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Abstract 

Breast cancer is the most commonly diagnosed cancer worldwide and is 

the leading cause of cancer-related mortality among women. Although existing 

therapeutic strategies are relatively effective at controlling localized disease, 

metastatic breast cancer that has spread to distant organs remains incurable and 

is responsible for the overwhelming majority of breast cancer-related deaths. In 

breast cancer metastasis, cancer cells escape from the primary tumor and enter 

circulation via the vasculature, allowing them to reach distant organs such as the 

lymph nodes, lungs, liver, bones, and brain and colonize these tissues. Standard 

therapies often fail to eliminate metastatic lesions, allowing for cancer outgrowth 

at these sites that compromises organ function and causes patient mortality. The 

lack of therapeutic options for metastatic disease can be attributed to the 

biological complexity of the metastatic process. Cancer cell invasion and entry 

into vessels is dynamic and driven by cross-talk between cancer cells and 

stromal cells within the tumor microenvironment, but the specific contributions of 

stromal populations are diverse and not fully understood. Therefore, we used in 

vivo genetic tools and in vitro functional assays to label and deplete a population 

of stromal cells marked by the expression of periostin, a matrisomal protein 

associated with metastasis, in order to characterize their functions during breast 

cancer progression. We report that highly-metastatic cancer cells activate 

periostin-expressing cells in the primary tumor site that promote collagen 

remodeling and lymphovascular invasion of cancer cells into lymphatic vessels, 

allowing for their colonization of the sentinel lymph node. 
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Breast cancer is the most commonly diagnosed cancer worldwide and is 

the leading cause of cancer-related mortality among women (1). In the United 

States, breast cancer accounts for nearly one-third of all cancer diagnoses in 

women and is expected to cause more than 43,000 deaths in 2023 (2). Although 

localized disease is often successfully treated, metastatic breast cancer that has 

spread to distant organs remains incurable and is responsible for virtually all 

breast cancer-related deaths (3). Standard therapies frequently fail to control 

metastatic growth, leading to a five-year survival rate for patients with distant 

disease of only 29% (4). Therefore, metastatic breast cancer poses a critical 

clinical challenge, and functionally characterizing metastasis-promoting features 

of the tumor microenvironment to inform the design of more effective therapeutic 

strategies is essential for improving patient outcomes.  

The primary aim of this thesis is to determine how periostin-expressing 

stromal cells within the tumor microenvironment contribute to the metastatic 

dissemination of breast cancer cells. This chapter will provide an overview of 

breast cancer development and diagnosis, followed by a description of the 

current standards of care for breast cancer patients. Next is a discussion of the 

metastatic process and how breast cancer cells can enter circulation through 

lymphovascular invasion and disseminate to secondary sites. This is followed by 

a review of the breast tumor microenvironment and the contributions of diverse 

cell types, especially cancer-associated fibroblasts (CAFs), during primary tumor 

growth and metastasis. Finally, this chapter provides a review of the concepts 

and questions that will be addressed by the research compiled in this thesis and 
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how this information may be of clinical significance for the treatment of metastatic 

breast cancer.  

 

1.1 Clinical overview of breast cancer 
 

1.1.1 Mammary gland architecture and breast cancer progression 
 
 Mammary glands develop during puberty into branching ductal structures 

consisting of two tissue compartments: the epithelium and stroma. The 

epithelium is comprised of a central layer of luminal epithelial cells surrounded by 

a layer of myoepithelial cells attached to the basement membrane. These 

epithelial structures are embedded in connective tissue stroma consisting of the 

extracellular matrix (ECM) and diverse stromal cells including adipocytes, 

fibroblasts, macrophages and other immune cells, blood vessels, and lymphatic 

vessels (5, 6). Breast cancers develop from transformed, hyperproliferative 

epithelial cells and progress sequentially to in situ, invasive, and metastatic 

carcinomas (7). Ductal carcinoma in situ (DCIS) lesions are confined to the duct 

whereas invasive carcinomas are characterized by loss of the integrity of the 

myoepithelial cell layer and basement membrane (6). Once the basement 

membrane is breached, cancer cells can invade into the surrounding stroma and 

enter blood and lymphatic vessels, resulting in metastatic disease in which breast 

cancer cells spread to distant sites including the lymph nodes, lungs, liver, bone, 

and brain (8-11) (Figure 1.1). 
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Figure 1.1. Breast cancer progression. (A) Normal breast ducts consist of a layer of 

luminal epithelial cells surrounded by a second layer of myoepithelial cells and enclosed 

by a continuous basement membrane. Ducts are embedded in an extracellular matrix 

(ECM) primarily composed of collagen and surrounded by fibroblasts, immune cells such 

as macrophages, and a vascular network consisting of lymphatic and blood vessels (B) 

Progression to ductal carcinoma in situ is characterized by the hyperproliferation of 

transformed epithelial cells (cancer cells) within the duct, activation of fibroblasts into 

cancer-associated fibroblasts (CAFs), proliferation of CAFs and immune cell infiltrates, 

and enhanced angiogenesis and lymphangiogenesis. (C) Invasive breast carcinoma is 

defined by breakdown of the basement membrane surrounding the duct and invasion of 

cancer cells into the surrounding stroma and vasculature. Cancer cells that reach 

lymphatic and blood vessels can then disseminate to secondary sites, leading to 

metastatic disease. This figure is adapted from Cichon et al. (2010) (12) and was made 

using BioRender. 
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1.1.2 Breast cancer diversity and classification 
 

 Since invasive breast cancers are phenotypically and molecularly diverse, 

tumors are classified according to multiple parameters including histologic grade, 

molecular subtype, and stage. These classifications are subsequently used to 

inform treatment decisions and predict prognosis. Clinicians use histology of 

biopsied tissues from the primary tumor to visualize ductal structures, assess the 

extent of cancer cell invasion, and assign the cancer a grade based on the 

nuclear appearance of the cancer cells. Grades are numerically categorized from 

low to high, with a higher grade indicating that the cancer cells are less 

differentiated, more proliferative, and, therefore, more likely to spread (13, 14). 

Breast cancers are assigned to three primary molecular subtypes based 

on the expression of pro-proliferative target genes within the biopsied tissues: 

hormone-receptor positive, human epidermal growth factor receptor 2 (HER2)-

enriched, and triple-negative (15, 16). Hormone-receptor positive cancers display 

high expression of the estrogen and/or progesterone hormone receptors which 

have been shown to regulate cell cycle progression and cell proliferation (17-19). 

HER2-enriched breast cancers are characterized by high expression of 

HER2/neu, a cell-surface receptor of the ErbB family of receptor tyrosine kinases 

that promotes cell proliferation and survival by signaling through the Ras/MAPK 

and PI3K/Akt pathways (20). Finally, triple-negative breast cancers are marked 

by a lack of target gene expression as they display low expression of both 

hormone receptors and HER2 (21). Breast cancers may be further divided into 

intrinsic subtypes according to additional gene expression information, but the 
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three primary molecular subtypes listed above are most commonly used for 

clinical decision-making and disease management (22-24). 

Disease stage is an assessment of primary tumor size, regional lymph 

node involvement, and distant metastases based on physical examination, 

pathologic classification, and imaging via mammography, ultrasound, and/or MRI 

(25-27). Primary tumor size is assigned a score from T0-T3 based on its greatest 

dimension. In addition, a tumor of any size that has directly extended into the 

chest wall and/or the skin is assigned a score of T4. Regional lymph nodes are 

often the initial sites of metastasis and can indicate disease spread, which is why 

they are used for breast cancer staging. Lymph nodes can be assessed clinically 

or pathologically, and the regional lymph node classifications range from N0-N3 

based on how many lymph nodes contain evidence of cancer cells and the area 

of cancer growth within those nodes. Distant metastasis is classified as M0 or 

M1, with M0 indicating that there is no clinical or radiographic evidence of distant 

metastases and M1 indicating that there are detectable distant metastases 

present (26). Once each of these factors has been scored, the information is 

combined to assign an overall stage which then informs patient treatment and 

prognosis.  

 

1.1.3 Current standards of care 
 
Molecular subtype and stage are used to develop therapeutic plans for 

breast cancer patients. For non-metastatic breast cancer, the main goal of 

treatment is to use a combination of local and systemic therapies to eradicate the 
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primary tumor from the breast and eliminate any cancer growth in regional lymph 

nodes. Local therapy consists of surgery (either lumpectomy to remove the tumor 

or mastectomy to remove the entire breast), sampling and/or removal of axillary 

lymph nodes, and radiation (3). Systemic therapy is guided by molecular subtype 

and includes endocrine therapy, chemotherapy, and targeted therapies. The 

timing of systemic therapy varies and may be neoadjuvant (administered before 

surgical resection of the tumor), adjuvant (postoperative), or both. Hormone 

receptor positive cancers are treated with endocrine therapies that reduce 

estrogen signaling-mediated tumor growth by either competitive antagonism for 

the estrogen receptor (tamoxifen) or by reducing circulating estrogen levels by 

preventing the conversion of androgens into estrogen by the enzyme aromatase 

(aromatase inhibitors). Patients with hormone receptor positive cancers that have 

received endocrine therapy may also be treated with chemotherapy which 

consists of drugs that are cytotoxic to proliferating cells. Chemotherapy is also 

typically administered to patients with HER2-enriched breast cancer in addition to 

targeted therapies, which limit tumor growth by disrupting HER2 signaling (28, 

29). Triple-negative breast cancers are especially clinically challenging as they 

do not display hormone receptor positivity or HER2-enrichment and display 

extensive genomic and clinical heterogeneity (30-32). Therefore, therapeutic 

options for patients with triple-negative breast cancer are limited, and 

chemotherapy remains the primary treatment for both early-stage and advanced-

stage triple-negative disease (3, 33). In contrast to non-metastatic breast cancer 

where the goal is to eradicate cancer cells and achieve remission, metastatic 
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disease is considered incurable so the primary therapeutic goal when treating 

patients is to prolong life and provide palliative care. Systemic therapies are most 

commonly used in metastatic breast cancer cases, though local therapies may 

be employed to treat painful symptoms or prevent complications from tumor 

growth. 

 

1.1.4 Prognoses and limitations  
 
Current therapies are generally effective in treating non-metastatic breast 

cancers, with survival rates of ~ 93% at four years post-diagnosis for patients 

with hormone receptor-positive breast cancer, ~83% for patients with HER2-

enriched breast cancer, and ~77% for patients with triple-negative breast cancer 

(34). However, a major limitation of breast cancer treatment is the frequency of 

disease recurrence, as nearly 30% of women initially diagnosed with early-stage 

breast cancer ultimately develop recurrent metastatic disease for which there is a 

significantly worse prognosis (11). Recurrent metastatic disease results from 

dormant disseminated cancer cells that are re-activated into a proliferative state 

and grow-out at secondary sites into clinically-detectable metastatic lesions (8, 

35-40), and this process can occur over a wide-ranging time frame, from months 

to decades following initial treatment of the primary tumor (41, 42). Triple-

negative disease is the most likely to recur within five years of diagnosis, and 

metastatic triple-negative disease has a significantly shorter median overall 

survival compared to the other subtypes (one year versus five years, 

respectively) (3, 33). As previously mentioned, metastatic breast cancer is 
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considered incurable and is responsible for the overwhelming majority of breast 

cancer-related deaths. Therefore, the lack of effective therapeutic options for 

metastatic disease, especially of the triple-negative subtype, is a significant 

unmet clinical need that can be partially attributed to the biological complexity of 

the metastatic process. 

 

1.2 Metastasis 
 

1.2.1 The metastatic cascade 
 

Metastasis is a multi-step process in which cancer cells egress from the 

primary tumor and disseminate throughout the body to colonize distant organs. 

Throughout the metastatic process, cancer cells display phenotypic plasticity as 

they undergo a series of transcriptional and morphological changes that allow 

them to progress through the metastatic cascade. First, cancer cells breach the 

basement membrane and locally invade into surrounding tissue stroma. This 

local invasion coincides with transcriptional changes within the cancer cells, often 

referred to as epithelial-mesenchymal transition (EMT), that allow them to 

migrate, remodel the surrounding extracellular matrix, and survive as individual 

cells or small cellular clusters as they navigate the surrounding tissue (43-48). 

Cancer cells then transmigrate across the endothelial barrier and intravasate into 

lymphatic and blood vessels which serve as routes for their transit to distant 

tissues (49). Cancer cells must survive in circulation, then arrest at a distant 

organ site and cross the endothelium again to extravasate through the vascular 

walls and basement membrane into the parenchyma of the tissue (50, 51). 
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Cancer cells first form micrometastases within the parenchyma and often enter 

dormancy during which they must survive and adapt to the new tissue 

microenvironment. These latent micrometastases can later be re-activated into a 

proliferative state and grow out into overt metastatic colonies that form clinically 

detectable lesions (37, 39, 52-57) (Figure 1.2).  
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Figure 1.2. The metastatic cascade. During metastatic progression, cancer cells locally 

invade and intravasate into blood and lymphatic vessels. They then must survive in 

systemic circulation and arrest in a distant organ. Following arrest, cancer cells 

extravasate out of the vasculature into the parenchyma of the secondary tissue where 

they must adapt to a new microenvironment in order to survive and expand from 

micrometastases into clinically detectable macrometastases. This figure is adapted from 

Valastyan et al. (2011) (12, 54) and was made using BioRender. 
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1.2.2 The metastatic microenvironment 
 

Although the metastatic cascade is considered a linear progression as 

cancer cells physically translocate from the primary tumor to distant organs, the 

process is dynamic and further complicated by the involvement of the diverse 

cellular populations and other microenvironmental factors that can both limit and 

promote metastatic progression. Each step of the metastatic cascade involves 

cross-talk between cancer cells and their microenvironment, so the process 

includes both cell-intrinsic and cell-extrinsic determinants of successful 

metastasis. This idea was first captured by Stephen Paget’s “seed and soil 

hypothesis” proposed in 1889, which includes three key points: metastases can 

only form in tissues with biologically compatible microenvironments, primary 

tumors and metastases consist of both cancer cells and host cells, and 

metastases result from the interactions between disseminated cancer cells 

(seeds) and the surrounding milieu (soil) (8, 53, 58, 59). The ability of the primary 

tumor microenvironment to promote early steps in the metastatic cascade, 

including invasion and dissemination, will be discussed later in this chapter and is 

a primary focus of this thesis, but it is important to first consider how the tissue 

microenvironment of distant organs informs metastatic colonization as well as the 

ways in which disseminated cancer cells adapt to and modulate their surrounding 

microenvironment to support their survival and growth at secondary sites.  

Patterns of metastases are non-random, with different cancers displaying 

preferential tropism for certain secondary organs. In the case of breast cancer, 

primary tumors most often metastasize to the lungs, liver, bone, and brain. This 
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can be attributed to the fact that the microenvironments within different organs 

are structurally and molecularly distinct, so cancer cells will only successfully 

colonize biologically compatible microenvironments (52, 53, 60). In other words, 

a receptive tissue microenvironment is required for disseminated cancer cells to 

form metastases. There is growing evidence that primary tumors can release 

systemic signals such as soluble factors and extracellular vesicles (EVs) that can 

modify the ECM, vasculature, and immune landscape of distant tissues and 

establish a premetastatic niche in these organs, rendering them more permissive 

to cancer cell colonization (54, 61-71). Additionally, once cancer cells have 

reached secondary sites they can modulate the surrounding microenvironment 

by remodeling the ECM, inducing angiogenesis, activating tissue-resident 

fibroblasts into cancer-associated fibroblasts (CAFs), and mobilizing immune-

suppressive cells in order to survive and support their outgrowth into 

macrometastases (10, 39, 72-78). 

 

1.2.3 Lymphatic involvement  
 
 Before breast cancer cells can reach distant organs and establish 

metastases, they often first transit to the axillary lymph nodes as these are 

typically the first nodes in the lymphatic basin that receive drainage from the 

anatomic region in which the primary tumor resides. Axillary lymph node status is 

one of the most significant prognostic factors in women with early stage breast 

cancer and is therefore used for disease staging as described above (79, 80). A 

study of more than 24,000 breast cancer patients demonstrated that as lymph 
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node involvement increased, five-year survival status decreased regardless of 

primary tumor size (81). Thus, lymphatic metastasis is considered an indication 

of how likely a tumor is to spread to distant sites and can lead to regional 

recurrence as well as distant metastases as cancer cells often metastasize 

regionally through the lymphatics before ultimately metastasizing systemically 

through the blood (82-85). In fact, lymph node involvement may have a functional 

bearing on subsequent metastatic colonization of distant tissues. It was recently 

shown that exposure to the lymphatic environment can promote distant 

metastases by protecting disseminated cancer cells from ferroptosis as they 

enter circulation, thereby increasing the ability of metastasizing cancer cells to 

survive as they transit to secondary sites (86). Additionally, lymph node 

colonization can promote distant metastases by inducing broad alterations in the 

immune repertoire that drive tumor-immune tolerance and allow for survival and 

outgrowth of metastatic colonies (87). These findings contradict the previous 

notion that metastatic deposits in the regional lymph nodes are primarily dead 

ends for cancer cells and simply function as markers of parallel dissemination 

from the primary tumor into the general circulation (52); instead, they 

demonstrate that lymph node involvement is not just an indication of disease 

spread but rather a process that functionally contributes to disease progression. 

 

1.2.4 Lymphovascular invasion 
 

In order to reach regional lymph nodes, cancer cells must first escape 

from the primary tumor and intravasate into lymphatic vessels – a process called 
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lymphovascular invasion. Lymphovascular invasion is the predominant method of 

vascular invasion in breast cancer, and is a significant independent prognostic 

factor associated with increased risk of recurrence, distant metastasis, and death 

from the disease (85, 88-91). Lymphatic vessels function to regulate interstitial 

fluid pressure, facilitate macromolecule transport, and serve as an entry point for 

immune cell trafficking (82, 92-95). The architecture of the lymphatic endothelium 

is reflective of its role in absorbing interstitial fluid and allowing immune cells to 

transit between the lymphatic vasculature and the tissue parenchyma, 

distinguishing lymphatic vessel structure from that of blood vessels and making 

lymphatic vessels inherently more amenable to the intravasation of cancer cells 

(82). For example, unlike blood capillaries, lymphatic capillaries lack pericyte 

coverage and are surrounded by an incomplete basement membrane. 

