 Phenomenological 𝑆(𝑄) fittings of low-energy spin fluctuations of 

Sr2CuTe0.5W0.5O6. 

𝑆(𝑄) fittings with different spin configurations are plotted: spin in ab plane (blue), 

spin in bc plane (green), spin in ac plane (red), and 3D isotropic spins (pink). 
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(𝐽1 − 𝐽2 plane) of the tetragonal crystal structure. It is different from the plane involved in 

the spin orientation discussion next.  

In the function, we use 𝒒𝒎 = (
1

2
, 0, 0) and (

1

2
, 1, 0). Note that we are trying to fit 

a 𝑆(𝑄) spectrum with respect to scalar 𝑄 while the phenomenological model is a function 

of vector 𝑸. Thus, powder averaging is necessary. The proposed function is convoluted 

with the instrumental resolution after powder averaging. Meanwhile, the magnetic 

structure factor, |𝐹𝑚
⊥(𝑸)|2, contains the spin orientations implicitly, which calls for 

different trials of spin orientations in the model fitting. No static long-range order was 

observed in the system at low temperatures, indicating the random orientations of the 

magnetic spins. Here, to interpret the antiferromagnetic wave vector 𝒒𝒎 = (
1

2
, 0, 0), we 

construct antiferromagnetic spin arrays along a-direction (one of the square-lattice axes). 

The trial configurations (Fig. 25) we used to interpret the random spin orientations 

include: 2D isotropic spin orientations in ab plane, in ac plane, in bc plane, and 3D 

isotropic spin orientations, among which the configuration that spins lie in bc plane with 

2D isotropic orientations gives the best fit. The correlation length 𝜉 was extracted from 

the fitting using this spin configuration. Note that bc plane is perpendicular to the wave 

vector which suggests the dominant transverse contributions in the low-energy spin 

fluctuations. 
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Appendix 2. 

Normalization to elastic incoherent scattering intensity 

 Both samples contain lots of hydrogen atoms, which makes it more 

straightforward and easier to normalize the intensity into absolute units using the elastic 

incoherent scattering intensities. The cross section for elastic incoherent scattering is 

quite simple: 

(
𝑑𝜎

𝑑Ω
)

𝑖𝑛𝑐

𝑒𝑙

=
𝑁

4𝜋
 ∑ 𝜎𝑗

𝑖𝑛𝑐𝑒−2𝑊

𝑗

 

(Eq. 37) 

where 𝜎𝑗
𝑖𝑛𝑐 is the incoherent neutron scattering cross section of the 𝑗-th atom. Based on 

Eq. 37, the energy integrated elastic incoherent scattering intensity 

𝐼𝑖𝑛𝑐
𝑒𝑙 (𝑄) = ∫ 𝐼(𝑄, ℏ𝜔)𝑑(ℏ𝜔)

+𝐸𝑟𝑒𝑠

−𝐸𝑟𝑒𝑠

=
𝑁

4𝜋
∑ 𝜎𝑗

𝑖𝑛𝑐𝑒−2𝑊

𝑗

𝑅0 

(Eq. 38) 

where 𝑅0 is the resolution volume mentioned in the Appendix 1. Thus, by fitting the 

base-temperature energy integrated elastic incoherent scattering intensity 𝐼𝑖𝑛𝑐
𝑒𝑙 (𝑄) to the 

theoretical model 𝐴 ∙ ∑ 𝜎𝑗
𝑖𝑛𝑐𝑒−2𝑊

𝑗 , where 𝑒−2𝑊 = 𝑒−〈𝑢2〉𝑄2
, we can extract the 

normalization constant  

𝑁𝑅0 = 4𝜋 ∙ 𝐴 =
𝐼𝑖𝑛𝑐

𝑒𝑙 (𝑄)

∑ 𝜎𝑗
𝑖𝑛𝑐𝑒−2𝑊

𝑗

 

(Eq. 39) 
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Appendix 3. 

Jump Model Details 

 This appendix shows the details of the jump model analysis of (BA)2PbI4 and 

(PEA)2PbI4.  

