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Abstract

In the U.S. Department of Energy’s report, ‘20% Wind Energy by 2030’, mitigating the risk
associated with owning and operating wind turbines was identified as one of wind energy’s key
challenges to overcome in order to promote industry growth [1]. Similar to other large power
infrastructure systems, one of the most important aspects of risk associated with wind power is
its vulnerability to cyber-attacks [2]. As wind power becomes increasingly integrated with the
smart-grid, cyber-attacks pose a threat not only for the immediate physical damage they may
cause to turbines, but also threaten to cause serious economic damage from power blackouts
due to instability in the grid [2]. This paper presents a distributed, model-based intrusion
detection system (IDS) algorithm that has the ability to identify the presence of certain
parameter manipulating cyber-attacks within a wind farm. The algorithm draws upon existing
IDS schemes such as reputation scoring and collaborative nodes, but is unique in that leverages
application-layer insight gained from understanding the interaction between wind speed
dynamics within a wind farm and wind turbine supervisory control. Properties from Denmark’s
Horns Rev wind farm were used to help develop a credible simulation environment for the
algorithm’s testing.
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1. Introduction

In the U.S. Department of Energy’s 2006 report, ‘20% Wind Energy by 2030’, mitigating the
risk associated with owning and operating wind turbines was identified as one of wind energy’s
key challenges to overcome in order to promote industry growth [1]. One of the most critical
aspects of risk associated with wind power is its vulnerability to cyber-attacks [2]. Authors in [3]
have demonstrated how cyber-attacks that manipulate wind turbine control parameters can
cause physical damage to critical turbine components. As wind power becomes increasingly
integrated with the smart-grid, cyber-attacks pose a threat not only for the immediate physical
damage they may cause to turbines, but also threaten to cause serious economic damage from
power blackouts due to instability in the grid [4].

An important first step in mitigating the risk of cyber-attacks is the ability to identify the
presence of a cyber-attack [2]. Unfortunately, as the complexity of cyber-attacks increases, so
too does the challenge of detecting them [2]. To detect cyber-attacks, some modern wind
farms employ the use of intrusion detection systems (IDS). These systems typically contain
algorithms that run on a centralized computer where they analyze streams of pertinent data
collected from the wind farm for issues.

Similar to most critical, large-scale energy infrastructure, wind power is reliant on a
Supervisory Control and Data Acquisition (SCADA) system for communication and control over
its resources [5]. The SCADA system is the collection of hardware and software that allows a
centralized operator to bi-directionally communicate with the system components (e.g. wind
turbine supervisory controllers) [5]. It is the SCADA system that provides the IDS the data it
needs for analysis. While the SCADA system provides a convenient source for information, the
IDS’s reliance on SCADA data poses a significant issue. The SCADA system itself has been
identified as a particularly vulnerable component to cyber-attacks due to its centralized nature
and important functions [4]. Malicious control over the SCADA system could result in two
potentially simultaneous situations. First, an attacker with control over the SCADA system could
cause grid load loss, stability violations, turbine equipment damage, and economic loss [2].
Second, a corrupted SCADA system may report deceitful or fake data back to the intrusion
detection system.

The first situation has negative consequences concerning the effects of a cyber-attack, but
the second situation has important implications for the intrusion detection system. With the
IDS’s reliance on SCADA data, a compromised SCADA system may corrupt data in such a way
that it renders the IDS inept to detect a cyber-attack. This type of attack, often denoted as a
man-in-the-middle attack, attempts to obfuscate the condition of the system in hopes of
deceiving the intrusion detection systems. These types of attacks are expected to grow in
number and complexity and pose a significant concern to cyber-physical systems such as the
smart-power grid [2].
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While researchers have proposed various cyber-security solutions for SCADA systems, the
risk of cyber-attacks to wind farms extends beyond the threat of a compromised SCADA system.
To gain a more comprehensive picture, different types of cyber-attacks, including denial of
service, malware, routing attacks, and protocol attacks must be considered [2]. These attacks
may originate in the form of outsider attacks, insider attacks, operator errors and may be
isolated or coordinated in nature [2]. One ramification of the diversity of cyber-attack methods
is that the trustworthiness of the data the IDS receives can be violated through a variety of
modes and locations within a wind power system. Corruption is not limited to the wind farm’s
SCADA system, but may be present in other areas (e.g. a turbine’s supervisory controller).
Researchers in [6] have described a similar situation where a nuclear turbine’s controller has
been infected with a Trojan horse designed to modify, replace, or nullify information forwarded
to the intrusion detection systems.

The present situation of intrusion detection systems in wind power systems has motivated
the current research. Presented in this paper is a distributed, model-based intrusion detection
algorithm that has the ability to identify the presence of certain parameter manipulating cyber-
attacks. The algorithm has been evaluated with simulation and its performance quantified. The
focus of the paper will be the development, testing, and evaluation of the algorithm’s
performance on a test case using the Horns Rev wind farm in Denmark.

In Section 2 of this paper, a literature review of related work is presented. Section 3 details
background information useful for understanding the rationale of the intrusion detection
algorithm. Section 4 describes the intrusion detection algorithm in detail. Section 5 presents the
Horns Rev wind farm and its use in the simulation development. Section 6 describes the
functioning and development of the simulation. Results from simulation are presented and
analyzed in Section 7. Section 8 offers a final conclusion on the project.
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2. Literature Review

Intrusion detection systems for wired networks is a mature research area, whereas
publications concerning IDS for wireless networks have only come about within the last decade.
Authors in [7] introduced one of the first published techniques for applying IDS to wireless
sensor networks. In their work, it was shown that a technique, denoted by the authors as
spontaneous watchdogs, could serve as a general IDS framework to the application of static
sensor networks. The paper discussed how, in certain situations, spontaneous watchdogs
(dedicated sensor nodes) could serve to optimally watch over the communications of the
sensors in a localized neighborhood.