Additionally, lymphatic capillaries have discontinuous intercellular junctions that 

open as a result of increased interstitial pressure in order to permit the passage 

of fluid and particles into the vessels to normalize the pressure balance within the 

tissue (92, 96). Whereas high intratumoral interstitial fluid pressure can compress 

and collapse blood vessels (97), preventing intravasation, the discontinuous 

intercellular junctions of lymphatic vessels and the anchoring of the lymphatic 

endothelium to the surrounding extracellular matrix allow lymphatic lumens to 

remain open despite increased interstitial pressure and enhance the 

intravasation of cancer cells (85, 98) (Figure 1.3). Once cancer cells enter the 

lymphatic vasculature, they experience lower shear stress and oxidative stress 

than they would encounter in blood circulation, further supporting the survival of  
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Figure 1.3. Structural differences between blood vessels and lymphatic vessels. 

Cross sections of a blood capillary (left) and initial lymphatic vessel (right). Blood vessels 

are surrounded by a continuous basement membrane and pericytes whereas lymphatic 

vessels lack pericyte coverage and are characterized by a discontinuous basement 

membrane. Lymphatic endothelial cells are anchored to the extracellular matrix which 

stretches as interstitial fluid pressure increases, allowing for the entry of fluid (shown in 

blue) and cells (shown in pink) into lymphatic vessels. This figure is adapted from 

Stacker et al. (2014) (95) and was made using BioRender.  
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metastasizing cancer cells (85). Together, these structural and physiological 

features allow the lymphatic vasculature to serve as the predominant route of 

cancer cell dissemination in breast cancers (88). In addition to the structural and 

physiological differences that distinguish blood and lymphatic vessels, there are 

also molecular features including chemokines and growth factor receptors that 

are selectively upregulated in the lymphatic vasculature that function as chemo-

attractants for cancer cells and promote their directional migration towards 

lymphatic vessels (94, 99-107). While these physiological processes and 

molecular mechanisms underlying lymphovascular invasion have been 

elucidated, the process of cancer cell invasion and intravasation into lymphatic 

vessels is likely also driven by the heterotypic interactions between cancer cells 

and the diverse auxiliary cells in the breast tumor microenvironment, though 

these contributions remain largely unknown. 

 

1.3 Breast tumor microenvironment  
 

Solid tumors are communities of heterogeneous cell populations whose 

interactions play key roles in tumor progression and metastasis. The breast 

tumor microenvironment consists of neoplastic epithelial cells, which make up the 

bulk of the tumor, surrounded by diverse cellular populations including immune 

cells, cancer-associated fibroblasts (CAFs), and a vascular network consisting of 

both lymphatic and blood vessel endothelium (108). Molecular characterization of 

the breast cancer microenvironment has shown that each of these cell 

populations undergo gene expression changes during tumor progression, and 

cellular cross-talk among these altered populations can shift the landscape of the 
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tumor microenvironment and promote early steps in the metastatic cascade by 

contributing to basement membrane degradation, cancer cell invasion, CAF 

activation, ECM-remodeling, enhanced angiogenesis and lymphangiogenesis, 

and immune suppression (5, 6, 67, 95, 109-133). The immune milieu consists of 

distinct cell populations that display complex and dynamic functions within the 

tumor microenvironment. While the immune system has been implicated in both 

promoting and preventing tumor growth, tumor-associated immune populations 

have been shown to largely suppress the host anti-tumor immune response and 

promote tumor growth and dissemination by remodeling the ECM and producing 

pro-angiogenic and pro-invasive growth factors, cytokines, and enzymes (76, 

104, 129). Therefore, these cells directly contribute to tumor progression and are 

of significant interest in the investigation of cancer metastasis. However, the 

focus of this thesis is the interface between cancer cells, CAFs, and the ECM 

and how these interactions drive critical steps in the early metastatic cascade by 

promoting lymphovascular invasion and lymphatic metastasis. 

 

1.4 Cancer-associated fibroblasts (CAFs) 
 

1.4.1 Origin and activation  
 

CAFs are the most abundant stromal cell type in breast cancers and can 

arise from multiple sources including quiescent tissue-resident fibroblasts that 

are activated into a proliferative and synthetic state in response to the 

parenchymal tissue injury caused by tumor growth (68, 134, 135). During acute 

wound healing, fibroblasts are activated by growth factor signaling to proliferate, 
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secrete growth factors, and deposit a provisional matrix to mediate tissue repair. 

The ECM consists of structural proteins that provide flexibility and support tissue 

integrity during mechanical stress like collagens, laminins, elastins, and 

fibronectins and non-structural proteins including proteoglycans and hyaluronan 

which bind to and stabilize growth factors as well as glycoproteins such as 

integrins that regulate cell adhesion, cytoskeletal re-organization, and signaling 

between cells and the ECM (136-139). Following matrix synthesis, the ECM 

molecules secreted by fibroblasts are re-aligned and cross-linked to form a 

mature matrix which, over time, allows for the injury to resolve and restores 

tissue integrity. Once the injury is resolved, activated fibroblasts either undergo 

apoptosis and are cleared or return to a quiescent state. This process is 

recapitulated in solid tumors, but since tumor growth causes a chronic wound 

that does not heal, the process becomes dysregulated and does not resolve, 

resulting in abundant persistently activated CAFs within the tumor 

microenvironment (140-142). Once activated, CAFs are characterized by 

enhanced expression of alpha-smooth muscle actin (-SMA), a cytoskeletal 

protein that confers contractile properties to cells, thereby giving CAFs their 

classic stellate morphology and an increased capacity for migration. CAFs also 

display an enhanced secretory phenotype and are synthetically active – serving 

as a source of growth factors, cytokines, metabolites, and matrix components 

within the tumor (135). The resulting biochemical crosstalk between CAFs and 

cancer cells as well as CAF-driven matrix remodeling are important contributors 

to cancer progression and are implicated in multiple hallmarks of cancer 
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including sustaining proliferative signaling, evading growth suppressors, and 

activating invasion and metastasis (139, 143, 144). 

 

1.4.2 Roles in ECM remodeling  
 

Just as fibroblasts are arbiters of the ECM in normal tissues, CAFs also 

deposit, assemble, and modulate the ECM within tumors by synthesizing a 

number of structural and non-structural ECM components. However, given their 

aberrant activation, CAFs secrete increased levels of structural proteins including 

collagens, fibronectins, tenascins, and elastin and exhibit enhanced expression 

of lysyl oxidases, the family of enzymes responsible for collagen cross-linking, as 

well as matrix-degrading metalloproteinases, leading to changes in the 

composition, organization, and mechanical properties of the intratumoral ECM 

(140). The collagen fibers surrounding the epithelial structures within the normal 

mammary gland are typically anisotropic and curly in structure, but many of the 

fibers thicken and linearize over the course of tumor progression (145, 146). 

Linearized fibers are more rigid than curly fibers, and the resulting increase in 

ECM stiffness can enhance cancer cell proliferation, plasticity, migration, and 

metastasis (122, 127, 147-151). CAFs serve as leader cells in the collective 

invasion of cancer cells and fibroblasts, as they remodel the ECM at the leading 

edge and promote migration by creating “tracks” in the collagen matrix that 

cancer cells then exploit for directional invasion, aiding their intravasation into 

vessels and dissemination to distant organs (152-154). Therefore, the ECM-

remodeling function of CAFs directly contributes to tumor progression and has 
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clinical consequences for patients. In human breast cancer samples, a higher 

density of activated CAFs and stromal desmoplasia are consistent aspects of 

invasive progression and distinguish tumors that are “non-progressors” from 

those that recur and spread (121). Additionally, tumor-associated collagen 

signature analysis of biopsied human breast cancer tissues has revealed that a 

matrix characterized by bundles of straightened and aligned collagen fibers that 

are oriented perpendicular to the tumor boundary is an independent prognostic 

indicator of patient outcome as it significantly correlates with poor patient survival 

(155). Although these roles of CAFs in ECM remodeling, cancer cell migration, 

and metastasis position them as attractive therapeutic targets, preclinical 

depletion studies have yielded unexpected results with indiscriminate CAF 

depletion leading to more aggressive, undifferentiated tumors (156, 157). This 

indicates that diverse CAF subpopulations play opposing roles in the tumor 

microenvironment, with some CAFs restraining tumor growth while others are 

tumor-supportive.  

 

1.4.3 Molecular and functional diversity of CAFs 
 
 Single-cell transcriptomic studies have begun to uncover the extent of 

molecular heterogeneity among CAF subpopulations, revealing spatially distinct 

CAF populations that perform diverse context-dependent functions within the 

tumor microenvironments of different cancers (120, 158-166). Though CAFs are 

mainly characterized by expression of contractile proteins such as alpha smooth 

muscle actin (-SMA) and extracellular matrix (ECM) proteins including collagens 
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and fibronectin, single-cell transcriptomic analysis has identified additional 

subpopulations of CAFs that display expression profiles associated with 

proliferation, vascular development and angiogenesis, and immune modulation 

(67, 124, 163). A recent single-cell and spatially resolved atlas of human breast 

cancers identified five distinct subclasses of CAFs that exhibit diverse 

differentiation states. These subclasses include immune modulatory 

“MSC/inflammatory-like CAFs (iCAFs)” that display high expression of 

mesenchymal stem cell markers and inflammatory markers and “myofibroblast-

like CAFs (myCAFs)” that are characterized by increased expression of ACTA2 

(-SMA) and COL1A1 (type I collagen) (162). These CAF subsets are often 

spatially segregated within the tissue, indicating that signals from the local 

microenvironment likely drive CAF differentiation and that CAFs may transition 

between these differentiation states depending on heterotypic cellular 

interactions. Importantly, CAF composition is not only dependent on spatial 

distribution but is also temporally regulated. Human breast cancer specimens 

show that CAF populations are dynamic and shift over the course of tumor 

progression, which can have direct clinical implications as CAF composition has 

been shown to directly contribute to treatment response and patient outcome 

(120, 167). Given the complexity of CAF heterogeneity, functional classification 

of molecularly-defined CAF subpopulations is necessary to overcome the 

limitations of broadly targeting CAFs so that specific tumor-promoting and/or 

metastasis-promoting CAFs can be identified and tracked over the course of 

tumor progression. A challenging but critical first step in this process is identifying 
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reliable biomarkers that distinguish pro-tumorigenic and pro-metastatic CAFs 

from their counterparts. This thesis explores the possibility that periostin, a 

matricellular protein induced by tissue injury and enriched in myofibroblasts in the 

heart, could serve as a marker of pro-metastatic CAFs in the breast tumor 

microenvironment. 

 

1.5 Periostin 
 

1.5.1 Structure, function, and expression 
 

Periostin, originally named osteoblast-specific factor 2, is a TGFβ-induced 

matricellular protein first discovered in murine osteoblasts with ~90% homology 

in mice and humans (168-170). Periostin is a secreted protein with a multi-

domain structure consisting of an amino-terminal signal peptide, a cysteine-rich 

EMI domain, four repeated fasciclin-like (FAS1) domains, a variable hydrophilic 

carboxy-terminal domain (CTD), and a heparin-binding site (170-173) (Figure 

1.4). The EMI domain is named after a domain first described in the EMILIN 

family and binds directly to collagen I and fibronectin. The FAS1 domains are 

homologous to the protein fasciclin 1 which is an evolutionarily ancient adhesion 

domain found in extracellular proteins and common to all living species (168). 

Therefore, periostin belongs to the fasciclin family. The FAS1 domains bind 

tenascin-C (TNC), integrins αvβ3 and αvβ5, and bone morphogenetic protein-1 

(BMP-1) (170, 172, 174). The CTD undergoes alternative splicing to generate  
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Figure 1.4. Protein structure of human periostin. Periostin has a multi-domain 

structure consisting of an amino-terminal signal peptide, a cysteine-rich EMI domain that 

binds to ECM proteins including collagen I and fibronectin, four repeated fasciclin-like 

(FAS1) domains that bind to tenascin C and BMP-1, a variable hydrophilic carboxy-

terminal splicing domain, and a heparin-binding site. This figure is adapted from 

Sonnenberg-Riethmacher et al. (2021) (172) and was made using BioRender. 

 

 

 

 

 

 

 

 

 

 

 

 



 25 

different protein isoforms and is known to bind heparin and heparan sulfate 

proteoglycans (HSPGs) (172, 175).  

The adjacent binding domains of periostin allow for interacting matrix 

proteins to be in close proximity, thereby serving as a protein scaffold for 

mediators of matrix assembly and promoting intermolecular interactions that 

drive the assembly of extracellular architectures (175, 176). Therefore, although 

it is a nonstructural matrix protein, periostin’s interactions with other ECM 

components directly affect matrix structure. For example, periostin regulates 

collagen fibrillogenesis by binding to BMP-1 and promoting BMP-1-mediated 

cleavage of the propeptide of lysyl oxidase (LOX) into its mature, activated form 

which catalyzes the intra- and intermolecular covalent cross-linking of collagen 

molecules, an essential process for the stabilization of collagen fibrils (174, 175, 

177, 178). Periostin can also regulate cellular processes such as cell survival, 

proliferation, adhesion, and migration by engaging integrin signaling and binding 

to cell-surface heparin and HSPGs (175, 179, 180). Thus, periostin modulates 

both the biomechanical properties of the ECM as well as intracellular signaling 

driven by cell-matrix interactions. 

Periostin is generally present at low levels in most adult tissues and is 

typically found in collagen-rich connective tissues that experience mechanical 

stress such as heart valves, tendons, and the periodontal ligament (177). 

Periostin is frequently induced at sites of inflammation and injury, and is 

expressed by activated myofibroblasts during wound repair (181-185). Thus, its 

expression is often elevated in pathological conditions compared to normal 
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physiological conditions (170). Since the CTD of the periostin protein can be 

alternatively spliced to generate three isoforms in mice and ten isoforms in 

humans, it has been proposed that full-length periostin and its variable isoforms 

may be differentially expressed across tissues and in various diseases (186-

192). 

 

1.5.2 Roles in cancer 
 
 Periostin has been shown to play multi-faceted roles in a number of 

pathologies including allergic asthma (172, 193-195), pulmonary fibrosis (196-

198), scleroderma (171, 199, 200), chronic kidney disease (201-204), 

atherosclerotic cardiovascular disease (205, 206), and cancer (72, 179, 190, 191, 

207-212). High expression of periostin protein and/or mRNA is detected in 

multiple cancer types including breast cancer, pancreatic ductal 

adenocarcinoma, non-small-cell lung carcinoma, oral squamous-cell carcinoma, 

melanoma, head and neck cancer, gastric cancer, and colon cancer (210). In 

these solid tumors, periostin is primarily secreted by stromal populations, though 

there is evidence that tumor cells can express periostin in certain cancers (213-

216). It has been implicated in diverse pro-tumorigenic processes including 

angiogenesis, invasion, anchorage-independent growth, tumor cell proliferation 

and survival, ECM-remodeling, and chemoresistance (184, 210, 217-221).  

In breast cancer, periostin has primarily been characterized in the context 

of the metastatic niche. In addition to establishing an immunosuppressive 

microenvironment in the lungs during breast cancer metastasis, periostin has 
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also been reported to recruit Wnt ligands in pulmonary metastases of breast 

tumors, thereby increasing Wnt signaling in the infiltrating cancer stem cells and 

promoting their self-renewal and expansion (72, 208). Similarly, periostin is 

associated with the perivascular niche of disseminated breast cancer cells where 

it is reported to promote micrometastatic outgrowth of dormant tumor cells (39). 

In a mouse model of breast cancer, periostin knockout results in a significant 

decrease in lung metastases but does not affect primary tumor growth (72). 

Therefore, periostin has been largely classified as a critical pro-tumorigenic 

component within the metastatic niche. 

 

1.5.3 Limitations of previous studies of periostin  
 

Though previous studies have elucidated important functions of periostin 

in metastatic breast cancer, their methods include technical limitations that affect 

the interpretation of the results. For example, the studies of periostin in 

pulmonary metastases of breast cancer relied on the use of periostin null mice, 

which are now understood to display some embryonic lethality. Surviving 

periostin null mice often display severe growth retardation and skeletal defects 

postnatally and frequently die before weaning due to valvular insufficiency in the 

heart (222). Given these significant anatomical abnormalities, a conditional 

depletion strategy would be a more valid approach to characterize the role of 

periostin specifically during tumor progression. The study of periostin in the 

perivascular niche used organotypic microvascular niche cultures to show that 

periostin expression is enhanced in cultures with abundant neovascular tips, but 
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provided limited evidence that periostin is enriched within the perivascular 

micrometastatic niche in vivo (39). Further, each of these studies of periostin 

relied on immunohistochemical staining to characterize its abundance and 

distribution within tumors and metastatic microenvironments. However, periostin 

is a secreted protein so this technique does not reveal the cellular source of 

periostin within each tissue. Though in vitro studies and single cell transcriptomic 

analyses indicate that stromal cells are likely the source of periostin in these 

contexts, molecularly-defined periostin-expressing stromal populations have not 

been studied in situ using genetic tools to elucidate their specific functions during 

breast cancer progression. Therefore, we set out to study periostin-expressing 

cells in the context of the tumor microenvironment by adapting a genetic lineage-

tracing strategy that had previously been used to define the origin and function of 

periostin-expressing myofibroblasts in the injured heart (223).  

