
Addressing Realisms Faced by Deep Learning Models in
Cyber Physical Systems

Thesis by

Ashley Gao

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

UNIVERSITY OF VIRGINIA

Charlottesville, Virginia

2023

Defended April 19 2023



ii

© 2023

Ashley Gao
ORCID: 0000-0003-3979-8710

All rights reserved



iii

ACKNOWLEDGEMENTS

For science and truth.



iv

ABSTRACT

In recent years, applications in the cyber physical systems (CPS) area have greatly
benefited from deep learning (DL)’s success. However, there exists an intrinsic
problem with directly applying a trained deep learning model on a CPS application:
CPS applications have constraints arising from realisms, whereas the training of
deep learning models often does not take any or enough realisms into consideration.
In the context of this thesis, a realism is defined as the reality as a result of the
DL models’ interaction with the CPS. Among the multitude of realisms, there are
the following types of realisms that are most important. The first realism is task-
specific, resulting from the interaction between the deep learning model and the
environment in which the deep learning model is deployed. In this thesis, we
address this type of realism in a specific acoustic application where audio samples
are environmentally distorted in real cyber physical systems (smart homes). The
second realism is non-targeted samples, which are defined as samples whose classes
are not seen by the DL models during their training. In the same acoustic application,
we incorporate a Mahalanobis distance-based out-of-distribution (OOD) detection
technique to prevent OOD audio samples from being passed to the classifier trained
on in-distribution data. As a result, the classifier is less prone to make mistakes as
fewer OOD samples are passed to it. The third realism is that many data-driven deep
learning models are not robust against even minor changes. In this thesis, we use
an attention-enhanced graph neural network (GNN) architecture coupled with real-
world knowledge, using both the GNN architecture and the real-world knowledge
as ways to boost the robustness of the DL models. Importantly, the underlying
problem with the aforementioned realisms is the problem of domain adaptation
(DA): how do we make sure the DL models trained in one domain (clean samples
free of these realisms) can perform adequately on another domain (samples tainted
by realisms)? In this thesis, we develop two novel unsupervised domain adaptation
(UDA) algorithms that are superior to the state-of-the-art UDA algorithms. The
final realism addressed in this thesis has nothing to do with the training of the DL
models. Instead, it is the realism that comes during the process when the deep
learning model is deployed, such as caused by human behavior. In this thesis, we
provide a comprehensive analysis of the case study in which we deploy several
acoustics-based deep learning models in six smart homes, where we present and
evaluate various techniques for deploying the deep learning models in CPS.
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C h a p t e r 1

INTRODUCTION

Deep learning has emerged to be very successful in addressing problems arising
in the setting of cyber physical systems (CPS) which require solutions for things
such as anomaly detection, knowledge acquisition, and various tasks that use natural
language processing (NLP) and computer vision (Sonntag et al., 2017; Esteva et
al., 2021; Szegedy, Ioffe, et al., 2017; Y. Zhu and Newsam, 2017; Purwins et al.,
2019; Noda et al., 2015; L. Wu et al., 2021; Wahab et al., 2021). However, CPS
applications have constraints that arise because of real-world realism, whereas the
training of deep learning models often do not take realism into consideration. We
define a realism as the reality as a result of the DL models’ interaction with the CPS.
There is a multitude of realisms, and in this thesis we focus on four most important
ones. The first realism is task-specific, resulting from the interaction between the
deep learning model and the particular environment in which the deep learning
model is deployed. For example, a deep learning model that detects emotions based
on people’s speech must deal with environmental distortions such as reverberation.
The second realism is non-targeted samples. For example, an image classifier is
trained on datasets with explicit finite classes, but in the real world, it may encounter
samples that belong to none of its classes; hence it is bound to misclassify them. The
third realism is that many data-driven deep learning models are not robust against
even minor changes. The classic example is that an image classifier may correctly
identify a stop sign under ideal conditions, but it may misclassify it as something else
if even a few pixels are changed. The fourth realism is the realism that comes during
the process when the deep learning model is deployed. For example, deploying a
deep learning model in a participant’s home requires the participant to set up the
equipment on which the deep learning model is installed. This realism is dependent
on factors such as the participant’s familiarity with (setting up) technologies.

Addressing these four realisms is important to CPS applications because CPS ap-
plications usually involve samples to be processed by the deep learning model that
has these four types of realisms. For instance, a self-driving car that has a deep
learning model incorporated into it to detect objects on the road must be robust to
perturbations. It is common for the objects on the road to be blurry or partially
blocked from the view of the camera. Adequately addressing these realisms will
greatly aid the performance of deep learning models in more realistic scenarios
instead of the clean, unaltered data with which they are traditionally trained.

There have been state-of-the-art works (Zeya Chen, Mohsin Y Ahmed, et al., 2019a)
that address the first type of realism. For example, Chen et al. (Zeya Chen, Mohsin
Y Ahmed, et al., 2019a) propose a speaker identification model that is trained
on samples in which environmental distortions such as reverberation are incorpo-
rated. There have also been state-of-the-art works on using voice to detect emotions
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(Dickerson et al., 2014; Vrebčević, Mĳić, and Petrinović, 2019). Dickerson et
al. (Dickerson et al., 2014) incorporate reverberation into their training samples,
attempting to deal with the first type of realism, but they do not incorporate the
deamplification effect into the samples, which renders their solution not effective
in addressing this type of realism. Similarly, Vrebvcevic et al. (Vrebčević, Mĳić,
and Petrinović, 2019) incorporate background noise into the samples, but they do
not deal with the deamplification effect. Not enough attention has been paid to the
second type of realism, despite that there exist ways to potentially deal with it, i.e.,
the out-of-distribution (OOD) detection. To deal with the third challenge, people
have been working in the area of physics-guided deep learning (Daw, Karpatne,
et al., 2017; Elhamod et al., 2020). One way ((Daw, Karpatne, et al., 2017)) to
do physics-guided deep learning is to incorporate the physics equation into the loss
function by adding a differential equation to the terms in the original loss function.
However, some constraints, called properties, are too complex and there is no sin-
gle physical equation for them. To the best of our knowledge, there has not been
any work that directly addresses the fourth realism. The most related works such
as Ngaruiya et al. (Ngaruiya, Orwa, and Waiganjo, 2017) demonstrate that real
deployment of technology is highly dependent on the familiarity of the user with
technologies.

In this thesis, we address these four types of realism for two different CPS applica-
tions: smart health and smart cities. To deal with the first type of realism, which is
the consequence as the result of the interaction between the deep learning model and
the environment, the challenge is that deep learning models trained on clean data
will not work on samples collected in such environments. To address the challenge,
we use a specific acoustic application where the audio samples passed to the deep
learning model for classification is environmentally distorted (for example, they are
contaminated with background noise). In this application, when we train the deep
learning model, we train it with audio clips that are also environmentally distorted,
so that the distributions of the samples used for training and the samples used for
testing are the same, hence preventing the scenario in which a deep learning clas-
sifier trained on clean samples perform poorly on distorted samples. To deal with
the second realism, non-targeted samples, the challenge is that dealing with non-
targeted samples is not straightforward - traditionally, deep learning samples are not
trained to differentiate the samples not should classify and samples they should not.
To address the challenge, we add a Mahalanobis distance-based OOD detection to
filter samples that do not belong to the classes on which the deep learning classifier
is trained, and in the specific application of audio classification, we have empirically
proved the efficacy of this strategy. The third realism is that many deep learning
models are purely data-driven and as a result, they are not robust against even minor
changes. A challenge with dealing with this realism is that state-of-the-art works do
not consider real-world knowledge when they train their deep learning models. To
deal with this realism, we use an attention-enhanced graph neural network (GNN)
architecture empowered by real-world knowledge, using both GNN and real-world
knowledge as ways to increase the robustness of the deep learning models. Stepping
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back, we realize that the fundamental problem with these three types of realisms
is that the distribution in the training data is different from the distribution of the
testing data that are collected in CPS. This fundamental problem is the premise
of domain adaptation (DA), which deals with the distribution shift that takes place
when trying to use a deep learning model on samples with one distribution to
samples with a different distribution. Having realized this, we invented two novel
(unsupervised) domain adaptation algorithms, E-ADDA and MiddleGAN, and we
have empirically shown that they achieve new state-of-the-art performance on pop-
ular DA benchmarks. Last but not least, there is a fourth type of realism, which has
nothing to do with the training of the deep learning models - rather, it is a direct
result of the outside world, such as COVID which forbids in-person contact so the
developers can’t go to the smart homes where the participants live to deploy the
DL models. The challenge to addressing this realism is that the participants are not
tech experts which makes it hard for them to deploy the deep learning models all
by themselves. In this thesis, we present a comprehensive analysis of a case study
in which we deploy the eight acoustics-based deep learning models in eight smart
homes and evaluate various techniques to improve the deployment time success of
deep learning models in CPS.

1.1 Thesis Statement
Our hypothesis is that by addressing the four most prominent realisms that deep
learning models face in cyber physical systems that include environmentally deter-
mined distortions, non-targeted samples, the brittleness of deep learning models,
and the out-of-the-box deployment of such models by layman participants by using
a combination of data augmentation, real-world knowledge-informed graph neural
networks, and unsupervised domain adaptation, we can significantly improve the
success of deep learning models in real world cyber physical systems.

1.2 Contributions
The main contributions of this thesis include:

• We identify four types of important realisms to be addressed in order to deploy
deep learning models in cyber physical systems, for each of which we have
presented one or more solutions.

• We identify the unique perspective that the handling of non-targeted samples
is in essence an out-of-distribution (OOD) detection problem, and we provide
a novel solution that incorporates OOD to successfully detect non-targeted
samples.

• We identify the unique perspective that the first three realisms that deal with the
distribution shift during the testing time are, in essence, the premise of domain
adaptation, and we present two domain adaptation algorithms that achieve
state-of-the-art performance on popular domain adaptation benchmarks.
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• We invent a novel attention-enhanced integration of the diffusion theory, real-
world knowledge, and GNN to counter the brittleness of deep learning models
that are purely data-driven.

• We conduct a comprehensive evaluation that includes real-world in-home
deployments for smart health for 6 homes each for 4 months, and a smart city
application that is informed by real-world datasets.

• We invent a set of solutions for successful no-contact out-of-the-box deploy-
ments of deep learning models as a useful experience to other research teams
facing similar challenges.

Overall, this thesis moves the state of the art towards more robust and realistic
solutions that combine machine learning and physical systems, i.e., CPS.

1.3 Thesis Outline
In Chapter 3, we deal with realisms that arise in a specific application: detecting
emotions from people’s voices. There are two realisms in this Chapter. The
first realism arises from the interaction between the deep learning model and the
environment; in this case, the realism is acoustical environmental distortions to the
audio samples such as reverberation, deamplification, and background noise. The
second realism is the non-targeted class: people may exhibit more emotions than
the total number of classes of emotions that the deep learning model is trained to
classify.

Chapter 4 also deals with the task-specific realism that arises from the interaction
between the deep learning model and the complex environment in which it is de-
ployed: deammplification, reverberation, and noise-contamination of audio signals
that occur in this environment.

In Chapters 4 and 6, we develop two unsupervised domain adaptation algorithms
to deal with the realisms: Recall that we have listed four realisms, three of which
have to do with the development stage of the DL models, and domain adaptation is
effective at dealing with these three realisms, because these realisms are the result
of the fact that the training samples (clean, undistorted) have a different distribution
than the samples collected in the CPS where they are environmentally distorted.

In Chapter 5, we deal with the realism that the data-driven deep learning models are
not robust. This is because purely data-driven models to not incorporate real-world
knowledge into them. In Chapter 5, we first acknowledge that there have been
attempts at addressing the brittleness of deep learning models by using graph neural
networks on graph-structured data, but we discover that their results could be further
improved if we add another kind of property, on top of the properties being enforced
by GNN. This kind of property is called the points of interest (POIs), and we shall
elaborate on what POIs are and how to incorporate them during the training of the
deep learning model for traffic speed prediction in the Sections in this Chapter.
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In Chapter 7, we re-confirm the claims demonstrated in Chapter 3 and 4: if you are
aware of the realism (in this case, the acoustical environmental distortion) before-
hand, integrating the realism (environmental distortion) into the training samples
can ensure deployment time success.

In Chapter 8, we deal with the realism which has nothing to do with the training of
the deep learning models - rather, it is a direct result of the outside world, such as
COVID which does not allow for in-person contact so the developers can’t go to the
smart homes where the participants live to deploy the deep learning models.
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C h a p t e r 2

RELATED WORKS

2.1 Detect Emotions in Realistic Home Environments
There have been studies on detecting emotions in smart-home environments. Many
of these do not use speech. For example, Fernandez et al. propose a proof-of-concept
architecture that detects a user’s emotion by analyzing their facial expression and
physiological signals (Fernández-Caballero et al., 2016). Mano et al. propose to
use the facial expression of elderly people to detect their emotions; the emotion
detection classifier can identify when an elderly person needs urgent help (Mano,
2018). Zhao et al. develop EQ-Radio that transmits an RF signal that will bounce
off a person’s body and back to the analyzing device. The RF signal carries the
information of heartbeat and respiration signals that can be teased out and used for
emotion recognition (M. Zhao, Adib, and Katabi, 2016). However, it is not always
feasible to deploy such systems.

Other in-home systems such as Alexa and Siri are providing voice assistance for
access to health-care services and support for reminders, detecting colds, etc. To
date, they do not assess mood. In addtion, there have been works that use a smart
home assistant to detect mood, such as Chatterjee et al. (Chatterjee et al., 2021), but
this work is evaluated only on clean datasets that are not environmentally distorted.
Callisto et al. (Castillo et al., 2018) also propose to use a smart home assistant robot
(and available smart home speakers can fill this role) to detect emotions in smart
homes, but to date this work has been only a proposal.

The works that have focused on using the acoustic modality to detect emotions
on samples that are under various degrees of environmental distortions are by Tri-
antafyllopoulos et al. (Triantafyllopoulos et al., 2019), Dickerson et al. (Dickerson
et al., 2014), and Vrebcevic et al. (Vrebčević, Mĳić, and Petrinović, 2019). The
Deep Residual Network (Triantafyllopoulos et al., 2019) is a scalable deep learning
network that can be used to detect emotions in previously unseen environments due
to its noise-removal procedure. RESONATE (Dickerson et al., 2014) is a reverbera-
tion compensation approach that add reverberation (but not noise or deamplification
effects) to a training corpus in order for a model trained on this corpus to be able
to account for reverberation. After adapting Alex-Net so it is suitable to process
sound, Vrebcevic et al. (Vrebčević, Mĳić, and Petrinović, 2019) train the classifier
on samples that are contaminated with ambient noise (but there are no reverberation
or deamplification effects).

The works that have focused on detecting emotions in real-time include Lech et
al. (Lech et al., 2020) that adapts AlexNet for speech processing but does not deal
with environmental distortions, Cen et al. (Cen et al., 2016) that develops a system
consisting of voice activity detection and emotion recognition. However, Cen et al.
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Work Approach Performance Environmental Distortion

(Datcu and Rothkrantz, 2005) GentleBoost 86.3% ×
(Lugger and Yang, 2007) Linear Discriminant Analyses 81.8% ×
(Altun and Polat, 2007) Support Vector Machine 85.5% ×

(Danisman and Alpkocak, 2008) Ensemble of SVM 86.3% ×
(K. Wang et al., 2015) Fourier Transform + SVM 79.51% ×
(J. Deng et al., 2017) Autoencoder-Based Domain Adaptation 62.0% ×

(Alex, Babu, and Mary, 2018) Convolutional Neural Network 69% ×
(Triantafyllopoulos et al., 2019) Deep Residual Network 86.3% (unweighted aver. recall) ✓

(Dickerson et al., 2014) RESONATE 80% (approximate) ✓
(Vrebčević, Mĳić, and Petrinović, 2019) Alex-Net + Data Augmentation 34.03% ✓

(Burkhardt et al., 2005) Evaluation by Humans 86.0 % ×

Table 2.1: Evaluation of previous works on EMO-DB. The performance, if not
otherwise noted, is measured by accuracy. Three of the works attempt to deal with
environmental distortions. The definition of environmental distortions is defined
differently in different works.

(Cen et al., 2016) is evaluated on a simulated online learning environment so the
testing samples are absent of environmental distortions. Not taking environmental
distortions explicitly into account is a very prevalent problem with works on emotion
detection in real-time or time-sensitive tasks; works that suffer from this problem
also include Stolar et al. (Stolar et al., 2017), Fayek et al. (Fayek, Lech, and
Cavedon, 2015), and Bahreini (Bahreini, Nadolski, and Westera, 2016).

A published summary (Eyben et al., 2015) shows acoustic features or parameters that
have been used for emotion detection, encompassing frequency, time, and amplitude.
Since a huge variety of features are used in different previous works and different
works uses different set of these features, direct comparison and cross-examination
on the effectiveness of the features prove challenging. The summary (Eyben et
al., 2015) proposes that emotions from the datasets analyzed can be represented
by two features: valence, which represents the degree of positivity or negativity
of an expressed emotion, and arousal, which represents the energy or intensity of
the expressed emotion. Trigeorgis et al. (Trigeorgis et al., 2016) use valence and
arousal for emotion detection from speech. The usage of acoustics-based emotion
recognition using valence and arousal extends from emotion classification from
speech to classifying emotions based on music (Grekow, 2018), which provides a
set of features that describe valence and arousal in a musical piece. However, when
it comes to realistic deployments and detecting emotions from speech in the wild,
the features extracted from the raw audio signal must be resistant to both background
noise and various combinations of reverberation factors. The demonstration that the
features descriptive of valence and arousal will not be sensitive to environmental
distortions remains lacking.

Other popular datasets of acted emotional speech include the Surrey Audio-Visual
Expressed Emotion Database (SAVEE) (Haq and Jackson, 2010), the Ryerson
Audio-Visual Database of Emotional Speech and Song (RAVDESS), (Livingstone
and Russo, 2018) and the Crowd-sourced Emotional Multimodal Actors Dataset
(CREMA-D) (Cao et al., 2014). These three datasets consist of both audio-video
and audio-only samples. Other works (Beard et al., 2018), (Ghaleb, Popa, and Aste-
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Work Dataset(s) Approach Accuracy Distortions

(Huang and S. Narayanan, 2018) RAVDESS, SAVEE Shake-Shake Regularization 60.8 % ×
(Beard et al., 2018) SAVEE, CREMA-D LSTM encoder 41.2 % ×

(Ghaleb, Popa, and Asteriadis, 2019) RAVDESS Temporal DNN 67.7 % ×
(Ghaleb, Popa, and Asteriadis, 2019) CREMA-D Temporal DNN 74.0 % ×
(Wĳayasingha and Stankovic, 2021) RAVDESS Noise Mitigation + CNN 81.0 % ✓

(Shchetinin et al., 2020) RAVDESS Noise Mitigation 80.0 % ✓
Our baseline RAVDESS, EMA, CREMA-D, TESS, SAVEE Hierarhical Classifier 94.7 % ✓
Our baseline RAVDESS, EMA, CREMA-D, TESS, SAVEE Hierarhical Classifier 88.4 % ×

Table 2.2: Evaluation of works on SAVEE, CREMA-D, RAVDESS, EMA, TESS.
The performance, if not otherwise noted, is measured by accuracy. The definition
of environmental distortions is defined differently in different works. Except for
the hierarchical classifier, the other items are published state-of-the-art works on
emotion recognition on (a subsets of) the datasets that our solution is trained on.
The hierarchical classifier is developed by us to serve as a baseline that we compare
against our solution because it is trained on the same datasets that our solution is
trained on. On clean samples, our baseline achieves an accuracy of 94.7% which
outperforms the first three baselines (two of which use the same algorithm) evaluated
on clean speech. On environmentally distorted samples, our baseline achieves an
accuracy of 88.47%, which out-performs the last three baselines that are tested with
environmental distortions.

riadis, 2019), (Barros and Wermter, 2016), (Noroozi et al., 2017) seek to exploit the
multi-modality of the datasets, while works such as (Huang and S. Narayanan, 2018)
only use the audio clips from SAVEE and RAVDESS. Despite the high accuracy
achieved by some of the works on one or more of the three multi-modal datasets,
they still haven’t explicitly addressed the issue of environmental distortions. Salekin
et al. (Salekin et al., 2017) publish the Distant Emotion Recognition in which they
select features that are robust to distance and only extract those features when pro-
cessing a speech signal. However this work does not evaluate its model on speech
that are contaminated with background noise, so it is hard to tell if it is robust to
this particular kind of environmental distortion. Another work (Wĳayasingha and
Stankovic, 2021) improves the robustness of speech-based emotion recognition by
considering the magnitude spectrogram and the modified group delay spectrogram.
This work considers both noise and reverberation, but they simply show that their
work is robust noise-contaminated speech samples and there is no evaluation on
how their model fares when different combinations of reverberation factors, such as
the decay factor and diffusion, are combined.

Since confounding emotions are largely overlooked in research papers by the
acoustic-based emotion detection community, we are unable to find any research
that indicates the effort of filtering out confounding emotions so that such samples
will not be sent to the classifier and result in a wrong classification. A possible
approach to discern an emotional utterance sample that is of emotions that the clas-
sifier is not trained to classify is to detect if this sample is within the distribution
of the training samples. Hendrycks et al. discovers that, when wrongly classified,
an out-of-distribution sample results in a generally smaller softmax probability than
an in-distribution sample that is correctly classified (Hendrycks and Gimpel, 2016).



9

Based on this observation, they propose to detect an out-of-distribution sample by
comparing it within the context of the statistics of the softmax probability scores by
all samples (in the testing set). This approach’s performance is improved by Liang
et al. (Liang, Yixuan Li, and Srikant, 2017) who use temperature scaling and input
perturbing for out of distribution detection. Both Liang et al. and Hendrycks et
al.’s approaches are out-perormed by a Mahalanobis distance-based approach: Lee
et al. (K. Lee et al., 2018) proposes a way to detect out-of-distribution samples to
prevent them from being sent to the softmax layer of a deep neural network and
result in a wrong classification. For each training sample, Lee et al. calculate the
activation of the penultimate layer (the layer that will forward its activation to the
output layer) to get the distribution of the training samples. After training, when
a previously unseen sample is sent to the classifier for classification, the activation
of the penultimate layer of the neural network is calculated before being sent to the
output layer. The Mahalanobis distance (Mahalanobis, 1936) from the activation
of the penultimate layer by this previously unseen sample to the distribution of the
activations of the penultimate layers by training samples thisen be calculated. The
Mahalanobis distance measures how many standard deviations a data point is away
from the distribution of a group of data points.

2.2 Detect Conflict in Realistic Home Environments
Unsupervised Domain Adaptation
A large amount of work has been done on UDA by minimizing the dissimilarity
between the distributions of the source and target domains. The common mea-
surements of domain dis-similarity include KL divergence, and maximum mean
discrepancy (MMD). Extensive research on transfer learning is dedicated to min-
imizing the dis-similarity measurements (S. Zhao, Qiu, and Y. He, 2021). The
minimization of dis-similarity measurements is also used with other measurements,
such as classification loss on the source to find features that both discriminate and
are domain-invariant (Tzeng, Hoffman, N. Zhang, et al., 2014). However, the min-
imization of MMD of domains jeopardizes the locality structure of samples and
potentially reduces the effectiveness of transfer learning (L. Zhang et al., 2019).
Also, feature discriminability is also decreased due to the unintentional minimiza-
tion of joint variance of features from source and target sets (Wei Wang et al.,
2020).

Adversarial-based UDA has been a popular sub-field of UDA (Hoffman et al., 2018;
M. Xu et al., 2020; Tzeng, Hoffman, Saenko, et al., 2017; Ganin, Ustinova, et
al., 2016; Tang and K. Jia, 2020). Adversarial-based UDA can be grouped into
generative and non-generative categories. The methods of the generative category
attempt at generating samples to aid the final classification of the target samples. For
example, CyCADA (Hoffman et al., 2018) adapts source samples to appear as if they
are from the target domain, and then trains a category classifier on these adapted
source images with their true labels to classify the target data. Similarly, DM-ADA
trains the generated auxiliary images that are source-like and the category classifier
together from the embeddings of the source and the target domains. The non-
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generative methods attempt to achieve domain confusion, which usually requires a
generator/encoder and a domain label discriminator to engage in a mini-max game.
The discriminator attempts at recognizing the domain label of a given sample, and
the generator/encoder attempts at masking the source images to be target-like, or
vice versa. For example, ADDA (Tzeng, Hoffman, Saenko, et al., 2017) makes the
generator/encoder on the target samples train against a domain label discriminator,
and the goal is to obtain a target generator/encoder that can successfully mask the
target samples as if they were from the source domain. Consequently, a category
classifier trained on the source samples and their true labels can be used to classify
these encoded target samples. RSDA’s (Gu, J. Sun, and Z. Xu, 2020) idea on how to
achieve UDA is similar to the vanilla non-generative idea with the mini-max game,
with a twist that they define the neural networks in the spherical feature space. Our
E-ADDA is in the non-generative category.

Out-Of-Distribution Detection
A lot of attention has been paid to detecting abnormal samples so that they can
be intercepted before being sent to a neural network. Specifically, (Hendrycks and
Gimpel, 2016), (K. Lee et al., 2018), and (Liang, Yixuan Li, and Srikant, 2017) are
three state-of-the-art approaches to detect out-of-distribution samples. Liang et al.
(Liang, Yixuan Li, and Srikant, 2017) observe that fabricating small perturbations
into samples as well as using temperature scaling can separate the softmax scores of
in-distribution and out-of-distribution samples. Lee et al. (K. Lee et al., 2018) use
Mahalanobis distance to separate in-distribution samples from out-of-distribution
ones.

Lee et al. (K. Lee et al., 2018) provide a comparison of the three approaches and
the performances of the three approaches are indicated in Table 2.3, from which
we observe that the Mahalanobis distance based approach outperforms Softmax
Probability (Hendrycks and Gimpel, 2016) and ODIN (Liang, Yixuan Li, and
Srikant, 2017). Therefore, in the rest of the paper, we use the Mahalanobis distance-
based approach for out-of-distribution detection. For details, see Section 3.3.

Softmax Probability Mahalanobis ODIN
Acc. 85.06% 95.75% 91.08%

Table 2.3: The performances of the three state-of-the-art out-of-distribution de-
tection algorithms. The metric is accuracy. The performances are obtained when
training ResNet on CIFAR-10 and SVHN samples are used as out-of-distribution
samples.

There have not been enough works on incorporating out-of-distribution detection
with transfer learning or domain adaptation. Perera et al. (Perera and Patel, 2019)
use an out-of-distribution dataset to improve the performance of a classifier on
in-distribution samples, which is the only work that intends to combine the two
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Figure 2.1: The flowchart of E-ADDA: the pretraining, adversarial training, target
category classifier training and testing phases. In the pretraining phase, the source
encoder 𝐸𝑠 and the source category classifier 𝐹𝑠 are trained end-to-end using the
source samples and their labels. In the adversarial training phase, we freeze the
source encoder 𝐸𝑠 and train the target encoder 𝐸𝑡 and the discriminator 𝐷 adver-
sarially by engaging them in a mini-max game. To train 𝐸𝑡 , in addition to the
adversarial loss, we incorporate the Mahalanobis distance loss defined in Equation
4.4. To train the target category classifier 𝐹𝑡 , we freeze the adversarially trained 𝐸𝑡
and train 𝐹𝑡 using its outputs on the target samples. Note that 𝐹𝑡 is trained using the
pseudo-labels of the target domain samples. During the testing phase, each sample 𝑥
(in the testing set of) the target domain, 𝐸𝑠 (𝑥) and 𝐸𝑡 (𝑥) are calculated to determine
if the domain confusion is successful. If the domain confusion is not successful,
𝐸𝑡 (𝑥) is sent to the target category classifier 𝐹𝑡 instead of 𝐹𝑠.
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knowledge fields. Our work, E-ADDA, is one of the first approaches that use out-
of-distribution to improve the performance of (unsupervised) domain adaptation.

2.3 Incorporate Properties into Models that Are Modeling Cyber Physical
Systems

Traffic forecasting has seen a lot of interest in recent years (X. Wang et al., 2020;
Sutskever, Vinyals, and Le, 2014; Yaguang Li et al., 2017; Z. Wu, Pan, G. Long,
Jiang, and C. Zhang, 2019). In this section, we first talk about the statistical meth-
ods and the methods using classical machine learning such as the Support Vector
Regression (SVR) model. Then, we talk about attempts to use neural networks.
Last but not least, we talk about the recent advances in using graph neural networks
(GNNs) to model the spatiotemporal dependencies that exist inherently in the traffic
data.

Traditional statistical methods for traffic prediction include the historical average
(HA) model. It divides the traffic flow into periods and applies the weighted average
from the previous periods as the result for future prediction. Its drawback is that
it ignores the spatial and temporal dependencies in the traffic data and treats each
period as a stationary and unchanging entity. Classical machine learning methods
such as the SVR model have also shown promise in traffic prediction; however, deep
learning-based methods such as FC-LSTM (Sutskever, Vinyals, and Le, 2014),
which is an improvement over the LSTM model by adding to the LSTM model
hidden units, shows improvement over the classical machine learning methods.

In recent years, researchers have been paying a lot of attention to GNN-inspired
methods, such as the Diffusion Convolutional Recurrent Neural Network (DCRNN)
(Yaguang Li et al., 2017). DCRNN has been proposed. It interprets the traffic
flow as information infusing to each node and diffusing from that node. Similarly,
Graph WavNet (Z. Wu, Pan, G. Long, Jiang, and C. Zhang, 2019) is proposed, using
the stack of the gated TCN and GCN layers that tease out the temporal and spatial
dependencies respectively. MTGNN (Z. Wu, Pan, G. Long, Jiang, Chang, et al.,
2020) is a direct improvement on Graph WavNet in which the authors incorporated
a novel mix-hop propagation layer to further capture the temporal dependencies.
Last but not least, GNN-based methods include ASTGCN (Guo et al., 2019) which
adds the attention mechanism to the vanilla GNN architecture, STSGCN (Song
et al., 2020) which pays more attention to the heterogeneity of the spatiotemporal
correlations in traffic flow data, GMAN (Zheng et al., 2020) which stacks up the
spatial attention and temporal attention mechanism, and DGCRN (F. Li et al., 2021)
that interprets the graph as a dynamic entity in which the spatial and temporal
correlations are captured by the dynamic graph convolutional recurrent model.

2.4 Use GAN to Generate Domain Agnostic Samples
In this Section we present two important areas of research related to our work: the
Generative Adversarial Nets (GANs), and recent advances in domain adaptation.
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Generative Adversarial Nets
Goodfellow et al. (Goodfellow, Pouget-Abadie, et al., 2014) propose the original
GAN which consists of two neural nets: the discriminator and the generator. The
two nets engage in a minimax game where the generator attempts to generate images
from noise to fool the discriminator, while the discriminator attempts to distinguish
generated images from real ones. Inspired by this work, works such as the CGAN
(Mirza and Osindero, 2014) and ACGAN (Odena, Olah, and Shlens, 2017) attempt
to regulate the classes of the generated images. The CGAN (Mirza and Osindero,
2014) is constructed in the way that, during training, the label information is fed to
both the generator and the discriminator. The discriminator of the ACGAN (Odena,
Olah, and Shlens, 2017) has two objective functions: to maximize the log likelihood
that a given sample is of the correct source (generated or real), and to maximize the
log likelihood that the label (which class is this sample from) of the sample is correct.
Moving past the GANs that leverage label information, another set of GANs focus
on cycle consistency of the generated images. For example, the CycleGAN (J.-Y.
Zhu et al., 2017) employs two generators, one to translate an image from the source
to the target and the other to translate back a translated image by the first generator.
A cycle consistency loss is added to minimize the discrepancy between an original,
unaltered image, and the image translated by the first generator and then translated
back by the second generator. StarGAN (Choi et al., 2018) addresses the scalability
issue that different GAN models need to be created for all pairs of domains. Unlike
the previous works (Mirza and Osindero, 2014; Odena, Olah, and Shlens, 2017)
which use only one generator, the MiddleGAN employs two discriminators and one
generator and aims to generate samples that are similar to both the source domain
samples and the target domain samples. MiddleGAN is a GAN designed specifically
for Domain Adaptation while the other previous works on GAN mentioned in this
section seek to generate realistic samples or achieve style transfer.