In the past few years, many more IDS techniques have been proposed for both established
and ad-hoc wireless networks. These techniques have included ideas such as locally or globally
cooperative node networks and reputation/trust schemes. The author in [8] details a popular
idea of using a distributed IDS where each node is a fully independent IDS. Unlike [7] where
only certain nodes are responsible for network monitoring, this distributed scheme has nodes
work in collaborative manner by exchanging information locally between neighbor nodes. Once
an intrusion has been detected, the nodes in a localized area collectively decide on the
response action.

Authors in [9] have introduced a cooperative, reputation-based scheme for MANETs (mobile
ad-hoc networks) called Trust Evaluation and Reputation Exchange for Cooperative Intrusion
Detection (TEREC). The aim of their research was to develop an IDS that isn’t reliant on a
specific routing path for the nodes. To accomplish this, every node monitors its directly
connected neighbors and reputation information is established and disseminated throughout
the network based on the trustworthiness of the node’s measurements.

Similar to work in both [8] and [9], researchers in [10] have proposed a fully distributed
anomaly detection system rooted in a trust and reputation scheme. The type of detection
system detailed is a hybrid between anomaly and specification-based detection systems where
specific parameters are configured within the system at initialization. This technique is partially
unique in that it is a two-tiered system. Local nodes communicate and can deem other nodes
suspicious through a Local Detection Engine, but a Global Detection Engine exists for a set of
local nodes to appeal to if no consensus can be reached locally.

The critical nature of the SCADA systems has prompted significant research in their
protection and resilience to cyber-attacks. Authors in [2], [3], [11] have detailed how
compromise or destruction of SCADA systems for power systems can cause immediate physical
and economic damage. Addressing wind power systems in specific, researchers in [3] have
developed credible attack vulnerabilities within the SCADA system and detail some of their
potential effects. Through simulation and modeling, the authors demonstrate how a malicious
parameter manipulation of the power reference command can result in overspeed of a wind
turbine.
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As identified in [4], there are two types of attacks that modern SCADA systems are
susceptible to: (1) packet access on networks encompassing SCADA devices (2) unauthorized
access to control software or controllers. In the first attack scenario, the protection of the
SCADA is derived from traditional cyber-security solutions such as firewalls, encryption
schemes, and best practices. For instance, researchers in [8] have put forth wind energy specific
security policy guidelines for the assembly and use of the IT components in the SCADA system.
While these techniques provide a degree of security, authors in [4] identify situations, such as
distributed, resource restricted networks, that these traditional solutions do not provide
adequate security.

An excellent summary and classification of intrusion detection systems for SCADA systems is
provided by authors in [12]. In this paper, the researchers categorize the existing IDS for SCADA
systems into the various approaches: signature, anomaly, probabilistic, specification, and
behavioral. They further go on to explain what the underlying mathematical basis is for each
category as well as detailing whether each IDS is capable of detecting only know or unknown
cyber-attacks.

Similar to the model-based solutions described in [12], authors in [13] describe an IDS for
detecting attacks on SCADA Modbus protocols, OS platforms, and on networking infrastructure.
Since SCADA networks tend to have fairly static, regular traffic patterns, they are excellent
candidates for model-based IDS. The authors detail how they characterize the system for the
expected behavior and identify attacks by detecting when the system deviates from the model.

Authors in [4] have proposed an IDS for distributed SCADA systems that incorporates the
reputation/trust, fully distributed, and model-based techniques. In this paper, the researchers
detail how nodes work collaboratively to build reputation information that is disseminated
globally in order to isolate the misbehaving nodes within the network. While the authors
employ the use of a model-based IDS framework, it is unique in that the system uses
information gained from the application layer as opposed to from the routing or
communication layers. This is achieved by creating a self-organizing map (SOM) that analyzes
the spatial and temporal evolution of sensor readings.

Authors in [2] outline a similar, but more general approach to the application layer model-
based design in [4]. The authors detail how a critical need for the future of cyber-security is the
development of intrusion detection systems that incorporate the dynamics of the physical
power system and the operational control structure. While only a framework, not a particular
solution, is offered. They do provide reasoning as to why captivating domain-specific system
behavior can create better security solution. Such a solution is, by definition, not generalizable
across heterogeneous applications, but in exchange a security solution is created that forces an
attacker to have an appreciable understanding of the system’s dynamics in order to cause
significant harm.

The present situation of intrusion detection systems in wind power systems has motivated
the current research. Presented in this paper is a fully distributed, reputation- and model-based
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intrusion detection algorithm that has the ability to identify the presence of certain parameter
manipulating cyber-attacks within a wind farm. More specifically, the solution provided is an
IDS algorithm embracing the framework presented in [2] that takes advantage of two system
properties unique to wind farms: 1) the spatiotemporal coherence of wind speed within a wind
farm 2) the finite state machine structure of a wind turbine’s supervisory control logic. The
proposed IDS is unique in that it is envisioned to be implemented in a distributed, wireless
manner, but need not be resource limited like typical wireless sensor networks due to its
application to wind turbines — a constant source of power. Similar to work in [4], but unlike
most distributed IDS for wireless sensor networks, the proposed IDS leverages insight gained
from the application layer (i.e. the wind farm properties mentioned above) as opposed to from
the routing/communication layers.

Page 9 of 36



3. Background

As mentioned above, the intrusion detection algorithm presented in the paper is a model-
based design that takes advantage of two system properties unique to wind farms: 1) the
spatiotemporal coherence of wind speed within a wind farm 2) the finite state machine
structure of a wind turbine’s supervisory control logic. In order to clarify why using these
properties is advantageous, this section will present the necessary background on wind power
systems. To ensure the reader has a sufficient understanding, this section will detail the control
and operation of both individual wind turbines and entire wind farms. Additionally, the
aerodynamic interaction amongst turbines, with specific focus on wind speed deficit, will be
presented.

