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Abstract

With the Level 3 of automation, drivers are no longer required to constantly
drive or actively monitor their driving environments and may engage in activities
other than driving. However, drivers will still be required to take control of
vehicles as soon as automation reaches its limits. As a result of being decoupled
from the operating task for a prolonged time, drivers have difficulty regaining the
vehicle control in a timely manner. In order to counter the difficulty of takeovers,
various factors affecting takeover performance have been evaluated. However, not
all factors have been studied comprehensively, and the results of some factors have
been contradictory. Additionally, there’s a need for development of computational
models that reliably predict drivers’ takeover performance from their physiological
and driving environment data, and utilize the outcome to inform drivers about the
upcoming hazards.

This dissertation sought to address these shortcomings by (1) Examining the
effect of cognitive load, situation awareness, stress, traffic density, and lead time
on drivers’ takeover behaviors (takeover time and quality) and psychophysiological
responses (i.e. eye movements, electroencephalography, galvanic skin responses, and
heart rate variability); (2) Developing neural network models for predicting drivers’
attention and takeover performance by utilizing their physiological data, vehicle’s
status, and driving environment; (3) Designing an end-to-end context-aware in-vehicle
alert system which notifies drivers in a real-time about the loss of situation awareness
using multimodal modalities, and (4) Evaluating the system in critical conditions by
conducting human-subject experiments.
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1 | Introduction & Motivation

1.1 Introduction

Automated vehicles (AVs) are considered as the next disruptive revolution in the
transportation system. AVs are a collection of intelligent automation technologies
which are designed to take some or all of the driving tasks from the human drivers.
Several automotive manufacturers have committed to equip their commercialized
vehicles with some degree of automation for decades. The rapid ongoing
advancements in development of software and hardware technologies in recent years
promises vehicles with autonomous capabilities in the near future. For example,
Waymo’s test fleet has driven over six million miles in autonomous mode on public
roads [Schwall et al., 2020]. The predictions show that the shift towards higher
levels of automation in driving continues to reach global sales of nearly 21 million
autonomous vehicles in 2035 [Automotive, 2016,Urmson, 2015].

The advent of AVs could have a number of benefits for the individuals and
society. On the individual level, AVs enhance the mobility access for users, including
but not limited to elderly and physically impaired who cannot drive for medical
reasons, by ensuring the secure participation of them in traffic [Yang and Coughlin,
2014, Rahman et al., 2019]. Additionally, eliminating the chauffeuring burdens
increase productivity due to less nuisance tasks and leeway for action [Montgomery,
2018]. On the other hand, AVs could increase transport efficiency, allowing reduction
of carbon dioxide emissions and fuel consumption by optimizing traffic flow [Anderson
et al., 2014, Ntousakis et al., 2015]. More importantly, AVs equipped with full

2



1. Introduction & Motivation 3

Level of
Automation

Description of autonomy as defined in SAE

L0 No driving
automation

The performance by the driver of the entire DDT*, even when
enhanced by active safety systems.

L1 Driver
assistance

The sustained and ODD*specific execution by a driving automation
system of either the lateral or the longitudinal vehicle motion
control sub task of the DDT (but not both simultaneously) with
the expectation that the driver performs the remainder of the DDT.

L2 Partial
driving
automation

The sustained and ODD-specific execution by a driving automation
system of both the lateral and longitudinal vehicle motion control
subtasks of the DDT with the expectation that the driver completes
the OEDR* subtask and supervises the driving automation system

L3 Conditional
driving
automation

The sustained and ODD-specific performance by an ADS* of the
entire DDT with the expectation that the DDT fallback-ready user
is receptive to ADS-issued requests to intervene, as well as to DDT
performance-relevant system failures in other vehicle systems, and
will respond appropriately.

L4 High driving
automation

The sustained and ODD-specific performance by an ADS of the
entire DDT and DDT fallback without any expectation that a user
will respond to a request to intervene.

L5 Full driving
automation

The sustained and unconditional performance by an ADS of the
entire DDT and DDT fallback without any expectation that a user
will respond to a request to intervene.

ODD = Operational Design Domain, DDT = Dynamic Driving task, ADS = Automated Driving
System, OEDR = Object and Event Detection and Response

Table 1.1: Society of Automotive Engineers Levels of Automation

Automated Driving Systems (ADS) could significantly improve traffic safety, notably
eliminate the primary cause of 90% of traffic fatalities, human-related errors including
fatigue, inexperience, or even drug abuse [Olaverri-Monreal and Jizba, 2016,Shanker
et al., 2013]. Nevertheless, it is important to understand the numerous considerations
required to ensure a seamless integration of AVs in public road at a large scale, mainly
in the incipient stages of their development. AV and human driver relationship are
often deemed as the most important concerns and challenges of these vehicles which
their occasional failures could dramatically shift the public perception and acceptance.
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The relatively nascent concerns about AVs, including human resistance to
change, distrust of automated vehicles, risk perception, accessibility, physical and
cognitive workload need careful scrutiny. Many barriers still hinder the widespread,
practical, and effective integration of AVs in traffic. For example, in countless
scenarios other road users (i.e. cyclists and other manually-driven vehicles) can
no longer interact with a driver and get information about the intentions of the
vehicle as they would normally do. Furthermore, there is uncertainty about the
consequence of the AVs introduction to the public at a scale as their greatest potential
requires continuously monitoring of surroundings and making reliable decisions to
avoid possibility of errors which human are prone to. Although autonomous vehicles
should be able to outperform a human driver in reducing the fatal errors and no
intentional violations of traffic regulations, recent fatal crashes indicate their failures
to promptly and properly respond to unknown situations [Board, 2020]. Regardless
of the technological advances in the automotive industry, we may argue that such
developments are currently great only at performing regular task demands that are
normally imposed on a human driver. But, the current technology limitations and
the regular imperfections in automated systems illustrate the requirement for added
supervision on the system. As a result, the integration of ADS is expected to be
gradual until the full driving automation (level 5, Table 1.1) reaches mastery of the
many technical complexities and challenges that pertain to their development and
introduction to the public [Olaverri-Monreal, 2020]. So human drivers still play a
prominent role in the human-system cooperative driving system.

The utmost aforementioned benefits of the AVs are still speculative and exist
at the absence of human intervention in the control of vehicles [Olaverri-Monreal
and Jizba, 2016]. Whilst most available AVs are currently at either level 2 or
level 3 of automated driving (Table 1.1; [SAE, 2018])1 which provide various forms
of driver assistance, advanced monitoring systems, and control of the longitudinal
and lateral vehicle kinematics on a sustained basis. Generally both Level 2 and
Level 3 are ultimate human-system cooperation. At level 2 or "partial AV”, human
drivers are responsible for monitoring the surrounding where the system does steering

1In this dissertation AVs are mainly referred to the level 2 & 3 of automation
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Figure 1.1: All possible transitions occurring between a human driver and automated
driving system at different levels of automation

and acceleration/deceleration simultaneously. While at Level 3 or "conditional AV”
human driver delegate control of the vehicle and monitoring of the road to an
automated system but should react to uncertainties or request to intervene. Although
in conditionally automated driving, drivers do not need to continuously monitor
the driving environment, the automated system still needs to relinquish the control
back and ask the human driver to resume the control in case of system failures,
anticipated dangerous situation, or exceeding its operational limit via a so-called
take-over request (TOR) [Bazilinskyy et al., 2018,Gold et al., 2013]. As human errors
typically arises out of poor human-system interaction, new human factors challenges
are ubiquitous in transition of control situation [Flemisch et al., 2012].

1.1.1 Transitions of control

AVs allow the human drivers to relinquish control of the vehicle, take their hands
off the steering wheels, foot off the pedals, and instead engage in NDRTs under
predefined conditions, but will still require that they maintain a relative vigilance
and be prepared to resume control when requested or required to do so. The term
“transition” refers to a transfer of driving responsibility [Saffarian et al., 2012], or
alteration between different levels of autonomy [Flemisch et al., 2012]. [Flemisch et al.,
2008] defines the level of involvement of human and ADS in the control of vehicle based
on the principle of transition(see Figure 1.1). These principles outlines the possibility
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of transfer of control, who initiates the transition, and who should be responsible of
driving at the beginning and the end of the transition.

Presumably, a driver-initiated transition of control would be less complex, as
the driver has the freedom to choose a safe time for a handover. Consequently, the
driver-initiated transition is less of a concern from the Human Factors perspective
as it less likely to present a significant threat to a driver. A recent study by [Boggs
et al., 2020] investigates the role of the driver and the system in AV. The analysis of
159,840 transition reported on Autonomous Vehicle Tester Program revealed that the
majority of the disengagements were driver-initiated. The results show the drivers
not engaged in NDRTs are able to intervene before system issues a TOR. However,
under normal driving circumstances, most of the TOR initiations are assumed to
done by the ADS. Generally, ADS is programmed to initiate either “unplanned” or
“planned” TOR. Unplanned TOR occurs once the ADS detects an unexpected events,
such as construction zones, missing road marks, and an upcoming accident blocking
the road. In unplanned takeover situation, the driver is expected to immediately
take the vehicle control. Ideally, when the system perceives that it can no longer
provide automated driving, a TOR should be issued as early as possible to allow the
driver enough time to restore situational awareness and regain control of the vehicle.
This situation raises many Human Factors concerns as drivers will experience a series
of sub-processes for the takeover preparation, which includes: perception of TOR,
cognitively process the information, gain situation awareness (SA), make decisions,
and resume motor readiness [Zhang et al., 2019b, Zeeb et al., 2015]. In contrast, a
planned TOR takes place once the system predicts a safety-concern situation, i.e.,
expectation-conform scenarios, forecasted severe weather [Holländer and Pfleging,
2018].There is no doubt that transition from automated to manual control is not a
trivial task. [Vogelpohl et al., 2018] argued that drivers might require additional time
and assistance in order to reach a level of situational awareness necessary to resume
manual driving.
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1.1.2 Internal factors influencing takeover performance

Despite extensive research on the effect of recent evolution of AVs, little is still known
about psychological factors pertinent to driver behavior after TOR perception. In
order to understand the main Human Factors concerns of AVs, it’s essential to
scrutinise why and how they impact driver’s cognitive and physical abilities. As
noted above, in Level 3, the role of drivers will transform from “operators” to a
“fallback-ready” [Noy et al., 2018]. Once the system is set to the automated driving
mode, human drivers are legally allowed to engaged in NDRTs. Consequently,
drivers’ perception, judgment, decision-making, and operation skill differ substantially
between manually controlling the vehicle and delegating the driving responsibilities
to an ADS. In any instance (e.g. system failure) whereby a TOR is issued, the
driver is expected to be able to recapture control of the vehicle. However, as
they become increasingly decoupled from the operational level of driving lead,
higher level of automation potentially lead to the loss of SA [Stanton et al., 2011],
increase in cognitive workload [De Winter et al., 2014, Winter et al., 2016], and
overreliance [Stanton, 2015]. In response to such complex takeover, research has
been conducted to understand main factors affecting driver’s ability to takeover after
a system-initiated TOR.

Takeover performance can be explained by both reaction time and post-take-
over control [McDonald et al., 2019]. Despite many factors have been identified
contributing to better reaction time and takeover control such as traffic density [Gold
et al., 2016] and driver cognitive state [Sadeghian Borojeni et al., 2018,Van der Heiden
et al., 2021] or emotion [Sanghavi et al., 2020], the impact of time budget (“lead
time”) [Eriksson and Stanton, 2017] and TOR modality [Borojeni et al., 2017] have
been widely studied by researchers. For example, studies show that additional second
of time budget lead to increase of reaction time by on average 0.27second [Zhang et al.,
2019a,McDonald et al., 2019]. If drivers are given more time to gain sufficient SA, they
could prepare for the upcoming transition of control. Gold et al. [Gold et al., 2013]
has shown that shorter takeover times lead to faster responses but worse maneuvers.
Furthermore, a study by Merat et al. [Merat et al., 2014] suggests 20-40second of
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Figure 1.2: Workload and performance relationship.

time budget for a safe takeover to fully stabilised the vehicle after reclaiming control.
As supplying such time budget may not be technologically feasible at the moment,
researchers are required to study alternative approaches to enable drivers gaining
enough SA as a function of available time [Lu et al., 2017].

Cognitive workload

Studies have shown that a sudden TOR to the driver about the upcoming potential
hazards would incur higher stress and cognitive load [Shah et al., 2015]. Although
there was a belief that automation could increase mental workload [Young and
Stanton, 2002], a meta-analysis by [De Winter et al., 2014] showed controversial
results. In fact, increasing the automation level reduced the mental workload.
However, separate studies have shown the negative impact of driving with autonomous
mode on mental workload, take-over performance, and reaction times [Strand et al.,
2014, Zeeb et al., 2015,Bueno et al., 2016]. In order to apprehend the root cause of
dissimilarities, we need to conceptualise driver’s mental workload before and after
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TOR perception within the framework of mental workload (MWL) theory defined by
De Waard [De Waard and Brookhuis, 1996].

As can be seen in Figure 1.2, when demand increases, starting from the optimal
operator state in region A2, the operator’s capability of (effort) compensation will be
exceeded at a certain moment and a transition from the A3 to the B region takes
place. Performance in the B-region deteriorates, and when it reaches a minimum level,
the C-region is entered. Task performance and workload as a function of demand
are depicted in Figure 1.2. It is imperative to stress that demand on the x-axis
in Figure 1.2 is not directly linked to region of performance. Task demands are
determined by the goals that have to be reached by task performance and cannot be
directly related to workload, which is subjective.

Physiological data has been used as an essential instrument for understanding
and interpreting a driver’s mental status. Applying neuropsychological and
physiological measurements on drivers to investigate the relationship between
mental behavior and performance while taking over could provide us a profound
understanding of what modalities provide useful TOR for autonomous vehicles.
Whilst previously mentioned research has explored the best TOR modality,
relatively few studies have investigated the drivers’ cognitive states at the time
of transition [Izquierdo-Reyes et al., 2018, Sibi et al., 2016]. For the purpose of
objectively obtaining the psychophysical state of the driver as accurate as possible,
there is a need to shift from the simple questionnaires to a direct assessment of driver
physiological responses and driver behavioral pattern.

1.1.3 Psychophysiological responses

With the development of low-cost and non-invasive wearable sensors, it is achievable
to collect drivers’ psychophysiological signals to reflect their cognitive and emotional
states as affected by NDRTs, vehicle configurations, and driving environments.
Commonly used measurements in vehicle-related research include eye movements,
heart rate (HR) activities, and galvanic skin responses (GSRs).
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Gaze behaviors

Gaze behaviors, such as gaze dispersion and blink number, have been widely used in
driving studies to reflect drivers’ cognitive load, attention, and situational awareness
[Wang et al., 2014,Luo et al., 2019]. Researchers have shown that increases in drivers’
cognitive load induced by NDRTs and environments are linked to increases in pupil
diameter and decreases in horizontal gaze dispersion and blink number [Wang et al.,
2014,Gold et al., 2016]. For example, [Merat et al., 2012] compared drivers’ states
when they were in different scenarios (with vs. without critical incident), NDRTs
(with vs. without Twenty Questions Task), and drive (manual vs. automated). They
found that blink frequency was generally suppressed during high workload conditions,
where drivers experienced critical incidents and Twenty Questions Task. [Gold et al.,
2016] found that horizontal gaze dispersion was the most sensitive measure of drivers’
cognitive demand in NDRTs during conditionally automated driving. From the
attention perspective, [Louw et al., 2015] investigated driver attention in automated
driving and measured drivers’ gaze dispersion with four manipulations: (1) no
manipulation, (2) light fog, (3) heavy fog, and (4) heavy fog with a visual NDRT. They
found that drivers had wider gaze dispersion when the driving scene was completely
in the heavy fog conditions, but became more concentrated if a visual NDRT existed.
Although gaze dispersion and eyes-on-road time percentage are traditionally treated
as distraction indicators in manual driving, wider gaze dispersion and larger eyes-on-
road time percentage imply high situation awareness in automated driving.

Heart rate activities

Heart rate and heart rate variability (HRV) have the sensitivity to assess drivers’
workload and detect workload changes before the presence of observable effects in
driving performance [Lohani et al., 2019,Mehler et al., 2012]. For instance, [Hidalgo-
Muñoz et al., 2019] conducted a driving simulator study with eighteen subjects, and
found that decreases in HRV were associated with increases in cognitive load during
manual driving. More importantly, HRV reflected such variations in attention and
cognitive load levels before differences in driving performance were evident. Although
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some researchers have argued that cardiac responses remain open for attention
interpretation, it is widely established that heart rate acceleration and deceleration
are associated with defense and orienting responses, respectively. Take the driving
context as an example, [Reimer et al., 2011] found that younger drivers had heart rate
acceleration in response to the phone conversation task in simulated manual driving.
This pattern indicated that drivers selectively ignored or rejected disruptive input,
which was the phone task in this setting. However, late middle-aged drivers did
not demonstrate such a pattern, possibly due to individual differences in attentional
focuses.

Galvanic skin responses

Galvanic skin responses measure skin conductance controlled by changes in the
sympathetic nervous system. Raw GSR signals comprise two components, phasic
activation (rapid changes to a specific stimulus) and tonic activation (slower responses
at a background level of the activity) [Boucsein, 2012]. GSRs have been found to be
associated with drivers’ cognitive load, stress, and emotional arousal [Wintersberger
et al., 2018,Mehler et al., 2012]. For example, [Mehler et al., 2012] conducted an on-
road study where 108 drivers across three age groups performed an auditory working
memory task with three difficulty levels during manual driving. Results showed that
drivers had increased heart rate and skin conductance with a high level of cognitive
demand. In the context of automated driving, [Wintersberger et al., 2018] measured
drivers’ GSRs after TORs in a simulated driving study. They found that GSR phasic
activation, as an indicator of drivers’ arousal and stress, became higher when TORs
were presented during an NDRT than between NDRTs.

1.1.4 External factors impacting takeover performance

There are several environment-based factors indicating a safe takeover, including a
takeover time, and the quality of takeover.
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Takeover time In this paper, we consider the takeover time as the period of
time from the initiation of TOR to the exact moment of the driver resuming manual
control (see Figure 5.3), following the ISO standard definition in [ISO 21959:2020,
2020]. Note that the same concept has also sometimes been named as takeover
reaction time or response time in the literature (e.g., [Johns et al., 2016, Kim and
Yang, 2017, Petermeijer et al., 2017a, Eriksson and Stanton, 2017]). The empirical
literature defines a large variety of takeover time from a mean of 0.87s to brake [Winter
et al., 2016], to an average of 19.8s to response to a countdown TOR [Politis et al.,
2018] and 40s to stabilize the vehicle [Merat et al., 2014]. This range is derived
from influential factors impacting perception, cognitive processing, decision-making
and resuming readiness [Gold et al., 2016,Zeeb et al., 2015]. A meta-analysis of 129
studies by Zhang et al. [Zhang et al., 2019a] found that a shorter takeover time is
associated with the following factors: a higher urgency of the driving situation, the
driver not performing a non-driving related task (NDRT) such as using a handheld
device, the driver receiving an auditory or vibrotactile TOR rather than no TOR
or a visual-only TOR. Recent studies by Mok et al. [Mok et al., 2017] and Eriksson
et al. [Eriksson and Stanton, 2017] both confirmed that drivers occupied by NDRTs
have higher responses to TORs. Similarly, [Feldhütter et al., 2017] found a significant
increase in reaction time induced by NDRTs. It is further concluded that the visual
distraction causes higher reaction time when it is loaded with cognitive tasks [Tang
et al., 2020]. Studies have also revealed several driving environments, TOR modalities
[van der Heiden et al., 2017,Tang et al., 2020], driving expectancy [Ruscio et al., 2015],
age [Walch et al., 2017] and gender [Warshawsky-Livne and Shinar, 2002] associated
with takeover time. The present study extend previous findings by considering various
NDRTs, gender, and objective and subjective measurements of mental workload into
the DeepTake framework.

Takeover quality In addition to takeover time, it is essential to assess the
takeover quality, which is defined as the quality of driver intervention after resuming
manual control [ISO 21959:2020, 2020]. There are a variety of takeover quality
measures, depending on different takeover situations (e.g., collision avoidance, lane-
keeping), including objective measures (e.g., mean lateral position deviation, steering
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wheel angle deviation, metrics of distance to other vehicles or objects, minimum
time to collision, frequency of emergency braking) and subjective measures (e.g.,
expert-based assessment, self-reported experience). Prior work has found that
takeover quality can be influenced by factors such as drivers’ cognitive load [Du
et al., 2020a, Zeeb et al., 2016], emotions and trust [Dillen et al., 2020, Du et al.,
2020c, Hergeth et al., 2017], and distraction of secondary NDRTs [Martelaro et al.,
2019,Dogan et al., 2019]. Takeover time to an obstacle [Zeeb et al., 2016] has been
used widely studies as an indicator of takeover performance [Eriksson and Stanton,
2017]. However, a study by Louw et al. [Louw et al., 2017] showed that takeover time
and quality appear to be independent. This lack of consensus could be due to the
fact that studies apply various time budget for takeover control.

1.1.5 Models for takeover performance prediction

While existing literature mostly focus on the empirical analysis of drivers’ takeover
time and quality, there are a few recent efforts on the predication of drivers’ takeover
behavior using machine learning (ML) approaches. Lotz and Weissenberger [Lotz
and Weissenberger, 2018] applied a linear support vector machine (SVM) method to
classify takeover time with four classes, using driver data collected with a remote eye-
tracker and body posture camera; the results achieve an accuracy of 61%. Braunagel
et al. [Braunagel et al., 2017] developed an automated system that can classify the
driver’s takeover readiness into two levels of low and high (labeled by objective driving
parameters related to the takeover quality); their best results reached an overall
accuracy of 79% based on a linear SVM classifier, using features including the traffic
situation complexity, the driver’s gazes on the road and NDRT involvement. Deo
and Trivedi [Deo and Trivedi, 2019] proposed a Long Short Term Memory (LSTM)
model for continuous estimation of the driver’s takeover readiness index (defined by
subjective ratings of human observers viewing the feed from in-vehicle vision sensors),
using features representing the driver’s states (e.g., gaze, hand, pose, foot activity);
their best results achieve a mean absolute error (MAE) of 0.449 on a 5 point scale of
the takeover readiness index. Du et al. [Du et al., 2020b,Du et al., 2020d] developed
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random forest models for classifying drivers’ takeover quality into two categories of
good and bad (given by subjective self-reported ratings), using drivers’ physiological
data and environment parameters; their best model achieves an accuracy of 70%.

1.2 Motivation

As stated above, improving the infrastructure and user adaption of highly automated
vehicles will not happen overnight. Consequently, a transition period between
Level 3 and driverless vehicles could take decades. While these AVs let drivers to
take their hands off the steering wheels, foot off the pedals, and instead engage
in NDRTs such as reading or using mobile devices, a few sec permission to gain
enough SA and prepare for a safe control of the vehicle are likely to be the cause
for some safety concerns. Primarily, a human driver tend to lose visual attention
to a source of information after about ten minutes. According to the multiple
resources theory [Wickens, 2002], tasks demand specific resources. These resources
can be categorized into four dichotomous dimensions: stages of information processing
(perception/cognition, responding), perceptual modalities (visual, auditory), visual
channels (focal, ambient), and processing codes (spatial, verbal). The distraction
generated by the NDRTs means less attention being directed towards the road than
in the case of manual driving. If several tasks build on the same resource dimension
at the same time, task interferences might occur due to limited resources. Thus, it’s
enormously overwhelming for a driver to regain control of the vehicle in a short time
while it’s required to perceive the takeover request from the system, gain enough
SA, and safely maneuver the vehicle while NDRTs simultaneously compete with the
visual-attentional resources for the driving task [Naujoks et al., 2017].

Thus, an effective system should have to consider driver state, limitations, and
abilities in mitigating a potential collision before relinquishing control. Humans are
prone to distraction, as a result human drivers cannot be relied upon to guarantee
they are sufficiently aware of the situation to ensure safe vehicle control. Accordingly,
rather than using a capacitive sensing system or relying on torque placed on the
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steering wheel, ADS system should be equipped with a driver monitoring system,
which essentially makes the decision of when to initiate TOR, and how to relinquish
driving control pertinent to the current state of the driver as well as the possible
takeover performance. For example, if the pattern of drivers’ visual attention in the
lead up to a transition shows that they were completely disengaged from the driving
task, then a TOR must be initiated to either accommodate the context of immersion
or delay it until drivers’ attention is back on the driving task. The latter may not be
a safe option in in unplanned situation with an urgency of a handover. In addition,
the ADS may be programmed to choose a minimum risk situation such as bringing
the vehicle to a safe position on the road.