(Unsupervised) Domain Adaptation Using Adversarial Approaches
There are two types of (unsupervised) domain adaptation methods using generative
approaches.

The first type is non-generative, which aims to achieve domain confusion via adver-
sarial training. The MiddleGAN is not non-generative, but it is adversarial-based, so
it is only fit that we elaborate on the advances of this type of methods. The general
idea behind this type of methods is that an encoder-generator and a domain dis-
criminator engage in a mini-max game in which the domain discriminator is trained
to differentiate the origin of a sample (source or target) and the encoder-generator
is trained to mask the domain labels of samples. RSDA (Gu, J. Sun, and Z. Xu,
2020) proposes to engage the encoder-generator and the domain discriminator in the
mini-max game, but their novelty is that the mini-max game happens in the spherical
space. Specifically, RSDA consists of a spherical classifier to predict class labels
and a spherical domain discriminator to predict domain labels. ADDA (Tzeng,
Hoffman, Saenko, et al., 2017) is another non-generative adversarial approach - it
achieves domain confusion by encoding the source and target samples and training
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the two encoder-generators with the domain discriminator in the mini-max game.
In DANN (Ganin and Lempitsky, 2015), the domain discriminator is connected to
a gradient reversal layer (GRL), which multiplies the gradient with a negative num-
ber during the back-propagation process. This results in the maximization of the
discriminator loss and ensures the feature representations of the source and target
domains are similar. In DADA (Tang and K. Jia, 2020), the authors develop an ad-
versarial objective that results in the inhibitory relationships of the class and domain
predictions. In other words, the domain output and the true class output compete
with each other, which results in the explicit alignment of the joint distribution and
consequently improves the performance of predicting the target data. The second
type is generative, which aims at generating samples to aid in the cause of a better
performance in the target data classification. For example, DM-ADA (M. Xu et al.,
2020) trains the target classifier while generating samples that are source-like from
the embeddings learned of both the source and the target domains. The generated
samples are theoretically compelled to appear as if they were samples from the
source domain whereas the input samples’ class information is preserved. Another
example, CYCADA (Hoffman et al., 2017) attempts to obtain adapted pixel-level
representations and feature-level representations. Structural consistency is enforced
both locally and globally via cycle-consistency loss and semantic loss. As a result,
CYCADA adapts the source samples to appear as if they are sampled from the target
domain. The MiddleGAN is similar to DM-ADA and CYCADA because it also gen-
erates new samples to aid the process of training a target label classifier. However,
existing generative adversarial solutions aim at directly adapting source samples
to be target-like (CYCADA), or the other way around (DM-ADA), meanwhile the
MiddleGAN aims to generate samples that are, distribution-wise, in the middle of
the source and the target domains.

2.5 Real Deployments in which Realisms Are Present
In this Related Works section, we discuss not only the state-of-the-art of conflict
detection but also the components required to make deploying the conflict detection
model possible: the state-of-the-art on both VAD and SID.

Voice Activity Detection
There have been lots of work on voice activity detection (VAD) so we only discuss
the recent advances in the field. MarbleNet (F. Jia, Majumdar, and Ginsburg, 2021)
uses deep residual network consisting of blocks of 1-D time-channel separable
convolution, able to achieve the state-of-the-art performance with the advantage that
the number of their parameters is significantly smaller. The robustness of MarbleNet
is also extensively studied to demonstrate that it is robust to real-world acoustical
distortions. Using teacher-student training, Dinkel et al. (Dinkel et al., 2021) also
strive to train a model that is robust to real-world acoustic distortions. Dinkel et
al. identify that traditional VAD algorithms are trained on data devoid of such
acoustic distortions, and therefore their usage is limited to data without the acoustic
distortions that are inevitable in the real world, rending them unable to perform well
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in real-world settings. Other works on VAD include Wang et al. (Weiqing Wang,
Qin, and M. Li, 2022) that uses a cross channel attention based model to achieve
voice activity detection in the M2met challenge, Braun et al. (Braun and Tashev,
2021) that is specifically concerned about dealing with the robustness issue of many
state-of-the-art models. What is worth-noting is that, some works developed for
other purposes such as transcription, can be used as voice activity detection models.
For example, the Google speech Recognition (GSR), a transcription service, outputs
the transcribed sentence from an audio clip if that audio clip is speech, and it will
throw an exception is the audio clip is silence. It is worth noting that although works
such as MarbleNet (F. Jia, Majumdar, and Ginsburg, 2021) and Dinkel et al. (Dinkel
et al., 2021) attempt to ensure that they work on datasets that account for realism
to be encountered in real, designated environments in which the algorithms are to
be deployed, they do not evaluate their post-deployment performances in the real,
designated environments. Realisms that the VAD model deals with usually arise
from background noise such as footsteps, and the VAD model needs to differentiate
not only silence from human speech but also those background noises from speech.
The realisms that the VAD model faces is simpler than the models that we discuss
in the later sections, the speaker identification (SID) model, the emotion detection
model, and the conflict detection model, which needs to deal with the tv sound as
the speech from the tv could affect the classification performance of these models.

Speaker Identification
Again, the works in the field of speaker identification (SID) are abundant, so we
only discuss the recent advances in the field. Chen et al. (L. Chen, Ravichandran,
and Stolcke, 2021) introduce a graph-based speaker identification model that is
reliant on speaker label inference. It is particularly concerned with the task of SID
in household scenarios. WavLM (S. Chen et al., 2022) recognizes that the speech
content by by speakers contains multi-faceted information such as the identities of
the speakers, the content of the speech, and paralinguistics. WavLM is propsoed
as a pre-trained model that can be used to be fine-tuned for the purpose of various
speech recognition tasks such as speaker identification. Snyder et al. (Snyder et
al., 2018) proposes an xvector, the results of mapping variable-length spoken clips
to fixed-dimensional embeddings. Again, works such as Chen et al. (L. Chen,
Ravichandran, and Stolcke, 2021) evaluate their algorithms on datasets in which the
realism to be encountered in real, designated environments in which the algorithms
are to be deployed, but no post-deployment evaluation is presented in such works
to show if their approaches to deal with the realism are successful. Realisms that
the SID model faces arise from background noise, especially the tv sounds. Note
that the realisms that the SID model needs to deal with are more complex than the
realisms that the VAD model needs to deal with, as voice from the tv could confound
the model from correctly identifying the identity of the speaker in an audio clip. In
other words, the SID model needs to be able to deal with more complex background
noise (more complex acoustical realisms) than the VAD model.



16

Conflict Detection
There have been several attempts to detect verbal conflict using sound signals that
a microphone picks up from the ambient environment. A work (Lefter and Jonker,
2017) creates verbal conflict between pairs of a student and an actor who act out
conflict. From the generated conflict episode, it is observed that overlapped speech is
an important indicator of interpersonal conflict (Lefter and Jonker, 2017). However,
they did not create a model of automatic conflict detection based on their conclusion.
Based on the fact that repetition of parts of speech, such as syllables, phrases and
words, is indicative of interpersonal conflict, another work (Letcher et al., 2018) de-
velops a repetition detection model that uses the audio files collected by the on-body
sensors of police officers to detect conflict. However, the interpersonal conflicts
that police officers encounter during their jobs are not the same as every-day inter-
personal conflicts that take place in households between arguing family members.
The state-of-the-art modules on automatic conflict detection using speech (Caraty
and Montacié, 2015; Grezes, Richards, and Rosenberg, 2013), achieve satisfactory
performance on their respective datasets, but their approaches are not evaluated to
demonstrate if acoustic distortions of noise, distance, and reverberation affect the
results. As a result, the automatic detection of every-day harmful interpersonal
conflicts among people in home environments remains unsolved. Again, in addi-
tion to the realisms such as reverberation, common indoor background noise, and
deamplification, the conflict detection model, just as the emotion detection model,
needs to deal with the realisms that are the tv sound: the characters on the tv might
be in a verbal conflict (as the background sound for the participants whose conflict
we want to monitor), which can confound the conflict detection model.
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C h a p t e r 3

DETECT EMOTIONS IN REALISTIC HOME ENVIRONMENTS

Chapter 3 deals with realisms that arise in a specific application: detecting emotions
from people’s voices. The realism in this Chapter is that in a complex cyber
physical environment such as a smart home, the acoustic signals are reverberated,
deamplified, and contaminated with background noise. A second realism in this
Section is that people exhibit an many different emotions, but a deep learning model
is only trained on a dataset with finite classes.

There are two constraints posed by the realism that arise in a smart home if we want
to detect the emotions of a registered speaker. The first constraint is environment dis-
tortions that consist of room reverberation, deamplification effect, and background
noise. Reverberation occurs when audio signals bounce off of the furniture in the
room. Deamplification effect occurs when the speaker is not right next to the mi-
crophone. Background noise such as cutlery sounds and object impact sounds is an
inevitable part of human daily life. These three types of environmental distortions
make the audio samples’ quality deteriorate. The deteriorated audio samples have
a different distribution compared to the clean samples collected in controlled lab
environments with high-end acoustic equipment that maximizes the mitigation of
the effect of environmental distortions on audio samples. The second constraint is
that a deep learning classifier is trained on a dataset with a finite number of classes
of emotions, whereas humans are capable of expressing a lot more emotions than
the emotion categories that appear in the dataset on which the deep learning model
is trained. When the speaker demonstrates an emotion not registered by the dataset,
the deep learning model has no choice but to classify it as one of the classes in the
dataset, therefore making a mistake. The two constraints must be dealt with in order
for a deep learning model to detect emotions in realistic home environments.

3.1 Introduction
Many research papers from the field of psychology (Gross and Muñoz, 1995),
(Cheng, Friesen, and Adekola, 2019) (Gross, H. Uusberg, and A. Uusberg, 2019),
(Cai et al., 2018) have shown that emotional health is a crucial part of one’s well-
being. The rapid development of machine learning in the field of acoustic signal
processing has resulted in a surge of interest in detecting emotions from speech.
Recent publications (Jalili et al., 2018), (Fernandes et al., 2018), (Choudhury et al.,
2018), (Zamil et al., 2019) have classified emotions based only on acoustics with
no visual images. These acoustics-based emotion detection algorithms have the
potential to monitor people’s emotions 24 hours a day and consequently play a vital
role in maintaining people’s emotional well-being. For example, in one important
application, family or informal caregivers for persons with dementia can benefit
from these algorithms. These caregivers are twice as likely to experience emotional
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difficulties compared to the caregivers of patients living with diseases other than
dementia (Gaugler et al., 2019). Because long-term untreated emotional difficulties
are linked to mental health disorders, helping the caregivers of persons with de-
mentia become aware of their emotions is of paramount importance. However, it is
impractical to appoint a human professionally trained to detect the onset of various
emotions in the household of each pair of dementia caregiver and care recipient
dyad. Therefore, in this application area, the need for emotion detection algorithms
is pressing. It is also well known that many other in-home and in-office applications
can also benefit from detecting emotions.

The development of machine learning in the field of speech-based emotion recog-
nition has produced solutions such as (Alex, Babu, and Mary, 2018), (Triantafyl-
lopoulos et al., 2019), (K. Wang et al., 2015). The early works in speech-based
emotion detection were developed for clean and acted speech and for a fixed set of
emotions such as happiness, anger, sadness, and neutrality. One caveat with using
such datasets to develop an emotion detection algorithm is that the datasets and
algorithms assume that people only exhibit one of those emotions. Recent works
have considered the reality of speech-based emotion recognition by taking into ac-
count the effect of environmental distortions such as de-amplification, background
noise, and reverberation caused by sound signals bouncing on objects. However,
these solutions often consider one dataset at a time and consider that all emotions
are accounted for in the model developed on that one dataset.

In spite of the progress made on emotion detection from speech, challenges remain
to more accurately handle in the wild situations and to identify emotions of interest
among the vast array of human emotions exhibited by individuals in every day life.
Out of the state-of-the-art algorithms published on emotion recognition (Huang
and S. Narayanan, 2018), (Beard et al., 2018), (Ghaleb, Popa, and Asteriadis,
2019), (Salekin et al., 2017), (Wĳayasingha and Stankovic, 2021), (Shchetinin et
al., 2020), in Table 2.2, only three of them deals with environmental distortions such
as deamplification, background noise, and reverberation. Out of the three works that
deals with environmental distortions, there is no evaluation on how their algorithm
fares when different combination of reverberation factors, such as the decay factor
and diffusion, are combined.

Based on the state-of-the-art in this field, Key Challenges for speech-based emotion
detection are:

• Many speech-based emotion detection algorithms are developed on datasets
of either clean speech or speech that are environmentally distorted in various
degrees, but they assume that people will only exhibit one of the emotions
accounted for in the dataset.

• The effect that environmental distortions has on the classification of dif-
ferent emotions is not well studied, because, despite that there exist works
(Shchetinin et al., 2020), (Wĳayasingha and Stankovic, 2021) that take envi-
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Dataset HAP ANG NEU SAD SUR FEA DIS CAL

CREMA-D ✓ ✓ ✓ ✓ × ✓ ✓ ×
RAVDESS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SAVEE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×
TESS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×
EMA ✓ ✓ ✓ ✓ × × × ×

Table 3.1: The components of the original datasets: CREMA-D, SAVEE,
RAVDESS, TESS, and EMA. The emotions in this Table are: Happiness, Anger,
Neutrality, Sadness, Surprise, Fear, Disgust, and Calm.

ronmental distortions into account, they don’t study to what extent does each
environmental distortion affect the classification of different emotions.

The main contributions of this work are:

• We created a combined CNN and out of data distribution (OOD) solution
that performs in the range of 90% accuracy even in the presence of non-
targeted emotions, 11 realistic home noises, deamplification due to distance
from the microphones, and reverberations due to different room types. This
is a significant improvement over a state-of-the-art model, the hierarchical
classifier described in Section 5.2 whose accuracy over the same testing set
(that includes environmentally distorted samples and samples of non-targeted
class) is 56.2%. The hierarchical classifier outperforms five state-of-the-art
models on samples with and without environmental distortions (See table 2.2).

• To address the first challenge, we show that explicitly training on non-
interested confounding emotions where you have data plus employing an
OOD technique for non-interested emotions where you don’t have data out-
performs using just an OOD for all non-interested emotions by more than
10%.

• To address the second challenge, we demonstrate how different environmental
distortions affect the classification results: background noise and deamplifica-
tion have the most impact on the decrease of classification accuracy by 7.3%,
followed by room reverberation that results in the decrease of classification
accuracy by 4.5%.

• Accurate mood detection by our solution allows the emotions of users in a
smart home to be automatically detected in a passive manner. Upon detection,
while not part of this thesis, relaxation and mindfulness techniques that have
been shown to alleviate unhealthy mood can be recommended to the users.
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3.2 Synthetic Datasets
There are 5 well known datasets used for emotion detection: CREMA-D, SAVEE,
RAVDESS, TESS, and EMA. Table 3.1 shows what emotional utterances are in
each of the datasets. Even combining these datasets results in too limited data
and that data would not account well for noise, reverberation and deamplification.
Consequently, we not only combine these 5 datasets to provide more samples and
to be more general, but we also develop multiple synthetic datasets. These datasets
include clean speech (to serve as a baseline), noisy speech, reverberated speech, and
combining all the factors and adding deamplification. This enables the evaluation
to show the effects of each factor as well as the overall situation that closely repre-
sents realistic environments. The following subsections describe how we built the
synthetic datasets from the five publicly available sets of emotional speech. We also
describe how we create out of distribution samples to test the case when humans
exhibit emotions that are not accounted for in the training.

The fact that all five of the publicly available datasets have happy, angry, neutral, and
sad classes suggests that these four emotions are acknowledged to be commonplace,
but distinctive enough to be separated from other emotions. As a result, these
four classes of emotions are also included in our synthetic datasets as emotions
of interest. In addition to these four classes, we also have a class of confounding
emotions, which are emotions that are distinct enough to not be confused with
any of the four commonplace emotions. Because surprise is similar to happiness
(for example, TESS lists the surprised emotional utterances are speech samples of
"pleasant surprise") (Dupuis and Pichora-Fuller, 2010), and boredom is similar to
neutrality, surprise and boredom are not considered confounding emotions, rather
variations of happiness and neutrality. This leaves us with two confounding emotions
- fear and disgust, and one class of out-of-distribution emotion, calmness. The class
of confounding emotions in our synthetic datasets consists of fearful and disgusted
speech samples.

Generate padded samples that are otherwise not environmentally distorted,
denoted as D1
After getting rid of corrupted and otherwise unusable samples from the five sets of
emotional speech, we end up with the set of clean audio samples of various lengths.
Since most of the audio clips are less than or equal to 4 seconds, we pad each of them
into a 5-second window. In order to do the padding, we first generate a 5-second
segment of pure silence audio clip and randomly decide the index of a frame in
the 5-second segment and overlay a sample of emotional speech with the silence
with that frame index as the starting point. This strategy of padding results in a
more diverse set of samples of emotional speech in comparison to the strategy in
which each sample of emotional speech is overlaid with the silence segment starting
universally at a fixed index. Our padding strategy also results in a more realistic
dataset that resembles the set of emotional speech segments collected in the wild,
as it is unreasonable to expect that each speech segment is perfectly captured by the
microphone right when the first syllable of the segment is spoken. By providing
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Event Instances

(object) rustling 60
(object) snapping 57

cupboard 40
cutlery 76
dishes 151

drawers 51
glass jingling 36
object impact 250

people walking 54
washing dishes 84

water tap running 47

Table 3.2: Events that are present in the background noise collected from real homes
from the dataset (Mesaros, Heittola, and Virtanen, 2016). All of them are covered
in the process of contaminating audio samples with background noise.

a more diverse and more realistic way of padding, we increase the diversity of our
dataset and this contributes to the robustness of the classifier.

The complete set of generated clean padded samples is referred as D1. In D1,
there are 1792 happy samples, 1793 angry samples, 1573 neutral samples, 1793 sad
samples, and 1837 samples of confounding speech. In total, there are 8788 samples.

Generate de-amplified, noise-contaminated samples, denoted as D2
For each audio clip in D1, we create two copies of them. For each of the two
copies, we randomly de-amplify it with 𝑚 decibels such that 𝑚 ≤ 12. Then, we
randomly choose among the dataset of background noise collected in real homes
which are around 5-minutes long; within a certain chosen clip of background noise
in real home environments, we randomly take a 5-second audio segment from it,
and overlay it with the de-amplified sample. Table 7.2 illustrates the events that
are present in these audio clips of home environments. The way we overlay the
background noise clips with the duplicate samples ensures that the household events
in Table 7.2 are present in the resulted audio clips of the overlaying.

The set of de-amplified, noise-contaminated samples is referred as D2. In D2,
there are 3584 happy samples, 3586 angry samples, 3146 neutral samples, 3586
sad samples, and 3674 samples of confounding speech. In total, there are 17576
samples.

Generate reverberated samples, denoted as D3
For each audio clip in D1, we duplicate it once. The duplication is then reverberated.
The reverberation effect is generated by the combination of three reverberation
factors: the wet/dry ratio 𝑟, diffusion 𝑑, and the decay factor 𝑓 . Each time an
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audio sample is reverberated, a random set of values for the wet/dry ratio, diffusion,
and the decay factor is generated. The choice of the reverberation parameters
and the set of their values is also used in DER (Distant Emotion Recognition)
(Zeya Chen, Mohsin Y. Ahmed, et al., 2019b) which seeks to solve the problem
of speaker identification by generating different reverberation models to represent
difficult rooms in which a speaker might be present. Their approach yields almost
zero error rate when tested in real-time when human participants were speaking in
a room where a microphone array was present. The performance achieved by DER
indicates that the different combinations of the given reverberation parameters and
their given ranges are able to describe typical indoor environments. Therefore, we
adopt the same reverberation model to change the audio samples as if they were
collected in the indoor environments described by the different combinations of the
reverberation parameters.

The set of reverberated samples is referred as D3. In D3, there are 1792 happy
samples, 1793 angry samples, 1573 neutral samples, 1793 sad samples, and 1542
samples of confounding speech. In total, there are 8493 samples.

Generate samples that are de-amplified, noise-contaminated, and reverberated,
denoted as D4
For each audio clip in D2 that is not of a confounding emotion, we duplicate it once.
For each duplication, we reverberate it in the same way as we obtain the reverberated
samples in D3. The set of samples that are de-amplified, noise-contaminated, and
reverberated is denoted as D4. In D4, there are 3584 happy samples, 3586 angry
samples, 3146 neutral samples, and 3586 sad samples. In total, there are 13902
samples.

D = ∪𝑛𝑖=1D𝑖, 𝑛 = 4 (3.1)

∩𝑛𝑖=1D𝑖 = ∅, 𝑛 = 4 (3.2)

Training and testing sets, denoted as D𝑡𝑟𝑎𝑖𝑛 and D𝑡𝑒𝑠𝑡

After generating the above synthetic datasets we take the union of them for overall
evaluation. We split the union of the synthetic datasets into training and testing sets.
To ensure that all the emotion classes are equally represented in both the training
and testing sets, we randomly select 80% of confounding samples, 80% of happy
samples, 80% of angry samples, 80% of neutral samples, 80% of sad samples and
use them for training, while the rest of the samples are used for testing. The 80% of
samples selected from an emotion consists of samples from D1, D2, D3, D4 so the
environmental distortions and their combination are accounted for the testing set.

Let D𝑡𝑟𝑎𝑖𝑛 denote the training set and D𝑡𝑒𝑠𝑡 denote the testing set. Equation 3.3
describes the relationship between the entirety of the synthetic datasets, D, and
D𝑡𝑟𝑎𝑖𝑛 and D𝑡𝑒𝑠𝑡 . The mutual exclusion of D𝑡𝑟𝑎𝑖𝑛 and D𝑡𝑒𝑠𝑡 is described in Equation
3.4.
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D = D𝑡𝑒𝑠𝑡 ∪ D𝑡𝑟𝑎𝑖𝑛 (3.3)

D𝑡𝑒𝑠𝑡 ∩ D𝑡𝑟𝑎𝑖𝑛 = ∅ (3.4)

Equations 3.5 and 3.6 describe the subsets of the training and testing sets based on
the subsets’ relationship to D1, D2, D3, and D4. Each of D𝑖, 𝑖 ∈ {1, 2, 3, 4} shares
some members with the training set. Similarly, it also shares some members with
the testing set. For example, D𝑡𝑟𝑎𝑖𝑛,1 denotes the set of samples in the training set
that are not distorted in anyway, and D𝑡𝑒𝑠𝑡,3 denotes the set of samples in the testing
set that are reverberated, but are neither deamplified nor contaminated with noise.

D𝑡𝑟𝑎𝑖𝑛,𝑖 = D𝑡𝑟𝑎𝑖𝑛 ∩ D𝑖, 𝑖 ∈ {1, 2, 3, 4} (3.5)

D𝑡𝑒𝑠𝑡,𝑖 = D𝑡𝑒𝑠𝑡 ∩ D𝑖, 𝑖 ∈ {1, 2, 3, 4} (3.6)

Generate samples that are out of the distribution of the training and testing
sets
We have addressed the importance of considering confounding emotions. However,
the number of confounding emotion classes to be included in the training and
testing sets is finite. If an emotional speech segment is not within the distribution of
the samples of interested and confounding emotions in the training set, this speech
segment does not belong to any of the interested or confounding classes. Classifying
such a sample will be pointless, as the classifier will make mistakes on classifying
it. Therefore, out-of-distribution detection is crucial, and it will further assist in
filtering out emotional utterances that are not of the interested classes.

We generate out-of-distribution samples to test the performance of the out-of-
distribution technique. We use calm speech segments from TESS as out-of-
distribution samples, because in-distribution samples will be happy, angry, neutral,
sad, or confounding (disgusted or fearful). We generate synthetic calm samples
in the same way that we generate synthetic samples of other emotions. First, we
pad them to 5-second window, following the exact step described in Section 3.1.
This group of padded but not otherwise environmentally distorted calm samples is
represented by 𝑂1. Then, we create three copies of them. For the two copies of
each padded calm sample, we de-amplify them and contaminate them with noise,
as described in Section 3.2. This group of calm samples is represented by 𝑂2. The
other copy of the padded calm sample is reverberated, following the same procedure
described in Section 3.3. This group of calm samples is represented by𝑂3. Then, we
make a copy of the calm samples that are de-amplified, noise-contaminated, but not
reverberated. For all the copies, we reverberate them, so they become de-amplified,
noise-contaminated, and reverberated. This group of calm speech segments is rep-
resented by 𝑂4. Collectively, the entire set of calm speech segments is represented
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Low-Level Descriptors (LLD’s) Amounts

Mel-Frequency cepstral coefficients (MFCC) 1-13 104
Delta coefficients for MFCC 1-13 104

Zero-crossing rates 8
Delta coefficients for zero-crossing rates 8
Root-mean-square signal frame energy 8

Delta coefficients for root-mean-square signal frame energy 8
Spectral centroid features 8

Delta coefficients for the spectral centroid related features 8
Pitch-related features 8

Delta coefficients for the pitch-related features 8
Total amount 272

Table 3.3: The 272 low-level descriptor features

by 𝑂, which is the union of 𝑂1, 𝑂2, 𝑂3, and 𝑂4. Note that these calm speech
segments are in neither training nor testing sets.

3.3 Feature Selection
In this work we use 272 low-level descriptor features associated with emotions
because these are common to many previous solutions such as (Salekin et al., 2017).
Table 3.3 provides a summary of these features.

3.4 Solution
Overview
To illustrate the importance of considering confounding emotions, we have devel-
oped two emotion detection algorithms. One of the algorithms serves as a baseline
and is a hierarchical structure that consists of 3 CNN’s and this algorithm only has
four classes (section 5.4). It is able to achieve high accuracy even in the presence
of background noise, de-amplification, and reverberation, under the condition that
all audio clips passed to this structure are happy, angry, neutral, or sad utterances.
However, as the Evaluation section shows, the accuracy significantly drops once the
condition no longer holds - in other words, the structure fails to perform adequately
if speech samples of confounding emotions are added which is the typical situation
in the real world.

The second algorithm (sections 5.2 and 5.3) is our solution. Due to the importance
of considering confounding emotions, our solution is a CNN classifier that has five
classes - confounding emotions (emotions that we are not interested in, but for which
we have data), happiness, anger, neutral, and sadness and to these 5 classes we add
an OOD component to capture confounding emotions where we do not have data.

Our solution works with 5-second audio clips. If the input is shorter than 5-seconds,
we pad it with the padding algorithm described in the synthetic datasets section.
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Note that the authors of (Salekin et al., 2017) show that 5-second audio samples
obtained from padding the original samples from datasets yields high accuracy
across various speaker-to-microphone distances. After making the input to be
exactly 5-seconds long, we slice it into 48 small, overlapping frames, each of which
lasts for 25 ms. From each small frame, we obtain 272 LLD features. As a result,
the input of our classifier is a tensor of 48 frames × 272 channels per frame. The
hyper-parameters we choose are provided in (Salekin et al., 2017), as these values
for the hyper-parameters are shown to achieve good classification accuracy.

The 5-Class CNN Classifier
Although neural networks sometimes yield good performance with minimally tuned
hyper-parameters, (Goodfellow, Bengio, and Courville, 2016) suggests that perfor-
mance will significantly increase if a thorough tuning of hyper-parameters is per-
formed. Grid search is recommended by (Goodfellow, Bengio, and Courville, 2016)
as an approach to perform hyper-parameter optimization when there are relatively
few hyper-parameters. When performing grid search over a set of hyper-parameters,
the programmer assigns a small, finite set of values for each hyper-parameter. The
grid search algorithm loops over the combinations of the specified hyper-parameters
and trains the model multiple times to iterate through the combinations. The combi-
nation of the hyper-parameters that results in the model that yields the least validation
set error is the final choice of the hyper-parameters.

The hyper-parameters that we choose to tune are a standard choice for tuning CNN’s.
Due to the relatively small number of the hyper-parameters we have, we choose to
perform grid search on them, instead of random search, another hyper-parameter
optimization algorithm that is quicker but less thorough. We have performed grid
search over the following hyper-parameters: epoch, batch size, the number of convo-
lutional layers, the number of kernels in each layer, the size of kernels in each layer,
the stride size of max-pooling, the activation function (ReLU and Leaky ReLU), the
optimizer, the learning rate, the decay ratio, and the size of the dense layers after
the convolutional neural nets are flattened. Our final model consists of four convo-
lutional layers. After the output of the final CNN is flattened, three dense layers of
2048 neurons are attached. We choose the adam optimizer with the learning rate as
1e-4 and decay ratio as 0. The optimal batch size is 128. The optimal epoch is 1000.
The optimal filter size is 3 (filters are measured by the number of small frames).

The classifier is implemented with Keras, a neural network API using Tensorflow
backend and trained on the samples in the training set, D𝑡𝑟𝑎𝑖𝑛. For each sample
𝑿 in D𝑡𝑟𝑎𝑖𝑛, we slice them into 48 overlapping small frames 𝑥1...𝑥𝑛, 𝑛 = 48 with
hop length of 5. Hop length is defined as the amount of samples between two
small frames. Librosa, a python package on acoustic signal analysis, is used to
extract the 272 features for each small frames 𝑠𝑖 such that 𝑖 ∈ {1, ..., 48}. As
we have described in Table 3.3, the features can be categorized into (1) MFCC’s
1-13, (2) the delta coefficients of MFCC’s 1-13, (3) zero-crossing rates, (4) the
delta-coefficients of zero-crossing rates, (5) RMSE, (6) delta-coefficients of RMSE,
(7) spectral centroids, (8) delta-coefficient of spectral centroids, (9) pitch-related
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Softmax Distribution ODIN Mahalanobis

Accuracy 85.0% 91.0% 95.7

Table 3.4: The detection accuracy of three out-of-distribution detection algorithms.
The in-distribution samples are CIFAR-10 samples. Samples of SVHN are out-of-
distribution samples (K. Lee et al., 2018). The metric is accuracy.

features, and (10) their delta-coefficients. For each of these categories, we calculate
the minimum, the maximum, the median, the mean, the standard deviation, the
variability, the skewness, and the kurtosis. This indicates that, for the first category,
we have 13 × 8 features, for the second category, we have 13 × 8, for the rest of the
categories, each category has 1×8 features. In total, we have 2×13×8+8×1×8 = 272
features.

The Detection of Out-Of-Distribution Samples
The fifth class (the confounding emotions class) of the classifier described above
is to prevent disgusted and fearful emotional speech segments (as examples of
emotions for which we are not interested in but have data) from being classified as
happiness, anger, neutrality, or sadness. However, this classifier can handle only six
most basic emotions (happiness, anger, neutrality, sadness, fear, and disgust), and
human beings are capable of expressing other emotions. Table 3.1 shows that the
TESS dataset considers calmness to be an emotion category that is different from
the aforementioned six emotions.

In order to further filter out emotional speech segments that are not included by
the 5 emotions, we use the out-of-distribution technique (K. Lee et al., 2018) using
Mahalanobis distance. We select this technique because it outperforms two other
major out-of-distribution detection algorithms - softmax Distribution and ODIN
as indicated in Table 3.4. In the following paragraphs, we describe in detail the
Mahalanobis distance-based OOD detection technique.

Let 𝒙𝑖 and 𝑦𝑖 represent a sample in the training set and its label. Let 𝑁𝑐 represent
the number of all samples in the training set whose label is of class 𝑐. Equation
3.7 defines the empirical mean of a class 𝑐 and 𝑓 represents the activation of
the penultimate layer of our 5-class CNN by the input 𝒙𝑖. �̂�𝑐 is the mean of the
activations of the penultimate layer of our 5-class CNN by all samples in the training
set whose label is of class 𝑐.