 

1.6 Significance and overview 
 

 Given the previously stated limitations of studies of periostin in tumor 

progression, there are several outstanding questions that this dissertation aimed 

to address. First, we used a lineage tracing mouse model to characterize 

periostin+ cells in tumor-naïve mammary glands and tracked their activation in 

primary tumors, premetastatic niches, and metastatic sites. Since previous 

studies have established a connection between periostin and metastasis, we 

compared periostin+ populations in low- versus highly-metastatic tumors to 

determine whether the metastatic potential of cancer cells within the primary 



 29 

tumor affects the activation of periostin-expressing cells across primary and 

secondary tissues. We demonstrated that periostin+ cells are more abundant in 

mice bearing highly-metastatic tumors and that this differential activation 

coincides with ECM remodeling and collagen organization within the primary 

tumor. Therefore, we next examined whether periostin expression regulates the 

ability of CAFs to generate an organized collagen matrix. Using primary human 

breast CAFs, we performed a series of in vitro knock down experiments to 

establish a functional connection between periostin expression and collagen 

matrix deposition. We found that knocking down periostin reduced the expression 

of collagens, matrisomal proteins, and ECM regulators and reduced the ability of 

CAFs to spread and migrate. Additionally, periostin knock down in CAFs limited 

the ability of co-cultured cancer cells to invade through a 3D collagen matrix and 

reduced the transmigration of cancer cells across a lymphatic endothelial cell 

barrier. Given this role for periostin-expressing CAFs in collagen-mediated 

collective cell invasion in vitro, we then performed in vivo depletion studies to 

determine how periostin+ cells contribute to primary tumor growth and 

metastasis. Using a diphtheria toxin A chain (DTA) mouse model in which 

specific cell populations undergo Cre-dependent selective depletion through 

expression of the diphtheria toxin, we ablated periostin-expressing cells in vivo 

and measured tumor growth and metastatic burden in the lymph nodes and 

lungs. Surprisingly, we found that depleting periostin-expressing cells 

accelerated primary tumor growth but reduced lymphatic metastasis. These 

findings are detailed in Chapter 2 and provide a new understanding of stromal 
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contributions to the lymphovascular invasion and metastatic colonization of 

breast cancer cells. In Chapter 3, remaining questions regarding periostin+ cell 

activation during tumor progression are explored as well as future experimental 

directions to address these gaps in knowledge. Finally, the clinical relevance of 

our findings is discussed and our work is put into broader context within the 

cancer biology field. 
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Chapter 2: Periostin+ stromal cells guide 

lymphovascular invasion by cancer cells 

 

*This chapter is a modified version of a manuscript under review at Cancer 

Research, “Periostin+ stromal cells guide lymphovascular invasion by cancer 

cells”. JL Null, DJ Kim, JV McCann, P Pramoonjago, JW Fox, P Kumar, L Edatt, 

CV Pecot, and AC Dudley. (2023). 

 

All data presented in this chapter were generated by JL Null unless otherwise 

indicated 
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2.1 Abstract  
 

Cancer cell dissemination to the sentinel lymph node associates with poor 

patient outcomes, particularly in breast cancers. How cancer cells egress the 

primary tumor upon interfacing with the lymphatic vasculature is complex and 

driven by dynamic interactions between cancer cells and stromal cells including 

cancer associated fibroblasts (CAFs). The matricellular protein periostin can 

distinguish CAF subtypes in breast cancer and is associated with increased 

desmoplasia and disease recurrence in patients. However, since periostin is 

secreted, periostin-expressing CAFs are difficult to characterize in situ, limiting 

our understanding of their specific contribution to cancer progression. Here, we 

used in vivo genetic labelling and ablation to lineage trace periostin+ cells and 

characterize their function(s) during tumor growth and metastasis. We report that 

periostin-expressing CAFs are spatially found at periductal and perivascular 

margins, are enriched at lymphatic vessel peripheries, and are differentially 

activated by highly-metastatic cancer cells versus low-metastatic counterparts. 

Surprisingly, genetically depleting periostin+ CAFs slightly accelerated primary 

tumor growth but impaired intratumoral collagen organization and inhibited 

lymphatic, but not lung, metastases. Periostin ablation in CAFs impaired their 

ability to deposit aligned collagen matrices and inhibited cancer cell invasion 

through collagen and across lymphatic endothelial cell monolayers. Thus, highly-

metastatic cancer cells mobilize periostin-expressing CAFs in the primary tumor 

site which promote collagen remodeling and collective cell invasion within 

lymphatic vessels and ultimately to sentinel lymph nodes. 
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2.2 Introduction 
 

The overwhelming majority of cancer-associated deaths, including those 

of breast cancer patients, are caused by metastatic burden rather than primary 

tumor growth. However, the complex process of cancer cell dissemination and 

colonization of distant tissues is incompletely understood and largely incurable 

using existing therapies (11). Metastatic disease is particularly intractable 

because metastasis is not solely driven by cancer cell-intrinsic properties but is 

instead a consequence of dynamic crosstalk between cancer cells and other cell 

types in the tumor microenvironment including vascular cells, immune cells, and 

cancer-associated fibroblasts (CAFs). A critical early step in the metastatic 

cascade is the intravasation of cancer cells into blood and lymphatic vessels 

which serve as routes for cancer cells to spread to secondary sites. 

Lymphovascular invasion of cancer cells into lymphatic vessels is a predominant 

method of vascular invasion in breast cancer and is significantly associated with 

the presence of lymph node metastasis, development of distant metastasis, and 

decreased disease-free interval and overall survival (85, 88-91). Despite the 

frequency of lymphovascular invasion in breast cancer and its association with 

poor clinical outcomes, the heterotypic cell interactions that drive lymphovascular 

invasion are not well characterized. Many studies of lymphovascular invasion 

focus on paracrine signaling between cancer cells and lymphatic endothelial cells 

with limited consideration given to the contributions of other auxiliary cells in the 

tumor microenvironment (TME) such as CAFs.  
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CAFs are an abundant stromal cell in the breast tumor microenvironment 

and primarily originate from tissue-resident fibroblasts that become persistently 

activated by a dysregulated “wound-healing” process recapitulated in solid 

tumors (224). They are important during multiple stages of tumor development 

though their specific contributions to disease progression are contradictory and 

context-dependent (125, 126, 156, 157, 166, 225, 226). The paradoxical 

functions of CAFs during tumor progression can be attributed to their extensive 

molecular diversity both within and across tumor types as revealed by a number 

of single-cell RNA sequencing studies (120, 158-161, 163, 227). Though CAFs 

are mainly characterized by expression of contractile proteins such as alpha 

smooth muscle actin (SMA) and extracellular matrix (ECM) proteins including 

collagens and fibronectin, single-cell transcriptomic analysis has identified 

additional subpopulations of CAFs that display expression profiles associated 

with proliferation, vascular development and angiogenesis, and immune 

modulation (124, 163). Although these purported functions of CAF 

subpopulations position them as attractive therapeutic targets, in vivo depletion 

studies have yielded unexpected results with SMA+ CAF depletion leading to 

more aggressive, undifferentiated tumors (156, 157). These data suggest that 

CAF subpopulations play opposing roles in the tumor microenvironment, with 

some CAFs restraining tumor growth whereas others are tumor-supportive. 

Therefore, functional classification of molecularly-defined CAF subpopulations is 

necessary to overcome the limitations of broadly targeting CAFs so that specific 

tumor-promoting and/or metastasis-promoting CAFs can be identified. A 
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challenging but critical first step in this process is identifying reliable biomarkers 

that distinguish pro-tumorigenic and pro-metastatic CAFs from their counterparts.  

A recent single-cell RNA sequencing study demonstrated that periostin, a 

TGFβ-induced matricellular protein, is expressed by CAF populations in human 

triple negative breast cancers (124). As a nonstructural matrix component, 

periostin directly interacts with other ECM proteins including lysyl oxidase, 

collagen I, and fibronectin, serving as a protein scaffold for mediators of collagen 

cross-linking and ECM stiffening (174). It is typically present at low levels in most 

tissues but induced at sites of inflammation and tissue injury. Periostin’s role in 

pathologies including cancer have been noted, including its ability to promote 

immunosuppressive niche formation, mediate interactions between disseminated 

cancer cells and the ECM, and support cancer stem cell expansion at metastatic 

sites (72, 207, 208). In human breast cancer samples, periostin is associated 

with a higher density of activated CAFs and stromal desmoplasia. This stromal 

desmoplasia is a consistent aspect of invasive progression and distinguishes 

tumors that are “non-progressors” from those that recur and spread (121). 

Although these studies characterize periostin as a tumor-supportive factor of 

metastatic disease, its source in the primary tumor microenvironment and the 

specific contributions of periostin-expressing cells during tumor progression have 

not been well-studied in vivo. Previous studies of periostin have relied on 

immunostaining to characterize its abundance and distribution in primary and 

secondary sites. However, given that periostin is a secreted factor, 

immunostaining is unable to link the source of periostin to specific cell types in 
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the tumor microenvironment. Therefore, we have adapted an in vivo lineage 

tracing strategy previously used to study activated myofibroblasts in the heart 

(223) to track, characterize, and ablate periostin-expressing cells in the breast 

TME. We reveal that highly-metastatic cancer cells mobilize periostin-expressing 

perivascular-like CAFs (PVL-CAFs) in the TME which promote collagen-

mediated collective cell invasion of cancer cells across the endothelial barrier of 

nearby lymphatic vessels and ultimately to the proximal lymph node. 

 

2.3 Materials and Methods 
 

2.3.1 In vivo animal studies 
 

All tumor studies were performed in 8- to 12-week old female mice with a 

C57BL/6 genetic background. PostniZSGreen lineage tracing mice were generated 

by crossing PostnMCM mice (Jax Stock No. 029645) with ZSGreenl/s/l mice (Jax 

Stock No. 007906). PostniZSGreen mice were injected intraperitoneally (IP) with 75 

mg/kg tamoxifen 3 times over the course of 7 days to induce ZSGreen labelling 

of periostin-expressing cells. In the low-versus highly-metastatic tumor studies, 

one million EO771mCherry or EO771.LMBmCherry cancer cells were orthotopically 

injected into the third mammary fat pad of tamoxifen-induced heterozygous 

PostniZSGreen lineage tracing mice. Tumor volumes were measured with calipers, 

and tumors were surgically removed when they averaged ~400 mm3. Mice were 

euthanized and mammary glands, lymph nodes, and lungs were harvested ~2 

weeks following tumor resection surgery. For the tail vein model of experimental 

metastasis, tamoxifen-induced PostniZSGreen mice were injected with one million 
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EO771mCherry or EO771.LMBmCherry cancer cells into their tail vein. Mice were 

sacrificed and lungs were harvested 2 weeks following tumor cell injection. 

PostniZSGreen lineage tracing mice were crossed with ROSA-DTA mice (Jax Stock 

No. 009669) to generate PostnDTA mice that allow for selective depletion of 

periostin-expressing cells. PostnDTA mice were injected IP with 75 mg/kg 

tamoxifen 3 times over the course of 7 days to induce depletion of periostin-

expressing cells. 500,000 mCherry-labelled EO771.LMB or PyVMT cells were 

orthotopically injected into the third mammary fat pad of heterozygous tamoxifen-

induced (or vehicle-injected control) mice.  Tumor volumes were measured with 

calipers, and tumors were surgically removed when they averaged ~400 mm3. 

Mice were euthanized and mammary glands, lymph nodes, and lungs were 

harvested 2 weeks (PyVMT-injected mice) or 4 weeks (EO771.LMB-injected 

mice) following tumor resection surgery. Postn-Cre:Tgfbr2fl/fl mice were 

generated by crossing  PostniZSGreen mice with Tgfbr2fl/fl mice (Jax Stock No. 

012603). Postn-Cre:Tgfbr2fl/fl mice were injected IP with 75 mg/kg tamoxifen 3 

times over the course of 7 days to induce Tgfbr2 knockout in periostin-expressing 

cells. 500,000 mCherry-labelled EO771.LMB cells were orthotopically injected 

into the third mammary fat pad of tamoxifen-induced Postn-Cre:Tgfbr2fl/fl mice or 

PostniZSGreen control mice. Tumor volumes were measured with calipers, and 

tumors were surgically removed when they averaged ~400 mm3. Mice were 

euthanized and lymph nodes were harvested 3 weeks following tumor resection 

surgery. All experiments were performed in accordance with the University of 

Virginia guidelines for animal handling and care.  
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2.3.2 Immunohistology 
 

Resected tissues were fixed overnight in 4% PFA/PBS and moved to a 

30% sucrose solution for an additional 24 hours before embedding in OCT. 

Cryosections were DAPI stained and mounted in Vectashield (Vector Labs H-

1700-10), then imaged using a Nikon Eclipse Ti-E inverted microscope and NIS-

Elements software. Fluorescent populations were quantified using the 

thresholding function in FIJI (Figure 2.4). 

 

2.3.3 Cell lines, cell culture, and media 
 

EO771 cells were obtained from CH3 Biostystems (940001) and 

transfected with mCherry. EO771.LMB cells were a gift from Dr. Chad Pecot at 

UNC Chapel Hill and transfected with mCherry. EO771mCherry and 

EO771.LMBmCherry cells were cultured in 4.5 g/l D-glucose DMEM (HG-DMEM) 

with 10% FBS. Metastatic PyVMT cells were a gift from Dr. Melanie Rutkowski at 

UVA. They were transfected with mCherry and cultured in RPMI1640 with 2mM 

L-Glutamine, 10% FBS, 0.5% sodium pyruvate, and 0.09% β-mercaptoethanol. 

MDA-MB-231 human breast cancer cells were purchased from ATCC (HTB-26) 

and transfected with mCherry. MDA-MB-231mCherry cells were cultured in HG-

DMEM with 10% FBS. Primary human breast CAFs were isolated and gifted to 

us by Dr. Melissa Troester at UNC Chapel Hill (228) and were cultured on 0.5% 

gelatin-coated plates in HG-DMEM with 20% FBS and 10 ng/mL bFGF. Primary 

human lymphatic endothelial cells (Cell Biologics H-6092) were cultured in 

Complete Human Endothelial Cell Medium (Cell Biologics H1168) on 0.5% 
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gelatin-coated plates. HUVECs (Lonza C2517A) were cultured in Endothelial Cell 

Growth Media (R&D Systems CCM027) on 1% gelatin-coated plates. Primary 

mouse mammary fibroblasts and CAFs were isolated from mammary glands and 

primary tumors by digesting tissues in a cocktail of collagenase/dispase/DNAse 

for 40 minutes with shaking at 37 C, filtering through a 100 µm filter, and 

seeding cells on 0.5% gelatin-coated plates in HG-DMEM with 20% FBS and 10 

ng/mL bFGF. All cell media included Plasmocin (Invivogen ant-mpt) to prevent 

mycoplasma growth and antibiotics/antimycotics to prevent bacterial and fungal 

contamination. Cells were maintained at 37° C in 5% CO2 plus 20% O2.  

 

2.3.4 Breast tumor tissue microarray analysis 
 

Antigen-retrieval was performed on a tissue microarray of paraffin-

embedded breast tumor cores (US Biomax BR20829) at 95° C for 20 minutes. 

The microarray slide was rinsed in DI water then incubated with blocking buffer 

(5% BSA + 5% goat serum in TBS) for 1 hour at room temperature. The slide 

was then incubated with rabbit anti-periostin antibody (Abcam ab215199, 1:1000) 

overnight at 4° C. The next day, the slide was rinsed 3 times with TBS and 

incubated for 30 minutes at room temperature with Biocare’s MACH 3 Rabbit 

Probe (M3R533 G). Following another three TBS washes, the slide was 

incubated for 30 minutes at room temperature with Biocare’s MACH 3 Rabbit AP-

Polymer (M3R533 G). The slide was then rinsed in TBS and developed using 

Biocare’s Warp Red Chromogen Kit (WR 806 H) for 8 minutes at room 

temperature. The slide was washed in TBS, counterstained for 3 seconds with 
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hematoxylin QS, then rinsed in water and TBS. Finally, the microarray slide was 

dipped in 100% ethanol then xylene and mounted using Biocare’s Ecomount 

(EM897L). Fluorescent AP signal was imaged using a Nikon Eclipse Ti-E 

inverted microscope and NIS-Elements software and percent periostin positive 

area (by pixel) was quantified by thresholding in FIJI.  

 

2.3.5 Immunoblotting 
 

Collection of cell lysates and Western blotting were carried out as 

previously described using standard methods (229). For analysis of secreted 

proteins, conditioned media was collected and concentrated 10X using Microsep 

Advance Centrifugal Filters (Pall Laboratory MCP010C41). Samples probed for 

collagen I were prepared and run under non-reducing conditions in a 7.5% gel. 

Primary antibodies: rabbit anti-periostin (Abcam ab14041, 1:1000), rabbit anti-

collagen I (Abcam ab34710, 1:1000). Secondary HRP-conjugated antibody: 

peroxidase goat anti-rabbit IgG (Vector Laboratories PI-1000, 1:10,000).  

 

2.3.6 Real-time quantitative PCR (RT-qPCR) 
 

Total RNA isolation was performed using a Quick-RNA Miniprep Kit (Zymo 

Research R1055) according to the manufacturer’s instructions. cDNA synthesis 

was completed using an iScript cDNA Synthesis Kit (Bio-Rad 1708891EDU), and 

qPCR reactions were carried out using a QuantStudio 12K Flex Real-time PCR 

System.   
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2.3.7 Immunofluorescence 
 

Fixed frozen tissue sections were stained using the following antibodies 

and concentrations: Cy3-SMA (TCF C6198, 1:100), CD31 (BD Biosciences 

550274, 1:50), F4/80 (BioRad MCA497, 1:50), CK14 (Biolegend 905301, 1:250), 

Pdpn (R&D Systems AF3244, 1:200). Antibodies were diluted in blocking buffer 

with 5% BSA, 5% goat serum, and 1% Triton X-100. Primary incubations were 

performed overnight at 4° C and secondary incubations were performed for 1 

hour at room temperature. Nuclei were counterstained with DAPI and slides were 

mounted using Vectashield (Vector Labs H-1700-10). Slides were imaged using 

a Nikon Eclipse Ti-E inverted microscope and NIS-Elements software. 

 

2.3.8 GeoMx Digital Spatial Profiling (DSP)  
 

NanoString GeoMx DSP was used to quantify transcript numbers in 

spatially distinct populations of periostin-expressing cells in the naïve mammary 

glands of PostniZSGreen lineage tracing mice. Fixed frozen mammary glands were 

incubated with the NanoString mouse Whole Transcriptome Atlas (WTA) panel 

probes overnight, then stained with Cy3-SMA (TCF C6198), Pdpn (R&D Systems 

AF3244;Cy5 secondary), and the DNA stain Syto83 (Thermo S11364) as 

morphology markers to visualize tissue architecture. Stained slides were loaded 

onto the GeoMx instrument and scanned for region of interest (ROI) selection. 