1.3 Contributions

To fill the aforementioned research gaps, this thesis contributions to the literature are
as follows:

1. We investigate the effects of drivers’ mental workload and type of TORs on
their takeover performance (i.e. takeover time and takeover quality) and
psychophysiological responses (gaze behavior, heart rate activities, GSR, and
EEG).

2. We develop, to our knowledge, the first neural network model to predict drivers’
takeover performance (i.e. takeover intention, takeover time, and takeover
quality) by utilizing drivers’ physiological data and driving environment.

3. We develop, to our knowledge, the first end-to-end in-vehicle alert system that
informs drivers about the loss of SA using a context-aware warning system. To
evaluate the system’s practicality, we conduct a preliminary proof-of-concept
human-subject experiments to study their takeover performance, perceived
safety, acceptance, and preparedness in multiple traffic scenarios.
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1.4 Organization

This thesis consists of 7 chapters which are arranged in five parts.

Chapters 2 and 3 examine to what extent driver’s visual perception and mental
workload can be relied on to choose a suitable type of TOR. Specifically, Chapter 2
presents the results of a driving simulator experiment in which participants were given
haptic-feedback to analyze their SA and stress using EEG signals. Chapter 3 examines
the extent to which the visual and auditory TOR will effect to drivers’ behavioral and
psychophysiological responses. To do so, the study investigated how well participants
can perform a takeover after receiving a TOR and how they perceive each cue. The
changes in participants’ perception and the features reflect the takeover performance
were measured. Then, the results were utilized for designing the end-to-end system
in part III that help drivers in longitudinal control after a TOR.

Chapter 4 studies the a new approach in prediction of driver’s visual attention.
This chapter constitutes studies that explore how drivers quickly allocate their
visual attention to the most important cue of the scene. Chapter 5 presents the
state-of-the-art neural networks framework to predict multiple aspects of takeover,
including takeover intention, takeover time, and takeover quality. We investigate the
effectiveness of the presented model using various metrics.

Chapter 6 illustrates the design and evaluation of context-aware in-vehicle
warning to alert driver about the loss of SA. The aim of this design was to assist
drivers by informing about the immersion to a NDRT for a prolonged time. The
design was based on the premise that a system giving context-warning pertinent to
the task the driver is engaged in.

Chapter 7 provides a general discussion of the conducted studies and suggests
opportunities for future research. Please note that each of the chapters is readable
in isolation. That is, Chapters 2–6 each have their own introduction and literature
review, methods, results, and discussion section.



II
17



2 | Understanding Driver’ State

It remains uncertain regarding the safety of driving in autonomous vehicles that, after
a long, passive control and inattention to the driving situation, how the drivers will
be effectively informed to take-over the control in emergency. In particular, the active
role of vehicle force feedback on the driver’s risk perception on curves has not been
fully explored. To investigate it, the current paper examined the driver’s cognitive and
visual responses to the whole-body haptic feedback during curve negotiations. The
effects of force feedback on drivers’ responses on curves were investigated in a high-
fidelity driving simulator while measuring EEG and visual gaze over ten participants.
The preliminary analyses of the first two participants revealed that pupil diameter and
fixation time on the curves were significantly longer when the driver received whole-
body feedback, compared to none. The findings suggest that whole-body feedback
can be used as an effective “advance notification” of hazards.

2.1 Introduction

Although the future of car industries will be dominated by autonomous vehicles
and the car will drive itself, there will still be a need for drivers to take over the
car [Banks and Stanton, 2016]. Human intervention is particularly necessary to
prevent tragic accidents when the autonomous vehicle encounters curves, bad weather
and unpredictable pedestrian behavior [Wright et al., 2017]. Although autonomous
vehicles will overall decrease the physical and mental workload of drivers by assigning
these tasks to an automated system, human drivers would still play a critical role in car
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safety responsibility [Parasuraman and Wickens, 2008]. However, it was been shown
that a sudden alarm and notification to the driver about the upcoming potential
hazards would incur higher stress and cognitive load [Shah et al., 2015]. Once
drivers allow the automated system to control the car, meaning the driver tends
to allocate his attention resources to non-driving tasks (e.g. video gaming, talking
on the phone etc.), his or her attention will be taken away from the primary task
of driving. In such circumstances, any simple form of visual, auditory or haptic
signals would not be sufficient to communicate critical information about the vehicle
conditions, only to startle and stress the driver in emergency [Petermeijer et al.,
2017b]. One approach to cope with the stress from unexpected alarms is to examine
the effects of signals on potentially safety-compromising situations, and accustom the
driver to it. In this regard, this paper intends to investigate the effects of whole-
body haptic feedback, delivering haptic cues to drivers’ full body, on the drivers’
visual perception and cognitive states during curve negotiation, as an alternative
to its counterpart alarming signals. Assessing the drivers’ cognitive states can help
infer what type of haptic feedback the cars should provide to mitigate the stress
of taking over during critical moments. In literature, vibrotactile haptic feedback
was shown to enhance the reaction time of taking control back at life-threatening
moments [Prewett et al., 2011]. It noted, however, that once the drivers were spatially
aware, the vibrotactile “directional” cue may not be as effective as visual directional
alternatives. Therefore, this study intends to focus on whole-body haptic feedback to
complement this drawback. Morrell and Wasilewski [Morrell and Wasilewski, 2010]
designed and developed a haptic-feedback seat for traditional vehicles that aimed
to share spatial information, and improve situation awareness (SA). The drivers
were informed about the location of car-following and close-by vehicles, through
vibrotactile feedback from the seat back in a way that the closer the car is, the more
sensors vibrated. Nonetheless, on the one hand, evaluating the time in the blind spot
may not be the accurate measurement for the risk assessment. Nonetheless, on the
one hand, evaluating the time in the blind spot may not be the accurate measurement
for the risk assessment. On the other hand, as auto industries attend to autonomous
technologies, alert systems need to become adaptive to vehicle speed and situation
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but not particularly designed for a specific scenario. Petermeijer et al. [Petermeijer
et al., 2017b] designed a vibrotactile feedback seat that contains static and dynamic
vibration for automated vehicles. The authors aimed to analyze the accuracy of
drivers’ response rate and their reaction time to the requested time for maneuvering.
After receiving tactile stimuli, drivers had to respond accordingly to the vibration
direction by moving to the left or the right. However, in all the presented scenarios,
there was not any additional warning cue. Furthermore, the participants reported
difficulties in understanding whether the cue was to their left or right; alarms were
only triggered about one second prior to an event occurrence, which was shorter than
the realistic average reaction time needed (3.5 seconds) for a transition control in
automated vehicles [Melcher et al., 2015]. This research aims to examine perceptual
and cognitive effects of using whole-body force feedback on the control responses of
the drivers. Through the controlled experiments in simulation setting, it is expected
that the whole-body force feedback will be shown its values, in a way that does not
only warn the driver when a takeover is required, but also assists the driver during
the critical phases, including their lack of SA (shifting of attention) and cognitive
processing. In this regard, we hypothesized that the whole-body haptic feedback
would allow the drivers to be effectively aware of upcoming curves in a simulated
driving environment.

2.2 Methodology

The experiment was conducted in a high-fidelity driving simulator (the 401cr motion
system by Force Dynamics) equipped with three monitors. The simulator mimics
various acceleration dynamics thereby creating a realistic response upon the driver’s
body. The motion-capable high-fidelity simulator was used with two configurations:
(1) without whole-body motion feedback, (2) with whole-body motion feedback with
approximately 18 inches of movement in 360 degrees. This also allowed six degrees
of freedom to replicate the motions associated with driving in a way that vibration
of the seat serves as an “intelligent messenger”. It ensures human stays informed of
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the vehicle safety. The study was approved by University of Virginia Institutional
Review Board (Protocol# 2017-0296-00). The speedometer and the RPM gauge is
located in the center of the middle monitor (Figure 2.1). Moreover, the implemented
automation system had a longitudinal capability similar to common ACC systems,
which allow drivers to follow the indicated speed limits as well as keep the car in
the center of the lane. Data were recorded at a frequency of 100 Hz, including the
vehicle’s position, accelerations and steering wheel angle (they were not included in
the preliminary study and will be reported in further analysis).

Figure 2.1: Experimental set-up for recording EEG and Eye movement.

2.2.1 Data Acquisition

A wearable eye-tracker glass (Tobii Pro-Glasses 2, Danderyd, Sweden; Tobii Pro-
Glasses 2, 2017) was used to track the driver’s gaze behavior at a sampling rate of 60
Hz (i.e., 60 gaze data points collected per second for each eye; 4 eye cameras, H.264
1920x1080 pixels at 25 fps) (see Figure 2.1). The Tobii Pro Glasses 2 eye-tracker is
wireless with live view capability for insights in any real-world environment. Since
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the driving simulator and curves are dynamic scenes, head-mounted eye tracker was
required. Also, it ensures that the participant’s full and complete range of motions
for their head. A B-Alert X24 system with 24 channels was used with the sample rate
of 256Hz to record the Electroencephalography (EEG) data (Figure 2.1). Wireless
EEG signals were sent via Bluetooth to the data acquisition system. Also, in order
to record the electoral activity of the brain, the sensor strip was placed according
to the 10/20 extended standard. The sampled data was sent wirelessly to iMotion
(biometric research platform) which allowed collection of the synchronized EEG and
eye-tracker data [iMotions, 2015b].

2.2.2 Procedure

Two graduate students (both male, 22 and 35 years old) holding a driver’s
license voluntarily participated in this preliminary study (ten participants equally
balanced between male and female aged between 18 to 40 will be recruited). None
of the participants had visual impairments, or any other symptoms or diseases
that could compromise their ability to drive. Once the participant arrived, the
relevant information regarding gender, age and driving experiences was gathered.
Subsequently, participants were verbally instructed regarding how to use the devices
and simulator as well as their primary task of driving with their hands on the wheel
by the experimenter. Furthermore, both drivers were told that they need to keep
their speed under 60mph and drive as they would normally do. The experimenter
allowed the participants to familiarize themselves with the system with 2-5 mins test
drive. Once they showed that they were comfortable with all the devices and driving
the simulator, there were asked to take 3mins break between the sessions in order to
maximize the concentration level and minimize fatigue throughout the 18 min session.
The experimenter started the three curve and force-feedback-free trials as the Baseline
session. Afterwards, the participants drove through the counterbalanced designated
scenario six times (three trials with force feedback and three without). Each scenario
took approximately 3mins, depends on the speed.
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Table 2.1: Mean and Standard Deviation for Metrics of Eye Movements.

Independent Variables

Dependent Variables With force feedback Without force feedback p-value

Time spent (sec) 6.83 (1.92) 4.49 (0.28) 0.002
Fixation duration (sec) 3.45 (0.89) 3.04 (0.61) <0.001

Pupil diameter (px) 35 (9.5) 27 (4.3) 0.008

2.2.3 Signal Preprocessing

256Hz sampled data was filtered using high and low band pass filter with a cut-off
frequency between 0.5 Hz, to remove DC drift, and 80 Hz respectively to remove
power-line noise and low frequencies separately [Gheorghe, 2017]. Also, a notch filter
at 60Hz was used. EEG data pre-processing initiated by referencing to the left ear
lobe channel as well as applying Fast Fourier transform (FFT) algorithm to filter the
different frequency band. To analyze the EEG data, initially the blink artifacts were
removed by using independent component analysis (ICA) and wavelet analyses were
used to generate a continuous record of theta band by using Matlab (The MathWorks,
Inc., Natick, Massachusetts, United States) and EEGLab toolbox. An electrode
impedance test was performed to ensure proper conductivity of the electrodes. The
impedance level threshold of 20 kω was used. Also, the EEG calibration procedure
was implemented before data collection.

2.3 Results

Collected data were extracted using iMotion software. In order to perform a
comparison analysis between three conditions (Baseline, with whole body force
feedback and without), approximately four seconds before curves was analyzed
following the approach taken by [Gheorghe, 2017]. Each trial consisted of twenty
curves, including simple curves, compound curves, reverse curves and deviation.
However, we were only interested in simple curves for our preliminary study.
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Figure 2.2: AOI and driver’s view.

2.3.1 Analysis of visual attention

iMotion provides the following metric for analyzing eye movement: Time spent-
fixation, fixation duration, Time to First Fixation (TTFF-F) and pupil diameter
(Table 1). Table 1 summarizes the time spent and fixation duration on the AOI. In
order to identify when curves as the critical section of the road on the visual display
were fixed, AOI analysis was performed (see Figure 2.2). Comparing the TTFF values
(see Figure 2.3) indicates both participants tended to concentrate slightly more on the
curves at the presence of force feedback which indicates higher SA. Likewise, when
the force feedback was applied to drivers, pupil diameter was larger approaching the
curves (Table 1). Therefore, the drivers tend to fixed their gaze on curves significantly
higher at the presence of the whole-body feedback. The differences between the two
types of vibration patterns including force and none-force feedback was assessed using
t-test. T-test yielded statistically difference between the force feedback and none in
the dependent variables (t(11) = 4.96, p= 0.002; t(11) =12.38, p<0.001; t(11) = 3.51,
p=0.008, for time spent, fixation duration, and pupil diameter, respectively).
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Figure 2.3: Eye- tracking results for fixation behaviors over different feedback condition.

2.3.2 Analysis of cognitive states

Analyzing three frequencies (Theta, Alpha and Beta) revealed that the Theta power
increases in force feedback cases. Also, on the beta band, grown power was obtained.
Still, the amount of power increasing on Theta band was higher, which may indicate
the greater drivers’ engagement while using haptic feedback. The findings represent
that the force-feedback could correlate with higher ability in decision making and
ultimately increase the capability of controlling the vehicle properly at the time
of hazard encounter. It was initially expected to get the consistent results with
Almahasneh et al. [Almahasneh et al., 2014] findings, however, the topographical map
result (Figure 2.4) indicates that the difference between baseline and both cases is
caused by more activity in corresponding brain region of the right frontal hemisphere
near reaching the curves. Since most of cognitive activities occur at the frontal
lobe, the findings are aligned with the role of frontal lobe in decision making and
attention [Burgess et al., 2009]. The topographical analysis extracted from the scalp
above the sensorymotor cortex indicates more activity on the bipolar channels C3
and C4 (Figure 2.4). Electrode C4 represents the highest activation throughout the
six curves which may cause by Motor execution phase of driving. Slightly higher
activation in motor cortex at the presence of whole-body haptic feedback supports



2. Understanding Driver’ State 26

Figure 2.4: Topographical analysis of six simple curves. The first row represents the
distribution of difference between baseline and scenarios at the absence of force feedback
(the first row) and the at the presence of it (the second row)

an enhancement to drivers’ engagement of required cognitive tasks of braking and
steering control [Saha et al., 2017]. However, band frequency modulation based on
ERP will be analyzed at the critical time intervals of curve negotiation. Our intent is
to analyze the variability of frequency bands inside some temporal windows around
200 ms and 400 ms of latency.

2.4 Summary

The main differences between the two types of feedback found in this study is
containing driver’s visual responses. Fixed duration and pupil diameters found
significantly higher while driving with haptic feedback in this preliminary study which
could be due to the higher cognitive engagement. If it was the case, finding higher
power in Theta band in frontal lobe is due to high vibration of system during haptic
feedback activation and it is not relevant to the type of feedback. Therefore, the
findings could be supported by the results that the high-fidelity driving simulator that
can simulate various scenarios with high validity improvement of drivers’ performance
engages driver better [Groeger and Banks, 2007]. This preliminary study confirms
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the possibility of EEG usage to alarm drivers properly within less than few seconds,
once the system recognizes driver’s cognitive stage and driving environment. We
expect that the need for more number of channels for prediction of performance and
drivers’ cognitive state prior to hazard with other EEG measurements (e.g. ERP)
would help us to develop a safer whole-body feedback to reduce cognitive workload
and stress level of the driver, thereby enhance their control ability. In the future,
we will design and analyze a haptic force feedback which could communicate with
drivers through the seat and serves as an “intelligent messenger” that ensures human
stays informed of the vehicle safety as well as driving environment which could play
the role of “advance notification”. In that regards, we will validate the preliminary
findings with further analysis of power variation in each frequency within temporal
duration as well as Event Related Potential (ERP). It could assist us to identify the
perceptual operations of drivers on curves.



3 | Investigating Driver’s Behavioral
and Phsyiological Responses to
Takeover Requests

Contemporary research on take over request has not fully transitioned from early
stage, inclusive designs to those adhering to individualized levels of response. We
found a paucity of research into transitions in conditionally automated vehicles,
where drivers have different levels of situational awareness. Studies have shown
that physiological measurements on individual drivers may provide better insight
into the mental behavior and performance of each driver respectively. The aim of this
preliminary study was to provide an initial step toward applying various physiological
data sources in the limited take-over time budget, for two common take-over request
(TOR) modalities used in conditionally automated vehicle.

3.1 Introduction

Conditionally automated vehicles (level 2 and 3 of automation) have been introduced
with the aim of rapidly improving functionality, to the degree that highly automated
driving will be introduced to the general public within the next few years [Cars, 2013].
Conditionally automated vehicles let drivers take their hands off the wheel and take
their attention away from the primary task of driving. Currently, legal restraints
dictate that a transition to driver take-over is made based on preset requirements or

28
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limitations in the autonomous vehicle [SAE, 2014].In the transition, the automated
system prompts the driver concerning the vehicle status and asks for a transition to
manual driver control. This request for manual control is known as a take-over request
(TOR). This requires drivers to take over from the automation system in a given,
limited time budget (from the moment alarm goes off until a collision). However,
shifting from an active controller role to that of a passive monitor causes drivers to
stay out-of-the loop, which can in turn cause a loss of situation awareness [Endsley and
Kiris, 1995] and driving skills in the long-term [De Winter et al., 2014]. This has been
shown in recent investigations into deadly high-level automation accidents [Endsley,
2017,Banks et al., 2018], where the predominant cause of safety issues has been not
providing adequate warnings to drivers to resume control [Griggs and Wakabayashi,
2018]. Hence, different types of hand-over strategies that actively monitor the most
important human factors’ constructs, which influence drivers’ performances - such as
drivers’ situational awareness and mental workload [Paxion et al., 2014] - and keep
drivers vigilant - in the loop - even when attention is on another task for a prolonged
time, are missing. On the surface, any number of auditory and visual notifications
might be adequate, but studies have shown that certain notification methods may in
fact startle and stress the driver leaving the driver in a less capable state to make a
life-saving decision as a result of affected situation awareness [Bliss and Acton, 2003].
In this study, we focus on the influence of workload, stress and the alarm type on
takeover behavior with the help of physiological monitoring systems.

Autonomous vehicles have not been able to cope with all driving conditions,
evidence by recent fatal crashes - in which autonomous systems failed to detect a
pedestrian, poorly striped lane, or truck [Claybrook and Kildare, 2018, Levin and
Woolf, 2016]. Some of these incidents could have been avoided with higher sensors
sensitivity and by informing drivers about the abnormalities. As a result, despite
the great advancement in the field of autonomous vehicles and the rapid growth in
demand for them on the road, increasing the frequency of transitions from manual
to autonomous and vice-versa could pose a significantly cognitively overwhelming
experience for drivers. However, still most research in Human Factors has not
profoundly considered human physiological aspects. On the one hand, considerable
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research has focused on the time budget, conducted in a driving simulator [Damböck
et al., 2013,Gold et al., 2013] and naturalistic settings [Eriksson et al., 2017]. On the
other hand, mainly, the variation of TOR modality has been investigated [Melcher
et al., 2015,Gold et al., 2017]. Therefore, there is still a need to develop a system to
constantly consider a driver’s physiological responses if one is to properly inform a
driver.

Although there was a belief that automation could increase mental
workload [Young and Stanton, 2002], a meta-analysis by [De Winter et al., 2014]
showed controversial results. In fact, increasing the automation level reduced the
mental workload. However, separate studies have shown the negative impact of
driving with autonomous mode on mental workload, take-over performance, and
reaction times [Strand et al., 2014,Zeeb et al., 2015,Bueno et al., 2016]. Physiological
data has been used as an essential instrument for understanding and interpreting a
driver’s mental status. Applying neuropsychological and physiological measurements
on drivers to investigate the relationship between mental behavior and performance
while taking-over could provide us a profound understanding of what modalities
provide useful TOR for autonomous vehicles. Whilst previously mentioned research
has explored the best TOR modality, timing budget and driver behavior, relatively
few studies have investigated the drivers’ cognitive states at the time of transition.
For the purpose of objectively obtaining the psychophysical state of the driver as
accurate as possible, there is a need to shift from the simple questionnaires to a
direct assessment of driver physiological responses and driver behavioral pattern.
Therefore, this study has taken physiological data into account as the most reliable
source of workload, stress and cognitive state analysis. Among all the physiological
responses, we selected the following which produce more reliable measurements with
a high temporal resolution necessary to detect vigilance difference in TOR: (1)
electroencephalogram (EEG; electrical activity of the brain), (2) Eye-tracker, (3)
photoplethysmography (PPG; electrical activity of the heart), and (4) Galvanic skin
response (GSR; electrical activity of the skin). The primary purpose of the research
in this paper is oriented to study psychophysical states of the driver by applying
various physiological data streams to two common TOR modalities (visual-auditory
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Figure 3.1: Experimental setup for recording EEG, HR, GSR and Eye movement.

and generic auditory), in the limited take-over time budget, investigating the modality
cause more stress and workload for driver with a role of passive monitoring. This
study provides elements of possible support for preventive of conditionally automated
vehicles accidents.

3.2 Methodology

3.2.1 Experimental design

The experiment had a 2×2 repeated-measure factorial design with two within-subjects
factors (warning modality and weather condition). Warning modality with two levels
(visual-auditory and generic tones) and weather condition (rainy and sunny). It
was hypothesized that visual-audio warning would promote proactive responses with
improvement in physiological responses indicating greater cognitive engagement.
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3.2.2 Participants

One graduate student (female, 29 yrs old with 5yrs of driving experience) participated
in this preliminary study. However, a total of 35 participants ranging from 18-35
years old will be recruited - with the requirement that they have a valid driver’s
license, have at least a year of experience driving, normal vision without correction,
and have no other health issues that may affect driving - will be recruited from
the University of Virginia (in this preliminary study the results of this participant
are reported). The Internal Review Board (IRB) at University of Virginia has
approved the requirements and the study (IRB# 20606: Cognitive Trust in Human-
Autonomous Vehicle Interaction).

3.2.3 Apparatus

Driving Simulator. The experiment was conducted in a high-fidelity driving
simulator with the capability of 360° movements, and the ability to provide real-
time feedback to the driver (401cr motion system by Force Dynamics, see Figure 3.1)
The simulator was equipped with three 32” LCD screens with 1024×480 resolution,
giving 120° horizontal field of view. The driving simulator was controlled by PreScan
software. PreScan is widely used in many automotive OEMs and suppliers for concept
studied, algorithm development to test advanced driver assistance systems (ADAS)
and autonomous vehicles.

Eye-tracker. In highly automated driving, it is likely that drivers will
engage in nondriving-related tasks which eye-tracker can let identifying whether the
hazerdous objects in the visual frame were founded by drivers after receiving each
of the TOR. It also helps to assess how long the driver focuses on those objects.
One of the main components of eye-tracker is observation time which calculated as
ratio between the fixation time and the time in which the object (e.g. pedestrian,
truck, obstacle, etc.) appears in the visual frame. The smaller the ratio is, the less
important (or not important at all) the object is to the driver or the driver failed
to detect the object properly. Therefore, in order to capture the driver alertness to
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capture the objects after reciving TOR, eye-tracker was use. A wearable pair of eye-
tracker glasses (Tobii Pro-Glasses 2, Danderyd, Sweden; Tobii Pro-Glasses 2, 2017)
with a sample rate of 60HZ were used. This device works wirelessly, which enabled us
to capture exactly what the driver was attending to visually. Because the scenarios
used consisted of many curves, and the driving simulator moves accordingly, the head-
mounted eye tracker enabled us to measure the driver’s gaze behavior accurately. In
order to determine visual distraction, defined as not capturing the hazardous objects
on the road, participants’ gazes were manually coded with Tobii Pro Studio to the
area of interest (AOI).

Electroencephalogram (EEG). In order to measure mental workload and
engagement, EEG was recorded using a wireless B-Alert X24 system with 24 channels
with the sample rate of 256 HZ. Wireless EEG signals were sent via Bluetooth to the
data acquisition system. Also, in order to record the electoral activity of the brain, the
sensor strip was placed according to the 10/20 extended standard and the channels
were referenced using the mean of the mastoid processes. Analysis of event-related
potentials (ERP) triggered by takeover alarm was conducted.

Heart Rate (HR). Fluctuation of heart rate in the time intervals between
the nearby beats which occures as a result of emotional factors such as stress can be
measured by variability of heart rate (HRV). In this study we focused on the time-
domain indices of HRV by which we could quanify the amount of HRV after reciving
TOR. These metrics used in this study include the standard deviation of normal
beats (SDNN), root mean square of successive differences between normal heartbeats
(RMSSD), number of adjacent NN intervals by more than 50 ms (NN50) and the
proportion of NN50 to total number of NNs (pNN50).

