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Abstract

The first chapter in this dissertation studies the importance of distinguishing between

intermediate and final use for the gains from trade. The domestic expenditure share,

which is central to calculating the gains from trade across a wide class of models,

varies by end use. Failure to account for this heterogeneity in a one-sector, one-factor

model systematically understates the gains from trade and conceals differences in the

returns to openness across end use. I construct a multi-sector, multi-factor model

with input-output linkages that incorporates variation in end use to investigate the

full extent of these discrepancies, and to explore the relationship between relative

income and intermediate relative to final use estimates of Ricardian comparative

advantage, trade costs, and prices. I estimate the parameters of the model for 38

countries and 32 manufacturing and service industries using the World Input-Output

Database. Lower income countries have a comparative disadvantage in producing and

importing intermediate relative to final goods, which results in a higher relative price

of intermediates for these countries. Including end-use variation raises the gains from

trade by 14.4 percent on average.

The second chapter examines the relationship between distance and bilateral trade

at the industry level, where zero trade flows are prevalent. I expand upon the work

of Berthelon and Freund (2008) by incorporating zero trade flows into the estimation

using Tobit and Poisson pseudo-maximum-likelihood methods. Methods that incor-

porate zeros reveal that distance sensitivity is either decreasing (Tobit) or increasing

only slightly (PPML) over time. This stands in contrast to the OLS approach, which

shows a significant increase in distance sensitivity. I find that more substitutable

goods and those with higher trade costs are likely to exhibit higher sensitivity to
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distance, but that these qualities cannot explain the small and often insignificant

changes in Poisson-estimated distance elasticity over time.

The last chapter decomposes U.S. water use, which has followed a remarkable

pattern since 1950, not mimicking the almost uninterrupted 110 percent increase in

the size of the U.S. population, the relatively steady 570 percent growth in real GDP,

and the 220 percent improvement in per capita GDP. After doubling between 1950 and

1980, the total volume of water withdrawn has stabilized and even decreased in recent

years. Our decomposition shows that between 35 and 50 percent of the productivity

gains that allowed the U.S. to produce each dollar of its GDP with increasingly

less water stems from long-term structural changes of the U.S. economy since 1950

(growing service economy, declining manufacturing and agricultural sectors). The

remaining 50 to 65 percent is due to improved production techniques, and in particular

due to water productivity improvements in the electricity-generating sector, especially

since the mid to late 1970s. We argue that while globalization has helped reduce U.S.

water use particularly since 1980, the U.S. ability to import more water-intensive

goods is not the main reason U.S. water use plateaued.
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Chapter 1

Comparative Advantage, End Use,
and the Gains from Trade

1.1 Introduction

In the Ricardian model of international trade, countries benefit from trade by spe-

cializing in the activities in which they are relatively more productive. A trade liber-

alization allows countries to produce and export more of their comparative advantage

sectors and import more of their comparative disadvantage sectors. The larger the

productivity differences, the larger the reallocations, and the larger the gains from

trade. Productivity differences are therefore central to determining the gains from

trade. International trade data suggests that productivity varies by intermediate and

final end use; that is, some countries are relatively better at producing goods intended

for intermediate use and others are relatively better at producing goods intended for

final consumption. Despite apparent productivity differences, comparative advantage

by end use has not been explored as an avenue for the gains from trade. In this paper,

I construct a general equilibrium Ricardian trade model that features productivity

differences by intermediate and final use to determine their contribution to the gains

from trade.
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Distinguishing productivity by end use highlights the different roles of intermedi-

ate and final goods in an economy, and their different contributions to the gains from

trade. Intermediates are used in the production of intermediates, which are used in

the production of other intermediates and so on (and ultimately final goods), so the

gains from trade are magnified when intermediate productivity improves or barriers

to trading intermediates are reduced. In contrast, final goods are consumed once, so

the benefit of a productivity improvement or trade liberalization in final goods passes

directly to the consumer, but does not accumulate through the production process.

The existing literature does not incorporate productivity differences that arise by

virtue of a good’s end-use classification, potentially masking an asymmetric response

of the gains from trade to adjustments in the characteristics of intermediate and final

use trade.

The evidence that productivity varies by end use comes from a single statistic, the

domestic expenditure share. In a Ricardian framework with costly trade, a country’s

share of total expenditure on domestically produced goods, or its domestic expen-

diture share, contains information about its comparative advantage and access to

imports. A high share implies that a country is either very productive at producing a

particular good or that it faces significant barriers to importing the good from low cost

locations. Figure 1.1 plots the domestic expenditure share for intermediates against

the domestic expenditure share for final goods for 40 countries.1 If productivity and

trade barriers did not vary by end use, the shares would not vary by end use, and

the points in Figure 1.1 would lie on the 45◦-line. As the figure shows, intermediate

and final domestic expenditure shares are correlated—countries that purchase a large

share of intermediates from home tend also to purchase a large share of final goods

1All calculations are based on data from the World Input-Output Database (WIOD),
http://www.wiod.org/new site/home.htm, which I describe in Section 1.6.



3

from home—but the difference is often large and varies by country. The difference

between shares ranges from as much as 32 percent (Luxembourg), to as little as minus

three percent (Russia, the only country for which the intermediate domestic share is

higher). Within-country differences in intermediate and final domestic expenditure

shares indicate that productivity, trade costs, or both vary by end use.

Because the domestic expenditure share captures information about a country’s

comparative advantage and access to imports, it is central to determining the coun-

try’s gains from trade. Arkolakis, Costinot, and Rodŕıguez-Clare (2012) show that

the domestic expenditure share and the trade cost elasticity are the only variables

needed to compute the gains from trade relative to autarky across a wide class of

models. I show that the expression for the gains from trade in a simple one-sector,

one-factor version of the full model with end-use variation is a function of both the

intermediate and final domestic expenditure shares, and the trade cost elasticity.

This is in contrast to the same model without end-use variation (Eaton and Kortum,

2002), in which the overall domestic expenditure share and the trade cost elasticity

determine the gains from trade. I show that the model without end-use variation will

always understate the gains from trade when trade is balanced (and the intermediate

and final domestic expenditure shares are not the same). Further, I demonstrate the

asymmetry of the elasticity of the gains from trade with respect to intermediate and

final domestic expenditure shares.

Differences in intermediate and final domestic expenditure shares generate gains

from trade, and the shares contribute asymmetrically to the gains from trade. Deter-

mining the underlying productivity differences that generate differences in the shares

is therefore an informative exercise. The simple model provides an expression that re-

lates intermediate relative to final domestic expenditure shares to relative technology

and relative prices. Relative prices reflect a country’s ability to access intermediates



4

vis à vis final goods at low cost. In a first look at comparative advantage by use, I use

data on the relative price of intermediates—which is sharply decreasing in income—to

extract relative productivities from the domestic expenditure shares. I find that low

income countries have a comparative disadvantage in the production of intermediates.

The simple model provides an analytical expression for the gains from trade and

the relationship between domestic expenditure shares and comparative advantage,

but it does not incorporate the full extent of productivity differences by end use.

The data also show that domestic expenditure shares vary by end use within indus-

tries. Figure 1.2 plots the intermediate share against the final share for 32 goods

and service industries in 38 countries.2 The point Japan, Leather Goods, for example,

demonstrates that Japan turns to domestic producers for 92 percent of its intermedi-

ate leather requirements, but is considerably more open in its purchases of leather final

goods—the domestic expenditure share is just 20 percent. To capture this variation,

and to incorporate the fact that an industry’s output is used in varying intensities by

other industries, I construct a multi-industry Eaton and Kortum (2002) model with

input-output linkages and end-use variation within industries. The model features

Ricardian motives for trade at the industry-by-end-use level, and also incorporates

multiple factors (labor and capital). The full model does not provide an analytical

expression for the gains from trade, so I estimate the parameters using three different

regression techniques and solve the model numerically to determine the contribution

of end-use variation to the gains from trade; I find that the gains from trade are 14.4

percent higher in a model with end-use variation than in a model without.