3.1 Wind Turbine Operation and Control

The basic premise behind a wind turbine is to capture the kinetic energy available in wind,
convert it to rotational kinetic energy of the blades and hub, then convert this energy to usable
electrical energy through a generator [14]. Throughout their history, wind turbines have taken
on various designs and sizes, but the focus of this project will be on pitch controlled, horizontal-
axis wind turbines (HAWT). Most, but not all, modern utility-scale wind turbines are of this
configuration and numbers are expected to grow with new installations [14]. Below, in Figure 1,
is an image of a representative HAWT with a few key components highlighted.

N 1.Blades
| 2 Rotor
| 3 Pich
4. Brake
5. Low-speed shaft

8 Contraller

e
12 High-speed shaht
13. Yaw drive

14. Yaw motor

15. Tower

Figure 1: Typical horizontal-axis wind turbine [15]

The operation of a wind turbine is based on the time averaged wind speed the turbine
measures through a meteorological device attached to the nacelle, which, most commonly, is
an anemometer [5]. Wind speed is broken up into three regimes: below wind speed cut-in,
allowable wind speeds, and above cut-out speed. When the averaged wind speed is below the
cut-in speed or above cut-out speed, it is commanded to remain in an idle state. When the wind
speed is in between these thresholds, then the turbine is free to spin and generate electricity
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[5]. Typical cut-in velocity is about 3 or 4m/s and typical cut-out is about 20 to 25m/s, but exact
values will depend on the specific turbine manufacturer [5]. There is also a rated wind speed,
which is the particular wind speed that will allow the WT to produce its fully rated power [5].

Within a singular wind turbine, there are two layers of control: supervisory control and
component control. These control systems consist of the various hardware, software, sensors,
and actuators necessary to perform their function as well as some additional sensor
information useful for monitoring but not necessary for operation [5]. The supervisory
controller’s job is to do top-level control where it is in charge of starting and stopping the
turbine based on the wind regimes described above [5]. In Figure 2 below, a simplified state
diagram is depicted that is representative of the core of most supervisory controllers.

Startup
entry: parking_brake = 0;
generator_trip = 1;
pitch_brake = 0;

turbine_state = 1;

Generating

entry: parking_brake = 0;
generator_trip = 0;
pitch_brake = 0;
turbine_state = 2;

[wind_speed=__
wind_speed_cut_in_lower. .
&&wind_speed=__

wind_speed_cut_out]

[turbine_speed=_.
turbine_speed cut_in]

[wind_speed=_ .
wind_speed_cut_in_lower.
[wind_speed:=_..
wind_speed_cut_out .
|fturbine_speed>__.
furbine_speed cut_out..
|fturbine_speeds=...
furbine_speed cut_in*0.9]

2
[wind_speed=<_.

i [wind_speed=...
wind_speed_cut_in_lower]

wind_speed_cut_in_upper..
&& wind_speed=_.
wind_speed_cut_in_lower]

l

Park

entry: parking_brake = 1;
generator_trip = 1;
pitch_brake = 1;
furbine_state = 0;

2

[turbine_speed<=__ {Brake

park_speed] | entry: parking_brake = 0;
' generator_trip = 1;

pitch_brake = 1;

turbine_state = 3;

Figure 2: The Finite State Machine Structure of a Turbine Supervisory Controller [16]

Transitions between the states is dependent on the time averaged wind speed and wind
speed cut-in and cut-out threshold parameters as well as turbine shaft speed and turbine shaft
speed threshold parameters [17]. It can be seen that the supervisory controller is a finite state
machine. There exist a finite set of operational states (e.g. park, startup, generating, and brake)
the wind turbine can operate in where transition parameter criteria is determined by the
manufacturer. Figure 3 below gives a more realistic portrayal of the states within a supervisory
controller, but without the transition rules. In addition to dictating operating states, the
supervisory controller is also responsible for giving set point values to component controllers,
communication with wind farm operators through a SCADA system, and collection and
reporting of sensor data [17].
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Figure 3: Transition Structure of Representative Supervisory Controller [17]

Component controllers, also called dynamic controllers, are the controllers that make
continuous high-speed adjustments to specific subsystems such as the pitch, yaw, and
generator systems [17]. For instance, the pitch controller is responsible for the pitch angle of
the blades. It performs closed-loop control to keep the blades’ pitch angles at the desired
position and contains all of the necessary information for this control such as position and
speed saturation rate parameters [17]. While each component controller is independent from
other subsystem component controllers, their collective control is coordinated by the
supervisory controller to achieve the desired overall control performance [17]. A simplified, yet
informational, image of component control structure for a pitch controller is presented below.

Control Structure for Pitch Control

Desired g~ Desired Angle Pitch Angle = \alve
Command Position
RotorSEeed Control of Attack _/' ol Control
— Limit Pitch  ee—
to Stable Ragion
Actual Inflow

Rotor Speed Angle

Figure 4: Representative Control Structure for Pitch Control [16]

So far, it has been detailed how any one particular wind turbine’s control systems function
through supervisory and component controllers, but it is also important to consider control of a
wind farm as a whole. The image below shows the interaction and hierarchy of the three
control levels for a wind turbine: component, supervisory, and farm level. Control of the wind
farm is conducted by the farm operator through the SCADA system. The farm operator’s
responsibilities include: monitoring data reported by the turbines, updating the supervisory
controllers with new software or operational set points, and shutting down/starting up turbines
for various reasons such as maintenance [17].
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Figure 5: Control Structure Hierarchy [17]

Wind farm control could be considered to be nested inside an even larger control system of
electrical grid power [18]. The control objective within this loop would be to continuously
balance the instantaneous electrical demand and supply using all available power generating
devices (e.g. wind power and conventional). Unfortunately, wind power is an energy source
that is not conducive to central control due to the stochastic nature of wind fluctuations [18].
Researchers have addressed this issue by developing control schemes, such as delta or
interleaved regulation, that control the output power from wind farms [18]. The basic premise
of these control schemes is to have some or all of the wind turbines within a wind farm
deliberately under-utilize the available wind energy so that there is always a power reserve.
While these control schemes are abundant in literature, they are not as prevalent in application
due to wind power’s lack of penetration to the power grid. Instead of implementing a control
scheme, transmission system operators (TSO) will often consider wind power as a fuel-saver.
Meaning, the TSO will schedule conventional-energy plant production each day according to
the demand while ignoring potential contribution from wind power. Any contribution from
wind power is considered a negative demand load, thus acting as a fuel saver for traditional
sources [18]. This is not the case when wind power begins to contribute a larger percentage of
energy to the grid, but for this project it will be considered as such.

