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Abstract

The Centers for Disease Control and Prevention (CDC) estimates that more than two

million people contract antibiotic-resistant infections every year, and at least 23,000

die as a result of these infections in the U.S. alone. Traditionally, tracking hospital

outbreaks with drug-resistant pathogens focuses on transmission chains of infected

or colonized patients as the reservoir for organisms to be transferred to new patients

via healthcare workers, but it has become increasingly recognized that non-patient

reservoirs within the hospital may play a larger role than previously realized in acting

as a niche for the transmission of drug-resistant pathogens. Non-patient sources for

pathogen acquisition may require incorporating environmental culture data into exist-

ing transmission models. However, the number of risk factors, potential interactions

and inherent complexity of the data continue to increase, and thus, exploratory anal-

ysis is required to aid in knowledge discovery. Interactive visualization of these data

over space and time enables exploration and hypothesis generation to better inform

transmission models. This thesis presents an interactive visualization system for the

analysis of spatiotemporal environmental and patient data to aid in understanding

nosocomial infection. Interactive dashboards allow users to view patient movement

through hospital environments while overlaying multivariate environmental microbi-

ological data as it evolves over time. Furthermore, a multivariate logistic regression

model is constructed to understand the factors associated with sink contamination.

The results show that temporal factors, including the presence of infected patients

in the past 14 days and use of interventions in the past 7 days, and spatial factors,

including the presence of infected patients in adjacent rooms and the presence of

contaminated sinks in adjacent rooms, are significant factors in sink contamination.
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Chapter 1

Introduction

Antimicrobial-resistant pathogens have been on the rise for several years. Carbapenem-

resistant Enterobacteriaceae (CRE) is a gram-negative bacteria that has shown resis-

tance to antibiotics. In 2014, the Centers for Disease Control and Prevention (CDC)

in its study on antibiotic-resistant threats in the United States reported that ap-

proximately 140,000 infections occur in the United States that are associated with

Enterobacteriaceae, and 9,300 of these infections are caused by CRE. This study also

reported that approximately 600 deaths are caused each year due to infections by

the two most common types of bacteria carbapenem-resistant Klebsiella pneumoniae

and Escherichia coli (E. coli) [1]. Since 2012, there have been over 200 hospitals in

48 states that have encountered KPC-producing CRE, including the deadly infection

in Bakersfield, California [2].

CRE transmission from patient-to-patient through the hands of healthcare per-

sonnel is the main transmission route in healthcare settings. However, the application

of the traditional patient-to-patient route of nosocomial infection transmission does

not fully account for the observed cases [3]. Environmental reservoirs, particularly

sinks, may play a major role in transmission [4–6]. It is therefore important to un-

derstand the risk factors associated with the spread of this infection and to develop

an approach to prevent it.
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This study is conducted at a major medical center in the United States that has

been tracking a low level trend of CRE infections for the past eight years. There have

been timely recordings of cultures from hospital rooms from various environmental

sites, including patient sinks, patient bathrooms, hoppers, toilets and others. Ap-

propriate intervention procedures have occasionally been implemented based on the

environmental sampling results, but these interventions have not proven to be very

effective as a long-term solution. Thus, there is a need to have appropriate tools and

models in place that can track CRE infection in a timely manner and provide risk

factors that could prevent the occurrence of outbreaks. Spatiotemporal data visual-

ization can serve as an effective tool in exploring complex datasets that are otherwise

extremely cumbersome to analyze. The aim of this work is to determine potential

elements that are responsible for sink contamination.
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Chapter 2

Literature Review

2.1 CRE Transmission and Risk Factors

2.1.1 Patient Risk Factors

The transmission of CRE infection occurs when a non-colonized person comes

into direct contact with an infected or colonized patient, through intermediate carri-

ers such as healthcare workers or through contact with contaminated environmental

reservoirs such as sinks and toilets, among others. Healthcare settings are the most

common locations for the spread of CRE [2]. Previous studies [7, 8] from the US and

Israel have shown that the primary risk factors for patient acquisition include ICU

stays, long-term hospitalization, transplantation and antibiotics. However, these risk

factors did not completely explain infection transmission. Evidence indicating that

environmental reservoirs are a source of infection transmission were found in previous

studies [4–6].

2.1.2 Environmental Risk Factors

A study from Spain [4] described an outbreak due to multidrug-resistant Kleb-

siella oxytoca in an ICU where damp environmental reservoirs were linked to bacterial

transmission. Samples collected from sinks drainpipes and traps showed that only one
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storage sink, which had its drainpipes connected to two other sinks, was found to be

positive. The connecting drainpipes were also found to be positive. Furthermore, this

study showed that the outbreak was completely eradicated after replacing the hor-

izontal drainage system that connected the two impacted sinks. In conclusion, this

study stated that wet environmental reservoirs should be considered when strictly

applied traditional control measures are not efficacious.

A study from France [6] found that sinks were frequently contaminated in ICUs as

a result of their use in disposing of patient bodily fluids and were a potential source

of extended-spectrum beta lactamase-producing Enterobacteriaceae (ESBLE), thus

increasing risk in the environment of patients as a consequence of the splash-back ef-

fect. Recent research from Wolf et al. [5] demonstrated that sinks acted as a source

of infection by verifying that the ESBLEs recovered from patients were identical to

those that had been previously recovered from sinks. The outbreak described in a

Colombian [9] study found that the likely cause of the infections was the improper

design of sinks; in particular, the joints of the sinks to the walls were not sealed,

leading to facilitation of colonization.