I also use the parameter estimates from the full model to provide a closer look

at comparative advantage. The estimates support the aggregate result that lower

2I combine the three small, open economies Cyprus, Luxembourg, and Malta, and some indus-
tries to avoid observations of zero gross output, as I describe in Section 1.6 (See Tables 1.5 and 1.6
for the country and industry aggregation schemes.)
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income countries have a comparative disadvantage in producing intermediates relative

to final goods. I find that this result is driven by a comparative disadvantage in

intermediate agriculture and manufacturing industries (and to some extent service

industries) in these countries. Further, low income countries pay relatively more to

import intermediates. A comparative disadvantage in intermediate production and a

high cost to import are consistent with low income countries paying a higher relative

price for intermediates, which the aggregate data show and my parameter estimates

support. I also show that intermediates are more tradable than final goods, and that

the estimates imply a Balassa-Samuelson effect: countries that have a comparative

advantage in the production of more tradable goods (intermediates) pay a relatively

higher price for less-tradable goods (final goods).

Recent literature has sought to quantify the gains from trade under the different

sources of heterogeneity that Arkolakis et al. present in their theoretical paper. Ex-

amples include Costinot and Rodŕıguez-Clare (2013), Levchenko and Zhang (2014),

and Caliendo and Parro (2012). Costinot and Rodŕıguez-Clare find that multiple

sectors and tradable intermediate goods have larger effects on the gains from trade

than market structure and firm-level heterogeneity. Levchenko and Zhang find that

sectoral heterogeneity increases the gains from trade by 30 percent relative to a one-

sector model, and show analytically that the one-sector model will always understate

the gains from trade. Caliendo and Parro estimate the welfare effects of NAFTA,

and find that welfare is reduced by more than 40 percent when intermediate goods

and country-varying input-output linkages are not considered. This paper is the first

to quantify the contribution of end-use variation to the gains from trade. I do this

using a model that includes end-use variation, as well as the sectoral heterogeneity,

tradable intermediate inputs, and input-output linkages that the literature described

above has shown are important channels for the gains from trade. This paper and
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those above rely on the multi-sector Eaton and Kortum framework that was intro-

duced by Shikher (2011, 2012, and 2013) and Chor (2010). The model is also related

to Melitz and Redding (2014), who show that the gains from trade in a model with

sequential production become arbitrarily large as the number of production stages

increases. Distinguishing end-use, I construct a model with two stages of production:

intermediates (stage one) are required to produce final goods (stage two).3 This em-

pirics in this paper are related to Levchenko and Zhang (2013), who use a multi-sector

Eaton and Kortum model to estimate technology parameters and find that compara-

tive advantage has weakened over time. I also use the parameter estimates to assess

comparative advantage, but by end use and across countries rather than by industry

and over time.

Literature that features end-use variation centrally is outside the context of the

literature on the gains from trade, and typically focuses on the importance of low trade

barriers and productivity in intermediates vis à vis final goods. Amiti and Konings

(2007) find that, in the context of an Indonesian trade liberalization, a decline in

tariffs on intermediate inputs leads to a productivity gain for firms that import their

inputs that is at least twice as high as the gain from reducing tariffs on final goods.

Jones (2011) shows that linkages through intermediate goods generate a productivity

multiplier that helps to explain large income differences across countries. A United

Nations Conference on Trade and Development (2013) report discusses the importance

of participation in global value chains—which is determined by the proportion of a

country’s exports that are part of a multi-stage production process, and is therefore an

indication of participation in intermediate goods trade—for generating employment

and increasing GDP and income growth. These papers demonstrate that there are

3The structure of intermediate production itself is “roundabout” rather than sequential, in that
any intermediate input can be used in the production of another intermediate.
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important benefits to improved competitiveness in intermediates. I explore this idea

further—first by showing analytically that the gains from trade are more responsive

to changes in intermediate trade, and second by showing that technology, trade costs,

and prices vary by end use in a way that is related to income.

The rest of this paper is organized as follows. In Section 1.2 I set up a one-sector,

one-factor model with end-use variation. I show that a model that fails to account

for this variation will weakly understate the gains from trade, and that the size of the

discrepancy depends on the ratio of final to intermediate domestic expenditure shares

and the labor share. I show the circumstances under which the gains from trade are

more responsive to changes in the intermediate domestic expenditure than to changes

in the final domestic expenditure share, and use aggregate data to demonstrate the

magnitude of the discrepancy in the gains from trade and to quantify the elasticities.

In Section 1.3 I take a first look at comparative advantage, showing the implications

for relative technology levels given data on intermediate and final prices and domes-

tic expenditure shares. In Section 1.4 I set up the full general equilibrium model,

incorporating variation in end use at the industry level, input-output linkages, and

capital. In Section 1.5 I describe the estimation procedure and the data. Section 1.6

describes the data and implementation for estimation. Section 1.7 presents the results

of the estimation, shows that the relative parameter estimates are related to income,

and demonstrates evidence of the Balassa-Samuelson effect. In Section 1.8 I use the

estimated parameters to solve the full general equilibrium model to show the effect of

incorporating end-use heterogeneity on the gains from trade. Section 1.9 concludes.
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1.2 Simple model and some magnitude

I first describe an extension of the Eaton and Kortum (2002) model that incorporates

variation in end use. I demonstrate that the standard model understates the gains

from trade, and that the discrepancy depends on two variables: the ratio of the

intermediate and final domestic expenditure shares and the labor share. I also show

that the gains from trade are more responsive to changes in the intermediate domestic

expenditure share when the intermediate share in total output is greater than 50

percent, and more responsive than the standard model implies when the intermediate

domestic expenditure share is less than the final domestic expenditure share. I then

turn to the data to demonstrate the magnitude of the discrepancy and the elasticities

of the gains from trade with respect to intermediate and final domestic expenditure

shares for the 38 countries in my sample.

1.2.1 Simple model with end-use variation

There are N countries. Production is Cobb-Douglas over labor and intermediates,

with unit costs in country i given by ci = wβii (pIi )
1−βi , where wi is the wage, pIi is

the price of a bundle of intermediates, and βi is the labor share in total output (0 <

βi < 1).4 Countries produce varieties of intermediate and final goods, and varieties

are produced with productivities that vary by end use. End use is distinguished by

u = {I, F}, varieties are indexed by l on [0, 1], and productivity is given by zui (l).

Productivity is drawn from a Fréchet distribution with location parameter T ui and

dispersion parameter θ. T ui is the absolute productivity level for country i, end use

4In a minor departure from Eaton and Kortum, I allow the labor share to vary by country. This
has implications for the full general equilibrium solution, but, other than allowing the elasticity of
the gains from trade with respect to the overall domestic expenditure share to vary by country, it
does not change the standard gains from trade formula.
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u, and the ratio of intermediate to final technology levels determines comparative

advantage in producing goods suited for each end use. That is, T Ii /T
F
i > T Ii′/T

F
i′

means that country i has a comparative advantage in the production of intermediate

relative to final goods compared to country i′. Trade costs vary by end use and take

the iceberg form: τuni units of the good destined for end use u in country n must

be shipped from i for one unit to arrive (within-country trade costs are normalized

to one, τuii = 1). Perfect competition implies that a buyer in country n would pay

puni(l) = ciτ
u
ni/z

u
i (l), the productivity-adjusted unit cost times the iceberg trade cost,

if the variety were bought from country i. Buyers, who can be producers shopping for

intermediates or consumers shopping for final goods, purchase the variety from the

lowest-cost source and combine varieties in CES fashion. The technology distribution

and CES price index yield a closed form expression for prices paid for intermediate

and final goods in the destination country: pun = γ
[∑N

i=1 T
u
i (ciτ

u
ni)
−θ
]−1/θ

. The

probability that country i is the lowest cost provider of variety l to country n, which

is also the fraction of expenditure by country n on goods from country i is πuni =

Xu
ni

Xu
n

= T ui

(
γciτ

u
ni

pun

)−θ
, where Xu

ni is expenditure by country n on goods of end use u

from country i and Xu
n is expenditure by country n on goods of end use u from all

countries. The fraction of expenditure by country i on goods from itself, the domestic

expenditure share, is πuii = T ui

(
γci
pui

)−θ
.