Due to the filters in the optical system of the DSP platform, ZSGreen+ cells 

appear blue, SMA staining appears in green, and Pdpn staining appears in red in 

the ROIs. ROIs of ZSGreen+ cells near thin-walled Pdpn+ structures were 
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selected to represent lymphatic-adjacent populations, and ROIs of ZSGreen+ 

cells near SMA+ structures were selected to represent duct- and blood vessel-

adjacent populations. After UV illumination of the ROIs, the eluent was collected 

via microcapillary aspiration and transferred into individual wells of a microtiter 

plate. The collected aspirates in the microtiter plate were then transferred to a 

PCR plate for library prep with Seq Code primers. PCR products were pooled 

and purified, then subjected to Illumina NGS Sequencing (Next Seq 2000). 

FASTQ sequencing files obtained from the NGS run were processed into digital 

count conversion (DCC) files by NanoString’s GeoMx NGS Pipeline software. 

The DCC files were then uploaded onto the GeoMx DSP, and quality control 

checks and differential gene expression analysis were performed. 

 

2.3.9 Second harmonic generation  
 

Fixed frozen tumor sections were imaged using a Zeiss 710 Multiphoton 

Confocal microscope and collagen fiber length measurements were performed in 

FIJI. The FIJI plug-ins TWOMBLI (230) and OrientationJ 

(http://bigwww.epfl.ch/demo/orientation/) (231) were used to analyze the collagen 

area (abundance), curvature (measured as mean change in angle along fibers), 

and directionality of the collagen fibers.  

 

2.3.10 siRNA transfection 
 

For in vitro periostin knockdown studies, primary human breast CAFs 

were transfected with 75 nm human periostin-targeting stealth siRNA (si-POSTN) 

http://bigwww.epfl.ch/demo/orientation/
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(ThermoFisher siRNA ID: HSS116400) or 75 nm non-targeting control siRNA (si-

Control) (DHARMACON D-001810-02-05) for 5 hours, then media was replaced. 

This siRNA transfection was repeated after 24 hours, and media was replaced 

with low-serum media. Cells were then used for functional assays. 

 

2.3.11 Bulk RNAseq and analysis 
 

Primary human breast CAFs were transfected with siRNA in quadruplicate 

as described above. RNA samples were harvested from cells and sent to 

Novogene for bulk RNA sequencing. Sequencing analysis was performed by the 

UVA Bioinformatics Core. On average we received 30 million paired ends for 

each of the replicates. RNAseq libraries were checked for their quality using the 

fastqc program (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The 

results from fastqc were aggregated using multiqc software. In-house developed 

programs were used for adaptor identification, and any contamination of adaptor 

sequence was removed with cutadapt 

(https://cutadapt.readthedocs.io/en/stable/). Reads were mapped with the “splice 

aware” aligner ‘STAR’ to the transcriptome and genome of mm10 genome build. 

The HTseq software was used to count aligned reads that map onto each gene. 

The count table was imported into R to perform differential gene expression 

analysis using the DESeq2 package. Low expressed genes (genes expressed 

only in a few replicates and had low counts) were excluded from the analysis 

before identifying differentially expressed genes. Data normalization, dispersion 

estimates, and model fitting (negative binomial) were carried out with the DESeq 
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function. The log-transformed, normalized gene expression of 500 most variable 

genes was used to perform an unsupervised principal component analysis. The 

differentially expressed genes were ranked based on the log2fold change and 

FDR corrected p-values. The ranked file was used to perform pathway analysis 

using GSEA software. The enriched pathways were selected based on 

enrichment scores as well as normalized enrichment scores.  

 

2.3.12 ECM deposition assay 
 

Primary human breast CAFs were seeded (30,000 cells per well) on a 

gelatin-coated chamber slide and transfected with siRNA as described above. 48 

hours after the second siRNA treatment, cells were lysed using ammonium 

hydroxide-based extraction buffer. The deposited ECM was washed in PBS and 

fixed with 2% PFA for 20 minutes. The ECM was then rinsed in PBS and 

incubated in blocking buffer with 1% Triton for 30 minutes to reduce non-specific 

antibody binding. The ECM was then incubated with primary antibody (rabbit 

anti-collagen I ab34710, 1:200) for 1 hour at room temperature and secondary 

antibody (goat anti-rabbit IgG Alexa Fluor 594 1:100) for 1 hour at room 

temperature. Slides were mounted using Vectashield (Vector Labs H-1700-10) 

and imaged using a Nikon Eclipse Ti-E inverted microscope and NIS-Elements 

software. Collagen fiber length measurements were performed using FIJI.  
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2.3.13 Cell spreading assay 
 

Primary human breast CAFs were seeded (1 x 105 cells/mL) in a 6-well 

gelatin coated dish and transfected with siRNA as described above. 24 hours 

following knockdown, CAFs were detached and re-seeded at 10,000 cells per 

well on a gelatin-coated chamber slide. The “rescue” wells were treated with 0.8 

ug/mL recombinant human periostin (BioLegend 770506). After 24 hours, cells 

were fixed in 4% PFA and stained with Alexa Fluor 594 Phalloidin (ThermoFisher 

Scientific A12381). Cells were imaged using a Nikon Eclipse Ti-E inverted 

microscope and NIS-Elements software, and cell area measurements were 

performed in FIJI.  

 

2.3.14 Wound closure scratch assay 
 

Primary human breast CAFs were seeded (1 x 105 cells/mL) in a 6-well 

gelatin coated dish and transfected with siRNA as described above. The next 

day, a P1000 pipette tip was used to create a scratch down the middle of the cell 

monolayer in each well. Each well was washed once with PBS to removed 

detached cells and low serum media was then added. “Rescue” wells were 

treated with 0.8 ug/mL recombinant human periostin (BioLegend 770506). 

Scratches were imaged at 0 hours, 12 hours, and 24 hours using a Nikon Eclipse 

Ti-E inverted microscope and NIS-Elements software, and percent wound 

closure was calculated using area measurements in FIJI.  
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2.3.15 3D CAF/cancer cell spheroid invasion assay 
 

Primary human breast CAFs were seeded (1 x 105 cells/mL) in a 6-well 

gelatin coated dish and transfected with siRNA as described above. The next 

day, CAFs were co-cultured 1:1 with MDA-MB-231mCherry human breast cancer 

cells in 20 uL hanging droplets containing 5% methylcellulose on the inverted lid 

of a 100 mm tissue culture dish containing PBS. The CAF/cancer cell co-cultures 

were incubated for 24 hours to allow aggregation of cells into a spheroid, as 

confirmed under light microscopy. The CAF/cancer cell spheroids were then 

embedded in either Matrigel (Corning 356237) or rat-tail collagen type I (Ibidi 

50201) according to manufacturer’s instructions in a 96-well plate. Spheroids 

were imaged at 12 and 24 hours using a Nikon Eclipse Ti-E inverted microscope 

and NIS-Elements software, and invasive area was quantified using FIJI. 

Representative images of spheroids were taken using a Zeiss LSM 880 confocal 

microscope.  

 

2.3.16 Trans-well migration assay 
 

Primary human breast CAFs were seeded (1.5 x 105 cells/mL) in a 6-well 

gelatin coated dish and transfected with siRNA as described above. The next 

day, CAFs were co-cultured with MDA-MB-231mCherry human breast cancer cells 

into spheroids as described above. Transwell membrane inserts (Fisher Scientific 

07-200-150) were coated with 0.5% gelatin and seeded with 60,000 primary 

human lymphatic endothelial cells or 60,000 primary human umbilical vein 

endothelial cells (HUVECs). After 24 hours, CAF/cancer cell spheroids were 
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embedded in rat-tail collagen type I (Ibidi 50201) in the transwell membrane 

inserts above the monolayer of endothelial cells. Inserts were cleared with a 

cotton swab and washed in PBS after 24 hours, so that only cells that had 

migrated across the lymphatic endothelial cell barrier and reached the bottom 

surface of the transwell insert remained. These cells were fixed in 4% PFA for 10 

minutes at room temperature and washed in PBS. Transwell inserts were placed 

on slides and imaged using a Nikon Eclipse Ti-E inverted microscope and NIS-

Elements software. Trans-migrated cancer cells were counted in FIJI.  

 

2.3.17 Kaplan-Meier Analysis 
 

Kaplan-Meier Plotter was used to generate survival curves for lymph node 

positive breast cancer patients from the Tang_2018 patient cohort that were 

stratified based on low versus high periostin protein expression.  

 

2.3.18 Statistical analysis 
 

All data points are shown, and horizontal lines on graphs represent 

median values. Descriptive numerical values in the text are expressed as mean 

value ± standard error of the mean (SEM). All statistical analyses were 

performed using GraphPad Prism software, and P values less than 0.05 were 

considered significant. 
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2.4 Results 
 

2.4.1 Periostin is enriched in CAFs and cycling perivascular-like cells in 

breast cancers and is associated with advanced disease stage and lymph 

node metastasis  

 
 As periostin has previously been shown to distinguish CAFs in triple 

negative breast cancer samples (124), we turned to a comprehensive, spatially-

resolved single-cell transcriptional atlas of molecularly diverse breast tumors to 

determine with greater resolution which cellular populations express periostin in 

human breast cancers (162). We found that periostin is not detected in breast 

cancer cells of any molecular subtype but is expressed by multiple stromal 

populations (Figure 2.1A). Periostin and associated matrix proteins are enriched 

in CAFs, including mesenchymal stem cell-like inflammatory CAFs (MSC iCAF-

like) and myofibroblast-like CAFs (myCAF-like) populations as well as cycling 

perivascular-like (PVL) cells (Figure 2.1B). Despite its expression being restricted 

to the tumor stroma, periostin may have important functional consequences 

during tumor progression as it is associated with disease recurrence in human 

breast cancer patients (121). Therefore, we hypothesized that its expression in 

human breast cancer tissues would correlate with disease stage and lymph node 

status. Indeed, when we stained a human breast tissue microarray of 200 tumor 

cores for periostin and measured the positive fluorescent area, we found that 

periostin abundance positively associated with advanced disease stage (Figure 

2.1C,D) and lymph node metastasis (Figure 2.1E). These data indicate that 



 49 

periostin is almost exclusively expressed by CAFs or CAF-like cells in the breast 

TME and its abundance associates with disease progression. 
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Figure 2.1. Periostin is enriched in CAFs and cycling perivascular-like cells in 

breast cancers and is associated with advanced disease stage and lymph node 

metastasis. (A) Single-cell RNAseq data were downloaded from the Wu et al dataset 

(162) and analyzed for periostin expression. Violin plots of differential expression of 

periostin (POSTN) in stromal populations (top) and breast cancer cells (bottom) in this 

patient cohort are shown. MSC = mesenchymal stem cells, PVL = perivascular-like cells, 

and SC = subclass. (B) Expression of periostin and associated matrix proteins in distinct 

stromal populations derived from the Wu et al. cohort. (C) Representative 

immunofluorescence images of human breast cancer tissues stained for periostin (in 

red). Scale bars: 100 m. (D) Percentage of tissue area positive for periostin staining (by 

pixel), grouped by tumor stage (D) and patient’s lymph node status (N0 = no nodal 

involvement, N+ = nodal involvement) (E). Each data point represents an individual 

tumor core (N = 200). Statistics shown for Kruskal-Wallis test (D) and Mann-Whitney test 

(E).  
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2.4.2 Periostin-expressing cells surround tumor-naïve mammary ducts and 

blood vessels and are enriched at the lymphatic vessel periphery 

 
Our human data support existing murine studies linking periostin to 

metastasis (72, 207, 208). However, previous characterizations of periostin in 

primary and metastatic environments have primarily relied on immunostaining to 

characterize its abundance and distribution. Since periostin is a secreted factor, 

immunostaining is unable to link periostin to a cellular source in the TME. While 

single-cell RNAseq data indicate that periostin expression is restricted to stromal 

populations in human breast cancers, these populations have not been studied in 

situ in murine tumor models. Thus, in vivo approaches to label periostin-

expressing cells are required to characterize periostin’s source in the tumor 

microenvironment and to determine how these periostin-expressing populations 

function during tumor growth. We generated reporter mice (PostniZSGreen lineage 

tracing mice) to genetically mark periostin-expressing cells by crossing PostnMCM 

mice with ZSGreenl/s/l mice (Figure 2.2A). Upon tamoxifen administration, 

periostin-expressing cells and their progeny are genetically labelled with 

ZSGreen and can be quantified using fluorescence microscopy which allowed us 

to spatially track the status of these cells across different tissues. After 

generating PostniZSGreen mice, we first characterized the spatial distribution of 

ZSGreen+ cells in tumor-naïve mammary glands. We harvested mammary 

glands from tumor-naïve PostniZSGreen mice and stained for the following cell 

lineage markers: SMA (fibroblast and pericyte marker), Ck14 (myoepithelial 

marker), F4/80 (macrophage marker), CD31 (endothelial marker), and Pdpn 
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(lymphatic endothelial marker) (Figure 2.2B). We found that periostin-expressing 

cells were relatively sparse in the naïve tissues and surrounded mammary ducts 

and blood vessels as revealed by the CK14 and CD31 staining, respectively. 

Intriguingly, we also found that periostin-expressing cells localized to the 

lymphatic vessel periphery and were more enriched along thin-walled lymphatic 

vessels compared to large vessel endothelium marked by abundant SMA (Figure 

2.2C), with an average of ~ one ZSGreen+ cell per large blood vessel (± 0.6 

cells/vessel) compared to ~ four ZSGreen+ cells per lymphatic vessel (± 0.9 

cells/vessel). These data are consistent with the spatially resolved expression of 

periostin by cycling perivascular-like (PVL) stromal cells in human breast cancers 

as noted above using comprehensive single cell transcriptomics.   

Given the spatially distinct populations of periostin-expressing cells 

observed along the ducts, blood vessels, and lymphatic vessels in the naïve 

mammary gland, we used GeoMx Digital Spatial Profiling (DSP) to molecularly 

characterize the subpopulations in situ and reveal heterogeneity among 

periostin-expressing cells. Using SMA and Pdpn as morphology markers to 

select regions of interest within the mammary glands, we performed whole 

transcriptome analysis on ZSGreen-labelled periostin-expressing cells within 

these regions (Figure 2.2D) and compared expression profiles of SMA-adjacent 

ZSGreen+ cells (near ducts and blood vessels) and Pdpn-adjacent ZSGreen+ 

cells (near lymphatic vessels). Spatial transcriptomics identified a number of 

genes that are differentially expressed between the periostin-expressing 

subpopulations (Figure 2.2E), and Gene Set Enrichment Analysis (GSEA) 
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indicated that periostin-expressing cells located near ducts and blood vessels are 

enriched in genes involved in ECM organization as well as collagen synthesis 

and remodeling while lymphatic-adjacent periostin-expressing cells are enriched 

in genes related to the activation of matrix metalloproteinases that degrade the 

ECM (Figure 2.2F). However, cluster analysis of the individual subpopulations 

based on collagen-related genes revealed that there is diversity among 

lymphatic-adjacent periostin-expressing cells, with multiple lymphatic-adjacent 

samples enriched in collagens and collagen cross-linking genes suggesting they 

also play a role in collagen synthesis and organization (Figure 2.2G). In sum, the 

spatial transcriptomic analysis suggests that these spatially distinct populations 

of periostin-expressing cells function together to remodel, synthesize, and 

organize the extracellular matrix within the mammary gland. 
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Figure 2.2. Periostin-expressing cells surround tumor-naïve mammary ducts and 

blood vessels and are enriched at the lymphatic vessel periphery. (A) Schematic 

representing the generation of PostniZSGreen lineage tracing mice. Adapted from Kanisicak 

et al. (2016) (223) and created using BioRender. (B) Immunofluorescence images of 

tumor naïve mammary glands from PostniZSGreen lineage tracing mice stained for the 

following markers (in red): SMA, CK14, F4/80, CD31, and Pdpn. Nuclei counterstained 

with DAPI. Scale bars: 200 m, insets are 3x zoom. (C) Quantification of ZSGreen+ 

periostin-expressing cells per vessel (large vessel endothelium marked by abundant 

SMA versus thin-walled endothelium marked by Pdpn) in serial tissue sections of tumor 

naïve mammary glands (n = 3 mammary glands per group). Each data point represents 

an individual vessel. Statistics shown for Mann-Whitney test. (D) Representative images 

of regions of interest (ROIs) used to select ZSGreen+ periostin-expressing cells for 

spatial RNA profiling (n = 4-5 ROIs per group, from the mammary glands of 3 mice). (E) 

Volcano plot of differential gene expression in ZSGreen+ cells located near ducts and 
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blood vessels (SMA-adjacent) and ZSGreen+ cells located near lymphatic vessels 

(Pdpn-adjacent). Green line represents a p-value of 0.05 and red line represents the 

significance threshold. (F) Gene Set Enrichment Analysis (GSEA) showing upregulated 

pathways in spatially-defined ZSGreen+ populations. (G) Cluster analysis of ZSGreen+ 

cells from individual ROIs based on collagen-related genes. GeoMx spatial RNA profiling 

was performed by Dr. Patcharin Pramoonjago of the UVA BTRF Core, and Illumina NGS 

sequencing was performed by the University of Minnesota Genomics Center. 
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2.4.3 Highly-metastatic mammary tumors differentially activate periostin-

expressing CAFs 

 
Following characterization of periostin-expressing cells in the naïve 

mammary gland, we next used a mammary tumor model to assess the 

abundance, morphology, and spatial distribution of periostin-expressing cells in 

the primary TME and secondary sites of spontaneous metastasis. We used 

paired, differentially metastatic triple negative mammary cancer cell lines EO771 

and EO771.LMB to classify differences in periostin-expressing cell activation in 

low- versus highly-metastatic tumor contexts. These cell lines have been 

molecularly and functionally characterized and shown to have differential 

capacities for spontaneous metastasis, with the poorly metastatic parental 

EO771 line rarely reaching secondary sites and the highly-metastatic derivative 

EO771.LMB tropic to the lungs and lymph nodes (232). Importantly, the EO771 

and EO771.LMB lines express negligible periostin compared to murine mammary 

CAFs (Figure 2.3A), so our lineage tracing strategy successfully captures the 

predominant host-derived sources of periostin. Following tamoxifen 

administration to label periostin-expressing cells, PostniZSGreen mice were 

orthotopically injected with either EO771mCherry or EO771.LMBmCherry cells into the 

third mammary gland (Figure 2.3B). According to the previous characterization of 

the cancer cell lines, the difference in metastatic capacity is observed following 

primary tumor resection. Therefore, we incorporated this into our study design 

and harvested secondary tissues 3-4 weeks after tumor resection, allowing more 

time for disseminated cells to reach and grow out at secondary sites. This 
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experimental setup recapitulates human disease as human breast cancer 

patients often undergo a lumpectomy but may still progress to metastatic disease 

as a result of previously disseminated cancer cells emerging from dormancy and 

expanding in secondary sites. Since the periostin-expressing cells are genetically 

labelled with ZSGreen and the cancer cells are labelled with mCherry, we could 

spatially quantify these populations using a thresholding strategy for positive 

fluorescence in histological sections (Figure 2.4).  