2.1.3 Logistic Regression Modeling in Infection Transmission

A previous study [10] that considered spatial variables as factors in explaining

the efficacy of infection control measures in preventing the transmission of multidrug-

resistant tuberculosis used exposure to specific infected patients in a logistic regres-

sion model. This study found that exposure distance is a significant predictor of

nosocomial transmission. The logistic regression approach has also been used in

some studies [11, 12] to identify patient risk factors for KPC transmission in hos-

pital settings. Research by Papadimitriou-Olivgeris et al. [11] focused on patient
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characteristics, diagnosis and procedures and determined that prior ICU stay, dura-

tion of previous hospitalization, diagnosis of chronic obstructive pulmonary disease,

carbapenem administration and beta-lactamase administration were significant risk

factors. Similarly, Tuon et al. [12] also considered procedures such as mechanical

ventilation and found that urinary catheter devices and central venous catheter de-

vices were significant risk factors, along with advanced age and antibiotic exposure

to ciproflaxin.

Previous work performed using the same dataset as our study but for a different

time period (Jan-April 2014) focused on modeling the nosocomial transmission of

carbapenem-resistant bacteria in 2014 [13] using logistic regression and random for-

est models to determine important risk factors for CRE transmission. Both models

showed that distance to the infected room was one of the significant predictors. One

of the models showed that the proximity to sinks is important in predicting infection.

However, the model was constructed using a limited data and time range and requires

further research into the role of sinks in infection transmission. The most recent work

performed in this area included the development of imputation methods [14] that

would allow extrapolating the time series of sink status to resolve any gaps between

two time periods. This work also found that the cumulative presence of positive pa-

tients in the same room as a sink, distance from the bed to sink and sink design are

significant predictors of sink positivity.

Studies [4–6, 9] have demonstrated that sinks play a role in infection transmis-

sion but did not highlight additional environmental risk factors responsible for sink

contamination. This thesis improves on the understanding of sink contamination by

highlighting important variables. This study is similar to [13, 14] in terms of the

modeling approach used, but it differs in the level of spatiotemporal variables from
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environmental data. In addition to examining the presence of positive patients in the

same room, this study also considers the status of neighboring rooms and sinks as

potential risk factors.

2.2 Spatiotemporal Data Visualization

Visualization is important when analyzing spatiotemporal data because it can

help humans discover complex relationships in the data. Formally, spatiotemporal

data are defined as high-dimensional records of data in which different dimensions

can be classified into three components: spatial (geographical coordinates), temporal

(time stamps) and attributes (patient status) [15]. The objective behind analyzing

this type of data is to study a process in the context of both space and time. To

effectively explore multivariate datasets and to be able to arrive at the potential list

of variables that may not be otherwise easily identifiable, visualization techniques

help by using the power of the human visual system to decode visual representations

of data for analysis.

Figure 2.1: Charles Minard’s map of Napoleon’s disastrous Russian
Campaign of 1812.
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There is a long history of using visualization techniques in various fields, including

in epidemiological or medical studies. One of the classic examples of visualization

techniques comes from Charles Minard’s representation of the fate of Napoleon’s

army on a campaign against Russia, as shown in Figure 2.1. The visual is noted for

its representation of six types of data in two dimensions - number of Napoleon’s troops

(denoted by thick band), distance traveled, its location relative to dates, latitude and

longitude, direction of the army’s movement and temperature at various points in

time. The visualization was developed primarily with the objective of communication

or storytelling.

Figure 2.2: Adaptation of Dr. John Snow’s 1854 London cholera
epidemic map.
(Image from: http://www.mystorybook.com/books/28272)

Another notable early work on visualization came from John Snow, who is con-
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sidered by many to be the pioneer in disease mapping. He depicted the 1854 cholera

epidemic in London’s Broad Street region, as shown in Figure 2.2. In this map, deaths

due to cholera are denoted by dots, and the area’s eleven water pumps are labeled.

Snow noted a spatial clustering of cases around one particular water pump on Broad

Street. This outbreak was a result of a contaminated handle on the water pump,

which was later removed; consequently, the outbreak quickly subsided. Thus, the

purpose of his visualization was to be able to visualize the outbreak and determine

its cause.

With the advent of new technologies, diverse data collections and complex epi-

demiology challenges, recent research works have focused on advanced interactive

visualizations [16–20]. Wongsuphasawat et al. [16] presented a Lifeflow visualization

that summarizes point-based sequence of events and time gaps between events in an

aggregated view to identify patterns. They further illustrated the usefulness of Life-

flow through a case study of patient transfers, in which they examined the sequence of

all patients coming to the hospital, particularly those for medical emergencies. Com-

mon patterns of patient transfers (arrival-ER-floor-discharge) were easily identified

through the visualization. Excluding common patterns from visualization allowed

them to focus on irregular patterns, which included patients that left without being

seen or patients that transferred from a higher level of care to a lower level of care and

back to a higher level of care (arrival-ER-floor-ICU), thus highlighting areas where

quality control were needed. Monroe et al. [17] further improved the visualization

by including interval-based events to provide additional information on point-based

events. They showed that the sequences of patient transfers, such as stroke→ admit-

ted to hospital→ diagnosed, can be further enhanced by displaying additional interval

information during the event, such as started medication A → stroke → ended med-

ication A, in the dashboard. This helped to primarily focus on drug-related studies,
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including prescription administration and medical interaction.