Galvanic Skin Responses (GSR). Another physiological data considered
in this study is the galvanic skin response (GSR), which indicates the conduction
ability of the skin. As skin conductance is balanced by sweat secretion caused by
sudomotor activity, any action accounting for muscle activation or automatic nervous
system (ANS) like stress can can be objectified by GSR [Goshvarpour et al., 2017].
Therefore, in the case of emotional changes such as growing stress level, the magnitude
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of the electrical resistance of the skin decreases, while the conductance increases.
Along with HR parameters, GSR has been proven as one the most valid indicators
of stress level. Thus, it was used in this study to indicate the stress level of drivers
after receiving TOR. The skin conductance and Heart Rate were captured from the
proximal phalanges of the index and the middle fingers of the non-dominant hand
using Shimmer3 GSR.

3.2.4 Warning Modalities

In the visual-auditory conditions, the steering wheel color turned to one of three
different colors(see Figure3.2). Green: when the system is on the autonomous mode
and does not detect any hazardous object; red: as soon as the autonomous system
detects a dangerous situation that might be out of the system limits, which alerts
the participant to take over; and blue: if the participant has pressed both “on”
buttons on the steering wheel, and switch to manual mode. Five sec after returning
to a steady state and not detecting any dangerous situation, the visual steering
wheel automatically turned to green to allow the participant to switch back to the
autonomous mode. At the time of hazard detection, the auditory warning consisted
of a single for the generic auditory warning, the sound matched that used for the
visual-auditory warning, with the addition of a high frequency feedback tone (750Hz,
duration: 75ms) presented at the time phase changing.

Figure 3.2: Experimental procedure for Visual takeover request (TOR)
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3.2.5 Procedure

The driver was randomly assigned to the warning condition order. For both warning
conditions, the participant was instructed on how and when to switch between the
autonomous and manual modes. Participants were also told that warning condition
indicated when the system detects a hazardous condition which exceeds its system
limit. A 5-minute training session was carried out for the participant to become
familiar with both the driving simulator and the driving task. Subsequently, the
participant drove 16 experimental drives, which consisted of two weather conditions,
divided into two blocks of eight drives. The participant was allowed a 5-minute break
between each block. Each drive included a single weather condition and lasted for
3 minutes. Each trial composed of four hazardous objects or incidents, namely a
pedestrian crossing the road, a cyclist and obstacle in the same lane as the vehicle,
and a truck in the lane next to the vehicle. Within each trial, the incidents were
randomly ordered. Therefore, as soon as the incident was detected and the system
sent off the warning, the participant was given 5-8 seconds prior to the incident to
take over [Eriksson and Stanton, 2017]. The participant was required to maneuver
clear of the hazards by changing lanes or slowing down.

3.3 Data Processing

EEG

Data processing was performed using the EEGLAB and ERPLAB [Lopez-Calderon
and Luck, 2014] toolboxes for MATLAB. First, a band pass filter (0.1 Hz – 30 Hz,
12dB) was applied to continuous data to account for linear trends in the data. Artifact
removal was performed by eye for unusable data, and then independent component
analysis was used to remove data from blinking and muscle movement. Data was
then epoched into 1000 ms segments consisting of 200 ms before an alarm to 800 ms
after an alarm for each TOR. Similar epochs were also created for alarm-free driving
times. Further artifact rejection was performed using a moving window peak-to-peak
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method, with a voltage threshold of 100 µV, a moving window width of 200 ms, and
a window step of 50 ms. After this step, difference waves for visual-auditory TOR
minus no alarm and auditory TOR minus no alarm were made. This was done to
remove some of the noise in the signal that was generated simply from responding to
the rich physical stimuli present in the simulator. For frontal, parietal, and central
sites (F3, Fz, F4, C3, Cz, C4, P3, POz, P4), a negative peak amplitude (that is to
say, the lowest point in a local voltage trough) within a window from 200 to 300 ms
after stimulus onset was calculated to represent N2. The same was done for a positive
peak amplitude (that is to say, the highest point in a local voltage peak) from 250
to 500 ms following stimulus onset to represent P3b. These ERP components were
selected because increased amplitude in these components has been linked to better
task engagement while driving [Lei et al., 2009]. For both measures, the 200 ms
prior to stimulus onset was used as a baseline (to control for differences in voltage
amplitude being based on an overall difference rather than a difference of reaction).

Eye-Tracker

Time spent-fixation, fixation duration, Time to First Fixation (TTFF-F) and pupil
diameter were calculated using Tobii Pro Studio and iMotions. Analysis of AOI was
performed to identify the moment participant’s gaze is fixed on the hazardous objects.

Heart Rate (HR)

Heart rate data were transferred from Shimmer device to the data acquisition
system (iMotions). Inter-beat interval (IBI) data were preserved at 128 Hz resolution
as well as the equivalent beat per minute (bpm) heart rate values. For each TOR,
HRV parameters were computed in the baseline point of time and 5sec interval while
receiving warnings. Then, the collected data were fed into Kubios for processing
of the HRV parameter. Kubios is a widely used software developed by the Biosignal
Analysis and Medical Imaging Group of the University of Kuopio, Finland for analysis
of HRV [Tarvainen et al., 2014]. This software allows the analysis of HRV and all the
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heart rate time-domain analysis over discrete time.

Galvanic Skin Responses (GSR)

reprocessing GSR data were performed using MATLAB (The MathWorks, Natick,
Massachusetts, USA). Data were filtered using a low-pass, third-order, zero-lag
Butterworth type filter of 10-Hz cutoff frequency. Significant steering wheel events
were detected when the derivative of steering wheel orientation signal was higher than
the sum of mean signal plus two standard deviations (i.e.,sudden change of direction).
Typical maximum values of EDR are 3s of latency between stimulus onset and EDR
initiation, 3s between the EDR initiation and the variation peak, and 10 s between the
variation peak and the point of recovery of 50% of the EDR amplitude [Dawson et al.,
2007]. Thus, a 20s data window with 5s prestimulus and 10s poststimulus insured a
data set large enough to perform computation of the amplitude of the event-related
EDR.

3.4 Results

Performance before and after receiving warnings in the two weather conditions and
the impact of the associated cognitive demand on heart rate, skin conductance,
elecrocepholography signals, and driving performance were analyzed. Table 1 presents
mean and standard deviation values for skin conductance and heart rate (commonly
used HRV for each TOR modality). A two-way ANOVA (weather condition and
warning modalities) with 0.5 level of significance was computed on each of the
physiological data, and EEG was examined as an exploratory factor.

Eye-tracker

In order to obtain better insight about the eye movement that falls within the visual
cue, areas of interest (AOI) were defined over the boundaries inside the display (see
Figure 3.1). Analysis of paired t-test for the visual cue of the visual-auditory warning
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GSR Heart Rate Variability (HRV)

Number of peaks RMSSD SDNN PNN50 NN50
Weather
Sunny 14.28 (0.45) 33.1(13.8)** 49.3(17.4)* 16.2(18.3)** 24.2(18.7)***
Rainy 15.6 (1.3) 23.2(9.8) 44.8(13.6) 8.3(10.8) 12.5(14.3)

Warning
Visual-Audio 11.25 (2.88)** 28.6(14.5) 48.4(10.9) 13.0(15.7) 19.1(16.7)
Audio 9.18 (1.24) 29.4(10.1) 49.1(18.3) 13.85(11.2)* 20.3(15.3)

Table 3.1: standard deviation of normal beats (SDNN), root mean square of successive
differences between normal heartbeats (RMSSD)) number of adjacent NN intervals by more
than 50ms (NN50), the proportion of NN50 to total number of NNs (pNN50). ∗ = p < 0.05,
∗∗ = p < 0.01

on some of the eye-tracker features are as follow: (1) the time spent on the visual
cue in two weather conditions, sunny (Mean= 895ms, SD= 491) and rainy (Mean=
1749 ms, SD=547) yielded a significant difference (t = 3.29, df = 5, p = 0.001), (2)
the average fixation duration on sunny weather (Mean=177.0, SD=24.9) and rainy
weather (Mean=421, SD=169) revealed a significant difference (t = 2.94, df = 5,
p = 0.021).

EEG

Paired T-Tests were performed for the sites selected, comparing peak amplitude for
P3b and N2. While there was no significant difference at N2 (mean difference =
0.04, t = 0.13, df = 8, p = 0.548), P3b was significantly greater across the electrodes
selected for the visual-auditory TOR than for the auditory TOR (mean difference =
0.66, t = 2.18, df = 8, p = 0.030). Table 2 presents the mean values for each ERP
component, and the results of the paired T-tests.

Figure. 3.4 displays the difference waves for visual-auditory TOR minus no
alarm (in black) and auditory-only TOR minus no alarm (in red). P3b is indicated
on the Figure 3.4 and Figure 3.5, and there is a clear pattern of higher voltage at
this point across the electrodes of interest. Figure 3.5 also includes scalp maps for
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Figure 3.3: Effects of the visual-auditory Takeover-Request (TOR) on drivers’ fixation
duration w.r.t. the weather conditions

the difference waves at 256.706 ms (the average latency for the P3b peak). These
show that the highest positive voltage activity across the scalp at these time points
was centered on Fz and POz. These are also the sites with the greatest difference in
activity between auditory-visual and auditory TOR. Across the scalp, visual-auditory
TOR generated greater activity during at least one component of ERP related to
better task engagement than auditory TOR. Further, these differences were greatest
over the areas of the scalp with the most activity following TOR.

GSR

The number of peaks obtained from the GSR phasic data (frequency range:0.16HZ
and above) as it linearly correlates to arousal which reflects both emotional and
cognitive responses. The preliminary results are shown in Table 1.



3. Investigating Driver’s Behavioral and Phsyiological Responses to
Takeover Requests 40

TOR Visual µV Mean (SD) Audio µV Mean (SD) Difference t df p
P3b 3.58 (0.77) 2.92 (0.82) 0.66* 2.18 8.0 0.03
N2 1.31 (0.61) 1.27 (0.79) 0.04 0.13 8.0 0.548

Table 3.2: Mean ERP results across electrodes of interest

Figure 3.4: Results of ERP Analysis for twenty scalp’s positions.

Heart Rate

Heart rate data were transferred from Shimmer device to the data acquisition
system(iMotions) Inter-beat interval (IBI) data were preserved at 128 Hz resolution
as well as the equivalent beat per minute (bpm) heart rate values. For each TOR,
HRV parameters were computed in the baseline point of time and 5sec interval while
receiving warnings.
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Figure 3.5: Results of ERP Analysis. Visual-audtiory TOR minus no alarm and Auditory
TOR minus no alarm is shown for each electrode of interest, with the approximate latency
of the P3b peak amplitude indicated for each. Scalp maps show the distribution of
instantaneous amplitude at average P3b.

Reaction Time

In order to analyze the effect of TOR modalities on reaction times in the two
weather conditions a two-way ANOVA was carried out. The reaction time was
calculated as the time difference between warning sets and control switch. The
analysis showed neither TOR modality (F(1,15)=0.158 p = 0.699) nor weather
condition (F(1,15)=0.81, p = 0.781) had a significant effect on the reaction time
of the participant. Fig.4 shows the reaction time on two different weather conditions
for each modality.

3.5 Summary

This study examined a set of neurophysiological responses and driving performances
over the warning cues of two different modalities, in a high-fidelity driving simulator
with the random occurrences of roadway hazards under varying weather conditions.
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Figure 3.6: Reaction time of drivers after receiving two takeover modalities in rainy and
sunny weather

It hypothesized color cues augmented with a single-tone hazard warning (i.e., visual-
auditory modality) would be superior to auditory-only warning, possibly due to
higher level of cognitive engagement and enhanced situation awareness. The results
showed mixed results around this hypothesis; although no significant difference
was observed in driving performance (mean reaction time), visual-auditory cues
manifested enhanced physiological responses (in terms of GSR and HR-PNN50) as
well as higher event-related potentials at close to 300 milli-seconds. This observation
is not conclusive at this preliminary stage of data analysis. Despite no visible increase
of driving performance, such modality-induced benefits in cognitive activation warrant
further investigation. They can be exploit for the optimal design of warning in
conditionally-automated vehicles.
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4 | Predicting Visual Attention in
Automated Vehicles

4.1 Background

Inspired by human visual attention, we propose a novel inverse reinforcement
learning formulation using Maximum Entropy Deep Inverse Reinforcement Learning
(MEDIRL) for predicting the visual attention of drivers in accident-prone situations.
MEDIRL predicts fixation locations that lead to maximal rewards by learning a task-
sensitive reward function from eye fixation patterns recorded from attentive drivers.
Additionally, we introduce EyeCar, a new driver attention dataset in accident-prone
situations. We conduct comprehensive experiments to evaluate our proposed model
on three common benchmarks: (DR(eye)VE, BDD-A, DADA-2000), and our EyeCar
dataset. Results indicate that MEDIRL outperforms existing models for predicting
attention and achieves state-of-the-art performance. We present extensive ablation
studies to provide more insights into different features of our proposed model

4.2 Introduction

Autonomous vehicles have witnessed significant advances in recent years. These
vehicles promise better safety and freedom from the prolonged and monotonous
task of driving. However, one of the remaining safety challenges of vision-based
models integrated into these vehicles is how to quickly identify important visual cues
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and understand risks involved in traffic environments at a time of urgency [Tawari
and Kang, 2017]. Humans have an incredible visual attention ability to quickly
detect the most relevant stimuli, to direct attention to potential hazards in complex
situations [Pakdamanian et al., 2021], and to select only a relevant fraction of
perceived information for more in-depth processing [Ungerleider and G, 2000].
Humans are able to guide their attention by a combination of bottom-up (stimuli
driven, e.g., color and intensity) and top-down (task driven, e.g., current goals or
intention) mechanisms [Deng et al., 2016,Katsuki and Constantinidis, 2014].

During task-specific activities, the goal-directed behavior of humans along with
their underlying target-based selective attention, enables drivers to ignore objects and
unnecessary details in their field of view that are irrelevant to their decisions [Chen
et al., 2012,Chen et al., 2015]. For example, at one moment, a driver’s goal might be
to initiate an overtaking maneuver, thus a nearby vehicle becomes the target object.
Later, the driver may need to stop abruptly to avoid an accident, thereby the brake
light of the car in front becomes the target object. Despite recent progress in computer
vision models for autonomous systems [Kim and Canny, 2017,Xu et al., 2017], they
are still behind the foveal vision ability of humans [Ohn-Bar et al., 2020,Xia et al.,
2020,Zelinsky et al., 2019].

Inverse reinforcement learning (IRL) algorithms are capable to address
this problem by learning to imitate the efficient attention allocation produced
by an expert, i.e., an attentive driver [Ng et al., 2000]. It is important that
autonomous vehicles leverage human visual attention mechanisms to improve their
performance, especially for better safety in critical situations where rare events
can be encountered. In this paper, we introduce Maximum Entropy Deep Inverse
Reinforcement Learning (MEDIRL) to learn task-specific visual attention policies to
reliably predict attention in imminent rear-end collisions.

Prior efforts in bottom-up saliency models commonly prioritize pixel
location (e.g., free-viewing fixation) [Kruthiventi et al., 2017,Pal et al., 2020, Stojić
et al., 2020]. These models do not fully capture driver attention in goal-directed
behavior [Einhäuser et al., 2020, Xia et al., 2020, Xia et al., 2020, Kummerer et al.,
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Figure 4.1: Given a driving video and corresponding eye fixations as inputs, MEDIRL
learns to model the fixation selection as a sequence of states and actions (St, At). MEDIRL
then predicts a maximally-rewarding fixation location by perceptually parsing a scene to
extract rich visual information (environment) and accumulating a sequence of visual cues
through fixations (state).

2017]. Moreover, video-based saliency models usually aggregate spatial features
guided by saliency maps in each frame [Wang et al., 2018,Jiang et al., 2017,Hu et al.,
2020,Yang et al., 2019]. However, most of these fixation prediction models utilized
a particular source of information [Xia et al., 2020, Palazzi et al., 2018, Fang et al.,
2019], and did not consider to jointly process spatial and temporal information [Wang
et al., 2018, Hu et al., 2020]. In this work, we aim to predict eye fixation patterns
made prior to critical situations, where these patterns can be either spatial (fixation
map) or spatiotemporal (fixation sequences) features.

Inverse reinforcement learning (IRL) is an advanced form of imitation
learning [Ziebart et al., 2008,Wulfmeier et al., 2015] that enables a learning agent to
acquire skills from expert demonstrations [Tschiatschek et al., 2019]. Our proposed
MEDIRL model learns a sequence of eye fixations by considering each fixation as
a potential source of reward [Yang et al., 2020]. We leverage collective visual
information that has been deemed relevant for video saliency in prior works [Min
and Corso, 2019,Pal et al., 2020,Chen et al., 2021]. For example, if an autonomous
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system tries to locate the salient regions of a driving scene before an imminent rear-end
collision, the desired visual behavior can be demonstrated by studying the attention
of a driver who effectively detects brake lights. In this way, the learning agent can
infer a reward function explaining experts’ behavior and optimize its own behavior
accordingly. To this end, our proposed model predicts driver attention where a
fixation pattern is represented as state-action pairs. Given a video frame input paired
with eye fixations, MEDIRL predicts a maximally-rewarding fixation location (action)
by perceptually parsing a scene to extract rich visual information (environment), and
accumulating a sequence of visual cues through fixations (state) (see Figure 4.1).

Additionally, we introduce EyeCar, a new driver attention dataset in accident-
prone situations. EyeCar is essential for training goal-directed attention models as
it is the only dataset capturing attention before accidents in an environment with
high traffic density. We exhaustively evaluate our proposed model on three common
benchmarks (DR(eye)VE [Palazzi et al., 2018], BDD-A [Xia et al., 2018], DADA-
2000 [Fang et al., 2019]) as well as our own EyeCar dataset. The experimental
results show that MEDIRL outperforms state-of-the-art models on driver attention
prediction. We also conduct extensive ablation studies to determine which input
features are most important for driver attention prediction in critical situations. Our
contributions can be summarized as follows:

• We propose MEDIRL, a novel IRL formulation for predicting driver visual
attention in accident-prone situations. MEDIRL uses maximum entropy
deep inverse reinforcement learning to predict maximally-rewarding fixation
locations.

• We introduce EyeCar, a new driver attention dataset comprised of rear-end
collisions videos for the goal-directed attention problem in critical driving
situations.

• Extensive experimental evaluation on three driver attention benchmark
datasets: DR(eye)VE [Palazzi et al., 2018], BDD-A [Xia et al., 2018],
DADA-2000 [Fang et al., 2019], and EyeCar. Results show that MEDIRL
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outperforms existing models for attention prediction and achieves state-of-the-
art performance. Besides, we present ablation studies showing target (brake
light), non-target (context), and driving tasks are important for predicting
driver attention.

4.3 Related Work

Our work is broadly related to prior efforts on models for fixation prediction, using
inverse reinforcement learning for visual tasks, and prior datasets for driving tasks.

Fixation Prediction. With increased access to large-scale annotated attention
datasets and advanced data-driven machine learning techniques, prediction of human
saliency has received significant interest in computer vision [Wang et al., 2019,Wang
and Shen, 2017,Kruthiventi et al., 2017, Zhong et al., 2013,Cornia et al., 2018,Min
and Corso, 2019]. A large number of previous studies explored bottom-up saliency
models and visual search strategies over static stimuli [Fan et al., 2019, Li and Yu,
2015, Gong et al., 2015, Fu et al., 2015, Borji and Itti, 2015, Yun et al., 2013], and
video [Zhong et al., 2013, Wang et al., 2015, Mathe and Sminchisescu, 2014, Min
and Corso, 2019, Zahedian et al., 2019,Chen et al., 2021]. Generally, the output of
these models is an attention map showing the probability of eye fixation distribution.
In contrast to this approach, fewer works explored top-down attention models for
explaining sequences of eye movements [Sprague and Ballard, 2004, Borji et al.,
2012,Borji et al., 2010]. More recently, some works explored visual attention models
in the context of driving [Guangyu Li et al., 2019,Xia et al., 2020,Gao et al., 2019].
Because task-specific instructions may change gaze distributions [Rothkopf et al.,
2007], some models commonly detect salient regions of images or videos in a free-
viewing task. Prior research also studied the pattern of eye movements associated
with the task-specific activities [Mathe and Sminchisescu, 2014,Anderson et al., 2018].
Some of these works rely on the direct ties between eye movement and the demands
of a task [Yang et al., 2020, Tatler et al., 2011, Sprague and Ballard, 2004]. These
previously proposed attention models are trained mostly on static image-viewing
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scenarios while human attention typically gets information in a sequential fashion.
Further, recent video-saliency works have proposed joint bottom-up and top-down
mechanisms for attention prediction using deep learning [Palazzi et al., 2018, Xia
et al., 2018, Fang et al., 2019,Kim et al., 2020, Pal et al., 2020]. However, they did
not consider to jointly process spatial and temporal information. We are interested
in detecting the salient regions of a scene in a task-specific driving activity in which
estimating where the drivers are dynamically looking at, and reliably detecting the
task-related objects (target objects).

Inverse Reinforcement learning. Our approach builds on works on modeling
human visual attention with their fixation being a sequential decision process of the
agent to detect salient regions [Mathe and Sminchisescu, 2013,Zelinsky et al., 2020,Liu
et al., 2019]. The recently proposed work by Yang et al. [Yang et al., 2020] is the
closest to our work as it proposes a model of visual attention in a visual search task
of static images. We go further by addressing video saliency predictions in a dynamic
and complex driving environment. Our model also does not require to predefine a set
of targets but instead parses each driving video frame to extract rich scene context and
candidate target objects. Next, it integrates visual cues with driver’s eye fixations. It
then recovers the intrinsic task-specific reward functions [Zheng et al., 2018] induced
by visual attention allocation policies recorded from drivers in a driving environment.
To do that, we propose to use maximum entropy deep IRL [Ziebart et al., 2008] which
can handle raw image inputs and enables the model to handle the often sub-optimal
and seemingly stochastic behaviors of drivers [Wulfmeier et al., 2015].

Driving Attention Datasets. Several driving behavior datasets have been
proposed [Codevilla et al., 2019,Xu et al., 2017,Ramanishka et al., 2018]. However,
only a few large-scale, publicly available, real-world video datasets with annotated
visual attention exist in a driving context. DR(eye)VE [Palazzi et al., 2018] and
BDD-A [Xia et al., 2018] are the most well-known large-scale annotated datasets
in naturalistic and in-lab driving settings, respectively. Importantly, the recently-
released annotated driving attention dataset with in-lab settings, DADA-2000 [Fang
et al., 2019], is the only available dataset capturing scenes of collisions. This is
because it is nearly impossible to collect enough driver attention data for collision
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Dataset collision collision-POV speed GPS #vehicles #frames #gaze
DR(eye)Ve ✗ ✗ ✓ ✓ 1.0 555k 8
BDD-A ✗ ✗ ✓ ✗ 4.4 318k 45
DADA-2000 ✓ ✗ ✗ ✗ 2.1 658k 20
EyeCar ✓ ✓ ✓ ✓ 4.6 315k 20

Table 4.1: Compared to prior datasets, EyeCar is the only dataset that captured collisions
from a point-of-view (POV) perspective and the host vehicle is involved in the collision.
Previous datasets either did not capture attention from a collision point of view or had a
less crowded scene.

or near-collision events. EyeCar further contributes to this area by having a
more diverse array of driving events, beyond looking forward and lane-keeping.
Unlike DADA-2000, EyeCar captures collisions from a collision point-of-view (POV)
perspective (egocentric) where the ego-vehicle is involved in the accident. Table 4.1
compares EyeCar with similar datasets (more details in Sec. ??).

4.4 Method

We propose MEDIRL for predicting drivers’ visual attention in accident prone
situations from driving videos paired with their eye fixations. MEDIRL learns a visual
attention policy from demonstrated attention behavior. We formulate the problem
as the learning of a policy function that models the eye fixations as a sequence of
decisions made by an agent. Each fixation pattern is predicted given the present
agent state and the current observed world configuration (i.e., a scene context).

4.4.1 Overview and Preliminaries

In this section, we introduce our notation and describe the features used in our
proposed model.

Visual Information. During attention allocation in a dynamic and complex scene,
relevant anchor objects–those with a spatial relationship to the target object–can
guide attention to a faster reaction time, less scene coverage, and less time between
fixating on the anchor and the target object [Võ et al., 2019, Helbing et al., 2020,
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Beitner et al., 2021]. Therefore, we need to encode each frame of a given video to
extract target and non-target features which an agent needs in order to effectively
select the next fixation locations. Next, we describe in detail how this encoding is
done (see Figure. 4.2). An overview of the visual encoder function is also outlined in
Algorithm 1.