�̂�𝑐 =
1
𝑁𝑐

𝑁∑︁
𝑖:𝑦𝑖=𝑐

𝑓 (𝒙𝑖) (3.7)

Equation 3.8 (K. Lee et al., 2018) defines the empirical covariance matrix, an
important part required to represent the distribution of the training set. After the
empirical means for all 𝑐 ∈ 𝐶 are calculated, whereas 𝐶 is the set of all possible
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labels, ( 𝑓 (𝒙𝑖) − �̂�𝑐) is used to measure how each samples in the training set deviates
from the empirical mean of all samples in the same class, 𝑐. ( 𝑓 (𝒙𝑖) − �̂�𝑐) ( 𝑓 (𝒙𝑖) −
�̂�𝑐)⊤ results in a symmetric matrix with numbers of the rows and columns equal to
the number of neurons of in the penultimate layer of our 5-class CNN. By looping
through all classes, the empirical covariance matrix of the training set is calculated.

Σ̂ =
1
𝑁

𝐶∑︁
𝑐

𝑁∑︁
𝑖:𝑦𝑖=𝑐

( 𝑓 (𝒙𝑖) − �̂�𝑐) ( 𝑓 (𝒙𝑖) − �̂�𝑐)⊤ (3.8)

After the empirical means for all classes and the covariance matrix for the training
set are computed, we have obtained the two crucial components that collectively
describe the distribution of the training set so that a new incoming sample that is two
many standard deviations away from the this distribution is considered abnormal and
should be prevented from being sent to the output layer of the classifier. Equation
3.9 (K. Lee et al., 2018) describes how to calculate the Mahalanobis distance of a
previously unseen sample 𝒙 to our 5-class CNN after the training phase of the CNN.
Since there are multiple classes, we need to calculate the Mahalanobis distance for
each class 𝑐 based on its 𝜇𝑐. After the calculation of the Mahalanobis distances for
all the classes, we pick the class such that the Mahalanobis distance from the sample
𝒙 is the smallest.

𝐶𝑀 (𝒙) = argmin
𝑐

( 𝑓 (𝒙) − �̂�𝑐)⊤Σ̂−1( 𝑓 (𝒙) − �̂�𝑐) (3.9)

After we obtain the Mahalanobis distance from 𝑥, the previously unseen sample that
we want to classify, we check if its Mahalanobis distance is in a threshold obtained
during the validation phase with direct experiment. If yes, the this sample is in the
distribution of the training set, indicating that it is of happiness, anger, neutrality,
sadness, disgust, or fear. Since it is in distribution, the activation of the penultimate
layer when given 𝑥 will be forwarded to the output layer of the 5-class CNN. If the
sample is out of the distribution of the training set, then it is not of happiness, anger,
neutrality, sadness, disgust and fear. Therefore, forwarding it to the output layer of
our 5-class CNN will result in a wrong classification no matter what, so we do not
forward the penultimate layer’s activation of this sample to the output layer.

The Hierarchical Structure of Classifiers
As mentioned above, to further demonstrate the value of our solution, we compare it
to a hierarchical set of 3 classifiers as a baseline. Hierarchical structures attempt to
leverage the information given by the higher-level classifiers to reduce the complexity
of the problem that lower-level classifiers need to solve (Bennett and Nguyen,
2009). Our hierarchical set of three classifiers is trained on D𝑡𝑟𝑎𝑖𝑛, the same
training set on which our solution is trained, for the purpose of a better comparison
on the performance of the hierarchical structure and our solution. This baseline
demonstrates how a false sense of accuracy can be achieved by only testing on
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targeted emotions when other emotions also exist. We intend to use the hierarchical
structure to prove the hypothesis that a mood detection algorithm that achieves
high accuracy on interested emotions - in our case, happiness, anger, neutrality and
sadness, will not perform adequately in a scenario where confounding emotions are
present.

The hierarchy baseline consists of 3 binary CNN classifiers: 𝑪1, a classifier that
separates happy and angry audio clips from the neutral and sad audio clips, 𝑪2,
the classifier that separates happy and angry audio clips, and 𝑪3 the classifier that
separates neutral and sad audio clips. The three classifiers are trained with the same
batch size, which is 128, the same optimizer, adam, and the same learning rate
(1e-4) and decay (0), and the same kernel size (3 small frames). All of them are
trained in 1000 epochs with an early stop of 50 epochs.

The classifier that separates happy and angry audio clips from the neutral and
sad audio clips, represented as 𝑪1. This 𝑪1 decides if a given audio input is in
either of the two classes: (1) the input is of happy or angry speech; (2) the input
is of neutral or sad speech. This classifier returns a vector of size 2, whereas the
first value represents the score computed by the CNN that this input of emotions is
happiness or anger and the second value, the score for neutrality or sadness. Based
on these scores, the audio input is passed to 𝑪2 or 𝑪3. 𝑪1 is trained on samples of
happiness, anger, neutrality, and sadness in D𝑡𝑟𝑎𝑖𝑛.

The classifier that classifies happy and angry audio clips, represented as 𝑪2. If
𝑪1 decides that a given input is either a happy speech or an angry speech, that input
is passed to this classifier which further determines if the speaker that produced the
audio clip is happy or angry. The output is a vector of size 2, whereas the first value
represents the score that the input is a happy speech and the second value represents
the score that the input is an angry speech. 𝐶2 is trained on samples of happiness
and anger in 𝐷𝑡𝑟𝑎𝑖𝑛.

The classifier that classifies neutral and sad audio clips, represented as 𝑪3. If
𝑪1 decides that a given input is either a neutral speech or a sad speech, the input is
passed to this classifier which further determines if the speaker that produced the
audio clip was neutral or sad. The output is a vector of size 2, whereas the first value
represents the score that the input is a neutral speech and the second value represents
the score that the input is sad speech. 𝐶3 is trained on samples of neutrality and
sadness in 𝐷𝑡𝑟𝑎𝑖𝑛.

3.5 Evaluation
After training, the evaluation is conducted onD𝑡𝑒𝑠𝑡 for both our 5-class CNN solution
and our baseline, the hierarchical classifier.

Evaluation to Show the Necessity of Adding Environmental Distortions to
Training Samples
We place an emphasis on the importance/necessity of adding reverberation, back-
ground noise, and deamplification effect into samples in the training set. Before
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Dataset f1 score
Clean samples in testin set 73.84%

VoxCeleb 17.51%

Table 3.5: The left column consists of the two datasets that the classifier trained on
only the clean samples is evaluated on. The difference in the f1 score demonstrates
the necessity of adding environmental distortions. The metric is f1 score.

we start evaluating our solution, the 5-class classifier, and the baseline we built,
which is the hierarchical classifier, we present experimental results to demonstrate
the importance/necessity of adding environmental distortions; see Table 3.5.

In this experiment, we have trained a classifier using only clean samples of the
five classes (happiness, anger, neutrality, sadness, fear/disgust) from the synthetic
training dataset. For this classifier, we evaluate it in two ways. First, we evaluate
it on samples that are not environmentally distorted. These clean samples are the
samples from the testing set that have not been environmental distorted in any way.
Second, we evaluate it on a subset of a real-life dataset, VoxCeleb.

VoxCeleb (Nagrani, Chung, and Zisserman, 2017) contains utterances extracted
from YouTube videos in which celebrities give talks or attend interviews. We
evaluate the clean classifier on a subset of VoxCeleb. Voxceleb is a very imbalanced
dataset, for there are only 216 angry samples in the entire testing set. Since we want
to have a more balanced dataset, the subset of VoxCeleb we choose consists of: 500
happy samples, 216 angry samples, 500 neutral samples, 500 sad samples, and 500
samples that are not of the happy, angry, neutral, and sad emotions As seen in Table
3.5, the clean classifier yields an f1 score of 73.84% on the not environmentally
distorted samples, but it drops to 17.51% on the subset of the real-life dataset. The
decrease in the performance is by 56.33%. This demonstrates that the classifier
trained on clean speech does not maintain the same level of performance on real-life
dataset. As a result, adding environmental distortions are necessary.

Evaluation on the Hierarchical Structure of CNN’s, the Baseline
The purpose of the hierarchical structure solution is to serve as the baseline, as
stated before. It’s performance is superior to the state-of-the-art on clean samples
without non-targeted emotions. This baseline achieves an accuracy of 94.7%, and
it outperforms 5 state-of-art algorithms on mood detection (see Table 2.2) on clean
samples that do not include non-targeted samples.

We now show that the hierarchy of classifiers, only trained on happy, angry, neutral,
and sad examples, are able to achieve very high accuracy when only evaluated
on these emotions. However, it will always make mistakes if the input is of a
confounding emotion, such as disgust. This is the case of many state-of-the-art
classifiers on emotion detection; they are able to perform accurately only on certain
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Classifier Happy Angry Neutral Sad Overall

𝑪1 99.7% 99.6% 100% 100% 99.8%
𝑪2 95.5% 95.0% 95.3%
𝑪3 92.9% 96.1% 94.6%

Table 3.6: The hierarchical structure evaluated on (D𝑡𝑒𝑠𝑡 \ C) ∩ D1 that contains
only samples of interested emotions that are not environmentally distorted. On the
entire testing set, the hierarchical structure achieves an accuracy of 94.7%. The
metric is accuracy.

Classifier Happy Angry Neutral Sad Overall

𝑪1 95.9% 98.4% 98.4% 98.5% 98.2%
𝑪2 95.4% 94.3% 94.8%
𝑪3 92.2% 92.8% 92.5%

Table 3.7: The hierarchical structure evaluated on (D𝑡𝑒𝑠𝑡 \ C) ∩ D2 that consists
of only samples of interested emotions that are de-amplified and mixed with noise.
The metric is accuracy.

emotions, but they are not expected to be as accurate as they are in environments
where different kinds of emotions are omnipresent. In addition, by evaluating the
hierarchical classifier, we have further confirmed that environmental distortions
affect the classifier’s performance.

The hierarchical structure evaluated on (D𝑡𝑒𝑠𝑡 \ C) ∩ D1

Table 3.6 shows the performance of the hierarchical structure evaluated on (D𝑡𝑒𝑠𝑡 \
C) ∩ D1. Recall that D𝑡𝑒𝑠𝑡 is the testing set, C is the set of every samples of
confounding emotions, and D1 is the set of samples that are not distorted. Thus
(D𝑡𝑒𝑠𝑡\C)∩D1 is the subset of the testing set that contains only happy, angry, neutral,
and sad samples that are not distorted. The three CNN classifiers in the hierarchy
achieve 99.8%, 95.3%, and 94.6% of accuracy respectively, which suggests that,
without environmental distortions, the hierarchy can achieve a very high level of
accuracy, as many state-of-the-art algorithms on mood detection do.

The hierarchical structure evaluated on (D𝑡𝑒𝑠𝑡 \ C) ∩ D2

(D𝑡𝑒𝑠𝑡 \ C) ∩ D2 is the subset of the testing set that contains only happy, angry,
neutral, and sad samples that are de-amplified and then mixed with background
noise. Table 3.7 describes the performance of 𝑪1, 𝑪2, and 𝑪3 when evaluated
only on samples of interested emotions that are de-amplified and contaminated with
background noise. The three CNN classifiers in the hierarchy achieve 98.2%, 94.8%,
and 92.5% of accuracy respectively. The accuracy of the three classifier drops by
1.6%, 0.5%, and 2.1% when compared to their performance on samples of targeted
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Classifier Happy Angry Neutral Sad Overall

𝑪1 99.4% 99.3% 99.6% 99.6% 99.5%
𝑪2 88.9% 89.2% 89.1%
𝑪3 86.1% 93.2% 89.6%

Table 3.8: The hierarchical structure evaluated on (D𝑡𝑒𝑠𝑡 \ C) ∩ D3 that contains
only samples of interested emotions that are reverberated. The metric is accuracy.

Classifier Happy Angry Neutral Sad Overall

𝑪1 95.9% 98.1% 98.4% 98.1% 97.6%
𝑪2 92.3% 89.8% 91.0%
𝑪3 88.4% 91.9% 90.3%

Table 3.9: The hierarchical structure evaluated on D𝑡𝑒𝑠𝑡 \C, that contains all samples
of interested emotions. The metric is accuracy.

emotions that are not distorted, demonstrating that de-amplification and noise have
impact on the performance of the hierarchy but the hierarchical structure is still able
to compete with state-of-the-art mood detection algorithms in terms of accuracy.

The hierarchical structure evaluated on (D𝑡𝑒𝑠𝑡 \ C) ∩ D3.

Table 3.8 shows the hierarchy’s performance in terms of weighted accuracy on the
samples of interested emotions that are reverberated. Compared to their perfor-
mance on samples of interested emotions that are not environmentally distorted,
the accuracy of the three classifiers all drop: 𝑪1’s accuracy drops to 99.5% by
0.3%, 𝑪2’s accuracy drops to 89.1% by 6.2%, 𝑪3’s accuracy drops to 89.6% by 5%.
Reverberation distorts the samples, and the drop of accuracy is expected. The fact
that the drop in accuracy is insignificant illustrates that the hierarchical structure is
robust to reverberation.

Compared to their performance when evaluated on samples of interested emotions
that are distorted by de-amplification and background noise shown in Table 3.7, 𝑪1
is more resistant to reverberation (drop by only 0.3% on reverberated sample), while
𝑪2 and 𝑪3 are more resistant to de-amplification and background noise (drop by
0.5% and 2.1% on samples that are de-amplified and mixed with background noise),
as indicated in Table3.7 and Table 3.8.

The hierarchical structure evaluated on (D𝑡𝑒𝑠𝑡 \ C)

Table 3.9 illustrates the performance of the classifiers evaluated on the samples of
interested emotions in D𝑡𝑟𝑎𝑖𝑛. 𝑪1 achieves an accuracy of 97.6 %. 𝑪2 achieves
an accuracy of 91.0%. 𝑪3 achieves an accuracy of 90.3%. Since D𝑡𝑒𝑠𝑡 \ C is the
set of samples of interested emotions that are either not environmentally distorted
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Classifier Happy Angry Neutral Sad Confounding Overall

𝑪1 95.9% 98.1% 98.4% 98.1% 0% 83.3%
𝑪2 92.3% 89.8% 0% 68.4%
𝑪3 91.9% 90.3% 0% 66.6%

Table 3.10: The hierarchical structure evaluated on D𝑡𝑒𝑠𝑡 , the entire testing set that
contains both samples of interested and confounding emotions. On the entire testing
set, the hierarchical structure achieves an accuracy of 56.2%. The metric is accuracy.

or environmentally distorted by the myriad combinations of the de-amplification
amount measured in decibels, various segment of background noise collected from
real home environments, and the three reverberation factors, this set is descriptive
of speech samples of interested emotions that will take place in home environments.
The high accuracy of the three classifiers demonstrate that the hierarchical structure
on emotion detection of the interested emotions (happiness, anger, neutrality, and
sadness) is robust to environmental distortions in home environments.

The hierarchical structure evaluated on D𝑡𝑒𝑠𝑡

Table 3.10 shows the performance of the three classifiers of the hierarchy when
tested on four of the emotions of interest and the confounding emotion. Table
3.10 shows the disadvantage of a common theme of emotion detection classifiers:
emotions outside those of interest are assumed to not exist. However, many other
emotions may exist in the real world and, thereby, reduce the overall accuracy of
classifiers solely trained on the emotions of interest.

In Table 3.10, the three classifiers still achieve the exact same performance on
the interested emotions, happiness, anger, neutrality, and sadness as Table 3.9.
However, since confounding emotions are introduced and the hierarchical structure
must classify the samples of confounding emotions (fear and disgust) as one of the
interested emotions, it is bound to make mistakes. As a result, 𝑪1, 𝑪2, and 𝑪3
achieves an accuracy of 0% on confounding samples. This result in a significantly
decrease of the their overall performance measured in accuracy: 𝑪1’s accuracy drops
from 97.6% to 83.3%, 𝑪2’s accuracy from 91.0% to 68.4%, and 𝑪3’s accuracy from
90.3% to 66.6%. The deterioration of the performance of the three classifiers in
the hierarchy suggests that classifiers that are trained to achieve very high accuracy
on only interested emotions will not perform adequately when given samples of
confounding emotions.

Evaluation on the 5-class classifier Without Out-Of-Distribution Samples
Next, we evaluate our solution, the 5-class CNN, to understand its performance on
recognizing each emotion with and without environmental distortions.

Tables 3.11 and 3.12 show the evaluation of the 5-class classifier in four differ-
ent scenarios that account for environmental distortions. The first column is the
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Class D𝑡𝑒𝑠𝑡,1 D𝑡𝑒𝑠𝑡,2 D𝑡𝑒𝑠𝑡,3 D𝑡𝑒𝑠𝑡

Happy 92.6% 92.2% 80.2% 89.6%
Angry 92.3% 92.4% 84.8% 88.9%
Neutral 95.9% 91.3% 90.7% 88.7%

Sad 94.9% 88.6% 93.8% 89.1%
Confounding 88.9% 79.0% 78.4% 81.4%

Mean 92.9% 88.4% 85.6% 88.0%

Table 3.11: Evaluation on the 5-class classifier that categorizes its input into cat-
egories: Happiness, Anger, Neutrality, Sadness, and Confounding emotions.The
metrics for evaluation is accuracy. The average is weighted.

D𝑡𝑒𝑠𝑡,1 D𝑡𝑒𝑠𝑡,2 D𝑡𝑒𝑠𝑡,3 D𝑡𝑒𝑠𝑡

f1 score 93.2% 86.1% 87.6% 87.9%

Table 3.12: Evaluation on the 5-class classifier on different subsets of the testing
set. The metric for evaluation is f1 score. The average is weighted. Since our
synthetic dataset is very well balanced, we can see that the f1 scores are very similar
to the scores in Table 3.11. The metric is f1 score.

evaluation on this classifier on samples in the testing set that are padded, but no
environmental distortion is introduced to the sound. The second column is the eval-
uation on this classifier on padded samples that are reverberated. The third column
is the evaluation on this classifier only on padded samples that are de-amplified and
mixed with noise. The last column is the evaluation on this classifier on the entirety
of the testing set. The samples used for evaluation in Table 3.11 are denoted as
D𝑡𝑒𝑠𝑡,𝑘 , 𝑘 = 1, 2, 3, defined as Equation 3.10.

D𝑡𝑒𝑠𝑡,𝑘 = D𝑡𝑒𝑠𝑡 ∩ D𝑘 , 𝑘 = 1, 2, 3 (3.10)

The average accuracy of the 5-class CNN drops from 92.9% when evaluated on
D𝑡𝑒𝑠𝑡,1, the set that resembles the idealistic scenario in which the speaker is close to
the microphone and the room reverberation and background noise have minimal im-
pact on the quality of the sound signal captured by the microphone, to 85.6% when
reverberation is introduced, and to 88.4%, when de-amplification and background
noise are introduced. This indicates that environmental distortions such as rever-
beration, background noise, and de-amplification still affect the performance of the
5-class CNN - which is as expected, since the signal is distorted, the classification
result of any classifier is expected to deteriorate slightly, moderately, or severely de-
pending on the robustness of the classifier. Evaluated on D𝑡𝑒𝑠𝑡 , the weighted average
of accuracy of our classifier is 88.0%, which is only a 4.9% drop of accuracy from
92.9% obtained from the evaluation on the ideal D𝑡𝑒𝑠𝑡,1 dataset. In other words,
our 5-class CNN deteriorates only by 4.9%, despite the various combinations of en-
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vironmental distortions that are collectively illustrated by the reverberation factors
(the wet/dry ratio, decay factor, and diffusion), the number of value measured in
decibels deduced from the amplitude, and the various background noise from home
environments.

The previous paragraph discusses the overall performance of the classifier inD𝑡𝑒𝑠𝑡,𝑖, 𝑖 =

{1, 2, 3} and D𝑡𝑒𝑠𝑡 , but we can also observe how the classifier performs in the four
scenarios on each emotion. Its accuracy on happiness drops from 92.6% on happy
samples in D𝑡𝑒𝑠𝑡,1 to 80.2% on happy samples in D𝑡𝑒𝑠𝑡,2 when reverberation is in-
troduced; meanwhile, the accuracy on happy samples in D𝑡𝑒𝑠𝑡,1 drops only 0.4%
when compared to its accuracy on happy samples in D𝑡𝑒𝑠𝑡,3. The difference be-
tween the two drops in accuracy suggests that reverberation is harder to deal with
by our classifier than noise and de-amplification for happiness. Similarly, when
classifying angry samples, the drop from the accuracy achieved on angry samples
in D𝑡𝑒𝑠𝑡,1 to the accuracy achieved on angry samples in D𝑡𝑒𝑠𝑡,2 is 7.5%, while the
accuracy on angry samples that are distorted and de-amplified actually increases
0.1% compared to the accuracy achieved on angry samples that are not distorted at
all. The classifier’s performance on happy and angry samples suggests that noise
and de-amplification have minimal influence on our classifier’s performance when
compared to reverberation.

On neutral and sad samples, the observation that noise and de-amplification have
less influence on the classifier’s performance than reverberation no longer holds.
Compared to the classifier’s performance on neutral samples that are not altered,
the accuracy drops from 95.9 % to 90.7% by 5.2% and 91.3% by 4.6%, respect-
fully on reverberated neutral samples and neutral samples that are de-amplified and
contaminated with noise. Reverberation and amplification with noise result in sim-
ilar deterioration of the classifier’s accuracy on neutral samples. On sad samples,
reverberation results in a drop in accuracy from 94.8% to 93.8% caused by reverber-
ation, and to 88.6% caused by de-amplification and noise. The observation on the
classifier’s performance on distorted sad samples is that reverberation has minimal
influence on the classifier’s performance when compared to de-amplification and
noise.

On confounding samples, the classifier achieves an accuracy of 88.9% on clean
samples, but it drops to 78.4% by 10.5% and 79.0% by 9.9% on reverberated
samples and samples that are de-amplified and contaminated with noise. For happy,
angry, neutral, and sad samples, the drop of accuracy obtained from clean samples
to distorted samples is always less than 5%, which is also expected, because the set
of confounding emotions C is more complex than the sets H , A, N , S. C consists
of more samples of more than one emotions, while the others consists of samples of
only one emotion.

Note that the entirety of the testing set D𝑡𝑒𝑠𝑡 is descriptive of the actual environment
in which the classifier is envisioned to be deployed, because it encompasses a variety
of different combinations of the environmental distortions illustrated by different
factors that range from having no effect on the acoustic signals to significantly
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distorting the acoustic signals.

Our solution reaches an accuracy of 92.9% on D𝑡𝑒𝑠𝑡,1, the set of samples that are
not environmentally distorted, for all emotions, and it achieves 88.0% high accuracy
in D𝑡𝑒𝑠𝑡 , for all emotions. The environmental distortions only reduce the overall
accuracy of our solution by 4.9%. Therefore, our solution is highly robust to
environmental distortions.

The evaluation of our solution described in Table 3.11 illustrates the pattern that
noise and de-amplification have less impact on the performance of our solution than
reverberation for happy, angry, neutral, and confounding emotions. However, sad
utterances do not following the same pattern, as noise and de-amplification decrease
our solution’s performance by 6.3% while reverberation decreases our solution’s
performance by only 1.1%. This is because the original sad utterances have lower
volume (measured in decibels) compared to the other emotions. During the process
of adding environmental distortions, we subject all utterances to the same standards
(for example, the same range measured in decibels of possible de-amplification).
As a result, the sad utterances, whose volumes are lower than the other emotions,
are more susceptible to de-amplification.

5-class classifiers with out-of-distribution detection technique versus 4-class
classifiers with out-of-distribution detection technique
We have stated that, out of the 5 classes of our solution, there is one class that we
are not interested in. The aforementioned performance that the 5-class classifier
achieved with out-of-distribution detection technique prompts us to ask the question
- what if we train a classifier only on the four interested classes and use the out-of-
distribution detection technique to intercept emotional utterances of other classes?
In other words, we investigate the value of having a confounding class. In the
following paragraphs, we answer the question:

With the out-of-distribution technique and samples of classes that we are not
interested in, which approach is better: (1) should we include those samples
during training, or (2) should we exclude them from training and let the out-of-
distribution algorithm intercept samples from this “confounding”/uninterested
class during training?

To do so, we train a 4-class classifier (the four classes being happiness, anger,
neutrality, sadness). To make it comparable to the 5-class classifier, the 4-class
classifier is required to achieve the similar level of performance on testing samples
of those four emotions as the 5-class classifier on the testing samples of five emotions
(happiness, anger, neutrality, sadness, and confounding). Via direct experiment, we
have obtained a 4-class classifier that achieves an f1 score of 87.18% on all the
samples of the 4 classes in the testing set. It achieves a similar level of performance
the 5-class classifier achieves (with an f1 score of 87.9%).

Having obtained a 4-class classifier, we evaluate it the same way we evaluate the
5-class classifier - first, just itself without out-out-distribution detection technique;
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without OOD with OOD

f1 score 65.86% 76.66%

Table 3.13: Evaluation on the 4-class classifier on the combined set of the testing set
and the set of the Calm emotion. Samples of the calmness class and the confounding
class are considered out-of-distribution, since the 4-class classifier is trained on and
can only assign any given input to the four targeted classes. The metric is f1 score.

second, this 4-class classifier paired up with the out-of-distribution detection tech-
nique.

Without the out-of-distribution detection technique, the 4-class classifier’s perfor-
mance drops from an f1 score of 87.9% to 65.86%, by 22.04%, as every sample
of the calmness class and the confounding class is predicted to be of the happy,
anger, neutrality, and sadness class. As a result, the predictions on calm samples
and samples of the confounding class are always wrong.

With the out-of-detection technique to intercept samples that are potentially of
classes unknown by the 4-class classifier, the f1 score improves to 76.66%, by 10.8%
compared to its performance without the out-of-distribution detection technique.
However, it is still 11.24% lower than the 4-class classifier’s performance on testing
samples from its 4 targeted classes.

The fact that the out-of-distribution detection technique improves the performance
significantly by 10.8% demonstrates that it is still advantageous to pair the classifier
with the out-of-distribution detection technique.

However, in Section 6.6, we demonstrate that, with the out-of-distribution detection
technique, the 5-class classifier’s performance (an f1 score of 87.71%) on its tar-
geted classes and a previously unseen class is almost identical to its performance
(an f1 score of 87.9%) without the out-of-distribution detection technique. The
same improvement is not observed when we pair the 4-class classifier with out-
of-distribution detection technique. The less significant improvement (by 10.8%)
suggests that the samples in the confounding class are very similar to one or more of
the 4 targeted classes. As a result, the out-of-distribution detection technique is not
effective at picking them out and allows them to be passed to the 4-class classifier.

As a result, we conclude that With the out-of-distribution technique and samples
of classes that we are not interested in, we should include those samples during
training: there is always a possibility that the samples of the uninterested classes
resemble one or more of the samples of the interested classes. In this case, the
out-of-distribution is not effectively at distinguishing samples of interested classes
from samples from uninterested classes, as the vector representations of samples
of interested classes can be within the distribution of the vector representations
of samples of interested classes.
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without OOD with OOD

f1 score 77.78% 86.64%

Table 3.14: Evaluation on the 5-class classifier on the combined set of the testing
set and the set of the Calm emotion, which is not one of the 5 classes and therefore
considered out-of-distribution (OOD). The metric is f1 score.

Evaluation on the 5-class classifier With Out-Of-Distribution Samples
We now evaluate our full solution by including the detection of samples that are out
of the distribution of the training set. Tables 3.10 and 3.12 show that our classifier is
able to achieve an accuracy score of 88.0% and an f1 score of 87.9% on the testing
set, which contains not only clean samples but also samples that are environmentally
distorted. We have achieved these scores using the testing set, which also has five
classes. Despite that we have 4 interested emotion classes and 1 uninterested class,
we must acknowledge the possibility that the classifier encounters samples that are
not of the 5 classes. Since the classifier can only assign a class out of the five, its
prediction is always wrong because the true label is not among the five.

We hypothesize that many samples not belonging to our recognized 5 classes are out
of distribution of our training set. Therefore, if we intercept the out-of-distribution
samples, we can significantly improve the performance of our classifier in a more
realistic setting.

Table 3.14 shows the evaluation result of the 5-class solution on the combined
set of the testing set and the set of the Calm emotion, which is not one of the
5 classes and therefore considered out-of-distribution(OOD) with and without the
out-of-distribution detection technique. This combined set has 9995 samples. All
the samples in the testing set are among those samples. The newly added samples
are all of the Calm emotion. The Calm samples have been preprocessed in the
same way as the samples in the synthetic dataset: we have clean Calm samples and
environmentally reverberated Calm samples.

Without the out-of-distribution detection technique, we have achieved an f1 score of
77.78%. This is a significant drop (10.12%) from the f1 score achieved only on the
testing set that has 5 targeted emotions (87.9%). The drop is to be expected, since
the classifier can only assign the Calm samples to be happiness, anger, neutrality,
sadness, and confounding emotions (fear and disgust), its prediction on a Calm
samples is always wrong.

With the out-of-distribution detection technique, the f1 score improves to 86.64%, a
significant increase (8.86%) compared to the experiment result in which no out-of-
distribution detection technique is used and consequently all the out-of-distribution
samples are wrongly assigned by the classifier. Note that the f1 score (86.64%)
achieved on five targeted emotions and one previously unseen emotion class with
the out of distribution technique is very close to the f1 score achieved on the five
targeted emotions (87.9%) only. This indicates that, with the out-of-distribution
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detection technique, the classifier can maintain its level of good performance on sets
that have out-of-distribution samples, compared to its performance on sets that only
have samples that are of one of the classifier’s targeted classes.

Real Time Computation
Our solution is currently part of a home Patient-Caregiver monitoring, modeling,
and interactive recommendation system for caregivers of dementia patients (Gao,
Ma, et al., 2020), titled the Patient-Caregiver Relationship (PCR) system. One of
the objectives of this system is to detect the onset of anger of the caregiver using only
the acoustical modality (which our 5-class solution is a part of) and immediately
notify the recommendation system which will recommend mindfulness/relaxation
techniques intelligently. In the PCR system, we use an external microphone and an
off-the-shelf laptop to detect emotions with our 5-class solution with OOD.

Real-time applications such as PCR on require an emotion detection algorithm to
notify the caregiver promptly when their difficult emotions are expressed in their
own speech. The notification would not be helpful to the caregiver if the notification
is sent too late. Since the PCR problem is time-sensitive, it is imperative that the
emotion classifier is capable of real-time computation.

The obvious computation architecture to choose is a standard architecture for smart
home speakers such as Google Home speaker. However, smart home speakers do
not perform the classification themselves; they only serve as acoustic sensors that
stream data. The actual classification is handled using cloud computing: the acoustic
signals are sent to a powerful cloud computing server from which the smart home
speakers receive classification results. In other words, even in the case of smart
home speakers, the acoustic signals are also processed by a powerful computing
architecture. By using a standard PC architecture, we demonstrate that an off-the-
shelf PC is able to run our CNN in real-time. There are also small form factor
processors such as Toshiba’s dynaEdge DE-100 (dynaEdge DE-100 n.d.) that have
the same capabilities as a laptop, but without a screen and our solution can execute
on one of these when we want the deployment equipment to take up less space than
a laptop.

The average running time of the components of our 5-class CNN on 184 samples
of 5-second duration on a Intel(R) Core(TM) i5-9300H CPU at 2.40 GHz is 2.62
seconds. The average time consists of the time required to perform feature extraction,
the time required to perform out-of-distribution detection, and the time to perform
classification. If the caregiver’s speech starts to become angry or sad, it will take
5-seconds for their speech to be recorded, and 2.62 second for our 5-class CNN to
generate the classification result. Within the amount of time required to compute
the emotion of the caregiver based on their speech, the caregiver will likely still
be under the influence of the emotion; thus a notification to them is more likely to
help than a notification that is sent to them long after they are no longer under the
influence of the emotion. In other words, our 5-class CNN is capable of real-time
computation, which is a necessary condition that an emotion detection algorithm
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must meet in order to be used in applications like PCR.