To solve for the gains from trade, I first find real wages by substituting the unit cost

function into the final domestic expenditure share equation (u = F ) and rearranging:

wi
pFi

= γ−1/βi

(
T Fi
πFii

)1/βiθ (pFi
pIi

)1/βi−1

. (1.1)

Welfare is measured by the purchasing power of wages in terms of the final good, the

price of which may differ from the price of the intermediate good. The price of the



10

intermediate good affects real wages indirectly through the use of intermediates in

production of the final good (and through general equilibrium effects on the wage).

I next use the domestic expenditure share equation for both final and intermediate

goods to write relative prices as a function of relative domestic expenditure shares

and technology levels:

pFi
pIi

=

[(
πIii
πFii

)(
T Fi
T Ii

)]−1/θ

, (1.2)

and substitute (1.2) into (1.1):

wi
pFi

= γ−1/βi

[(
T Fi
πFii

)βi (T Ii
πIii

)1−βi
]1/βiθ

. (1.3)

The change in real wages, Ŵ ≡
(
wi/p

F
i

)′
/
(
wi/p

F
i

)
, associated with a move from

autarky (πuii = 1) to trade is then:

Ŵ =
[(
πFii
)βi (

πIii
)1−βi

]−1/βiθ

. (1.4)

This expression has the counterpart π
−1/βiθ
ii in the standard model. The expressions

differ in terms of the interior component: the model with end-use variation relies

on a geometric weighted average of the intermediate and final domestic expenditure

shares, while the standard formulation depends on the overall domestic expenditure

share (πii). Before formalizing the conditions under which the two gains from trade

expressions diverge, I discuss the intuition behind the expression that incorporates

end-use variation.

Rearranging the exponents, we can rewrite (1.4) as Ŵ =
(
πFii
)−1/θ (

πIii
)−(1−βi)/βiθ.

The elasticity of the gains from trade with respect to the final domestic expenditure

share is −1/θ, as it is in the gains from trade expression with no intermediates (see
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Arkolakis et al. equation (1)), where θ is the trade cost elasticity. Final goods are not

used in the production of other goods, so openness in final goods is not subject to the

amplification in the gains from trade that arises when a good is part of an input-output

loop. In contrast, intermediates are used in the production of other intermediates, so

the gains from trade are amplified by the share of intermediates in total expenditure

(precisely by the labor share, which is one minus the intermediate share), hence

the presence of βi in the denominator of the exponent on the intermediate domestic

expenditure share (see Arkolakis et al. Section IV.B). Because welfare is measured

by the purchasing power of wages in terms of final goods, this magnification effect is

only directly relevant to the gains from trade through the extent to which final goods

rely on intermediates, hence the presence of 1− βi in the numerator of the exponent.

Thus, we can think of the gains from trade as being determined directly by openness

in final goods, and indirectly by openness in intermediates through two channels: the

effect on other intermediates, and on final goods.

I now show that the gains from trade in a model without end-use variation will

systematically understate the true gains from trade, and that the size of the dis-

crepancy depends on the ratio of intermediate to final domestic expenditure shares

and the labor share. First, rewrite the overall domestic trade share πii as a linear

combination of the final and intermediate domestic expenditure shares, where βi and

1− βi are the weights when trade is balanced: πii = βiπ
F
ii + (1− βi)πIii.5 Now we can

easily compare the gains from trade formula with end use variation to the standard

5To see that the labor and intermediate shares in total output are the correct weights when
trade is balanced, first recall notation—that Xu

i is expenditure by country i on goods of end use u.
In equilibrium, payments to labor (the only factor of production) equal total expenditure on final
goods XF

i , and total output equals total expenditure, Xi. Thus, βi is also the share of expenditure
on final goods in total expenditure, XF

i /Xi, and 1− βi is the share of expenditure on intermediate
goods in total expenditure, XI

i /Xi. We can write the overall domestic expenditure share as πii =
(XF

ii +XI
ii)/Xi, which is the same as (XF

i /Xi)(X
F
ii /X

F
i ) + (XI

i /Xi)(X
I
ii/X

I
i ). It follows then that

πii = βiπ
F
ii + (1− βi)πIii.
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formulation: in the former the interior component is a geometric weighted average

of the final and intermediate domestic trade shares, and in the latter it is a linear

weighted average of the final and intermediate domestic trade shares. That is,

ŴEnd-Use =
[(
πFii
)βi (

πIii
)1−βi

]−1/βiθ

, (1.5)

ŴStandard =
[
βiπ

F
ii + (1− βi)πIii

]−1/βiθ
. (1.6)

Taking the logarithm of each interior component we see that, by Jensen’s Inequality,

the geometric expression will always be less than or equal to the linear expression:

βi ln π
F
ii + (1− βi) lnπIii ≤ ln(βiπ

F
ii + (1− βi)πIii), (1.7)

and strictly less when πFii 6= πIii. Because the gains from trade formulas are decreasing

in their interior components, the standard formulation will always understate the

end-use formulation when the intermediate and final domestic expenditure shares are

not the same. This is Proposition 1.

Proposition 1 When trade is balanced, the gains from trade in the standard one-

sector model weakly understate the gains from trade in the one-sector model with

end-use variation. That is:

ŴStandard =
[
βiπ

F
ii + (1− βi)πIii

]−1/βiθ ≤
[(
πFii
)βi (

πIii
)1−βi

]−1/βiθ

= ŴEnd-Use.

The inequality is strict when πFii 6= πIii.

A corollary to the proposition is related to the size of the discrepancy, which we can

determine analytically by taking the ratio of the end-use (1.5) and standard (1.6)

versions and rearranging.
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Corollary 1 For a given θ, the discrepancy in the gains from trade between the end-

use and standard models depends on the ratio of domestic trade shares (πFii/π
I
ii) and

the labor share (βi):

ŴEnd−Use/ŴStandard =

(
πFii
πIii

)−1/θ [
βi

(
πFii
πIii

)
+ (1− βi)

]1/βiθ

. (1.8)

The further apart are the final and intermediate domestic trade shares and the lower

βi, the larger the discrepancy. The size of the overall trade share πii does not matter;

it is the extent to which the domestic trade shares are different that affects the

discrepancy in the gains from trade. Figure 1.3 plots the discrepancy in the gross

gains from trade against a potential range of the ratio of final to intermediate domestic

expenditure shares and the range of possible labor shares for θ = 4.6 As the figure

shows, the discrepancy is largest when πFii and πIii are most different and βi is low.

Turning now to the elasticity of the gains from trade with respect to each domestic

expenditure share, equation (1.5) shows that the elasticities with respect to the final

and intermediate domestic expenditure shares are −1/θ and −(1 − βi)/βiθ, respec-

tively. Thus the elasticity with respect to the intermediate share will be larger than

the elasticity with respect to the final share when βi < 0.5, and it will be larger by

a factor of (1− βi)/βi. The lower the labor share, the more responsive are the gains

from trade to the intermediate domestic expenditure share than to the final share.

As discussed previously, this is because intermediates are used more intensively in the

production of other intermediates and in the production of final goods when the labor

share is low. We can also compute the elasticity of the gains from trade with respect

to each domestic trade share for the standard formulation. From equation (1.6), we

6I use θ = 4 here and throughout the paper following Simonovska and Waugh (2014), who show
that the Eaton and Kortum (2002) estimator is biased and will overestimate the elasticity of trade
in finite sample sizes. Simonovska and Waugh develop a new estimator that reduces the bias and
yields an estimate of θ that is roughly equal to 4.
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can show that the elasticity with respect to the final domestic expenditure share is

(−1/θ)(πFii/πii), and with respect to the intermediate domestic expenditure share is

(−(1 − βi)/βiθ)(πIii/πii). Thus the gains from trade are ((1 − βi)/βi)(πIii/πFii ) times

more responsive to changes in the intermediate domestic expenditure share than to

changes in the final domestic expenditure share, and the standard model will under-

state the importance of changes in the intermediate domestic expenditure share when

πIii < πFii .