Given a family of driving video frame input, I =
{
It
}T

t=1
, where T is the

number of frames. We extract visual information in a discriminative way while
keeping the relevant spatial information. Each frame has several fixation locations
that are processed sequentially. At each step, we extracts visual features from the
current input frame. To well represent a given video frame input to an agent, we
consider both pixel- and instance-level representation (see Figure 4.1). The pixel-
level representation determines the overall scene category by putting emphasis on
understanding its global properties. The instance-level representation identifies the
individual constituent parts of a whole scene as well as their interrelations on a more
local instance-level.

For pixel-level representations, we extract features Xt from a given video
frame (e.g., cars, trees). The feature extractor output is a tensor Xt ∈ Rh×w×d, where
h, w, and d are the height, width, and channel, respectively. At the instance-level, we
represent the bounding box or instance-mask to reason explicitly over instances (e.g.,
lead-vehicle) rather than reasoning over all objects representation. We utilize a
position-sensitive ROI average pooling layer [Yang et al., 2019] to extract region
features Yt for each box.

To extract features relevant to a driving task, we also consider the road lanes
along with the lead vehicle features in our visual representation. The road lanes (Gt)
are critical for the task-related visual attention of drivers since they are an important
indicator of the type of maneuver [Do et al., 2017]. To amplify the predicted attention
for pixels of the target objects, we detect the lead vehicle (Mt) which is important in
rear-end collisions [Lyu et al., 2020]. The lead vehicle is a critical anchor object that
can direct the driver attention to the target object, i.e. brake lights. We discretize
each frame into an n × m grid where each patch matches the smallest (furthest)
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Figure 4.2: Overview of our state-representation. To simulate human fovea, the agent
receives high-resolution information surrounding the attended location, and low-resolution
information outside of this simulated fovea. At each fixation point, a new state is generated
by applying Eq. 4.4.2.

size of the lead vehicle bounding box (see Figure. 4.2). In addition, we extract pixel
locations of the brake lights by first converting each frame to the HSV color space,
and then using a position-sensitive ROI max-pooling layer to extract region features
for the lead vehicle box (Ut). The boxes and their respective features are treated as
a set of objects.

Relative Distance. Drivers pay more attention to the objects which are relatively
closer as opposed to those at a distance, since the chance of collision is significantly
higher for the former case. Thus, relative distance between objects and the ego-vehicle
is crucial for making optimal driving decisions [Pal et al., 2020]. To amplify nearby
regions of a driving scene, we use dense depth map (Dt) and combine it with the
general visual features (Yt) by using the following formula:

Zt = Yt ⊕Dt = Yt ⊙ λ ∗Dt + Yt, λ = 1.2

where λ is an amplification factor

Driving Tasks. To discover which features of an observed environment are the
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most driving task related, we need to determine the types (Qt) of driving task. We
observed three driving tasks ending to rear-end collisions across all videos: lane-
keeping, merging-in, and braking. We use function ftask to define these driving tasks
by two criteria: 1) ego-vehicle makes lane changing decision c and 2) the existence of
a traffic signal Isignal in a given driving video.

driving task =


lane-keeping, if c = 0, Isignal = 0

merging-in, if c = 1, Isignal = 0 or 1

braking, if c = 0, Isignal = 1

Vehicle State. We optionally concatenate the speed of the ego-vehicle vt, which can
influence the fixation selection [Yu et al., 2020,Palazzi et al., 2018,Pal et al., 2020],
with the extracted visual representation, relative distance, and driving tasks.

4.4.2 MEDIRL

Attentive drivers predominantly attend to the task-related regions of the scene to
filter out irrelevant information and ultimately make the optimal decisions. MEDIRL
attempts to imitate this behavior by using the collective non-target and target
features –extracted through parsing the driving scene– in the state representation.
Subsequently, it integrates changes in the state representation with alterations in eye
fixation point, to predict fixation. Therefore, the state of an agent is determined
by a sequence of visual information that accumulates through fixations towards the
target object (i.e., a brake light) which we call it a foveated frame, Figure 4.1
shows an example of a foveated frame. The action of an agent, the next fixation
location, depends on the state at that time. The goal of an agent is to maximize
internal reward by encapsulating the intended behavior of attentive drivers (experts)
through changes in fixation locations. MEDIRL employs IRL to recover this reward
function (R) from the set of demonstrations.

State Representation: MEDIRL considers the following components in the state
representations: simulating the human visual system, collecting a context of spatial
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cues, and modeling state dynamics. See Algorithm 1 for describing the overview of
the state representation.

Human visual system (fovea): Human visual system accumulates information
by attending to a specific location within the field of view. Consequently, humans
selectively fixate on new locations to make optimal decisions. It means high-resolution
visual information is available only at a central fixated location and the visual input
outside of the attend location becomes progressively more blurred with distance away
from the currently fixated location [Zelinsky et al., 2019]. We simulate human fovea
by capturing high-resolution information about the current fixation location and
a surrounding patch with a size 12 × 17 (about 1 visual angle), as well as low-
resolution information outside of the simulated fovea [Zelinsky et al., 2019]. To
effectively formulate this system, MEDIRL uses a local patch from the original frames
of the video as the high-resolution foveal input and a blurred version of the frame to
approximate low-resolution input L from peripheral vision [Zhang et al., 2018]. We
obtain the blurred frames by applying a Gaussian smoothing with standard deviation
σ = 2 × d, which d is equal to Euclidean distance between the current fixation
point pk,t, where k = 0, ...,K, and the size of the frame. Note that the number of
fixations K varies from frame to frame.

Spatial cues : A driving task and the driving-relevant (anchor) objects of the
scene can potentially direct drivers’ attention to the primary target object. For
example, drivers consider the distance to the lead vehicle when they brake. To
approximate this guided selection of fixations, MEDIRL includes visual information
in the state representation. This state representation collects the non-target and
target features can create a context of spatial and temporal cues that might affect
the selection of drivers’ fixations.

Dynamics of state: To model the altering of the state representation followed
by each fixation, we propose a dynamic state model. To begin with, the state is a
low-resolution frame corresponding to peripheral visual input. After each fixation
made by a driver, we update the state by replacing the portion of the low-resolution
features with the corresponding high-resolution portion obtained at each new fixation



4. Predicting Visual Attention in Automated Vehicles 55

Algorithm 1 MEDIRL State Representation
1: function Visual Encoder(a video frame I)
2: X := HRnet(I) ▷ global feature
3: O := mask-rcnn(I) ▷ list of detected object
4: Y := ROI-average(O, X) ▷ extract region features
5: G, c := VPG-net(I) ▷ detect road lanes and lane changes
6: M, Isignal := mask-rcnn(Y) ▷ detect lead-vehicle and traffic signal
7: U := ROI-max(HSV-color(I),M) ▷ detect brake lights
8: D := MonoDepth2 (I) ▷ compute relative distance
9: Z := Y ⊕ D ▷ amplify close objects
10: Q := ftask(c, Isignal) ▷ compute driving task
11: visual-cues = concatenate(G, M, U, Z) ▷ a context of spatial cues
12: v := ego-vehicle speed ▷ vehicle state
13: return visual-cues, v, Q ▷ return all extracted features
14: end function
15: function blur(frame I, fixation k)
16: d = Euclidean(k,size(I))
17: I’ = GaussianBlur(I, σ), σ = 2× d ▷ apply a Gaussian smoothing
18: return I’ ▷ return the low-resolution frame
19: end function
20: procedure State dynamics(frame It, fixations K)
21: for k ∈ K do do
22: # collect context of spatial cues based on a simulated fovea movements
23: Ht := VisualEncoder(It)
24: Lk,t := VisualEncoder(blur(It,k))
25: # update the state that occurs following each fixation
26: O0,1 = L0,1 ▷ initialize frame corresponding to peripheral vision
27: # Ek,t is the circular mask generated from the k-th fixation
28: Ok+1,t = Ek,t ⊙Ht + (1− Ek,t)⊙Ok,t

29: end for
30: end procedure

location (see Figure. 4.2). At a given time step t, feature maps H for the original
frame (high-resolution) and feature maps L for the blurred frame (low-resolution) are
combined as follows:

O0,1 = L0,1, Ok+1,t = Ek,t ⊙Ht + (1− Ek,t)⊙Ok,t,

where ⊙ is an element-wise product. Ok,t is a context of spatial cues after k fixations.
Ek,t is the circular mask generated from the kth fixation (i.e., it is a binary map
with 1 at current fixation location and 0 elsewhere in a discretize frame). To jointly
aggregate all the temporal information, we update the next frame by considering all
context of spatial cues in the previous frame as follows:

Ok,t+1 = Ek,t+1 ⊙Ht+1 + (1− Ek,t+1)⊙OK,t,

where OK,t is visual information after all fixations K of time step t(previous frame).



4. Predicting Visual Attention in Automated Vehicles 56

Drivers have various visual behaviors while performing a driving tasks and
many factors (e.g. speed) may affect the chosen fixation strategy [Yu et al., 2020,
Palazzi et al., 2018,Pal et al., 2020]. To efficiently predict fixations for all drivers, we
augment the state by aggregating it with a high-dimensional latent space that encodes
the driving task Qt. We then add another fully-connected layer to encode the current
speed of the ego-vehicle vt and concatenate the state with the speed vector. With
the visual information and ego-vehicle state at each time step, we fuse all into a
single state. The state of the agent is then complete in the sense that it contains all
bottom-up, top-down, and historical information (more detail of these components
can be found in the supplementary material).

Action Space: Herein we aim to predict the next eye fixation location of a driver.
Therefore, the policy selects one out of n ∗ m patches in a given discretize frame.
The center of the selected patch in the frame is a new fixation. Finally, the
changes (∆x,∆y) of the current fixation and the selected fixation define the action
space At: {left, right, up, down, focus-inward, focus-outward, stay}, as shown in
Figure 4.1 which has three degrees of freedom (vertical, horizontal, diagonal).
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MethodTask Merging-in Lane-keeping Braking
CC↑ s-AUC↑ KLD↓ CC↑ s-AUC↑ KLD↓ CC↑ s-AUC↑ KLD↓
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Multi-branch [Palazzi et al., 2018] 0.48 - 2.80 0.55 - 1.87 0.71 - 2.20
HWS [Xia et al., 2018] 0.51 - 2.12 0.75 - 1.72 0.74 - 1.99
SAM-ResNet [Cornia et al., 2018] 0.78 - 2.01 0.80 - 1.80 0.79 - 1.89
SAM-VGG [Cornia et al., 2018] 0.78 - 2.05 0.82 - 1.84 0.80 - 1.81
TASED-NET [Min and Corso, 2019] 0.68 - 1.89 0.73 - 1.71 0.70 - 1.89
MEDIRL (ours) 0.78 - 0.88 0.89 - 0.75 0.85 - 0.82

B
D

D
-A

Multi-branch [Palazzi et al., 2018] 0.58 0.51 2.08 0.75 0.72 2.00 0.69 0.77 2.04
HWS [Xia et al., 2018] 0.53 0.59 1.95 0.67 0.89 1.52 0.69 0.81 1.59
SAM-ResNet [Cornia et al., 2018] 0.74 0.61 2.00 0.89 0.79 1.83 0.85 0.88 1.89
SAM-VGG [Cornia et al., 2018] 0.76 0.62 1.79 0.89 0.82 1.64 0.86 0.87 1.85
TASED-NET [Min and Corso, 2019] 0.73 0.68 1.83 0.81 0.66 1.17 0.87 0.88 1.12
MEDIRL (ours) 0.82 0.79 0.91 0.94 0.91 0.85 0.93 0.92 0.89

D
A

D
A
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00

0

Multi-branch [Palazzi et al., 2018] 0.44 0.53 3.65 0.69 0.54 2.85 0.67 0.64 2.91
HWS [Xia et al., 2018] 0.49 0.59 3.02 0.72 0.53 2.65 0.69 0.77 2.80
SAM-ResNet [Cornia et al., 2018] 0.65 0.61 2.39 0.78 0.64 2.32 0.75 0.81 2.34
SAM-VGG [Cornia et al., 2018] 0.68 0.60 2.41 0.76 0.62 2.24 0.75 0.80 2.35
TASED-NET [Min and Corso, 2019] 0.69 0.66 1.98 0.78 0.69 1.87 0.80 0.81 1.45
MEDIRL (ours) 0.70 0.68 1.31 0.89 0.71 0.92 0.81 0.88 0.99

Table 4.2: Performance comparison of driver attention prediction on benchmarks.
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Reward and Policy: To learn the reward function and policies of driver
visual attention in rear-end collisions, we use a maximum entropy deep inverse
reinforcement learning [Wulfmeier et al., 2015]. MEDIRL assumes the reward is a
function of the state and the action, and this reward function can be jointly learned
using the imitation policy.

The main goal of IRL is to recover the unknown reward function R from
the set of demonstrations Ξ = {ξ1, ξ2, ..., ξq}, where ξq = {(s1, a1), ..., (sτ , aτ )}. We
use maximum entropy deep IRL, which models trajectories as being distributed
proportional to their exponentiated return:

p(ξ) = (1Z)exp(R(ξ)),

where Z is the partition function, Z =
∫
ξ
exp(R(ξ))dξ. To approximate the reward

function, we assume it can be represented as R = ωTϕ, where ω is a weight vector
and ϕ is a feature vector. Such representation is constrained to be linear with respect
to the input features ϕ. In order to learn a reward function with fewer constraints, we
use deep learning techniques to determine Φ(ϕ, θ), a potentially higher dimensional
feature space, and approximate the reward function as R = ωTΦ(ϕ, θ)(s, a). Note
that the weight vectors of ω and the parameter vector θ are both associated with the
network which is fine-tuned by jointly training the different category of driving tasks.

Loss Function: To learn the attention policies, MEDIRL maximizes the joint
posterior distribution of fixation selection demonstrations Ξ, under a given reward
structure and of the model parameter, θ. For a single frame and a given fixation
sequence ξ with a length of |τ |, the likelihood is:

Lθ = (1Ξ)
∑
ξi∈Ξ

logP (ξi, θ),

where P (ξi, θ) is the probability of the trajectory ξi in demonstration Ξ.

The algorithm tries to select a reward function that induces an attention policy
with a maximum entropy distribution over all state-action trajectories and minimum
empirical Kullback-Leibler divergence (KLD) from drivers state-action pairs. In each
iteration (q) of maximum entropy deep IRL algorithm, we first evaluate the reward
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value based on the state features and the current reward network parameters (θq).
Then, we determine the current policy (πq) based on the current approximation of
reward (Rq), and transition matrix T (i.e., the outcome state-space of a taken action).
We benefit from the maximum entropy paradigm, which enables the model to handle
sub-optimal and stochastic visual behavior of drivers, by operating on the distribution
over possible trajectories [Ziebart et al., 2008,Wulfmeier et al., 2015].

4.5 Dataset

Attentional lapses in normal situations (e.g., lane-following, empty road) do not cost
the same as accident-prone situations (e.g., rear-end collision) where the cost of
making an error is high. Nevertheless, collecting enough eye movements from drivers
in accident-prone situations is nearly impossible because they are rather uncommon.
In addition, driver attention data collected in-car has two main drawbacks [Xia et al.,
2018, Xia et al., 2020]: 1) missing covert attention: eye-trackers can only record a
single focus of drivers while a driver may be attending to multiple important objects,
and 2) false positive gaze: drivers can be distracted to potential disturbances (e.g.,
side road advertisement) that are not relevant to the driving. Prior works [Xia et al.,
2018, Xia et al., 2020] addressed these issues with in-lab data collection, collecting
drivers’ eye movements while performing simulated driving tasks.

Although in-lab driver attention collection is inevitably different from in-
car driver attention, BDD-A in-lab experimental protocol showed that in-lab visual
attention data reliably reveal where a driver should look at and identify the
potential risks. Therefore, we follow their established and standardized experimental
design protocol for collecting in-lab driver attention and create the EyeCar dataset
exclusively for rear-end collisions. In order to incentivize users to pay attention
and play the fall-back ready role in autonomous vehicles, we further modified the
experimental design by sitting them in a low-fidelity driving simulator. The simulator
consisting of a Logitech G29 steering wheel, accelerator, brake pedal, and eye-
tracker (see supplementary materials for more details).
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D
at

a
MethodTask Merging-in Lane-keeping Braking

CC↑ s-AUC↑ KLD↓ CC↑ s-AUC↑ KLD↓ CC↑ s-AUC↑ KLD↓
D

R
(e

ye
)V

E

Multi-branch [Palazzi et al., 2018] 0.36 0.37 6.46 0.51 0.49 4.80 0.69 0.49 3.38
HWS [Xia et al., 2018] 0.38 0.34 4.38 0.71 0.51 4.44 0.72 0.61 3.30
SAM-ResNet [Cornia et al., 2018] 0.49 0.48 4.29 0.73 0.55 3.90 0.74 0.66 3.27
SAM-VGG [Cornia et al., 2018] 0.50 0.47 4.31 0.74 0.53 3.95 0.75 0.64 3.29
TASED-NET [Min and Corso, 2019] 0.48 0.46 3.95 0.74 0.55 3.81 0.76 0.65 3.23
MEDIRL (ours) 0.51 0.51 2.32 0.76 0.57 3.11 0.79 0.69 3.07

B
D

D
-A

Multi-branch [Palazzi et al., 2018] 0.46 0.48 4.42 0.51 0.61 3.57 0.61 0.64 3.08
HWS [Xia et al., 2018] 0.41 0.47 4.36 0.69 0.81 3.55 0.67 0.68 2.86
SAM-ResNet [Cornia et al., 2018] 0.55 0.48 3.85 0.85 0.72 3.29 0.79 0.74 2.46
SAM-VGG [Cornia et al., 2018] 0.53 0.49 3.92 0.84 0.70 3.22 0.77 0.70 2.49
TASED-NET [Min and Corso, 2019] 0.55 0.49 3.78 0.84 0.71 3.12 0.77 0.76 2.47
MEDIRL (ours) 0.58 0.49 2.81 0.86 0.73 2.43 0.79 0.81 2.30

D
A

D
A

-2
00

0

Multi-branch [Palazzi et al., 2018] 0.21 0.38 6.46 0.45 0.44 4.67 0.54 0.59 3.12
HWS [Xia et al., 2018] 0.31 0.35 6.12 0.51 0.47 4.54 0.67 0.71 3.10
SAM-ResNet [Cornia et al., 2018] 0.33 0.38 5.28 0.65 0.56 4.42 0.77 0.71 3.07
SAM-VGG [Cornia et al., 2018] 0.30 0.39 5.35 0.69 0.57 4.31 0.74 0.69 3.10
TASED-NET [Min and Corso, 2019] 0.32 0.38 4.76 0.68 0.57 3.99 0.73 0.74 3.01
MEDIRL (ours) 0.41 0.45 3.79 0.73 0.60 2.51 0.75 0.79 2.51

Table 4.3: Performance comparison of driver attention prediction on EyeCar. The models
trained on Dr(eye)VE, BDD-A, and DADA-2000 train sets and tested on EyeCar.

We recruited 20 participants (5 female and 15 male, ages 22-39) with at
least three years of driving experience (Mean=9.7, SD=5.8). Participants watched
all 21 selected dash-cam videos (each lasted approximately 30sec) to identify
hazardous cues in rear-end collisions. The EyeCar dataset contains 3.5 hours of gaze
behavior (aggregated and raw) captured from more than 315,000 rear-end collisions
video frames. Each frame comprises 4.6 vehicles on average which makes EyeCar
driving scenes more complex than other visual attention datasets (see Table 4.1).
The extracted speed from each frame shows that 38% of vehicles were driving
high (65 ≤ v), 39% normal (35 ≤ v ≤ 65), and 23% low (35 ≥ v). EyeCar also
provides a rich set of annotations(e.g., scene tagging, object bounding, lane marking,
etc.; more details in supplementary materials).

4.6 User Study

Training details. Driver attention is often strongly biased towards the vanishing
point of the road and does not regularly change in a normal driving situation [Xia
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et al., 2018,Pal et al., 2020]. However, attentive drivers regularly shift their attention
from the center of the road to capture important cues in accident-prone situations.
MEDIRL aims to predict driver attention in critical situations. Thus, to learn driving
task-specific fixations and to avoid a strong center bias in our model two criteria were
imposed when sampling training frames: 1) train on important frames, 2) exclude
driving-irrelevant objects fixation sequence. Since a driver has to attend (fixate) to
important visual cues which usually appear in critical situations, the important frames
are defined as frames wherein the attention map greatly deviates from the average
attention map. We use KLD to measure the difference between the attention over each
video frame and the average attention map of the entire video. The average attention
map of each frame is calculated by aggregating and smoothing the gaze patterns of
all independent observers [Deng et al., 2019]. We then sample continuous sequences
of six frames as the training frames where their KLD is at least 0.89. We also exclude
fixation sequences with more than 40% focus on the irrelevant objects (e.g., trees,
advertisement).

Datasets. We evaluate our model on three driver attention benchmark datasets:
DR(eye)VE [Palazzi et al., 2018], BDD-A [Xia et al., 2018], DADA-2000 [Fang et al.,
2019] and EyeCar. To predict driver attention related to rear-end collisions, we
extract the full stopping events (resembling near-collisions) from DR(eye)VE and
BDD-A, and rear-end collision events from DADA-2000. After applying the exclusion
standard, we were left with 400, 1350, and 534 events in DR(eye)VE, BDD-A, and
DADA-2000, respectively. Finally, within each type of driving task, we randomly
split each of them into three sets of: 70% training, 10% validation, and 20% test.

4.6.1 Implementation Details

We resize each video frame input to 144 × 256. Then we normalize each frame
by subtracting the global mean from the raw pixels and dividing by the global
standard deviation. To encode visual information (see Sec. 4.4.2), we use several
backbones: HRNetV2 [Wang et al., 2020]–pre-trained on Mapillary Vistas street-view
scene [Neuhold et al., 2017], MaskTrack-RCNN [Yang et al., 2019]–pre-trained on
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Figure 4.3: Predicted driver attention in a braking task for each compared model and
MEDIRL. They all trained on BDD-A. MEDIRL can learn to detect most task-related
salient stimuli (e.g., traffic light, brake light).

youtube-VIS, Monodepth2 [Godard et al., 2019]–pre-trained on KITTI 2015 [Geiger
et al., 2012], and VPGNet [Lee et al., 2017]–pre-trained on VPGNet dataset.

MEDIRL consists of four hidden convolutional layers with 52, 34, 20, and 20
ReLu units, respectively; followed by seven softmax units to output a final probability
map. We use batch normalization after ReLu activation and set the reward discount
factor to 0.98. We also set the initial learning rate to 1.5 × 10−4, and during the
first 10 epochs, we linearly increase the learning rate to 5× 10−4. After epoch 11, we
apply a learning rate decay strategy that multiplies the learning rate by 0.25 every
three epochs. For training, we use Adam optimizer [Kingma and Ba, 2014] (β1 =

.9, β2 = .99) and weight decay = 0. Overall, MEDIRL is trained on 36 epochs with
a batch size of 20 sequences, and each sequence had six frames. The training time
of MEDIRL is approximately 1.5 hours on a single NVIDIA Tesla V100 GPU and it
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takes about 0.08 seconds to process each frame.

Evaluation Metrics. To evaluate attention prediction, we use location-based and
distribution-based saliency metrics: KLD, shuffled Area under the ROC curve (s-
AUC), and Correlation Coefficient (CC) [Bylinskii et al., 2018]. We report s-AUC
since it penalizes models with more central prediction [Borji et al., 2012, Bylinskii
et al., 2018,Gao et al., 2019].

4.7 Results

Table 4.2 provides the quantitative evaluation results of MEDIRL and five baseline
attention prediction models including Multi-branch [Palazzi et al., 2018], HWS [Xia
et al., 2018], SAM-ResNet [Cornia et al., 2018], SAM-VGG [Cornia et al., 2018],
TASED-NET [Min and Corso, 2019]. For fair comparisons, we directly report
available results released by the authors or reproduce experimental results via publicly
available source codes. In this evaluation, we trained models on BDD-A and tested
on each benchmark. The results highlight that MEDIRL surpasses almost all models
under all evaluation metrics. Most significantly, our approach can effectively predict
driver attention while performing various driving tasks. Although we are unable to
calculate s-AUC for Dr(eye)VE as the original fixation were not reported, the results
in Table 4.2 also indicates that the MEDIRL’s superiority is not limited to a dataset.