3.6 Conclusion
Emotional health is a crucial part of one’s well-being. The rapid development
of machine learning in the field of acoustic signal processing has resulted in a
surge of interest in detecting emotions from speech. We have created a combined
convolutional neural network (CNN) and out of data distribution (OOD) solution
that is robust to environmental distortions such as reverberation, noise, distance,
and handles emotions that are not the targeted emotions through a class we call
confounding emotions. To test our solution we created synthetic datasets that
combined five standard datasets and enhanced them with de-amplification, home
noises, reverberation, and a real-world padding scheme. Our solution outperforms
a state of art baseline and achieves high accuracy in the presence of environmental
distortions and confounding emotions.
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C h a p t e r 4

DETECT CONFLICT IN REALISTIC HOME ENVIRONMENTS

Chapter 4 deals with realism that arises in a specific application: detecting verbal
conflict between two people. The realism comes with the fact that the model
we develop for conflict detection is deployed in people’s homes. Multiple things
stemming from realism can take place that hinders the model’s performance. In
particular, we deal with one type of realism - the first type, task-specific, that arises
from the interaction between the deep learning model and the complex environment
in which it is deployed: deammplification, reverberation, and noise-contamination
of audio signals that occur in this environment.

In this Chapter, we develop a new (unsupervised) domain adaptation approach.
Domain adaptation is a way to deal with the fact that the models, trained on the
source domain with a certain distribution, are used on the target domain with a
different distribution. Recall that we have listed four realisms, three of which have
to do with the development stage of the DL models, and domain adaptation is
effective at dealing with these three realisms, because these realisms are the result
of the fact that the training samples (clean, undistorted) have a different distribution
than the samples collected in the CPS where they are environmentally distorted.

4.1 Introduction
Domain Adaptation (DA) has drawn a lot of interest (S. Zhao, Qiu, and Y. He,
2021; Tzeng, Hoffman, N. Zhang, et al., 2014; L. Zhang et al., 2019) because it
deals with the problem that arises within a core assumption of machine learning:
machine learning assumes that the testing samples are from the domain of the
training samples. This assumption often results in the fact that the machine learning
model’s testing performance is significantly worse than its validation performance
when the training and testing samples are from different distributions or domains.
Unsupervised Domain Adaptation (UDA) (Wei Wang et al., 2020; Tzeng, Hoffman,
Saenko, et al., 2017) is a popular sub-field of DA because it allows the target domain
to be unlabeled, which is more appropriate for real-life application as a lot of samples
collected from real environments are not labeled.

Among the methods developed for UDA, adversarial-based methods are very pop-
ular. There are two types of adversarial-based methods: generative, and non-
generative. Generative methods (M. Xu et al., 2020; Hoffman et al., 2018), inspired
by GAN (Goodfellow, Pouget-Abadie, et al., 2020), aim at generating samples that
aid in the task of (unsupervised) DA. For example, Hoffman et al. (Hoffman et al.,
2018) try to adapt the source samples in the style of the target domain. The resulting
adapted samples can be used to train a classifier using the labels of these adapted
source samples to classify the samples in the target domain. Non-generative meth-
ods (Tzeng, Hoffman, Saenko, et al., 2017; Ganin, Ustinova, et al., 2016) aims at
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domain confusion. It usually involves one or more generators/encoders, a domain
discriminator, and a category classifier (Tzeng, Hoffman, Saenko, et al., 2017) that
does the final classification of samples. The generator/encoder and the discrimina-
tor engage in a mini-max game in which the generator/encoder tries to deceive the
domain discriminator, masking the true origin (which can be the source or target)
of an incoming sample.

in this thesis, we study non-generative adversarial methods for UDA and uncover
a challenge still existing in the field of UDA: We observe that, while these meth-
ods attempt to maximize domain confusion via adversarial training, their effort to
achieve domain confusion is implicit rather than explicit. There still exists room for
improvement on the task of domain confusion if domain confusion can be attempted
to be achieved both implicitly via adversarial training and explicitly. To further en-
force domain confusion (explicitly) and address the challenge, we introduce a novel
variation of the Mahalanobis distance loss. The original Mahalanobis distance (K.
Lee et al., 2018) measures how one sample deviates from a distribution. The Ma-
halanobis distance loss is a loss function used to train the encoder/generator, which
aims at making the encoder/generator achieve the minimization of the distribution-
wise distance between the source samples and the encoded target samples, or vice
versa.

There are two novelties in our Mahalanobis distance loss function. First, al-
though the idea of Mahalanobis distance loss has been defined (Wen et al., 2022),
it is defined by taking the true values and predicted values as input. In other words,
the previously defined Mahalanobis distance loss (Wen et al., 2022) minimizes the
distance between a predicted value and the distribution of the set of true values. Our
Mahalanobis distance loss, on the other hand, minimizes the distance between two
distributions (the source domain distribution and the masked/encoded target domain
distribution) instead of one value and one distribution, as our goal is to make the
masked/encoded target domain, not an individual sample, closer to the distribution
of the source domain, so that domain confusion is achieved. Second, to the best
of our knowledge, we are the first to apply the Mahalanobis distance in the field
of (unsupervised) non-generative adversarial domain adaption to achieve domain
confusion.

We also investigate if it is possible to improve the performance of UDA tasks
even further. We hypothesize that two, instead of one, category classifiers are
needed. One is trained on the source samples and their (true) labels. The other is
trained on the target samples and their (pseudo) labels. Then, we use an out-of-
distribution (OOD) detection subroutine to determine if an encoded sample should
be classified by the source category classifier or the target category classifier. The
out-of-distribution is facilitated once again via the original Mahalanobis distance,
as we have found studies that compare various OOD detection approaches’ efficacy,
and the Mahalanobis distance wins. For more details, please see Section 2.5.

In addition to the Mahalanobis distance loss and the OOD detection subroutine,
we use the architecture of ADDA (Tzeng, Hoffman, Saenko, et al., 2017) in which
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the source encoder (not a generator) and the source category classifier are trained
end-to-end with source samples and their true labels. A target encoder (a generator)
and a domain discriminator engage in a mini-max game whereas the target encoder
tries to mask the incoming target samples as source-passing to fool the domain
discriminator, thus achieving domain confusion. The encoded target samples are
sent to the source category classifier for classification. Extensive evaluations show
the superiority of the improved ADDA (we call it E-ADDA or the Enforced ADDA),
Mahalanobis distance loss-enhanced, OOD detection subroutine-enhanced, over the
vanilla ADDA and various state-of-the-art algorithms, achieving the new state-of-
the-art performance on popular UDA benchmarks such as Office-31 and Office-
Home.

The contributions of this thesis are:

• We identify the room for improvement of existing non-generative methods for
(unsupervised) domain adaptation because they solely rely on the adversarial
training to achieve domain confusion, which is implicitly achieved.

• We introduce a new loss function that minimizes the distribution-wise distance
between the source distribution and the masked/encoded target distribution to
further enforce domain confusion that is experimentally superior to adversarial
training alone.

• Our solution, E-ADDA, outperforms various state-of-the-art domain adap-
tation/transfer learning algorithms on the acoustic modality in the field of
domain-adapting/transfer-learning from angry voices to speeches of verbal
conflict by up to 29.8% improvement in f1 scores.

• To further demonstrate the generalizability of E-ADDA, we evaluate it against
various state-of-the-art domain adaptation algorithms in the modality of com-
puter vision. E-ADDA outperforms the state-of-the-art algorithms by up to
17.9% improvement in accuracy scores on popular UDA benchmarks such as
Office-31 and Office-Home.

4.2 Enforced Adversarial Discriminative Domain Adaptation (E-ADDA)
Settings of Unsupervised Domain Adaptation
In UDA, the source samples and their labels are available. The source data is
represented as X𝑠 = {(𝑥𝑖𝑠, 𝑦𝑖𝑠)}

𝑁𝑠

𝑖=1. Only the samples of the target domain are
available; their labels are not available. The target data is represented as X𝑡 =

{(𝑥𝑖𝑡)}
𝑁𝑡

𝑖=1. 𝑁𝑠 and 𝑁𝑡 represent the sizes of the sets of the source and target domains,
respectively.

Adversarial Training with the Mahalanobis Distance Loss
Because E-ADDA is based on ADDA (Tzeng, Hoffman, Saenko, et al., 2017), we
briefly recap the architecture of ADDA. In ADDA, there exist four neural networks:
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the source encoder/generator 𝐸𝑠, the source category classifier 𝐹𝑠, the target en-
coder/generator 𝐸𝑡 , and the domain label discriminator 𝐷. 𝐸𝑠 and 𝐹𝑠 are trained
end-to-end using the true labels of the source samples. Then, with 𝐸𝑠 as an input,
𝐸𝑡 and 𝐷 engage in a mini-max game in which 𝐸𝑡 tries to mask the target samples
to appear as if they are (source samples that are) encoded by 𝐸𝑠, and 𝐷 tries to
spot its trick and recover the true origin (source or target) of an encoded sample.
Thus, domain confusion is achieved as 𝐸𝑡 is able to mask the target data to appear
source-like, and 𝐹𝑠 is then able to classify them with satisfactory performance.

In E-ADDA, we keep the four neural networks and the framework of ADDA remains
unchanged. The only thing that is added is the Mahalanobis distance loss function
to train 𝐸𝑡 to further enhance/enforce domain confusion. In the following equations,
we define the loss function for 𝐸𝑠, 𝐸𝑡 , 𝐹𝑠, and 𝐷.

The source category classifier 𝐹𝑠’s loss is the standard supervised loss. It is noted
that 𝐸𝑠 and 𝐹𝑠 are trained jointly, which is achieved by Equation 4.1.

min
𝐸𝑠 ,𝐹𝑠

L𝐹𝑠 (𝑿𝑠, 𝑌𝑠) = E(𝑥𝑠 ,𝑦𝑠)∼(𝑿𝑠 ,𝑌𝑠)

−
𝐾∑︁
𝑘=1

log 𝐹𝑠 (𝐸𝑠 (𝑥𝑠))1(𝑘, 𝑦𝑠)
(4.1)

The domain label discriminator 𝐷 is also trained using the standard supervised loss
using 𝐸𝑠 and 𝐸𝑡 as well as the domain information of samples in the source and
target domains, as in Equation 4.2.

L𝐷 (𝑿𝑠, 𝑿𝑡 , 𝐸𝑠, 𝐸𝑡) = − E𝑥𝑠∼𝑿𝑠
[log𝐷 (𝐸𝑠 (𝑥𝑠))]

− E𝑥𝑡∼𝑿𝑡
[log(1 − 𝐷 (𝐸𝑡 (𝑥𝑡)))]

(4.2)

In this paragraph, we describe the adversarial training loss and the Mahalanobis
distance loss for 𝐸𝑡 , as in Equation 4.3.

L𝐸𝑡
(X𝑠,X𝑡 , 𝐷) = −

∑︁
𝑑∈{𝑠,𝑡}

E𝑥𝑑∼𝑿𝑑
[1
2

log𝐷 (𝐸𝑑 (𝑥𝑑))]

+ [1
2

log(1 − 𝐷 (𝐸𝑑 (𝑥𝑑)))] + 𝜃𝑀L𝑀

(4.3)

How do we define L𝑀? To define it, we consider the domain confusion task to be
achieved. We want to train 𝐸𝑡 and 𝐷 adversarially so that 𝐸𝑡 encodes the target
samples such that 𝐷 thinks these encoded samples were source samples encoded by
𝐸𝑠. Therefore, to further maximize domain confusion, we define L𝑀 as Equation
4.4. �̂�𝑠 is the empirical mean of all source samples encoded by 𝐸𝑠 defined as
Equation 4.5, and Σ̂ is the empirical covariance defined as Equation 4.6.

L𝑀 =
∑︁

(𝐸𝑡 (𝑥𝑡) − �̂�𝑠)⊤Σ̂𝑠
−1(𝐸𝑡 (𝑥𝑡) − �̂�𝑡) (4.4)
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�̂�𝑠 =
1
𝑁𝑠

∑︁
𝐸𝑠 (𝑥𝑠), 𝑥𝑠 ∈ 𝑿𝑠 (4.5)

Σ𝑠 =
1
𝑁𝑠

∑︁
(𝐸𝑠 (𝑥𝑠) − �̂�𝑠) (𝐸𝑠 (𝑥𝑠) − �̂�𝑠)⊤ (4.6)

Mahalanobis Distance Based Out-of-Distribution Detection Subroutines
To safeguard the scenario in which domain confusion still somehow fails despite
our best effort with the Mahalanobis loss, we add two OOD detection subroutines
to catch a (target) sample if the adversarial training fails to allow 𝐸𝑡 to mask it as if
it was a source sample encoded by 𝐸𝑠. If this happens, we send this target sample
to the target category classifier, instead of the source category classifier, for final
classification. The target classifier is trained using the target training samples and
their pseudo-labels.

To determine if a sample 𝑥 is still within the distribution of the target domain or if
it is successfully encoded to look like its origin is the source domain, we measure
the Mahalanobis distance between 𝐸𝑠 (𝑥) and the set of 𝐸𝑠 (𝑥𝑠), ∀𝑥𝑠 ∈ 𝑿𝑠, as well
as the Mahalanobis distance between 𝐸𝑡 (𝑥) and the set of 𝐸𝑡 (𝑥𝑡), ∀𝑥𝑡 ∈ 𝑿𝑡 . To get
the parameters that the calculation of the Mahalanobis distance requires, we need
the empirical mean and the empirical covariance of the distribution. For the source
distribution, we have already defined the source empirical mean �̂�𝑠 in Equation 4.5
and the source empirical covariance Σ̂𝑠 in Equation 4.6. Similarly, we define the
target empirical mean �̂�𝑡 and the target empirical covariance Σ̂𝑡 in Equations 4.7 and
4.8.

�̂�𝑡 =
1
𝑁𝑡

∑︁
𝐸𝑡 (𝑥𝑡), 𝑥𝑡 ∈ 𝑿𝑡 (4.7)

Σ𝑡 =
1
𝑁𝑡

∑︁
(𝐸𝑡 (𝑥𝑡) − �̂�𝑡) (𝐸𝑡 (𝑥𝑡) − �̂�𝑡)⊤ (4.8)

The Mahalanobis distance between 𝑥 and a distribution is defined using an empirical
mean �̂� and empirical covariance Σ̂ that describe the distribution, as defined in
Equation 4.9, in which 𝐸 can be either 𝐸𝑠 or 𝐸𝑡 , depending on if this is the source
or the target distribution that we are talking about.

�̂� (𝑥) = (𝐸 (𝑥) − �̂�)⊤Σ̂−1(𝐸 (𝑥) − �̂�) (4.9)

With the aforementioned information, we create two OOD subroutines. The first
one checks the Mahalanobis distance between 𝐸𝑠 (𝑥) and the distribution of 𝐸𝑠 (𝑥𝑠),
∀𝑥𝑠 ∈ 𝑿𝑠, The second one checks the Mahalanobis distance between 𝐸𝑡 (𝑥) and the
distribution of 𝐸𝑡 (𝑥𝑡), ∀𝑥𝑡 ∈ 𝑿𝑡 . If the Mahalanobis distance score between 𝐸𝑠 (𝑥)
and the distribution of 𝐸𝑠 (𝑥𝑠) is smaller than an empirically determined 𝜆𝑠,∀𝑥𝑠 ∈ 𝑿𝑠
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then it is considered within the distribution of the source domain. If the Mahalanobis
distance score between 𝐸𝑡 (𝑥) and the distribution of 𝐸𝑡 (𝑥𝑡), ∀𝑥𝑡 ∈ 𝑿𝑡 is smaller than
an empirically determined 𝜆𝑡 , then it is considered within the distribution of the
target domain.

4.3 Evaluation
Overview
We first evaluate E-ADDA on a domain adaptation task on an acoustic modality:
we domain-adapt from a dataset consisting of emotional utterances to a dataset that
contains audio samples of speech in which, sometimes, the speakers are in a verbal
conflict (we map the anger emotion to conflict and other emotions to non-conflict).
Then, to demonstrate that E-ADDA not only works on domain-adapting from the
domain of emotions to the domain of conflict speech, but also in other fields such as
computer vision, we compare E-ADDA against various other state-of-the-art deep
domain adaptation algorithms on standard datasets and tasks of UDA in the field of
computer vision such as Office-31 and Office-Home.

The Domain Adaptation Task on the Acoustic Modality
The Source Dataset

In the following paragraphs we describe our source dataset in the domain adaptation
task on the acoustic modality. The EMOTION dataset contains the all samples
from the following 5 public datasets: RAVDESS (Livingstone and Russo, 2018),
CREMA-D (Cao et al., 2014), EMA (S. Lee et al., 2005), TESS (Dupuis and Pichora-
Fuller, 2010), and SAVEE (Haq and Jackson, 2010). In addition we extend these 5
datatsets with samples that are distorted to account for environmental conditions by
artificially adding environmental distortions into the clean samples from the original
five datasets. The reverberation effect is described by the combination of the decay
factor, diffusion, and wet/dry ratio. EMOTION consists of training and testing sets.
In the training set, there are 8,816 samples in the anger class, 8,786 samples in the
happiness class, 7,742 samples in the neutral class, 8,811 samples in the sadness
class, and 5,761 samples in the disgust/fear class. In the testing set, there are 1,942
samples in the anger class, 1,966 samples in the happiness class, 1,696 samples
in the neutral class, 1,947 samples in the sadness class, and 1,292 samples in the
fear/disgust class.

The Target Dataset

Our target dataset, CONFLICT, is the dataset where we want to apply E-ADDA
solution so that the source classifier trained on EMOTION can be re-purposed.
It is collected from real home environments in which 19 couples talk (collected
with approved IRB) about topics that they previously disagree on and have their
conversation recorded. In total, there are 3027 training samples and 1009 testing
samples.
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Comparison with State-of-the-Art Baselines

In this experiment, shown in Table 4.1, we compare E-ADDA with the scenario
in which no domain adaptation or transfer learning is used (No DA/TL) and three
baselines: direct training (directly training the model on the data from the target
dataset), two selected state-of-the-art approaches, ADDA and ADDA with CORAL
loss. Our solution, E-ADDA, outperforms various state-of-the-art domain adapta-
tion/transfer learning algorithms on the acoustic modality in the field of domain-
adapting/transfer-learning from angry voices to speeches of verbal conflict by up to
29.8% improvement in f1 scores.

Each of the audio samples on which we test the situation in which no DA/TL is
used, the three baselines, and E-ADDA contains environmental distortions and/or
overlapped speech. The usage of CORAL loss (in Deep CORAL) and ADDA
has garnered a lot of interest in the field of DA/TL; in this paragraph, we briefly
describe these two approaches. CORAL loss proposes that the domain shift can be
mitigated by using linear transformations to align the second-order statistics of the
two domains. ADDA proposes to encode the target samples to the feature space of
the source and have a domain discriminator that tries to distinguish encoded target
samples from source samples. ADDA and ADDA with CORAL loss achieve in f1
scores of 38.29% and 63.28% respectively.

Env. Distortion F1
ADDA ✓ 38.29%

ADDA + CORAL ✓ 63.28%
No TL/DA ✓ 77.25%

Trained on target ✓ 85.82%
E-ADDA ✓ 93.10%

Table 4.1: The performance of four baselines against E-ADDA on data that has
overlapped speech and environmental distortions.

As shown in Table 4.1, No TL/DA’s performance is 77.25%, a value that is higher
than the state-of-the-art solutions ADDA and ADDA with CORAL loss. No TL/DA
stands for that we directly apply the source classifier on the target samples. In
the case of domain-adapting from a classifier of emotions to conflict detection, no
TL/DA suggests that we directly apply the mood classifier on the conflict samples
and the performance is calculated based on that anger denotes conflict while other
emotions denote no conflict. ADDA performance was 38.29%, which is lower than
the no TL/DA by 38.96%. ADDA with CORAL loss achieved significantly higher
performance, 63.28%. Since with have more than 7000 samples in the target dataset,
we also directly train a classifier using only the target sample and yield an f1 score
of 85.82%, which is higher than ADDA by 47.53% and ADDA combined with
CORAL loss by 22.54%. Still, it is 7.28% lower than E-ADDA’s performance. Our
E-ADDA results in an improvement over ADDA with CORAL loss by 29.82%.
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It is worth noting that the source and target domains in this setting are distribution-
wise distant because they are not even from the same class (the source domain is
about people’s emotions and the target domain is about verbal conflict). Therefore,
the task should be more appropriately called unsupervised transfer learning instead
of unsupervised domain adaptation. We present this task as part of our evaluation
to test if E-ADDA can really enforce domain confusion, safeguard catching sam-
ples on which domain confusion fails, and send these samples to their respective
category classifiers. The ADDA architecture only yields an f1 score of 38.2%,
suggesting that ADDA’s basic mechanism of domain confusion fails. However, with
the Mahalanobis distance loss and the OOD detection subroutine on top of the same
architecture, E-ADDA is able to achieve an f1 score of 93.1%. This indicates that
the Mahalanobis distance loss is very effective at enforcing, on top of the adversarial
training, domain confusion. In addition, it suggests the necessity of the OOD detec-
tion subroutine to send samples on which domain confusion fails to their respective
category classifiers.

Algorithm A→W A→D D→W D→A W→A W→D Avg
ResNet-50 (K. He et al., 2016) 68.4% 68.9% 96.7% 62.5% 60.7% 99.3% 76.1%

DANN (Ganin and Lempitsky, 2015) 82.0% 79.7% 96.9% 68.2% 67.4% 99.1% 82.2%
MSTN (Xie et al., 2018) 91.3% 90.4% 98.9% 72.7% 65.6% 100% 86.5%

CDAN+E (M. Long et al., 2018) 94.1% 92.9% 98.6% 71.0% 69.3% 100% 87.7%
DMRL (Yuan Wu, Inkpen, and El-Roby, 2020) 90.8% 93.4% 99.0% 73.0% 71.2% 100% 87.9%

SymNets (Y. Zhang et al., 2019) 90.8% 93.9% 98.8% 74.6% 72.5% 100% 88.4%
GSDA (L. Hu et al., 2020) 95.7% 94.8% 99.1% 73.5% 74.9% 100% 89.7%
CAN (Kang et al., 2019) 94.5% 95.0% 99.1% 78.0% 77.0% 99.8% 90.6%

SRDC (Tang, K. Chen, and K. Jia, 2020) 95.7% 95.8% 99.2% 76.7% 77.1% 100% 90.8%
RSDA-MSTN (Gu, J. Sun, and Z. Xu, 2020) 96.1% 95.8% 99.3% 77.4% 78.9% 100% 91.1%

E-ADDA 95.4% 96.2% 100% 95.3% 90.9% 100% 95.3%

Table 4.2: The results on the domain adaptation tasks among the three domains in
the dataset Office-31. The metric is accuracy.

Algorithm Pr→Ar Ar→Pr Cl→Ar Ar→Cl Rw→Ar Ar→Rw Pr→Cl Cl→Pr Rw → Pr Pr→Rw Rw→Cl Cl→Rw Avg
ResNet-50 (K. He et al., 2016) 38.5% 50% 37.4% 34.9% 53.9% 58% 31.2% 41.9% 59.9% 60.4% 41.2% 46.2% 46.1%

DANN (Ganin and Lempitsky, 2015) 41.6% 59.3% 47.0% 45.6% 63.2% 70.1% 43.7% 58.5% 76.8% 68.5% 51.8% 60.9% 57.6%
CDAN (M. Long et al., 2018) 55.6% 69.3% 54.4% 49.0% 68.4% 74.5% 48.3% 66.0% 80.5% 75.9% 55.4% 68.4% 63.8%

MSTN (Xie et al., 2018) 61.4% 70.3% 60.4% 49.8% 70.9% 76.3% 48.9% 68.5% 81.1% 75.7% 55.0% 69.6% 65.7%
SymNets (Y. Zhang et al., 2019) 63.6% 72.9% 64.2% 47.7% 73.8% 78.5% 47.6% 71.3% 82.6% 79.4% 50.8% 74.2% 67.2%

GSDA (L. Hu et al., 2020) 65.0% 76.1% 65.4% 61.3% 72.2% 79.4% 53.2% 73.3% 83.1% 80.0% 60.6% 74.3% 70.3%
GVB-GD (Cui et al., 2020) 65.2% 74.7% 64.6% 57.0% 74.6% 79.8% 55.1% 74.1% 84.3% 81.0% 59.7% 74.6% 70.4%

RSDA-MSTN (Gu, J. Sun, and Z. Xu, 2020) 67.9% 77.7% 66.4% 53.2% 75.8% 81.3% 53.0% 74.0% 85.4% 82.0% 57.8% 76.5% 70.9%
SRDC (Tang, K. Chen, and K. Jia, 2020) 68.7% 76.3% 69.5% 52.3% 76.3% 81.0% 53.8% 76.2% 85.0% 81.7% 57.1% 78.0% 71.3%

E-ADDA 66.8% 78.6% 59.6% 61.0% 67.7% 79.7% 64.9% 79.8% 85.8% 79.2% 64.9% 70.4% 71.5%

Table 4.3: The results on the domain adaptation tasks among the four domains in
the dataset Office-Home. The metric is accuracy.

Domain Adaptation Tasks on Images
In this section, we discuss the performance of E-ADDA against state-of-the-art
baselines on popular benchmarks for UDA such as Office-31 and Office-Home.
Then, to show that E-ADDA also achieves state-of-the-art performance on simpler
domain adaptation tasks such as MNIST → USPS, SVHN → MNIST, as well as
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Algorithm MNIST → USPS SVHN → MNIST

Source only 75.2% 60.1%
Gradient Reversal (Ganin and Lempitsky, 2015) 77.1% 73.9%

Domain Confusion (Tzeng, Hoffman, Darrell, et al., 2015) 79.1% 68.1%
CoDAN (M.-Y. Liu and Tuzel, 2016) 91.2% did not converge

ADDA (Tzeng, Hoffman, Saenko, et al., 2017) 89.4% 76.0%
Associative (Haeusser et al., 2017) 94.1% 93.6%

DANN (Ganin, Ustinova, et al., 2016) 60.8% 76.3%
Deep Coral (B. Sun and Saenko, 2016) 69.5% 76.3%

VADA (Shu et al., 2018) 90.6% 92.6%
E-ADDA 95.4% 95.4%

Table 4.4: We compare our technique, E-ADDA, with nine other state-of-the-art
deep domain adaptation techniques on two tasks (the performance is measured in
accuracy, per the evaluation standard of the computer vision community).

Algorithm STL-10 → CIFAR-10
DRCN (Ghifary et al., 2016) 58.6%

SE (French, Mackiewicz, and Fisher, 2017) 64.2%
Source only 63.6%

VADA (Shu et al., 2018) 75.3%
Co-DA (Kumar et al., 2018) 76.4%
DTA (Kumar et al., 2018) 72.8%

ET 86.1%

Table 4.5: We compare our technique, E-ADDA, with five other state-of-the-art deep
domain adaptation techniques on the domain adaptation task to domain-adapt from
STL-10 to CIFAR-10 (the performance is measured in accuracy, per the evaluation
standard of the computer vision community).

CIFAR-10 → STL-10, we also compare E-ADDA’s performance against state-of-
the-art baselines on these UDA tasks.

Office-31

In Table 6.2, we compare our E-ADDA against ResNet-50 (K. He et al., 2016) and
nine other state-of-the-art domain adaptation algorithms using the dataset Office-
31. Office-31 contains three subdomains: Amazon (A), Webcam (W), and Dslr
(D). Each domain contains 31 classes of everyday office objects such as rulers or
projectors. There are 4,110 images in total in Office-31. Across the three domains,
six domain adaptation tasks can be formed, as shown in Table 6.2. The performance
of each algorithm is measured in the accuracy that is the percentage of samples that
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are correctly classified by the algorithm out of all the samples in the testing set.

On the six domain adaptation tasks, we have achieved state-of-the-art performance
on five of them, except for the task of A → W, where RSDA-MSTN (Gu, J. Sun, and
Z. Xu, 2020) outperforms E-ADDA by 0.7%. RSDA-MSTN (Gu, J. Sun, and Z. Xu,
2020) proposes to redefine the feature space as a spherical feature space and create a
spherical classifier and discriminator, creating a pseudo-label loss in this spherical
feature space. However, it fails to deal with the situation in which the pseudo-labels
are not very accurate and the pseudo-label loss is very large. E-ADDA does not
have that problem.

It is worth noting that RSDA-MSTN is a non-generative adversarial algorithm whose
superiority comes from the fact that the adversarial training is defined in the spherical
feature space. As a non-generative adversarial method, RSDA-MSTN is a perfect
candidate to compare E-ADDA against. On tasks with large domain shifts, such as
W → A and D → A, we outperform RSDA-MSTN by 17.9% and 12%, a very large
improvement. This suggests E-ADDA is better at achieving domain confusion on
UDA tasks whose source and target domains are more distributionally distant while
other algorithms that aim at domain confusion fail to achieve a performance that is
as high.

Office-Home

In Table 6.3, we compare E-ADDA against ResNet-50 and eight other state-of-the-art
domain adaptation algorithms on Office-Home. Office-Home has four subdomains:
Product (Pr), Art (Ar), Clipart (Cl), and Real World (Rw). There are 15,500 images
in Office-Home, each of which is of a typical object that can be found in an office
or home, such as flowers. Twelve domain adaptation algorithms can be formed
based on the four subdomains. The performance of each algorithm is measured in
the accuracy that is the percentage of samples that are correctly classified by the
algorithm out of all the samples in the testing set.

Out of the twelve domain adaptation tasks, we outperform the next best-performing
algorithm on six of them. On the task of Ar → Rw, the state-of-the-art, RSDA-
MSTN, outperforms us by 1.6%. Again, RSDA fails to deal with the situation in
which the pseudo-labels are not very accurate and the pseudo-label loss is very large.
On the task Pr → Ar, the state-of-the-art, SRDC, outperforms us by 1.9%. SRDC
proposes to alleviate the risk of damaging the intrinsic domain discrimination re-
sulting from finding domain-aligned features. However, the proposition to minimize
the KL divergence between the distribution of predictive labels and the distribution
of auxiliary labels is a rather naive approach, as the authors fail to compare their
algorithm with other measurements to minimize the Jensen–Shannon divergence.

Once again, we have observed that E-ADDA is better at achieving domain confusion
than the other non-generative adversarial method, RSDA-MSTN, when domain
shifts are large. For example, on the task Ar → Cl, we outperform the second-best-
performing algorithm RSDA-MSTN by 7.7%. This suggests that, when domain
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shifts are large, or when domain confusion is harder, E-ADDA can still achieve
good domain confusion results, while the state-of-the-art non-generative methods
cannot.

MNIST → USPS and SVHN → MNIST

MNIST, USPS, and SVHN datasets all have ten classes of hand-written digits. The
first task, which is to domain-adapt from MNIST to USPS, is considered easier while
the second task, which is to domain-adapt from SVHN to MNIST, is considered
more challenging. This claim is supported by the observation that, in Table 4.4,
five out of the state-of-the-art domain adaptation algorithms and the baseline of
directly using source classifier on the target dataset results in lower performance of
the second task compared to the first task. E-ADDA achieve an accuracy of 95.41%
on the first task and 95.43% on the second. On the first task, it outperforms the best-
performing state-of-the-art baseline, Associative, by 1.31%. On the second task, it
outperforms the best-performing state-of-the-art baseline by 2.83%. We present our
evaluation results on MNIST → USPS and SVHN → MNIST to demonstrate that
E-ADDA can also achieve state-of-the-art performance on simpler UDA tasks.

STL-10 → CIFAR-10

In this section, we further investigate if the E-ADDA can outperform state-of-the-art
baselines on a more complicated vision task that is not digits. Therefore, we transfer
learn from STL-10 to CIFAR-10. Both CIFAR-10 and STL-10 are image datasets
that contain 10 classes. We outperform all the other five state-of-the-art deep domain
adaptation baselines and outperform the second best-performing algorithm, Co-DA,
by 9.7%. The source classifier that we use to train is ResNet-50 (K. He et al., 2016).
We yield the highest performance of an accuracy score of 86.1% after we inject the
E-ADDA Cell after the fifth layer.

Note that, compared to the previous section, we choose a different set of baselines
to fully evaluate our solution, the E-ADDA, against as many baselines as possible.
The task to domain-adapt from STL-10 to CIFAR-10, which is more complex than
domain-adapt among MNIST, SVHN, and USPS, as these three datasets contain
only digits. On the contrary, CIFAR-10 and STL-10 contains images such as the
automobile and dog classes. Again, we present our evaluation results on STL-
10 → CIFAR-10 to demonstrate that E-ADDA can also achieve state-of-the-art
performance on simpler UDA tasks.