Geographic information system (GIS) is the common approach employed by stud-

ies [18–20] for designing spatiotemporal visualization. One of the recent studies on

this subject was conducted by Ali et al. [18], in which they constructed a visual ana-

lytics decision support system to detect spatiotemporal disease outbreaks and manage

epidemic responses. The visualizations utilized choropleth and heat maps to show in-

stances of infectious disease prevalence across regions on a map (GIS). Kistemann

et al. [19] investigated a Salmonella outbreak in Germany at a university hospital

where the source of infection could not be detected using microbiological methods.

GIS helped to trace all the events that occurred prior to the outbreak. For instance,

they were able to identify how many cases of infection occurred at specific locations,

on which days and times, paths taken by food carriers and narrow down the specific

item on the lunch menu (i.e., vanilla pudding) that caused the infection. AvRuskin

et al. [20] developed STIS (space time information system) to analyze and visualize

data from a bladder cancer case control study with the objective of identifying the

range of factors contributing to bladder cancer incidence in Michigan. They recon-

structed individual arsenic exposure by incorporating spatiotemporal data, including

residential mobility and drinking water habits, into a visualization that provided

dynamic views in the form of tables, graphs and maps that show changing environ-

mental variables through time. The map view utilizes GIS to display animated views

of arsenic-emitting industries founded, operating and going out of business through

time along with individuals changing places of residence, providing a historical view

of areas with high arsenic concentrations and incidence of cases. The visualization

thus highlights the environmental variables that play a role in the incidence of bladder

cancer cases, which are further analyzed for statistical significance.
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While previous studies [16, 17] focus on highlighting and summarizing temporal

events, our thesis goes further by adding a spatial element to the visualization, such as

hospital units, floors and patient rooms. Additionally, previous studies [18–20] utilize

GIS for depicting spatiotemporal visualization, whereas this thesis uses detailed views

of floor plans to project patient and environment status.
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Chapter 3

Problem, Objective, and Contribution

3.1 Problem Description

There have been ongoing multi-species CRE outbreaks at a major medical center

in the United States. The conventional method of infection transmission through

patient to patient contact does not fully account for all the cases of patient acquisition.

Samples from sinks (drain and p-trap) have been found to be positive with CRE.

Despite aggressive interventions, the bacterial strain continued to reappear, making it

unclear whether other environmental or patient-specific risk factors could be involved

in continued sink contamination.

3.2 Objective

The objective of this research is to identify significant risk factors for understand-

ing sink contamination through interactive visualization incorporating multidimen-

sional patient and environmental data. We aim to accomplish this goal through the

use of predictive models that incorporate spatial and temporal risk factors.
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3.3 Metrics

3.3.1 Spatiotemporal Visualization Metrics

Evaluating a visualization is a difficult task, but there are a few guidelines that one

can follow based on the research of [21]. One of the methods that the authors suggest

is a case study approach, where the visualization is tested on a new dataset that is

distinct from the one that was used for visualization. A similar method is employed

to test visualization based on the most recent data and to determine whether it could

perform all the animations and display dashboards without failing.

3.3.2 Infection Risk Modeling

Models will be evaluated using area under the receiver operating curve (AUC),

accuracy, sensitivity (number of positive cases correctly identified) and specificity

(number of negative cases correctly identified).

3.4 Contribution

This dissertation has analytically investigated risk factors responsible for contam-

ination of non-patient reservoirs in hospital settings using interactive spatiotemporal

visualization. We construct a model that shows impact of surrounding environmental

risk factors on sink contamination. The results not only contribute to the open med-

ical literature by demonstrating interaction of spatial and temporal risk factors on

sink contamination but also inform infection control professionals at the hospital to

design intervention strategies appropriately. Additionally, the visualization approach

used in this thesis to explore heterogeneous datasets can be extended to examine any

other nosocomial infection and inform transmission models.
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Chapter 4

Data Collection and Transformation

The data sources for this study can be broadly divided into three categories:

environmental data, patient data, and geospatial data. The time period for which

the data were extracted ranged from Sep 2013 to Feb 2016. For the purpose of

our analysis, we selected the minimum observation interval to be one day for both

environmental and patient datasets because that is the smallest interval for which

records exist.

4.1 Environmental Data

Environmental data were collected by a team of infection control staff and students

who periodically tested the status of sites such as sinks, washrooms, toilets, hoppers,

alcoves, locker rooms, and kitchens within patient and staff rooms across floors 2 to 8

in the hospital for the presence of CRE. The time period for environmental samples

considered for this study aligns with the patient time period mentioned above. The

procedure for collecting clinical samples consists of using a swab along the interior

wall of a sink drain. To collect sink p-trap samples, water samples were collected

using IV tubing lowered through the drain hole. The samples were then processed

in a clinical microbiological laboratory to determine whether the specimen tested

positive for CRE. Figure 4.1 summarizes the data. As shown in this figure, although

samples were collected from all floors, the majority of samples were collected from

13



the 3rd and 5th floors, which is why these floors are used for modeling.