Further, we evaluate MEDIRL along with other attention models on EyeCar
dataset, reported in Table 4.3. In this experiment, we trained models on each
benchmark (i.e., BDD-A, DR(eye)VE, DADA) and tested on EyeCar. MEDIRL
performs favorably against other counterparts. However, there is a big performance
gap between Table 4.2 and 4.3, which may indicate EyeCar has different distributions.
To investigate this matter, we trained models on EyeCar and tested on each
benchmark. We obtained the following results; (CC : 0.89, KLD : 0.80), (CC : 0.94,
s-AUC : 0.91, KLD : 0.85), (CC : 0.85, s-AUC : 0.77, KLD : 0.99) on DR(eye)VE,
BDD-A, and DADA-2000, respectively, that are average values for all types of driving
tasks. These results show the effectiveness of EyeCar on representing salient regions in
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critical situations and also show that EyeCar attention distribution prior to accident-
prone situations is more informative than benchmarks.

Figure 4.3 shows qualitative comparison of MEDIRL against other models.
MEDIRL can reliably capture the important visual cues in a braking task in the
case of a complex frame. In contrast, nearly all other models partially capture the
spatial cues and predict attention mainly towards the center of the frame, thereby
ignoring the target and non-target objects (i.e., spatial cues). Please refer to the
supplementary material for more examples.

4.7.1 Ablations Studies

To investigate how different features in our model affect its performance, we compare
several ablated versions of our model against two testing sets (i.e., EyeCar and BDD-
A), using Fβ (β2 = 1 [Pal et al., 2020]), CC, and KLD. All ablated versions of our
model are trained on BDD-A.

The results show that crucial features in the model include the context of
spatial cues related to target and non-target (L3), driving-specific objects (Line 8,
10), followed by driving task (L9) features. MEDIRL without target (L2) and non-
target (L5) shows a significant performance drop. From the results in Table 4.4, we
can observe that compared with the ablated versions, our full model achieves better
performance, which demonstrates the necessity of each feature in our proposed model.

4.8 Summary

We proposed MEDIRL, a novel inverse reinforcement learning formulation for
predicting driver attention in accident-prone situations. MEDIRL effectively learns
to model the fixation selection as a sequence of states and actions. MEDIRL
predicts a maximally-rewarding fixation location by perceptually parsing a scene
and accumulating a sequence of visual cues through fixations. To facilitate our
study, we provide a new driver attention dataset comprised of rear-end collision
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videos with richly annotated eye information. We investigate the effectiveness of
attention prediction model by experimental evaluation on three benchmarks and
EyeCar. Results show that MEDIRL outperforms existing models for attention
prediction and achieves state-of-the-art performance.



5 | Predicting Drivers’ Takeover
Performance

Automated vehicles promise a future where drivers can engage in non-driving tasks
without hands on the steering wheels for a prolonged period. Nevertheless, automated
vehicles may still need to occasionally hand the control back to drivers due to
technology limitations and legal requirements. While some systems determine the
need for driver takeover using driver context and road condition to initiate a takeover
request, studies show that the driver may not react to it. We present DeepTake, a
novel deep neural network-based framework that predicts multiple aspects of takeover
behavior to ensure that the driver is able to safely take over the control when
engaged in non-driving tasks. Using features from vehicle data, driver biometrics,
and subjective measurements, DeepTake predicts the driver’s intention, time, and
quality of takeover. We evaluate DeepTake performance using multiple evaluation
metrics. Results show that DeepTake reliably predicts the takeover intention, time,
and quality, with an accuracy of 96%, 93%, and 83%, respectively. Results also
indicate that DeepTake outperforms previous state-of-the-art methods on predicting
driver takeover time and quality. Our findings have implications for the algorithm
development of driver monitoring and state detection.

66
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Figure 5.1: DeepTake uses data from multiple sources (pre-driving survey, vehicle data,
non-driving related tasks (NDRTs) information, and driver biometrics) and feeds the
preprocessed extracted features into deep neural network models for the prediction of
takeover intention, time and quality.

5.1 Introduction

The rapid development of autonomous driving technologies promis-es a future where
drivers can take their hands off the steering wheels and instead engage in non-
driving related tasks (NDRTs) such as reading or using mobile devices. Incorporating
cameras, sensors, global positioning systems (GPS), adaptive cruise control, light
detection and ranging, and advanced driver assistance systems, automated vehicles
(AVs) can navigate automatically. In Level 3 of autonomy (i.e., conditionally
automated driving), as defined by the Society of Automotive Engineers (SAE
international [SAE, 2018]), the driver does not need to continuously monitor the
driving environment. Nevertheless, due to current technology limitations and
legal restrictions, AVs may still need to handover the control back to drivers
occasionally (e.g., under challenging driving conditions beyond the automated
systems’ capabilities) [McCall et al., 2019]. In such cases, AVs would initiate
takeover requests (TORs) and alert drivers via auditory, visual, or vibrotactile
modalities [Naujoks et al., 2014, Wan and Wu, 2018, Pakdamanian et al., 2018] so
that the drivers can resume manual driving in a timely manner. However, there are
challenges in making drivers safely take over control. Drivers may need a longer time
to shift their attention back to driving in some situations, such as when they have been
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involved in NDRTs for a prolonged time [Zeeb et al., 2017] or when they are stressed
or tired [Feldhütter et al., 2018]. Even if TORs are initiated with enough time for a
driver to react, it does not guarantee that the driver will safely take over [McDonald
et al., 2019]. Besides, frequent alarms could startle and increase drivers’ stress levels
leading to detrimental user experience in AVs [Pakdamanian et al., 2020,Körber et al.,
2018, Lee and Yang, 2020]. These challenges denote the need for AVs to constantly
monitor and predict driver behavior and adapt the systems accordingly to ensure a
safe takeover.

The vast majority of prior work on driver takeover behavior has focused on the
empirical analysis of high-level relationships between the factors influencing takeover
time and quality (e.g., [Mok et al., 2017,Zhang et al., 2019a,Du et al., 2020c,Ebnali
et al., 2019]). More recently, the prediction of driver takeover behavior using machine
learning approaches has been drawing increasing attention. However, only a few
studies have focused on the prediction of either takeover time [Lotz and Weissenberger,
2018, Berghöfer et al., 2018] or takeover quality [Braunagel et al., 2017, Deo and
Trivedi, 2019,Du et al., 2020b,Du et al., 2020d]; and their obtained accuracy results
(ranging from 61% to 79%) are insufficient for the practical implementation of real-
world applications. This is partly due to the fact that takeover prediction involves
a wide variety of factors (e.g., drivers’ cognitive and physical states, vehicle states,
and the contextual environment) that could influence drivers’ takeover behavior [Zeeb
et al., 2015].

In this paper on the other hand, we present a novel approach, named
DeepTake, to address these challenges by providing reliable predictions of multiple
aspects of takeover behavior. DeepTake is a unified framework for the prediction of
driver takeover behavior in three aspects: (1) takeover intention – whether the driver
would respond to a TOR; (2) takeover time – how long it takes for the driver to
resume manual driving after a TOR; and (3) takeover quality – the quality of driver
intervention after resuming manual control. As illustrated in Figure 5.1, DeepTake
considers multimodal data from various sources, including driver’s pre-driving survey
response (e.g., gender, baseline of cognitive workload and stress levels), vehicle data
(e.g., lane position, steering wheel angle, throttle/brake pedal angles), engagement
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in NDRTs, and driver biometrics (e.g., eye movement for detecting visual attention,
heart rate and galvanic skin responses for the continuous monitoring of workload
and stress levels). This data can easily be collected in AVs’ driving environment. For
instance, all of the driver biometrics utilized in DeepTake can be captured by wearable
smartwatches and deployed eye-tracking systems. The multitude of sensing modalities
and data sources offer complementary information for the accurate and highly reliable
prediction of driver takeover behavior. DeepTake extracts meaningful features from
the preprocessed multimodal data, and feeds them into deep neural network (DNN)
models with mini-batch stochastic gradient descent. We built and trained different
DNN models (which have the same input and hidden layers, but different output layers
and weights) for the prediction of takeover behavior: intention, time and quality. We
validate DeepTake framework feasibility using data collected from a driving simulator
study. Finally, we evaluate the performance of our DNN-based framework with
six machine learning-based models on prediction of driver takeover behavior. The
results show that DeepTake models significantly outperform six machine learning-
based models in all predictions of takeover intention, time and quality. Specifically,
DeepTake achieves an accuracy of 96% for the binary classification of takeover
intention, 93%, and 83% accuracy for multi-class classification of takeover time and
quality, respectively. These accuracy results also outperform results reported in the
existing work.

The main contribution of this work is the development of DeepTake framework
that predicts driver takeover intention, time and quality using vehicle data, driver
biometrics and subjective measurements1. The intersection between ubiquitous
computing, sensing and emerging technologies offers promising avenues for DeepTake
to integrate modalities into a novel human-centered framework to increase the
robustness of drivers’ takeover behavior prediction. We envision that DeepTake can
be integrated into future AVs, such that the automated systems can make optimal
decisions based on the predicted driver takeover behavior. For example, if the
predicted takeover time exceeds the duration that the vehicle can detect situations

1DeepTake framework configurations, implementation details and code are available at https:
//github.com/erfpak7/DeepTake

 https://github.com/erfpak7/DeepTake
 https://github.com/erfpak7/DeepTake
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requiring TORs, or the predicted takeover quality is too low to respond to TORs,
the automated systems can warn the driver to engage less with the NDRT. In other
words, DeepTake facilitates drivers to be distracted as long as they can properly
respond and safely maneuver the vehicle. The reliable prediction of driver takeover
behavior provided by DeepTake framework would not only improve the safety of AVs,
but also improve drivers’ user experience and productivity in AVs (e.g., drivers can
focus on NDRTs without worrying about missing any TORs and potential tragic
circumstances). We believe that our work makes a step towards enabling NDRTs in
automated driving, and helps HCI researchers and designers to create user interfaces
and systems for AVs that adapt to the drivers’ context.

5.2 Related work

We discuss prior work on the analysis of takeover time and quality, and position our
work in the context of state-of-the-art takeover behavior prediction research.

5.2.1 Takeover time

In this paper, we consider the takeover time as the period of time from the initiation
of TOR to the exact moment of the driver resuming manual control (see Figure 5.3),
following the ISO standard definition in [ISO 21959:2020, 2020]. Note that the same
concept has also sometimes been named as takeover reaction time or response time
in the literature (e.g., [Johns et al., 2016, Kim and Yang, 2017, Petermeijer et al.,
2017a,Eriksson and Stanton, 2017]). The empirical literature defines a large variety
of takeover time from a mean of 0.87s to brake [Winter et al., 2016], to an average of
19.8s to response to a countdown TOR [Politis et al., 2018] and 40s to stabilize the
vehicle [Merat et al., 2014]. This range is derived from influential factors impacting
perception, cognitive processing, decision-making and resuming readiness [Gold et al.,
2016, Zeeb et al., 2015]. A meta-analysis of 129 studies by Zhang et al. [Zhang
et al., 2019a] found that a shorter takeover time is associated with the following
factors: a higher urgency of the driving situation, the driver not performing a non-
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driving related task (NDRT) such as using a handheld device, the driver receiving
an auditory or vibrotactile TOR rather than no TOR or a visual-only TOR. Recent
studies by Mok et al. [Mok et al., 2017] and Eriksson et al. [Eriksson and Stanton,
2017] both confirmed that drivers occupied by NDRTs have higher responses to
TORs. Similarly, [Feldhütter et al., 2017] found a significant increase in reaction time
induced by NDRTs. It is further concluded that the visual distraction causes higher
reaction time when it is loaded with cognitive tasks [Tang et al., 2020]. Studies have
also revealed several driving environments, TOR modalities [van der Heiden et al.,
2017,Tang et al., 2020], driving expectancy [Ruscio et al., 2015], age [Walch et al.,
2017] and gender [Warshawsky-Livne and Shinar, 2002] associated with takeover time.
The present study extend previous findings by considering various NDRTs, gender,
and objective and subjective measurements of mental workload into the DeepTake
framework.

5.2.2 Takeover quality

In addition to takeover time, it is essential to assess the takeover quality, which
is defined as the quality of driver intervention after resuming manual control [ISO
21959:2020, 2020]. There are a variety of takeover quality measures, depending
on different takeover situations (e.g., collision avoidance, lane-keeping), including
objective measures (e.g., mean lateral position deviation, steering wheel angle
deviation, metrics of distance to other vehicles or objects, minimum time to
collision, frequency of emergency braking) and subjective measures (e.g., expert-based
assessment, self-reported experience). Prior work has found that takeover quality can
be influenced by factors such as drivers’ cognitive load [Du et al., 2020a,Zeeb et al.,
2016], emotions and trust [Dillen et al., 2020,Du et al., 2020c,Hergeth et al., 2017],
and distraction of secondary NDRTs [Martelaro et al., 2019, Dogan et al., 2019].
Takeover time to an obstacle [Zeeb et al., 2016] has been used widely studies as an
indicator of takeover performance [Eriksson and Stanton, 2017]. However, a study
by Louw et al. [Louw et al., 2017] showed that takeover time and quality appear to
be independent. This lack of consensus could be due to the fact that studies apply
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various time budget for takeover control.

5.2.3 Takeover prediction

While existing literature mostly focus on the empirical analysis of drivers’ takeover
time and quality, there are a few recent efforts on the predication of drivers’ takeover
behavior using machine learning (ML) approaches. Lotz and Weissenberger [Lotz
and Weissenberger, 2018] applied a linear support vector machine (SVM) method to
classify takeover time with four classes, using driver data collected with a remote eye-
tracker and body posture camera; the results achieve an accuracy of 61%. Braunagel
et al. [Braunagel et al., 2017] developed an automated system that can classify the
driver’s takeover readiness into two levels of low and high (labeled by objective driving
parameters related to the takeover quality); their best results reached an overall
accuracy of 79% based on a linear SVM classifier, using features including the traffic
situation complexity, the driver’s gazes on the road and NDRT involvement. Deo
and Trivedi [Deo and Trivedi, 2019] proposed a Long Short Term Memory (LSTM)
model for continuous estimation of the driver’s takeover readiness index (defined by
subjective ratings of human observers viewing the feed from in-vehicle vision sensors),
using features representing the driver’s states (e.g., gaze, hand, pose, foot activity);
their best results achieve a mean absolute error (MAE) of 0.449 on a 5 point scale of
the takeover readiness index. Du et al. [Du et al., 2020b,Du et al., 2020d] developed
random forest models for classifying drivers’ takeover quality into two categories of
good and bad (given by subjective self-reported ratings), using drivers’ physiological
data and environment parameters; their best model achieves an accuracy of 70%.

In summary, the existing works only focus on the prediction of either takeover
time or takeover quality. By contrast, DeepTake provides a unified framework for
the prediction of all three aspects of takeover behavior: intention, time and quality
together. Furthermore, DeepTake achieves better accuracy results: 96% for takeover
intention (binary classification), 93% for takeover time (three classes), and 83% for
takeover quality (three classes).
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5.3 DeepTake: A New Approach for Takeover

Behavior Prediction

In this section, we present a novel deep neural network (DNN)-based approach,
DeepTake, for the prediction of a driver’s takeover behavior (i.e., intention, time,
quality). Figure 5.1 illustrates an overvi-ew of DeepTake. First, we collect multimodal
data such as driver biometrics, pre-driving survey, types of engagement in non-driving
related tasks (NDRTs), and vehicle data. The multitude of sensing modalities and
data streams offers various and complementary means to collect data that will help to
obtain a more accurate and robust prediction of drivers’ takeover behavior. Second,
the collected multimodal data are preprocessed followed by segmentation and feature
extraction. The extracted features are then labeled based on the belonging takeover
behavior class. In our framework, we define each aspect of takeover behavior as a
classification problem (i.e., takeover intention as a binary classes whereas takeover
time and quality as three multi-classes). Finally, we build DNN-based predictive
models for each aspect of takeover behavior. DeepTake takeover predictions can
potentially enable the vehicle autonomy to adjust the timely initiation of TORs to
match drivers’ needs and ultimately improve safety. We describe the details of each
step as follows.

5.3.1 Multimodal Data Sources

Driver Biometrics

The prevalence of wearable devices has made it easy to collect various biometrics for
measuring drivers’ cognitive and physiological states. Specifically, we consider the
following three types of driver biometrics in DeepTake.

Eye movement. Drivers are likely to engage in non-driving tasks when the
vehicle is in the automated driving mode [Borojeni et al., 2018,Wintersberger et al.,
2018, Pakdamanian et al., 2020]. Therefore, it is important to assess the drivers’
visual attention and takeover readiness before the initiation of TORs. There is a
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proven high correlation between a driver’s visual attention and eye movement [Zeeb
et al., 2015,Wu et al., 2019,Alsaid et al., 2019]. DeepTake uses eye movement data
(e.g., gaze position, fixation duration on areas of interest) measured by eye-tracker
devices. We utilize a pair of eye-tracking glasses in our user study (see Section 6.3).
But the aforementioned eye movement data can be captured with any eye-tracking
device.

Heart rate. Studies have found that heart rate variability (HRV), fluctuation
of heart rate in the time intervals between the nearby beats, is a key factor
associated with drivers’ workload [Paxion et al., 2014], stre-ss [Dillen et al., 2020], and
drowsiness [Vicente et al., 2011]. DeepTake uses features extracted from HRV analysis
for monitoring drivers’ situational awareness and readiness to respond to TORs.
Heart rate can be measured in many different ways, such as checking the pulse or
monitoring physiological signals. DeepTake employes photoplethysmographic (PPG)
signal, which can be collected continuously via PPG sensors commonly embedded in
smartwatches. PPG sensors monitor heart rate by the emission of infrared light into
the body and measure the reflection back to estimate the blood flow. Unlike some
heart rate monitoring devices that rely on the placement of metal electrodes on the
chest, PPG sensors provide accurate heart rate measures without requiring intrusive
body contact. Therefore, a PPG signal is preferred for monitoring drivers’ heart rate.

Galvanic skin response (GSR). Along with HRV, GSR has been identified
as another significant indicator of drivers’ stress and workload [Dillen et al., 2020,
Foy and Chapman, 2018,Mehler et al., 2012,Radlmayr et al., 2014]. A GSR signal
measures the skin conduction ability. Drivers’ emotional arousal (e.g., stress) can
trigger sweating on the hand, which can be detected through distinctive GSR patterns.
DeepTake incorporates features extracted from the GSR signal for monitoring drivers’
stress levels. GSR sensors are also embedded in many wearable devices, including
smartwatches.
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Pre-Driving Survey

In addition to the objective measurements of driver biometrics, DeepTake exploits
subjective pre-driving survey responses, because drivers’ prior experience and
background may influence their takeover behavior [Zhang et al., 2019a]. However,
any subjective rating of factors affecting a driver’s cognitive and physical ability
as well as driving experience prepare a complete specification of objective metrics,
potentially enhancing the distinctive attributes of an algorithm. DeepTake framework
exerts demographic information, NASA-Task Load Index (NASA-TLX) [Hart and
Staveland, 1988], and the 10-item Perceived Stress Scale (PSS-10) [Cohen et al.,
1983] to measure drivers’ perceived workload and psychological stress. In our user
study (see Section 6.3), we asked participants to fill in questionnaires at the beginning
of each trial.

Non-Driving Related Tasks (NDRTs)

As described in Section 6.2, prior studies have found that engaging in NDRTs can
undermine drivers’ takeover performance. Diverse NDRTs require different levels of
visual, cognitive and physical demands; thus, the influence varies when drivers are
asked to interrupt the secondary task and resume manual control of the vehicle.
DeepTake accounts for the impact of different NDRTs on the prediction of drivers’
takeover behavior. In our user study, we considered four NDRTs in which drivers
are very likely to engage in automated vehicles: (1) having a conversation with
passengers, (2) using a cellphone, (3) reading, and (4) solving problems such as simple
arithmetic questions (more details in Section 5.4.3). We chose these NDRTs because
they are commonly used in driving studies [Gerber et al., 2020,Dogan et al., 2019],
and they follow the framework of difficulty levels in the flow theory [Csikszentmihalyi
and Csikzentmihaly, 1990]. We further designed reading and arithmetic problem
solving with two difficulty levels (easy and medium adapted from [Nourbakhsh et al.,
2012], which reported a strong correlation between the questions and the physiological
responses). Nevertheless, DeepTake framework can be easily adjusted to any NDRTs.
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Vehicle Data

DeepTake also considers a wide range of data streams captured from the automated
vehicles, including lane position, distance to hazards, angles of the steering wheel,
throttle and brake pedal angles, and the vehicle velocity. Such vehicle data can
help to determine the driving condition, the urgency of a takeover situation, and the
impact of drivers’ takeover behavior.

5.3.2 Data Preparation

Feature Extraction and Multimodal Data Fusion

The goal of DeepTake is to provide a procedure to reliably predict drivers’ takeover
behavior (i.e., intention, time and quality) before a TOR initiation. Hence, the
taken procedure for data preparation depends on the driving setting, collected data
and the context. Herein, we incorporate data of drivers’ objective and subjective
measurements, as well as vehicle dynamic data. We initially apply data preprocessing
techniques including outliers elimination, missing value imputation using mean
substitutions, and smoothing to reduce artifacts presented in raw data. It is worth
mentioning that we exclude any data stream providing insights about the unknown
future (e.g., type of alarm) or containing more than 50% missing value. The
preprocessed time series data are then segmented into 10-second fixed time windows
prior to the occurrences of TORs. In other words, if TOR happened at time t, we
only used data captured in the fixed time window of [t-10s, t] and did not include any
data later than t. We started with time window values of 2s and 18s, suggested
in the literature [Du et al., 2020d, Braunagel et al., 2017, Zhang et al., 2019a],
and experimentally settled on 10s, as real-world applications require a shorter time
window with better prediction. We then aggregated the values of all multimodal
data over this time interval, resulting in 256 (max sampling rate)×10sec = 2560

observations per takeover event. However, depending on specific applications and
contextual requirements, the selected time window length could vary. Subsequently,
the segmented windows from modalities are processed to extract meaningful features
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Table 5.1: List of extracted features used in DeepTake

Data Source Feature Type Values

Eye movement

Gaze position float (1920×1080)
Pupil size float (0-7)

Time to first fixation int (1-90)
Fixation duration float (100-1500ms)
Fixation sequence int (1-2500)

Heart rate (PPG signal)
SDNN float (45-75ms)

RMSSD float (25-43ms)
pNN50 float (18-28%)

GSR signal Number of peaks int (1-6)
Amplitude of peaks float (0.01- 1.58µs)

Pre-driving survey
Gender binary (M-W)

NASA-TLX categorical (1-21)
PSS-10 categorical (0-4)

Secondary tasks NDRTs categorical (C,U,R,S)1

Vehicle data

Right lane distance float (0.73-2.4m)
Left lane distance float (1.02-2.8m)
Distance to hazard float (98-131m)

Steering wheel angle float (-180-114◦)
Throttle pedal angle float (15-21◦)
Brake pedal angle float (0-17◦)

Velocity float (0-55mph)

1: C ; Conversation, U ; Using cellphone, R; Reading articles on tablet, and S : Solving arithmetic questions

describing the attributes impacting takeover behavior.
For the eye movement, we acquire interpolated features extracted from raw

data through iMotion software [iMotions, 2015a]. The extracted eye movement
attributes include gaze position, pupil diameters of each eye, time to first fixation,
and fixation duration/sequence on the detected area of interest (i.e., cellphone, tablet
and monitor).

To compute the heart rate features, we first apply a min-max normalization
on the raw PPG signal, and then filter the normalized PPG signal by applying a
2order Butterworth high pass filter with a cut-off of 0.5Hz followed by a 1order
Butterworth low pass filter with a cut-off frequency of 6Hz. We use an open-source
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toolkit HeartPy [van Gent et al., 2019] to filter the PPG signals and extract the
following features from heart rate variability (HRV) analysis: the standard deviation
of normal beats (SDNN), root mean square of successive differences between normal
heartbeats (RMSSD), and the proportion of pairs of successive beats that differ by
more than 50ms (pNN50). These metrics are to correlate with driver’s cognitive
workload and stress [Peruzzini et al., 2019].

Furthermore, we obtain two common and important GSR features: the number
and amplitude of peaks [Manawadu et al., 2018, Nourbakhsh et al., 2012]. A peak
occurs when there is a quick burst of raised conductance level. The peak amplitude
measures how far above the baseline the peak occurred. Thus, peaks are valuable
indicator of stress and mental workload.

While the variety of a driver’s subjective and objective measurements along
with vehicle dynamic data provide complementary information to draw better insights
into drivers’ takeover behavior, we need to finally fuse these multimodal data into a
joint representation as input to the DNN model. Beforehand, however, we employ
the Z-score normalization for most of the features except extracted PPG features to
accentuate key data and binding relationships within the same range. To normalize
the features associated with PPG, we use the min-max normalization, as explained
above. For any remaining features still containing missing values, their missing values
are imputed by using their means. Table 5.1 summarizes the list of data sources
and extracted features used in DeepTake. Finally, the generated features from each
modality concatenated to create a rich vector representing driver takeover attributes.
The joint representations of all feature vectors with the provision of their associated
labels are eventually fed into DNN models for training. Below, the labeling procedure
of these feature vectors is explained.