The analytical expressions for the discrepancies between the end-use and standard

models discussed above rely on the assumption of balanced trade—that the overall

domestic expenditure share can be written as a linear combination of the intermediate

and final domestic expenditure shares with respective weights βi and 1− βi. Trade is

not balanced in practice, however, and a researcher following the standard procedure

observes only the overall domestic expenditure share. It is therefore important to

quantify the size of the actual discrepancy, or the discrepancy that would result from

using the observed overall domestic expenditure share (not the labor share weighted

average) to compute the gains from trade.

1.2.2 Size of the discrepancy

Table 1.1 reports the average overall, final, and intermediate domestic expenditure

shares, the average ratio of final to average intermediate shares, and the average labor

share for countries in three income classifications for the year 2007.7 Income classi-

fications are determined by the World Bank (see Table 1.5); high income countries

are the developed economies in North America, Europe, and the Asia-Pacific region,

7The simple model does not include capital as a factor of production, so I net capital compensa-
tion out of the labor share calculation. That is, labor share = labor compensation/(gross output−
capital compensation).
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upper middle income economies include the transition economies in Central and East-

ern Europe, as well as Brazil and Mexico, and the lower middle income countries are

China, India, and Indonesia. Higher income countries are more open overall, and for

the intermediate and final classifications individually. All groups purchase a larger

share of final goods and services from home than intermediate goods and services

(πFii/π
I
ii > 1), and this fact tends to be more pronounced for the richer countries:

the average ratio of final to intermediate domestic expenditure shares is 1.17 for the

high income group and 1.06 for the lower middle income group. Labor shares are on

average lower in lower income countries owing to relatively less service-sector output

in these countries (34 percent for high income and 27 percent for lower middle in-

come). Recalling equation (1.8) and Figure 1.3, the discrepancy in the gains from

trade across the two models is increasing in the domestic expenditure share ratio

(when it is greater than one) and decreasing in the labor share, so it is not obvious a

priori which group will experience the largest discrepancy.

Table 1.2 maps the domestic expenditure shares and labor shares into the gains

from trade under the standard and end-use models, reports the discrepancy between

the two, and also shows the relative elasticity of the gains from trade with respect

to the intermediate and final domestic expenditure shares. As the table shows, the

average discrepancy in the gains from trade across the two models is largest for

the lower income countries (15.1 percent for upper middle and 16.2 percent for lower

middle compared to 11.1 percent for high income). In this instance, the lower average

labor shares (which increase the size of the discrepancy) in the upper middle and

lower middle income classifications offset the effect of their lower average domestic

expenditure share ratios (which reduce the size of the discrepancy) relative to the high

income classification. The last column in Table 1.2 reports the relative elasticity of

the gains from trade with respect to the intermediate and final domestic expenditure
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shares, which is (1 − βi)/βi. The gains from trade are three times as responsive

to the intermediate domestic expenditure share as to the final domestic expenditure

share in the lower middle income group. This distinction between the responsiveness

between intermediate and final domestic expenditure share is altogether missed in

the standard model, and the relative elasticities are equal to one.

Underlying the averages is a considerable amount of variation across countries. Ta-

ble 1.3 shows the country-level domestic expenditure shares, ratios, and labor shares,

and Table 1.4 shows the gains from trade discrepancies and the relative elasticities.

The size of the discrepancy ranges from -5 percent for Russia to 44 percent for Mex-

ico.8 The relative elasticity is as low as 1.3 in Greece, and the gains from trade are

nearly five times as responsive to the intermediate domestic expenditure share as

to the final domestic expenditure share in China. This is directly a consequence of

China’s low labor share and demonstrates the disproportionate importance of inter-

mediates given their large share in China’s production.

1.3 Comparative advantage, a first look

Domestic expenditure shares vary by end use and have different effects on the gains

from trade, so as a next step I look at the factors that contribute to differences in rel-

ative domestic expenditure shares: prices and productivity. In this section I combine

country-level data on prices of intermediate and final goods with the intermediate and

final domestic expenditure shares to make an inference about the nature of compar-

ative advantage across countries and end use. I continue to use the simple model in

8The analytical discrepancy is always weakly positive when trade is balanced. The gains from
trade under the standard model are calculated using the overall domestic expenditure share and
trade is not necessarily balanced, so it is possible that the discrepancy is negative—as is the case
for Russia.
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this section, showing in Section 1.4 the implications for comparative advantage using

the full model.

A country that sources a relatively larger share of intermediates than final goods

domestically will have a higher relative technology in producing intermediates or a

higher relative price of intermediates. We can see this by rearranging equation (1.2):

πIii
πFii

=

(
T Ii
T Fi

)(
pIi
pFi

)θ
. (1.9)

If trade were completely costless and consequently the law of one price held, the

relative price would be the same across countries, and differences in the relative

domestic expenditure share would be governed only by relative technology levels. We

would then conclude that comparative advantage in the production of intermediates

is decreasing in income, as (πIii/π
F
ii )LowerMiddle > (πIii/π

F
ii )UpperMiddle > πIii/π

F
ii )High, see

Table 1.1. Trade is far from costless, however, so we cannot make a statement about

the relationship between comparative advantage and domestic expenditure shares

without some knowledge of relative prices. Prices are in principle observable, so

together with relative domestic expenditure shares and an estimate of θ we can extract

relative technology levels using the expression above.

I obtain the price of intermediates from the GGDC Productivity Level Database

for the benchmark year 1997 and the price of final goods from the OECD, also for the

year 1997. The intermediate prices are constructed from sectoral intermediate input

PPPs, which reflect each sector’s cost of acquiring intermediate deliveries.9 The

final prices are the PPPs for GDP, which cover both final consumption expenditure

9The price of intermediate inputs in a country is computed as the geometric average of
the PPP for sectoral intermediate inputs (PPP II ), with the share of sectoral intermediate ex-
penditure (II ) in total intermediate expenditure as the weights. The data are available at
http://www.rug.nl/research/ggdc/data/ggdc-productivity-level-database. See Inklaar and Timmer
(2008) and Timmer, Ypma, and van Ark (2007) for a detailed discussion of the construction of the
PPPs.
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(household and government) and gross capital formation.10 I take the ratio of the

intermediate to the final price and normalize it to one in the US. The price data are

available for 26 countries, and unfortunately exclude the lowest income countries in

my initial data set. Nonetheless, there is a strong inverse relationship between the

price of intermediates relative to final goods and per capita income.

Figure 1.4, Panel (a) plots the relationship between relative domestic expenditure

shares and income, and Panel (b) plots the relationship between relative prices and

income.11 Given that the ratio of domestic expenditure shares is flat to decreasing

with respect to income (the inverse relationship is weaker here where the lowest income

countries are excluded), and the price ratio is sharply decreasing (and also raised

to a power θ > 1), we can infer from equation (1.9) that the relative technology to

produce intermediate goods will be increasing in income. Panel (c) of Figure 1.4 plots

the precise relationship between relative technology and income, calculated under

the assumption that θ = 4. This calculation shows not only that lower income

countries tend to have a comparative disadvantage in producing intermediates, but

also that there is considerable variation in comparative advantage across countries—

the relative technology level for the country with the largest comparative advantage

in producing intermediates, Denmark, is eight times that of the country with the

largest comparative disadvantage in producing intermediates, the Czech Republic.

The large amount of variation suggests that productivity differences at the end-use

level provide an important channel for the gains from trade. The calculation is only

suggestive, however, as it relies on the assumptions of a very basic model, uses highly

aggregate data, and price data that may be measured with error. In the next section,

10The PPPs for GDP are available at http://stats.oecd.org/#.
11Per capita income is given by output-side real GDP at chained PPPs in 2005 US dollars

(rgdpo) per person (pop) for the year 1997 from the Penn World Tables Version 8.0, available at
http://www.rug.nl/research/ggdc/data/pwt/pwt-8.0.
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I describe the full model, which incorporates many industries, labor and capital, and

input-output linkages, and generates prices that vary by industry and end use. I use

the full model to further assess the relationship between comparative advantage and

income, and to evaluate the relationship between relative trade costs and relative

prices and income. In Section 1.8, I use the full model to quantify the contribution

of end-use variation to the gains from trade.