 The rotational dynamics of (BA)2PbI4 was discussed in details in Ref. 68. Here 

we repeat it for reading convenience. Two intrinsic rotational modes are revealed in 

(BA)2PbI4: C3 and C4 modes. Table S1 shows the character tables for point group 𝐶3 and 

𝐶4. The NH3 and CH3 groups experience rotational mode Γ = 𝐶4 ⊗ 𝐶3 and the rest of 

CH2 groups experience Γ = 𝐶4 only. Based on direct product rules in group theory and 

equivalent atomic position distributions (Fig. 26), we can calculate the corresponding 𝜏𝛾 

and 𝐴𝛾(𝑄) for them (Table S2, S3). 

 

Table. S1 Character tables for 𝐶3 and 𝐶4. 

The point group C3 has two irreducible representations: one one-dimensional 

representation A, and one two-dimensional representation E. The point group C4 has 

three irreducible representations: two one-dimensional representations A and B, and one 

two-dimensional representation E. 

𝐶3 group 𝐸 2𝐶3 

A 1 1 

𝐸 2 -1 
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𝐶4 group 𝐸 2𝐶4 𝐶2 

A 1 1 1 

B 1 -1 1 

E 2 0 -2 

 

 

Table. S2 Model details for jump mode Γ = 𝐶4 ⊗ 𝐶3. 

Γ𝛾 
1

𝜏𝛾
 36 ∙ 𝐴𝛾(𝑄) 

Α⨂Α 0 

3 + 6𝑗1 + 2𝑗2 + 2𝑗3 + 2𝑗4 + 𝑗5 + 2𝑗6 + 2𝑗7 + 2𝑗8 + 2𝑗9 

+2𝑗10 + 2𝑗11 + 𝑗12 + 2𝑗13 + 2𝑗14 + 2𝑗15 + 𝑗16 

Α⨂Ε 
3

𝜏𝐶3

 
6 − 6𝑗1 + 4𝑗2 − 2𝑗3 − 2𝑗4 + 2𝑗5 − 2𝑗6 − 2𝑗7 − 2𝑗8 − 2𝑗9 

+4𝑗10 − 2𝑗11 + 2𝑗12 − 2𝑗13 − 2𝑗14 + 4𝑗15 + 2𝑗16 

Β⨂Α 
4

𝜏𝐶4

 
3 + 6𝑗1 − 2𝑗2 − 2𝑗3 − 2𝑗4 + 𝑗5 + 2𝑗6 + 2𝑗7 − 2𝑗8 − 2𝑗9 

−2𝑗10 − 2𝑗11 + 𝑗12 + 2𝑗13 − 2𝑗14 − 2𝑗15 + 𝑗16 

Β⨂Ε 
4

𝜏𝐶4

+
3

𝜏𝐶3

 
6 − 6𝑗1 − 4𝑗2 + 2𝑗3 + 2𝑗4 + 2𝑗5 − 2𝑗6 − 2𝑗7 + 2𝑗8 + 2𝑗9 

−4𝑗10 + 2𝑗11 + 2𝑗12 − 2𝑗13 + 2𝑗14 − 4𝑗15 + 2𝑗16 

E⨂𝐴 
2

𝜏𝐶4

 6 + 12𝑗1 − 2𝑗5 − 4𝑗6 − 4𝑗7 − 2𝑗12 − 4𝑗13 − 2𝑗16 

𝐸⨂Ε 
2

𝜏𝐶4

+
3

𝜏𝐶3

 12 − 12𝑗1 − 4𝑗5 + 4𝑗6 + 4𝑗7 − 4𝑗12 + 4𝑗13 − 4𝑗16 

Here 𝑗𝑖 represent the zeroth spherical Bessel function 𝑗0(𝑄𝑟𝑖), where 𝑟𝑖 are the jump 

distances corresponding to the jump positions in Fig. 26 (C): 𝑟1 = 𝑅1,2, 𝑟2 = 𝑅1,4, 𝑟3 =
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𝑅1,5, 𝑟4 = 𝑅1,6, 𝑟5 = 𝑅1,7, 𝑟6 = 𝑅1,8, 𝑟7 = 𝑅1,9, 𝑟8 = 𝑅1,11, 𝑟9 = 𝑅1,12, 𝑟10 = 𝑅2,5, 𝑟11 =