There are many more things to consider concerning the integration of wind power to the
electrical grid and subsequent control over the farm, but these are beyond the scope the
research in this project. The idea of control over a wind farm in context of the electric grid was
brought up to rationalize an assumption made in this research: a wind farm will always seek to
maximize its power output with the available wind. Meaning, no control schemes or commands
from wind farm operators, such as power throttling to some or all wind turbines, will be
considered.

Concerning the communication structure of wind farms, it was mentioned that the
connection between the farm operator and the individual turbines is through a SCADA system.
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A SCADA system is the collection of hardware and software that allows a centralized operator
to bi-directionally communicate with the system components [5]. SCADA systems are not
unique to wind power systems and have been previously used in many other applications such
as industrial process control. Below is an image that shows some of the various configurations
that a SCADA system could take for a wind power system.

Meteorological Sensors

Physical [
Security & RTU/PLC
System E signal
RTU/PLC Processor
Wwireless ™ Twisted Pair
Bridge Copper/ Fiber Optic
é Ethernet M
Hub/Switch
) . =
Wireless Workstation
Bridge -
Modem
Microwave Wind Farm
Senver
h J
_/'HV' - Substation or Remote Control Center
/ J— —
Internet ) i
N A / - ¢ Administrative
T \__ Network ——
N~ T N
Microwave Firewall X {37 Party/ISO
\__ Network /
'd N -'/_

Ethernet Switch/Router
Firewall S

{ POTS (dial-up/ \I
\_ leasedline) /

e

O =]

Workstation —————" SCADA
Server

. S
Main SCADA Control Center

Figure 6: Potential SCADA configurations for a wind farm [11]

3.2 Aerodynamic Properties of Wind Farms

The aggregate nature of wind turbines within a wind farm gives rise to an interesting and
complex situation concerning the movement of wind through a wind farm. Research on this
topic has primarily focused on offshore wind farms. The reason for this is the difficulty involved
in modeling the behavior of wind over irregular terrain surfaces and non-symmetric siting of
wind turbines. Offshore wind farms are more conducive to analysis because they typically
contain homogenous wind turbines sited symmetrically in a grid pattern within a topologically
smooth area (i.e. a large body of water).
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As mentioned above, the purpose of a wind turbine is to extract the kinetic energy from the
wind and convert it to electrical energy. The effects of the kinetic energy extraction can be seen
in a wind speed deficit that exists within the wake formed in the shadow of a turbine. In the
figure below, the results from a computational fluid dynamics (CFD) simulation displays visually
how a single wind turbine impacts the wind speed of its surroundings [19].

e

Streamline Axial Velocity
Yim]

W [mis]
50.0 8.0

- -
. -30.0 . 0.0

Figure 7: Visualization of wind speed deficit from a single wind turbine [19]

When a large number of turbines are grouped closely together, as they are in wind farms,
the total power output from the wind farm is less than would be for a singular turbine
multiplied by the number of turbines within the farm [17]. This drop in efficiency is due to
turbines being eclipsed by the wakes of upstream turbines and is called array loss. Array losses
in wind farms have been modeled through a variety of techniques, but are always a function of
the turbine spacing within the farm, number of turbines, turbine controller operational
parameters, wind turbulence intensity, and wind direction [17]. Figure 8 below is a photograph
of the Horns Rev wind farm off the coast of Denmark that visually depicts the wakes of turbines
in a wind farm.
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Figure 8: Visualization of wakes with Horns Rev wind farm. Photographer-Christian Steiness [19]

There are complex interactions between both the environment and adjacent wakes that help
restore kinetic energy as the wakes propagate through the farm, but in general, greater wind
deficits exists for turbines that are further downstream [17]. Array losses are between 5 and
20% of total potential output power of a wind farm [20]. Figure 9 below is a plot of the
normalized wind deficits experienced along a row (array) of turbines within the Horns Rev wind
farm. Figure 10 depicts the corresponding power loss for each array due to the wind speed
deficits. The author in [21] constructed these graphs using SCADA data from the Horns Rev
wind farm when the wind direction was 270+15°. In context of the Horns Rev wind farm, 270° is
wind directly from the west and would result in wake formation similar to Figure 8.

30

Velocity deficit [%]
o
)

Turbine

[-=—4mis = 5mis 6m/s —s—Tmis —e—8m/s —»—9m/s —=—10m/s —s—11m/s —s—12m/s —s—13m/s —=— 14m/s —s—15m/s

Figure 9: Velocity deficit along a row of turbines from west to east with winds from the west (270+15°) [21]
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Figure 10: Array loss along a row of turbines from west to east corresponding to the wind deficits in Figure 8 [21]

Wind deficits and the finite state structure of wind turbine supervisory controllers create an
interesting effect concerning the operation of wind turbines. In a scenario where the initial
wind speed is zero, as wind moves toward the wind farm it first will reach the most upwind
array of turbines. Once the wind speed has surpassed the wind speed cut-in threshold for the
generation state of the turbine’s supervisory controller, then that first array of turbines will
begin to produce power [17]. If the wind speed is near the threshold value, then the wind
deficit created by the operation of the first array of turbines will be sufficient to not allow
subsequent downwind arrays to operate [17]. Only after the wind speed is high enough to
compensate for all of the wind deficits from wind turbine wakes will the entire wind farm be in
the generation state. Figure 11 illustrates the coupling between wind speed and the state of
the turbines. On the left of the figure is a plot of the wind speeds as reported by turbines in the
Horns Rev wind farm. On the right is a corresponding plot of the power production at those
wind speeds. It can be seen that the wind speed was near the wind speed cut-in threshold of
4m/s for the turbines in Horns Rev. This illustrates why downwind turbines tend to produce less
(or no) power than those that are upwind.
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Figure 11: A pair of plots displaying the effect of wind deficits on the operational state of turbines in the Horns Rev wind
farm [19]
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4. Intrusion Detection Algorithm