Figure 4.1: Environmental Sampling Summary

Figure 4.1 also indicates that the two most common sites where sampling was

performed were drains and p-traps. Previous studies [13, 14] have focused on using

sink status as one of the environmental variables for modeling purposes. We decided

to use the two most common environment sampling sites, namely, drain and p-trap,

for our visualization purposes because these sites could provide additional informa-

tion regarding sink contamination or patient acquisition. As shown in Figure 4.1, the

environmental sampling was not performed on a regular basis. There are noticeable

gaps in the sampling during the days of the study. We decided to use the mid-point

imputation method described in the work of [14] to ensure that the series is consis-

tent. However based on feedback obtained from ICPs, we made an adjustment to

the imputation methodology to adjust cases of consecutive positive-negative-positive

culture sequence found in one month to convert to positive-positive-positive. The

understanding behind the adjustment was that since the period is too short the nega-

tive observation in between the two positives could have been a case of environmental

sampling error.
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Figure 4.2 presents an example of the imputation method for sample sinks. The

top row of every sink in the figure represents when samples were actually collected,

whereas the second row represents the imputed series. As shown in this figure, the

samples for sink 5187 were collected on April 23rd and April 30th. The sink drain

sampling was negative on April 23rd, whereas it was positive on April 30th. The

imputation series for that sink on the second row shows that half days between the

two are filled with green (negative status), whereas the latter half are imputed as

positive.

Figure 4.2: Imputation example for room sinks 5187 and 5195 using
midpoint method

4.2 Patient Data

Based on the time period from September 2013 to February 2016, we identified 98

patients across the 2nd to 6th floors that were found to be CRE positive after 48 hours

of admission. Figure 4.3 shows the summary of CRE-positive patients distributed by

floors and units. Note that ’Others’ include any patients that visited the emergency

department (ED), perianesthesia facility (PERI) or SSU.

It is observed that most positive patients in the study visited the ED or anesthesia

facility at least once during their stay, which is why we observe that the number of

15



Figure 4.3: Positive patient distribution by floors and units

patients attributed to the ’Others’ floor is higher than other floors. We observe that a

large number of patients remain either on the 3rd floor or 5th floor, where the STBICU

and MICU units are located. Based on the units chart, its also evident that positive

patients in this study stayed more at 3 Central (3CEN) and 3 North(3NOR) units

than STBICU and MICU.

4.3 Geospatial data

Geospatial data consist of floor plans of the hospital that have details on the

location of every room along with the details of the environmental sites, including

patient beds, staff rooms, alcoves, sinks, bathrooms, showers and toilets. To generate

geospatial location coordinates for each room and environmental site of a floor, the

floor plan image was loaded in an image processing tool called ImageJ [22]. For the

tool to generate X and Y coordinates of any location on the floor plan, the user needs

to click on the location of the site after the image is loaded. The user then needs

to copy the generated location into a spreadsheet alongside the respective room and

sink names. The mapping of the floors (3rd - 8th) of the hospital was completed in

a similar manner. A sample layout for a floor after completion of X,Y mapping is
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shown in Figure 4.4.

Figure 4.4: Geospatial mapping example for the 3rd floor

The floor plan image along with the geospatial data is loaded into the Tableau

software [23]. Each of the dots highlighted on the floor plan in Figure 4.4 is a result

of the X, Y coordinate mapping performed in ImageJ. Sample points on Figure 4.4

are highlighted to show the coordinates for the hoppers and sinks for rooms 3193 and

3192.

4.4 Data Transformations

To arrive at the variables for our analysis, we created the following transformations

based on the existing variables in the dataset:

• CRE after 48hours: This variable is created based on the difference between

the first positive date and the admission date. If the difference between the two

dates is greater than 2 days, then the variable receives a value of 1; otherwise,

it is coded as 0.

• Extending patient series to daily: The patient bed transfer table has one record

17



for every admitted patient in the hospital that moves into a room. The vari-

ables in dttm and out dttm denote a patient’s entry and exit from the room,

respectively. Because our modeling method uses daily records for every patient,

we extended the series for every patient to have a daily interval.

• Mapping status of adjoining rooms to every patient room: For each room in the

patient dataset, we included the status of four adjacent rooms along with their

lags. The reasoning for obtaining the variables for four adjoining rooms was that

a nurse typically would cover or serve four patients in adjoining rooms at a time

and there could be a possibility that she might act as a carrier. The following

variables were created: adj pat1 status, adj pat2 status, adj pat3 status,

and adj pat4 status, which represented the status of the patient in the first

adjacent, second adjacent, room next to first adjacent and room next to sec-

ond adjacent room, respectively, during the same time as the patient under

consideration.

• Lag variables for patient: To determine whether the status of the last patient(s)

played any role in the infection transmission, we included lag variables, namely,

last pat pos 7, last pat pos 14, last pat pos 21, and last pat pos 28, which

represent whether there was at least one positive patient in the past 7, 14, 21 and

28 days in the same room before a patient came to the room. Similarly, we also

introduced additional variables for adjacent rooms and next to adjacent rooms:

adj pat1 status lag7, adj pat1 status lag14, adj pat1 status lag21 and

adj pat1 status lag28. Immediate adjacent rooms have prefixes adj1 and

adj2, whereas the rooms next to adjacent have a prefixes adj3 and adj4.