𝑅2,6, 𝑟12 = 𝑅2,8, 𝑟13 = 𝑅2,9, 𝑟14 = 𝑅2,12, 𝑟15 = 𝑅3,6, 𝑟16 = 𝑅3,9. 𝑅𝑖,𝑗 = |𝑹𝒊 − 𝑹𝒋|, where 

𝑹𝒊 is the position of the i-th H site. The 12 equivalent H site for NH3 and CH3 are marked 

in Fig. 26 (C). 

 

 

Fig. 26 Rotational modes of organic molecules in (BA)2PbI4 and equivalent H sites for 

NH3, CH3, and CH2 groups. 

(A and B) show the rotational modes of BA+ molecules in LT phase (A) and HT phase 

(B). (C) presents the 12 equivalent H sites for the 𝐶4 ⊗ 𝐶3 mode of NH3 and CH3 groups. 

(D) presents the 8 equivalent H sites for the 𝐶4 mode of CH2 groups. 

 

 

Table. S3 Model details for jump mode Γ = 𝐶4. 

Γ𝛾 
1

𝜏𝛾
 8 ∙ 𝐴𝛾(𝑄) 
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Α 0 2 + 2𝑗2 + 𝑗4 + 2𝑗7 + 𝑗8 

B 
4

𝜏𝐶4

 2 − 2𝑗2 + 𝑗4 − 2𝑗7 + 𝑗8 

E 
2

𝜏𝐶4

 4 − 2𝑗8 

Here 𝑗𝑖 represent the zeroth spherical Bessel function 𝑗0(𝑄𝑟𝑖), where 𝑟𝑖 are the jump 

distances corresponding to the jump positions in Fig. 26 (D): 𝑟2 = 𝑅1,3, 𝑟4 = 𝑅1,5, 𝑟7 =

𝑅2,4, 𝑟8 = 𝑅2,6. 𝑅𝑖,𝑗 = |𝑹𝒊 − 𝑹𝒋|, where 𝑹𝒊 is the position of the i-th H site. The 8 

equivalent H site for CH2 groups are marked in Fig. 26 (D). 

 

 

For (PEA)2PbI4, the C3 mode of the NH3 group is characterized by the point group 

𝐶3 (Table. S1). The structure factors 𝐴𝛾(𝑄) for Γ = 𝐶3 is calculated in Table. S4. 

 

Table. S4 Structure factors for jump mode Γ = 𝐶3. 

Γ𝛾 1

𝜏𝛾
 

9 ∙ 𝐴𝛾(𝑄) 

A 0 3 + 6𝑗0(𝑄𝑟) 

E 3

𝜏𝐶3

 
6 − 6𝑗0(𝑄𝑟) 

 𝑗0(𝑄𝑟) is the zeroth spherical Bessel function. 𝑟 is the jump distance between H atoms of 

the NH3 group. 
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Table. S5 Relaxation times 𝜏𝐶4
 and 𝜏𝐶3

 for the rotations of organic molecules in 

(BA)2PbI4 and (PEA)2PbI4. The values were obtained from model fitting to the QENS 

data. For 𝑇 < 275 K, 𝜏𝐶4
≈ ∞ as the C4 mode is frozen in (BA)2PbI4. 〈𝑢2〉 is the mean 

squared displacement for the Debye-Waller factor 𝑒−〈𝑢2〉𝑄2
. The errors in the parentheses 

were estimated by the least square fitting with 95% confidence. 