When we examined the low-metastatic EO771mCherry tumors and highly-

metastatic EO771.LMBmCherry tumors in the PostniZSGreen mice, we found that 

periostin-expressing cells were more abundant in highly-metastatic tumors with 

an ~ 84-fold increase in the percentage of tissue area positive for ZSGreen in 

EO771.LMB tumors compared to EO771 tumors (1.68% ± 0.2% versus 0.02% ± 

0.01%) (Figure 2.3C,D). We also examined a second highly-metastatic variant of 

PyVMT in the PostniZSGreen mice and found a 24-fold increase in the percentage 

of tissue area positive for ZSGreen in these tumors compared to low-metastatic 

EO771 tumors (0.48% ± 0.2%) (Figure 2.3D). This difference in periostin-

expressing cell abundance in low- versus highly-metastatic mammary tumors 

correlated as expected with differences in secreted periostin in situ (Figure 2.3E). 

In addition to the difference in abundance of periostin-expressing cells in the low- 

versus highly-metastatic primary tumors, we observed a difference in the 

morphology of the ZSGreen+ cells between the two groups. Periostin-expressing 

cells in highly-metastatic EO771.LMB and PyVMT tumors exhibited the typical 

stellate-shaped morphology of activated myofibroblasts and were 2-3-times 
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larger on average compared to those found in low-metastatic EO771 tumors 

(509.7 ± 23.6 µm2 and 334.2 ± 12.6 µm2 versus 146.3 ± 12.0 µm2, respectively) 

(Figure 2.3F,G). These data suggest that highly-metastatic cancer cells may 

differentially activate periostin-expressing CAFs in the primary tumor compared 

to their low-metastatic counterparts.  
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Figure 2.3. Highly-metastatic mammary tumors differentially activate periostin-

expressing CAFs. (A) qPCR analysis of periostin expression in mammary tumor cell 

lines EO771 and EO771.LMB and murine mammary CAFs. Data represent the mean ± 

SEM. The experiments were performed in triplicate, and results compared using 

Kruskal-Wallis test. (B) Study design including tamoxifen treatment and orthotopic 

mammary tumor injections for EO771 vs EO771.LMB experiment in PostniZSGreen lineage 

tracing mice. (C) Tissue tilescans of primary mammary tumors from PostniZSGreen lineage 

tracing mice. Tumor cells labelled with mCherry and periostin-expressing cells 

genetically labelled with ZSGreen. Nuclei counterstained with DAPI. Scale bars: 500 m. 

(D) Percentage of tissue area positive for ZSGreen in low metastatic (EO771) tumors 

versus high metastatic (EO771.LMB and PyVMT) tumors (n = 3-7 mice per group). Each 

data point represents a different histological section. Statistics shown for Kruskal-Wallis, 
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Dunn’s multiple comparisons test. (E) Representative immunofluorescence images of 

mammary tumors from PostniZSGreen lineage tracing mice stained for periostin (in blue), 

with periostin-expressing cells genetically labelled with ZSGreen. Scale bars: 100 m. 

(F) Representative immunofluorescence images of individual ZSGreen-labelled 

periostin-expressing cells in low metastatic (EO771) and high metastatic (EO771.LMB) 

mammary tumors. Scale bars: 10 m. (G) Area of individual ZSGreen-labelled cells in 

primary tumors represented as a histogram (left) and scatter plot (right). Each data point 

in the scatter plot represents an individual cell. Between 120 and 180 cells were 

measured from multiple tumor sections (n = 3-6 mice per group) and results compared 

using Kruskal-Wallis, Dunn’s multiple comparisons test. Marya Dunlap-Brown performed 

mammary tumor resection surgeries for samples shown in panel (C). 
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Figure 2.4. Thresholding strategy for fluorescent area quantification. (A) Workflow 

in FIJI to quantify fluorescent area by thresholding. First, a region of interest (ROI) is 

selected around the tissue boundary using DAPI nuclear counterstain as a guide so that 

background pixels are excluded from quantification. Next, a fluorescent channel is 

selected to quantify the population of interest. Finally, the threshold is adjusted so that all 

fluorescent cells are captured with minimal noise. Positive areas are highlighted in red 

by thresholding tool, and percent positive measurement is displayed in the threshold 

window. (B) Correlation between individual cell count and percentage of tissue area 

positive for ZSGreen (by pixel) measured by thresholding. Pearson r and R squared 

values are shown.  
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2.4.4 Periostin-expressing CAFs are more abundant in the metastatic 

niches of mice bearing highly-metastatic mammary tumors 

 
Next, we examined the distribution of periostin-expressing CAFs in 

common metastatic sites of breast tumors, beginning with the draining axillary 

lymph nodes of the tumor-bearing mice as regional lymph nodes are often the 

first site of metastatic spread in breast cancers. Periostin-expressing cells were ~ 

14-times more abundant in the axillary lymph nodes of mice bearing highly-

metastatic EO771.LMB tumors, with 0.8% (± 0.1%) of the tissue area positive for 

ZSGreen compared to 0.06% (± 0.03%) in the lymph nodes of mice bearing low-

metastatic EO771 tumors (Figure 2.5A,C). We then assessed the abundance of 

periostin-expressing cells in the lungs of mice as this is another common site of 

breast cancer metastasis. Similar to the lymph nodes, we observed a significant 

increase in the percentage of lungs positive for ZSGreen in mice bearing highly-

metastatic mammary tumors compared to those bearing low-metastatic tumors 

(0.2% ± 0.03% versus 0.08% ± 0.04%) (Figure 2.5B,D). Interestingly, we 

observed ZSGreen+ cells in a number of histological sections of lymph nodes 

(Figure 2.5C) and lungs (Figure 2.5D) without evidence of mCherry+ cancer cells 

in these same tissues, suggesting that periostin-expressing cells are present in 

the premetastatic niche. In support of this possibility, we also observed 

differential activation of periostin-expressing cells in the contralateral mammary 

glands of tumor-bearing mice, another common metastatic site for breast cancers 

(233, 234). Though we did not detect mCherry+ cancer cells at these sites, there 

was an ~ 8-fold increase in the percentage of tissue area positive for ZSGreen in 
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mice bearing highly-metastatic tumors compared to those bearing low-metastatic 

tumors (1.6% ± 0.2% versus 0.2% ± 0.1%) (Figure 2.6). 

Since the spontaneous metastases we observed in the lungs resembled 

micrometastases, we hypothesized that a tail vein model of experimental 

metastasis would yield greater activation of periostin-expressing cells in the 

lungs, especially in the EO771.LMB-injected mice, as this would allow a greater 

number of tumor cells to colonize the lungs and activate periostin expression in 

tissue-resident cells via growth factor signaling. Surprisingly, though we found 

macrometastases of both the low-metastatic and highly-metastatic mammary 

cancer cells in the lungs following tail vein injection (Figure 2.5E), there was a 

lack of periostin activation in these tissues (Figure 2.5F), suggesting that the 

primary tumor must be established prior to activation of periostin at secondary 

sites. 
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Figure 2.5. Periostin-expressing CAFs are more abundant in the metastatic niches 

of mice bearing highly-metastatic mammary tumors. (A,B) Tissue tilescans of 

axillary lymph nodes (A) and lungs (B) from PostniZSGreen lineage tracing mice bearing 

either low metastatic (EO771) or highly metastatic (EO771.LMB) mammary tumors. 

Tumor cells labelled with mCherry and periostin-expressing cells genetically labelled 

with ZSGreen. Nuclei counterstained with DAPI. Scale bars: 500 m, insets are 3x zoom 

(A) and 6x zoom (B). (C,D) Percentage of tissue area positive for ZSGreen in serial 

sections of axillary lymph nodes (C) and lungs (D) from mice bearing EO771 or 

EO771.LMB mammary tumors represented as a histogram (left) and scatter plot (right). 

Each bar of the histogram represents a different histological section with matched 

mCherry and ZSGreen measurements. The scatter plot shows individual ZSGreen 

measurements with each point representing a different histological section (n = 6-7 

lymph nodes and 3-6 lungs per group). Statistics shown for Mann-Whitney test. (E) 
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Tissue tilescans of lungs from PostniZSGreen lineage tracing mice injected via the tail vein 

with EO771 or EO771.LMB mammary tumor cells in a model of experimental metastasis. 

Tumor cells labelled with mCherry and periostin-expressing cells genetically labelled 

with ZSGreen. Nuclei counterstained with DAPI. Scale bars: 500 m, insets are 6x 

zoom. (F) Percentage of tissue area positive for mCherry (left) and ZSGreen (right) in 

serial sections of lungs from tail vein-injected mice. Each data point represents a 

different histological section (n = 3 mice per group). Statistics shown for Mann-Whitney 

test. Tail vein injections were performed by Jeremy Gatesman of the UVA Center for 

Comparative Medicine. 
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Figure 2.6. Periostin-expressing CAFs are more abundant in the premetastatic 

niches of mice bearing highly metastatic mammary tumors. (A) Tissue tilescans of 

contralateral mammary glands from PostniZSGreen lineage tracing mice bearing low-

metastatic (EO771) or highly-metastatic (EO771.LMB) mammary tumors. Periostin-

expressing cells genetically labelled with ZSGreen, and tumor cells labelled with 

mCherry (not detected in these tissues). Nuclei counterstained with DAPI. Scale bars: 

200 m, insets are 3x zoom. (B) Percentage of tissue area positive for ZSGreen in serial 

sections of contralateral mammary glands of mice bearing EO771 or EO771.LMB 

mammary tumors. Each data point represents a different histological section (n = 4-5 

mice per group). Statistics shown for Mann-Whitney test.  
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2.4.5 Collagen fibers are longer and more aligned in highly-metastatic 

(periostinhigh) breast tumors 

 
 Because periostin has been shown to promote ECM remodeling by 

binding to other matrix proteins including collagen, tenascin-C, and fibronectin to 

enable collagen cross-linking through a mechanism dependent on BMP-1-

mediated activation of lysyl oxidase (LOX) (174, 177), we next used second 

harmonic generation (SHG) imaging to visualize collagen fibers in low- versus 

highly-metastatic mammary tumors to determine whether differences in periostin+ 

cell abundance associated with intratumoral collagen structure. Coincident with 

an increase in periostin-expressing CAFs in highly-metastatic breast tumors, we 

observed global changes to collagen matrix abundance and architecture in these 

tumors (Figure 2.7A). Total collagen fiber area was greater in highly-metastatic 

tumors (Figure 2.7B), and these fibers were straighter (Figure 2.7C) and more 

aligned (Figure 2.7D) when compared to low-metastatic counterparts whose 

collagen matrices were less dense and more closely resembled the “curly” 

collagen fiber structures associated with normal mammary glands (147). 

Additionally, there was a 3.7-fold increase in collagen fiber length in highly-

metastatic mammary tumors compared to low-metastatic mammary tumors 

(342.6 ± 14.9 µm versus 93.4 ± 5.4 µm) (Figure 2.7E). Taken together, these 

differences indicate that the collagen matrix is more organized in highly-

metastatic (periostinhigh) mammary tumors compared to the randomly distributed 

and shorter collagen fibers found in low-metastatic (periostinlow) mammary 

tumors.  
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Figure 2.7. Collagen fibers are longer and more aligned in highly-metastatic 

(periostinhigh) breast tumors. (A) Second harmonic generation (SHG) images of 

collagen fibers (pseudo-colored in cyan) in EO771 or EO771.LMB mammary tumors. 

Scale bars: 150 m, insets are 3x zoom. (B) Total collagen area in histological sections 

of primary tumors (n = 3-4 mice per group). Each data point represents a different 

histological section. Statistics shown for Mann-Whitney test. (C) Curvature of collagen 

fibers, measured as mean change in angle along fibers, in histological sections of 

primary tumors (n = 3-4 mice per group). Each data point represents a different 

histological section. Statistics shown for unpaired Student’s t test. (D) Representative 

histogram of collagen fiber orientation in primary tumors. A peaked histogram represents 

aligned fibers whereas a flat histogram represents random organization. (E) 

Quantification of collagen fiber length in primary tumors, represented as a histogram 

(left) and scatter plot (right). Each point represents an individual fiber. Between 130 and 

160 fibers quantified from multiple histological sections (n = 3 mice per group) and 

results compared using a Mann-Whitney test. Second harmonic generation was 

performed in collaboration with Dr. Adrian Halme, Dr. Stacey Criswell, and Natalia 

Dworak of the UVA Advanced Microscopy Core. 
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2.4.6 Periostin knockdown in primary human breast CAFs alters collagen 

matrix architecture and inhibits collective cell invasion 

 
 Given that an aligned collagen matrix is a signature of more advanced 

breast tumors and can promote local invasion of cancer cells (122, 127, 155, 

235, 236), we hypothesized that the difference in collagen matrix structure we 

observed in vivo was related to differences in the pool of intratumoral periostin 

and could have consequences for cancer cell migration. Thus, we knocked down 

periostin in primary human breast CAFs in vitro (Figure 2.8A-C) to determine 

whether periostin expression itself confers functional properties to CAFs 

including their ability to deposit an organized collagen matrix. RNAseq of primary 

human breast CAFs showed that periostin knockdown secondarily reduced 

expression of matrisomal proteins, ECM regulators, and collagens among other 

matrix-related genes found in the NABA Gene Set Enrichment Analysis (GSEA) 

(Figure 2.9A, Figure 2.8D). Secreted collagen I protein levels were reduced ~3-

fold following periostin knockdown (Figure 2.9B), and the collagen fibers 

deposited by periostin-knockdown CAFs were significantly shorter than collagen 

fibers deposited by CAFs treated with non-targeting control siRNA (201.6 ± 7.6 

µm versus 120.0 ± 4.8 µm) (Figure 2.9C,D). Coupled with our in vivo 

observations that periostin-expressing cell area and matrix organization were 

associated with increased intratumoral periostin, these in vitro matrix alterations 

prompted us to test whether knocking down periostin would affect cell area in 

vitro, as the stellate-shaped morphology that is characteristic of CAFs is 

attributed to their ability to engage the ECM and form focal adhesions. Primary 
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human breast CAF cell area was significantly reduced following periostin 

knockdown (2,199 ± 100.2 µm2 versus 1643 ± 72.1 µm2), and this effect was 

rescued by addition of recombinant human periostin (2,534 ± 131.4 µm2) (Figure 

2.9E, Figure 2.8E). The ability of CAFs to spread and form focal adhesions is 

critical for their motility, so we used migration assays to assess whether periostin 

knockdown would also impede their ability to migrate. Indeed, periostin 

knockdown in human breast CAFs reduced migration ~ 3-fold at 12 hours and 2-

fold at 24 hours, and addition of recombinant human periostin restored the 

migratory capacity of periostin-knockdown CAFs at both time points (Figure 

2.8F). Given this observed deficit in CAF migration following periostin 

knockdown, we hypothesized that ablating periostin in CAFs would also inhibit 

their ability to promote collective cell invasion. Therefore, we performed a 3D co-

culture spheroid assay in which human breast CAFs were treated with either 

periostin-targeting siRNA (si-POSTN) or non-targeting control siRNA (si-Control) 

and co-cultured in spheroids with MDA-MB-231mCherry human breast cancer cells. 

CAF/cancer cell spheroids were then embedded in 3D matrices and the percent 

change in invasive area was measured over time. We observed a selective 

impairment of collective cell invasion through a collagen matrix, as spheroids with 

periostin knockdown CAFs were significantly less invasive at 24 hours compared 

with control spheroids when embedded in type I collagen, but there was no 

difference in invasion when embedded in Matrigel (Figure 2.9F,G). Taken 

together, these data suggest that the ability of periostin-expressing CAFs to drive 

collective cell invasion is selectively dependent on collagen remodeling as there 
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was no invasion deficit following periostin knockdown when spheroids were 

embedded in Matrigel which primarily consists of laminins and other basement 

membrane proteins. 
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Figure 2.8. Periostin knockdown in primary human breast CAFs inhibits cell 

spreading and migration. (A) qPCR analysis to confirm periostin expression is reduced 

in primary human breast CAFs treated with periostin-targeting siRNA (si-POSTN) 

compared to cells treated with a non-targeting control siRNA (si-Control). Performed in 

triplicate. Statistics shown for unpaired Student’s t test. (B) Western blot for secreted 

periostin in primary human breast CAFs treated with si-Control or si-POSTN. Ponceau 

stain (PS) shown as loading control. Protein signal intensity quantified on the right, 

performed in quadruplicate. Statistics shown for unpaired Student’s t test. (C) Western 

blot for intracellular periostin in primary human breast CAFs treated with si-Control or si-

POSTN. GAPDH shown as loading control. Protein signal intensity quantified on the 

right, performed in triplicate. Statistics shown for unpaired Student’s t test. (D) Heat map 

of gene expression of collagen family proteins in primary human breast CAFs treated 

with si-Control or si-POSTN. (E) Immunofluorescence images of phalloidin staining of 

primary human breast CAFs treated with si-Control or si-POSTN ± recombinant human 

periostin (rPOSTN). Nuclei counterstained with DAPI. Scale bars: 100 m. (F) Scratch 

assay quantification of percent wound closure over time by primary human breast CAFs 

treated with si-Control or si-POSTN ± recombinant human periostin (rPOSTN) to 

measure cell migration. Each data point represents a different scratch replicate. 

Statistics shown for 2-way ANOVA, Tukey’s multiple comparisons test. RNA seq 

analysis in panel (D) performed by Dr. Pankaj Kumar of the UVA Genomics Core. 
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Figure 2.9. Periostin knockdown in primary human breast CAFs alters collagen 

matrix architecture and inhibits collective cell invasion. (A) Volcano plot of genes 

with significantly altered expression detected by bulk RNAseq following periostin 

knockdown in primary human breast CAFs (left) and NABA Gene Set Enrichment 

Analysis (GSEA) showing downregulated pathways in periostin knockdown cells (right). 