This section will present the details of the distributed, reputation and model-based intrusion
detection algorithm that has the ability to identify the presence of certain parameter
manipulating cyber-attacks within a wind farm. It is a model-based algorithm specifically
designed for wind farms, because it takes advantage of the spatiotemporal coherence of wind
speed within a wind farm and the finite state machine structure of a wind turbine’s supervisory
controller. Rationale for the implementation of a reputation scheme has to do with the
stochastic nature of the dynamic system governing the states of the turbines (i.e. wind). In the
background section above, it was discussed how wind speed within a wind farm is spatially and
temporally correlated, but that the models are not deterministic due to wind’s turbulent
behavior. A reputation scheme is advantageous for this situation because it permits temporary
disagreements in state amongst turbines. This property is useful in that it helps alleviate the
issue of false detection from turbine state disagreements due to the natural, stochastic
fluctuation in wind.

As a simplifying assumption, the IDS presented here will limit the states of a turbine’s
supervisory controller to the generation and idle states. Referring back to Figure 3, it can be
seen that these are the two primary stationary states as the freewheeling state is often
considered part of the idle state. As mentioned in [17], the time spent in transitory states is
insignificant relative to stationary states, so this is not an unreasonable assumption. In addition,
it will be assumed that the turbines within the wind farm are spaced in a regular, grid-like
manner as they are in virtually all large offshore wind farms (e.g. Horns Rev and Nysted).

The algorithm’s goal is to identify the presence of anomalous wind turbine behavior within a
wind farm and is reliant on a reputation scoring scheme to do so. In this IDS algorithm, each
turbine has a reputation score bounded between 0 and 100 that is effectively an indicator of
how often it agrees in state (i.e. the state of the turbine’s supervisory controller) with the states
of turbines nearest in physical proximity. Turbines initially are assigned a perfect reputation
score of 100, but have their scores manipulated at regular intervals. The length of this interval is
set to the duration of the turbine’s supervisory controller wind speed sample period which is
manufacturer dependent. Typically, this length is between 1 and 5 minutes [5]. A threshold
reputation score is defined such that, when a particular turbine’s reputation score drops below
said threshold, it will be deemed anomalous. By anomalous, what is meant is that a particular
turbine has operated in such a manner that it has become suspicious that it is operating
properly in context to the operation of the turbines located physically nearby. In this way, the
IDS detailed here is of the (locally) collaborative type that relies on the “wisdom of the crowd”
effect: if a turbine is consistently in a different state from its neighboring turbines, then there is
reason to suspect malfunctioning.

If we consider a wind farm where the turbines are oriented in a symmetric grid as they are in
Figure 12, local collaboration is defined as interaction between a turbine of interest and the
eight adjacent turbines. Turbines that reside on an edge of the farm will interact with the
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adjacent turbines that do exist. For convenience, the eight turbines surrounding a central
turbine will be defined as that turbine’s neighborhood. Figure 12 visually depicts the
neighborhoods of node 5 and 10.

Node 5’s neighborhood

XY TXX X

Node 10’s neighborhood

Figure 12: Image that illustrates the definition of a neighborhood within a wind farm

The adjustment of a turbine’s reputation score is the result of the net increment/decrement
commands sent by neighboring turbines. A bonus will be added to a turbine’s reputation score
for every neighbor that it agrees in state with, while a penalty will be subtracted from its
reputation score for every neighbor turbine that it does not share a state with. This score
aggregation process takes place at regular time intervals according to the length of the
supervisory controller’s wind speed averaging length mentioned above. A visual aid of the
collaboration process is provided in Figure 13. Assume the blue nodes represent the generation
state of a wind turbine’s supervisory controller, while orange nodes represent the idle state.
For this example, let the bonus equal +1 and the penalty equal -1, and note that the node of
interest is in the generation state. Each of the node of interest’s five neighbors that share the
generation state with it will direct the turbine of interest to increase its reputation score by +1,
while each of the idle state turbines will direct it to decrease by -1. The net result is a +2
increase (5-3=2) to the node of interest’s reputation score.
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Figure 13: Depiction of local collaboration and reputation adjustment

A mathematical description of the reputation scoring scheme for a given turbine is shown
below. A turbine’s reputation score at time t is its reputation score at time t-1 plus the
contributions from its neighbors. The number of neighbors a turbine has is dependent on its
location within the wind farm. A neighboring turbine’s contribution is the product of the
nominal penalty or bonus value times its scaled reputation score at t-1. By weighting the
contribution of a neighbor turbine according to its reputation score, the efficacy of
untrustworthy turbines (those with low reputation scores) is reduced. The nominal bonus and
penalty values can be unequal and are up to the user to set. For a more “aggressive” algorithm
that can detect corruption quicker, but with the tradeoff of a higher false detection rate, the
nominal penalty value can be set to a higher value than the nominal bonus value. The absolute
and relative values of the nominal bonus and penalty values affect the behavior of the
algorithm and this behavior is discussed more in the results section below.

# of neighbors

reputation_score; = reputation_score,_; + Z ith_neighbor_contribution
i=1

Contributions from a neighboring turbine that shares or does not share the same state,
respectively:

ith_neighbor_contribution = nominal_bonus * (neighbor_reputation_score;_;)/100

ith_neighbor_contribution = nominal_penalty * (neighbor_reputation_score;_,)/100
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5. Horns Rev Wind Farm: A Case Study

The Horns Rev wind farm is a large offshore wind farm located on a natural reef in the North
Sea 15 km west of Denmark [22]. It consists of 80 Vestas 2MW wind turbines and was built by
the Danish utility group Elsam in 2002 [22]. The Horns Rev wind farm was selected as the test
bed for the simulation of the intrusion detection algorithm presented in this paper. The Horns
Rev wind farm is the most prominent offshore wind farm in literature, and researchers have
investigated nearly every aspect of its performance. It is this abundance and availability of wind
farm system properties that Horns Rev was chosen for a case study.