(BA)2PbI4 (PEA)2PbI4 

𝑇 (K) 𝜏𝐶4
 (ps) 𝜏𝐶3

 (ps) 〈𝑢2〉 (Å2) 𝑇 (K) 𝜏𝐶3
 (ps) 〈𝑢2〉 (Å2) 

160 ∞ 342(10) 0.110(4) 170 588(90) 0.067(4) 

180 ∞ 201(4) 0.108(3) 190 497(66) 0.073(4) 

200 ∞ 104(2) 0.116(3) 210 408(50) 0.079(4) 

220 ∞ 87(2) 0.104(3) 230 243(20) 0.087(4) 

240 ∞ 70(2) 0.122(4) 250 177(12) 0.095(4) 

260 ∞ 45(1) 0.156(3) 270 125(7) 0.103(3) 

280 60(3) 6.8(2) 0.085(2) 290 92(5) 0.110(3) 

300 25(2) 3.5(2) 0.082(3) 310 71(4) 0.118(3) 

 

C3 jump distances in CH3 and NH3 groups 

Based on the refinement of the neutron diffraction data, the average C3 jump 

distance of CH3 is 𝑟𝑐 =1.568 Å and that of NH3 is 𝑟𝑛 =1.454 Å. In all our calculations, 

we used the average jump distance �̅� =
𝑟𝑐+𝑟𝑛

2
. Then 𝑟𝑐 and 𝑟𝑛 can be written as 𝑟𝑐 = �̅� + Δ, 
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𝑟𝑛 = �̅� − Δ, where 
Δ

�̅�
≈ 3.8%. The Q-dependence of 𝑆(𝑄, ℏ𝜔) has a functional form of 

the lth spherical Bessel function, 𝑗𝑙(𝑄𝑟). The difference between using two separate jump 

distances, 𝑟𝑐 and 𝑟𝑛, and using the average jump distance, �̅�, is minimal: 

𝑗𝑙(𝑄�̅�) −
𝑗𝑙(𝑄(�̅� + ∆)) − 𝑗𝑙(𝑄(�̅� − ∆))

2
≈

1

2
𝑗𝑙

′′(𝑄�̅�)𝑄2∆2 

(Eq. 40) 

Since (
∆

�̅�
)

2

≈ 0.1%, the effect of the difference is negligible within the experimental 

uncertainty. 
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Appendix 4. 

Rotational contribution estimations 

 We applied the rotational model to fit the elastic channel data. Fig. 27 shows the 

results of the fitting for four different temperatures, and the fitted parameters were listed 

in Table. S6.  

 

 

Fig. 27 Temperature dependent elastic channel data in rotational contribution estimation. 

The colored dots show ℏ𝜔-integrated neutron scattering intensity, 𝐼(𝑄), for both samples 

at 4 selected temperatures with −0.75 ≤  ℏ𝜔 ≤ 0.75 meV with 𝐸𝑖 = 30 meV. The 

colored solid lines are the rotational contributions at the corresponding temperatures, 

obtained from the fitting to the jump model described in the text. The larger 𝑄 range of 

𝐸𝑖 = 30 meV than 𝐸𝑖 = 10 meV enhances the fitting reliability. 
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Table. S6 Estimated relaxation times and the mean squared displacement for the rotations 

of organic molecules in (BA)2PbI4 and (PEA)2PbI4 that are extracted from the model 

fitting to the elastic channel data as discussed in the text. Values in the parentheses 

indicate their errors. 

(BA)2PbI4 (PEA)2PbI4 

𝑇 (K) 𝜏𝐶4
 (ps) 𝜏𝐶3

 (ps) 〈𝑢2〉 (Å2) 𝑇 (K) 𝜏𝐶3
 (ps) 〈𝑢2〉 (Å2) 

10 ∞ ∞ 0.008(1) 8 ∞ 0.016(1) 

50 ∞ ∞ 0.010(1) 49 ∞ 0.021(1) 

100 ∞ ∞ 0.018(2) 109 ∞ 0.032(1) 

145 ∞ 68(50) 0.026(1) 150 ∞ 0.039(2) 

170 ∞ 30(20) 0.031(1) 170 ∞ 0.046(2) 

190 ∞ 18(8) 0.034(2) 190 46(30) 0.051(1) 

220 ∞ 10(4) 0.035(1) 211 17(10) 0.055(1) 

250 ∞ 4(1) 0.049(2) 250 8(3) 0.063(2) 