Data Labeling

The target labels greatly depend on the context in which the labels are presented.
Herein, we define the ground truth labeling for an attribute set denoting the feature
vector. Each label indicates the classification outcome of takeover intention, time, and
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quality that is more representative of our user study and the three takeover behavior
aspects.

Takeover intention. DeepTake classifies a driver’s takeover intention into
the binary outcomes, indicating whether or not the driver would resume manual
control of the vehicle. In our user study, if a participant initiated the takeover action
by pressing the two buttons mounted on the steering wheel (see Figure 5.2) upon
receiving a TOR, we label the feature vector as “TK”, showing the takeover intention;
if no takeover action was initiated between the moment of TOR initiation and the
incident (e.g., obstacle avoidance), we use a “NTK” label displaying the absence of
intention.

Takeover time. Recall from Section 6.2 that takeover time is defined
as the time period between a TOR and the exact moment of a driver resuming
manual control. Prior works have considered the starting time of manual control
as the first contact with the steering wheel/pedals [Zeeb et al., 2015] or the
takeover buttons [Kim and Yang, 2017]. In our user study, we timed the takeover
moment once a participant pressed the two takeover buttons on the steering wheel
simultaneously (see Figure 5.2). We categorize takeover time into three classes, using
threshold values consistent with the pre-defined ith percentile of takeover time in prior
driving studies [Coley et al., 2009]. Let T denote the takeover time, thus the labels
are defined as “low” when T < 2.6s, “medium” when 2.6s ≤ T ≤ 6.1s, or “high” when
T > 6.1s.

Takeover quality. As we alluded to earlier in Section 6.2, there are a wide
range of metrics [ISO 21959:2020, 2020] for measuring takeover quality, depending
on the needs of various takeover scenarios. In our user study (see Section 6.3), we
consider a motivating scenario where the driver needs to take over control of the
vehicle and swerve away from an obstacle blocking the same lane; meanwhile, the
vehicle should not deviate too much from the current lane, risking crashing into
nearby traffic. Therefore, we measure the takeover quality using the lateral deviation
from the current lane, denoted by P . In our study, we design a 4-lane rural highway
with a lane width of 3.5m. Therefore, we label the feature vectors into three classes of
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takeover quality: “low” or staying in a lane when P < 3.5m, “medium” or maneuver
the obstacle but too much deviations when 7m < P ≤ 10m, or “high” or maneuver
safely and one lane deviates when 3.5 ≤ P ≤ 7m.

5.3.3 DNN Models for Takeover Behavior Prediction

DeepTake utilizes a feed-forward deep neural network (DNN) with a mini-batch
stochastic gradient descent. The DNN model architecture begins with an input
layer to match the input features, and each layer receives the input values from
the prior layer and outputs to the next one. There are three hidden layers with
23, 14, and 8 ReLu units, respectively. The output layer can be customized for the
multi-class classification of takeover intention, takeover time and takeover quality.
For example, for the classification of takeover quality, the output layer consists
of three Softmax units representing three classes (low-, medium-, and high-) of
takeover quality. DeepTake framework uses Softmax cross-entropy loss with an Adam
optimizer with a learning rate of 0.001 to update the parameters and train the DNN
models over 400 epochs. In each iteration, DeepTake randomly samples a batch of
data in order to compute the gradients with a batch size of 30. Once the gradients
are computed, the initiated parameters get updated. The early stopping method
set to 400 epochs prevents overfitting. In addition, DeepTakes randomly divides
the given labeled data into 70% for training (necessary for learning the weights for
each node), 15% for validation (required to stop learning and overtraining), and
15% for testing (the final phase for evaluating the proposed model’s robustness to
work on unseen data). Finally, in order to address imbalanced data issues where
the number of observations per class is not equally distributed, DeepTake utilizes
Synthetic Minority Oversampling Technique (SMOTE) [Chawla et al., 2002] which
uses the nearest neighbor’s algorithm to generate new and synthetic data.

In summary, our DeepTake framework employs different DNN models to
predict takeover intention, takeover time and takeover quality. All of the DNN models
in DeepTake have the same number of inputs and hidden layers, yet different output
layers and associated weights.
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5.4 User Study

To test the feasibility of our proposed DeepTake framework, we conducted a user
study with 20 participants featuring takeover behavior using a driving simulator2.
The following section describes the experimental setup and design of our user study
as follows.

5.4.1 Participants

In this study, 20 subjects (11 female, 9 male) aged 18-30 (mean= 23.5, SD= 3.1) were
recruited. All participants were hired through the university and were required to have
normal or corrected-to-normal vision, to not be susceptible to simulator sickness, and
to have at least one year of driving experience to be eligible for participation in this
study. Before the experiment, participants were questioned as to their age and driving
experience. None of them had prior experience of interaction with AVs. They were
reminded of their right to abort their trial at any point with no question asked. Three
participants’ data were later excluded from the analysis, due to biometric data loss
and a large amount of missing values. Participants received $20 to compensate for
the time they spent in this study.

5.4.2 Apparatus

Figure 5.2 shows our low fidelity driving simulator setup, which consists of a Logitech
G29 steering wheel, accelerator, brake pedal and paddle shifters. The simulator
records driver control actions and vehicle states with a sampling frequency of 20Hz
and sent the captured data through a custom API using iMotions software [iMotions,
2015a]. The simulated driving environments along with the tasks were created using
PreScan Simulation Platform. The driving environment was displayed on a 30-inch
monitor. The distance between the center of the Logitech G29 steering wheel and
the monitor was set at 91cm. A set of stereo speakers was used to generate the

2This study complies with the American Psychological Association Code of Ethics and was
approved by the Institutional Review Board at University of Virginia.
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Figure 5.2: User study setup. This custom driving simulator consists of a 30-inch monitor,
a Logitech G29 steering wheel, and 10.5-inch Apple iPad Air on which the non-driving tasks
are displayed. For switching between the automated and manual control of the vehicle, the
participant needs to press the two blue buttons on the steering wheel simultaneously. The
participant wears a pair of eye-tracking glasses, and a wearable device with GSR and PPG
sensors for the biometrics acquisition.

driving environment sounds along with the auditory alarm of TORs (more details in
Section 5.4.3). An Apple iPad Air (10.5-inch) was positioned to the right side of the
driver and steering wheel to mimic the infotainment system and displayed an article
for NDRT.

We used Tobii Pro-Glasses 2 with the sample rate of 60Hz to collect the eye
movement data, and a Shimmer3+ wearable device with a sampling rate of 256Hz to
measure PPG and GSR signals. To maintain consistency across all participants, we
positioned the Shimmer3+ to the left of all subjects. This consistency helps reduce
the motion artifact where the subjects needed to frequently interact with the tablet
on the right-hand side. Although we designed our scenarios in a way to minimize
the inevitable motion artifacts, we performed necessary signal processing on the PPG
and GSR signals to remove potentially corrupted data, as discussed in Section 5.3.1.
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Table 5.2: Non-driving related tasks (NDRTs) used in our study

Task Type Definition
Conversation with passenger Interacting with the experimenter who sits close to the participants
Using cellphone Interacting with their cellphones for texting and browsing
Reading articles Reading three types of articles (i.e.easy,mid,hard) on the tablet
Solving questions Answering 2-level arithmetic questions (i.e. easy and medium)

5.4.3 Experimental design

A within-subjects design with independent variables of stress and cognitive load
manipulated by NDRTs and the TOR types was conducted with three trials in a
controlled environment as shown in Figure 5.2. We designed driving scenarios in
which the simulated vehicle has enough functionality similar to AVs, such that the
full attention of the driver was not required at all times.

Non-Driving Related Tasks. We used four common NDRTs with various
difficulty levels and cognitive demand as shown in Table 5.2. Participants used
the tablet to read the designated articles and answer the arithmetic questions.
Additionally, they were asked to use their own hand-held phones, needed for the
browsing tasks. Each participant performed all NDRTs with the frequency of four
times in each trial (except for solving the arithmetic questions which occurred
three times;15 × 3 in total). The conditions and the three driving scenarios were
counterbalanced among all participants to reduce order and learning effects. To
have natural behavior to the greatest extent possible, participants were allowed to
depart from NDRTs to resume control of the vehicle at any given time. During
manual driving, participants controlled all aspects of the vehicle, including lateral
and longitudinal velocity control.

Driving Scenarios. The driving scenarios comprised a 4-lane rural highway,
with various trees and houses placed alongside the roadway. We designed five
representative situations where the AVs may need to prompt a TOR to the driver,
including novel and unfamiliar incidents that appear on the same lane. Figure 5.3
shows an example of a takeover situation used in our study. The designed unplanned
takeovers let participants react more naturally to what they would normally do in
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Figure 5.3: A schematic view of an example of a takeover situation used in our study,
consisting of: 1) takeover timeline associated with participants’ course of action; 2) system
status; and 3) takeover situation. The vehicle was driven in the automated mode to the
point after the TOR initiation and transitioning preparation period. The ego vehicle is
shown in red and the lead car is white. When the Ego vehicle reaches its limits, the system
may initiate (true alarm) or fail (no alarm) to initiate the TOR, and the driver takes the
control back from the automated system.

AVs [McCall et al., 2019] or as introduced by Kim and Yang [Kim and Yang, 2017],
participants’ reaction times are in detectable categories. In other words, participants
have no previous knowledge of incident appearance, which might happen among other
incidents requiring situational awareness and decision-making.

Takeover Requests. In order to incorporate DeepTake in the design of
adaptive in-vehicle alert systems in a way that not only monitors driver capability
of takeover, but also to enhance takeover performance of automated driving, various
types of TOR were required. An auditory alarm was used to inform participants
about an upcoming hazard that required takeover from the automated system. The
warning was a single auditory tone (350Hz, duration: 75ms) presented at the time
of hazard detection (≈140m or ≈13sec before the incidents, depending the speed of
the vehicle). In a precarious world, AVs should be expected to fail to always provide
correct TORs. Herein, the scenarios were constructed conservatively to include flawed
TORs by which subjects would not over-trust the system’s ability. In other words, the
scenario demands that the participant be partially attentive and frequently perceive



5. Predicting Drivers’ Takeover Performance 85

the environment. In order to cover the scenarios that one might encounter while
driving an AV, we designed multiple critical types of TORs, including an explicit
alarm (true alarm), silent failure (no alarm), and nuisance alarm (false alarm). True
alarm indicates the situation in which the system correctly detects the hazard and
triggers a TOR, no alarm represents the system’s failure to identify the existing
hazard, and false alarm presents misclassification of a non-hazardous situation as an
on-road danger requiring takeover. We randomized the 15 TOR occurrences in each
trial (45 in total for each participant) with 6, 3, 6 repetitions for true alarm, no alarm,
false alarm, respectively. In addition, we also designed an information panel where
the participants could see the status of the vehicle along with the cause of TOR (see
Figure 5.2).

5.4.4 Procedure

Upon arrival in the lab, participants were asked to sign a consent form and fill
out a short demographic and driving history questionnaires. Subsequently, they
were briefed on how the automated system functions, how to enable the system by
simultaneously pressing two blue buttons on the steering wheel, and what they would
experience during NDRTs. They were further instructed that if the system detected
a situation beyond its own capabilities to handle, it would ask (true alarm) or fail
to ask (no alarm) to take over control. Afterward, participants completed a short
training drive along a highway for a minimum of 5 minutes to get familiar with the
driving and assure a common level of familiarity with the setup, NDRTs, and auditory
signals pitch.

Once the subjects felt comfortable with the driving tasks and NDRTs, they
proceeded to the main driving scenario. Prior to beginning the main experiment,
we calibrated the eye-tracking glasses (repeated at the beginning of each trial) and
set participants up with the Shimmer3+ wearable device. Then, participants were
required to complete the baseline NASA-TLX questionnaire followed by the PSS-10
questionnaire. The participants were also instructed to follow the lead car, stay on
the current route, and follow traffic rules as they normally do. The participants
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were cautioned that they were responsible for the safety of the vehicle regardless
of its mode (manual or automated). Therefore, they were required to be attentive
and to safely resume control of the vehicle in case of failures and TORs. Since
the scenarios were designed to have three types of TORs, they needed to adhere
to the given instruction whenever they felt the necessity. The given instruction
enabled the drivers to respond meticulously whenever it was required and to reinforce
the idea that they were in charge of the safe operation of the vehicle. Due to
the system’s limitations, participants were told to maintain the speed within the
acceptable range (< 47mph). The experiment was conducted utilizing scenarios
consisting of sunny weather conditions without considering the ambient traffic. The
order of NDRT engagement was balanced for participants (see Figure 5.3).

The remainder of the experiment consisted of three trials, each containing
15 TORs, followed by a 5-minute break between trials. At the end of each trial,
participants were requested to fill out the NASA-TLX. After completion of the last
trial, participants filled out the last NASA-TLX followed by a debrief and a $20
compensation. The experiment took about one hour for each participant.

5.5 Performance Evaluation

We evaluate the performance of DeepTake framework using the multimodal data
collected from our user study. We describe the baseline methods, metrics, results,
and analysis as follows.

5.5.1 Baseline Methods

Overall, we obtained about 2 million observations to train, test, and validate
DeepTake with; 2560 observations per TOR × 15 TORs per trial × 3 trials × 17

subjects. We evaluate the performance of DeepTake DNN-based models with six
other ML-based predictive models, including Logistic Regression, Gradient Boosting,
Random Forest, Bayesian Network, Adaptive Boosting (Adaboost), and Regularized
Greedy Forest (RGF). Our process of choosing the ML models is an exploratory



5. Predicting Drivers’ Takeover Performance 87

task with trials and tests of multiple off-the-shelf algorithms and choosing those that
perform the best. To evaluate the prediction performance of DeepTake framework
with other ML models, we were obligated to utilize some feature importance
techniques. The reasons to apply feature importance techniques for an ML algorithm
are: to train the predictive model faster, reduce the complexity and increase the
interpretability and accuracy of the model. In order to do so, after splitting the
labeled data into training, testing, and validation sets (see Section 5.3.3), we employ
the following feature importance methods on each training set: Absolute Shrinkage
and Selection Operator (LASSO), and random forest. LASSO helps us with not
only selecting a stable subset of features that are nearly independent and relevant to
the drivers’ takeover behavior, but also with dimensionality reduction. The random
forest method, on the other hand, ranks all of the features based on their importance
levels with the drivers’ takeover behavior. The overlapped features chosen by the two
methods were used to train the ML-based classification models of takeover behavior.

5.5.2 Metrics

We apply 10-fold cross-validation on training data to evaluate the performance of
selected features in the prediction of driver takeover intention, time and quality.
Cross-validation provides an overall performance of the classification and presents how
a classifier algorithm may perform once the distribution of training data gets changed
in each iteration. In cross-validation, we utilize the training fold to tune model
hyper-parameters (e.g., regularization strength, learning rate, and the number of
estimators), which maximizes prediction performance. Therefore, we train predictive
models with the best hyper-parameters. Cross-validation randomly partitions the
training data into n subsets without considering the distribution of data from a subject
in each set. A possible scenario is that data from one subject could be unevenly
distributed in some subsets, causing overestimation of the prediction performance
of a model. To avoid this situation, we check the subjects’ identifiers in both the
training and testing sets to ensure that they belong to just one group. We achieve
this by forcing the subject to be in one group. To determine the accuracy of the
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binary classification of takeover intention performed by predictive models, accuracy
was defined as

Acc =
TP + TN

TP + TN + FP + FN
(5.1)

where TP, TN, FP, and FN represent True Positive, True Negative, False Positive,
and False Negative, respectively.

For the multi-class classification of takeover time and quality, we used the
average accuracy per class. We also used the metric of weighted F1 scores given by

WF1 =
l∑

n=1

2× Pri ×Rci
Pri +Rci

×Wi, (5.2)

where

Pri =

∑l
i=1

TPi

TPi+FPi

l
(5.3)

Rci =

∑l
i=1

TPi

TPi+FNi

l
(5.4)

are the precision and the recall, respectively. In addition, Wi is the weight of the
ith class depending on the number of positive examples in that class. It is worth
mentioning that to deal with our imbalanced data, where the number of observations
per class is not equally distributed, DeepTake framework along with ML-based
predictive models use SMOTE to have a well-balanced distribution within class (see
Section 5.3.3).

Given multiple classifiers, we use the Receiver Operating Characteristic (ROC)
curve to compare the performance of DeepTake alongside other ML-based models.
The ROC curve is a widely-accepted method that mainly shows the trade-off between
TP and FP rates. A steep slope at the beginning of the curve shows a higher
true positive (correct) classification of the algorithm, whereas increasing the FP rate
causes the curve to flatten. The ROC curve provides an effective way to summarize
the overall performance of classification algorithms by its only metric, AUC. The
AUC values provided in Figure 5.4 can be interpreted as the probability of correctly



5. Predicting Drivers’ Takeover Performance 89

classifying the driver takeover behavior into the candidate category compared to a
random selection (black line in Figure 5.4). In addition, we use the confusion matrix
to further illustrate the summary of DeepTake’s performance on the distinction of
takeover intention, time, and quality per class.

5.5.3 Results and Analysis

Multiple classification algorithms were employed to compare the performance of
DeepTake on obtaining a reliable discriminator of driving takeover behavior, including
intention, time, and quality. As the prediction of driver takeover time and quality
are contingent upon the driver’s intention to take over from the autonomous systems
after receiving TOR, the classification algorithms were initially carried out on this
first stage of driver takeover prediction, followed by takeover time and quality.

Takeover intention. Analysis of the binary classification of drivers’ takeover
intention is shown in Table 5.3. The results show that DeepTake outperforms other
ML-based models. However, among the ML-based algorithms, RGF attains the
highest accuracy and weighted F1 score (92% and 89%) followed by AdaBoost (88%
and 88%) and Logistic Regression (77% and 88%). Moreover, ROC was applied
in order to better evaluate each of the classifiers. Figure 5.4.a shows ROC curves
and AUC values for all six ML models along with DeepTake to infer the binary
classification of takeover intention. Although DeepTake shows outperformance on
correctly classifying a driver’s intention (AUC=0.96) using the multimodal features,
RGF shows promising performance with an AUC of 0.94. Similar to the accuracy
level, AdaBoost had a slightly lower performance with an AUC= 0.91. Furthermore,
we obtained the confusion matrix for takeover intention (Figure 5.6.a) showing that
the percentage of misclassifications is insignificant. Table 5.3, together with the results
obtained from the AUC in Figure 5.4.a and the confusion matrix in Figure 5.6.a,
ensure that our multimodal features with the right DNN classifier surpass the takeover
intention prediction.

Takeover time. DeepTake’s promising performance in takeover intention
estimation leads us to a more challenging multi-class prediction of driver takeover
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time. As some of the ML-based models attained reasonably high accuracy in
the binary classification of takeover, their performances, along with our DeepTake
DNN based in classifying multi-class classification of takeover time could assess the
robustness of the DeepTake.

Figure5.4.b shows a comparison amongst the models explored in this paper
along with DeepTake for prediction of takeover time. It displays that DeepTake
produces the best overall result with an AUC value of 0.96 ± 0.02 for each takeover
low-, mid-, and high- time. We next consider the accuracy comparison of our
DeepTake model with other classifier algorithms, reported in Table 5.3. It is
evident that DeepTake outperforms all of the classic algorithms. In the three-class
classification of takeover time (low, mid, high), DeepTake achieves a weighted-F1

Table 5.3: Classification performance comparison.

Target value Classifier Accuracy W-F11 score

Takeover Intention

Logistic Regression 0.77 0.81
Gradient Boosting 0.76 0.75
RF2 0.75 0.72
Naive Bayes 0.71 0.66
Ada Boost 0.88 0.87
RGF3 0.92 0.89
DeepTake 0.96 0.93

Takeover Time

Logistic Regression 0.47 0.45
Gradient Boosting 0.47 0.46
RF 0.44 0.45
Naive Bayes 0.36 0.38
Ada Boost 0.64 0.58
RGF 0.73 0.71
DeepTake 0.93 0.87

Takeover Quality

Logistic Regression 0.65 0.63
Gradient Boosting 0.60 0.59
RF 0.53 0.52
Naive Bayes 0.41 0.39
Ada Boost 0.42 0.39
RGF 0.82 0.77
DeepTake 0.83 0.78

1: Weighted F1-score; 2:Random Forest ; 3:Regularized Greedy Forests



5. Predicting Drivers’ Takeover Performance 91

Figure 5.4: The ROC curve comparison of our DeepTake and six ML classification
algorithms for classification of takeover behavior: (a) takeover intention, (b) takeover time,
and (c) takeover quality. The ROC curve shows the average performance of each classifier
and the shadowed areas represent the 95% confidence interval. The macro AUC associated
with each classifier is shown where AUC value of 0.5 refers to a chance.[Best viewed in color]

score of 0.87, thereby achieving the best performance on this task by a substantially
better accuracy result of 92.8%. Among the classifiers, RGF and AdaBoost still
performed better (73.4% and 64.1%). As shown in Figure 5.5, DeepTake gained a
high accuracy for both the training and testing sets. However, the model did not
significantly improve and stayed at around 92% accuracy after the epoch 250.

To capture a better view of the performance of DeepTake on the prediction
of each class of takeover time, we also computed the confusion matrix. Figure 5.6
displays the performance of DeepTake DNN model as the best classifier of three-class
takeover time. As the diagonal values represent the percentage of elements for which
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Figure 5.5: The top graph shows the prediction accuracy of training and test sets for 400
epochs, whereas the bottom graph indicates the loss for DeepTake on prediction of three
classes of low-, mid-, and high- takeover time.

the predicted label is equal to the true label, it can be seen that the misclassification
in medium takeover time is the highest. Also, marginal misclassifications are found
in the 2%-5% of the high and low takeover time classes, respectively. Overall,
all three evaluation metrics of AUC, accuracy, and confusion matrix indicate that
DeepTake robustness and promising performances in correctly classifying the three-
class takeover time.

Takeover quality. The test accuracy results of the 3-class classification of all
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Figure 5.6: Confusion matrix for the prediction of takeover behavior.The results are
averaged over 10 fold cross validation splits. (a) Binary class takeover intention takeover(TK)
vs. Not Takeover(NTK), (b) 3-Class classification results of takeover time, (c) 3-class
classification of takeover quality.

classifiers are presented in Table 5.3. DeepTake achieves the highest accuracy with an
average takeover quality of 83.4%. While the value of RGF was close to DeepTake, the
rest of the algorithms were not reliable enough to discriminate each class of takeover.
However, we should note that RGF training time is very slow and it takes about two
times longer than DeepTake to perform prediction.

In addition, Figure 5.4.c presents the multi-class classification of takeover
quality. Analysis of the discriminatory properties of DeepTake achieve the highest
AUC of 0.92 ± 0.01 scores among the other models for each individual class. RGF
model yields an impressive average macro AUC of 0.91. Such a model indicates a
high-performance achievement with informative features.

We further investigated DeepTake robustness in correctly classifying each class
of takeover quality and the results achieved by the method are shown in Figure 5.6.c.
For the 3-class quality estimation, DeepTake achieved an average accuracy of 87.2%.
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5.6 Discussion & Summary

5.6.1 Summary of major findings

In the current design of takeover requests, AVs do not account for human cognitive
and physical variability, as well as their possibly frequent state changes. In addition,
most previous studies emphasize the high-level relationships between certain factors
and their impacts on takeover time or quality. However, a safe takeover behavior
consists of a driver’s willingness and readiness together. The focus of this paper is to
utilize multimodal data into a robust framework to reliably predict the three main
aspects of drivers’ takeover behavior: takeover intention, time and quality. To the
best of our knowledge, the DeepTake framework is the first method for the estimation
of all three components of safe takeover behavior together within the context of AVs
and it has also achieved the highest accuracy compared to previous studies predicting
each aspect individually. To ensure the reliability of DeepTake’s performance, we
applied multiple evaluation metrics and compared the results with six well-known
classifiers. Despite the promising accuracy of some of the classifiers, namely the RGF
classifier, the accuracy of DeepTake surpassed in its prediction of takeover behavior.
In general, our model performed better in classifying driver takeover intention, time
and quality with an average accuracy of 96%, 93%, and 83%, respectively.

In order to further assess the robustness of DeepTake, we increase the number
of classes to the more challenging five-class classification of takeover time where the
classes defined as “lowest” when T < 1.5s, “low” when 1.5s ≤ T < 2.6s, “medium”
when 2.6s ≤ T < 4.7s, “high” when 4.7s ≤ T ≤ 6.1s, or “highest” when T >

6.1s. Figure 5.7 represents the performance of DeepTake on classifying the five-class
takeover time. Although DeepTake was not as distinctive in five-class classification
as in the three-class, it still achieved promising results. Lowest, high, and medium
takeover times are the top three pairs that were the most frequently misclassified by
the DNN model. The reason might be that the selected features do not have the
required distinctive characteristics to perfectly divide the low and medium takeover
time. In each class, it could still distinguish between five other classes with an average
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Figure 5.7: Confusion matrix for the prediction of five classes of driver takeover time.

accuracy of 77%. With a future larger amount of data collection satisfying each class
need, DeepTake could further improve its distinctive aspect of each feature for more
precise classification.