There are a few specific properties of Horns Rev that are pertinent to development of the
simulation that is presented in the next section. These properties are:

® Physical orientation of wind turbines within the farm (Figure 14):
o 8 rows by 10 columns of turbines

o 560 meters spacing between turbines
o Farm forms a rectangle with axes oriented north-south and east-west
= This is a close approximation — it reality, it is a slightly skewed rhombus

® Vestas V-80 2MW wind turbine supervisory controller:
o 4 m/s cut-in wind speed threshold for generation state
o 25 m/s cut-out wind speed threshold for generation state
o 5 minute duration for wind speed averaging

e Wind farm wind properties:
o Wind deficits from wake losses as a function of wind direction (Figure 9)

o Description of free stream wind speed characteristics (Figure 15)

»
To shore
Transformer
Substation

5.5 km

5.5km

Figure 14: Physical orientation of Horns Rev wind farm [22]
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Figure 15: Weibull distribution of free stream wind speeds at Horns Rev wind farm [23]
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6. Simulation Development

This section will discuss the development and functioning of the Matlab simulation designed
to test the intrusion detection algorithm. Recalling from above, the intrusion detection
algorithm relies on state information from turbines. In a real world scenario, the wind turbines
would transition between states through time according to the particular wind environment
they experience. Since the intrusion detection algorithm must be tested in simulation, it is
necessary to develop a synthetic series of turbine states. The main function of this simulation is
to develop a spatiotemporal profile of wind turbine states and retroactively apply the intrusion
detection algorithm to search for corrupted turbines. It should be noted that the retroactive
application of the intrusion detection algorithm is an artifact of simulation and the simulation
should still approximate how the algorithm would perform in a real wind farm. The
development of a spatiotemporal profile of wind turbine states requires the following set of
information: a time series of free stream wind speed, wind turbine supervisory controller
parameters, wind turbine spacing and orientation within a wind farm, dynamic behavior of
wind within the wind farm, and corrupted turbine behavior and location. The subsections
below will detail how each piece of information is used and integrated to create the simulation.

6.1 Wind Speed Time Series

A time series of free stream wind speed is the data that describes the wind speed prior to
interaction with the wind farm. The simulation detailed in this project requires a time series of
wind speed as an input. To help develop a realistic a simulation, real values describing the wind
speed characteristics at Horns Rev were used. Wind speed is characterized according to the
Weibull distribution in Figure 15, and specific directional parameters are detailed below in
Figure 16.

Hvide Sande Horns Rev
Sector A k % A k %
mean 8.06 224 1004 11.05 234 100.
N 549 192 3. 871 2.08 3.
NNE 6.54 2.08 43 936 222 4.3
ENE 7.55 246 5.4 929 241 5.5
E 8.68 279 8.3 1027 237 8.3
ESE 8.14 243 8.7 10.89 251 8.7
SSE 6.84 23 6.7 1049 275 6.7
S 733 241 84 1094 261 8.4
SSW 7.91 250 105 11.23 251 105
WSW 8.70 234 114 11.93 233 114
W 889 220 1220 11.94 235 122
WNW 9.30 232 139 12.17 258 13.9
NNW 6.99 203 6.1 1031 201 6.1
Mean Wind Speed Hvide Sande 7.1 m/s
Mean Wind Speed Homns Rev 9.7 m/s

Figure 16: Horns Rev’s Weibull wind speed parameters by direction [23]

The generation of a wind speed time series cannot be attained by sampling the Weibull
distribution, but must take into account the autocorrelation nature of wind. The program
HOMER, developed by the National Renewable Energy Laboratory (NREL), is a software tool
that can take in Weibull distribution parameters as inputs and output an appropriate,
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autocorrelated time series of wind speed. As an assumption for this project, wind is considered
one dimensional. Meaning, wind will be considered to move directly from west to east. The
time series produced by HOMER were exported to Matlab where they were used to assist in the
generation of the spatiotemporal profile of turbine states. The image below is a time series of
wind speeds produced by HOMER.

Wik | Worit | Do | P | Fre | oF | B

T Ve )

Asssary

Figure 17: Time series of wind speed produced by HOMER software

6.2 Wind Farm Spatial Properties

The simulation requires the spatial orientation of all of the turbines within the wind farm. As
discussed in Section 5, this simulation codes turbines in an 8 row X 10 column rectangular grid
with 560 meters of spacing between turbines to mimic the Horns Rev wind farm. The spatial
information is an important aspect of the simulation as it is necessary for determining turbine
neighbors for the intrusion detection algorithm. Figure 18 is a visualization of how the turbines
are spaced within the simulation.
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Figure 18: Visualization of turbine spacing within the simulation

6.3 Generating a Wind Speed Time Series for Every Turbine

To achieve the goal of generating a spatial and temporal profile of turbine states, it is
necessary to have a time series of wind speed for every turbine. To do this, the free stream
wind speed time series discussed in Section 6.1 must be modified for each turbine according to
its position within the wind farm. There are two aspects of the modification. First, the time
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series must be temporally shifted to compensate for the time required for wind to propagate
through the wind farm. For instance, turbines that are further downwind will experience a wind
front a few minutes later than the upwind turbines. At 4 m/s, it takes about 15 minutes for
wind flow to pass through Horns Rev [19]. Assuming the speed of propagation scales linearly,
Horns Rev’s average westerly wind speed of 9.6 m/s will take approximately 1 minute to travel
between two columns of turbines. As an assumption, wind will always propagate at this rate.
This information is used to temporally shift the wind speed time series for each wind turbine
according to its location within the wind farm.