1.4 Full model

In this section I construct the full model, which incorporates many sectors, input-

output linkages, and end use variation. I allow the technology and trade cost param-

eters to vary by industry and end use, which generates prices and trade shares that

also vary by industry and end use. I do this to capture the variation in domestic

expenditure shares at this level (Figure 1.2), and to incorporate end use variation as

a channel for the gains from trade. The model is most closely related to the model

described in Caliendo and Parro (2012). In the Caliendo and Parro model (and other

multi-sector Eaton and Kortum models), an industry’s output can be used both as

an intermediate and as a final good, and the productivity and trade cost estimates

are a composite of the productivity levels and trade costs associated with each type

of end use. Assessing comparative advantage by end use and determining its effect on

the gains from trade, however, requires a clear delineation between intermediate and

final goods. I ensure that the sectoral productivity and trade cost measures do not

confound differences across end use by completely separating intermediate and final

goods within a sector; that is, an intermediate good is never used as a final good, and

a final good is never used as an intermediate.12 This characterization is consistent

12The Caliendo and Parro model is flexible enough to handle this adjustment (by setting con-
sumption shares to zero for intermediates and input shares to zero for final goods). Solving the
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with the data, which classifies all sectoral trade flows and domestic production as

destined for either intermediate or final use.

1.4.1 Production

Countries are denoted n and i, and industries are denoted k. End use is given by

u = [I, F ]. The cost of production in country i, industry k is a Cobb-Douglas function

of labor, capital, and intermediate inputs:

cki =
(
w
αki
i r

ιki
i

)βki (
ρki
)1−βki , (1.10)

where wi is the wage, ri is the rental rate, and ρki is the price of a bundle of inter-

mediates. Labor and capital are mobile across industries within a country, and their

shares in value added are αki and ιki . The share of value added in gross output is βki

and the share of intermediates in gross output is 1 − βki . The price of the bundle

of intermediates used to produce an industry k good in country i is a Cobb-Douglas

function of the prices of intermediate inputs from each industry k′:

ρki =
∏
k′

(
pI,k

′

i

)ηk,k′i

, (1.11)

where ηk,k
′

i is industry k’s share of total expenditure spent on intermediates from

industry k′. The input shares vary by country, and
∑

k′ η
k,k′

i = 1. The literature

commonly assumes constant industry-level factor and input shares across countries.

I exploit the World Input-Output Database to calculate country-specific industry-

level shares and find that the shares are not particularly similar across countries.13

model, however, requires knowledge of trade and domestic production by end use, which is not
available in the widely used trade data.

13The coefficient of variation across countries within an industry (taking the average coefficient
of variation across all industries) is 0.37 for labor shares and 0.55 for capital shares. For input
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I allow input costs to vary by industry and not use, implying that Heckscher-Ohlin

motives for trade exist only across industries. This decision is driven primarily by

data availability. Use-varying costs would require labor, capital, and input shares

that vary by use, and to my knowledge this data does not exist.

Ricardian comparative advantage at the end-use level enters through the produc-

tivity parameter z
k(u)
i (l). Each industry k in country n produces a continuum of

goods indexed by l on [0, 1] for intermediate use and for final use. In country i, in-

dustry k’s efficiency in producing a good for end use u is given by z
k(u)
i (l). Iceberg

trade costs are given by τ
k(u)
ni . The unit cost of a good l produced by industry k

in country i for end use u in country n is then p
k(u)
ni (l) = cki τ

k(u)
ni /z

k(u)
i (l). Markets

are perfectly competitive, so p
k(u)
ni (l) is the price that buyers in country n would pay

if the good were bought from country i. Instead, buyers shop around the world

and purchase the good from the country with the lowest price. The price actu-

ally paid is then p
k(u)
n (l) = min

{
p
k(u)
ni (l); i = 1, . . . , N

}
. Facing these prices, buyers

of end-use u goods in country n purchase amounts of industry k goods to maxi-

mize a CES objective function. The price index for the CES objective function is

p
k(u)
n =

[∫ 1

0
p
k(u)
n (l)1−σ dl

]1/(1−σ)

, where σ is the elasticity of substitution between

goods.

1.4.2 Technology

The efficiency parameter z
k(u)
i (l) is the realization of a random variable drawn from

a Fréchet distribution F
k(u)
i (z) = e−T

k(u)
i z−θ . The parameter T

k(u)
i governs the aver-

age efficiency with which goods are produced, and a higher value of T
k(u)
i implies a

higher level of technology. Variation in end use within country and industry implies

shares—looking only at the diagonal entries to get a sense of variation in the shares of the most
important input—this measure is 0.66.
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that, though a country may have an advantage in producing an industry k good for

intermediate use, it may not be well suited to producing the industry k good for final

consumption. We can therefore think of production of the industry k good as being

tailored to suit the needs of a particular end use. The parameter θ governs the spread

of the distribution; lower values imply more variation. More variation in efficiency

draws (lower θ) increases the likelihood that technological advantage will overcome

high production or transport costs, implying that trade flows will be more influenced

by Ricardian comparative advantage.14

1.4.3 Consumption

Consumers have CES preferences over final goods produced by each industry k with

elasticity of substitution σ, and Cobb-Douglas preferences over industries. The share

of final consumption expenditure on each industry is ηF,ki , with
∑

k η
F,k
i = 1.

1.4.4 Prices

The technology distribution and the CES price index (for consumers and buyers of

intermediates) yield a closed form expression for prices in each destination country n

that vary by industry k and end use u:

pk(u)
n = γ

[
N∑
i=1

T
k(u)
i (cki τ

k(u)
ni )−θ

]−1/θ

, (1.12)

14It is possible to embed correlation across end use within industries, resulting in the joint distri-

bution F ki (z) = exp

{
−
[∑

u

(
T
k(u)
i z−θ

)1/ρ
]ρ}

, where z is the vector [zI,ki , zF,ki ] and ρ is a measure

of correlation that rises as correlation decreases, with 0 < ρ ≤ 1. The parameter ρ is not separately
identifiable from θ, and introducing correlation (low ρ) reduces the strength of comparative advan-
tage in the same way that higher θ reduces the strength of comparative advantage.
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where γ =
[
Γ
(
1 + 1−σ

θ

)]1/(1−σ)
and Γ is the gamma function.15 Prices in country n

are a function of its access (τ
k(u)
ni ) to the technology and costs of all countries i.

1.4.5 Trade

The probability that industry k in country i is the lowest-cost provider of good l for

end use u in country n is π
k(u)
ni = T

k(u)
i

(
γcki τ

k(u)
ni

p
k(u)
n

)−θ
.16 Because there is a continuum

of goods, π
k(u)
ni is also the fraction of goods that end use u in country n buys from

industry k in country i. Further, the distribution of minimum prices is invariant to

the source country, so the average price per good is also invariant to the source. This

means that π
k(u)
ni is the fraction of country n, end use u expenditure on industry k

goods that come from country i:

π
k(u)
ni =

X
k(u)
ni

X
k(u)
n

= T
k(u)
i

(
γcki τ

k(u)
ni

p
k(u)
n

)−θ
, (1.13)

where X
k(u)
n is total spending on industry k goods by end use u in country n, and

X
k(u)
ni is spending on the goods that come from country i. A destination country

will purchase a larger share of its industry k, end-use u requirements from a country

with a higher technology level, lower costs, or with which it has lower bilateral trade

costs. A high price in the destination country increases the share that the country

15The efficiency parameter z
k(u)
i (l) is the realization of the random variable Z

k(u)
i , so the delivered

price of a good p
k(u)
ni (l) is a realization of the random variable P

k(u)
ni = cki τ

k(u)
ni /Z

k(u)
i , and the lowest

price is a realization of P
k(u)
n = min

{
P
k(u)
ni ; i = 1, . . . , N

}
. Substituting the expression for P

k(u)
ni

into the technology distribution yields a distribution of prices G
k(u)
ni (p) = 1 − F k(u)

i (cki τ
k(u)
ni /p) =

1−e−T
k(u)
i (cki τ

k(u)
ni )−θpθ . Buyers purchase the good from the country with the lowest price, so the price

distribution is the distribution of minimum prices: G
k(u)
n (p) = 1−

∏N
i=1[1−Gk(u)

ni (p)] = 1−e−Φk(u)n pθ ,

where Φ
k(u)
n =

∑N
i=1 T

k(u)
i (cki τ

k(u)
ni )−θ. Substituting this distribution into the CES price index yields

the expression for p
k(u)
n .