• Mapping status of adjoining room environmental variables: For each room

in the patient dataset, we included the status of four adjacent environment

sites for sinks, including distinct variables indicating drain and p-trap statuses.
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The purpose is to test whether the same/adjacent patient or adjacent envi-

ronmental attributes play a role in sink contamination. The following vari-

ables were created: adj dr1 status,adj dr2 status, adj drt3 status, and

adj dr4 status, which represented the status of the drain sink in the first ad-

jacent, second adjacent, room next to first adjacent and room next to second

adjacent room, respectively, during the same time as the patient under con-

sideration. Similarly, adj pt1 status, adj pt2 status, adj pt3 status, and

adj pt4 status represent variables for adjoining room sinks. We also derived

a rolled up list of variables to include adjacent sinks (rather than drain and

p-trap) for the convenience of using them if we did not find any significant

difference between the drain and p-trap attributes.

• Lag variables for sinks: Lag variables for sinks were also created similar to

room variables to determine whether such variables play a role in sink con-

tamination. The sink lag variables are as follows: adj sink status lag7,

adj sink status lag14, adj sink status lag14 and adj sink status lag28.
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Chapter 5

Spatiotemporal Visualization

5.1 Visualization Design Requirements

To be able to effectively explore multivariate data, we identify a set of objectives

that the spatiotemporal visualization should be able to achieve. Because our study

focuses on understanding how adjacent environmental sites around a patient change

over the course of time, we need a design that can integrate patient and environmen-

tal microbiological data and be able to show us views and summary statistics over

a period of time and by different attribute slices. Some of the questions that the

visualization should be able to address are as follows: What is the status of rooms

and environmental sites for a particular day? How are the positive patients located

across units? What is the status of the environmental sites (particularly sinks/drains)

prior to the patient becoming infected? Where are frequent environmental samplings

occurring? Is sampling uniform across rooms?

Additionally, the visualization should also provide the user with the ability to focus

on any unit and examine the status of the patient and environment for a range of time.

This will provide a good view for comparing the events across units and detecting

any differences. There has not been much focus on the type of sink elements, namely,

drain or p-trap, and the role (if any) that they play in patient acquisition. One of the

requirements of our visualization is that it should be capable of providing a distinct
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view of drain and p-trap sampling status and portray the summary statistics and

floor plan overlay view of these along with patient timelines.

Finally, the visualization should provide an integrated view of the patient room

with its environmental sites, adjoining room patients and their status, and adjoining

environmental sites along with their status. The user should have the ability to select

any patient and look at her entire history of transfers along with the status of the

rooms before he arrived, time series of adjacent bed status during his period of stay,

and time series of environmental status for same and adjacent rooms during his period

of stay, which will be helpful in arriving at the hypothesis that the same and adjacent

room/environmental sites are playing a role in patient acquisition.

5.2 Visualization Interface Components

The key components that a user is able to interact with in this system are as

follows:

• Floor plans: Addition of floor plans to the visualization provides spatial context

to the user. It also provides a canvas on which the user is able to see queries.

• Time selection: It allows the user to specify temporal constraints for patient

and environmental data. This is in the form of a slider that a user can choose

to drag two ends to indicate the ’start’ and ’end’ times.

• Unit: It allows the user to specify any unit(s) of the hospital and display visu-

alization or summary charts.

• Status: The user can choose to see only infected patients/environmental sites

• Source type: Users can select drain or p-trap source types.

• Species: Allows the user to choose species for any environmental site.
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5.3 Visualization Dashboards

Dashboards are an important component of spatiotemporal visualization. Dash-

boards created in Tableau software [23] serve the purpose of integrating different views

on a single page that are tied together by interface components. We show some of the

dashboards created in this study for exploring data and arriving at the hypothesis.

For a new user to navigate through the dashboards easily, we recommend a 15-20 min

training time.

• Spatiotemporal Visualization Menu: Figure 5.1 shows the main screen of visu-

alization with options that allow users to select views specific to the analysis.

It has three distinct sections for users to focus their analysis. Patient stay and

sink status has views related to patient stay and sinks for patient rooms and

adjacent rooms. Patient, drain and p-trap status provides users with views of

patient room and discrete views of sink drain and sink p-trap status for patient

stay.

Environmental sampling using floor plans provides a view of environment sam-

plings performed in different rooms at different time periods.

• Patient stay and sink status: The objective of this dashboard, along with other

dashboards located in the patient stay and sink status section in the main menu,

is to enable easy exploration and visualization of instances when a patient had

a positive sink in the same room or adjacent rooms during his risk period (time

between last negative and first positive). This view allows users to view patient

stay history, last negative date of patient, date when he/she first tested positive

and the species found in the patient. The user can select any patient id from

the menu on the right to access the chart and information. The color of the
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Figure 5.1: Spatiotemporal Visualization Dashboard

squares indicates the status of the patient or sink.

This dashboard also has an integrated view of the status of the sink, adjacent

sink or next to adjacent sink depending on the option that the user selects on

the main screen. Figure 5.2 shows the status of the same room sink for a sample

patient. The red dots indicate that the patient became infected. The patient

to be analyzed is on the top row, while the charts underneath are the statuses

of other patients. In this case, it appears that the time period between the last

negative specimen collected from the patient and first positive date, there was

a positive patient in the same room.