The second modification to the wind speed time series is the magnitude adjustment
necessary to compensate for the wind deficits caused by turbine wakes. As discussed in Section
6.1, downstream turbines will experience will experience a lower mean wind speed than their
upstream counterparts. Together with the temporal shift discussed before, these are the
modifications considered for generating a time series of wind speeds for every turbine within
the wind farm. The wind speed deficits used can be found in Figure 9 in Section 3.2.

6.4 Supervisory Controller Parameters and Corruption Emulation

The simulation is built such that a set of supervisory control parameters is stored for every
turbine. Referring back to Section 3.1, a wind turbine’s supervisory controller is a finite state
machine that transitions between states under certain criteria. For this simulation, the state
transition parameters of wind speed cut-in threshold, wind speed cut-out threshold, and the
wind speed averaging duration are stored for each turbine. The values of these parameters are
discussed in Section 5.

The type of cyber-attack considered for this project is a parameter manipulating attack to a
wind turbine’s supervisory controller. Motivation for this cyber-attack scenario was discussed in
Section 1, and its importance highlighted by authors in [3] who have demonstrated the
damaging effects of malicious control parameter manipulations in wind turbines. The
mechanism for corruption emulation in the simulation is a change in value of the cut-in
threshold, cut-out threshold, or averaging duration. Since each turbine has its own controller
parameters, corruption can be mimicked in any number or location of turbines. The simulation
requires as an input the locations and severity of parameter manipulating corruptions.

6.5 Generation of a Spatiotemporal Profile of Wind Turbine States

As discussed above, a spatiotemporal profile of wind turbine states is the information
required to apply the intrusion detection algorithm. This profile is created by combining the
wind speed time series adjusted for propagation duration and wind deficit with the supervisory
control information stored in each turbine. The state of a turbine’s supervisory controller is
dependent on the wind conditions it experiences along with its state transition criteria. The
combination of this information is what yields a spatiotemporal profile of wind turbine states.
Since corruption is the modification of the turbine’s state transition criteria, a corrupted turbine
will yield a time series of turbine states that is different than would be if it were an unaffected
turbine.
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6.6 Application of the Intrusion Detection Algorithm

With the spatiotemporal profile of wind turbine states at hand, the intrusion detection
algorithm can be applied. Repeating from earlier, the algorithm is applied retroactively as a
matter of simulation convenience, but should not yield different results from what would be if
implemented real-time. The algorithm was described in detail in Section 4, but its
implementation in simulation is detailed here. The spatiotemporal profile of turbine states can
be considered a three dimensional matrix with each two dimensional slice representing all of
the states of the turbines at a given time. Essentially, it is a history of the evolution of turbine
states through time. The intrusion detection algorithm is initially applied at the first time step
where it performs reputation score manipulations according to the algorithm’s details. Once
the algorithm completes a particular time slice, it stores the reputation information and
proceeds to the next time slice. This process is repeated iteratively until the entire profile is
complete or it reaches a user-defined stop criterion (e.g. stop the simulation when X number of
turbines have been identified). Matlab pseudocode for the algorithm is presented below.
Figure 20 is an overview of how the simulation is organized.

fort =1 :simulation length %For every time step
fori=1:80 %For all turbines in the wind farm
for j =1 : number of neighbors %For each neighbor turbine
if turbine state(t.i) = neighbor state(t.j) %oStates agree
turbine reputation score(t.i) = turbine reputation score(t-1.i) + bonus %Update score
else %oStates disagree
turbine reputation score(t) = turbine reputation score(t-1) — penalty = %Update score
end
end
end
end

Figure 19: Matlab psuedocode for simulation
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7. Results

The proposed intrusion detection algorithm has been simulated to evaluate its performance.
A variety of attack scenarios were tested to display the algorithm’s behavior in various
corruption contexts. As discussed in Section 6.4, the type of corruption emulated was a
parameter manipulation of a wind turbine’s supervisory controller. Specifically, the generation
state’s cut-in wind speed threshold was altered from its nominal value of 4 m/s. The magnitude
of the parameter shift, location of corrupted turbines within the wind farm, and the quantity of
corrupted turbines were the test variables manipulated to display the algorithm’s performance
in a variety of attack scenarios. The metrics presented to evaluate the algorithm’s performance
are false positives and false negatives. For the simulation results presented below, the
algorithm’s nominal bonus and penalty values were 4 and 8, respectively. The absolute value
and relative difference between these two values affect the algorithm’s performance, but was
held constant for consistency. How these values affect the algorithm’s performance is detailed
at the end of this section.

7.1 Baseline - No corruption

To begin, a simulation was run with no corrupted turbines to demonstrate the algorithm’s
baseline performance. Unless specified otherwise, this and subsequent simulation results all
contained the system properties discussed in Section 5. The simulation was run for 160
iterations (800 minutes) where each iteration is 5 minutes. The image on the left of Figure 21 is
a history of the false negatives and false positives generated by the algorithm. The image on the
right of Figure 21 depicts the locations of corrupted turbines. Blue circles indicate non-
corrupted turbines, and in later examples, red squares indicate the locations of corrupted
turbines. From the baseline simulation, it can be seen that when there are no corruptions to
the wind farm the algorithm produces no false positives or false negatives.

Performance Results Map of Corrupted Turbines
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Figure 21: Baseline simulation results
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7.2 A small set of corrupted turbines

In this simulation, the generation state’s wind speed cut-in parameter was altered from 4
m/s to 12m/s for 5 turbines. The locations of these turbines were randomly assigned and are
indicated on the right of Figure 22. From the performance results, it can be seen that the first
few time steps produce 5 false negatives. This is normal behavior as it takes multiple iterations
for individual turbines to have their reputation score decremented past the corruption
threshold score of 50. The additional false negative around the 60th iteration is a result of
turbines having the ability to regain trustworthiness. In other words, turbines are not
permanently deemed corrupt and are considered OK if their reputation score increases pass the
threshold. This property may not be desirable in a real-world scenario, but was deliberately
kept in for transparency and to demonstrate the difficultly of deciphering between corruption
and the stochastic nature of wind.
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Figure 22: Results from a small set of corrupted turbines