5.6.2 Descriptive analysis of takeover time and quality

Although DeepTake takes advantage of a DNN-based model integrated into its
framework, understanding the reasons behind its predictions is still a black-box
and a challenging problem which will be tackled in our future works. However,
to comprehend the effects of multimodal variables on takeover time and quality, a
repeated measure Generalized Linear Mixed (GLM) model with a significance level of
α = 0.05 to assess the correlation of suboptimal features was used to predict takeover
time and quality. The analysis of the results shows the significant main effect of
NDRTs on takeover time and quality (F3,28 = 13.58, p < 0.001) followed by fixation
sequence (F1,28 = 35.87, p < 0.001) and vehicle velocity (F1,28 = 13.06, p < 0.001).
Post-hoc tests using Bonferroni demonstrated a higher impact of interaction with
the tablet and reading articles (p < 0.001) as opposed to a conversation with



5. Predicting Drivers’ Takeover Performance 96

TOR

TOR

Figure 5.8: Average trajectories when drivers took over control from automated system
after receiving TORs. Top graph shows the lateral position of the vehicle with respect to
no alarm (silent failure) and true alarm (explicit alarm). Bottom graph shows the lateral
position of the vehicle for three categories of takeover time (low, mid, and high). The light
shaded area representing standard deviation at each time point.

passengers. This result could be based on the amount of time spent and the level of
cognitive load on the takeover task. This finding is aligned with the previous results
of [Feldhütter et al., 2017, Eriksson and Stanton, 2017]. Additionally, there was no
significant effect of brake and throttle pedal angle on the takeover time(F1,28 = 3.05,
p = 0.085) and quality (F1,28 = 1.27 p = 0.256). This could be because our scenarios
did not take place on crowded roads and participants were not forced to adopt a
specific behavior after the TOR. Therefore, they could maneuver the vehicle without
significant adjustment to either pedal.

On the other hand, takeover quality tied into drivers’ lane keeping control and
was impacted by the alarm type and the category of takeover time shown in Figure 5.8.
Although we did not consider the type of alarm and category of takeover time for
prediction of takeover behavior as they could simply manipulate DeepTake outcomes
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by providing insights about the future, it is worth additional investigation of their
impacts on the takeover quality. Since participants’ takeover times and the speed
of the vehicle on the manual driving were different, Figure 5.8 shows the average
time of TOR. The top graph in Figure 5.8 depicts the average lateral position of the
vehicle with respect to no alarm and true alarm. These two types of the alarm were
considered due to the necessity of taking over. Under the impact of the true alarm, the
vehicle deviates less than when there is no alarm, yet not significantly (F2,28 = 7.07,
p = 0.78). Moreover, the drivers performed more abrupt steering wheel maneuvers to
change lanes on true alarm. Similarly, the bottom graph in Figure 5.8 shows the lateral
position with respect to different takeover times (low, mid, and high). It can be seen
that the longer the takeover time is, the farther the vehicle deviates from the departure
lane. Differences in takeover time were also analyzed to investigate the takeover
quality. The main effect of the type of takeover time was not significant (F2,19 =

0.44). Although prior research has revealed various timing efforts to fully stabilize
the vehicle [Merat et al., 2014], our observations are comparable to [Naujoks et al.,
2019] and [Bueno et al., 2016].

5.6.3 Feature Selection

Neural networks are essentially black-box models, which generate a prediction based
on input features and some learned weights. In critical applications, it is imperative to
understand how and why the model gives the predictions, by identifying the important
features that have the highest impact on the model predictions. We therefore designed
and evaluated a framework to determine feature importance as viewed by the model.

We examined off-the-shelf state-of-the-art methods such as SHAP [Lundberg
and Lee, 2017], LIME [Ribeiro et al., 2016] and Integrated Gradients
(IG) [Sundararajan et al., 2017]. SHAP and Integrated Gradients are white-box
techniques whereas LIME is a black-box method for attribution analysis. Given a set
of input samples, we generate an importance vector of size, 1 × n_features per sample.
We randomly selected 3000 samples and created a 3000 × n_features importance
matrix. From the importance matrix, we computed the number of times a feature
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Figure 5.9: Distribution showing the number of times a feature was regarded top-5
important

was regarded as top-k important feature (with the respective method) and created
a dictionary where for each feature there are k values and each value signifies the
number of times that feature was regarded as kth important feature. For validation,
we dropped the features that were found of less importance, re-trained network using
the same architecture, and evaluated the resulting accuracy.

In Figure 5.9, for each feature, the measured importance values are plotted
for the three evaluated methods (SHAP, LIME and IG). Each bar has 5 parts,
demonstrating the top-5 importance values. It can be observed that FixationSeq,
FixationStart and Manualwheel are given high importance values by the three
methods, whereas ManualBrake is given a high importance value only by LIME. Some
features, such as FixationDuration, AutoWheel, RightLaneType, RangeW appear to
have low importance values. Figure 5.10 depicts the model accuracy after dropping
low-importance features. It also validates the importance values as measured by the
three methods. For example, ManualWheel and FixationSeq are important features
hence dropping those results in lower accuracy. Dropping FixationDuration, RangeW
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Figure 5.10: Bar plot depicting the accuracy of models trained with dropped features

and AutoWheel results in a model with comparable accuracy, demonstrating that
they are indeed of low importance. The results indicate that SHAP and IG have
similar performance, with LIME giving some outliers. The experiments indicate that
existing attribution techniques can indeed be used to understand the model behaviour
and furthermore can be used to optimize the model (by dropping some features that
have little influence over model predictions).

5.6.4 Implications on the design of future interactive systems

We believe that our human-centered framework makes a step towards enabling a
longer interaction with NDRTs for automated driving. DeepTake helps the system
to constantly monitor and predict the driver’s mental and physical status by which
the automated system can make optimal decisions and improve the safety and user
experience in AVs. Specifically, by integrating the DeepTake framework into the
monitoring systems of AVs, the automated system infers when the driver has the
intention to takeover through multiple sensor streams. Once the system confirms a



5. Predicting Drivers’ Takeover Performance 100

strong possibility of takeover intention, it can adapt its driving behavior to match the
driver’s needs for acceptable and safe takeover time and quality. Therefore, a receiver
of TOR can be ascertained as having the capability to take over properly, otherwise,
the system would have allowed the continued engagement in NDRT or warned about
it. Thus, integration of DeepTake into the future design of AVs facilitates the human
and system interaction to be more natural, efficient and safe. Since DeepTake should
be used in safety-critical applications, we further validated it to ensure that it meets
important safety requirements [Grese et al., 2021]. We analyzed DeepTake sensitivity
and robustness with several techniques using the Marabou verification tool. The
sensitivity analysis provides insight into the importance of input features, in addition
to providing formal guarantees with respect to the regions in the input space where
the DeepTake behaves as expected.

DeepTake framework provides a promising new direction for modeling driver
takeover behavior to lessen the effect of the general and fixed design of TORs which
generally considers homogeneous takeover time for all drivers. This is grounded in
the design of higher user acceptance of AVs and dynamic feedback [Seppelt and
Lee, 2019, Ekman et al., 2017]. The information obtained by DeepTake can be
conveyed to passengers as well as other vehicles letting their movement decisions
have a higher degree of situational awareness. We envision that DeepTake would
help HCI researchers and designers to create user interfaces and systems for AVs that
adapt to the drivers’ state.

5.6.5 Limitations and future work

The following limitations should be taken into consideration for future research and
development of DeepTake.
First, it is acknowledged that the DeepTake dataset is vulnerable to the low fidelity
driving simulator used for data collection. It is possible that the takeover behavior of
subjects were influenced by the simplicity of driving setup and activities. To apply
DeepTake on the road, we will need more emphasis on various user’s activities and
safety, and exclude subjective surveys causing biases. Second, while we increased
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the number of classes, future development of DeepTake should predict takeover time
numerically. For this purpose, a larger dataset will be needed which accounts for a
high variation of individual takeover time and probabilistic nature of DNNs by which
the DeepTake framework can still learn and reliably predicts takeover time.

Third, although we tried to avoid overfitting, it is possible that DeepTake
emphasized more on few features that frequently appeared in TORs, and the
performance may not be the same if more scenarios are being tested. Thus, DeepTake
decision boundaries need to be experimented with different adversarial training
techniques. Forth, DeepTake lacks using real-world data which often significantly
different and could potentially impact the results of DeepTake framework. Testing
the framework on real-world data helps users to gain confidence in DeepTake’s
performance. DeepTake was developed and assessed offline using a driving simulator
in a controlled environment. Future work should explore the deployment of DeepTake
online and in the wild for real-world applications in future AVs. We plan to integrate
the DeepTake and its verification results [Grese et al., 2021] into the safety controller,
which will be then evaluated using the on-road vehicle. In our future work we also
plan to try to reduce the number of features in the model by using the results from
the sensitivity analysis along with feature importance analysis techniques (i.e. LIME
and SHAP) to discover features that may be able to be dropped from the model.
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6 | Designing Context-Aware In-
vehicle Alert System

In conditionally automated driving, drivers decoupled from driving while immersed in
non-driving-related tasks (NDRTs) could potentially either miss the system-initiated
takeover request (TOR) or a sudden TOR may startle them. To better prepare
drivers for a safer takeover in an emergency, we propose novel context-aware advisory
warnings (CAWA) for automated driving to gently inform drivers. This will help them
stay vigilant while engaging in NDRTs. The key innovation is that CAWA adapts
warning modalities according to the context of NDRTs. We conducted a user study
to investigate the effectiveness of CAWA. The study results show that CAWA has
statistically significant effects on safer takeover behavior, improved driver situational
awareness, less attention demand, and more positive user feedback, compared with
uniformly distributed speech-based warnings across all NDRTs.

6.1 Introduction

The rapid development of autonomous driving technologies promises a future where
drivers can take their hands off the steering wheels, foot off the pedals, and instead
engage in non-driving related tasks (NDRTs) such as reading or using mobile devices.
While full self-driving vehicles are not yet commercially available, we are at the
stage that conditionally automated driving (level 3 of autonomy, defined by the
Society of Automotive Engineers (SAE) [SAE, 2018]) provides various forms of driver

103
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Figure 6.1: The study’s proposed context-aware advisory warning method, CAWA. a)
Detection of the NDRT in which the driver is engaged, b) Selecting the type of modality
according to detected activity.

assistance, advanced monitoring systems, and control of the longitudinal and lateral
vehicle kinematics on a sustained basis. Although in conditionally automated driving,
drivers do not need to continuously monitor the driving environment, due to current
technology limitations and legal restrictions, the automated system still needs to
relinquish the control back and ask the human driver to resume the control in case
of system failures, anticipated dangerous situation, or exceeding its operational limit
via a so-called take-over request (TOR) [Bazilinskyy et al., 2018,Gold et al., 2013].

A growing body of research shows that being immersed in NDRTs for
an extended period of time causes the level of situation awareness to fall
below a comfortable point to safely recover manual control, mainly in urgent
situations [Weaver and DeLucia, 2020, Du et al., 2020b, Pakdamanian et al.,
2021,Marberger et al., 2017]. Importantly, the control transition process and taking
control back cause longer reconfiguration of cognitive and motoric states for drivers to
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react properly [Marberger et al., 2017,Kerschbaum et al., 2015]. Thus, human factors
researchers argue while most vehicles are not completely self-driving, safety hurdles
arise in automated vehicles. Recent fatal crashes indicate drivers’ failures to promptly
and properly respond to a TOR due to the loss of situation awareness [Board, 2020].
Hence, a key challenge is how to maintain driver readiness for a safe takeover while
enabling an enjoyable user experience of engaging in NDRTs. Most existing works
focus on the design of TORs, such as its timing [Yoon et al., 2021,Du et al., 2020a]
and modalities [Yoon et al., 2019,Salminen et al., 2019]. On the one hand, limitations
on current vehicle sensing technologies pose constraints on how early hazardous road
incidents can be detected for initiating TORs. The takeover time-budget between
the TOR initiation and the incident occurrence is typically 5-7 seconds [Zhang et al.,
2019a], which may not be long enough for drivers immersed in NDRTs to regain
situational awareness and resume manual driving in a timely and safe fashion. On
the other hand, current incorporated unimodal or multimodal TOR may suddenly
inform drivers about an upcoming hazard [Zhang et al., 2019a], which may in fact
startle and stress the driver and leaving the driver in a less capable state to execute
a life-saving maneuver.

To address the aforementioned limitations, we propose context-aware advisory
warnings (CAWA) for automated driving to gently and adaptively inform drivers (see
Figure 6.1), helping them stay vigilant while engaging in NDRTs. Previous studies
on advisory warnings mainly regard manual driving system settings that alert drivers
prior an upcoming hazard [Seeliger et al., 2014,Maag et al., 2015]. In contrast, we
consider advisory warnings for automated driving system to let drivers know that
they are entering the incipient phase of error creation. Then, the key contributions of
CAWA are two-fold: (1) CAWA adapts warning modalities according to the NDRT
context in which a driver is immersed, for reducing the likelihood that a warning
will go unnoticed. (2) CAWA provides gentle warnings in contrast with sudden and
startling TORs. For example, if a driver is playing a game on her mobile phone and
is wearing headphones, CAWA sends a text message warning to the phone to grab
the driver’s attention, while auditory or visual warnings may be missed.

In this study each participant experienced two driving scenarios, CAWA and
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baseline. In the CAWA trial, advisory warnings were issued depending on the context
of NDRTs (e.g., text message warning when the driver is playing a game on her mobile
phone, visual warning when the driver is having a conversation) (see Figure 6.1). In
the baseline, however, auditory warnings were given uniformly for all NDRTs. We
compared CAWA with auditory warning as these are omnidirectional and have already
widely applied by auto-manufacturers. The user study demonstrated promising
results. Compared with the baseline, CAWA has statistically significant effects on
safer takeover behavior, improved driver situational awareness, less attention demand
for workload, and more positive driver perceptions.

To the best of our knowledge, this is the first study on context-aware advisory
warnings for automated driving. We believe that our work has the potential to provoke
future HCI research on integrating advisory warnings into the design of automated
vehicles, taking a step toward improving the safety and user experience of automated
driving.

6.2 Related Work

Takeover performance can be explained by both reaction time and post-take-
over control [McDonald et al., 2019]. Despite many factors have been identified
contributing to better reaction time and takeover control such as traffic density [Gold
et al., 2016] and driver cognitive state [Sadeghian Borojeni et al., 2018,Van der Heiden
et al., 2021] or emotion [Sanghavi et al., 2020], the impact of time budget (“lead
time”) [Eriksson and Stanton, 2017] and TOR modality [Borojeni et al., 2017] have
been widely studied by researchers. For example, studies show that additional second
of time budget lead to increase of reaction time by on average 0.27second [Zhang
et al., 2019a,McDonald et al., 2019]. If drivers are given more time to gain sufficient
situation awareness, they could prepare for the upcoming transition of control. Gold
et al. [Gold et al., 2013] has shown that shorter takeover times lead to faster responses
but worse maneuvers. On the other hand, a study by Merat et al. [Merat et al., 2014]
suggests 20-40second of time budget for a safe takeover to fully stabilised the vehicle
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after reclaiming control. As supplying such time budget may not be technologically
feasible at the moment, researchers are required to study alternative approaches to
enable drivers gaining enough situation awareness as a function of available time [Lu
et al., 2017].

To improve takeover time and quality, many warning modalities have
been studied such as audio [Politis et al., 2015b], visual [Kim et al.,
2017], vibrotactile [Bazilinskyy et al., 2018] and combination of these warning
modalities [Baldwin et al., 2012]. Prior studies explored priming drivers before asking
them to resume vehicle control. In the study by van der Heiden [van der Heiden et al.,
2017], participants received audio warnings 20 seconds prior to TORs, which caused
them to disengage from the NDRT earlier and look at the road more closely. In
another study [Holländer and Pfleging, 2018], participants received visual warnings
indicating the remaining driving time or distance until a TOR would be issued.
Compared with these existing works, our study employed a richer set of warning
modalities including speech-based cues, visual head-up-displays, text messages, and
vibrotactile cues.

Previous research has extensively studied different modalities for in-vehicle
alerts, in particular TORs. One of the most prevalent modalities is auditory cues,
which can be divided into two categories: nonspeech- and speech-based. Compared
with nonspeech-based auditory tones, speech-based messages offer more information
and are more favorable to drivers [Wu and Boyle, 2021]. Various representations
of visual cues have been designed and utilized, such as a head-up-display [Gerber
et al., 2020], augment reality [Lorenz et al., 2014], and LED lights [Borojeni et al.,
2018]. Studies also found that vibrotactile and haptic cues can effectively alert
drivers [Dass Jr et al., 2013, Telpaz et al., 2015, Morrell and Wasilewski, 2010].
Recent efforts have been increasingly focusing on multi-modal alerts where multiple
modalities are triggered simultaneously [Petermeijer et al., 2017a,Bazilinskyy et al.,
2018,Sanghavi et al., 2021]. While multi-modal alerts were found to be more effective
(e.g., leading to shorter takeover reaction time), they were perceived as more urgent
and annoying [Politis et al., 2015a]. Our study takes a different approach from these
existing works by incorporating advisory warnings instead of TORs. Moreover, in
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Figure 6.2: The driving simulator setup for the user study.

order to avoid prevalence alert fatigue, CAWA chooses a proper advisory warning
from multiple modalities according to the context of NDRTs, rather than triggering
all modalities simultaneously.

6.3 Methodology

In this section, we describe the experimental setup, design and procedure. The study
protocol was approved by the Institutional Review Board (IRB) at the anonymous
university (# anonymous protocol number).

6.3.1 Participants

We recruited a total of 20 participants (14 males; 6 females) with the age range of 18-
32 years old (mean= 22.65years; SD= 4.01years). All eligible participants had normal
or corrected-to-normal vision, as well as a valid driver’s license (mean= 2.8 years, SD
= 3.1 years). None of the participants had previous experience with automated
driving or prior knowledge about the user study. We used 19 participants’ data for
the result analysis, excluding one participant due to largely missing biometric data.
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6.3.2 Experimental Apparatus

Driving simulator. The study was conducted in a fixed-based driving simulator from
SimXperience (Stage 5 Full Motion Racing simulator, fig:Sim). The setup consists
of a 55-inch display (1280 × 720 pixel resolution) placed within a horizontal field-
of-view and approximately 63-inch away from the driving seat, a racing car seat,
a Logitech G29 steering wheel, and sport pedals. No gearshift was required and
participants could switch between automated and manual driving modes by pressing
a designated button on steering wheel (see Figure 6.2 for details). An Apple iPad
Pro with a 9.7-inch display was mounted on the right side of the driving seat for
watching movies. Tablet was mounted in common height of the infotainment systems
in a landscape format. A 2.0 channel sound bar speaker was placed behind the driver
seat for the auditory warnings. The virtual driving environment was created using
CARLA [Dosovitskiy et al., 2017], an open-source driving simulation environment
built on top of the Unreal Engine. The vehicle was programmed to simulate an SAE
Level 3 automation, which handled the longitudinal and lateral vehicle kinematics,
and responded to traffic elements.

Biometrics. In this study, we collected drivers’ psychophysiological, vehicle-
related metrics, workload, and perceived safety. We used a Shimmer3+ wearable
device to measure the driver’s heart rate (PPG) and galvanic skin response (GSR)
signals with a sampling rate of 256 Hz. Heart rate variability (the time elapsed
between two successive R-waves) from PPG and maximum and mean phasic
components were calculated as the objective metrics reflecting cognitive load variation
and stress, respectively.

Face and activity cameras. We installed one high resolution camera (NexiGo
N930E 1080p webcam with ring light) above the steering wheel to monitor the driver’s
eye and head movements. Since CAWA required real-time detection of gaze behavior,
we employed state-of-the art pupil and iris localization models [Park et al., 2018b,
Xiong et al., 2019] and modified it to fit our needs by integrating deep pictorial gaze
estimation [Park et al., 2018a]. Thus, we were able to reliably estimate position
and direction of gaze in real-time. Figure 6.3 shows an example of the face video
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Figure 6.3: Examples of estimated eye region landmarks around the iris and eyelid edges
along with gaze direction while performing NDRTs and after a takeover control. a) four main
landmarks of eyes and pupil detection, b) gaze direction while looking at the phone, c) gaze
direction while reading a book, d) looking at the road after takeover control resumption.

Figure 6.4: Advisory warning modalities: (a) visual warning from the ego’s vehicle view ,
(b) text message, (c) vibrotactile.

examined to capture drivers’ eye movements and gaze directions. These videos helped
to monitor and to identify when a driver detected a threat or when took her eyes off the
driving scene. Furthermore, a high resolution camera (Logitech Ultra HD 1080p) was
used to extract participant’s driving and engagement activities. Finally, we developed
multiple APIs to forward all stream of data to iMotions biometric platform for the
real-time aggregation and synchronization.

6.3.3 Experimental Design

We used a within-subject design with driver’s cognitive load, and the modality
of advisory warnings as independent variables (see Section 6.3.4). The cognitive
load was manipulated via the difficulty of the NDRTs (low: watching movie;
mid: reading and having an informal conversation; high: playing 2048 game) (see
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Table 6.1: CAWA adapts advisory warning modalities based on the context of NDRTs

Non-Driving Related Tasks (NDRTs) Advisory Warning Modalities
Playing the 2048 game on the mobile phone Text message
Watching a movie displayed on the tablet Vibrotactile

Reading a book Speech-based
Having a conversation with the passenger Visual

Table6.1). These four activities were selected as the common activities drivers will
most likely engage with in L3 [Louw et al., 2019, Naujoks et al., 2016]. Based
on prior literature [Petermeijer et al., 2017a, Körber et al., 2018], four takeover
events were designed in urban areas with typical roadway features (see Figure 6.5).
The difficulty of the scenarios was designed to be approximately the same. Each
participant executed two sessions (CAWA and baseline) and the order of sessions
was counterbalanced across participants. Per session, the participant experienced 16
possible takeover events (4 TORs per NDRT). In order to avoid predictably and over-
trusting of the automated system, we randomly assigned 4 more TORs in each trial
to be false alarms, where no hazardous incident was actually detected but a TOR was
issued. Although participants interacted with all NDRTs, the given advisory warnings
were different in each session. In the CAWA session, the modality of advisory warnings
adapted to the context of NDRTs, whereas in baseline, all advisory warnings across
different NDRTs use the same auditory modality. In both experimental sessions,
the simulated vehicle was equipped with SAE Level 3 automation which could issue
TORs (350 Hz acoustic tone with 75 ms duration) to ask the driver to resume
the control once it detected an unfamiliar situation out of its capabilities. In the
manual driving mode, participants could control the vehicle via the steering wheel
and pedals (see details in Sec. 6.3.5).
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Figure 6.5: Examples of the TOR four takeover situations, a) Fallen trees. b) Working
zone. c) Police set up roadblocks. d) Breakdown cars.

6.3.4 Independent Variables

Modalities

Text message. We developed a Python API that can automatically send a text
message containing an advisory warning of “Please pay ATTENTION!” to the driver’s
mobile phone (see Figure 6.4). The developed attention warning message was
displayed at the top of the screen. While drivers are immersed with playing a game
on phone, they may potentially miss the auditory and visual cues. In such situation,
a notification that grabs users’ attention with a quick-to-the-point warning could
abruptly direct their attention to the driving scene.

Vibrotactile. We attached 10 vibrotactile actuators (Tatoko 10 mm x 3 mm
vibration motor, 3V, 12000 rpm) to the driver’s seat as shown in Figure6.4(c), and
used an Arduino Uno microcontroller and L9910 motor drivers to drive the vibrotacile
actuators. The generated vibrotactile feedback pattern involves two 200 ms long
vibrations at maximum amplitude, separated by a 200 ms delay between them.

Speech-based. Previous research has shown that semantics and emotional
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tone leads to higher perceived urgency [Baldwin, 2011,Politis et al., 2015a,Ljungberg
et al., 2012]. So, it is important to consider whether the message is comprehensible
and pleasant for a driver to react upon in a timely manner. We created a gentle
warning message “Please pay attention” with a female voice and an American accent.

Visual. Head-up-displays are increasingly used for effective visual
communication with drivers [Doshi et al., 2008]. We designed the visual advisory
warning as a windshield projected head-up-display shown in Figure6.4(a), which
includes a warning sign icon accompanying the text “Please pay ATTENTION”.

Please note that we implemented a unimodal advisory warning in CAWA to be
effective for each NDRT and to avoid resource sharing conflicts defined by Wickens’
multiple resource theory [Wickens, 2002].