Periostin knockdown in human breast CAFs done in quadruplicate. (B) Western blot of 
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secreted collagen I following periostin knockdown. Ponceau stain (PS) shown as loading 

control. Signal intensity quantified at right and compared using unpaired Student’s t test. 

Performed in triplicate. (C) Immunostaining of deposited collagen I by si-Control- vs. si-

POSTN-treated human breast CAFs. Scale bars: 100 m, insets are 2x zoom. (D) 

Lengths of collagen fibers deposited by control versus periostin knockdown human 

breast CAFs represented as a histogram (left) and scatter plot (right). Each data point 

represents an individual continuous collagen fiber (n = 285-305 fibers per group). 

Experiments performed in triplicate and results compared using a Mann-Whitney test. 

(E) Cell area measurements of phalloidin-stained primary human breast CAFs treated 

with si-Control or si-POSTN ± recombinant human periostin (rPOSTN) represented as a 

histogram (left) and scatter plot (right). Experiment performed in triplicate with each data 

point representing an individual cell (n = 160-190 cells per group). Statistics shown for 

Kruskal-Wallis, Dunn’s multiple comparisons test. (F) Confocal images at the 24 hr 

timepoint of tumor cell/CAF co-culture spheroids consisting of MDA-MB-231mCherry 

human breast cancer cells and unlabeled primary human breast CAFs embedded in type 

I collagen. Scale bars: 100 m. (G) Percent change in invasive area of tumor cell/CAF 

co-culture spheroids embedded in type I collagen (left) or Matrigel (right). Each data 

point represents an individual spheroid, carried out in biological triplicates. Statistics 

shown for ordinary one-way ANOVA, Tukey’s multiple comparisons test (left) and 

Kruskal-Wallis, Dunn’s multiple comparison’s test (right). RNAseq analysis in panel (A) 

performed by Dr. Pankaj Kumar of the UVA Genomics Core. 
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2.4.7 Periostin-expressing CAFs promote lymphatic metastasis by 

remodeling the extracellular matrix and directing lymphovascular invasion 

along organized collagen fibers 

 
Taken together, our in vitro data implicated periostin-expressing CAFs in 

collagen-mediated collective invasion. To further explore the specific role of this 

population during tumor progression and metastasis, we used a DTA depletion 

strategy to ablate periostin-expressing CAFs in vivo. We generated PostnDTA 

mice by crossing PostniZSGreen lineage tracing mice with Rosa-DTA mice. In this 

model, tamoxifen administration drives expression of diphtheria toxin in periostin-

expressing cells resulting in their selective ablation. To confirm ablation of 

periostin-expressing cells in our PostnDTA mouse model, we quantified ZSGreen+ 

cells in the primary mammary tumors of control (PostniZSGreen) mice compared to 

periostin+ cell-depleted (PostnDTA) mice. There was a 75% reduction in the 

percentage of tissue area positive for ZSGreen in the mammary tumors of the 

PostnDTA mice (1.68% ± 0.2% versus 0.41% ± 0.1%), indicating successful 

ablation of the majority of periostin-expressing cells (Figure 2.10). We then used 

these PostnDTA mice in our mammary tumor model to measure changes in matrix 

architecture and metastasis following ablation of periostin-expressing cells 

(Figure 7A). PostnDTA mice were treated with either tamoxifen to induce periostin+ 

cell depletion or vehicle-only control, then injected with highly-metastatic 

EO771.LMBmCherry mammary cancer cells. Primary tumors were resected and a 

booster dose of tamoxifen (or vehicle-only control) was administered to ablate 

any periostin-expressing cells that may have been activated as a result of 
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surgery as periostin is induced by tissue injury and inflammation. Finally, 

secondary sites were harvested and evaluated for metastatic burden.  
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Figure 2.10. Confirmation of periostin-expressing cell depletion in mammary 

tumors of PostnDTA mice. (A) Tissue tilescans of EO771.LMB mammary tumors from 

PostniZSGreen control mice (left) and PostnDTA mice (right). Tumor cells labelled with 

mCherry and periostin-expressing cells genetically labelled with ZSGreen. Nuclei 

counterstained with DAPI. Scale bars: 500 m. (B) Percentage of tissue area positive for 

ZSGreen in EO771.LMB tumors (n = 3-5 mice per group). Each data point represents a 

different histological section. Statistics shown for unpaired Student’s t test. Tumors 

shown in panel (A) were surgically resected by Marya Dunlap-Brown. 
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Surprisingly, depleting periostin-expressing cells accelerated the growth of 

primary mammary tumors which would indicate a growth-restraining feature of 

periostin-expressing cells at sites of primary growth by breast cancer cells 

(Figure 2.11B). In line with our previous observations, mammary tumors in which 

periostin-expressing cells had been depleted displayed impaired intratumoral 

collagen organization as detected by SHG imaging (Figure 2.11C), as collagen 

fibers were less aligned (Figure 2.12A) and shorter in the tumors of periostin+ 

cell-depleted mice (235.0 ± 8.0 µm versus 154.9 ± 5.5 µm) (Figure 2.12B).  As 

expected, total collagen area was significantly reduced following periostin+ cell 

depletion (Figure 2.12C), but we unexpectedly found that the curvature of the 

collagen fibers in the periostin+ cell depleted tumors was reduced as well (Figure 

2.12D). This indicates that depleting periostin+ cells reduced overall collagen 

abundance, fiber length, and alignment, but did not revert the collagen fibers to 

the “curly” phenotype associated with normal mammary tissues and observed in 

the periostinlow EO771 primary tumors. Instead, the shorter collagen segments 

remained straight but disorganized. 

Periostin+ cell depletion also dramatically reduced lymphatic metastasis of 

highly metastatic EO771.LMBmCherry mammary cancer cells. The metastatic 

burden in the draining axillary lymph nodes of periostin+ cell-depleted mice was 

reduced ~3-fold (2% ± 0.3% versus 0.8% ± 0.1%) (Figure 2.11D,E), suggesting 

that periostin-expressing cells might enable lymphatic metastasis. Consistent 

with our previous results, very few EO771.LMBmCherry mammary cancer cells 

reached the lungs in both the vehicle-control mice and periostin+ cell-depleted  
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Figure 2.11. Periostin-expressing CAFs promote lymphatic metastasis by 

remodeling the extracellular matrix and directing lymphovascular invasion along 

organized collagen fibers. (A) Study design including tamoxifen (or vehicle-only 

control) treatment and orthotopic EO771.LMB mammary tumor injections in PostnDTA 

mice. (B) Tumor volume measurements of highly metastatic EO771.LMB mammary 

tumors in control versus periostin+ cell-depleted mice. Each line represents an individual 

mouse (n = 8-10 mice per group). Statistics shown for multiple Mann-Whitney tests. (C) 

Second harmonic generation (SHG) images of intratumoral collagen fibers (pseudo-

colored in cyan) in control versus periostin+ cell-depleted mice. Scale bars: 150 m, 

insets are 3x zoom. (D) Tissue tilescans of axillary lymph nodes from control versus 

periostin+ cell-depleted mice bearing highly metastatic EO771.LMB mammary tumors. 

Tumor cells labelled with mCherry and nuclei counterstained with DAPI. Scale bars: 200 

m, insets are 3x zoom. (E) Percentage of tissue area positive for mCherry in serial 

sections of axillary lymph nodes from control versus periostin+ cell-depleted mice 

bearing highly metastatic EO771.LMB mammary tumors. Each data point in the scatter 

plot represents an individual histological section (n = 8-10 mice per group). Statistics 

shown for Mann-Whitney test. Second harmonic generation shown in panel (C) was 

performed in collaboration with Dr. Adrian Halme, Dr. Stacey Criswell, and Natalia 

Dworak of the UVA Advanced Microscopy Core. 
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Figure 2.12. Depleting periostin-expressing CAFs alters matrix architecture in 

primary tumors but does not significantly reduce metastatic burden in the lung. 

(A) Representative histogram of collagen fiber orientation in EO771.LMB tumors from 

vehicle-only injected control mice and periostin+ cell-depleted mice. A peaked histogram 

represents aligned fibers whereas a flat histogram represents random organization. (B) 

Quantification of collagen fiber length in EO771.LMB tumors from vehicle-only injected 

control mice and periostin+ cell-depleted mice, represented as a histogram (left) and 

scatter plot (right). Each point represents an individual fiber. Between 475 and 540 fibers 

quantified from multiple histological sections (n = 3-4 mice per group) and results 

compared using Mann-Whitney test. (C) Total collagen area in histological sections of 

EO771.LMB tumors from vehicle-only injected control mice and periostin+ cell-depleted 

mice. (n = 4-5 mice per group). Each data point represents a different histological 

section. Statistics shown for Mann-Whitney test. (D) Curvature of collagen fibers, 

measured as mean change in angle along fibers, in histological sections of EO771.LMB 

tumors from vehicle-only injected control mice and periostin+ cell-depleted mice. (n = 4-5 

mice per group). Each data point represents a different histological section. Statistics 

shown for Mann-Whitney test. (E) Tissue tilescans of lungs from either vehicle-only 

injected control mice or periostin+ cell-depleted mice bearing EO771.LMB mammary 

tumors. Tumor cells labelled with mCherry and nuclei counterstained with DAPI. Scale 

bars: 500 m, insets are 6x zoom. (F) Percentage of tissue area positive for mCherry in 

serial sections of lungs from either vehicle-only injected control mice or periostin+ cell-

depleted mice bearing EO771.LMB mammary tumors. Each point represents a different 

histological section (n = 7 mice per group). Statistics shown for Mann-Whitney test. 
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mice, and we did not observe a statistically significant reduction in pulmonary 

metastases following periostin+ cell depletion (Figure 2.12E,F). Similarly, we 

found that periostin+ cell depletion reduced lymphatic metastasis (Figure 

2.13A,B) but did not affect pulmonary metastasis (Figure 2.13C,D) when we 

repeated the periostin+ cell depletion study using highly-metastatic PyVMT cells. 

Since targeting periostin on the cellular level reduced lymphatic metastasis, we 

then asked whether attenuating periostin expression on a molecular level would 

have a similar effect. Periostin expression in mouse mammary fibroblasts is 

regulated by TGFβ (Figure 2.14A), and we hypothesized that reducing TGFβ-

mediated periostin activation by conditionally knocking out a receptor in the 

TGFβ pathway (Tgfbr2) in periostin-expressing cells would similarly reduce 

lymphatic metastasis. Using Postn-Cre:Tgfbr2fl/fl mice, we found a significant 

reduction in metastasis of highly-metastatic EO771. LMBmCherry mammary cancer 

cells to the draining axillary lymph node following Tgfbr2 knockout (Figure 

2.14B,C).  
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Figure 2.13. Depleting periostin-expressing CAFs reduces lymphatic metastasis of 

highly-metastatic PyVMT tumors but does not significantly reduce metastatic 

burden in the lung. (A) Tissue tilescans of axillary lymph nodes from control mice or 

periostin+ cell-depleted mice bearing highly-metastatic PyVMT mammary tumors. Tumor 

cells labelled with mCherry and nuclei counterstained with DAPI. Scale bars: 200 m, 

insets are 3x zoom. (B) Percentage of tissue area positive for mCherry in serial sections 

of axillary lymph nodes from either control mice or periostin+ cell-depleted mice bearing 

highly-metastatic PyVMT mammary tumors. Each point represents a different 

histological section (n = 4 mice per group). Statistics shown for Mann-Whitney test. (C) 

Tissue tilescans of lungs from control mice or periostin+ cell-depleted mice bearing 

highly-metastatic PyVMT mammary tumors. Tumor cells labelled with mCherry and 

nuclei counterstained with DAPI. Scale bars: 500 m, insets are 6x zoom. (D) 

Percentage of tissue area positive for mCherry in serial sections of lungs from either 

control mice or periostin+ cell-depleted mice bearing highly-metastatic PyVMT mammary 

tumors. Each point represents a different histological section (n = 4 mice per group). 

Statistics shown for Mann-Whitney test. 
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Figure 2.14. Tgbfr2 knockout in periostin-expressing cells reduces lymphatic 

metastasis. (A) qPCR analysis of periostin expression in primary mouse mammary 

fibroblasts treated with 10 ng/mL TGFβ1. Statistics shown for unpaired Student’s t test. 

(B) Tissue tilescans of axillary lymph nodes from control mice or Postn-Cre:Tgfbr2fl/fl 

mice. Tumor cells labelled with mCherry and nuclei counterstained with DAPI. Scale 

bars: 200 m, insets are 6x zoom. (C) Percentage of tissue area positive for mCherry in 

serial sections of axillary lymph nodes from either control mice or Postn-Cre:Tgfbr2fl/fl 

mice bearing EO771.LMB mammary tumors. Each point represents a different 

histological section (n = 4-10 mice per group). Statistics shown for Mann-Whitney test. 
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Given the reduction in lymphatic metastasis following periostin depletion in 

vivo, we then modelled lymphovascular invasion in vitro to determine whether 

there is a role for periostin+ CAFs in guiding the intravasation of cancer cells 

across the lymphatic endothelial cell barrier. Using a modified spheroid/transwell 

migration assay (Figure 2.15A), we found that treating primary human breast 

CAFs with periostin-targeting siRNA inhibited their ability to promote the invasion 

of MDA-MB-231mCherry human breast cancer cells through a collagen matrix and 

across a primary human lymphatic endothelial cell barrier (Figure 2.15B). 

Following periostin knockdown in CAFs, significantly fewer mCherry-labelled 

cancer cells crossed the lymphatic endothelial cell barrier compared to control 

(144 ± 24 cells versus 81 ± 17 cells) (Figure 2.15C), indicating that periostin-

expressing CAFs promote lymphovascular invasion of breast cancer cells. This 

effect of periostin knockdown on cancer cell invasion appears to be specific to 

lymphatic vessels, as it did not reduce cancer cell invasion across a blood 

endothelial cell barrier when we repeated the spheroid/transwell migration assay 

using a layer of human umbilical vein endothelial cells (HUVECs) (Figure 

2.16A,B). 
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Figure 2.15. Periostin knockdown in primary human breast CAFs reduces breast 

cancer cell invasion across a lymphatic endothelial cell barrier. (A) Experimental 

setup for in vitro lymphovascular invasion assay using MDA-MB-231mCherry human breast 

cancer cells, primary human breast CAFs, and primary human lymphatic endothelial 

cells. (B) Representative fluorescent images of transmigrated MDA-MB-231mCherry tumor 

cells that have invaded across the lymphatic endothelial cell barrier in the in vitro 

lymphovascular invasion assay. Breast cancer cells were co-cultured in spheroids with 

primary human breast CAFs that were pre-treated with either non-targeting control 

siRNA (si-Control) or periostin-targeting siRNA (si-POSTN). Scale bar: 100 m. (C) 

Quantification of the number of MDA-MB-231mCherry tumor cells that have invaded across 

the lymphatic endothelial cell barrier in the in vitro lymphovascular invasion assay. Each 

data point represents an individual spheroid. Experiment performed in triplicate. 

Statistics shown for Mann-Whitney test. 
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Figure 2.16. Periostin knockdown in primary human breast CAFs does not affect 

breast cancer cell invasion across a blood endothelial cell barrier. (A) 

Representative fluorescent images of transmigrated MDA-MB-231mCherry tumor cells that 

have invaded across the blood endothelial cell barrier of HUVECs in the in vitro 

lymphovascular invasion assay. Breast cancer cells were co-cultured in spheroids with 

primary human breast CAFs that were pre-treated with either non-targeting control 

siRNA (si-Control) or periostin-targeting siRNA (si-POSTN). Scale bar: 100 m. (B) 

Quantification of the number of MDA-MB-231mCherry tumor cells that have invaded across 

the blood endothelial cell barrier in the in vitro lymphovascular invasion assay. Each data 

point represents an individual spheroid. Statistics shown for Mann-Whitney test. 
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Taken together, our in vivo depletion studies and in vitro functional assays 

reveal a role for periostin-expressing CAFs in driving collagen-mediated 

lymphovascular invasion of cancer cells, resulting in lymphatic metastasis to the 

draining lymph node. To assess whether this pro-metastatic role for periostin 

within the primary tumor is reflected in clinical specimens, we used RT-qPCR 

analysis to measure relative periostin expression in paired primary breast tumors 

and lymph node metastases from 28 metastatic breast cancer patients obtained 

from the UNC Chapel Hill tissue biorepository. We found that periostin 

expression was higher in the primary tumors compared to their paired lymph 

node samples in 68% of patients (Figure 2.17A), which is consistent with 

periostin functioning within the primary TME to promote breast cancer cell 

escape and eventual metastasis. To determine if periostin abundance is 

associated with poor patient outcome, we used the Kaplan-Meier Plotter to 

perform survival analysis of lymph node positive breast cancer patients stratified 

based on high or low periostin protein expression (Figure 2.17B) (237). As 

predicted, periostin expression significantly correlated with decreased overall 

survival probability in this patient cohort, further supporting a clinically-relevant 

role for periostin in driving disease progression. 
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Figure 2.17. Periostin is enriched in primary human breast cancers and is 

associated with reduced overall survival. (A) RT-qPCR analysis of periostin 

expression in paired primary breast cancer specimens (Primary BrCa) and lymph node 

metastases (Paired LNmet) from human breast cancer patients (n = 28 patients). qPCR 

performed in triplicate. (B) Kaplan-Meier plot of overall survival in lymph node positive 

breast cancer patients stratified based on periostin protein expression (n = 27 patients). 

qPCR data in panel A provided by Lincy Edatt and Dr. Chad Pecot. 
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2.5 Discussion 
 

Considerable progress has been made in the field of CAF biology using 

single-cell sequencing technologies to identify molecularly diverse CAF 

subpopulations. While expression profiles can indicate potential functional roles 

for these subclasses of CAFs, the clustering algorithms used to analyze 

sequencing data can yield subpopulations that are not necessarily spatially or 

pathologically relevant. Therefore, there remains a need to track these cells in 

situ and validate the functions of CAF subpopulations both in vitro and in vivo to 

determine their biological importance during tumor progression. In the present 

study, we have used lineage tracing strategies to functionally characterize a 

population of cells marked by expression of periostin which is a matricellular 

protein associated with metastasis and is expressed by the desmoplastic stroma 

of human breast cancers. We show that periostin is expressed by CAFs and 

perivascular-like cells and is enriched in advanced stage and lymph node 

positive human breast cancer samples. Our work also identifies a population of 

periostin-expressing CAFs that are enriched at the lymphatic vessel periphery 

and are differentially activated in highly-metastatic mammary tumors compared 

to their low-metastatic counterparts. In addition to quantitative differences, we 

observe phenotypic variation in the periostin-expressing cells between tumor 

types. The ZSGreen-labelled periostin-expressing cells in highly-metastatic 

tumors are larger and resemble the classical stellate shape of activated 

myofibroblasts whereas the periostin-expressing cells in low-metastatic tumors 

are smaller and rounded, reflecting the different activation states between the 
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two populations. Together, this shows that the metastatic potential of cancer cells 

informs the activation of periostin-expressing cells in the primary tumor 

microenvironment. Interestingly, we find that the same is true at metastatic and 

premetastatic sites. We show that periostin-expressing cells are more abundant 

in the draining lymph nodes, lungs, and contralateral mammary glands of mice 

bearing highly-metastatic mammary tumors compared to those implanted with 

low-metastatic mammary tumors. A limitation of our spontaneous metastasis 

model is that relatively few mammary cancer cells reach the lungs before primary 

tumors re-grow to the maximum volume at which time mice must be sacrificed. In 

order to address this, we used an experimental model of metastasis in which 

mammary cancer cells were injected into the tail vein of lineage tracing mice. 