7.3 Varying the level of turbine corruption

This test scenario demonstrates the algorithm’s performance in context to the magnitude of
the parameter manipulation. A fixed topology of 3 columns of corrupted turbines can be seen
below in Figure 23. A total of 8 simulations were run with this corruption topography where the
corrupt turbines’ generation wind speed cut-in parameter was varied from 6m/s to 20m/s in
2m/s increments. The count of false positives and false negatives after 160 iterations is plotted
against the corruption level. The algorithm produced a substantial amount of false positives at
the 6m/s corruption level and a few at the 8m/s level, but produced none at higher levels of
corruption. This is the expected trend because smaller, more subtle parameter manipulations
are more difficult to detect.
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Figure 23: Results demonstrating the effects of varying the level of corruption

7.4 Varying the quantity of corrupted turbines

In this simulation, the level of corruption was held constant while the number of corrupted
turbines was varied. The locations of the corrupted turbines were randomly assigned and the
guantity of corrupted turbines varied from 5 to 40 with increments of 5 turbines. The
manipulation of the generation wind speed cut-in parameter was held constant at 12 m/s. This
simulation helps demonstrate the algorithms performance against different quantities of
corrupted turbines. Figure 24 shows the history of false positives and false negatives for each
quantity of corrupted turbines. It can be seen that when 30 or more turbines are corrupted
there are false positives and negatives reported at every iteration. The performance of the
algorithm degrades as the number of corrupted turbines increases. The algorithm is founded on
the idea of “wisdom of the crowd,” so it is expected to perform poorly as the number of
corrupted turbines approaches 40 (half of the total number of turbines at Horns Rev wind

farm).
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Figure 24: History of false positives and false negatives for different amounts of corrupted turbines
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Figure 25: False positive and false negative counts at the end of 160 iterations

7.5 Varying the quantity of corrupted turbines and the corruption level

This simulation scenario provides a more complete demonstration of the algorithm’s
performance as the number and level of turbine corruptions is varied. Figure 26 depicts the
false positive and false negative counts after 160 iterations for 64 different simulation settings.
Similar to 7.4, the locations of the corrupted turbines were randomly generated and varied
between 5 and 40 corrupted turbines. At each of these quantities, the level of corruption was
varied from 6m/s to 20m/s. Congruous with results from before, the algorithm performs better
when the quantity of corrupted turbines is low and the level of corruption is high.
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Figure 26: Results

7.6 Comments

It was found that the algorithm performed best when there were less than 30 corrupted
turbines and the turbine’s wind speed cut-in parameter was altered to a value of 10m/s or
higher. When these conditions were present, the algorithm properly identified all corrupted
turbines and yielded zero false positives or false negatives at the end of an 800 minute
simulation. As the number of corrupted turbines approaches 40 (half of the total number of
turbines at Horns Rev), the algorithm’s performance degrades and begins to yield increasingly
more false positives and false negatives. The algorithm is not applicable to situations when half
or more of the turbines are corrupted due to its reliance on the “wisdom of the crowd”
principle. When the magnitude of the wind speed cut-in parameter manipulation is small (value
changed to 10m/s or less), the algorithm’s performance degrades as the corrupted value
approaches the nominal value of 4m/s. As the corrupted parameter value approaches the
nominal parameter value, the corrupted turbine’s state profile begins to more closely
approximate the state profile that would be generated if that turbine were not corrupted. This
sheds insight into why the algorithm has difficulty identifying turbines with subtle corruption.

As mentioned above, the nominal bonus and penalty values used for the algorithm were 4
and 8, respectively. These values were chosen for the simulation tests because they yielded
reasonably good results, but should not be considered optimal values. Manipulations to these
values would affect detection time, detection probability, false positive rate, and false negative
rate. For instance, a small bonus and large penalty would create a more “aggressive” algorithm.
It would be aggressive in the sense that it could more quickly identify a corrupted turbine, but
with the tradeoff of a higher false positive rate. The exact values of the nominal bonus and
penalty would be user-specified according to the user’s desired algorithm characteristics.
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8. Conclusion

There are many obstacles wind power must overcome to continue to grow as an industry,
and one of the most important is protection against cyber-attacks. Researchers in [3] have
demonstrated how malicious control parameter manipulations in wind turbine supervisory
controllers can result in serious physical and economic damage. Similar to other cyber-physical
power infrastructure systems, vulnerabilities to such a cyber-attack are found in the form of
insider, supply chain, man-in-the-middle, and various other attack methods. Few publications
exist that provide cyber-security solutions for wind farms in specific, and those that do typically
take a traditional approach to cyber-security such as perimeter security or require centralized
data aggregation. As highlighted by authors in [3], man-in-the-middle attacks have the ability
relay falsified data that can deceive a centralized operator or intrusion detection system about
the wind turbine’s true operational status.

The present situation of cyber-security solutions for wind power systems has motivated the
need for an intrusion detection system that is not reliant on centralized data acquisition.
Presented in this paper is a fully distributed, model-based intrusion detection algorithm that
has the ability to identify the presence of certain parameter manipulating cyber-attacks within
a wind farm. The algorithm draws upon existing IDS schemes such as reputation scoring and
collaborative nodes, but is unique in that it takes advantage of application-layer insight gained
from understanding the interaction between wind speed and wind turbine control.

Properties from the Horns Rev wind farm in Denmark were used to help develop a credible
simulation environment to test the algorithm. The algorithm was test under various simulation
environments where cyber-attacks were emulated through parameter manipulations to turbine
supervisory controllers. The number of corrupted turbines and the magnitude of parameter
manipulation were varied independently and together to display the algorithm’s performance
under different attack attributes. Assessed using false positives and false negatives as metrics,
the algorithm produced excellent results when the number of corrupted turbines was below 30
and the wind speed cut-in parameter manipulation was greater than 10 m/s. Based on these
results, it is reasonable to conclude that the intrusion detection algorithm presented in this
paper is worth future research and could potentially be used to help develop cyber-security
solutions for wind power systems.
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