Non-driving activities

Participants were asked to perform four NDRTs with three cognitive difficulty
levels (i.e. Low: watching movies; Mid: reading and informal conversation;
High: playing a mentally demanding game) while setting the vehicle in an automated
driving mode. They were also informed that they needed to take control of the vehicle
in case a TOR is issued. Studies have shown that engaging with a NDRT for more
than three minutes could lead significant decline in situation awareness [De Winter
et al., 2014]. Thus, in this study, each NDRT lasted about 219 seconds (SD=15s)
before the system initiated a TOR. Participants interacted with each NDRT for about
657 seconds in each block of experiment. Both blocks of experiment consisted of the
following NDRTs:

Watching. We selected two movies in the same Action/Thriller genre to
prevent potential effects from one specific genre. Participants were given two Netflix
movies to choose from, "Extraction" by Sam Hargrave or "Ava" by Tate Taylor.

Reading. "No One Is Too Small to Make a Difference" by Greta Thunberg
was selected for the users to read. Participants were also instructed to read out loud
to make sure they are surely reading the book.

Conversing. The subjects were asked to have a conversation with the
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experimenter sitting behind them to simulate conversation with another passenger
regarding everyday topics (e.g., plans for summer vacation).

Gaming. The participant played a 2048 smartphone game, a single-player
sliding block puzzle game, whose objective is to slide and combine numbers on a grid
with the purpose of achieving a sum of 2048. This game challenge physical and visual
demands for receiving an emergency alert.

6.3.5 Procedure

Upon arrival, the participants were briefed about the study. Participants then signed
an informed consent form and completed a demographics questionnaire, followed by
a 5-minute practice drive to get familiar with the driving simulator and NDRTs.
We fitted the participant with the Shimmer3+ wearable device and calibrated
the eye-tracker algorithm (which was re-calibrated at the beginning of each trial).
Participants were informed that there was no need to actively monitor the driving
environments or resume the control of the vehicle unless a TOR was issued. However,
they were instructed to resume the vehicle control as soon as a TOR was issued, then
switch back to the automated driving once the incident had passed and continue the
engagement with a NDRT.

At the beginning of the drive, the participants were asked to activate the
automated mode and perform a NDRT based on the experimenter’s instructions,
followed by three more NDRTs (see Table 6.1). Previous research finds that
participants engaging with a NDRT for more than 180 seconds could lead to
a significant decline in situation awareness [De Winter et al., 2014]. In this
study, immersion to a NDRT lasted 200 seconds on average (SD=15s) before being
interrupted by a TOR, which was programmed to be triggered automatically about
111 meters (≈5s) before detection of a dangerous incident. The advisory warnings
were also triggered 38-45 seconds (M=40.3s, SD=1.6s) prior TOR to make drivers
vigilant of vehicle’s state. Overall, participants engaged with each NDRT per trial
for 12-15min. The chosen time window is twice as long as in previous studies [van der
Heiden et al., 2017,Borojeni et al., 2018] in order to evaluate CAWA’s impact on driver
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takeover readiness. At the end of each trial, the questionnaire on workload (DALI)
and perceived safety and urgency were administered.

After the participant completed all of the driving trials, the experimenter
conducted a semi-structured interview to seek the participant’s general feedback about
the study. The interview guideline was prepared following a prior study [Trösterer
et al., 2017]. The entire study took about 100-130 minutes, and the participant
received a $30 gift card for completing the study.

6.3.6 Dependent Variables

To investigate the proposed research questions, we used the following objective
measurements and subjective feedback as dependent variables.

RQ1 questions driver takeover behavior. We measured the driver’s reaction
time (i.e., the time difference between the TOR initiation and the exact moment of
the driver pressing the button on the steering wheel to resume manual control), and
the lateral vehicle control (i.e., deviation from the lane during the takeover).

RQ2 asks about driver situational awareness. As gaze behavior shown to be
a reliable indicator of situation awareness [Bhavsar et al., 2017,Recarte and Nunes,
2000,Li et al., 2012], we applied the state-of-the-art computer vision techniques [Park
et al., 2018b,Park et al., 2018a] to estimate the gaze behavior of drivers in real-time.
We calculated two metrics: (i) percentage of drivers looking at the road; and (ii)
fixation duration of when a driver’s eyes are on/off the road.

RQ3 evaluates driver stress and cognitive workload. We used the biometric
data to calculate metrics including heart rate variability and the number of GSR signal
peaks, showing mental workload and stress respectively.pNN50 was calculated as the
number of two consecutive intervals (called NN) in which the change in consecutive
normal sinus intervals exceeds 50 milliseconds divided by the total number of NN
intervals measured. Furthermore, we report the number GSR peaks from the time of
advisory warning receipt to moment of takeover control. We also asked participants
to complete the Driving Activity Load Index (DALI) [Pauzié, 2008], which customizes
NASA-TLX for the automotive domain.
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RQ4 inquires about driver perceptions. We asked participants to rate their
perceived safety, disruptiveness, and the urgency of advisory warnings on a 5-point
Likert-type scale ranging from 1 (strongly disagree) to 5 (strongly agree), which was
adapted from the rating questionnaire used in the prior study by Iqbal et al. [Iqbal
et al., 2011]. At the end of the study, we interviewed the participants about their
preferences for the different advisory warnings and solicited their rationales for the
order of preference and usefulness.

6.4 Results

We analyzed the data collected from the user study for the proposed research
questions. We set the statistical significance level as α = 0.05.

6.4.1 Quantitative Measurements

Effects on Driver Takeover Behavior (RQ1)

We observed in the study that participants were able to take over the vehicle control
following TORs with a high success rate. Out of the 456 TORs (19 participants ×
2 trials × 12 true TORs per trial), only 4 takeovers were failed (e.g., the driver was
playing a game on the mobile phone and failed to take over in a timely manner,
causing the vehicle to collide with an obstacle). We conducted statistical analysis
using the data of 452 successful takeovers to investigate drivers’ takeover behavior.

Takeover Quality. We plotted the vehicle trajectories in Figure 6.6. To
calculate the lateral RMSE after the issue of the TOR, we estimated an optimal lane
change path using heuristic methods. We then compared the position of the vehicle
and the path to obtain the lateral error during each time frame .

RMSE =

√√√√ 1

N

N∑
i=0

∥∆yi∥2 (6.1)
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Figure 6.6: Lateral trajectories of vehicle after TORs.

It shows substantial variation in control strategies and higher takeover control
after receiving CAWA, as opposed to the baseline, indicating better takeover quality.

A two-way repeated-measures ANOVA also found statistically significant
effects on the lateral vehicle control (F (1, 443) = 13.46, p < 0.01, η2 = 0.15) by
comparing CAWA and the baseline. Post-hoc showed that the visual warning resulted
in lower lateral deviation compared to all other modalities (p < 0.01). This means
that the drivers who were looking at the road while holding a conversation had better
control of the car as opposed to other modalities.

Reaction Time. A two-way repeated-measures analysis of variance (ANOVA)
analysis found a significant main effect of type of NDRTs (F (3, 443) = 2.39, p < 0.05,
η2 = 0.049) and type of advisory warnings (F (1, 443) = 185.53, p < 0.001, η2 =

0.47) on reaction time, showing CAWA can lead to a faster reaction time than the
baseline. For types of NDRTs, post-hoc analyses with Bonferroni revealed that there
was a significant difference between gaming on the phone an conversation with the
experimenter (p < 0.01) and between gaming and watching a movie on tablet (p <

0.01), indicating that conversing with passengers and watching movie leads to quicker
reaction time than gaming (see Figure 6.7 (ii)).
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Figure 6.7: Comparisons between the participants’ takeover reaction time in relation to
the type of advisory warning and the imposed modality. **: p < 0.01, ****:p < 0.0001

Figure 6.8: Results on the percentage of drivers looking at the road.TOR: issue of TOR;
Takeover: the longest time of takeover

Effects on Driver Situational Awareness (RQ2)

Figure 6.8 displays the percentage of drivers looking at the road from the time they
received the advisory warning to 20 seconds after resuming vehicle control (i.e., the
number of drivers looking at the road at a given time divides the total number of
participants). On average, 87.6% of the drivers look at the road from the time of
receiving an advisory warning, to the time of actual takeover of control, showing an
enhancement on driver’s situation awareness. Shortly after the TOR, more than 95%
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of drivers shifted their visual attention to the screen. However, more participants
stayed vigilant in baseline after taking the vehicle control. Furthermore, analyzing
the eye-gaze vector for investigating the fixation time on/off the road, shows the
standard deviations across the mean of participants. We ran ANOVA and found
significant main effect of type of advisory warnings (F (1, 443) = 39.47, p < 0.05,
η2 = 0.23) on the fixation time. Although conversing resulted in higher time fixation
on the road, there was no significant difference was observed between the type of
NDRTs.

Effects on Driver Stress and Cognitive Workload (RQ3)

We investigated the effect of CAWA and baseline on stress (i.e. GSR) and cognitive
load(i.e. heart rate variability(HRV)). The results show no significant effect of NDRT
type (F (3, 443) = 0.95, p = 0.42, η2 = 0.007) and type of advisory warnings
(F (1, 443) = 2.23, p = 0.14, η2 = 0.006) on HRV (i.e., pNN50). Besides, the
statistical analysis showed that the number of GSR peaks from the time of receiving
advisory warnings to moment of takeover was significantly impacted by type of
NDRT (F (3, 443) = 0.95, p = 0.42, η2 = 0.007), no significant effect of the type
of advisory warnings was found (F (1, 443) = 2.23, p = 0.14, η2 = 0.006). Post-
hoc test with Bonferroni on the number of GSR peaks indicated a statistically
significant difference between watching a movie with conversing (p < 0.05) and
reading (p < 0.05).

We also analyzed the participants’ subjective ratings on DALI, which includes
six dimensions of workload as shown in Figure 6.9. ANOVA analysis found significant
effects on attention demand (F (2, 54) = 3.70, p < 0.05, η2 = 0.12). Post-hoc testing
with Bonferroni on attention demand also indicated a significant difference between
CAWA and the baseline (p = 0.029), which means that the attention required by the
baseline was much more demanding than CAWA. However, no statistically significant
effects were found in other workload dimensions.
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Figure 6.9: Results on DALI ratings about
workload.

Figure 6.10: Results on driver
perceived safety, disruptiveness, and
urgency of advisory warnings.

Driver Perceptions (RQ4)

Figure 6.10 shows the survey results on drivers’ perceived safety, disruptiveness and
urgency of advisory warnings. The results of safety (F (2, 54) = 0.799, p = 0.377,
η2 = 0.021), disruptiveness (F (2, 54) = 0.0.498, p = 0.485R, η2 = 0.014) and
urgency (F (2, 54) = 2.866, p = 0.099, η2 = 0.074), did not show a significant main
effect on type of advisory warnings. Even though more participants rated CAWA to
be safer with higher urgency than the baseline, yet they found it more disruptive.

6.4.2 Qualitative Measurements

Preferences and Challenges

For the qualitative evaluation, the details of the interviews for each subject were
recorded verbatim. We transcribed the audio recordings from the post-session semi-
structured interviews into text and arranged the texts according to the condition.
Then, based on the participants’ statements on each condition describing their
observation, we compared the similarities and differences. Overall, seventeen
participants rated the CAWA as more gentle than baseline warnings. Two participants
perceived baseline as more gentle mainly due to the “shocking” of the Vibrotactile
modality. CAWA was referred to as “safer” alternative by fifteen participants.

They described a feeling of a need for learning why they received the warnings
in order to adapt to the situation. However, four participants found CAWA
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“disruptive”, “too pressuring”, and “urgent”. Although they stated that only a beep
is “not enough” or there is “not enough information”, they still preferred being less
disturbed and let continuing engagement in NDRTs.

Types of Modalities

Participants were asked to express their perception about pros and cons of
each implemented type of warning modalities, and their preferences were varied.
Participants’ preferences of the most suitable types of warning modality for increasing
situation awareness and takeover readiness were ranked as Text messages (N = 7),
speech-based (N = 6) and Vibrotactile (N = 4), Visual (N = 1). Only one participant
mentioned that he doesn’t need any warnings at all. Four participants expressed
the main reasons for preferring the vibrotactile modality over the others was as “it
directly connected to my body and waked me up” and they preferred feeling the cues
rather than being interrupted via visual or auditory alarms (P15). For example, a
participant stated “... I guess if you are in the car and your have your music up really
loud and watching TV really loud then vibrotactile warnings would be really helpful”.

However, five participants did not favor the vibrotactile modality found it
difficult to know where their attention should be directed to, for example, P2 stated -
“it did not vibrate anywhere I need to pay attention or I was close to accident. I don’t
know in which condition did it vibrate or what I should do”. “The only condition,
may it helps would be when I was sleeping, otherwise I didn’t find it useful ” Several
participants who dislike the textile feels that the textile is not application-specific,
only when they are feeling drowsy, for example sleeping, for example, One participant
found the textile feedback confusing as it directs his attention to nowhere, as P1 stated
“For other context-aware warnings, I know where to look at ” The majority (two-
thirds) of participants found the textile notification as the most gentle and potentially
useful way as an input of notification,

Seven subject found the text messages notification “very useful”, “creative”,
“attention-grabbing” while engaging with the games on the cellphone. For example,
P5 stated - “The game was the hardest. With the game I was using my hands and
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my eyes, and then when the computer says takeover, I need to redirect my eyes to the
screen, and put down the phone and then hit the button, with the book I can quickly
put it down, and then put it back ”. However, five of participants who opposing the
text messages mentioned two main reasons. They found it “disruptive” as it could
block the other urgent text notifications during everyday life. In addition, it was
expressed by one that the workload that they need to not only pay attention but also
read the text message.

Participants had mixed feelings over the Speech-based modality, as they
perceived it as most interruptive and “jarring” of the four, yet effective; Six
participants valued it as “it stands out from everything else, and immediately brought
me back. Contrarily, over half of participants perceived the speech-based modality as
“robotic”. Several participants mentioned that hearing the robotic voice perceived as
jarring that they may paying more attention and felt more urgent. “A warning can
fade into the background when you were doing the task, but you are always able to hear
the voice, all of the games, the voice was way louder than any others, it stands out from
everything else, and immediately brought me back.” However, participants disliked the
voice notifications felt the voice interruptive and sounds similar to takeover request
that they sometimes over-responded to it “the voice was shocking and startling, i was
nearly jumped out when i was playing, and also it sounded very similar to the takeover
request.”

Three participants favored the Visual modality, as the most “practical” type
of warning. These participants backed their choice as it required "less attention"
and it was found "less annoying". For instance, P15 stated that Visuals is "easy
to understand compared to the text messages that I still need to read the words."
Three participants opposed visual warnings as it potentially “occluded the vision of the
situation” (P1, P5, P7) and could be “distracting” (P7). For example, P5 commented
- “it can blend into the background”.

Moreover, two participants found the Visuals being too gentle that they
sometimes ignores it, thus less useful than other three warnings, especially when
they were playing the game on the mobile phone.
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The only condition, may it helps would be when I was sleeping, otherwise I
didn’t find it useful”. Another common complaint was that the vibrotactile feeling
made them feel uncomfortable. Potential changes can be providing numbers of textile
responses showing the urgency of advisory warnings as the prediction of the driver’s
current engagements. Baseline warnings were perceived as most interruptive of the
four and being “too loud”. Participant who liked baseline modality in the way that it
can accompany them, e.g., P4 mentioned - “When I am watching the movie as I felt
that the car can accompany me and I would not feel alone.” Participants have mixed
feelings about the robotic voice perceived as “jarring” but more effect because they
paid more attention and felt more urgent to react to it. “other warnings can fade
into the background when you were doing the task, but you are always able to hear
the voice, all of the games, the voice was way louder than any others, it stands out
from everything else, and immediately brought me back.” (P9). However, participants
disliked the baseline warnings perceived the voice being too interruptive as an advisory
warning - “the voice was shocking and startling, I was nearly jumped out when I was
playing” (P11) and also it “sounded similar to takeover request” (P17) so that they
over-responded to it.

6.5 Discussion

This study aimed to investigate the effects of context-aware advisory warnings on
takeover readiness and performance. In order to do so, we proposed a novel context-
aware advisory warning system (CAWA). CAWA adapts its warning modalities based
on the context a driver is immersed in. In contrast to pre-alert systems [van der Heiden
et al., 2017] that startle and stress the driver to take an immediate action, advisory
warnings are non-assertive. Although a large body of literature has investigated the
influence of various warnings on takeover time [Lu et al., 2017,Eriksson and Stanton,
2017, Petermeijer et al., 2017a] and quality [Du et al., 2020a, Weaver and DeLucia,
2020], to the best of our knowledge, it is the first study to employ multiple modalities
for “advising” drivers of automated vehicles to pay attention to the driving scene and
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to be more conscious of the automated driving status, specifically via text messages.

Some studies on transitioning the vehicle control in automated driving have
suggested that cognitive state of drivers are more important than motor readiness
when designing an effective TOR, while other studies have suggested that the physical
attributes that are captivated by NDRTs are essential. Therefore, we considered both
aspects in our detailed assessments.

Results revealed the importance of advisory warnings for driver’s readiness
and situation awareness. Results showed a significant differences between CAWA and
baseline in controlling the vehicle at moment of takeover. There were also significant
differences in reaction time due to increases in fundamental frequency. In terms of
situation awareness, while more drivers tend to look at the screen longer after receiving
CAWA, there were no significant difference. DALI also revealed a significant difference
on attention demand. The overall results show that divers received CAWA have higher
takeover quality and lower reaction time when compared to drivers received auditory
warning.

6.5.1 Takeover Behavior

Takeover reaction times and quality were measured and analyzed to compare
differences due to perceived CAWA and auditory warning. In line with
previous studies that found auditory warning leads to significantly higher reaction
time [Eriksson and Stanton, 2017, Politis et al., 2015a], we observed significantly
higher reaction times with baseline as opposed to CAWA. Further, the results showed
that conversing yielded the lowest reaction time, but the results may reflect the fact
that the conversation with the experimenter did not need shifting visual attention.
The most cognitively and visually demanding task, playing 2048 game, showed higher
reaction time. Although the react times were varied, CAWA helped drivers to resume
the control faster. The range of reaction time obtained in our study slightly differ
from previous studies [Eriksson and Stanton, 2017,Zhang et al., 2019a], showing that
participants were somewhat prepared to take the control or anticipated a takeover
after receiving an advisory warning. Despite the research of [Gold et al., 2018]
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indicating that the complexity of NDRTs is not a significant variable for reaction time,
our experiment’s findings indicated that takeover time was significantly impacted by
physical and cognitive loads needed for performing NDRTs.

We also observed that CAWA assisted drivers to depart earlier and helped
less deviation from the center of the lane (see Figure 6.6). This finding of vehicle
control after receiving TOR is in line with our expectations based on previous
studies [Politis et al., 2015a,Manawadu et al., 2018] showing non-auditory warnings
provides relatively better control of the vehicle. Our findings also suggest that a
safer takeover is a composite of multiple factors (e.g. type of NDRT and its level of
complexity, type of modalities, etc.) and they may have a greater effect on readiness
and takeover.

6.5.2 Situation Awareness

We observed higher rates of monitoring of the road after receiving CAWA compared
to the baseline. More specifically, after the vehicle approached to advisory warning
time, 14% more of driver looked back at the road and stayed more visually attentive.
In general, our results shows that receiving advisory warnings increases 26% likelihood
of looking at the road as opposed to the results reported in [van der Heiden et al.,
2017].

6.5.3 User Experience

Concerning the usability aspect of proposed method, the users perceptions towards
advisory warnings’ safety and disturbance were analyzed along with their subjective
workload using DALI survey. Participants’ rating of their perceived safety,
disruptiveness and urgency, favord CAWA, but did not differ significantly between the
two conditions. Post-study interviews revealed that users believed that CAWA could
avoid being missed, but it leads to higher annoyance. Even though we extended the
timing of advisory warning suggested by literature to 200s on average, we acknowledge
that a better experimental design with less frequent interruption could have increased
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CAWA’s usability. In addition to driver’s perceptions, only the significant difference
in the attention demand subscale of the DALI supported the hypotheses. Despite
slightly better score in visual and auditory demand of CAWA, participants’ subjective
workload rating did not differ significantly between the conditions. It is possible that
the similar time budget to takeover between the two conditions was perceived as alike
workload. Another possibility for the absence of significance in the subscales of DALI
could be due to the within-subject design where we only collected one data point to
compare the conditions.

6.6 Limitations

We applied unimodal advisory warning rather than multimodal modalities. While
multimodal modalities were found to improve reaction time [Petermeijer et al.,
2017a] and quality of takeover [Naujoks et al., 2014], prior studies reported them
as urgent [Kutchek and Jeon, 2019] and annoying [Politis et al., 2015a]. We utilized
unimodal modalities (1) to avoid resource sharing conflicts according to Wickens’
multiple resource theory [Wickens, 2002], (2)to investigate the impact of non-assertive
advisory warnings on takeover behavior. However, we acknowledge that a more
exhaustive picture would have been available if we combined multiple modalities to
urge drivers to pay attention to the driving scene.

Another limitation is using a driving simulator. While driving simulator
studies are very common due to advantages in creating standardized situations for
experimental control, they come with limited external validity. Participants may
react differently in the lab than they do naturally while driving in the wild. Despite
randomizing the time interval for advisory warnings, participant could still expect to
encounter a TOR.

Despite these limitations, this study takes the first steps toward enabling
CAWA for automated driving, which can provoke many exciting future research
directions. In this study warnings were triggered for a fixed period (about 40 seconds)
before TORs in the study. Future work could leverage recent advances in predicting
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driver takeover behavior and readiness [Yoon et al., 2021,Pakdamanian et al., 2021],
and develop agent-based systems to intelligently decide when and how to trigger
warnings based on driver state predictions.
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7 | Conclusions & Future Work

Previous studies suggest that drivers are incapable of responding effectively to critical
situations resulting from limitations or failures of highly automated driving since they
are ’out-of-the-loop’. According to these studies, drivers are generally less aware of
their surroundings when automated driving is engaged, thus leading to crashes, and
response time to critical incidents is slower, sometimes resulting in crashes. This
could be due to the fact that drivers take some time after disengaging automation to
reorient their attention to the driving scene after it is deactivated. The objective of
this dissertation was to address this challange by:

• Investigating the effects of drivers’ mental workload and type of TORs on
their takeover performance (i.e. takeover time and takeover quality) and
psychophysiological responses (gaze behavior, heart rate activities, GSR, and
EEG).

• Developing, to our knowledge, the first neural network model to predict drivers’
takeover performance (i.e. takeover intention, takeover time, and takeover
quality) by utilizing drivers’ physiological data and driving environment.

• Developing the first end-to-end adaptive alert system that informs drivers
about the loss of SA using a context-aware warning system. To evaluate the
system’s practicality, we conduct a preliminary proof-of-concept human-subject
experiments to study their takeover performance, perceived safety, acceptance,
and preparedness in multiple traffic scenarios.

We initially evaluated the effects of cognitive load, traffic density, and types
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of TOR on driving behaviors (takeover timeliness and quality) and psychological
responses (eye movements, galvanic skin response, heart rate activity). After
understanding each feature importance and its practicality for real-world applications,
we applied advanced machine learning algorithms to develop computational models
that predict drivers’ takeover performance based on their physiological information
and driving environment information. Finally, predicting the driver’s reaction time
and takeover behavior should lead to safely bringing human back to-the-loop. As a
result, we developed an end-to-end adaptive alert system that warns driver about the
loss of SA based on the type of immersion.

7.1 Future Work

There are several interesting future directions where this body of work can be
extended.

First, despite the fact that objective measures of mental workload and situation
awareness using physiological assessments are useful in the research phase, these
measures are of relatively minor importance in an automated driving system intended
for public use. Thus, future research should aim to develop an objective method of
assessing a driver’s state and behavior that is non-invasive and non-intrusive. Such
non-invasive technologies would allow for a precise determination of the driver’s state,
thereby allowing certain elements of the driver-vehicle interaction to be tailored to
meet the needs of each driver.

Secondly, in this thesis, several frequency-domain based features were identified
through feature analysis, which enhanced our proposed machine learning models.
However, it’s essential to apply advanced signal processing methods to further enhance
their values. The interpretation of different frequencies of heart rate and pupil
diameter and their possible links with mental workload or driver states will require
further research.

Another key limitation that cuts across all our studies especially for affect
prediction is the relatively small amount of data across few participants. There is an
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opportunity to further validate, and evaluate the generalizability of our approaches
by collecting a larger sample with more diverse participants.

To conclude, it is hoped that the research presented in this thesis will encourage
designers of contemporary and future automated vehicles to take into account human
factors principles to create a safer and more accessable human-centered automated
vehicle.
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