300 7(3) 2(1) 0.059(3) 300 4(1) 0.073(2) 

 

 

 

 

 

 



 

79 

 

 

References 

1. Y. Tokura and N. Nagaosa. Orbital physics in transition-metal oxides. Science 288, 462 

(2000) 

2. Y. Kamihara et al. Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05-0.12) 

with Tc 26 K. J. Am. Chem. Soc. 130, 3296 (2008) 

3. E. Dagotto and Y. Tokura. Strongly correlated electronic materials: present and future. 

MRS Bulletin 33, 1037-1045 (2008) 

4. J. Hubbard. Electron correlations in narrow energy bands. Proceedings of the Royal 

Society of London 276 (1365), 238-257 (1963) 

5. E. Pavarini, E. Koch, R. Scalettar, and R. Martin (eds.). The Physics of Correlated 

Insulators, Metals, and Superconductors Modeling and Simulation. Vol. 7. 

Forschungszentrum Julich, 2017 

6. C. Lacroix, et al. Introduction to Frustrated Magnetism (Springer, 2011) 

7. G. H. Wannier. Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357-364 

(1950) 

8. L. Savary and L. Balents. Disorder-induced quantum spin liquid in spin ice pyrochlores. 

Phys. Rev. Lett. 118, 087203 (2017) 

9. H. Kawamura and K. Uematsu. Nature of the randomness-induced quantum spin 

liquids in two dimensions. Journal of Physics: Condensed Matter. 31, 504003 (2019) 

10. H. Kawamura, et al. Quantum spin-liquid behavior in the spin-1/2 random-bond 

Heisenberg antiferromagnet on the Kagome lattice. J. Phys. Soc. Jpn. 83, 103704 (2014) 

11. K. Uematsu and H. Kawamura. Randomness-induced quantum spin liquid behavior in 

the s=1/2 random J1-J2 Heisenberg antiferromagnet on the Honeycomb lattice. J. Phys. 

Soc. Jpn. 86, 044704 (2017) 

12. K. Watanabe, et al. Quantum spin-liquid behavior in the spin-1/2 random Heisenberg 

antiferromagnet on the triangular lattice. J. Phys. Soc. Jpn. 83, 034714 (2014) 

13. L. Balents. Spin liquids in frustrated magnets. Nature 464, 11 (2010) 

14. P. W. Anderson. Resonating valence bonds: a new kind of insulator. Mater. Res. Bull. 

8, 153-160 (1973) 



 

80 

 

15. P. W. Anderson. The resonating valence bond state in La2CuO4 and superconductivity. 

Science 235, 1196-1198 (1987) 

16. V. Kalmeyer and R. B. Laughlin. Equivalence of the resonating-valence-bond and 

fractional quantum Hall states. Phys. Rev. Lett. 59, 2095-2098 (1987) 

17. X. G. Wen. Vacuum degeneracy of chiral spin states in compactified space. Phys. Rev. 

B 40, 7387 (1989) 

18. S. A. Kivelson, et al. Topology of the resonating valence-bond state: solitons and high-

Tc superconductivity. Phys. Rev. B 35, 8865 (1987) 

19. X.-G. Wen. Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 

(2017) 

20. U. Geiser, et al. Superconductivity at 2.8 K and 1.5 kbar in 𝜅-(BEDT-TTF)2Cu2(CN)3: 

the first organic superconductor containing a polymeric copper cyanide anion. INorg. 

Chem. 30, 2586-2588 (1991) 

21. S. Yamashita, et al. Thermodyanmic properties of a spin-1/2 spin-liquid state in a 𝜅-

type organic salt. Nat. Phys. 4, 459-462 (2008) 

22. B. J. Powell and R. H. McKenzie. Quantum frustration in organic Mott insulators: from 

spin liquids to unconventional superconductors. Rep. Prog. Phys. 74, 056501 (2011) 

23. C. Broholm, et al. Quantum spin liquids. Science 367, eaay0668 (2020) 

24. M. R. Norman. Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. 

Phys. 88, 041002 (2016) 