4.4 Conclusion
We have discovered that there exists room for improvement on the existing non-
generative adversarial UDA algorithms that attempt to achieve domain confusion.
The challenge lies in the observation that these algorithms do not explicitly min-
imize the distance between the distribution of the masked/encoded target samples
and the source samples; instead, they let the adversarial training achieve domain
confusion rather implicitly. To address this challenge, we propose E-ADDA that
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uses a novel variation of the Mahalanobis distance loss to minimize the distribution-
wise distance between the masked/encoded target domain samples and the source
domain samples. Then, the OOD subroutine further eliminates samples on which
the domain confusion is unsuccessful. We have performed extensive evaluations
on E-ADDA on two modalities: the acoustic modality and the computer vision
modality. On both modalities, we outperform the state-of-the-art algorithms and
achieve new state-of-the-art performance.
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C h a p t e r 5

INCORPORATE PROPERTIES INTO MODELS THAT ARE
MODELING CYBER PHYSICAL SYSTEMS

State-of-the-art deep learning models (Tzeng, Hoffman, Saenko, et al., 2017; Tzeng,
Hoffman, N. Zhang, et al., 2014; Ganin, Ustinova, et al., 2016; Gretton et al., 2012)
are not robust because they just rely on data. The problem of under-specification
leads to the brittleness of the neural networks such that they are sensitive to changes
imperceptible to humans. Physics-guided neural networks (J. Wang et al., 2020; W.
Li, Bazant, and J. Zhu, 2021; X. Hu et al., 2020; Daw, Thomas, et al., 2020) is one
approach to deal with under-specification - by incorporating physics rules into the
loss function of a neural network during training. The trained neural network is less
likely to violate the incorporated physics rules and therefore the robustness of the
model is guaranteed to a certain degree. More precisely, this approach add a separate
term to the original loss function of the neural network, as stated in Equation 5.1. In
Equation 5.1, L𝑁𝑁 is the loss that traditional neural networks use, such as MSE loss,
and L𝑝ℎ𝑦𝑠𝑖𝑐𝑠 is the loss regarding the physics rule. 𝛼 and 𝛽 are scalar coefficients.
The second term 𝛽L𝑝ℎ𝑦𝑠𝑖𝑐𝑠 (𝑦, �̂�) indicates the loss regarding the predicted value
�̂� by the neural network and the value that it supposed to be based on the physics
rule. An open challenge regarding this method is to find the the appropriate values
for 𝛼 and 𝛽 (Von Rueden et al., 2019). However, some constraints, which we call
properties, are too complex and there is no single physical equation for them. We
define a property as a characteristic or constraint that is cannot be incorporated into
deep learning models during the training time without specifying them explicitly.

L = 𝛼L𝑁𝑁 (𝑦, �̂�) + 𝛽L𝑝ℎ𝑦𝑠𝑖𝑐𝑠 (𝑦, �̂�) (5.1)

In Chapter 5, we tackle the problem of traffic speed prediction in smart cities.
Models on traffic speed prediction tend to be brittle and not robust since they are
not trained with properties being enforced into the training. A straightforward idea
to incorporate properties in the training of such models is through loss functions,
but traffic flow is too complex for physics-informed loss functions to describe.
Existing works (Yaguang Li et al., 2017; Z. Wu, Pan, G. Long, Jiang, and C. Zhang,
2019; Z. Wu, Pan, G. Long, Jiang, Chang, et al., 2020) propose to exploit the
graph-like structure of a city, with sensors that read traffic speed being the nodes
and the distances between the nodes as the weights of the edges, which is a way
to incorporate properties into the training of a model by using the Graph Neural
Network (GNN). However, we discover that their results could be further improved
if we add another kind of property, on top of the properties being enforced by GNN.
This kind of property is called the points of interest (POIs), and we shall elaborate on
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what POIs are and how to incorporate them during the training of the deep learning
model for traffic speed prediction in the Sections in this Chapter.

5.1 Introduction
Spatiotemporal forecasting has seen a surge of interest in dynamic learning systems.
A wide range of applications benefits from spatiotemporal forecasting, such as smart
transportation systems and climate modeling. in this thesis, we study the task of
forecasting the traffic speed on road networks, which is an important part of smart
transportation systems, with information on the historic traffic speeds detected by
the sensors and the layout of the road networks.

Traffic speed forecasting is a challenging task because of the spatial dependencies
of the road networks and the temporal dependencies of the traffic conditions that
are ever-changing. Temporal dynamic is observed in the context of traffic speed
forecasting, such as the repeated occurrences of rush hours that affect the traffic
speed. Spatial dynamic is observed in the context of traffic forecasting since traffic
speed detected by a sensor is going to have an effect on the traffic speed at nearby
places where other (nearby) sensors are placed. It is worth noting that the spatiotem-
poral dependencies of traffic speeds are not Euclidean, because it is not necessarily
true that two roads that are spatially close to each other have similar traffic speeds
(Yaguang Li et al., 2017).

In this paragraph, we briefly discuss the existing works on traffic (speed) prediction,
a field that has existed for decades. The works can be divided into two categories:
world-knowledge-driven solutions and data-driven solutions. The former integrate
world knowledge such as queuing theory (Cascetta, 2013) in modeling the dynamics
of traffic flow. However, a problem with these approaches is that they depend on
stationary hypotheses while the traffic is ever-changing and non-stationary. Data-
driven solutions (W. Liu et al., 2011; Lippi, Bertini, and Frasconi, 2013; Bai et
al., 2021) fail to take advantage of theories on modeling dynamic systems such
as the diffusion/infusion theory. Consequently, a natural outcome of taking the
best of both worlds is a data-driven solution that uses world knowledge, such as
DCRNN (Yaguang Li et al., 2017), in which the authors train a diffusion convolution
recurrent neural network for the task of traffic prediction. DCRNN yields significant
improvement over the state-of-the-art baselines, but we hypothesize that its results
can be further improved if we incorporate the attention mechanism to capture the
global spatiotemporal dynamics. In addition, we also propose to add more explicit
world knowledge that affects traffic to guide the attention mechanism, and the
explicit world knowledge is represented by Points of Interest (POIs). in this thesis,
we propose two types of POIs, one is binary and one is numerical. The binary POIs
indicate if a node is located at a place that can significantly affect the traffic, such
as a school. The numerical POIs are the averages of the traffic information at a
particular node.

By building upon the architecture of DCRNN, which establishes that the road
networks can be interpreted as a graph with nodes being sensors and edges being the
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connections among sensors (with weights represented as the proximity between the
sensors/nodes), we propose our algorithm, D-A3T-GCN. In addition to interpreting
the dynamic of traffic flow as a process of infusion/diffusion and applying the
diffusion convolution operation for traffic speed prediction, we add the attention
mechanism to each step of the infusion/diffusion process to capture the global
spatiotemporal dynamics, and, in addition to the attention mechanism, we add the
POIs to guide the attention mechanism. Our solution is evaluated on two large-scale
real-world datasets, METRA-LA and PEMS-BAY. We observe an improvement of
up to 33% over the performances of the state-of-the-art baselines.

The contributions of the proposed D-A3T-GCN are:

• We propose the attention-enhanced diffusion convolution built on top of
GCNs.

• We incorporate the Points of Interest (POIs) as an effective way to incorporate
world knowledge to guide the attention mechanism (to pay more attention
to the more “important" nodes during the message passing procedure of
DCRNN).

• We evaluate our proposed solution on two large-scale real-world datasets,
METRA-LA and PEMS-BAY, and obtains significant improvements over the
state-of-the-art baselines.

5.2 D-A3T-GCN
In this Section, we discuss the setting of spatiotemporal traffic forecasting using
attention-enhanced diffusion convolutional recurrent neural network, which is then
enhanced by adding the world knowledge represented as the points of interest.

The Problem of Traffic Forecasting
In our problem setting, the sensors, placed at different locations, detect the speed of
vehicles. The entire sensor network can be seen as a graph G = (V, E,𝑊). Each
node is seen as a sensor, and V is the set of sensors/nodes; E is the set of edges
whose weights are determined by the distance between the two nodes at its two
endpoints; and 𝑊 = R|𝑉 |×|𝑉 | is the adjacency matrix that includes the weights of
the edges of nodes that are adjacent to each other. Here, following the tradition and
threshold established by previous works such as Li et al. (Yaguang Li et al., 2017),
we claim that two nodes are adjacent if the distance between them is smaller than a
threshold which has been chosen by previous works (Yaguang Li et al., 2017). Let
𝑁 be the number of features that at time 𝑡 a node ∈ V reads from the traffic flow.
At time 𝑡, a graph signal 𝑿𝑡 ∈ R|V|×𝑁 can be extracted or retrieved. The traffic
forecasting problem attempts to uncover a function 𝑓 (·) that maps𝑇 historical graph
signals to 𝑇 ′ graph signals in the future whereas G is given. In other words, the
problem of traffic forecasting can be formulated as Equation 5.2.

[G; 𝑿𝑡−𝑇+1, ..., 𝑿𝑡]
𝑓 (·)
→ [𝑿𝑡+1, ..., 𝑿𝑡+𝑇

′] (5.2)
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Diffusion Convolution
Li et al. (Yaguang Li et al., 2017) have argued that the traffic flow at a particular node
can be represented as the end result of traffic diffusing from it to its 𝐾-hop neighbors
as well as the end result of traffic infusing from its 𝐾-hop neighbors to it. As a
result, they invent the diffusion convolution operation to model traffic flow defined
in Equation 5.3. The diffusion convolution process is repeated for all 𝑛 ∈ {1, ..., 𝑁}
or all features. ∗ is the diffusion convolution symbol and 𝜃 is the parameters for the
filter. 𝐷−1

𝑂
𝑊 is the transition matrix for the diffusion process whereas 𝐷−1

𝐼
𝑊⊤ is the

transition matrix for the infusion (reverse of diffusion) process.

𝑿:,𝑛∗ 𝑓𝜃 =
𝐾−1∑︁
𝑘=0

(𝜃𝑘,1(𝐷−1
𝑂 𝑊)𝑘 + 𝜃𝑘,2(𝐷−1

𝐼 𝑊
⊤)𝑘 )𝑿:,𝑛 (5.3)

Soft Attention-enhanced Diffusion Convolution
In order to talk about the attention-enhanced diffusion convolution, we need to
talk about the soft attention mechanism itself. Suppose there is a time series
represented as graph signals, [𝑿𝑡−𝑇+1, ..., 𝑿𝑡], we now introduce the soft attention
mechanism. In the beginning, the hidden states at times 𝑡 −𝑇 +1, ..., 𝑡 are calculated
using the convolutional neural networks (CNNs) or their variations, or recurrent
neural network (RNNs) or their valuations, and the hidden states ℎ𝑡−𝑇+1, ..., ℎ𝑡 are
produced. After this, a scoring function is introduced to calculate the weights at
the hidden states. Then, an attention function is introduced to calculate the context
vectors capable of describing global information. The context vectors are also used
to obtain the final outputs. In our design of the soft attention-enhanced diffusion
convolution, we use a multilayer perceptron as the scoring function, per the standard
established by Bai et al. (Bai et al., 2021).

In particular, the hidden state ℎ𝑖 ∈ 𝐻 = {ℎ𝑡−𝑇+1, ..., ℎ𝑡} at the moment 𝑖 is treated
as the input to calculate the weight of the particular hidden state, and the output
is obtained via two layers (the 2-layered perceptron as the scoring function). The
weight or attention at each hidden state is calculated using a softmax normalized
index function. Per the definitions of Bai et al. (Bai et al., 2021), 𝑤1 and 𝑏1 represent
the weight and bias of the first perceptron layer and 𝑤2 and 𝑏2 represent the weight
and bias of the second perceptron layer.

𝑒𝑖 = 𝑤2(𝑤1𝐻 + 𝑏1) + 𝑏2 (5.4)

𝛼𝑖 =
exp(𝑒𝑖)∑
𝑗=1 exp(𝑒 𝑗 )

(5.5)

And the context vector is calculated based on Equation 5.6.

𝐶𝑡 =
∑︁
𝑖=1

𝛼𝑖 × ℎ𝑖 (5.6)
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We have finished talking about calculating the soft attention. However, how do we
incorporate it with the diffusion convolution operation? Recall that in the diffusion
convolution in Equation 5.3, we diffuse 𝐾 steps. When 𝐾 = 0, no diffusion or
infusion happens. When 𝐾 = 1, a node’s information diffuses to and infuses from
its 1-hop neighbors, etc. We would like to add the soft attention mechanism to the
𝐾-hop diffusion/infusion process to figure out which diffusion/infusion step or steps
should the model pays more attention to, in terms of each node and their 𝐾-hop
neighbors.

𝑿:,𝑛∗ 𝑓𝜃 =
𝐾−1∑︁
𝑘=0

𝛼𝑘 (𝜃𝑘,1(𝐷−1
𝑂 𝑊)𝑘 + 𝜃𝑘,2(𝐷−1

𝐼 𝑊
⊤)𝑘 )𝑿:,𝑛 (5.7)

Why do we want to put a soft attention mechanism to find out which diffu-
sion/infusion step(s) is/are most important and therefore should pay attention to?
Our intuition comes from realistic scenarios. Suppose a sensor is placed at a train
station and 𝑘-hops away from it, another sensor is placed at a school. We would
like to know the traffic speed at the train station detected by its sensor. It is well
known that many places mandate that vehicles should slow down around schools.
We hypothesize that the slowing down of traffic at the school will diffuse/infuse to
the train station. As a result, the model should pay more attention to this particular
node (the school) that is 𝑘-hop away from the node (the train station) whose value
we want to predict. In general, we are letting the model learn, using the attention
mechanism, which process (i.e. how many hops away) among the infusion/diffusion
processes (total 𝐾-hops) should the model pays more attention to.

Use Points of Interests to Further Enhance the Soft Attention-enhanced Diffu-
sion Convolution
In Section 5.2, we have already given the intuition that the “types" (i.e. school, train
station, hospital, etc.) play an important role in helping the attention mechanism to
determine which process (i.e. how many hops away) among the infusion/diffusion
processes (total 𝐾-hops) should the model pays more attention to. In this Section,
we propose to introduce the points of interest as a feature for each node so that
we can denote its type. Specifically, in previous work such as Li et al. (Yaguang
Li et al., 2017), if the goal is to predict traffic speed after a time-lapse, then a
time sequence that describes the prior observed traffic speed readings is passed to
a predictive model. In D-A3T-GCN, we propose adding another feature, called the
point of interest (POI), at each timestamp. The POI is determined by the sensor -
for example, the POI of a sensor will be “school" if the sensor is close to a school
(its proximity to the school is smaller than an empirically determined threshold). In
other words, we add another dimension to the time sequence passed to the predictive
model. In the case of this thesis, our goal is to find out if POIs can play an important
role in helping improve the forecasting of traffic speed, so we only use a binary type
of POI - in other words, all nodes/sensors are assigned a POI that is either 1 (close
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to a school) or 0 (not close to a school). We choose “school" because it is widely
known that vehicles reduce their speed near schools.

After adding the values of POIs to the time sequence, note that the value of the POI
is affected by the message passing of the GNN architecture in D-A3T-GCN, and this
is the expected/desired outcome: suppose that at node 𝑣𝑖, the POI is 0, meaning that
it is not adjacent to a school that affects traffic speed. However, 1 hop away, one of
its neighbors, 𝑣 𝑗 , has a POI that is 1, meaning that this node is adjacent to a school.
The reduced traffic speed at 𝑣 𝑗 is going to affect the traffic speed at 𝑣𝑖, even though
𝑣𝑖 itself does not have a POI that affects traffic speed. This observation is facilitated
by the fact that the POI, being a feature, can be diffused to the nodes 𝐾-hops away.
After one round of message passing (between 𝑣𝑖 and its neighbors, one of which is
𝑣 𝑗 ), the POI at 𝑣𝑖 is updated to reflect that there is a school nearby (or that there is a
node with a POI that can affect traffic speed nearby).

5.3 Evaluation
Type Dataset # of Sensors # of Edges # of Instances
Speed METR-LA 207 1722 34272

PEMS-BAY 325 2694 52116

Table 5.1: Descriptions on the datasets METR-LA and PEMS-BAY.

In this section, we conduct experiments on two often used datasets, METR-LA
(Yaguang Li et al., 2017) and PEMS-BAY (Yaguang Li et al., 2017), that are large-
scale and collected from the real world. METR-LA (Jagadish et al., 2014) is the
collection of traffic information (volume, speed) detected by loop detectors in the
Los Angeles County. There are in total 207 sensors and the data is collected from
March 1st, 2012 to June 30th, 2012; in other words, there are data in METR-LA
on the traffic information for four months. PEMS-BAY is created by California
Transportation Agencies (CalTrans) Performance Measurement System, or PeMS
for short. There are in total 325 sensors and the data is collected from January 1st,
2017 to May 31st, 2017; in other words, there are data in PEMS-BAY on the traffic
information (volume, speed) for six months.

For both METR-LA and PEMS-BAY, we focus on the traffic speed. We aggregate
traffic speed information into 5-minute intervals, after which we apply the Z-score
normalization, as per the standard established by Li et al. (Yaguang Li et al.,
2017). For both datasets, 80% of the data is in the training set, and the remaining
20% is in the testing set. Note that there do not exist “edges" in the datasets, so
we construct the edges. We use the calculated pair-wise road network distances
between the nodes/sensors and the adjacency matrix with edge weights is calculated
by applying a threshold Gaussian kernel (Shuman et al., 2013). In particular, the
weight of the edge between the 𝑖th and 𝑗 th nodes, 𝑊𝑖, 𝑗 , is described as Equation
5.8. If dist(𝑣𝑖, 𝑣 𝑗 )2 is smaller than a certain threshold 𝜆, we proceed to calculate
the edge weight between 𝑣𝑖 and 𝑣 𝑗 based on Equation 5.8. Otherwise, we assign
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the edge weight between 𝑣𝑖 and 𝑣 𝑗 to be 0. In Equation 5.8, dist(𝑣𝑖, 𝑣 𝑗 ) is the
Euclidean distance between the nodes 𝑣𝑖 and 𝑣 𝑗 , and 𝜎 is the standard deviations of
the Euclidean distances between nodes.

𝑊𝑖, 𝑗 = exp(−
dist(𝑣𝑖, 𝑣 𝑗 )2

𝜎2 ) (5.8)

Baselines
In this Section, we describe the baselines that we have selected to compare against
our D-A3T-GCN. Note that the baselines include both traditional methods such as
the historical average (HA) method and deep learning methods such as DCRNN
(Yaguang Li et al., 2017).

• HA: the Historical Average Model. HA slices the traffic flow into periods and
uses the weighted averages from before as the predicted results for the periods
in the future.

• VAR: the Vector Auto Regression Model (X. Wang et al., 2020). It treats the
previous time series as stationary and calculates the correlation between that
series and its lag value.

• SVR: the Support Vector Regression model. It employs the linear support
vector machine to perform time series regression.

• FC-LSTM: the LSTM with fully connected hidden units (Sutskever, Vinyals,
and Le, 2014). It has been used as a baseline in various works and is well-
equipped in teasing out the spatial dependency of data.

• DCRNN: the Diffusion Convolutional Recurrent Neural Network Model
(Yaguang Li et al., 2017), which treats the traffic flow as a diffusion and
infusion process at each node/sensor. We have taken inspiration from the
DCRNN to create the D-A3T-GCN model.

• Graph WaveNet: the Graph WavNet model (Z. Wu, Pan, G. Long, Jiang,
and C. Zhang, 2019) employs gated TCN layers and GCN layers. The gated
TCN layers capture the temporal dependencies and the GCN layers capture
the spatial dependencies.

• MTGNN: the MTGNN model (Z. Wu, Pan, G. Long, Jiang, Chang, et al.,
2020) is an extension of the Graph WavNet model by introducing a new
mix-hop propagation layer in the temporal mechanism.

• ASTGCN: the ASTGCN model (Guo et al., 2019) uses the attention mech-
anism to jointly capture the dynamics of the spatial-temporal features of the
traffic flow.
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• STSGCN: the STSGCN (Song et al., 2020) takes into consideration the
heterogeneity of the spatiotemporality in traffic flow data and localizes the
spatiotemporal relationships to be captured.

• GMAN: the GMAN (Zheng et al., 2020) model uses stacked spatial attention
and temporal attention to perform prediction on traffic flow data.

• DGCRN: The DGCRN model (F. Li et al., 2021) treats the graph as a dy-
namic entity and introduces the dynamic graph convolutional recurrent model,
inspired by the seq2seq architecture.

Experiment Design
The experiments conducted to evaluate the proposed D-A3T-GCN are implemented
in Pytorch on an NVIDIA A100 GPU. The optimizer is an Adam optimizer with a
learning rate of 0.001 without decay. The time steps or horizons are set to be 3, 6,
and 12 to account for 3× 5 = 15 minutes, 6× 5 = 30 minutes, and 12× 5 = 60 minutes
into the past (for reference of the past spatiotemporal dependencies) and future (for
prediction). We use the three commonly used metrics for traffic forecasting - Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error (MAPE). We have included the Equations 5.9, 5.10, 5.11 for the
calculation of RMSE, MAE, and MAPE. In Equations 5.9, 5.10, 5.11, Φ is the total
number of instances, 𝑦𝑖 is the true value, and �̂�𝑖 is the predicted value.

RMSE(𝑦𝑖, �̂�𝑖) =

√︄∑Φ
𝑖=1(𝑦𝑖 − �̂�𝑖)2

Φ
(5.9)

MAE(𝑦𝑖, �̂�𝑖) =
∑Φ
𝑖=1 |𝑦𝑖 − �̂�𝑖 |

Φ
(5.10)

MAPE(𝑦𝑖, �̂�𝑖) =
1
Φ

∑Φ
𝑖=1 |𝑦𝑖 − �̂�𝑖 |

𝑦𝑖
(5.11)

The Performance of D-A3T-GCN
In Table 5.2 and Table 5.3, we evaluate the performance of D-A3T-GCN on the
datasets METR-LA and PEMS-BAY respectively. As we can see from the Tables
5.2 and 5.3, D-A3T-GCN achieves the new state-of-the-art, significantly improving
the state-of-the-art in the three metrics: RMSE, MAE, and MAPE.

In Tables 5.2 and 5.3, we observe the performance of D-A3T-GCN on METR-LA and
PEMS-BAY against 12 baselines that include statistical, classical machine learning,
and deep learning approaches. We have briefly discussed what these baselines are
in Section 5.3. Observing Table 5.2, we conclude that methods such as HA perform
the worst across the three horizons, because they have incorrect assumptions of the
data. For example, HA assumes that the data is stationary. FC-LSTM performs
better than traditional methods such as HA because it does not have this incorrect
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Horizon = 3 Horizon = 6 Horizon = 12

Methods RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
HA 10.00 4.79 11.70% 11.45 5.47 13.50% 13.89 6.99 17.5%
VAR 7.80 4.42 13.00% 9.13 5.41 12.70% 10.11 6.52 15.80%
SVR 8.45 3.39 9.30% 10.87 5.05 12.10% 13.76 6.72 16.70%

FC-LSTM 6.30 3.44 9.60% 7.23 3.77 10.09% 8.69 4.37 14.00%
DCRNN 5.38 2.77 7.30% 6.45 3.15 8.80% 7.60 3.60 10.50%
STGCN 5.74 2.88 7.62% 7.24 3.47 9.57% 9.40 4.59 12.70%

Graph WaveNet 5.15 2.69 6.90% 6.22 3.07 8.37% 7.37 3.53 10.01%
ASTGCN 9.27 4.86 9.21% 10.61 5.43 10.13% 12.52 6.51 11.64%
STSGCN 7.62 3.31 8.06% 9.77 4.13 10.29% 11.66 5.06 12.91%
MTGNN 5.18 2.69 6.88% 6.17 3.05 8.19% 7.23 3.49 9.87%
GMAN 5.55 2.80 7.41% 6.49 3.12 8.73% 7.35 3.44 10.07%
DGCRN 5.01 2.62 6.63% 6.05 2.99 8.02% 7.19 3.44 9.73%

D-A3T-GCN 0.33 0.21 1.41% 0.39 0.25 1.58% 0.62 0.44 1.84%

Table 5.2: The performance of D-A3T-GCN against the baselines on the METR-LA
dataset. Horizon = 3 indicates 15 minutes into the future; horizon = 6 indicates 30
minutes into the future, and Horizon = 12 indicates 60 minutes into the future.

Horizon = 3 Horizon = 6 Horizon = 12
Methods RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HA 4.30 1.89 4.16% 5.82 2.50 5.62% 7.54 3.31 7.65%
VAR 3.16 1.74 3.60% 4.25 2.32 5.00% 5.44 2.93 6.50%
SVR 3.59 1.85 3.80% 5.18 2.48 5.50% 7.08 3.28 8.00%

FC-LSTM 4.19 2.05 4.80% 4.55 2.20 5.20% 4.96 2.37 5.70%
DCRNN 2.95 1.38 2.90% 3.97 1.74 3.90% 4.74 2.07 4.90%
STGCN 2.96 1.36 2.90% 4.27 1.81 4.17% 5.69 2.49 5.79%

Graph WaveNet 2.74 1.30 2.73% 3.70 1.63 3.67% 4.52 1.95 4.63%
ASTGCN 3.13 1.52 3.22% 4.27 2.01 4.48% 5.42 2.61 6.00%
STSGCN 3.01 1.44 3.04% 4.18 1.83 4.17% 5.21 2.26 5.40%
MTGNN 2.79 1.32 2.77% 3.74 1.65 3.69% 4.49 1.94 4.53%
GMAN 2.91 1.34 2.86% 3.76 1.63 3.68% 4.32 1.86 4.37%
DGCRN 2.69 1.28 2.66% 3.63 1.59 3.55% 4.42 1.89 4.43%

D-A3T-GCN 0.27 0.15 0.87% 0.36 0.21 1.24% 0.57 0.38 0.57%

Table 5.3: The performance of D-A3T-GCN against the baselines on the PEMS-
BAY dataset. Horizon = 3 indicates 15 minutes into the future; horizon = 6 indicates
30 minutes into the future, and Horizon = 12 indicates 60 minutes into the future.

Horizon = 3 Horizon = 6 Horizon = 12
Methods RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

D-A3T-GCN 0.33 0.21 1.41% 0.39 0.25 1.58% 0.62 0.44 1.84%
D-A3T-GCN (Complex) 0.32 0.20 1.36% 0.41 1.52 1.52% 0.62 0.44 1.81%

Table 5.4: The performance of D-A3T-GCN (with binary POIs) against D-A3T-
GCN with numerical/more complex POIs on the METR-LA dataset.
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Horizon = 3 Horizon = 6 Horizon = 12
Methods RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

D-A3T-GCN 0.27 0.15 0.87% 0.36 0.21 1.24% 0.57 0.38 0.57%
D-A3T-GCN (Complex) 0.26 0.15 0.84% 0.35 0.21 1.22% 0.56 0.37 2.09%

Table 5.5: The performance of D-A3T-GCN (with binary POIs) against D-A3T-
GCN with numerical/more complex POIs on the PEMS-BAY dataset.

Horizon = 3 Horizon = 6 Horizon = 12
Methods RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

D-A3T-GCN (no POIs) 0.97 0.84 1.03% 0.98 0.85 1.11% 0.98 0.84 1.06%
D-A3T-GCN 0.33 0.21 1.41% 0.39 0.25 1.58% 0.62 0.44 1.84%

Table 5.6: The performance of D-A3T-GCN (without POIs) against D-A3T-GCN
with numerical/more complex POIs on the METR-LA dataset. As we can observe
from this Table, even without POIs, D-A3T-GCN still achieves state-of-the-art
performance on the dataset of METR-LA, which indicates the superiority of the
D-A3T-GCN architecture itself.

Horizon = 3 Horizon = 6 Horizon = 12
Methods RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

D-A3T-GCN (no POIs) 0.89 0.65 1.05% 0.90 0.66 1.04% 0.90 0.65 1.05%
D-A3T-GCN 0.27 0.15 0.87% 0.36 0.21 1.24% 0.57 0.38 0.57%

Table 5.7: The performance of D-A3T-GCN (without POIs) against D-A3T-GCN
with numerical/more complex POIs on the PEMS-BAY dataset. Once again, As we
can observe from this Table, even without POIs, D-A3T-GCN still achieves state-of-
the-art performance on the dataset of PEMS-BAY, which indicates the superiority
of the D-A3T-GCN architecture over the state-of-the-arts.

assumption, but it does not perform as well as the newer methods that consider both
the spatial and temporal dependencies of the data. DCRNN achieves improvements
across the three horizons over the three metrics because it considers modeling both
the spatial and temporal correlations of the data; so does Graph WaveNet, which
achieves even better performance than DCRNN. GMAN performs very well because
it also includes the attention mechanism, which is effective at modeling long-term
dependency. Based upon the DCRNN architecture, DGCRN is the best-performing
state-of-the-art solution.

However, we still outperform DGCRN by a large margin across the horizons in terms
of RMSE, MAE, and MAPE. Specifically, in Table 5.2, across all three horizons, in
terms of RMSE, D-A3T-GCN outperforms the DGCRN, by 4.86 when the horizon
is set to 3, 5.66 when the horizon is 6, and 6.57 when the horizon is 12. This is a
significant improvement over the DGCRN’s performance in terms of RMSE at the
three horizons when they are 5.01, 6.05, and 7.19 in comparison. Similar trends of
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significant improvement can be observed on the metrics of MAE and MAPE across
the three horizons as well. Similarly, in Table 5.3, we observe the same significant
improvement: in terms of RMSE, D-A3T-GCN results in a 0.27 (compared to
DGCRN’s 2.69) when the horizon is set to 3, a 0.36 (compared to DGCRN’s
3.63) when the horizon is set to 6, and a 0.57 (compared to DGCRN’s 4.42). The
evaluation results on the METR-LA and PEMS-BAY datasets as indicated in Tables
5.2 and 5.3 confirms that the proposed D-A3T-GCN achieves the new state-of-
the-art, outperforming the second best-performing methods by a huge margin and
confirming the proposed method’s superiority.

There is one limitation of D-A3T-GCN: the rate of its deterioration when the horizon
is increased is steeper than the baselines that we are comparing against. In Table
5.2, the best-performing baseline achieves an RMSE of 5.01 when the horizon is
set to 3, which deteriorates by 20.7% when the horizon is increased to 6, which
then deteriorates by 18.8% when the horizon is increased to 12. D-A3T-GCN, on
the other hand, starts at an RMSE of 0.33, which deteriorates by 18.1% when the
horizon is increased to 6, which then deteriorates by 58.9%. Similarly, we see the
same trend in the scores of MAE and MAPE when D-A3T-GCN is evaluated on
METR-LA: the deterioration rates for the other two metrics, MAE and MAPE are
steep as well. In terms of MAE, when the horizon is set to 3, the MAE score starts
at 0.21, which then deteriorates to 0.25 by 19%, which then deteriorates to 0.44 by
0.76%. In Table 5.3, the same phenomenon of steep metric scores deterioration is
also observed.

However, one must also take into consideration that the metrics scored achieved
by D-A3T-GCN are much smaller than the baselines, to begin with. If we simply
measure the deterioration by the increase in the metric scores, D-A3T-GCN is con-
sidered to have a better deterioration rate across the metric scores than the baselines.
Once again we compare D-A3T-GCN against the second best-performing baseline,
DGCRN. Since in the previous paragraph we used 5.2 as the concrete example,
in this paragraph we use Table 5.3. In terms of RMSE, DGCRN’s performance
deteriorates by 0.94 when the horizon is increased from 3 to 6, and by 0.79 when it
is further increased from 6 to 12. In terms of RMSE, D-A3T-GCN’s performance
decreases by only 0.09 when the horizon is increased from 3 to 6, and 0.21 when it is
further increased from 6 to 12. A similar trend can be observed in the deterioration
of the MAE and MAPE scores. It is worth noting that when the horizon is 12, the
MAPE score is 0.57%, which is better than the MAPE scores when the horizon is
set to 3 and 6. This can take place when the percentage errors for each prediction
become more proportional to the ground truth values of the target variable.