• Environment sampling using floor plans: For the purpose of this study, the

objective of the two dashboards in this section is to enable exploration of envi-

ronmental variables relevant for sink modeling. The question that it helps one

to understand is how different are sink statuses in the same and adjacent rooms

and whether adjacent sinks could be potential risk factors. It also provides a

view of how consistent sampling is in different rooms. There are two floor op-
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Figure 5.2: Patient stay and same room sink

tions for this section that the user can select from the main menu. The user is

presented with a floor plan screen after clicking on any floor option. The dots

on the screen represent sinks in the respective rooms. The user can click on any

of the dots to navigate to the environment dashboard that shows the sampling

history for that room.

Figure 5.3 shows the environmental sampling view of a few STBICU and MICU

rooms for the period between Mar and Aug 2014 split by drain and p-trap. This

dashboard can also be used in conjunction with patient dashboards to further

analyze whether the positive drain or p-trap status that is shown is a result

of actual sampling or imputation. The user controls on this screen allow for

filtering by drain or p-trap status, date range, sampling or imputation view.

For each room, the dashboard shows two rows per sampling site. In the figure,

it can be observed that for room 3188, the actual sampling is on the top row

and the green or red squares represent the status of sampling on that date. The

bars corresponding to the imputed sampling series are on the second row with

24



the label ’Impute’. The calculation of imputed series is based on the midpoint

method recommended in the most recent work [14].

Figure 5.3: Environment history dashboard showing sampling and
imputation

• Patient, drain and p-trap status: The objective of this dashboard is to enable

exploration of drain and p-trap sampling status with patient stay and to deter-

mine whether either or both of them could be potential variables in determining

patient positivity. There are several dashboards in this section that show drain

or p-trap history for the same room, adjacent rooms or outer adjacent rooms. A

group of four rooms around a patient room (2 rooms on either side) are chosen

to be on the dashboard main menu with the understanding that these could be

a potential group or cluster that could explain patient risk factors.
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Chapter 6

Modeling Methodology and Results

6.1 Variable Selection

The environment sampling dataset used for this analysis was converted into a daily

time series of all sinks in STBICU and MICU for the period September 2013 through

February 2016. Thus, each day represented a sampling datapoint that showed the

status of a sink along with the predictor variables. The sink status has a value of

”1” for positive and ”0” for negative. To arrive at a potential list of variables for

modeling consideration, we used the spatiotemporal visualization module (described

in Chapter 5). We also considered the variables used in the previous research on the

subject [14]. A complete list of the variables considered for the purposes of modeling

is presented in Table 6.1.

We performed stepwise regression for variable selection using all the variables from

Table 6.1 and examined the Akaike information criterion (AIC) results. We used AIC

since it provides an objective way to choose the most parsimonious. The final model

based on this method retains 9 of the 13 variables. We summarize the model results

based on the full model and reduced model obtained from stepwise regression in Table
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Table 6.1: Variable Selection for Sink Risk Modeling

Variable Range Description
Same Room 0=Not Positive; Indicates whether a Patient was
Patient Status (P) 1=Positive Positive on that day

Positive Patient 0=Not Positive; Indicates whether any Patient was
in last 7 days(Plag7) 1=Positive Positive in last 7 days

Positive Patient 0=Not Positive; Indicates whether any Patient was
in last 14 days(Plag14) 1=Positive Positive in last 14 days

Positive Patient 0=Not Positive; Indicates whether any Patient was
in last 21 days(Plag21) 1=Positive Positive in last 21 days

Positive Patient 0=Not Positive; Indicates whether any Patient was
in last 28 days(Plag28) 1=Positive Positive in last 28 days

Adjacent Patient 0=Not Positive; Indicates whether Patient
status(P1) 1=Positive in adjacent rooms that share

common plumbing with next room
was Positive

Adjacent Patient 0=Not Positive; Indicates whether Patient
status(P2) 1=Positive in adjacent rooms that do not share

common plumbing with next room
was Positive

Adjacent Room sink 0=Not Positive; Indicates whether adjacent rooms
status(S1) 1=Positive that share common plumbing

were Positive

Adjacent Room sink 0=Not Positive; Indicates whether adjacent rooms
status(S2) 1=Positive that do not share common plumbing

were Positive

Intervention in the last 0=Not Occurred; Indicates whether Intervention
3 days (I3) 1=Occurred occurred in the same room

in last 3 days

Intervention in the last 0=Not Occurred; Indicates whether Intervention
5 days (I5) 1=Occurred occurred in the same room

in last 5 days

Intervention in the last 0=Not Occurred; Indicates whether Intervention
7 days (I7) 1=Occurred occurred in the same room

in last 7 days

Sink Status in last 30days 0=Not Positive; Indicates whether same room Sink
(Slag30) 1=Positive was Positive in last 30 days
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6.2.

Model Model Variables AIC
Full Model All variables 22918
Final Model Selected Same room and adjacent room
from Stepwise approach variables 22912

Table 6.2: Comparison of Models

The stepwise regression model with 9 out of the 13 variables has a lower AIC

compared to the full model. Hence, we select this model for further evaluation.

6.2 Results

6.2.1 Logistic Regression Modeling

We performed a logistic regression using variables from final model in section

6.1. The response variable represents sink status which has value 0(Negative) or

1(Positive). We perform regression using 10-fold cross validation on the dataset.The

results from 10-fold cross validation are averaged to produce a single estimate. One

of the advantage of this methods is that all observations are used from the dataset

for training and validation and each observation is used only once. The parameter

estimates are shown in Table 6.3.