25. Y.-H. Han, et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice 

antiferromagnet. Nature 492, 406-410 (2012) 

26. M. Fu, et al. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg 

antiferromagnet. Science 350, 655-658 (2015) 

27. T.-H. Han, et al. Correlated impurities and intrinsic spin-liquid phyiscs in the kagome 

material herbertsmithite. Phys. Rev. B 94, 060409 (2016) 

28. A. Banerjee, et al. Neutron scattering in the proximate quantum spin liquid 𝛼-RuCl3. 

Science 356, 1055-1059 (2017) 

29. S. M. Winter, et al. Brekdown of magnons in a strongly spin-orbital coupled magnet. 

Nat. Commun. 8, 1152 (2017) 



 

81 

 

30. K. X. Steirer, et al., Defect tolerance in methylammonium lead triiodide perovskite. 

ACS Energy Lett. 2, 360-366 (2016) 

31. Y. Chen and H. Zhou. Defects chemistry in high-efficiency and stable perovskite solar 

cells. Journal of Applied Physics 128, 060903 (2020) 

32. M. A. Green, et al.. Solar cell efficiency tables (Version 55). Prog. Photovoltaics 28, 

3-15 (2020) 

33. S. T. Zhang, et al. Efficient red perovskite light-emitting diodes based on solution-

processed multiple quantum wells. Adv. Mater. 29, 1606600 (2017) 

34. B. Traore, et al. Composite nature of layered hybrid perovskites: assessment on 

quantum and dielectric confinemnts and band alignment. ACS Nano 12, 3321-3332 

(2018) 

35. C. Katan, et al. Quantum and dielectric confinement effects in lower-dimensional 

hybrid perovskite semiconductors. Chem. Rev. 119, 3140-3192 (2019) 

36. N. N. Wang, et al. Perovskite light-emitting diodes based on solution-processed self-

organized multiple quantum wells. Nat. Photonics 10, 699-704 (2016) 

37. X. Gong, et al. Electron-phonon interaction in efficient perovskite blue emitters. Nature 

Materials 17, 550-556 (2018) 

38. Z. F. He, et al. High-efficiency red light-emitting diodes based on multiple quantum 

wells of phenylbutylamminoum-cesium lead iodide perovskites. ACS Photonics 6, 587-

594 (2019) 

39. G. L. Squires. Introduction to the Theory of Thermal Neutron Scattering (Cambridge 

1996). 

40. M. Bee, Quasielastic Neutron Scattering: Principles and Applications in Solid State 

Chemistry, Biology and Materials Science. Bristol and Philadelphia: Adam Hilger, 

1988. 

41. G. Xu, et al. Absolute cross-section normalization of magnetic neutron scattering data. 

Review of Scientific Instruments 84, 083906 (2013) 

42. Y. Xu, et al. Comparative description of magnetic interactions in Sr2CuTeO6 and 

Sr2CuWO6. J. Phys.: Condes. Matter 29, 105801 (2017) 

43. T. Koga, et al. Magnetic structure of the S=1/2 quasi-two-dimensional square-lattice 

Heisenberg antiferromagnet Sr2CuTeO6. Phys. Rev. B 93, 054426 (2016) 



 

82 

 

44. O. Mustonen, et al. Tuning the S=1/2 square-lattice antiferromagnet Sr2Cu(Te1-xWx)O6 

from Nell order to quantum disorder to columnar order. Phys. Rev. B 98, 064411(2018) 

45. S. Vasala, et al. Magnetic structure of Sr2CuWO6. J. Phys.: Condes. Matter 26, 496001 

(2014) 

46. P. Babkevich, et al. Magnetic excitations and electronic interactions in Sr2CuTeO6: a 

spin-1/2 sqaure lattice Heisenberg antiferromagnet. Phys. Rev. Lett. 117, 237203 (2016) 

47. H. C. Walker, et al. Spin wave excitations in the tetragonal double perovskite 

Sr2CuWO6. Phys. Rev. B 94, 064411 (2016) 