16This probability is Pr
[
p
k(u)
ni (l) ≤ min

{
p
k(u)
ni′ (l); i′ 6= i

}]
=
∫∞

0

∏
i′ 6=i[1 − G

k(u)
ni′ (p)] dG

k(u)
ni (p).

Substituting the distribution of prices G
k(u)
ni yields the expression shown in the equation.
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will purchase from a given origin country relative to a destination country with a

lower price.

1.4.6 Market clearing

Total expenditure by country n on industry k goods Xk
n can be divided into expendi-

ture on intermediates XI,k
n and expenditure on final goods XF,k

n : Xk
n = XI,k

n + XF,k
n ,

and we can allocate intermediate and final expenditure to each origin country i using

the trade shares π
k(u)
ni :

Xk
ni = πI,kni X

I,k
n + πF,kni X

F,k
n . (1.14)

Goods markets clear, so the value of industry output Qk
i equals the sum of expenditure

by all countries n on industry k goods from country i: Qk
i =

∑N
n=1 X

k
ni. Substituting

(1.14) into the goods market clearing equation, we have:

Qk
i =

N∑
n=1

(
πI,kni X

I,k
n + πF,kni X

F,k
n

)
. (1.15)

Recalling the Cobb-Douglas production structure, equilibrium industry expenditures

on labor and capital are a constant share of industry output:

wnL
k
n = αknβ

k
nQ

k
n and rnK

k
n = ιknβ

k
nQ

k
n, (1.16)

where Lkn and Kk
n are the industry demands for labor and capital. Factor markets

clear, so
∑

k L
k
n = Ln and

∑
kK

k
n = Kn. Industry expenditure on intermediates

is a fraction 1 − βkn of industry output, so we can write expenditure on industry k
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intermediates as a function of output in all industries k′ using the input shares ηk
′,k
n :

XI,k
n =

∑
k′

ηk
′,k
n (1− βk′n )Qk′

n . (1.17)

I do not require that trade is balanced. Denote Sn as the exogenous trade surplus of

country n, with
∑

n Sn = 0 and Sn =
∑

k S
k
n. The industry-level trade surplus Skn is

output minus expenditure, Skn = Qk
n −Xk

n, so we can write equation (1.17) as:

XI,k
n =

∑
k′

ηk
′,k
n (1− βk′n )(Xk′

n + Sk
′

n ). (1.18)

Final consumption expenditure XF
n equals national income Yn, the sum of payments

to labor and capital across all industries, minus the trade surplus Sn:

XF
n = Yn − Sn =

∑
k

(wnL
k
n + rnK

k
n)− Sn. (1.19)

Final consumption expenditure is allocated to each industry k by consumption shares

ηF,kn , so XF,k
n = ηF,kn XF

n . This equation, and equations (1.16), (1.17), and (1.19) imply

that we can write expenditure on industry k intermediates XI,k
n and expenditure on

industry k final goods XF,k
n as functions of payments to the factors of production.

That is,

XI,k
n =

∑
k′

ηk
′,k
n (1− βk′n )

αk′n β
k′
n

wnL
k′

n (1.20)

and

XF,k
n = ηF,kn

∑
k

(wnL
k
n + rnK

k
n − Skn). (1.21)
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Substituting equations (1.20) and (1.21) into (1.15), we can write:

Qk
i =

N∑
n=1

[
πI,kni

(∑
k′

ηk
′,k
n (1− βk′n )

αk′n β
k′
n

wnL
k′

n

)
+ πF,kni η

F,k
n

∑
k

(wnL
k
n + rnK

k
n − Skn)

]
.

(1.22)

This equation, along with the cost and price equations (1.10)-(1.12), the trade share

equation (1.13), and the factor market clearing and trade balance conditions, charac-

terizes the solution. The parameters are αkn, ιkn, βkn, ηk,k
′

n , T
k(u)
n , τ

k(u)
ni , Ln, Kn, Sn, and

θ. The model solves for costs ckn, wages wn, rental rates rn, prices p
k(u)
n , trade shares

π
k(u)
ni , industry demands for labor and capital, Lkn and Kk

n, and each industry-level

trade surplus Skn.

1.5 Estimation

In this section I describe the procedure that I use to estimate and recover the pa-

rameters of the model. I use the estimated parameters to solve the model and to

quantify the contribution of end-use variation to the gains from trade (Section 1.8).

I also use the parameter estimates to understand the extent to which intermediate

relative to final technology, trade costs, and prices are related to a country’s income

level (Section 1.7).

1.5.1 Deriving the estimating equation

The trade share equation (1.13) forms the basis of the estimation procedure. I follow

Levchenko and Zhang (2013) to estimate the technology and trade cost parameters.

I begin by normalizing the trade share equation by its domestic counterpart π
k(u)
nn .

Dividing by the domestic trade share eliminates prices p
k(u)
n and clearly illustrates

comparative advantage: a country will import a larger share than it purchases do-
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mestically if the exporting country has an overall productivity and cost advantage,

inclusive of trade costs (which are normalized to one in the domestic country):

π
k(u)
ni

π
k(u)
nn

=
T
k(u)
i

T
k(u)
n

(
cki τ

k(u)
ni

ckn

)−θ
. (1.23)

Log-linearizing, this equation becomes

ln

(
π
k(u)
ni

π
k(u)
nn

)
= ln

(
T
k(u)
i

(
cki
)−θ)− ln

(
T k(u)
n

(
ckn
)−θ)− θ ln τ

k(u)
ni .17 (1.24)

The first two terms on the right hand side of the equation measure the origin and

destination country’s technology and cost advantage for producing industry k goods

for end use u. I estimate the size of this advantage using fixed effects S
k(u)
i and S

k(u)
n .

Next, I specify a functional form for the trade cost parameter τ
k(u)
ni using trade cost

proxies that are standard in the gravity literature: distance, presence of a shared

border, and common language. Log trade costs are given by

ln τ
k(u)
ni =

(
dk(u)

)
m

+ bk(u) + lk(u) + ex
k(u)
i . (1.25)

where
(
dk(u)

)
m

is the effect of lying in distance interval m, bk(u) is the effect of having

a shared border, and lk(u) is the effect of sharing a language. The dummy variable as-

sociated with each effect is suppressed to simplify notation. The distance intervals in

miles, following Eaton and Kortum, are: [0,375), [375, 750), [750, 1500), [1500,3000),

[3000,6000), and [6000, max]. I also include an exporter fixed effect ex
k(u)
i ; Waugh

(2010) shows that exporter fixed effects, as opposed to importer fixed effects, produce

estimates that are more consistent with the observed pattern of prices and country

incomes. Substituting the trade cost specification (1.25) into equation (1.24), replac-

17Taking logs drops zeros from the estimation. I discuss dropped observations in Section 1.6.
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ing the technology and cost advantage terms with fixed effects, and incorporating an

error term ε
k(u)
ni , we arrive at the estimating equation:

ln

(
π
k(u)
ni

π
k(u)
nn

)
= S

k(u)
i − Sk(u)

n − θ
(
dk(u)

)
m
− θbk(u) − θlk(u) − θexk(u)

i + ε
k(u)
ni . (1.26)

The fixed effects S
k(u)
i and S

k(u)
n measure the same object—the technology-adjusted

unit cost—so I restrict them to be symmetric. That is, S
k(u)
i = S

k(u)
n for all i = n.