Both low- and highly-metastatic mammary cancer lines established 

macrometastases in the lungs but marginally activated periostin-expressing cells 

despite a greater number of cancer cells present in these tissues. This indicates 

that periostin activation in a primary tumor is critical for robust activation of 

periostin at secondary sites rather than activation occurring at the secondary site 

once cancer cells have already colonized the tissue. These findings support 

previous reports that periostin is activated in premetastatic (208) and metastatic 

niches (72) where it may function to promote cancer cell survival and outgrowth, 

though our study focuses on an earlier pro-metastatic role for periostin within the 

primary tumor.  

We find that periostin-expressing cell abundance is associated with 

intratumoral collagen abundance and organization, with straighter, longer, and 
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more aligned collagen fibers in highly-metastatic (periostinhigh) tumors. Our in 

vitro functional assays reveal that this difference in collagen matrix architecture is 

due to differences in intratumoral periostin abundance, as knocking down 

periostin expression in primary human breast CAFs reduces expression of a 

number of matrix-related proteins including collagens. This reduction in collagen 

secretion leads to a deficient and unorganized matrix, which impairs the ability of 

primary human breast CAFs to engage the matrix, spread, and migrate. These 

spreading and migratory defects are rescued by treatment with recombinant 

human periostin, suggesting that the differences in periostin-expressing cell 

morphology we observe in vivo in low- versus highly-metastatic tumors are 

directly related to differences in intratumoral periostin levels. We also show that 

periostin knockdown selectively inhibits collective cell invasion of primary human 

breast CAFs and breast cancer cells through collagen matrices. Though the 

timing of our in vitro assay is too short for CAFs to remodel collagen into the 

highly organized fibrillar networks we observe in periostinhigh tumors in vivo, our 

results reflect that the inhibitory effect of periostin knockdown on early steps of 

collagen remodeling is sufficient to reduce collective cell invasion. Additionally, 

we cannot rule out that proliferation of the human breast cancer cells could 

contribute to the differences in the area of invasion that we observed, although 

we used low serum conditions and a 24-hour timepoint to minimize this effect. If 

CAF-derived periostin promotes collagen cross-linking as proposed, then it’s 

possible that cancer cells could engage the resulting matrix differently in control 

versus periostin-knockdown spheroids. This would potentially increase cancer 
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cell proliferation in control spheroids as there is an established role for stiffened 

ECM in driving tumor proliferation (127), though we observe the opposite in vivo 

with depletion of periostin-expressing cells leading to a slightly increased primary 

tumor growth despite impaired collagen organization. This accelerated tumor 

growth following periostin+ cell depletion could be attributed to the loss of an 

organized collagen matrix, as there is evidence that fibrillar collagen can 

mechanically restrain tumor growth (238). Alternatively, it is possible that 

periostin-expressing cell depletion enhances primary tumor growth by shifting the 

immune landscape within tumors as has been previously observed upon CAF 

depletion in a model of pancreatic cancer (157). Therefore, an important future 

direction is to investigate the immune populations present in control versus 

periostin+ cell-depleted mammary tumors to determine if periostin-expressing 

CAFs perform immune-modulatory functions in addition to their roles in matrix 

remodeling. 

Although our lineage tracing studies reveal that periostin-expressing cells 

make up a relatively small proportion of the total tumor tissue, they have a 

dramatic effect on the matrix architecture of the tumor microenvironment and 

lymphatic metastasis as evidenced by our periostin+ cell depletion tumor study. 

Our data reveal that periostin-expressing CAFs are instrumental in mediating 

lymphatic metastasis by depositing an organized collagen matrix and by 

promoting lymphovascular invasion of breast cancer cells. CAFs and collagen 

alignment have been shown to play a role in hematogenous metastasis (118, 

119, 153, 154, 239-246), but our work shows that periostin-expressing CAFs 
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selectively promote lymphatic metastasis, as their depletion markedly reduces 

metastatic burden in the lymph node but does not significantly affect pulmonary 

metastasis. It could be that CAF-derived periostin generally promotes collagen 

remodeling and collective cell invasion towards both lymphatic and blood vessel 

interfaces within the primary tumor, but this enhanced invasion only leads to a 

difference in the number of cancer cells crossing lymphatic endothelial cell 

barriers and not blood endothelial cell barriers due to structural differences 

between the two types of vessels. Blood endothelial cells form tight junctions, 

making blood vessels inherently more restrictive and difficult to transverse, 

whereas lymphatic endothelial cells are characterized by discontinuous junctions 

that allow for the entry of fluid, macromolecules, and cells into lymphatic vessels 

during interstitial pressure regulation (96). This is reflected in our in vitro data 

with the median number of transmigrated cancer cells varying greatly in the 

control conditions between the assays performed with a monolayer of HUVECs 

(11 cells) versus assays performed with a monolayer of lymphatic endothelial 

cells (118 cells). These findings agree with and build upon recently published 

work showing that CAF-derived periostin can mediate metastasis by promoting 

lymphatic vessel permeability in an experimental model of popliteal lymph node 

metastasis (41), though this work used gain of function experiments to determine 

the effect of injected periostin on lymphatic metastasis of cervical squamous cell 

carcinoma whereas we have used genetic tools to determine the function of 

periostin+ cells in spontaneous breast cancer metastasis. Similarly, another study 

of periostin in experimental lymph node metastasis has shown an association 
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between periostin deposition and lymphangiogenesis within lymph nodes prior to 

colonization by murine melanoma cells (247). This finding is consistent with our 

lineage tracing results showing periostin activation in lymph nodes as part of 

premetastatic niche formation, though our work emphasizes an ECM-remodeling 

role for periostin within the primary tumor site. Our mouse model recapitulates 

the desmoplastic stromal reaction linked to poor prognosis of breast cancer 

patients and allows us to deplete the periostin+ CAFs that contribute to this 

desmoplasia in situ to reveal their critical role in collagen-mediated 

lymphovascular invasion. As our study is the first to lineage trace and deplete 

periostin-expressing cells in the tumor context, this strategy can and should be 

adapted to other orthotopic tumor models to reveal whether this CAF population 

is present and shares a similar role in promoting the lymphatic metastasis of 

other cancers, especially those also characterized by desmoplasia such as 

pancreatic and lung cancer (158, 248, 249).  

 

Densely aligned fibrillar collagen distinguishes progressive breast tumors 

from in situ lesions and is associated with increased periostin deposition in 

human patients (121), so early targeting or re-programming of the periostin+ CAF 

population could be an intervention to help prevent breast tumors from advancing 

to invasive disease. An important therapeutic consideration would be the timing 

of targeting periostin+ cells, as we observe increased primary tumor growth rate 

following periostin+ cell depletion similar to the paradoxical results of other CAF 

depletion studies (156, 157). To avoid this effect and given that periostin is 

activated by tissue injury and inflammation, blocking periostin+ CAF activation 
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may be most effective around the time of surgical resection of the tumor, though 

further preclinical studies are required to examine the effect of periostin blockade 

at different timepoints during tumor progression and whether this could be an 

effective strategy to normalize the ECM and attenuate lymphatic metastasis. The 

ability of desmoplasia to drive breast cancer metastasis by promoting a 

mesenchymal phenotype in cancer cells to support cancer cell outgrowth at 

secondary sites has been established (116, 118), but attempts to target 

mediators of this process have been primarily preclinical with limited and largely 

unsuccessful clinical trials (250-252). Our study identifies a population of CAFs, 

including PVL-CAFs, responsible for the collagen remodeling that drives 

desmoplasia and demonstrates their role in promoting lymphovascular invasion 

and lymphatic metastasis, revealing a potential new avenue for therapeutic 

intervention in the metastatic cascade. 
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3.1 Major findings 
 
 My thesis work identifies a population of CAFs, marked by the expression 

of the matricellular protein periostin, that is activated by metastatic breast cancer 

cells to remodel the ECM within the primary tumor microenvironment and 

promote lymphatic spread. While periostin-expressing myofibroblasts have 

previously been studied in the context of the injured heart (223), genetic lineage-

tracing approaches have not been used to examine this population in the context 

of cancer progression. Therefore, we generated a lineage-tracing mouse model 

to probe the abundance and spatial distribution of periostin-expressing cells 

during breast cancer growth. Using these lineage-tracing mice, we have 

demonstrated that periostin-expressing cells are found in perivascular and 

periductal spaces within the naïve mammary gland and are enriched in the 

lymphatic vessel periphery. Using spatial transcriptomics, we characterized the 

gene expression profiles of these periostin-expressing populations and found that 

they are enriched in genes related to collagen organization and turnover, 

indicating that periostin-expressing cells work together to remodel the ECM 

within the mammary gland. We find that periostin-expressing cells are 

differentially activated in highly-metastatic mammary tumors compared to their 

low-metastatic counterparts and that this difference in periostin+ cell abundance 

coincides with changes to the intratumoral collagen architecture. Additionally, we 

observe an increased number of periostin-expressing cells in the axillary lymph 

nodes, lungs, and contralateral mammary glands of highly-metastatic tumor-

bearing mice, indicating that periostin likely also functions within metastatic and 
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premetastatic niches although our work focuses on its role within the primary 

tumor microenvironment. 

In order to determine the specific role of periostin-expressing cells in the 

tumor microenvironment, we performed a number of in vitro functional assays 

and in vivo depletion studies. We found that knocking down periostin expression 

in primary human breast CAFs in vitro impairs their ability to deposit and 

organize collagen matrices, thereby reducing cell spreading, migration, and 

collective cell invasion. Further, we have modeled lymphovascular invasion in 

vitro and found that knocking down periostin in primary human breast CAFs 

inhibits their ability to promote the migration of human breast cancer cells 

through a collagen matrix and across a lymphatic endothelial cell barrier. 

Similarly, if we deplete intratumoral periostin in vivo either by selectively ablating 

periostin-expressing cells or by attenuating TGFβ-mediated periostin expression 

we observe a reduction in collagen deposition and alignment as well as a 

significant decrease in lymphatic metastasis. Whereas previous studies of 

periostin in tumor progression have emphasized its ability to promote metastatic 

outgrowth within secondary microenvironments, this work establishes an earlier 

pro-metastatic role for periostin within the primary tumor as it promotes collagen 

alignment and invasion into the lymphatic vasculature (Figure 3.1).  
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Figure 3.1. Periostin-expressing CAFs promote lymphatic metastasis by 

remodeling the ECM and directing lymphovascular invasion along collagen fibers. 

Summary model of the roles of periostin+ cells in breast cancer metastasis. Figure 

created using BioRender.  
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3.2 Future directions 
 

3.2.1 Differential activation of periostin-expressing cells in breast cancer 
 
 In our lineage-tracing PostniZSGreen mice we observe a greater abundance 

of periostin-expressing cells in highly-metastatic mammary tumors compared to 

their low-metastatic counterparts, indicating that highly-metastatic cancer cells 

use an unknown mechanism to differentially activate periostin-expressing cells 

within the TME. It could be that highly-metastatic EO771.LMB tumor cells secrete 

a greater amount of a soluble factor that promotes periostin expression in tissue-

resident fibroblasts compared to low-metastatic EO771 cells. To determine if this 

is the case, we could perform a transwell co-culture assay in which fibroblasts 

are cultured in the lower compartment of a transwell system with either low-

metastatic or highly-metastatic breast cancer cells seeded in the upper 

compartment above a filter that does not allow for cells to transverse and reach 

the opposite compartment. Following incubation, the fibroblasts could be 

harvested and probed for periostin expression via qPCR and Western blot to 

determine whether soluble factors from highly-metastatic cancer cells increase 

periostin expression in fibroblasts to a greater degree than low-metastatic cancer 

cells as we would expect. This assay could be repeated with different cell types 

seeded in the upper chamber such as endothelial cells and fibroblasts to show 

that this effect on periostin expression is specific to highly-metastatic cancer 

cells. If there is no difference in periostin expression between the two conditions, 

it could be that periostin activation in fibroblasts is due to direct contact with 

cancer cells rather than a soluble factor. This alternative could be tested using a 
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co-culture system in which fibroblasts and low-metastatic or highly-metastatic 

cancer cells are cultured in direct contact on the same plate. As the cancer cell 

lines are labelled with mCherry, the fibroblasts could be separated from the co-

cultures via flow cytometry and fibroblast periostin levels could be measured 

using qPCR and Western blot.  

 If the co-culture assays suggest that it is a tumor-secreted factor rather 

than direct cellular contact that differentially activates periostin expression in 

fibroblasts, we could revisit the sequencing data from the original paper that 

molecularly characterized the EO771 and EO771.LMB cell lines (232) to find 

candidate genes that are secreted factors differentially expressed between the 

two cell lines. These candidate genes could be evaluated in vitro by using siRNA 

to knock down their expression individually in the highly-metastatic EO771.LMB 

cells and performing the previously described transwell co-culture assay to 

determine the effects of target gene knockdown on periostin expression in 

fibroblasts. Once the soluble factor responsible for driving periostin expression in 

fibroblasts is identified using this in vitro approach, we could use CRISPR to 

knockout its expression in the highly-metastatic EO771.LMB cells and inject 

these cells into PostniZSGreen lineage-tracing mice to assess periostin+ cell 

abundance and metastatic burden in the lymph nodes. We would expect a 

reduction in the abundance of ZSGreen-labelled periostin-expressing cells in the 

knockout tumors compared to control EO771.LMB tumors and a subsequent 

reduction in metastatic spread to the lymph nodes. To complement this loss-of-

function approach, we could also over-express the soluble factor in the low-
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metastatic EO771 cells and inject them into PostniZSGreen lineage-tracing mice to 

determine if over-expressing the soluble factor is enough to increase the 

activation of periostin+ cells within the tumor and convert these tumors to a more 

highly-metastatic phenotype. Characterizing the mechanism of activation of 

periostin-expressing cells in highly-metastatic tumors could identify additional 

potential therapeutic targets that could be exploited to prevent periostin-mediated 

lymphovascular invasion and lymphatic metastasis. 

 In addition to identifying the factor responsible for the differential activation 

of periostin+ cells in low- and highly-metastatic tumors, it would be informative to 

use a transcriptomic approach in our PostniZSGreen lineage-tracing mouse model 

to characterize the different activation states of the ZSGreen-labelled periostin-

expressing cells in the low- versus highly-metastatic tumors to better understand 

how the metastatic capacity of tumor cells influences the activity of periostin+ 

cells. Our previous studies suggest that there are likely differences in the 

expression of genes related to cytoskeletal remodeling and cell adhesion as well 

as ECM components as we observe phenotypic differences in cellular 

morphology and collagen matrix structure in low-metastatic (periostinlow) tumors 

compared to highly-metastatic (periostinhigh) tumors. While our work establishes 

roles for periostin+ cells in collagen remodeling and collective cell invasion in 

highly-metastatic tumors, these cells may perform additional pro-metastatic 

functions that could be uncovered by transcriptomic analysis such as secreting 

pro-survival factors, promoting vascular permeability, or participating in immune 

suppression.  
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Periostin-expressing cells are very rare in low-metastatic EO771 tumors, 

so it would be technically challenging to recover the number of cells required to 

perform single-cell RNAseq of ZSGreen-labelled cells collected from low-

metastatic tumors versus highly-metastatic tumors. Additionally, the tissue 

dissociation process can introduce transcriptional changes in cells that could 

skew gene expression results. Instead, we could assess the gene expression 

profiles of ZSGreen-labelled cells in situ using GeoMx digital spatial profiling. 

This approach would allow us to perform whole-transcriptome analysis of 

periostin+ cells to uncover both intertumoral and intratumoral heterogeneity 

among periostin+ populations. We could then compare our existing GeoMx 

profiling data of periostin+ cells in the naïve mammary gland to the expression 

profiles of periostin+ cells in low- and high-metastatic tumors to determine which 

molecular features are retained and which are altered following activation within 

the tumor microenvironment. Genes that are enriched in the periostin+ cells in 

highly-metastatic tumors could be further explored as potential mediators of 

tumor cell metastasis or as biomarkers of reactive stroma. 

In addition to characterizing differences among ZSGreen-labelled 

periostin+ cells within primary tumors, we could use GeoMx to profile periostin+ 

cells found in secondary sites including the lymph nodes, lungs, and contralateral 

mammary glands of highly-metastatic tumor-bearing mice. This would allow us to 

compare expression profiles between periostin+ populations within the primary 

tumor and periostin+ cells found in anatomically-distinct metastatic and 

premetastatic microenvironments and determine whether periostin+ cells display 
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expression profiles that reflect tissue-specific functions. Gaining a broader 

understanding of the diverse functions of periostin-expressing cells and the way 

they contribute to disease progression in different tissue contexts is critical as it 

could inform future approaches to therapeutically target this population. 