To interpret the estimates from Table 6.3, we express them in terms of the odds

ratio with a 95% confidence interval. The odds ratio [24] compares the relative odds of

an event occurring given the exposure of other variables. Thus, for the purposes of this

study, the odds ratio will signify the increase in probability of a sink becoming positive

given the presence of any variable. To arrive at the confidence interval associated with
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Variable Estimate Std Error z value p-value
(x0) (Intercept) -1.58 0.04 -39.43 2e-16
(P) Same room Patient status 0.65 0.14 5.70 1.13e-08
(Plag14) Positive Patient in last 14 days 0.57 0.07 7.23 4.78e-13
(P1) Adjacent room1 Patient status 0.12 0.10 1.73 0.084
(P2) Adjacent room2 Patient status 0.53 0.10 4.07 4.57e-05
(S1) Adjacent room1 Sink Status 0.59 0.03 16.13 2e-16
(S2) Adjacent room2 Sink Status 0.12 0.03 2.97 2e-03
(Slag30) Sink status in last 30 days 2.58 0.03 77.89 2e-16
(I7) Interventions carried out -0.69 0.05 -10.89 2e-16

in last 7 days

Table 6.3: Parameter Estimates and Significance

the odds ratio, we use the bootstrap method with 10,000 replications. Table 6.4 shows

the odds ratios and confidence intervals for the variables.

Variable Odds Ratio 95% C.I
(P) Same Room Patient Status 1.92 1.46 - 2.53
(Plag14) Positive patient last 14 days 1.78 1.52 - 2.08
(P1) Adjacent Room1 Patient status 1.13 0.92 - 1.40
(P2) Adjacent Room2 Patient Status 1.70 1.37 - 2.09
(S1) Adjacent Room1 Sink Status 1.80 1.68 - 1.93
(S2) Adjacent Room2 Sink Status 1.13 1.03 - 1.24
(Slag30) Sink status in last 30 days 13.25 12.39 - 14.18
(I7) Interventions carried out 0.50 0.45 - 0.56

Table 6.4: Odds Ratio with Confidence Intervals

It is observed that the odds of a sink becoming positive increases by almost 13-

fold (CI: 12.39-14.18) when the status of the sink was positive in the last 30 days.

Intervention has a negative effect on sink positivity. This is consistent with the general

understanding that interventions would reduce the odds of sink contamination for a

short duration. The odds reduce by 50% if an intervention is performed within the last

7 days. Instances of positive sinks in adjacent rooms1 which share common plumbing

increase the chances of a sink becoming positive by 80% (1.68-1.93). Instances of
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positive sinks in adjacent rooms2 that do not share common plumbing increase the

chances of a sink becoming positive by only 13% (1.03-1.24). The presence of a

positive patient in the same room increases the odds of a sink becoming positive by

1.92-fold (CI: 1.46-2.53), whereas the presence of any positive patient within the past

14 days increases the odds by 1.78-fold (CI: 1.52-2.08). Furthermore, the presence of

a positive patient in an adjacent room1 which shares common plumbing increases the

odds of sink positivity by 1.13-fold (CI: 0.92-1.40), while the presence of a patient in

adjacent room that do not share common plumbing increases the odds by 1.70-fold

(CI: 1.37-2.09).

We test the overall significance of the model using the likelihood ratio test. This

test compares the likelihood of the final model (from stepwise regression) with the

likelihood of the null model (intercept only). This is similar to the overall F-test

in linear regression. Table 6.5 shows that the p-value is significant, and hence, we

conclude that our model fits well.

Model Resid. df Resid. Dev df Deviance p-value
1 Null Model 18726 24983
2 Final Model 18717 17772 9 7211.2 2.2e-16

Table 6.5: Analysis of Deviance Table

From the confusion matrix (Table 6.6), we see that model correctly predicted 84%

of the positive cases. The threshold for confusion matrix was arrived at by testing

various estimates such that resulting value of sensitivity was higher than specificity

without overly penalizing overall accuracy. For our case in point, missing a positive

sink is important than having negative sink classified as positive. The threshold for
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confusion matrix was found to have an optimum value of 0.4.

Actual
0 1

Predicted 0 7543 2584
1 2758 13868

Table 6.6: Logistic Regression Model Confusion Matrix

Other model metrics, including area under the curve (AUC), sensitivity and speci-

ficity, are presented in Table 6.7, while Figure 6.1 shows the ROC curve for the model.

Metric Results
AUC 78.8%
Sensitivity 84.3%
Specificity 73.2%

Table 6.7: Logistic Regression Model Results

6.2.2 Random Forest Model

To compare the variables and accuracy obtained through logistic regression, we

construct a random forest model. The model is run with 10-fold cross validation,

using 500 trees with a maximum node size of 5. The results of the model are shown

in Figure 6.2, which summarizes the importance of variables by MDA (mean decrease

accuracy). MDA can be used as a feature selection method because it shows the

impact of each variable on the model accuracy. The results show that 7 of the 9

variables included in the logistic regression also appear in Figure 6.2 based on the

random forest model.

31



Figure 6.1: ROC Curve for Logistic Regression Model

The confusion matrix based on the random forest model is shown in Table 6.8.

Actual
0 1

Predicted 0 7891 2590
1 2410 13862

Table 6.8: Random Forest Confusion Matrix

Table 6.9 summarizes metrics obtained from both models:

Figure 6.3 shows a ROC curves for Logistic Regression and Random forest model.