Further, the estimating equation reduces to an identity for observations in which

i = n, so domestic flows are omitted. I estimate the equation using OLS and Poisson

and Gamma pseudo-maximum likelihood (PML) methods. I perform the Poisson and

Gamma PML estimation methods to incorporate zeros—estimating the equation in

logs drops zero trade flows—and to address the problem posed by heteroskedasticity

that arises in log-transformed regressions as discussed in Santos-Silva and Tenreyro

(2006).18

1.5.2 Recovering the parameters

In this subsection I describe the method that I use to recover the values T
k(u)
i , τ

k(u)
ni ,

and p
k(u)
i . These estimates are used to investigate the relationship between aspects of

comparative advantage and a country’s income level, and the technology and trade

cost parameters are used to solve the model. Each step requires an estimate of θ,

which I again take to be four.

Recall that the estimated fixed effect S
k(u)
i measures the technology-adjusted unit

18Santos-Silva and Tenreyro (2006) show that when the variance of the error term in a multi-
plicative model depends on the regressors, the expected value of the error term in the log-linearized
model will also depend on the regressors.
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cost:

S
k(u)
i = ln

(
T
k(u)
i

(
cki
)−θ)

.19 (1.27)

To find prices I follow the method of Shikher (2012) by substituting the exponentiated

fixed effect exp
(
S
k(u)
i

)
into the domestic expenditure share equation and rearranging:

p
k(u)
i =

 π
k(u)
ii

exp
(
S
k(u)
i

)
1/θ

. (1.28)

To recover the technology parameter T
k(u)
i , first construct unit costs cki using the

Cobb-Douglas functional form: cki =
(
w
αki
i r

ιki
i

)βki (
ρki
)1−βki . Wages, rental rates, and

labor and capital shares are data from the World Input-Output Database, and the

price of a bundle of intermediates ρki =
∏

k′

(
pI,k

′

i

)ηk,k′i

is constructed using prices

derived as described above. Extract T
k(u)
i from the fixed effect S

k(u)
i using this value

of cki and equation (1.27). The trade cost parameters τ
k(u)
ni are constructed by expo-

nentiating equation (1.25): ln τ
k(u)
ni =

(
dk(u)

)
m

+ bk(u) + lk(u) + ex
k(u)
i .20

1.6 Data and implementation

I estimate the parameters of the model using the World Input-Output Database

(WIOD), a global input-output table that reports trade flows between 35 industries

(both manufacturing and service classifications) and 40 countries (and a rest of world

aggregate) for the years 1995 through 2009. The 40 countries comprise 85 percent

of world trade and include 29 countries classified as high income and 11 classified

19The fixed effects are estimated relative to a reference country, which I take to be the US, so all
variables used in the recovery of the parameters are also transformed to be relative to the US.

20The US is also the reference country for the exporter fixed effect, so the trade cost estimates are,
net of all bilateral components, relative to the cost to export from the US for each industry-end-use
pair.
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as upper middle or lower middle income by the World Bank in 2007. The data

set distinguishes the exporting country and industry and the importing country and

industry.21 Because I am interested in the distinction between intermediate and final

use, I aggregate all industry-use categories to create the intermediate classification,

and all final consumption, investment, and inventory categories to create the final

end-use classification.22

In order to minimize the number of trade zeros while keeping the data as disag-

gregate as possible, I combine countries or industries that have zero industry output.

This aggregation scheme eliminates all country-by-industry output zeros, and reduces

the number of countries from 40 to 38 and the number of industries from 35 to 32. See

Tables 1.5 and 1.6 for WIOD countries and industries and the aggregation scheme.

I estimate the model for the year 2007 because it is the most recent year that fully

predates the trade collapse, and because capital stocks are provided only for a limited

set of countries in 2008 and 2009. I exclude the rest of world aggregate because of

the difficulty to create distance, border, and shared language variables for this region.

The dimensions of the final data set are 38 origin by 38 destination countries by 32

industries by 2 types of end use.

21WIOD distinguishes use by allocating HS 6-digit import flows from the UN COMTRADE
database to end-use categories (intermediate, final consumption, and investment) using a correspon-
dence based on the Broad Economic Categories (BEC) from the United Nations Statistics Division.
When a product can reasonably be classified into more than one end-use category, weights are ap-
plied to divide the trade flow into the relevant categories. Services trade is taken from various
sources (UN, Eurostat, and OECD), and is split into end-use categories using average use shares
from import input-output tables from Eurostat. Within the intermediate, final consumption, and
investment categories trade flows are allocated by proportionality assumption. See Timmer (2012)
for a detailed discussion of the construction of the World Input-Output Database.

22In some country-by-industry observations, the change in inventories is negative, reflecting a
decline in inventories, and large enough that the total final use value is negative. I handle negative
inventories using the method of Costinot and Rodŕıguez-Clare (2013) (see the online appendix to
their paper), which is to set negative inventories to zero, and recalculate the total output vector
and matrix of intermediate flows using the identity X = (I − A)−1F , where X is the total output
vector, A is the matrix of direct input coefficients, and F is the final demand vector, with negative
inventories set to zero and positive inventories left unchanged.



31

I use the Socio-Economic Accounts (SEA) that accompany the WIOD to con-

struct wages, rental rates, and labor and capital shares. Wages are calculated as

total labor compensation in a country (LAB) divided by the total number of hours

worked by persons engaged (H EMP). The rental rate is constructed by dividing total

capital compensation (CAP) by the value of the capital stock (K GFCF ), which is

converted from real to nominal values using the price index for gross fixed capital

formation (GFCF P). Labor and capital compensation and the value of the capital

stock are converted to US dollars using exchange rates provided by WIOD. Labor

and capital shares are computed by dividing labor compensation (LAB) and capital

compensation (CAP) by gross output (GO). Input shares are constructed directly

from WIOD by dividing country-by-industry total expenditure on intermediates by

country-by-industry expenditure on intermediates from a particular industry. I com-

pute each country’s trade surplus using WIOD, excluding trade with the rest of the

world aggregate. I do this to achieve balanced “world” trade in the sample of coun-

tries that I use in the simulation. Per capita income, which is used to investigate the

relationship between comparative advantage and a country’s level of development in

Section 1.7.2 is given by output-side real GDP at chained PPPs in 2005 US dollars

(rgdpo) per person (pop) for the year 2007 from the Penn World Tables Version 8.0.

The estimation strategy requires taking the log of relative trade shares, so zeros

are not included. In total, 5.9 percent of the relative trade share observations are

zeros. The prevalence of zeros varies by industry, and is higher in service industries—

10 percent in service industries and 1.7 percent in goods industries. Within indus-

tries, across end use, the proportions of zeros are very similar. This means that, to

the extent that missing observations introduce bias in the OLS estimates, concerns

should be less pronounced for within-industry, across-end use comparisons, which are

the focus of this paper. Even if zeros do not pose a significant problem, estimat-
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ing log-transformed regression equations will produce inconsistent estimates when

heteroskedasticity is present. To account for zeros and this problem posed by het-

eroskedasticity, I estimate the model using Poisson and Gamma pseudo-maximum

likelihood (PML) methods in addition to OLS. I follow the procedure outlined in

Head and Mayer (2014) to determine which of the three sets of estimates are most

reliable.

1.7 Results

In this section I discuss the choice of estimation method and use the parameter

estimates to take a closer look at technology, trade costs, and prices by end use as

they relate to income. I also describe the trade cost estimates by end use, and show

that the estimates imply a Balassa-Samuelson effect.

1.7.1 Evaluating the estimation methods

Determining whether to use the OLS, Poisson PML, or Gamma PML estimates re-

quires assessing the similarity of the estimates across models. Head and Mayer (2014)

provide recommendations for three scenarios: (1) the parameter estimates across the

three methods are similar, (2) Poisson and Gamma PML estimates are similar but

distinct from the OLS estimates, (3) the Gamma and OLS coefficients are similar and

the Poisson are smaller in absolute magnitude. To assess the similarity of the high

number of estimates, I regress the set of estimates from one method on the set of es-

timates for the other methods and force the coefficient on the regressor to equal one,

ensuring that a good fit signifies that the estimates are not just correlated, but also
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similar in magnitude.23 The R-squared from each regression is reported in Table 1.7.