In Tables 5.4 and 5.5, we observe the discrepancy that the difference in the type
of the POIs made. Table 5.5 demonstrates the discrepancy on the PEMS-BAY
dataset: across all three horizons, the difference between the case where the POIs are
numerical and the case where the POIs are binary is not pronounced. For example,
when the horizon is set to 3, the difference in terms of RMSE scores between the
two cases is that the numerical POIs are slightly better than the binary POIs because
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its RMSE score is 0.01% better. The same phenomenon can be observed when the
horizon is set to 6 and 12. This hardly demonstrates the superiority of the numerical
POIs. In Table 5.4 that demonstrates the discrepancy between the two types of POIs
on the METR-LA dataset, we observe when horizion is set to 3, the RMSE score
achieved by the numerical POIs is 0.01 better than the RMSE score achieved by
binary POIs. However, the numerical POIs’ performance is worse than the binary
POIs’s performance when the horizon is set to 6: its RMSE is 0.02 worse. When the
horizon is set to 12, the both types of POIs achieve the same RMSE scores. Once
again, this hardly demonstrates that one type of POIs is superior than the other.
However, notice that both types of POIs achieve way better performance than the
best-performing state-of-the-art baseline - DGCRN. Therefore, we conclude that
both types of POIs are effective, but there is no clear superiority.

Ablation Study
So far, we have talked about incorporating POIs in the architecture of D-A3T-GCN,
which begs the question: how good is the D-A3T-GCN architecture, without the
POIs? Will it still achieve state-of-the-art performance? We answer this question
in Tables 5.6 and 5.7. As we can observe from Tables 5.6 and 5.7, in the cases
of both datasets, applying POIs does improve the performance of the D-A3T-GCN
architecture, which demonstrates the importance of the POIs. However, even without
the POIs, meaning that when the input vectors to D-A3T-GCN are the same as the
input vectors fed to the other models in Tables 5.2 and 5.3, D-A3T-GCN still achieves
the state-of-the-art performance. This indicates that the architecture of D-A3T-GCN
is superior to the state-of-the-art architectures: Specifically when we do not apply
POIs at all and we use the RMSE as an example, the D-A3T-GCN architecture
achieves an RMSE score of 0.89 (compared against DGCRN’s 2.69) when horizon
is 3, an RMSE score of 0.90 (compared against DGCRN’s 3.63), an RMSE score
of 0.90 (compared against DGCRN’s 4.42) when compared on the PEMS-BAY
dataset.

5.4 Limitation
We have already mentioned one limitation of the work is that it could have a worse
deterioration rate compared to the baselines. We use the word "could" because it
depends on how we determine the deterioration rate. If the deterioration rate is
defined by percentage, then D-A3T-GCN is achieving a worse deterioration rate
than the baselines. However, we the deterioration is defined by the absolute value,
then D-A3T-GCN achieves a better deterioration rate than the baselines.

5.5 Conclusion
Spatiotemporal forecasting has been crucial in various application domains such
as traffic prediction and climate prediction. in this thesis, we focus on the task
of traffic prediction, which remains challenging due to the spatial dependencies of
the road networks and the temporal dependencies of changing traffic conditions.
To address the challenges, we treat the road map as a graph with the nodes being
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sensors and edges being the connections among the sensors, and model the traffic
flow as a diffusion/infusion model built upon a graph convolutional net (GCN). To
further capture the global spatiotemporal dynamics, we propose to use the attention
mechanism to enhance the diffusion/infusion theory-enhanced GCN modeling for
traffic prediction. Titled D-A3T-GCN, our solution is evaluated on two large-
scale real-world datasets, METRA-LA and PEMS-BAY. And the performance result
on the two datasets suggest that we achieve the state-of-the-art performance: for
example, on METR-LA, in terms of RMSE, D-A3T-GCN shows an improvement
over the second best performing algorithm, DGCRN, by 1400% when the horizon
is set to 3.
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C h a p t e r 6

USE GAN TO GENERATE DOMAIN AGNOSTIC SAMPLES

In Chapter 4, we have already mentioned that domain adaptation is effective at
dealing with the distribution shift in the data. Precisely, it deals with the scenario
in which a DL model is trained on its training samples with one distribution but
applied to testing samples with a different distribution. In this Chapter, we propose
another (unsupervised) domain adaptation algorithm that improves the state-of-the-
art on unsupervised domain adaptation. It is called the MiddleGAN, which utilizes
the generative adversarial network (GAN) architecture to generate a large number
of samples that are similar to both distributions. Then, we train a state-of-the-art
classifier on the synthetic samples so that the classifier implicitly learns the features
that are domain-agnostic.

6.1 Introduction
In recent years, deep learning has achieved impressive results across different appli-
cation domains (Esteva et al., 2021; K. He et al., 2016; Szegedy, Ioffe, et al., 2017;
Y. Zhu and Newsam, 2017; Purwins et al., 2019; Noda et al., 2015; L. Wu et al.,
2021; Wahab et al., 2021). However, a deep neural net does not necessarily perform
well on a new domain with different distribution than its training set. This problem
is called domain shift, and domain adaptation (DA) have been invented to tackle
the issue of domain shift. One approach of DA is to find domain-invariant features
(H. Zhao et al., 2019).

Instead of explicitly selecting domain-invariant features, we propose to let a classifier
that will perform the classification task on the target domain implicitly learn to use
domain-invariant features (to perform classification). In this way, we do not have
to hand-engineer the features which may not be inclusive enough to include all
the features that are domain-invariant. Our intuition is based on the observation
that deep neural networks such as the ResNet-50 (K. He et al., 2016) or Inception
(Szegedy, Vanhoucke, et al., 2016) generalize well when trained on a large amount
of data. If we want the classifier to learn the domain invariant features (implicitly),
we need a large amount of samples that is similar to both the source domain samples
and the target domain samples. We call those samples domain agnostic samples. If
we train a neural network such as the ResNet-50 with a large quantity of domain
agnostic samples, the neural network will implicitly learn to use the domain-invariant
features to perform classification.

How do we generate those domain agnostic samples? We propose a variation of
GAN, called the MiddleGAN, which has two discriminators and a generator. One
discriminator is for the source domain; it tries to distinguish a generated sample
from real samples from the source domain. Another discriminator is for the target
domain; it tries to distinguish a generated sample from the real samples from the
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target domain. The generator is trying to generate samples that can deceive both
discriminators at the same time. The three neural networks engage in a minimax
game in which the generator is trying to generate samples to confuse both the source
discriminator and the target discriminator. Ideally, after training, the generated
samples will be indistinguishable from both the real source domain samples and
the real target domain samples, thus achieving the similarity to samples of both
domains. We have also extended the theory of GAN to theoretically prove that there
exist optimal values for the source and target discriminators and the generator.

The contributions of this thesis are:

• We create a novel variation of GAN, the MiddleGAN, that generates samples
that are similar to samples from both the source and target domains. In other
words, these generated samples are domain invariant.

• We extend the theory of GAN to show that there exist optimal solutions for
the parameters of the two discriminators and one generator in MiddleGAN.

• We empirically show that the samples generated by the MiddleGAN are similar
to both samples from the source domain and samples from the target domain.

• We have observed in our Evaluation Section (Section 6.3) that the MiddleGAN
is significantly better than the state-of-the-art algorithms on domain adaptation
tasks in which the domain shifts are large, indicating that the MiddleGAN can
be applied to a wider range of domain adaptation tasks than the other state-
of-the-art domain adaptation algorithms.

• We conduct extensive evaluations on 24 benchmarks; on the 24 benchmarks,
we compare MiddleGAN against various state-of-the-art algorithms and out-
perform the state-of-the-art by up to 20.1% on certain benchmarks.

6.2 MiddleGAN
Before we discuss our MiddleGAN, we need to discuss the original GAN on which
MiddleGAN is based. In the original GAN (Goodfellow, Pouget-Abadie, et al.,
2014), the generator𝐺 and the discriminator 𝐷 engage in a minimax game in which
𝐺 tries to minimize a value objective 𝑉 (𝐺, 𝐷) whereas 𝐷 tries to maximize it.
𝑉 (𝐺, 𝐷) is defined in Equation 6.1, in which 𝑝 is the distribution of the real samples
and 𝑞 is the distribution of the noise. A key observation obtained from Equation 6.1
is that 𝐺’s effort is to generate 𝐺 (𝑧) whereas 𝑧 is an input noise such that 𝐺 (𝑧) will
be in-distribution with the distribution of the real samples 𝑝.

min
𝐺

max
𝐷

𝑉 (𝐺, 𝐷) = E𝑥∼𝑝(𝑥) [log(𝐷 (𝑥))

+ E𝑧∼𝑞(𝑧) [log(1 − 𝐷 (𝐺 (𝑧)))]
(6.1)

Based on the key observation that we obtain from Equation 6.1, in MiddleGAN
we propose to employ two discriminators, 𝐷𝑠 and 𝐷𝑡 . 𝐷𝑠 tries to distinguish a
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Figure 6.1: In this Figure we describe how to use the MiddleGAN to generate fake,
domain agnostic samples and how to use those domain agnostic samples to train the
classifier that eventually performs the classification task on the target domain.

generated sample from real source domain samples, and 𝐷𝑡 tries to distinguish a
generated sample from real target domain samples. The generator 𝐺 engages in a
two-way minimax game with the two discriminators. The samples it generates will
be in the middle of the feature space of the source and the target domains. Below, we
empirically prove that the generated samples in 𝑝𝑚 are represented by the features
that are invariant across the source and target domains.

Formally, the objective function of 𝐷𝑡 , 𝐷𝑠, and 𝐺 is described by Equation 6.2.

min
𝐺

max
𝐷𝑠 , 𝐷𝑡

𝑉 (𝐺, 𝐷𝑠, 𝐷𝑡)

= E𝑥𝑠∼𝑝𝑠 (𝑥𝑠) [log(𝐷 (𝑥𝑠))] + E𝑧∼𝑞(𝑧) [log(1 − 𝐷𝑠 (𝐺 (𝑧)))]
+ E𝑥𝑡∼𝑝𝑡 (𝑥𝑡 ) [log(𝐷 (𝑥𝑡))] + E𝑧∼𝑞(𝑧) [log(1 − 𝐷𝑡 (𝐺 (𝑧)))]

(6.2)

In the previous paragraphs we have described how to generate samples that are
similar to both the source samples and the target samples. Recall that we have
argued that we will feed these samples during training to the classifier that performs
the final classification task on the target domain (in a supervised fashion). In this
case, how do we obtain the labels of the generated samples? The labels of the
generated data is the same as the labels of the source and target samples that are
used to generate them. In other words, only source samples of a particular class
and target samples of that particular class get to be used to generate fake samples of
this class. We repeat the generation process for all classes in the source and target
domains to generate fake samples.

Note that in the setting of unsupervised domain adaptation, the labels of the target
domain are not available. How do we obtain those labels to train the generator
and classifier? We propose to use an existing unsupervised domain adaptation
algorithm, Fixbi, to obtain pseudo-labels for the target domains. Then, we use the
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pseudo-labels of the target domain, together with the labels of the source domain,
to train the generator and the classifier.

Figure 6.1 shows the flowchart of how to use the generated domain agnostic samples
to train the classifier that eventually performs classification on the target domain. In
Figure 6.1, 𝜖 is noise, 𝑋𝑠 and 𝑋𝑡 are the source samples and target samples respec-
tively, and 𝑋𝑚 is the generated samples by 𝐺. During the training of MiddleGAN,
the three neural networks 𝐺, 𝐷𝑠, and 𝐷𝑡 engaged in a minimax game. The process
of MiddleGAN training (in the purple box) is repeated for all classes in the source
domain (and the target domain). During the training of the classifier, both 𝑋𝑠, 𝑋𝑡 ,
and 𝑋𝑚 and their labels are used.

Theoretical Results
We first discuss the two discriminators 𝐷𝑠 and 𝐷𝑡 given a fixed 𝐺. We propose
Theorem 6.2 regarding the optimal values for 𝐷𝑠 and 𝐷𝑡 , represented as 𝐷∗

𝑠 and 𝐷∗
𝑡

Given 𝑝𝑚, the distribution of samples generated by a fixed generator 𝐺, the optimal
values for the parameters of 𝐷𝑠 and 𝐷𝑡 are 𝐷∗

𝑠 =
𝑝𝑠

𝑝𝑠+𝑝𝑚 and 𝐷∗
𝑡 =

𝑝𝑡
𝑝𝑡+𝑝𝑚 .

Proof. The value objective 𝑉 (𝐺, 𝐷𝑠, 𝐷𝑡) can be expanded.

𝑉 (𝐺, 𝐷𝑠, 𝐷𝑡) =
∫
𝑥𝑠

𝑝𝑠 (𝑥𝑠) log(𝐷𝑠 (𝑥𝑠))𝑑𝑥𝑠

+
∫
𝑥𝑡

𝑝𝑡 (𝑥𝑡) log(𝐷𝑡 (𝑥𝑡))𝑑𝑥𝑡

+
∫
𝑧

𝑞(𝑧) log(1 − 𝐷𝑠 (𝐺 (𝑧)))𝑑𝑧

+
∫
𝑧

𝑞(𝑧) log(1 − 𝐷𝑡 (𝐺 (𝑧)))𝑑𝑧

=

∫
𝑥𝑠

𝑝𝑠 (𝑥𝑠) log(𝐷𝑠 (𝑥𝑠))𝑑𝑥𝑠

+ 𝑝𝑚 (𝑥𝑠) log(1 − 𝐷𝑠 (𝑥𝑠))𝑑𝑥𝑠

+
∫
𝑥𝑡

𝑝𝑡 (𝑥𝑡) log(𝐷𝑡 (𝑥𝑡))

+ 𝑝𝑚 (𝑥𝑡) log(1 − 𝐷𝑠 (𝑥𝑡))𝑑𝑥𝑡

(6.3)

We observe that 𝑝𝑠, 𝑝𝑡 and 𝑝𝑚 belong inR. For the source discriminator𝐷𝑠, any pair
of 𝑝𝑠 and 𝑝𝑚 in the form of 𝑝𝑠 log(𝑦) + 𝑝𝑚 (1− log(𝑦)), 𝑝𝑠 log(𝑦) + 𝑝𝑚 (1− log(𝑦))
achieves its maximum value at 𝑝𝑠

𝑝𝑠+𝑝𝑚 (Goodfellow, Pouget-Abadie, et al., 2014).
Similarly, for the target discriminator 𝐷𝑡 , any pair of 𝑝𝑡 and 𝑝𝑚 in the form of
𝑝𝑡 log(𝑦) + 𝑝𝑚 (1 − log(𝑦)), 𝑝𝑡 log(𝑦) + 𝑝𝑚 (1 − log(𝑦)) achieves its maximum
value at 𝑝𝑡

𝑝𝑡+𝑝𝑚 . □

Now we bring forth Theorem 6.2 which proposes that there exists an optimal solution
for the parameters of not only𝐷𝑠 and𝐷𝑡 , but also𝐺. There exists a global minimum
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for the virtual training criterion 𝐶 (𝐺) defined as

𝐶 (𝐺) = 𝑚𝑎𝑥
𝐷𝑠 , 𝐷𝑡

𝑉 (𝐺, 𝐷𝑠, 𝐷𝑡). (6.4)

In other words, there exists an optimal solution for the parameters of the generator
𝐺.

Proof. Goodfellow et al. (Goodfellow, Pouget-Abadie, et al., 2014) have proved
that, in the original GAN where there is only one discriminator 𝐷 and one generator
𝐺, the virtual training criterion can be written as the following:

𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (𝐺) = 𝑚𝑎𝑥
𝐷

𝑉 (𝐺, 𝐷)

= −𝑙𝑜𝑔(4) + 𝐾𝐿 (𝑝 ∥ 𝑝 + 𝑝𝑚
2

)

+ 𝐾𝐿 (𝑝𝑚 ∥ 𝑝 + 𝑝𝑚
2

)

(6.5)

in which 𝑝 is the distribution of the real samples and 𝑝𝑚 is the distribution of
generated fake samples, and KL is the Kullback–Leibler divergence. With two
discriminators, our virtual training criterion 𝐶 (𝐺) can be rewritten as:

𝐶 (𝐺) = − 𝑙𝑜𝑔(4) + 𝐾𝐿 (𝑝𝑠 ∥
𝑝𝑠 + 𝑝𝑚

2
)

+ 𝐾𝐿 (𝑝𝑚 ∥ 𝑝𝑠 + 𝑝𝑚
2

)

− 𝑙𝑜𝑔(4) + 𝐾𝐿 (𝑝𝑡 ∥
𝑝𝑡 + 𝑝𝑚

2
)

+ 𝐾𝐿 (𝑝𝑚 ∥ 𝑝𝑡 + 𝑝𝑚
2

)

= − 2𝑙𝑜𝑔(4) + 2𝐽𝑆𝐷 (𝑝𝑠 ∥ 𝑝𝑚) + 2𝐽𝑆𝐷 (𝑝𝑡 ∥ 𝑝𝑚)

(6.6)

In Equation 6.6, JSD is the Jensen–Shannon divergence. To find the global mini-
mum, 𝑀 (𝐺), we want to obtain

𝑀 (𝐺) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑝𝑚

− 2𝑙𝑜𝑔(4)

+ 2𝐽𝑆𝐷 (𝑝𝑠 ∥ 𝑝𝑚) + 2𝐽𝑆𝐷 (𝑝𝑡 ∥ 𝑝𝑚)
(6.7)

We observe in Equation 6.7 that we are looking for the optimal value of the JSD
centroid defined as 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑄

∑𝑛
𝑖=1 𝐽𝑆𝐷 (𝑃𝑖 ∥ 𝑄) in which 𝑃𝑖 and 𝑄

are distributions. We can see that the generator is essentially looking for the JSD
controid of the source domain distribution 𝑝𝑠 and the target domain distribution 𝑝𝑡 .
The convexity of the problem has been proved in (Nielsen, 2020). □
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Guaranteed Domain Agnosticism of Generated Samples
Are the samples generated by the MiddleGAN similar to both the source and the
target domains? In this section we use two examples to show that fake samples in the
distribution 𝑝𝑚 are similar to both the samples in the source and target distributions
𝑝𝑠 and 𝑝𝑡 .

To test if the generated samples are indeed similar to both the source and target
samples (domain agnostic), we propose a simple, but effective way to attest it. We
treat the original, unaltered MNIST (L. Deng, 2012) as the source domain. MNIST
is a dataset that contains pictures of 10 classes of handwritten digits. For the target
domain, we alter the MNIST dataset by rotating each sample 180 degrees. Then,
we use the MiddleGAN to generate the intermediate samples. After obtaining the
fake samples, we perform the first round of an experiment by training a classifier
(Inception v3 with the last layer replaced to have 10 neurons to correspond to ten
classes of handwritten digits) on the combination of the training sets of both the
source and the target domains as well as the fake samples. We achieve an accuracy
of 99.4% on the source domain’s testing set and an accuracy of 99.4% on the
target domain’s testing set (Accuracy is calculated in terms of whether the classifier
correctly classifies a sample that is of one of the ten classes of handwritten digits).
We use a learning rate of 0.0002 and the Adam optimizer and train 5 epochs. Note
that the difference between the source and target domains in the first round of the
experiments is only caused by the direction of the MNIST samples. To demonstrate
if the fake samples are robust to the difference (i.e. domain agnostic), we rotate
those fake samples by 180 degree as well. Then, we train a classifier with the same
structure using the same hyperparameters including the learning rate, the optimizer,
and the training epochs. Then, we train the classifier on the combination of the
training sets of both the source and the target domains as well as the rotated fake
samples. We have achieved an accuracy of 99.4% on the source testing set and
99.3% on the target testing set.

Source Acc. Target Acc.
Upright fake samples 99.4% 99.4%
Rotated fake samples 98.9% 99.3%

Table 6.1: The results from the two rounds of experiments. There is no significant
change to the performance measured in accuracy on both the source and target’s
testing sets.

From Table 6.1 we conclude that there is no significant change to the performance of
the classifier, despite that one’s training samples contain only upright fake samples
and the other’s training samples contain only rotated fake samples. This indicates
that the fake samples are domain agnostic because whether or not we rotate
them makes no difference.

We have included another example to demonstrate that the fake samples generated
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Figure 6.2: The left figure is from the source, real samples of cis gender women.
The middle figure is from the target, real samples of cis gender men. The right
samples are fake samples generated by MiddleGAN. As we can observe, the fake
samples contain both feminine and masculine facial features.

by the MiddleGAN are similar to both the source and the target domains. Figure 6.2
contains three subfigures. The first subfigure (from CelebA Dataset (Z. Liu et al.,
2015)) contains 64 real samples of cisgender women (the source domain). The
second subfigure (from CelebA Dataset (Z. Liu et al., 2015)) contains 64 samples of
cisgender men (the target domain). The third subfigure contains 64 samples of fake
samples (generated by the MiddleGAN) that visually have both the characteristics
of femininity and masculinity. Therefore, it is attested visually that the fake samples
generated by MiddleGAN have the similarity of both the source and the target
domains. Upon inspection by two human inspectors, both agree that the generated
samples have both feminine and masculine features. In other words, the generated
samples are similar to both the source and target domains.

6.3 Evaluation
Algorithm A→W A→D D→W D→A W→A W→D Avg

ResNet-50 (K. He et al., 2016) 68.4% 68.9% 96.7% 62.5% 60.7% 99.3% 76.1%
DANN (Ganin and Lempitsky, 2015) 82.0% 79.7% 96.9% 68.2% 67.4% 99.1% 82.2%

MSTN (Xie et al., 2018) 91.3% 90.4% 98.9% 72.7% 65.6% 100% 86.5%
CDAN+E (M. Long et al., 2018) 94.1% 92.9% 98.6% 71.0% 69.3% 100% 87.7%

DMRL (Yuan Wu, Inkpen, and El-Roby, 2020) 90.8% 93.4% 99.0% 73.0% 71.2% 100% 87.9%
SymNets (Y. Zhang et al., 2019) 90.8% 93.9% 98.8% 74.6% 72.5% 100% 88.4%

GSDA (L. Hu et al., 2020) 95.7% 94.8% 99.1% 73.5% 74.9% 100% 89.7%
CAN (Kang et al., 2019) 94.5% 95.0% 99.1% 78.0% 77.0% 99.8% 90.6%

SRDC (Tang, K. Chen, and K. Jia, 2020) 95.7% 95.8% 99.2% 76.7% 77.1% 100% 90.8%
RSDA-MSTN (Gu, J. Sun, and Z. Xu, 2020) 96.1% 95.8% 99.3% 77.4% 78.9% 100% 91.1%

FixBi (Na et al., 2021) 96.1% 95.0% 99.3% 78.7% 79.4% 100% 91.4%
MiddleGAN 92.4% 94.1% 100% 84.9% 83.5% 100% 92.4%

Table 6.2: The results on the domain adaptation tasks among the three domains in
the dataset Office-31. The metric is accuracy. A stands for the Amazon domain in
Office-31. Similarly, W stands for Webcam, and D stands for DSLR.

In this section, we evaluate the MiddleGAN on the following tasks: CIFAR-10
↔ STL-10 (two tasks), MNIST ↔ USPS (two tasks), MNIST ↔ SVHH (two
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Algorithm Pr→Ar Ar→Pr Cl→Ar Ar→Cl Rw→Ar Ar→Rw Pr→Cl Cl→Pr Rw → Pr Pr→Rw Rw→Cl Cl→Rw Avg

ResNet-50 (K. He et al., 2016) 38.5% 50% 37.4% 34.9% 53.9% 58% 31.2% 41.9% 59.9% 60.4% 41.2% 46.2% 46.1%
DANN (Ganin and Lempitsky, 2015) 41.6% 59.3% 47.0% 45.6% 63.2% 70.1% 43.7% 58.5% 76.8% 68.5% 51.8% 60.9% 57.6%

CDAN (M. Long et al., 2018) 55.6% 69.3% 54.4% 49.0% 68.4% 74.5% 48.3% 66.0% 80.5% 75.9% 55.4% 68.4% 63.8%
MSTN (Xie et al., 2018) 61.4% 70.3% 60.4% 49.8% 70.9% 76.3% 48.9% 68.5% 81.1% 75.7% 55.0% 69.6% 65.7%

SymNets (Y. Zhang et al., 2019) 63.6% 72.9% 64.2% 47.7% 73.8% 78.5% 47.6% 71.3% 82.6% 79.4% 50.8% 74.2% 67.2%
GSDA (L. Hu et al., 2020) 65.0% 76.1% 65.4% 61.3% 72.2% 79.4% 53.2% 73.3% 83.1% 80.0% 60.6% 74.3% 70.3%
GVB-GD (Cui et al., 2020) 65.2% 74.7% 64.6% 57.0% 74.6% 79.8% 55.1% 74.1% 84.3% 81.0% 59.7% 74.6% 70.4%

RSDA-MSTN (Gu, J. Sun, and Z. Xu, 2020) 67.9% 77.7% 66.4% 53.2% 75.8% 81.3% 53.0% 74.0% 85.4% 82.0% 57.8% 76.5% 70.9%
SRDC (Tang, K. Chen, and K. Jia, 2020) 68.7% 76.3% 69.5% 52.3% 76.3% 81.0% 53.8% 76.2% 85.0% 81.7% 57.1% 78.0% 71.3%

Fixbi (Na et al., 2021) 65.8% 77.3% 67.7% 58.1% 76.4% 80.4% 57.9% 79.5% 86.7% 81.7% 62.9% 78.1% 72.7%
MiddleGAN 65.0% 86.9% 63.3% 78.2% 66.2% 76.8% 73.8% 86.4% 86.1% 71.5% 75.2% 73.7% 75.3%

Table 6.3: The results on the domain adaptation tasks among the four domains in
the dataset Office-Home. The metric is accuracy. Office-Home has four domains:
Art (Ar), Clipart (Cl), Real World (Rw), and Product (Pr).

Algorithm CIFAR-10 → STL-10 STL-10 → CIFAR-10
Source Only (Yan et al., 2020) 75.9% 61.8%

VADA (Shu et al., 2018) 80.0% 73.5%
IIMT (Yan et al., 2020) 83.1% 81.6%

Enforced Transfer (Gao, Baucom, et al., 2022) 86.1% -
SE (French, Mackiewicz, and Fisher, 2017) 76.3% 83.9%

SEMA (Zuo et al., 2021) 78.7% 86.6%
MiddleGAN 89.5% 98.7%

Table 6.4: The results on the domain adaptation task of CIFAR-10 → STL-10 and
STL-10 → CIFAR-10 of 5 state-of-the-art domain adaptation algorithms and the
MiddleGAN. On both tasks, we outperform the second best-performing algorithms
by a large margin (3.4% on CIFAR-10 → STL-10 and 12.1% on STL-10 → CIFAR-
10), which demonstrates the superiority of the MiddleGAN. The metric is accuracy.

tasks), and on two domain adaptation benchmarks Office-31 and Office-Home which
contain three domains and four domains, respectively. Therefore, there are 6 domain
adaptation tasks derived from Office-31 and 12 domain adaptation tasks derived
from Office-Home. On all 24 tasks that we evaluate, MiddleGAN outperforms the
state-of-the-art by up to 20.1% on certain benchmarks.

Setups
Datasets

The following datasets are used to evaluate the MiddleGAN.

CIFAR-10 (Krizhevsky, Hinton, et al., 2009) contains 10 classes of images that are
32 × 32 pixels in size. It is a fairly large dataset; each of its classes has 6000 images.
Its training set contains 50,000 images and its testing set contains 10,000 images.
Accuracy on its testing set is calculated in terms of whether the classifier correctly
classifies a sample that is of one of the ten classes of images.

STL-10 (Coates, Ng, and H. Lee, 2011) contains 10 classes of images that are 96 ×
96 pixels in size. It is different from CIFAR-10 by one class. For each of its classes,
there are 500 training samples and 800 testing samples. Accuracy on its testing set
is calculated in terms of if the classifier correctly classifies a sample that is one of
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the ten classes of images.

MNIST (LeCun, Bottou, et al., 1998) contains 10 classes of handwritten digits.
They are 28 × 28 pixels in size. There are 60,000 training samples and 10,000
testing samples. Accuracy on its testing set is calculated in terms of if the classifier
correctly classifies a sample that is of one of the ten handwritten digits.

USPS (Hull, 1994) contains 10 classes of handwritten digits obtained via scanning
the envelopes from the USPS. There are 9298 images in total of the 10 classes, and
each of them is of size 16 × 16 pixels. The samples are in grayscale. We have
converted it to RGB. Accuracy on its testing set is calculated in terms of if the
classifier correctly classifies a sample that is one of the ten handwritten digits.

SVHN (Netzer et al., 2011) stands for Street View House Numbers. It contains 10
classes of digits obtained by street view cameras. There are 600,000 samples of
printed images of size 32 × 32 pixels. Accuracy on its testing set is calculated in
terms of whether the classifier correctly classifies a sample that is of one of the ten
street view digits.

Office-31 (Saenko et al., 2010) has three domains: Amazon (A), Dslr (D), and
Webcam (W). Each domain contains 31 classes of office objects such as projectors
and rulers. In total, there are 4,110 images. Six domain adaptation tasks can be
formed from the Office-31 dataset and we evaluate the MiddleGAN against state-
of-the-art solutions on all of the domain adaptation tasks. Accuracy on its testing
set is calculated in terms of if the classifier correctly classifies a sample that is one
of the 31 object classes.

Office-Home (Venkateswara et al., 2017) has four domains: Art (Ar), Clipart (Cl),
Real World (Rw), and Product (Pr). Each domain contains 65 classes of objects
that can be found in an office or a home, such as flowers and bikes. In total, there
are 15,500 images. Twelve domain adaptation tasks can be formed from the Office-
Home dataset and we evaluate the MiddleGAN against state-of-the-art solutions on
all of the domain adaptation tasks. Accuracy on its testing set is calculated in terms
of if the classifier correctly classifies a sample that is one of the 65 object classes.

Implementation details

On all 12 domain adaptation tasks, our source discriminator 𝐷𝑠, target discriminator
𝐷𝑡 , and generator 𝐺 share the same structures. For 𝐷𝑠 and 𝐷𝑡 , we have 5 2D
convolutional layers followed by Leaky ReLu layers with a negative slope of 0.2.
After each of the 2nd, 3rd, and 4th 2D convolutional layers, a 2D batch norm
layer is added. The activation function is Sigmoid. The learning rate of the Adam
optimizers for both 𝐷𝑠 and 𝐷𝑡 are 0.0002. For the generator𝐺, its structure contains
5 transposed 2D convolutional layers. After each of the 1st, 2nd, 3rd, and 4th layers,
a 2D batch norm layer is added. The activation function is tanh. The learning rate
of the Adam optimizer for 𝐺 is 0.0002. The structures of the discriminators and
generator are based on the DCGAN (Radford, Metz, and Chintala, 2015) (Note that
there is only one discriminator in DCGAN and we use the DCGAN’s discriminator’s
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Figure 6.3: Examples from the dataset office-31 which has three domains: Amazon,
DSLR, and Webcam. It is visually attested that the Amazon domain is more different
and therefore distributionally distant to the other two domains, while DSLR and
Webcam are visually attested to be similar and therefore distributionally close to
each other.

structure for both our discriminators). There is no weight decay for any of the three
neural nets. Regarding the final classifier trained on the combination of the source
training set, the target training set, and the fake images, its architecture is Inception
v3 (Szegedy, Vanhoucke, et al., 2016; Szegedy, Ioffe, et al., 2017). We train on
a NVIDIA A100 GPU. For each domain adaptation task, the number of generated
images is empirically determined that resulting in the final classifier giving the best
performance measured in accuracy scores.