 

3.2.2 Source of periostin-expressing cells in secondary sites 
 
 Although we observe an increased abundance of periostin-expressing 

cells in the secondary sites of mice bearing highly-metastatic tumors compared 

to low-metastatic tumors, it remains unknown whether these ZSGreen-labelled 

periostin-expressing cells are tissue-resident fibroblasts that are activated during 

tumor progression or if these cells are recruited and migrate from other sources 

such as the primary tumor or bone marrow as has been reported for fibroblasts in 

other cancers (134, 253). This could be addressed by transplant experiments 

using our PostniZSGreen lineage-tracing mouse model. We could orthotopically 

inject tamoxifen-induced PostniZSGreen mice with highly metastatic EO771.LMB 

cells so that periostin-expressing cells within the primary tumor are labelled with 

ZSGreen. Then, these tumors could be transplanted into wild-type C57BL/6 mice 

and, following primary tumor growth, secondary sites can be harvested and 

evaluated for evidence of ZSGreen-labelled cells. If ZSGreen-labelled cells are 

detected in the lymph nodes, lungs, or contralateral mammary glands of these 

mice then this would indicate that periostin-expressing cells migrate from the 

primary tumor to premetastatic and/or metastatic microenvironments. 

Alternatively, we could orthotopically inject wild-type C57BL/6 mice with highly-
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metastatic EO771.LMB cells, transplant these tumors into tamoxifen-induced 

PostniZSGreen lineage-tracing mice, and harvest secondary sites to determine 

whether there is evidence of ZSGreen-labelled cells in these tissues. The 

presence of ZSGreen-labelled cells within secondary sites would indicate that 

host periostin-expressing cells, either tissue-resident cells or recruited bone-

marrow derived mesenchymal cells, are activated at secondary sites by primary 

tumor growth. To determine the contribution of the bone marrow to the periostin+ 

cell populations in secondary sites, we would perform bone marrow transplant 

experiments in which we engraft bone marrow from PostniZSGreen mice into 

irradiated wild-type recipients then inject the recipient mice with highly metastatic 

EO771.LMB cells and analyze secondary sites for evidence of bone marrow-

derived ZSGreen-labelled cells that have been recruited to the metastatic 

microenvironments. Identifying the source(s) of periostin+ cells in metastatic 

microenvironments could allow for earlier targeting of these populations to 

prevent their previously established role in supporting the survival and metastatic 

outgrowth of disseminated breast cancer stem cells (72).  

 If these in vivo studies indicate that periostin+ cells in secondary sites are 

primarily tissue resident fibroblasts that are activated during tumor progression, 

then the next question to address would be what tumor-derived factors are 

responsible for driving this activation. Our data suggest that periostin-expressing 

cells are activated in premetastatic niches before evidence of tumor cell 

colonization and that an established primary tumor is required for periostin+ cell 

activation in lung metastases. Together, these findings indicate that systemic 
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signals from the primary tumor microenvironment likely promote changes in 

distant tissue microenvironments to activate periostin-expressing cells within 

premetastatic and metastatic niches. Tumor cells and stromal cells have been 

shown to secrete soluble factors including cytokines and chemokines that drive 

premetastatic niche formation (62, 71, 254). Additionally, tumor-derived 

extracellular vesicles (EVs) such as exosomes can transfer biological cargo 

including proteins, lipids, nucleic acids, and metabolites to tissue-resident 

recipient cells, thereby altering gene expression and signaling within in the 

recipient cells and driving formation of the premetastatic niche. While the pro-

metastatic functions of tumor cell-derived exosomes are well-established (255-

259), there are emerging roles for CAF-derived exosomes in promoting tumor 

cell proliferation, migration, and metastasis (260-265). Thus, it could be that 

activated periostin+ CAFs in the primary tumor shed EVs that contain periostin or 

other biomolecules that reach secondary organs and drive periostin activation in 

the premetastatic niches of these distant tissues. In order to evaluate this 

possibility in vivo, we could generate reporter mice by crossing our PostnMCM 

mice with CD63-emGFPloxP/stop/loxP mice which have been previously 

characterized by our lab as a tool to audit cell type-specific EVs (266). It has 

been shown that fusions between CD63, a cell surface-associated membrane 

protein, and fluorescent optical reporters are secreted from cells via EVs (267, 

268), so this reporter mouse system will enable us to track and isolate 

fluorescently-labelled EVs that originate from periostin-expressing cells. We 

could inject PostnMCM:CD63-emGFPloxP/stop/loxP mice with low-metastatic 
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(periostinlow) EO771 and highly-metastatic (periostinhigh) EO771.LMB tumors and 

collect blood samples, mammary glands, lymph nodes, and lungs to determine 

whether periostin-expressing cells in the primary tumor release EVs and if these 

EVs reach secondary tissue microenvironments. It could be that periostin-

expressing cells in low-metastatic tumors release fewer EVs compared to highly-

metastatic EO771.LMB tumors, and this could account for the reduced periostin+ 

cell activation in the secondary tissues of these mice. Additionally, the content of 

the EVs may vary between mice bearing highly-metastatic (periostinhigh) tumors 

and low-metastatic (periostinlow) tumors and could also contribute to the 

differences we observe in periostin+ cell activation at pre-metastatic and 

metastatic microenvironments. Therefore, we could isolate these EVs and use 

transcriptomic microarrays and mass spectrometry to examine the EV cargo to 

identify what biomolecules may be activating periostin expression upon reaching 

secondary sites.  

 

3.2.3 The effect of periostin+ cell depletion on the immune landscape  
 
 While our work demonstrates that depleting periostin-expressing cells 

inhibits tumor cell invasion by reducing the abundance and alignment of the 

intratumoral collagen matrix, alterations to the collagen architecture may also 

have immunomodulatory consequences within the tumor. Just as cancer cells 

migrate along collagen fibers, various immune cells have also been shown to 

accumulate and migrate within regions of dense fibrillar collagen (147, 153, 269). 

In addition to serving as a physical substrate for immune cell migration, collagen 
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can also mediate immune infiltration biochemically. Activation of discoidin domain 

receptor 1 (DDR1), a collagen receptor with tyrosine kinase activity, promotes 

macrophage infiltration in other pathological contexts (270, 271), and type I 

collagen and collagen fragments are chemotactic for monocytes (macrophage 

precursors) and neutrophils (147, 272, 273). In murine models of pancreatic 

carcinoma, reducing fibrillar collagen content either by depleting SMA+ cells or 

knocking-out secreted protein acidic and cysteine rich (SPARC) expression 

decreased overall immune infiltration and increased the intratumoral frequency of 

pro-tumorigenic regulatory T cells and M2 macrophages (157, 274). Taken 

together, these findings suggest that depleting periostin-expressing cells could 

impair immune cell infiltration and the anti-tumor immune response.  

However, contradictory roles for collagen in immune cell infiltration and 

activation have been reported. Although DDR1 mediates macrophage infiltration 

in some pathologies, it has recently been shown to instigate immune exclusion 

by aligning collagen in mouse models of triple-negative breast cancer (123). 

Additionally, collagen engages leukocyte-associated Ig-like receptors (LAIRs) 

which are highly expressed on most immune cells and can inhibit anti-tumor 

immunity by blocking NK cell, T cell, and phagocyte activity (275). Further, 

culturing macrophages on type I collagen reduces their cytotoxicity against 

cancer cells by inhibiting the polarization of monocytes to the tumoricidal M1-like 

macrophage type (276). Therefore, depleting periostin-expressing cells may 

instead improve immune infiltration and activity by reducing collagen-mediated 

inhibition of the anti-tumor immune response. To test whether periostin+ cell 
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depletion enhances or impairs immune cell infiltration and activation, flow 

cytometry could be used to classify immune populations and quantify changes to 

the immune landscape in periostin+ cell-depleted mammary tumors compared to 

control mammary tumors. Determining whether periostin-expressing cells display 

secondary immune-modulating functions will provide a more complete picture of 

their roles in cancer progression and could ultimately inform strategies for 

combinatory therapeutic approaches. Reducing desmoplasia by depleting 

periostin-expressing cells could make tumors more accessible to immune 

infiltrates, and treating them simultaneously with immunotherapies that enhance 

the activation and anti-tumor activity of these immune cells may attenuate the 

accelerated tumor growth we observe following depletion or may augment the 

reduction in lymphatic metastasis we observe in periostin cell-depleted mice. 

 

3.2.4 Generation of a mutant periostin protein isoform that cannot bind 

collagen 

 The data presented in this thesis establish an association between 

periostin+ cell abundance within primary mammary tumors and intratumoral 

collagen remodeling, lymphovascular invasion, and lymphatic metastasis. While 

we hypothesize that periostin-mediated collagen matrix remodeling is what 

permits these CAFs to promote invasion and metastasis, in vitro studies using a 

mutant periostin protein that cannot bind collagen and therefore cannot promote 

its assembly into an aligned matrix are critical to provide a mechanistic 

explanation for these observed associations. In order to achieve this, we could 
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perform site-directed mutagenesis to generate an isoform of human periostin that 

contains a mutated EMI domain, thus preventing its direct binding to collagen 

and inhibiting its ability to serve as a protein scaffold during collagen crosslinking 

and fiber assembly. We could purify this protein and use it in our in vitro spheroid 

assays and transwell migration assays to compare the ability of wild type 

periostin versus mutant periostin to rescue collective cell invasion and 

lymphovascular invasion defects that we observe following periostin knockdown 

in primary human breast CAFs. We would expect that the periostin isoform with a 

nonfunctional EMI domain would fail to rescue invasion as it cannot engage 

collagen and promote its organization into aligned fibers that cancer cells invade 

along. These experiments would provide the essential mechanistic link that is 

currently missing from our studies. Additionally, if our in vitro studies indicate that 

the EMI domain-mediated interactions between periostin and collagen are 

essential to promote collective cell invasion and lymphovascular invasion, we 

could design a small molecule inhibitor that targets this region of the periostin 

protein to interfere with periostin-collagen binding in vivo and measure any 

effects on tumor growth, collagen matrix organization, and lymphatic metastasis. 

We would hypothesize that blocking the EMI domain of periostin in vivo would 

impair intratumoral collagen matrix organization, thereby limiting lymphovascular 

invasion and lymphatic metastasis. 
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3.2.5 Periostin+ cell activation and function in other tumor models 

 Our work reveals an early pro-metastatic role for periostin-expressing cells 

in breast cancer, but it is important to determine whether these findings extend to 

other cancer types. A meta-analysis of the prognostic value of periostin across 

multiple cancer types demonstrated that high periostin expression is associated 

with lymph node metastasis, poor overall survival, and reduced disease-free 

survival in a cohort of 993 patients with cancer (277), indicating that periostin-

expressing cells are likely activated and play a similar pro-metastatic role in other 

cancers. An advantage of our PostniZSGreen lineage-tracing mouse model and 

PostnDTA depletion model is that they can be adapted to other orthotopic tumor 

models in order to test whether periostin-expressing cells are activated in primary 

and secondary sites and function similarly in other cancer types. High-priority 

cancer types are pancreatic ductal adenocarcinoma (PDAC) and lung carcinoma 

as they are characterized by a prominent desmoplastic reaction and display high 

periostin expression that associates with cancer cell proliferation, invasion, and 

poor prognosis (277-286). Using our lineage tracing and depletion mouse models 

we can determine whether our finding that periostin-expressing cells promote 

lymphovascular invasion of breast cancer cells can be generalized to other 

cancer types or whether periostin-expressing CAFs perform diverse and context-

specific functions across different cancers.  
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3.2.6 Clinical relevance of periostin  

 Taken together, our in vitro functional assays and in vivo depletion studies 

implicate periostin-expressing CAFs in collagen-mediated collective cell invasion 

and lymphatic metastasis, thereby positioning these cells as a potential 

therapeutic target. In human breast cancer samples, periostin expression is 

associated with desmoplastic stroma and is predictive of progressive invasive 

disease (121). Thus, targeting periostin+ cells early in the course of disease may 

promote the normalization of the intratumoral ECM and could prevent lymphatic 

metastasis of breast cancer cells. Previous attempts to develop treatments that 

normalize tumor ECM have shown promise in preclinical tumor models but have 

been largely unsuccessful in clinical trials due to off-target side effects that 

compromise their therapeutic value and prevent their clinical application (287, 

288). For example, therapies designed to suppress tumor fibrosis and LOX-

mediated collagen cross-linking are associated with severe cardiac disfunction 

and high toxicity in patients, precluding their clinical adoption (289, 290). These 

clinical challenges in targeting intratumoral collagen can be attributed to two 

critical limitations. First, collagen is expressed abundantly throughout the body 

and is essential for maintaining normal tissues, so targeting a factor whose 

expression is not restricted to the tumor stroma leads to widespread side effects 

in other organs. Secondly, when tested in clinical trials, these collagen-targeted 

therapies are administered to late-stage patients who already present with 

metastatic disease and, therefore, do not result in clinically meaningful 

improvement in these patients as their cancer cells have already exploited the 
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aberrant intratumoral ECM to disseminate and reach secondary sites. In other 

words, while anti-fibrotic cancer therapies may effectively prevent or reduce 

metastatic spread, previous clinical trials were not designed in a way that could 

capture any potential anti-metastatic effect.   

 Since periostin is less abundant in normal tissues and is upregulated in 

the tumor microenvironment, it could serve as a more effective and safer target 

for anti-cancer therapies. Pre-clinical studies have shown that targeting periostin 

using antibodies and nucleic acid aptamers can reduce tumor growth and 

metastasis in patient-derived xenografts and syngeneic breast cancer models 

(221, 291, 292), but periostin blockade has not yet been evaluated in human 

cancer patients. As evidenced by the lack of success in the previous clinical trials 

of ECM-normalizing therapies, an important consideration when designing 

clinical trials of periostin-targeted therapies will be the timing of treatment. 

Periostin blockade may only be useful in patients who present with localized 

disease that has yet to reach distant lymph nodes. Since we observe periostin+ 

cell activation within the premetastatic niche, anti-periostin treatments could be 

used as an early intervention aimed at interfering with formation of the 

premetastatic niche and therefore preventing metastasis at an earlier stage. 

Additionally, since periostin-expressing cells are also detected in metastatic 

microenvironments and have been implicated in supporting the outgrowth of 

disseminated cancer cells into macrometastases in the lung (72), attenuating 

periostin’s activity before there are clinically detectable metastatic lesions may 

limit cancer stem cell outgrowth in secondary sites and reduce disease 
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recurrence. Given the observed increase in primary tumor growth rate following 

periostin+ cell depletion in our orthotopic breast cancer model and the fact that 

tissue injury and inflammation can drive periostin activation, blocking periostin 

may be most effective around the time of surgical resection of the primary tumor. 

 If directly blocking periostin’s activity proves to be ineffective at reducing 

metastasis or improving outcomes in cancer patients, periostin and its 

abundance in primary tumors could still be leveraged in other valuable clinical 

applications. For example, periostin could be used in the design of antibody-drug 

conjugates (ADCs) that target the tumor stroma. ADCs are a class of emerging 

therapeutics that consist of a cytotoxic drug payload chemically linked to an 

antibody that is directed toward a specific target found in the tumor 

microenvironment in order to enhance drug delivery within tumors and reduce the 

off-target toxicities that characterize systemic cytotoxic therapies like 

chemotherapy (293). While ADCs have traditionally been designed to bind to cell 

surface proteins expressed by cancer cells, there is growing evidence that ADCs 

targeting stromal factors may be an effective alternative approach to improve 

intratumoral drug delivery and limit tumor growth by eliminating nearby tumor 

cells via bystander killing (294-296). Given that periostin is upregulated in the 

tumor microenvironments of diverse cancer types and displays relatively low 

expression in normal tissues, it is a candidate target for future ADCs. Another 

potential clinical application of periostin is its utility as a biomarker of advanced 

disease. Serum periostin level has been evaluated as a biomarker in advanced 

lung cancer patients and associates with poor patient prognosis. Median serum 
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periostin level was higher in patients with bone metastases than those with 

localized disease, and patients with high periostin displayed reduced overall 

survival (279, 280). Future clinical studies should examine whether this 

association between serum periostin and metastatic burden holds true in other 

cancer types, especially breast cancer. Given our preclinical findings, we would 

predict that serum periostin levels would be higher in patients who already have 

metastatic disease or who have localized disease but are at risk for developing 

metastatic disease as periostin can be activated in the premetastatic niche and in 

secondary sites that harbor micrometastatic cancer colonies. Thus, liquid 

biopsies to measure circulating periostin levels could be used to identify cancers 

that have a propensity to metastasize or could indicate early metastatic disease 

before it is detected by the traditional imaging techniques that are currently used 

to monitor metastatic lesions. 

 

3.3 Conclusion and significance 
 

Collectively, the data presented in this thesis highlight a population of 

cancer stromal cells, marked by their expression of the matrisomal protein 

periostin, that remodel the ECM within the primary tumor microenvironment and 

promote the collective invasion of breast cancer cells into lymphatic vessels, 

allowing for their metastatic dissemination and colonization of nearby lymph 

nodes. We have used multiple genetically-engineered mouse models to label and 

ablate periostin-expressing cells in order to characterize their functions during 

breast cancer progression. We report that periostin-expressing stromal cells are 
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located surrounding mammary ducts and vasculature in the tumor-naïve 

mammary gland and are enriched at the peripheries of lymphatic vessels. These 

cells are differentially activated by highly-metastatic cancer cells within primary 

tumors, premetastatic niches, and secondary sites of metastasis, and their 

increased abundance within primary tumors is associated with enhanced 

collagen matrix remodeling and organization. Genetically depleting periostin+ 

cells in vivo impairs intratumoral collagen organization and inhibits lymphatic 

metastasis of highly-metastatic breast cancer cells, and periostin ablation in 

primary human breast CAFs in vitro reduces their ability to deposit aligned 

collagen matrices and inhibits cancer cell invasion across lymphatic endothelial 

cell barriers. Together, these findings implicate periostin-expressing CAFs in the 

collagen-mediated lymphovascular invasion of breast cancer cells and suggest 

that this population may be a suitable target for future therapeutics with the goal 

of improving patient outcomes by preventing metastatic spread. 
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