48. O. Mustonen, et al. Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet 

perovskite induced by d10-d0 cation mixing. Nature Communications 9:1085 (2018) 

49. M. Watanabe, et al. Valence-bond-glass state with a singlet gap in the spin-1/2 square-

lattice random J1-J2 Heisenberg antiferromagnet Sr2CuTe1-xWxO6. Phys. Rev. B 98, 

054422 (2018) 

50. G. Ehlers, et al. The new cold neutron chopper spectrometer at the Spallation Neutron 

Source: Design and performance. Rev. Sci. Instrum. 82, 085108 (2011) 

51. G. E. Granroth, et al. SEQUOIA: a newly operating chopper spectrometer at the SNS. 

Journal of Physics: Conference Series 251, 12058 (2010) 

52. X. Hu, et al. Freezing of a disorder induced spin liquid with strong quantum fluctuations. 

Phys. Rev. Lett. 127, 017201 (2021) 

53. I. A. Zaliznyak and S.-H. Lee. Neutron scattering with 3-Axis spectrometer in Modern 

Techiniques for Characterizing Magnetic Materials. (Boston, 2004) 

54. S. Ji, et al. Orbital order and partial electronic delocalization in a triangular magnetic 

metal Ag2MnO2. Phys. Rev. B 81, 094421 (2010) 

55. J. A. Mydosh. Spin glasses: an experimental introduction. Taylor & Francis (1993) 

56. V. M. Katukuri, et al. Exchange interactions mediated by non-magnetic cations in 

doube perovskites. Phys. Rev. Lett. 124, 077202 (2020) 

57. M. Tarzia and G. Biroli. The valence bond glass phase. Europhys. Lett. 82, 67008 (2008) 

58. R. R. P. Singh. Valence bond glass phase in dilute kagome antiferromagnets. Phys. Rev. 

Lett. 104, 177203 (2010) 

59. B. I. Halperin and W. M. Saslow. Hydrodynamic theory of spin waves in spin glasses 

and other systems with noncollinear spin orientations. Phys. Rev. B 16, 2154 (1977) 



 

83 

 

60. D. Podolsky and Y. B. Kim. Halperin-Saslow modes as the origin of the low-

temperature anomaly in NiGa2S4. Phys. Rev. B 79, 140402 (2009) 

61. I. Klich, S.-H. Lee, and K. Iida. Glassiness and exotic entropy scaling induced by 

quantum fluctuations in a disorder-free frustrated magnet. Nat Commun. 5, 3497 (2014) 

62. A. Samarakoon et al. Aging, memory, and nonhierarchical energy landscape of spin 

jam. PNAS 113, 11806 (2016) 

63. C. C. Stoumpos et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D 

homologous semiconductors. Chemistry of Materials 28(8): p. 2852-2867 (2016) 

64. R. Kajimoto et al. The Fermi chopper spectrometer 4SEASONS at J-PARC. Journal of 

the Physical Society of Japan 80(Suppl. B): p. SB025 (2011) 

65. K. Nakajima et al. AMATERAS: a cold-neutron disk chopper spectrometer. Journal of 

the Physical Society of Japan 80(Suppl. B): p. SB028 (2011) 

66. G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy 

calculations using a plane-wave basis set. Phys. Rev. B 54(16): p. 11169 (1996) 

67. J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized fradient approximation made 

simple. Phys. Rev. Lett. 77(18): p. 3865 (1996) 

68. D. Zhang. (2019) Crystal structures, rotational, vibrational dynamics, and 

optoelectronic properties of two-dimensional hybrid organic-inorganic perovskites. Ph. 

D thesis. University of Virginia. https://doi.org/10.18130/v3-mddw-1t50. 

69. K. Du et al. Two-dimensional lead(II) halide-based hybrid perovskites templated by 

acene alkylamines: crystal structures, optical properties, and piezoelectricity. Inorg. 