32



Figure 6.2: Random Forest - Variable Importance

Model Accuracy AUC Sensitivity Specificity
1 Logistic Regression 80% 78.8% 84.3% 73.2%
2 Random Forest 81% 80.4% 84.3% 76.6%

Table 6.9: Logistic Regression and Random Forest Model Metrics
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Figure 6.3: ROC Curves for Logistic Regression and Random forest
models
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Chapter 7

Conclusion, Limitations and Future Work

7.0.1 Conclusion

The results from logistic regression model indicate that variables such as presence

of positive sink in adjacent rooms that share common plumbing, status of the patient

in the same room, status of sink in the past 30 days, presence of a positive patient

in last 14 days, presence of a positive patient in the adjacent room and interventions

performed in the past 7 days are significant risk factors in explaining sink contami-

nation. The findings on the presence of a positive patient in last 14 days, status of

sink in the last 30 days and interventions implemented in the last 7 days is consistent

with the expert opinion and with previous research [14].

Based on our modeling results, the odds of sink positivity increase by 13 times

when the sink was found to be positive in the last 30 days. Additionally, the negative

coefficient of the intervention variable is consistent with the understanding that the

sink becomes negative when interventions are performed. The odds of a sink be-

coming positive decreases by a factor of 0.50 based on the logistic regression model.
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Furthermore, the presence of any positive patient within the past 14 days resulted

in an increase in the odds of sink positivity by 1.78 times. Another patient-specific

factor that has a larger impact is the presence of a positive patient in the same room.

The probability of a sink becoming positive increases by 1.92-fold when a positive

patient is in the same room. Perhaps one of the most interesting factors that we

found through our modeling results is the impact of adjacent room sinks that share

common plumbing on the positivity of the same room sink. Based on our results, we

observe that the presence of a positive sink in adjacent rooms that share common

plumbing increases the odds of a sink turning positive by 1.80-fold. This contrasts

with the odds of just 1.13-fold for rooms that do not share common plumbing. Pre-

vious research [25] has shown that biofilms found in sinks were linked to outbreaks.

Some research works [26, 27] have also shown that these biofilms are resistant to tradi-

tional disinfectant methods. Our results indicating the significance of adjacent rooms

that share common plumbing can be explained by the probable presence of biofilms

in sink drain walls,ptraps or drainpipes connecting the two room sinks. Despite the

timely implementation of intervention strategies, it could be likely that the presence

of biofilms contributed to the adjacent sinks becoming positive.

Another spatial factor that we found to be significant in the model is the presence

of a positive patient in the adjacent room. The model results show that the odds

of sink positivity increase by 1.13-1.70 fold when the adjacent rooms have a positive

patient. We would expect this to be true given that positive patients in the adjacent

room would use the sink (adjacent room sink). Thus, it is likely that they would

contaminate the sink of the room that they are staying in.
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Results from Random forest model show a slight increase in accuracy (81% vs

80%) compared to Logistic regression. Both models show identical True positive

rate which is important in our case since the cost associated with misclassifying a

positive sink as negative is higher than falsely classifying negative sink as positive.

Additionally, we see a higher specificity based on random forest model compared to

logistic regression. As a result, we see that the Area under curve(AUC) is higher for

Random forest (Shown in Figure 6.3).

7.0.2 Limitations and Future Work

There has been a fair amount of work devoted to recording of cultures for environ-

ment sampling. However, much of this work has been manual and maintained in excel

spreadsheets. If there have been any translation errors from the actual environment

sampling to recording in the spreadsheet, there could be a shift in the modeling re-

sults. Any changes to the outcome of the sampling performed at a later stage and not

updated in the environment spreadsheet or anything missing from the environment

database could also impact the results.

Furthermore, it was also found out that some of the individual patient records

that were provided to us had mixing of patient identifiers and medical record num-

bers (MRN) for the control population. We have tried our best to reconcile the data

at our end to ensure that the PIDs were converted to MRN, but further research

should ensure that such cases are addressed.
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Our analysis considered only sinks as the environmental reservoirs for modeling

purposes. Other environmental attributes, such as toilets, hoppers, and showers, were

not considered. Future modeling attempts should consider these attributes to show

the extent of infection transmission contribution through such reservoirs.

Our modeling includes interventions as one of the key variables. The information

provided to us regarding interventions was at a unit level for specific dates. Hence,

we have performed this analysis with the assumption that interventions were imple-

mented for all rooms within units. However, it was later learned that some of the

room sinks acted as ’control’ sinks and were not subjected to the interventions. For

feature selection, we only used AIC as the sole criteria for arriving at the final model.

While there are many advantages to using AIC, it also has disadvantages including

evaluating only those candidate models that are pre-specified before analysis.

The spatiotemporal visualization tool currently incorporates patient and environ-

ment data. We have brought both the datasets together to provide a combined view

for analysis. However, the tool does not include provider movement and contact in-

formation. Future work on improving the tool would be to integrate the provider

dataset. Additionally, we have done our best to provide users with an optimized

view of patient transfer history once the user makes a patient selection. However,

in cases when a patient has made a large number of visits and transferred through

many rooms, the initial view can appear cluttered with a considerable amount of
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information. This is found in instances when the patient has made visits multiple

times over more than 3 years. One approach to make the tool to display better would

be to shorten the visit duration and focus on a smaller time period.
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