CIFAR-10 ↔ STL-10
Table 6.4 demonstrates the comparison of the MiddleGAN against 5 state-of-the-
art baselines in terms of accuracy: VADA (Shu et al., 2018), IIMT (Yan et al.,
2020), Enforced Transfer (Gao, Baucom, et al., 2022), SE (French, Mackiewicz,
and Fisher, 2017) and SEMA (Zuo et al., 2021). The Source Only algorithm
indicates the performance of training a classifier on the source domain and directly
applies it to the target domain without mitigating the domain shift. On the task
of CIFAR-10 → STL-10, it outperforms the second best-performing algorithm, the
Enforced Transfer, by 3.4%; on the task of STL-10 → CIFAR-10, it outperforms
the second best-performing algorithm, SEMA, by 12.1%. The superiority of the
MiddleGAN suggests that the fake samples are invariant to domain shift. We
conduct the experiment on CIFAR-10 ↔ STL-10 to get a basic sense of the capacity
of domain adaptation by the MiddleGAN when compared to the state-of-the-art
algorithms. In later Sections such as 6.3, we delve into deeper reasons on why the
MiddleGAN outperforms the state-of-the-art algorithms.
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Office-31
In Table 6.2, we compare the MiddleGAN against ResNet-50 and 10 other state-
of-the-art domain adaptation algorithms. Again, the metric is accuracy. Out of the
six domain adaptation tasks, we achieve state-of-the-art performance on three of
them. However, note that our improvement over the state-of-the-art algorithms is
very significant: On the task D → A, we improve over the second best-performing
algorithm Fixbi by 6.2%. On tasks that we do not outperform the state-of-the-
art, the difference between the MiddleGAN’s performance and the state-of-the-art’s
performance is usually small. For example, on the task of A→D, the state-of-the-art
performance is 95.8% and we are only 1.7% off. Overall, the MiddleGAN achieves
state-of-the-art performance on average, outperforming all the other baselines in
comparison.

It is noted that the state-of-the-art algorithms do not achieve satisfactory results on
tasks with a larger domain shift, such as D → A and W → A, as the best SOTA
performance on D → A is an accuracy score of 78.7% and the best SOTA on W
→ A is an accuracy score of 79.4%. On the other hand, the MiddleGAN achieves
an accuracy score of 84.9% on D → A and an accuracy score of 83.5% on D →
A. The fact that the MiddleGAN succeeds where the others fail when the domain
shifts are large indicates that the MiddleGAN has the potential to allow for domain
adaptation (DA) on two domains that are more distributionally distant. In turn, this
indicates that the MiddleGAN can be used for more DA tasks.

Office-Home
In Table 6.3, we compare the MiddleGAN against Resnet-50 and 9 state-of-the-art
domain adaptation algorithms on the Office-Home dataset. Since there are four
sub-domains in the Office-Home dataset, there are in total 12 domain adaptation
tasks to be done. Out of the 12 domain adaptation algorithms, the MiddleGAN
achieves state-of-the-art performance on 5 of them. When the MiddleGAN achieves
state-of-the-art performance on a domain adaptation task, it usually outperforms
the second best-performing algorithm by a large margin. For example, on the
task of Pr → Cl, we outperform the second best-performing algorithm Fixbi by
20.1%. Overall, the MiddleGAN achieves state-of-the-art performance on average,
which is an accuracy score of 75.3%, 2.6% higher than the second best-performing
algorithm, Fixbi. In Table 6.3, we have found a similar observation as noted in
Section 6.3: the MiddleGAN is able to outperform the state-of-the-art algorithms
significantly on domain adaptation tasks whereas the domain shifts are large. For
example, on the task Ar → Pr, we outperform the second best-performing algorithm
by 9.6%. Similarly, on the task Ar → Cl, we outperform the second best-performing
algorithm by 20.1%. Again, because of this observation that the MiddleGAN is
able to outperform the state-of-the-art algorithms when the domain shifts are large,
the MiddleGAN is more suited to perform domain adaptation tasks whereas the
two domains are more distributionally dissimilar to each other. This, consequently,
suggests that the MiddleGAN can be helpful when other state-of-the-art domain
adaptation tasks cannot - the MiddleGAN can be helpful in performing domain
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adaptation tasks from domains that are more dissimilar. As a result, the MiddleGAN
can be applied to more domain adaptation tasks.

MNIST ↔ SVHN
Algorithm SVHN → MNIST MNIST → SVHN

Source Only (French, Mackiewicz, and Fisher, 2017) 66.5% 25.4%
Reverse Grad (Bousmalis, Silberman, et al., 2017) 73.9% 35.6%

DCRN (Bousmalis, Trigeorgis, et al., 2016) 81.9% 40.0%
ADDA (Tzeng, Hoffman, Saenko, et al., 2017) 76.0% -

ATT (Ganin and Lempitsky, 2015) 86.2% 52.8%
SBADA-GAN (Ghifary et al., 2016) 76.1% 61.0%

Mean Teacher (French, Mackiewicz, and Fisher, 2017) 99.2% 97.0%
MiddleGAN 99.5% 99.9%

Table 6.5: The results on the domain adaptation task of SVHN → MNIST and
MNIST → SVHN.

In Table 6.5 we compare the MiddleGAN against six state-of-the-art algorithms
and we observe that the MiddleGAN achieves the new state-of-the-art performance
on both SVHN → MNIST and MNIST → SVHN: on the first task, it achieves
an accuracy score of 99.5% and on the second task an accuracy score of 99.9%.
Both scores are nearly 100%. Compared to the second best-performing algorithm,
the Mean Teacher, the MiddleGAN only achieves an improvement of 0.3% on the
first task. This is because there is not enough room for improvement, considering
that the Mean Teacher already achieves an accuracy score of 99.2% on the first
task. On the second task, the second best-performing algorithm the Mean Teacher
achieves an accuracy score of 97.0%, and there is more room for improvement since
it is not nearly 100%. As a result, on the second task, we outperform the Mean
Teacher by 2.9%, a more significant improvement compared to our improvement on
the first task. Note that, although our improvements on MNIST ↔ SVHN is not
large, which is due to the fact that there is not enough room for improvement, we
report the evaluation results on MNIST ↔ SVHN to show that we do not lose to the
state-of-the-art algorithms.

6.4 Conclusion
We propose the MiddleGAN, a variation of GAN that generates these domain-
agnostic samples. We have extended the theory of GAN to prove that there exist
optimal solutions for the weights of the two discriminators and one generator in
MiddleGAN. We have empirically shown that the generated samples are similar to
both the source and target domain samples (domain agnostic). We have conducted
extensive evaluations using 24 benchmarks; on the 24 benchmarks, we compare
MiddleGAN against various state-of-the-art algorithms and outperform the state-
of-the-art by up to 20.1% on certain benchmarks. One novelty of this thesis is
that we have observed in the Evaluation Section (Section 6.3) that the MiddleGAN
significantly outperforms the state-of-the-art domain adaptation algorithms on tasks
whereas the domain shifts are larger. This indicates that the MiddleGAN can be
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applied to tasks where other state-of-the-art algorithms fail at successful domain
adaptation. In other words, the MiddleGAN can achieve good performance on do-
main adaptation tasks whereas the two domains are more distributionally dissimilar,
meaning that there is a wider range of applications/tasks that the MiddleGAN can
be applied.
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C h a p t e r 7

REAL DEPLOYMENTS IN WHICH REALISMS ARE PRESENT

To demonstrate the value of machine learning-based smart health technologies,
researchers have to deploy their solutions into complex real-world environments
with real participants. This gives rise to many, oftentimes unexpected, challenges
for creating technology in a lab environment that will work when deployed in real
home environments. In other words, like more mature disciplines, we need solutions
for what can be done at development time to increase success at deployment time.
To illustrate an approach and solutions, we use an example of a project that is
a pipeline of voice-based machine learning solutions that detects verbal conflicts
of the participants. We call it the Patient Caregiver System (PCR). PCR is a
smart health technology because, by notifying the participants of their conflict, it
encourages the participants to better manage their emotions. This is important
because being able to recognize one’s emotions is the first step to better managing
one’s anger. PCR was deployed in 6 homes for 4 months each and monitors the
verbal conflict of the caregiver of a dementia patient. In this chapter, we re-confirm
the claims demonstrated in Chapter 3 and 4: if you are aware of the realism (in this
case, the acoustical environmental distortion) beforehand, integrating the realism
(environmental distortion) into the training samples can ensure deployment time
success.

7.1 Introduction
Smart health research teams often develop novel machine learning technologies. To
prove the value of the technologies, the research teams have to deploy the solutions
into a complex environment such as a smart home (Bedón-Molina, Lopez, and
Derpich, 2020; Costin et al., 2009; Khan and Chattopadhyay, 2017; Gao, Ma,
et al., 2020). However, the aforementioned works do not describe the problems
related to the transition from the development stage to the deployment stage. In
other words, during the development stage, the research teams try to develop their
solution in an environment, usually a lab environment and/or a controlled home
environment, which is less complex than the environment in which the technology
is going to be deployed. It is well known that when new technology is actually
deployed in real complex environments, issues previously unseen in less complex
environments are going to occur, especially for long-term deployments. this Chapter
describes the conflict detection classifier developed in 4 when it is integrated into
the PCR System, a pipeline of voice-based machine learning solutions for in-home
monitoring of verbal conflict experienced by a caregiver of a dementia patient. The
conflict detection model, as well as the PCR System, is considered a smart home
technology because it helps caregivers of dementia patients better manage their
anger by notifying them when verbal conflict is detected.
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The main challenge of integrating novel voice-based machine learning technology
into complex environments is that the physical environment is complicated. For a
smart health technology that uses voice for emotion detection (GAO et al., 2021),
the environment is complicated because the solution needs to address the problems
of acoustic signal’s deterioration due to background noise such as birds chirping,
room reverberation due to the signal bouncing off the surface of furniture, and
deamplification as a result of the distance between the human speaker and the
microphone. We call these environmental distortions acoustical realisms.

The gist of our solutions at pre-deployment time to ensure maximizing the post-
deployment success of the machine learning algorithms in the PCR System is that
we integrate previously known realism (acoustical environmental distortions) into
the deep learning model (the conflict detection model). Using the PCR System
as an example, the (acoustical) samples that the algorithms in the PCR System
are about to encounter in its designated environment (a participant’s home) are
voice samples that are environmentally distorted. Note that in the PCR System, in
addition to the conflict detection model, we also have the voice activity detection
(VAD) model that filters out non-speech clips for the conflict detection model and
the speaker identification model that filters out speech not produced by the registered
participants for the conflict detection model.

It is worth noting that some works, such as Chen et al. (Zeya Chen, Mohsin
Y Ahmed, et al., 2019a), do consider the designated environment in which their
algorithm is going to be deployed during the pre-deployment stage. However, they
do not evaluate if their hypothesis that the algorithm indeed performs well during
post-deployment time holds true. Unlike works such as Chen et al. (Zeya Chen,
Mohsin Y Ahmed, et al., 2019a), we perform evaluations to show that after our
rigorous pre-deployment time assessment of the algorithms to be deployed in the
designated environment, our chosen algorithms indeed perform well during the
post-deployment stage when they are being deployed in the designated environment
(the home of a patient-caregiver dyad), which is one novelty of this thesis.

The contributions of this Chapter are based on the in-home deployed PCR system
from six completed 4-month deployments of real caregiver-Alzheimer’s patient
interactions. This work was performed under an approved IRB. The main contri-
bution is:

• We confirm the pre-deployment approach for resulting in novel deep learning
models deployment time success: to achieve this, we need to incorporate
known realism into the training samples of these models.

In this section, we describe the PCR System, which includes the voice activity
detection (VAD) algorithm, the speaker identification (SID) algorithm, and the
conflict detection algorithm. Two out of the three algorithms are off-the-shelf, and
note that the purpose of these two are to filter out unwanted/ineligible audio clips for
the conflict detection model. The VAD algorithm is Google’s transcription services,
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which filtered out audio clips that are not human speech. The SID algorithm is the
WavLM algorithm developed by Microsoft (S. Chen et al., 2022), which makes sure
that the conflict detection model only looks at audio clips by registered speakers.
We developed the conflict detection by ourselves and a detailed description of the
algorithm can be found in Chapter 4, and we demonstrate using the conflict detection
model that if we know the realism (acoustic environmental distortion) beforehand,
we will be able to deal with them during the development stage. We also demonstrate
in this Chapter that because we have dealt with the acoustic environmental distortion
beforehand, our conflict detection model performs well on the six dyads that we
evaluate the conflict detection model on (see Section 7.2.

In later sections of this thesis, we thoroughly tested the off-the-shelf algorithms to
make sure that they meet our needs in the PCR system (i.e. they are good candidates
for filtering out unwanted/ineligible clips for the conflict detection model).

Now we briefly describe the PCR system that the conflict detection model is a part
of. The microphone placed in a central place in a room constantly listens to the
ambient environment. The audio stream is sliced into 5-second audio clips and send
to the voice activity detection (VAD) model to decide if a given clip contains human
voice. The choice of each audio clip being 5-second is based on the observation
from previous works that 5-second is long enough to be indicative of the speakers’
emotions (GAO et al., 2021). The PCR System discards those audio clips that are
invalid; i.e., they contain no human voice. The valid audio clips are sent to the
speaker identification (SID) model to detect if the audio clips contain the voice of
registered speakers. If yes, they are sent to the conflict detection models.

7.2 Evaluations
Many speech processing works have collected or augmented datasets with real world
sounds. Good solutions are usually then developed. But, in many cases the resultant
datasets have limited in-the-wild sounds so where they actually work is limited, and
many times the solutions are not validated in-the-wild, but only on the datasets.

In this Section, we evaluate the conflict detection model’s performance at the pre-
and post-deployment stages. However, recall that we need the VAD model to filter
out non-speech audio samples, and the SID model to filter out samples that do not
belong to the registered speakers; therefore we must ensure their effectiveness as
well. As a result, before we evaluate the conflict detection model’s performance, we
evaluate the VAD and SID models’ performance at the pre- and post-deployment
stages.

Voice Activity Detection
The VAD model filters silence and other sounds that are not produced by the human
vocal tract. Since the acoustic system is constantly listening to the environment, we
do not want to activate the conflict classifiers when an input sound window contains
no human speech. As a result, the VAD model is an important and necessary
component in the PCR System. In this Section, we describe testing on the VAD
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Existing SOTA VAD Accuracy
VQVAD 45.66%

Sohn et al. 31.21%
Kaldi Energy VAD 11.72%

DSR AFE 40.07%
rVAD 66.23%

Table 7.1: Evaluation of existing VAD algorithms on the Aurora-2 database. This
Table is reported by Tan et al. (Tan, Dehak, et al., 2020).

model for the question: Is it possible to perform comprehensive and realistic pre-
deployment testing to improve post-deployment success? Note that the acoustic
realisms that the VAD model faces are deamplification, reverberation, and (non-
speech) background noise, so in our pre-deployment stage assessment we seek to
find a VAD solution that is robust against these three types of acoustical realisms.

Pre-deployment Stage Assessment

During pre-deployment time, we first looked into several state-of-the-art VAD algo-
rithms. In particular, we studied the performance of a set of SOTA VAD algorithms
on the Aurora-2 database (Hirsch and Pearce, 2000). The performance of the algo-
rithms on the Aurora-2 database is a good indicator of how they might perform in
the real world because Aurora-2’s speech samples are mixed with noise collected
from realistic settings such as streets, airports, and cars. Table 7.1 is a list of existing
SOTA VAD algorithms’ accuracy scores on the testing set of Aurora-2. Unfortu-
nately, as we can see, the highest-performing one is rVAD, which only achieves
an accuracy score of 66.23%, which is far from being usable in the real world. In
other words, there exists solutions in the literature that do not work on datasets with
deamplification, reverberation, and background noise. It is good to discover that
these solutions are not likely to work at post-deployment time, because this helps us
filter out existing solutions so that we won’t use those solutions.

However, there was another algorithm, the Google Speech Recognition (GSR) algo-
rithm, that had not been evaluated on a dataset that contained the three environmental
distortions: reverberation, deamplification, and background noise. As a result, we
next evaluated the Google Speech Recognition solution. we aimed to evaluate it in
a comprehensive way to demonstrate that it would be robust against environmental
distortions such as reverberation, deamplification, and background noise. Again,
this is to set up the necessary condition to prove our hypothesis that a solution,
during the pre-deployment stage, must be able to deal with the unique challenges
given the real, designated environment in which it will be deployed.

To do so, we collected a dataset that contains diverse environmental distortions: first,
we collected the clean samples - samples that are not environmentally distorted, by
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Event Instances

(object) rustling 60
(object) snapping 57

cupboard 40
cutlery 76
dishes 151

drawers 51
glass jingling 36
object impact 250

people walking 54
washing dishes 84

water tap running 47

Table 7.2: Events that are present in the background noise collected from real homes
from the dataset (Mesaros, Heittola, and Virtanen, 2016). All of them are covered
in the process of contaminating audio samples with background noise. Note that
this list do not include sounds from the tv, which are very important to make sure
the robustness of the emotion detection model and conflict detection model.

having an individual talk next to the microphone for 5 minutes. The 5-minute clip
was then sliced into 60 5-second segments, each of which is individually labeled as
positive if it contained a human voice, or negative if it did not contain human voices.
Note that the individual took long pauses intentionally to make sure that there were
negative samples. Second, we collected the audio clips that were deamplified and
contained background noise. To do so, we took copies of the clean samples. For
each of the copies, we randomly deamplify them by m decibels (0 < m < 12) as per
the practice of a previous work on emotion detection (GAO et al., 2021). Then, we
randomly picked household sounds from the household ambience dataset (Mesaros,
Heittola, and Virtanen, 2016). Table 7.2 lists the events that occur in the dataset.
Note that each of the ambience sounds is greater than 5 seconds, so we randomly
picked a segment from it that was 5-seconds long, and overlaid it with a deamplified
clip. We repeated this process for all 60 deamplified clips. Third, we created the
data for reverberated speech. To do so, we took another set of copies of the clean
samples, and overlaid each of them with reverberation that was described by the
combination of the three parameters: the wet/dry ratio 𝑟 , diffusion 𝑑, and decay
factor 𝑓 . Finally, we created samples that are deamplified, noise-contaminated,
and reverberated. To do so, we took a set of copies of the 60 deamplified and
noise-contaminated samples, and overlaid them with the same reverberation effect
as the samples that only contained reverberation effect and nothing more. In the
end, we have 60 clean samples, 60 deamplified and noise-contaminated samples, 60
reverberated samples, and 60 samples that had all three environmental distortions.
As a result, we claim that we created a dataset that was comprehensive enough to
account for all three kinds of environmental distortions.
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Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
GSR 100% 100% 94.0% 95.0% 100% 98.0%

Table 7.3: The evaluation results for the voice activity detection model on the dyads.
The high accuracy scores achieved from the dyads indicate that the VAD algorithm
(Google Speech Recognition) is highly effective at differentiating non-speech from
human speech audio samples.

We evaluated GSR on the dataset that we just created. GSR achieved an accuracy
score of 95.83%, correctly classifying 230 out of the 240 samples each of which ac-
counted for the environmental distortions to a certain degree. The high performance
led us to decide to deploy GSR as our VAD model since, during the pre-deployment
stage assessment, it is shown to be robust against the challenges that it is about to
encounter in the real, designated environment: reverberation, background noise,
and deamplification.

Post-deployment Stage Assessment

Using post-deployment data on six completed dyads, we validate how well the
chosen solution worked in practice. Table 7.3 shows the evaluation results of the
VAD model on the dyads. We randomly select samples generated by each dyad
during their deployment, and have human labelers label them if they are of human
speech or not. We obtained 100 samples for all the dyads. The high performance of
the VAD model indicates that this part of our system is highly effective at filtering
out non-human speech samples such as background music (without lyrics) and
footsteps. It is noted that the VAD does not filter out TV sounds if there is human
speech in the sounds, such the voices of actors or news anchors. These unwanted
sounds are filtered by the next model, SID.

The VAD model achieves an accuracy score of 94.0% to 100% on the six dyads.
The high performance on post-deployment data validates our choice of the Google
Speech Recognition in the pre-deployment phase. This implies that this VAD al-
gorithm was originally made very robust to real world complexities. The high
performance also indicates that, in order for the deployment to be successful, smart
health groups using audio should perform pre-deployment tests with comprehen-
sive real-world distortions. In addition, the high performance suggests that our
hypothesis holds true - recall that our hypothesis is that, during the pre-deployment
stage assessment, an about-to-be-deployed algorithm must be proven to overcome
the challenges that are perceived to be present in the real, designated environment
in order for it to perform well in said environment. The high performance on
post-deployment data also indicates that it is sometimes possible to perform com-
prehensive and realistic pre-deployment testing to improve VAD post-deployment
success.
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Speaker Identification (SID)
The SID model determines the identity of a speaker. The SID is a crucial part of
the PCR System because we only want the voices of the registered speakers to be
sent to conflict detection models. However, in real deployments, voices from the
TV and visitors must be filtered out. In this Section, we test SID model to answer
this question: is it possible to perform comprehensive and realistic pre-deployment
testing to improve post-deployment success? Note that the acoustical realisms that
the SID faces, in addition to (non-speech) background noise, reverberation, and
deamplification, also include sounds from the tv such as the dialogues from tv
characters, for the presence of another person’s voice in an audio sample could
confuse the speaker identification model.

Pre-deployment Stage Assessment

During pre-deployment time, we investigated a state-of-the-art SID algorithm, the
Google Speaker Identification API. However, the API asks us to input the maximum
number of speakers there can be in a clip. This is impractical because a dyad can
have the TV on and there could be many people’s voices from the TV, or there may
be multiple visitors. It is good to discover that this solution is not likely to work at
post-deployment time, because this helps us filter out existing solution(s).

Now we describe how we test to make sure the about-to-be-deployed SID algorithm
developed by Microsoft (S. Chen et al., 2022) is robust to environmental distortions
such as reverberation, background noise, and deamplification. Again, this is to
verify our hypothesis that for an algorithm to be successful in the real, designated
environment, it must be able to overcome the challenges present in the real, des-
ignated environment during the pre-deployment stage. In our case, the challenges
are reverberation, deamplification, non-speech background noise and TV sounds.
Specifically, we have two persons, P1 and P2, each of whom spoke next to the micro-
phone for 2.5 minutes. Then, for each of their voice files, we sliced it into 28 audio
samples. Because these 56 (28×2) samples were collected when the speakers were
right next to the microphone, they were considered clean speech, free of the three
types of environmental distortions. We needed to craft environmentally distorted
samples out of the 56 clean samples to ensure that the testing samples accounted
for both clean and environmentally distorted samples. To do so, we copy each of
the 56 clips and deamplify them by randomly choosing a real number between 0
and 12 decibels. Then, we randomly chose a noise clip from Table 7.2 as well as
TV sounds we recorded using a microphone, out of which we randomly chose a
consecutive 5-second segment to be overlaid with one of the copies. This guaranteed
samples that were deamplified and contaminated with noise, and the last step was to
reverberate it. Again, the reverberation effect is described by the three parameters:
the wet/dry ration 𝑟, diffusion 𝑑, and decay factor 𝑓 , as per the practice of a previ-
ous work (Salekin et al., 2017). When we reverberated a (noise-contaminated and
deamplified) copy, the values of 𝑟, 𝑑, and 𝑓 are randomly chosen. In total, we had
112 samples, 56 of which belonged to P1 and the other 56 belonged to P2. We fed
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the 112 samples to our SID model. The SID model achieves an f1 score of 85.7%
on P1 and 92.8% on P2. The high performance of the SID model led us to believe
that it was reasonably robust to reverberation, deamplification, background noise,
and TV sound.

Post-deployment Stage Assessment

To validate post-deployment success, from all audio samples that our speaker iden-
tification algorithm identifies to contain the voice of the caregiver or the patient, or
both, we randomly chose 28 from the first dyad, 28 from the second dyad, and 28
from the third dyad, 100 from the fourth dyad, 80 from the fifth dyad, and 100 from
the sixth dyad. The results are reported in Table 7.4. In the following sentences we
describe how we obtain the f1 scores in Table 7.4. For a sample, if it only contains
the voice of the caregiver, then it is labeled as belonging to the caregiver; it if only
contains the voice of the patient, then it is labeled as belonging to the patient. If it
contains voices from both the caregiver and patient, then it is labeled as belonging
to both. Otherwise, it labeled as belonging to neither. With this labeling scheme,
we obtain the positives and negatives of the caregiver’s voice and the positives and
negatives of the patient’s voice. The SID model can label a sample as belonging to
the caregiver, belonging to the patient, or neither. As a result, we obtain the results
in Table 7.4 in which we report the f1 scores to measure the performance of our
SID model for both the caregiver and patient of each dyad. The SID model achieves
an f1 score in the range of 93.1% to 97.4% for the caregivers and 91.6% to 98.3%
on the patients in the six dyads. The high performance in Table 7.4 indicates that
our SID algorithm is effective at picking out the voices by the caregiver and the
patient in each home in their real home environment. Given that the SID algorithm
was specifically assessed to see if it could overcome the challenges (reverberation,
deamplification, and background noise) present in the real, designated environment
(homes), we have shown that for an algorithm to be successful in the real, desig-
nated environment, it must be able to overcome the challenges present in the real,
designated environment during the pre-deployment stage. The high performance of
the SID during the post-deployment time suggests that our way to perform compre-
hensive and realistic pre-deployment is effective at improving post-deployment SID
success. Note that we only validate the SID solution on the voices of the caregiver
and patient of each dyad, because at post-deployment time, the SID solution filtered
out voice samples that belonged to neither. As a result, we only have samples that
are labelled by the SID solution as either the caregiver or the patient. For samples
that made through the SID solution, we have the performance reported in Table 7.4.

In Table 7.5 we report the f1 score of a model (LeCun, Bengio, et al., 1995) that
we did not use because at pre-deployment time it achieves bad performance (an
f1 score of 79.3% on P1 and an f1 score of 71.2% on P2). As we can see, this
model also achieves bad performance on the post-deployment data. This indicates
that at pre-deployment time, the model that performs badly also performs badly at
post-deployment time.
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Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
Caregiver 94.5% 97.4% 95.7% 93.1% 92.0% 89.2%

Patient 94.6% 95.9% 96.0% 94.6% 91.6% 98.3%

Table 7.4: The evaluation results for the speaker identification model on the dyads.
The results are the f1 scores.

Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
Caregiver 57.1% 71.4% 83.6% 52.6% 44.3% -

Patient 74.8% 75.9% 79.5% 77.7% 74.2% 97.0%

Table 7.5: The post-deployment evaluation results for a speaker identification model
that we did not use because it achieved bad performance pre-deployment time. As
we can observe, its performance on all dyads is bad at post-deployment time.

The Conflict Detection Model
For conflict detection, currently, there is no available conflict detection algorithm that
is acoustics-based. Therefore, we developed our own conflict detection algorithm. In
this Section, we aim to test on the conflict detection model: is it possible to perform
comprehensive and realistic pre-deployment testing to improve post-deployment
success?

Pre-deployment Stage Assessment

Here we briefly describe how the new algorithm we developed is trained and why
the training process makes it specifically account for the (three) challenges that arise
in the real, designated environment in which the algorithm is going to be deployed.
The training and testing samples are from 19 couples and each sample is labeled
conflict if the content of the sample indicates that the couple are in a verbal conflict.
It is labeled non-conflict if the couple are not in a verbal conflict. Since the samples
are already collected from home-environments, de-amplification and reverberation
are accounted for, but the samples are free of background noise. As a result, we mix
each of the samples with background noise by randomly selecting a segment from
a randomly chosen indoor background noise sample in Table 7.2 and overlaying
that segment with each sample. Out of the samples, there are 3,072 in the training
set and 1,009 in the testing set. As a result, both the training and the testing set
accounts for a variety range of indoor environmental distortions. Since the training
samples are touched by deamplification, reverberation, and background noise, our
conflict detection algorithm trained on them is designed to be able to handle the
three challenges (deamplification, reverberation, and background noise).

The conflict detection model’s performance on the testing set achieves an f1 score of
93.1%. The high performance suggests that the conflict detection is robust against
environmental distortions such as reverberation, background noise, and deamplifi-
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Dyad 1 Dyad 2 Dyad 3 Dyad 4 Dyad 5 Dyad 6
Ours 63.4% 65.9% 70.7% 86.2% 82.7% 90.1%

Table 7.6: The evaluation results for the conflict detection model. The measurement
is f1 score.

cation. This help us set the stage to prove our hypothesis that, for an algorithm to
work sufficiently in the real, designated environment in which challenges are per-
ceived to be present, the algorithm must show that, during pre-deployment stage, it
is able to handle the challenges. Our conflict detection algorithm has indicated that
during pre-deployment stage, it is able to handle the three challenges: reverberation,
deamplification, and background noise. Note that we do not include TV sounds as
one of the acoustic realisms that the conflict detection model needs to address. In
the future, we plan to develop a conflict detection algorithm that takes TV sounds
into consideration.

Post-deployment Stage Assessment

In the post-deployment time, we seek to prove our hypothesis that, for an algorithm
to work well post-deployment time in the real, designated environment in which it
is going to be deployed, during pre-deployment stage it must show that it is capable
of overcoming the challenges that are present in the real, designated environment.
Our conflict detection algorithm has showed that it is capable of overcoming the
challenges (it achieves an f1 score of 93.1% pre-deployment time). However, is it
going to work well in the post-deployment time?

Table 7.6 shows our conflict detection algorithm’s performance during the post-
deployment time at the six homes. Now we explain how we obtain the f1 score
results in Table 7.6. If a clip is labeled by the labelers such that it contains verbal
conflict and the classifier also thinks this clip contains verbal conflict, then it is a
hit. If the clip is labeled by the labelers as not containing verbal conflict and the
classifier also thinks that it does not contain verbal conflict, then it is a hit. All
other cases are misses (for example, the labelers think that a sample contain verbal
conflict but the classifier fails to classify it as so). By looping through all samples
produced by a dyad, we produce an f1 score on that dyad. From Table 7.6, we
observe that the sixth dyad achieves the best performance with an f1 score of 90.1%
while the first dyad achieves the lowest performance with an f1 score of 63.4%. For
each of the dyads, we observe a drop in performance compared to 93.1% obtained
when the same model is evaluated on the dataset containing speech samples from
the 19 couples. This indicates that despite our effort in mitigating environmental
distortions, the effects of the environmental distortions such as room reverberation,
background noise, and the deamplification effect are not fully mitigated. But the
relatively satisfactory performance of the conflict detection model on dyads 4, 5
and 6 indicates that our way to perform comprehensive and realistic pre-deployment
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testing to improve post-deployment success is effective for exapected conditions.

We also investigate why the performance of the conflict detection model is lower
in dyads 1-3 (f1 score of 63.4% to 70.7%). Upon communicating with the dyads,
we learned that dyad 1 moved the system (which included the microphone) to the
hallway which is very far away from the usual places that the participants were
speaking. Dyad 2 had a construction team rennovating their home, so there was a lot
of construction noise to confuse the conflict detection model. When we developed
the conflict detection model, we did not take construction noises into consideration.
In dyad 3, the caregiver’s voice was always very low, almost inaudible, and our
conflict detection model was not designed to handle such low-to-inaudible voice
samples.

Summary
In this paragraph we briefly summarize our findings: To ensure post-deployment
success of an algorithm, during pre-deployment time it must be rigorously tested
on samples that are touched by the challenges that are perceived to be present in
the real, designated environment during post-deployment time. In other words, the
deep learning models, in order to do well during the deployment stage, need to
be evaluated on samples that have realism in them. The success of the conflict
detection model post-deployment time suggests that it can successfully handle the
realism (acoustic environmental distortion), because during its training we have
incorporated the realism within the training samples.

7.3 Conclusion
In this Chapter, we confirm a previous claim in this thesis: if the realisms are known
beforehand before the development of the deep learning models, we can incorporate
the known realisms into their training samples, which results in deep learning models
robust against these realisms. We use the conflict detection classifier we developed
in Chapter 4, whose training samples contained the known realism of acoustic
environmental distortion, to prove the claim. It is integrated into an acoustic system
called the PCR System, which contains two more off-the-shelf acoustic processing
components to make sure that only wanted/eligible clips are sent to the conflict
detection model. We deployed the PCR system in six homes, each deployment
lasting for four months. The conflict detection model’s post-deployment success
across the six dyads indicates that we have successfully anticipated the realism to
be encountered in smart homes and our model, developed under our philosophy, is
good at handling the realism.
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C h a p t e r 8

DEPLOY DEEP LEARNING MODELS IN THE ONSET OF
COVID

In this Chapter, we describe one problem of deploying deep learning models, which
are the components in the acoustic pipeline in the Patient-Caregiver Recommenda-
tion System. Note that the Patient-Caregiver Recommendation System is short for
PCR as well, which is not to be confused with the Patient-Caregiver Relation-
ship System described in Chapter 7. The problem being that amidst the onset and
first years of COVID, in-person contact was not allowed. As a result, we had to
rely on the participants who agreed to have the DL models deployed in their home
environments (CPS systems) to set up the system that contains the deep learning
models.