Chem. 56, 9291-9302 (2017) 

70. Y. Q. Cheng et al., Simulation of inelastic neutron scattering spectra using OCLIMAX. 

Journal of Chemistry Theory and Computation 15, 1974-1982 (2019) 

71. T. Chen et al., Rotatinoal dynamics of organic cations in the CH3NH3PbI3 perovskite. 

Phys. Chem. Chem. Phys. 17, 31278-31286 (2015) 

72. K. Miyata, T. L. Atallah, and X. Y. Zhu, Lead halide perovskites: Crystal-liquid 

duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3, 

e1701469 (2017).  

73. G. Xing et al., Long-range balanced electron- and hole-transport lengths in organic-

inorganic CH3NH3PbI3, Science 342, 344 (2013).  

https://doi.org/10.18130/v3-mddw-1t50


 

84 

 

74. Q. Dong et al., Electron-hole diffusion lengths >175 μm in solution-grown 

CH3NH3PbI3 single crystals, Science 347, 967 (2015).  

75. D. Shi et al., Low trap-state density and long carrier diffusion in organolead trihalide 

perovskite single crystals, Science 347, 519 (2015).  

76. L. M. Herz, Charge-carrier dynamics in organic-inorganic metal halide perovskites, 

Annu. Rev. Phys. Chem. 67, 65 (2016).  

77. T. Leijtens et al., Carrier trapping and recombination: The role of defect physics in 

enhancing the open circuit voltage of metal halide perovskite solar cells, Energy 

Environ. Sci. 9, 3472 (2016). 

78. X. Y. Zhu and V. Podzorov, Charge carriers in hybrid organic-inorganic lead halide 

perovskites might be protected as large polarons, J. Phys. Chem. Lett. 6, 4758 (2015).  

79. K. Miyata et al., Large polarons in lead halide perovskites, Sci. Adv. 3, e1701217 

(2017).  

80. K. Miyata and X. Y. Zhu, Ferroelectric large polarons, Nat. Mater. 17, 379 (2018). 

81. F. Zheng and L.-W. Wang, Large polaron formation and its effect on electron transport 

in hybrid perovskite, Energy Environ. Sci. 12, 1219 (2019).  

82. J. M. Frost, L. D. Whalley, and A. Walsh, Slow cooling of hot polarons in halide 

perovskite solar cells, ACS Energy Lett. 2, 2647 (2017).  

83. T. Chen et al., Origin of long lifetime of band-edge charge carriers in organic-inorganic 

lead iodide perovskites, PNAS 114, 7519 (2017).  

84. D. Cortecchia et al., Polaron self-localization in white-light emitting hybrid 

perovskites, J. Mater. Chem. C 5, 2771 (2017).  

85. A. J. Neukirch et al., Polaron stabilization by cooperative lattice distortion and cation 

rotations in hybrid perovskite materials, Nano Lett. 16, 3809 (2016). 

86. A. D. Wright et al., Electron-phonon coupling in hybrid lead halide perovskites, Nat. 

Commun. 7, 11755 (2016).  

87. S. Tombe et al., Optical and electronic properties of mixed halide (X = I, Cl, Br) 

methylammonium lead perovskite solar cells, J. Mater. Chem. C 5, 1714 (2017). 

88. K. Wu et al., Temperature-dependent excitonic photoluminescence of hybrid 

organometal halide perovskite films, Phys. Chem. Chem. Phys. 16, 22476 (2014).  



 

85 

 

89. Z. Guo et al., Electron-phonon scattering in atomically thin 2D perovskites, ACS Nano 

10, 9992 (2016).  

90. O. Yaffe et al., Local polar fluctuations in lead halide perovskite crystals, Phys. Rev. 

Lett. 118, 136001 (2017) 

91. D. Zhang, X. Hu, et al., Temporally decoherent and spatially coherent vibrations in 

metal halide perovskites. Phys. Rev. B 102, 224310 (2020) 

92. H. Kim et al., Direct observation of mode-specific phonon-band gap coupling in 

methylammonium lead halide perovskites, Nat. Commun. 8, 687 (2017) 

93. H. Zhu et al., Organic cations might not be essential to the remarkable properties of 

band edge carriers in lead halide perovskites. Adv. Mater. 29, 1603072 (2016) 

 

 

 