To overcome the challenge of continuing in-home studies without in-person contact,
we developed a collection of techniques for out-of-the-box deployments usable
by the general public. In this article, we examine the feasibility and practicality
of developing out-of-the-box deployments as applied to a study of Alzheimer’s
patient–caregiver dynamics in home settings. We describe the obstacles that we
solved and the lessons learned from the effort. We believe that our out-of-the-box
deployment solution will also help other research studies that require in-person
contact.

Typically, for these types of in-home research systems, technical experts deploy
the system. This limits the geographical location of deployments to be near the
experts. A major value of the solutions described in this chapter is that there is no
geographical limitation for finding participants since the system is simply mailed to
them. All the deployments described in this thesis were conducted in this out-of-
the=box manner.

8.1 Introduction
Research work in many fields was affected significantly due to the COVID-19
pandemic (Saberi, 2020), especially the research tasks needed to be deployed in
households, such as these three works (Brush et al., 2011; Gao, Ma, et al., 2020;
Spruĳt-Metz et al., 2016). Equipment deployments are usually performed by re-
search teams and the participants do not have to set up or fix equipment problems
themselves. However, COVID-19 curtailed new deployments and ongoing deploy-
ments with in-person contacts. A major challenge is how can such in-home studies
continue without in-person contact.

To date, approaches adopted by researchers to overcome the challenge that no contact
is allowed during traditionally contact-permitted activities, include, but not limited
to teaching in classrooms and collecting data. Martin et al. (Martin et al., 2020)
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described the challenges faced by dermatology students participating in a class along
with possible remedies such as using online tools. However, conventional online
like video conferencing cannot replace some practical aspects of education such as
laboratory experiments. To mitigate this shortcoming, smartphones and augmented
reality techniques have been suggested to monitor students’ virtual experiments. An
additional advantage of the suggested virtual laboratory can collect physiological
data for educational purposes (Lellis-Santos and Abdulkader, 2020). Data collection
for experimental purposes has to change due to the pandemic. Hensen et al. (Hensen
et al., 2021) suggest using mobile phones and online platforms to collect data instead
of using traditional in-person methods during the pandemic.

To overcome the challenge of continuing in-home studies without in-person contact,
we developed a collection of techniques for out-of-the-box deployments usable by
the general public. In this Chapter, we examine the feasibility and practicality
of developing out-of-the-box deployments as applied to a study of Alzheimer’s
patient–caregiver dynamics in home settings. We describe the obstacles that we
solved and the lessons learned from the effort. We believe that our out-of-the-box
deployment solution will also help other research studies that require in-person
contact.

In more detail, the overall challenges that we have encountered are:

• COVID-19 permits no contact. The research team is no longer able to phys-
ically meet the participants. Also, face-to-face meetings among the entire
research team are also limited, because it is not advisable for research team
members to meet (frequently) either, which potentially slows down the re-
search study. The quarantine demands that participant training must be virtual
and online.

• Participants are not knowledgeable in the technology of the deployed system.
Our participants are dyads of persons with dementia and their informal family
caregivers. Dementia mostly affects older adults and 30% of caregivers are
also over the age of 65, hence study participants may have limited familiarity
with technology (Association, Thies, and Bleiler, 2013).

• The system is complex and setting it up requires training. Participants must
complete the system setup, including the installation of a laptop, smartphone,
microphone, and router, all without in-person contact. Participants must also
provide voice samples so we can perform speaker identification. Addition-
ally, study procedures include the use of mindfulness-based stress manage-
ment techniques, and participants must be trained in these techniques prior to
initiation of study procedures.

• Logistics and Budget. New EMA surveys and updates to IRBs, documenta-
tion, budgets, and logistics are required.

The main contributions of this work are as follows:
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• We provide a set of solutions for successful no-contact out-of-the-box deploy-
ments as a useful experience to other research teams facing similar challenges.

• Our evaluation demonstrates that our out-of-the-box solutions are effective in
enabling research study in-home deployments without any in-person contact.
In other words, our techniques can allow ongoing studies even when no contact
is permitted.

• We present key lessons learned from our experiences: First, the deployment
techniques provide an added degree of robustness, which improves the initial
deployment process of a complicated in-home system (the participants were
successful and less frustrated with setting up the system). Second, the Zoom
and TeamViewer combination is able to overcome the more technical and
difficult aspects of having dyads deploy a system by themselves.

• It is now possible to recruit participants irrespective of geographical location
thereby increasing the potential of finding participants.

Our evaluation consists of seven out-of-the-box deployments performed in three
stages. There were two participants from Stage 1, two participants from Stage 2, and
three participants from Stage 3. In stage 1, the first two deployments were performed
by skilled technical people as a first trial to identify needed improvements. Based
on their feedback, we made changes to the out-of-the-box deployment solution.
Stage 2 had three deployments with nontechnical individuals, one elderly and two
middle-aged. We made changes based on the feedback from stage 2. Finally, stage
3 had three elderly people perform the deployments.

8.2 The Patient Caregiver Recommendation (PCR) System
In this section, we briefly describe the PCR System in order to provide the context
for the updates we made for an out-of-the-box deployment. We stress that the
goal of this study is to assess the out-of-the-box deployment protocol, not the PCR
system itself. This section explains the major components (the acoustic pipeline,
the recommendation system, the EMA, and M2G) so that the deployment approach
can be understood in context. The details of the out-of-the-box solution are in the
following section.

Overview
The PCR system is deployed in homes with a family caregiver and an Alzheimer’s
patient. The hardware consists of a laptop, an external microphone, a router,
and a smartphone. Using a microphone, the system detects affective states of
the caregiver and reduces their stress by presenting learned, personalized stress
reduction recommendations. To serve as the backdrop to the changes needed to
handle COVID-19 restrictions, we briefly describe the system. The PCR system
consists of four major components, as shown in 8.1. In addition to the major
components, we also upload real-time data and logs to the cloud.
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Figure 8.1: The Overview of the PCR system with its four major components: the
Acoustic Pipeline, the Recommendation System, and EMA system, and M2G.

Acoustic Pipeline
The acoustic pipeline monitors the vocal interaction between the caregiver and
patient and recognizes the caregiver’s mood. When our system is on during awake
hours, the microphone constantly listens to the ambient environment. The incoming
data stream is sliced into non-overlapping five-second audio windows. For each
window, we drop the segment if it is silent.

If there is a sound, we apply a robust voice activity detection (VAD) module to
determine if there exist discernible segments of speech. After the VAD module
classifies that an audio window contains speech, the audio window is passed to the
speaker identification (SID) model to identify if the speech is from the caregiver, the
patient, or another speaker (including speakers on TV). The SID model is pretrained
using the voice of the caregiver and patient. If the SID model decides that a particular
audio window contains speech by the caregiver or the patient, this audio window is
sent to a CNN-based emotion detection model. The model has five output classes:
happiness, anger, neutrality, sadness, and fear/disgust. If the model classifies a
sample as angry speech, it notifies the recommendation system.

Recommendation System and the EMA
The goal of our recommendation system is to increase the mindfulness skills of
caregivers. Randomized control trials indicate that brief psychoeducation on mind-
fulness and self-guided practice using online exercises significantly reduce depres-
sion and anxiety, and a brief intervention involves training in mindfulness and
ecological momentary assessment strategies. The PCR system crafts four stress
management techniques: 1) emotion regulation and 2) time-out techniques, as well
as 3) brief mindfulness training, and 4) environment modification techniques to



93

increase emotional acceptance, as our recommendation candidates. PCR learns
to adapt recommendations based on the monitored acoustic events and caregiver’s
feedback on previous recommendations via federated learning based on a contextual
bandit algorithm. We consider time of the day, category of the recommendations,
and detected acoustic events as context for recommendation generation. To deliver
recommendations to the caregiver, we utilize an Ecological Momentary Assessment
(EMA) system (the software of EMA is Nubis developed by USC9). The EMA is
installed on a workstation deployed in the dyads’ homes, which connects the acoustic
monitoring system, the recommendation system, and an EMA app on a smartphone
to send recommendation messages to caregivers. This feedback is used to update
the estimation of recommendation effectiveness for future improvement. To ensure
the execution of these stress management techniques by the caregivers, we provide
them with an instructional handout and brief training before the deployment of the
system.

The recommendation system is backed by a contextual bandit algorithm, which is
designed to handle cold start in recommendations. Specifically, the algorithm adapts
its recommendation policy based on users’ feedback over time: from nearly random
recommendations (i.e., exploration) to precisely calculated ones (i.e., exploitation).
The algorithm is able to quickly find the most effective recommendation under each
given context (e.g., detected emotional state).

Our EMA has two periods: the baseline period and the recommendation period.
The baseline period lasts for four weeks, while the recommendation period lasts
until the end of the deployment (4 months). During the baseline period, the EMA
is triggered by acoustic events, such as angry voices from the participants, and asks
the participants to confirm if they are angry. This is to provide ground truth for us
to evaluate the emotion detection model. In the baseline period, we also randomly
recommend recommendations, such as mindfulness techniques to the participants
and later ask for the effectiveness of the techniques at the calming effect. The
participants’ response to such questions help us estimate recommendation effec-
tiveness, so that in the recommendation period, we recommend items that are most
effective at helping the participants calm down. The detailed technique backing up
our recommendation module is an upper confidence bound based contextual bandit
algorithm. As the purpose of this Chapter is not to explain this specific module,
and due to space limit, we decided to withhold the technical details. Also, due
to the purpose of the article being evaluating the deployment protocol instead of
the PCR system, we do not provide how the participants reacted to the randomized
recommendations during the baseline period. The participants are aware that the
EMA has two periods (the cold-start, baseline period in which the contextual bandit
algorithm learns and the recommendation period).

Monitoring Support
M2G (Ma et al., 2017) is a real-time and automated system for operation monitoring
and system ground truth validation of research-oriented residential applications.
PCR installs M2G to monitor the operation of devices and subsystems, including the
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processes, files, device battery levels, disk memory, connectivity of the microphone
and smartphone, and the cloud server. It sends notifications to remote administrators
and other personnel to report any dysfunction or inaccuracy of the system in real-
time.

Other Components
The system also includes deployment time support software that tests the operation
of each of the system components to ensure the initial correct operation of the
system. This testing would be controlled by technical members of our team when,
prior to COVID-19, we were allowed to go into people’s homes. The TeamViewer
software (The Remote Connectivity Software 2023) is also installed on the laptop
and smartphone to allow remote monitoring and updates or corrections as needed.

8.3 Out-of-the-box Deployment Solution
Deployment Preparation
To create a user-friendly out-of-the-box deployment experience, the study team
premarked study equipment at all connection points (for example, the charging port
of the phone and the wire used to charge the phone were labeled with tags of the same
color). To minimize setup requirements at the time of out-of-the-box deployment,
the team preconnected portions of the system that would not create equipment
destruction during shipment to participants’ homes. For example, the ethernet cable
and router power cord were preconnected to the study router prior to shipment.
The system included connection points for power supply to the laptop, router, and
smartphone. Additional connection points included, “microphone to USB cable
to study laptop” and “study router to ethernet cable to participant home router.”
The study team also marked power buttons on the study laptop and smartphone to
increase ease of use. Each connection point was given a label (microphone, power
port, etc.) and designated with a different color. The labels and color scheme were
incorporated into the step-by-step out-of-the-box deployment instructions given to
the participants

Deployment Instructions
Prior to the pandemic, research team members on the system development side
created deployment instructions to be used internally by team members on the
patient-caregiver relation side during system deployment in participant homes. To
facilitate out-of-the-box deployment by study participants, the team revised de-
ployment instructions to target older adult audiences. More technical descriptions
were rewritten using layman’s terms, pictures of study equipment were added, and,
as already mentioned, a color scheme was incorporated. Figure 8.2 shows three
examples of the major changes.

At Deployment Time Itself
The new contactless deployment includes two distinct processes, the out-of-the-
box participant deployment, and Zoom-assisted research team deployment. During
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Figure 8.2: Examples of the changes that we made in our three main stages/phases
of developing the out-of-the-box solution.
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telephone screening and consenting, participants provide their home address for
shipment delivery and are instructed to contact the study team upon receipt. Upon
receipt of study equipment via UPS delivery, the team instruct the participants to
complete initial deployment using the out-of-the-box deployment instructions. In-
structions provided to participants offer step-by-step instructions up to initiation of a
video call between the research team and participants. The last step of the study in-
structions directs participants to await initiation of this call by the study team. Once
study equipment is “online,” the research team proceeds with the Zoom-assisted
portion of deployment, wherein team members use TeamViewer11 to access the
study laptop, launch the Zoom application, and complete the remaining deployment
via video call with participants. During Zoom-assisted deployment, the research
team launches the appropriate computer programs to initiate audio monitoring and
the recommendation system, completes speaker identification training by recording
participants’ uninterrupted speech for five minutes, connects the study smartphone
to the server, tests all study equipment and programs to verify successful deploy-
ment, orients participants to study smartphone and EMA messaging application
functionality, and provides instructions for completing study activities.

EMA
Prior to COVID-19, we designed the EMA questions to focus on the caregiver’s
mood, anger, stress, and conflict, and the effectiveness of the recommendations. We
also had morning and evening messages with positive encouragements. With the
extra delay in preparing the out-of-the-box deployments, we received more time to
rethink the EMA questions. We made the following changes.

We added additional messages that inquire about the mental and physical health of
the caregiver. These messages ask the users about their physical health, emotional
health, stress level, loneliness, and unpleasant interactions.

We added a recommendation request button. As quarantine has increased tensions
inside homes, we decided to give caregivers the ability to request recommendations
at any time during the day to help relieve stress. With the added stress of COVID-
19, we expect more missed EMA messages by the caregiver. Consequently, we
added the functionality of giving caregivers a “secondand third chance” to answer
questions in case they are occupied by other responsibilities. We also decided
to keep messages on the screen (available to be answered) for longer periods of
time to give caregivers a greater degree of flexibility. We also tried to become more
accommodating with our recommendations by providing in-app meditation sessions
for the caregiver. We have included an example of an in-app meditation and the
survey questions associated with it in Figure 8.3.

Logistics
Contactless delivery procedures were added to the study IRB application and proto-
col in addition to previously planned in-person procedures. Procedures for in-person
deployment were purposefully retained in the event that in-person research activi-
ties are deemed necessary or reinstituted. Additionally, changes to the study budget
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Figure 8.3: An example on how the EMA is conducted: In-app meditation and the
survey questions associated with it are pushed to the participant’s phone. The first
image is the in-app meditation. After a preset time of recommending this meditation,
we ask the participants if they did follow through the meditation (middle image)
and how effective the meditation was (last image) if they did follow through. The
responses to the two survey questions help us figure out what mindfulness techniques
work better for the particular participants and recommend those effective ones more
often to those participants.

were requested from the grant-holding institution. Previously, budgeted mileage
for travel to and from participant homes was replaced with anticipated shipping
costs. Logistically, shipping and receiving coordination occurred with front office
staff at the recruiting institution. Graduate research associates performed equipment
processing prior to and between deployments. Processing included disinfecting all
equipment, performing previously described deployment preparation, and repack-
aging equipment with new study documents (the deployment instructions, training
manual, and consent document).

8.4 Evaluation
Our evaluation consists of seven out-of-the-box deployments performed in three
stages. There were two participants from Stage 1, two participants from Stage 2, and
three participants from Stage 3. In stage 1, the first two deployments were performed
by skilled technical people as a first trial to identify needed improvements. Based
on their feedback, we made changes to the out-of-the-box deployment solution.
Stage 2 had two deployments with nontechnical individuals, one elderly and one
middle-aged. We made changes based on the feedback from stage 2. Finally, stage
3 had three elderly people perform the deployment. Below is a list of the main
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changes made between stages. The instructions remained the same except for what
we described below on the in-stage changes. During the first 24–48 hours, no critical
failure of any of the participants’ systems was seen and all processes of all systems
were functioning as expected until the deployments were manually terminated.

We would like to emphasize that the purpose of the results in this Chapter is to
evaluate the out-of-the-box deployment protocol, not the components of the PCR
system. Therefore, the evaluation is not about the performance measurements such
as the accuracy of the acoustic system or how well the participants responded to the
recommendations.

During the three stages of the experiments, all participants, including the experts
from the first stage and the non-experts from the other stages, used the same manual.
› Major Changes from Stage 1 to Stage 2:

• Technical terms in the written instructions were replaced with names that a
layperson understands.

• A progress bar was added to the interface of Speaker ID training software to
inform the participants when the model training is expected to finish.

• We assigned members from the research team to use Zoom as a video call to
the participants to walk them through the set-up process.

Major Changes from Stage 2 to Stage 3:

• Text size was increased on the smartphone.

• Other visible apps on the smartphone were removed except the EMA app.

• The lock screen on the smartphone was turned OFF.

• Keypad and button sensitivity levels were adjusted.

• Name stickers were tagged near the ports on the equipment.

Major Changes made after feedback from stage 3:

• Page numbers to written instructions were added.

• Participants were instructed to read port descriptions prior to initiating the
setup.

• Participants were familiarized with color coded scheme in the beginning of
written instructions.

• Pictures of completed system setup were added.
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• Tightness of binding around system wires was adjusted.

• Equipment was labeled with number corresponding to the specific instruction
step.

After each of the seven out-of-the-box deployments, we collected data on their
deployment experience using a survey questionnaire. Appropriate questions below
used a Likert scale from 1 to 5 where 1 was very difficult and 5 was very easy. We
have listed the questions that we asked

• Overall, how easy was the system setup process?

• Overall, how easy were the written instructions to follow?

• How easy were the computer display and instructions to follow?

• Were you eventually successful in setting up the system?

• How long did it take to get the system setup?

• If you had trouble in the setup process, which part(s) of the setup process
confused you?

• Which principle(s) that we adopted do you find helpful during the setup
process?

• How comfortable/familiar are you with computers and smartphones?

Figure 8.4’s three subplots show the participants’ responses to our survey questions.
The two participants from stage 1 are denoted in green. The two participants from
stage 2 are denoted in gray. The three participants from stage 3 are denoted in
yellow. To interpret the legends of the first subplot: Each of the 7 participants are
denoted by the stage that they are in and the number used to represent them in that
stage. For example, S1P1 means the first participant from the first stage, and S3P1
means the first participant from the third stage. We made changes to stage 2 based
on the responses of participants of stage 1, and to stage 3 based on the responses of
participants of stage 2.

From Figure 8.4, we observe that the two participants from stage 1 experienced
less difficulties than the participants in stage 2, as the first stage participants rated
that the average difficulty being 3, the difficulty of following written instructions
being 3.5, and the difficulty of following computer-displayed instructions being 3.5.
Meanwhile, the averages of the scores that the participants of stage 2 gave are 2, 2,
2.5. The difference between the scores given by the two stages is expected, as the
stage 1 participants were skilled technical people while the stage 2 participants had
no technical background.
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Figure 8.4: Participants’ responses to Questions 1-3, from which we evaluate the
clarity of the written and computer-displayed instructions. For all questions in the
three subplots, we asked the participants to answer them after they finished following
the manual to deploy the system out-of-the-box.
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After making the improvement based on the responses from stage 2, we see a
significant increase of ratings. The three participants of stage 3 rated a difficulty
score of 3.33 on average on the overall easiness/difficulty to follow the instructions,
and an average of 3.66 and an average of 4.66 on written and computer-displayed
instructions, respectively. Comparing the ratings obtained from stage 1 and stage 3,
our improvements enable the third stage elderly participants to follow the instructions
as easily as the technically skilled people from stage 1. We conclude that our
improvements made on the written and computer displayed instructions are effective.

In Figure 8.4(b), we identify what caused confusion to the participants. The technical
terms in our instructions were the leading cause of confusion. This is to be expected,
as the general population are not familiar with terms that skilled technical people
are.

Figure 8.4(c) describes the assessment result of the effectiveness of the principles
that we adopted to help the participants set up the process. Each of our three
principles received four votes; all three participants of stage 3 reported that our
labeling and color coding scheme were helpful. Five out of our seven participants
finished the setup process within an hour, and the other two of them spent between
1 to 2 hours. Also, all participants of stage 3 were able to successfully set up the
deployment within an hour, suggesting that the improvements we made between
stages 2 and 3 were effective. The average time to complete the deployment for all
our participants was 1.28 hours with a standard deviation of 0.49 hour.

Evaluate the Final Stage (Stage 3) Out-of-the-Box Instructions on Six More
new Participants
In the following paragraphs, we evaluate our stage 3 out-of-the-box instructions
on six more participants (so a total of 9 real caregivers) to further attest if these
instructions are sufficient enough to ensure successful deployments. In addition to
the three participants in Section 8.4, we present Tables 8.1, 8.2, 8.3, 8.4, 8.5, 8.6,
8.7, and 8.8 to describe the out-of-the-box questionnaire and their responses.

In Table 8.1, 2 out of 9 participants reported that setting up the system was difficult,
while 7 out of 9 thought that the setup process was easy. The majority vote on
the easiness of the system indicates that in general, our stage 3 out-of-the-box
instructions are effective. However, there are reports that our system was difficult to
set up, and this brings us to Table 8.7, which indicates the parts where the participants
found confusing or hindered their setup process. Among the six potential candidates
for confusing factors, technical terms caused 3 out of the 9 participants to have
trouble with the setup process, followed by computer-displayed instructions and
phone navigation. However, Table 8.7 indicates that about half of the 9 participants
did not encounter any trouble, which suggests the effectiveness of the out-of-the-box
deployment strategy, although we must also take into consideration that, as indicated
in table 8.6, 8 out of the 9 participants are at least somewhat familiar with computers
and smartphones.

In Tables 8.2 and 8.3, we observe the participants report on the ease to follow
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written and computer-displayed instructions. In Table 8.2, 8 out of 9 participants
believed that the written instructions were at least somewhat easy to follow, while 1
participant reported that it was very hard to follow. Similarly, in Table 8.3, 8 out of 9
participants reported that the computer-displayed instructions were at least somewhat
easy to follow, while the same participant who reported that the written instructions
were very difficult to follow reported that the computer-displayed instructions were
very hard to follow as well. This person was elderly and held a bachelor’s degree,
and out of the 9 participants, this person was the only one who reported that he was
somewhat unfamiliar with computers and smartphones (see Table 8.6). Therefore,
we conclude that our computer-displayed and written instructions at stage 3 are at
least somewhat easy to follow, for people who are at least somewhat familiar with
computers and smartphone technology.

In Table 8.4, we demonstrate that all participants, despite that they might have had
trouble setting up the system, were all successful in setting up the system. This
indicates that the changes we made from stage 1 to stage 2 and from stage 2 to stage
3 are effective strategies to help ensure the out-of-the-box deployment successful.

In Table 8.5, we observe that 8 out of the 9 participants spent 0-2 hours setting up
the system, with the majority (5 of 9) spending less than 1 hour. Interestingly, the
participant who was most unfamiliar with smartphones and computers spent only
1-2 hours, while the person who spent the most time setting up the system reported
that they were somewhat familiar with computers and smartphones. This person
was also elderly and held a bachelor’s degree.

In Table 8.7, we list the parts which might have confused the participants when they
set up the system. We observe that 5 out of the 9 reported that they did not encounter
any trouble. This indicates that our out-of-the-box deployment strategies at stage 3
are mostly successful. However, 3 out of 9 of them still reported that the technical
terms were confusing. In our effort, we tried to tone down the technical terms, but
in a deployment such as ours, technical terms are not completely avoidable.

In Table 8.8, we list the parts which might have helped the participants when they
set up the system. 100% of the participants reported that the labels and color-coding
schemes were helpful, which re-confirms the observation in Figure 8.4(c). 4 out of
9 of them also reported that the image display in addition to the text and the enlarged
font size was helpful. This again re-confirms the observation in Figure 8.4(c) that
these two were still helpful, but less so than the labels and color-coding scheme.

8.5 Lessons Learned and Generalization
In the previous sections we have described the out-of-the-box techniques we devel-
oped, provided observations about those techniques, and described an evaluation.
In this section, we summarize the lessons learned and discuss the generalization
of these techniques to other deployments. One main result was that there were
few technical changes required to the core system. Rather, most changes were to
auxiliary aspects of the deployed system.
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Ease Number Percentage
Very difficult 1 11.1%

Somewhat difficult 1 11.1%
Neutral 0 0%

Somewhat easy 4 44.4%
Very easy 3 33.3%

Table 8.1: Overall, how easy was the system set-up process?

Ease Number Percentage
Very difficult 1 11.1%

Somewhat difficult 0 0%
Neutral 0 0%

Somewhat easy 2 22.2%
Very easy 6 66.7%

Table 8.2: Overall, how easy were the written instructions to follow?

Ease Number Percentage
Very difficult 1 11.1%

Somewhat difficult 0 0%
Neutral 0 0%

Somewhat easy 2 22.2%
Very easy 6 66.7%

Table 8.3: How easy were the computer-displayed instructions to follow?

Yes/No Number Percentage
Yes 9 11.1%

No difficult 0 0%

Table 8.4: Were you eventually successful in setting up the system?

Hours spent Number Percentage
3-4 0 0%
2-3 1 11.1%
1-2 3 33.3%
0-1 5 55.6%

Table 8.5: How long did it take to get the system set up?

Many changes were required to the documentation for the caregiver who now has
to set up the system. We made heavy use of pictures, videos, and large lettering
labels on equipment, even for ON–OFF buttons. We found that budget flexibility
was needed (e.g., transferring money from travel to mailing costs). Significant IRB
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Familiarity Number Percentage
Very unfamiliar 0 0%

Somewhat unfamiliar 1 11.1%
Neutral 0 0%

Somewhat familiar 4 44.4%
Very familiar 4 44.4%

Table 8.6: How comfortable/familiar are you with computers and smartphones?

Confusing part Number Percentage
Written instructions 1 11.1%

Computer displayed instructions 2 22.2%
Wi-Fi connection 1 11.1%
Technical terms 3 33.3%

Router and laptop connection 1 11.1%
Phone navigation 2 22.2%

No trouble 5 55.5%

Table 8.7: If you had trouble in the set up process, which part(s) of the set-up process
confused you?

Helpful part Number Percentage
Labels and color-coding scheme 9 100.0%
Image display in addition to text 4 44.4%

Enlarged font size 4 44.4%

Table 8.8: Which principle(s) that we adopted do you find helpful during the set-up
process?

changes were also required.

Changes made to study procedures increased the geographic reach of recruitment
from clinic patients living in surrounding counties to out-of-state patients receiving
services from the recruiting clinic. This can be considered a positive outcome for
physical contactless deployments. Additionally, strategies employed for physical
contactless deployment may also augment future in-person deployments.

While the techniques we developed were for a single research deployment, most
of the techniques are general and can be applied to many home deployments. For
example, Zoom, M2G, and TeamViewer are basic products that can be used by
any deployment. The documentation we created can be used as a template for
what is required for users, suitably changed based on the hardware used for a given
deployment. More specifically, the essential takeaways are as follows:

• The deployment adjustments provide an added degree of robustness, which
improves the initial deployment process of complicated in-home systems (the
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participants are successful and less frustrated with setting up the system).

• The Zoom and Teamviewer combination is able to overcome the more tech-
nical and difficult aspects of having dyads deploy a system by themselves.

Our takeaways have the following implications for our discipline:

• Our techniques can allow non-disruption of studies even when no contact is
permitted. This prevents the advancement of our discipline from being slowed
down by the no-contact mandate.

• Even when contact is allowed, the techniques make it easier for project mem-
bers such as behavioral scientist graduate students to deploy the system even
though they are often not as aware of the technology as the computer scien-
tists. This opens the door for more potential interdisciplinary collaboration
between the computer science department and other departments, such as the
behavioral science department.

• In-home deployments require the core system being developed and significant
additional software and tools. The techniques, software, and tools such as
M2G, Zoom, Teamviewer, etc., presented are suggested as key and enable
technical researchers to focus on the core.

• Our techniques allows for increased geographical reach when researchers
recruit participants, which allows for more data to be produced for the research
projects. The additional data can yield more evaluation results for the studies.

8.6 Conclusion
Deploying technology in homes to study and improve healthcare can be a complex
endeavor even for technically savvy people. COVID-19 delayed or stopped many
studies. This Chapter describes a set of solutions and lessons learned that support
participants in setting up the system by themselves without any personal contact. An
evaluation demonstrates its effectiveness in an Alzheimer’s study. It is hypothesized
that the techniques and lessons are also useful to be applied to deployments even
after personal contact returns.
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C h a p t e r 9

CONCLUSIONS

9.1 Summary
In this thesis, we define realism as the reality as a result of DL models’ interaction
with CPS. The direct consequence of realisms is that the data are distorted because
of the environment, and, as a result, their distribution is shifted from the training
samples that the DL models are trained on. The shift of distribution results in the
consequence that the DL models, not trained on the data with the new distribution,
fail at performing adequately on the samples captured by the actual CPS. In other
words, the models are not robust enough to be deployed with reasonable performance
in the CPS. In this thesis, we have proposed various ways to deal with the realisms.
In Chapter 3, we propose to just incorporate the known realisms into the training
samples. We also propose to use OOD detection techniques to filter out samples that
are out of the distribution of the training samples of a DL model, so that the DL model
does not misclassify it (because the sample is not sent to it for classification). This is
because of the unique perspective that samples whose classes are not previously seen
during the training stage of the deep learning classifiers can be seen as OOD samples.
In Chapter 4 and Chapter 6, we propose to use unsupervised domain adaptation to
domain adapt from clean samples to samples that are environmentally distorted, as
(unsupervised) domain adaptation is a way to deal with the fact that the models,
trained on the source domain with a certain distribution, are used on the target
domain with a different distribution. This is because of our unique perspective that
dealing with (unknown) realisms during the development time of the deep learning
models is essentially the premise of (unsupervised) domain adaptation. In Chapter
5, we look at further improving the robustness of the models using attention-based
GNNs and world knowledge to guide the attention/transformer architecture. In
addition to looking at the realisms that we can address during the deployment stage
of the DL models, we also look at a case study illustrated in Chapter 7 where we
attest that our previous way of dealing with known realisms is effective. In Chapter
8, the realism comes during the process when the deep learning model is deployed -
it is a direct result from the outside world, such as COVID which forbids in-person
contact so the developers can’t go to the smart homes where the participants live to
deploy the DL models. In summary, this thesis closely examines the most prominent
realisms that take place as a result of the deep learning models’ interaction with the
cyber physical systems in which they are deployed, as well as offering solutions to
the realisms.

9.2 Future Work
In this thesis, we have emphasized the fact that (unsupervised) domain adaptation
is useful at dealing with three out of four realisms we address. Recall that the last
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realism has nothing to do with the training of the DL models. Instead, it is the
realism that comes during the process when the deep learning model is deployed,
such as human behavior. However, unsupervised domain adaptation requires that
we have access to the data in the target domain, which might not always be available
if we are training a DL model to be deployed in a CPS, because we don’t have access
to the data to be generated in the CPS. This is when domain generalization comes in.
There is a key difference: Domain adaptation modifies a model trained on the data
from the source domain using the samples in the training set of the target domain.
In other words, it has access to some of the target samples because these samples
are used in training. Domain generalization, on the other hand, trains a model that
that it performs well on multiple domains, but during the training process it does not
necessarily expose the model to all of the domains. Therefore, the goal of domain
generalization is to make the model to be able to generalize on domains that it has
not previously seen at all. One direction of future work is to develop novel domain
generalization solutions to address the three realisms, as domain generalization’s
application range is larger than domain adaptation - domain generalization does not
necessarily require even the training samples from the previously unseen domain.
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