I report the R-squared for the trade cost coefficients (distance, border, and language),

the fixed effects (competitiveness and exporter), and for all coefficients. The trade

cost estimates are similar across models, and the OLS estimates are particularly close

to both the Poisson and Gamma estimates: R-squared 0.84 and 0.81, respectively.

The fixed effects are less similar and reduce the strength of the overall fit, but the

R-squared remains close to or above 0.5 in each case; this points toward scenario (1)

from Head and Mayer. Further, the Poisson and Gamma estimates are less similar

to each other than the OLS estimates are to each of these methods (R-squared 0.48

versus 0.54 and 0.57), which does not favor scenario (2). Scatter plots that correspond

to the R-squared calculations, provided in Figure 1.5, depict the relationship between

coefficients across models. Regarding scenario (3), the Gamma and OLS estimates are

similar, but the Poisson estimates are not smaller in absolute magnitude. Table 1.8

shows the average absolute value of the estimate for each set of parameters, and the

Poisson estimates are not systematically lower than the others. This points toward

scenario (1), in which case the log-linear model is well specified and consistency of the

estimates is not a concern. I proceed here with the OLS estimates, and all exercises

performed using the Poisson and Gamma estimates are available upon request.

1.7.2 A closer look at comparative advantage

The exercise in Section 1.3 indicated that low income countries have a comparative

disadvantage in intermediate relative to final goods, and that these countries pay

relatively higher prices for intermediates. In this section I use the parameter estimates

23The estimating equation produces 5,248 parameter estimates: there are (i− 1) ∗ u ∗ k competi-

tiveness fixed effects S
k(u)
i , (i− 1) ∗ u ∗ k exporter fixed effects ex

k(u)
i , m ∗ u ∗ k distance coefficients(

dk(u)
)
m

, u ∗ k border coefficients bk(u), and u ∗ k common language coefficients lk(u).
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to investigate these relationships further.

Before assessing the relationship between comparative advantage at the end-use

level and income, I first evaluate the relationship between the individual intermedi-

ate and final estimates and income. I separately regress the intermediate and final

technology, trade cost, and price estimates on log per capita GDP and industry fixed

effects. The estimating equation for the technology and price estimates is:

ln Υ
k(u)
i = β0 + β1 lnGDPi + αk(u) + ε

k(u)
i , for u = {I, F}, (1.29)

where Υ
k(u)
i represents technology (T

k(u)
i )1/θ (the mean of each Fréchet distribution) or

price p
k(u)
i , αk(u) are the fixed effects, and ε

k(u)
i is the error term. I expect that β1 will

be positive in the technology and price regressions because higher income countries

are on average more productive and pay higher wages, which imply higher input costs.

For trade costs, which vary by origin and destination country, the estimating equation

is:

ln τ
k(u)
ni = β0 + β1 lnGDPc + αk(u) + ε

k(u)
ni , for u = {I, F} and c = {n, i}, (1.30)

where the subscript c on the variable lnGDPc indicates whether trade costs are re-

gressed on exporter or importer income. I expect β1 to be negative in the trade cost

regressions, reflecting better transport infrastructure and more open trade policies

in higher income countries. I run the regressions for all industries together and for

four broad industry classifications: Agriculture, Mining, Manufacturing, and Services.

Table 1.9 present the results.24 High income countries have higher average technol-

24The dependent variable is a function of estimates, so I have also followed the Lewis and Linzer
(2005) FGLS method to account for sampling error in the estimation of the dependent variable,
using bootstrapped standard errors of the technology, trade cost, and price estimates to construct
the weights that are applied in the second-stage WLS regression. The Stata routine for the procedure



35

ogy levels for both intermediates and final goods than low income countries in all

categories except Mining. The coefficient on income in the price regressions is also

positive in the majority of the regressions. It is notably not statistically different from

zero in the intermediate Mining and Manufacturing categories, likely due to the very

tradable nature of these goods and, in the case of Mining, the lack of a relationship

between technology and income. The export trade cost regressions show that the cost

to export is decreasing in income for all categories except intermediate Agriculture

and Mining, perhaps reflecting trade policies in lower income countries that promote

commodity exports. The estimates from the import trade cost regressions show that

higher income countries also pay less to import than lower income countries. The

relationship is less pronounced than it is for export trade costs, but it exists for all

industry categories. The signs of the coefficients are as expected—positive for the

technology and price regressions and negative for the trade cost regressions—in every

specification that includes all industries and in the majority of the industry category

specifications.

To evaluate comparative advantage at the end-use level, I next regress relative

values of the estimates on income. The specifications are the same as above, except

the left hand side is now the log of the ratio of the intermediate estimate to the final

estimate. The estimating equation for technology and prices is:

ln

(
ΥI,k
i

ΥF,k
i

)
= γ0 + γ1 lnGDPi + αk + µki , (1.31)

edvreg does not allow clustered standard errors, and the standard errors are more conservative when
they are clustered and the Lewis and Linzer approach is not used. For this reason I present the
clustered standard error estimates rather than the Lewis and Linzer estimates.
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and the estimating equation for trade costs is:

ln

(
τ I,kni
τF,kni

)
= γ0 + γ1 lnGDPc + αk + µkni, for c = {n, i}. (1.32)

The exercise in Section 1.3 that related relative domestic expenditure shares to relative

technology and relative prices showed that low income countries have a comparative

disadvantage in the production of intermediates, and the data showed that the relative

price of intermediates is higher in these countries. It is likely that these findings do

not hold for every industry category, but I do expect broadly similar results—that γ1

is positive in the technology regressions and negative in the price regressions. Given

that relative prices are decreasing in income, it is reasonable to expect that it is more

difficult for lower income countries to import intermediates relative to final goods,

implying that γ1 is negative in the import trade cost regression; the price data do

not have implications for the export trade cost regressions, however. The results are

shown in Table 1.10. High income countries have an overall comparative advantage in

intermediates that is driven by comparative advantage in the Agriculture and Man-

ufacturing sectors. The export trade cost regression coefficients are significant and

positive for Agriculture and Manufacturing, indicating that lower income countries

are able to export intermediate goods in these industries at a relatively lower cost

than final goods compared to high income countries. The coefficients from the import

trade cost regressions are mostly negative, indicating that low income countries have

relatively more difficulty importing intermediates than final goods relative to high

income countries. Relative prices are negatively related to income in all categories.

This is consistent with the aggregate data, and with the fact that low income countries

have a comparative disadvantage in intermediates and that it costs these countries

relatively more to import intermediates. Recalling equation (1.12), prices are a func-
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tion of the states of technology around the world and the importing country’s access

to these technologies via trade costs. If low income countries are not productive in

intermediates and pay more to import them, they will pay a higher overall price.

1.7.3 Trade costs

Table 1.11 takes a closer look at trade costs. Each column shows the average coeffi-

cient across industries for intermediates and final use—for all industries, goods, and

services. The familiar gravity result that trade decreases with distance and increases

with the presence of a shared border and common language holds up by end use,

and for both goods and services classifications. Across all industries, final goods and

services are less tradable than intermediates, and the size of the barriers are large.

The average implied effect on cost at a distance of [1500,3000) miles is 293 percent

for final goods and services and 209 percent for intermediates with θ = 4.25 Not

surprisingly, services are much less tradable than goods, and the result that final

use goods or services tend to be less tradable than their intermediate counterparts

holds up within these classifications (with the exception of the two furthest distance

intervals for goods), and particularly so for services. This reflects the fact that final

services (restaurant services or haircuts, for example) must often be consumed at the

location of production, but intermediate services (financial services or information

technology) need not.

1.7.4 Balassa-Samuelson effect

The results in Tables 1.10, 1.11, and 1.12 provide evidence of a Balassa-Samuelson

effect, which says that countries with a higher productivity in the tradables sector

25The implied percentage effect on cost is 100(e−d̂/θ − 1) for an estimated coefficient d̂.
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will have a higher relative price of nontradables. I treat all goods as tradable, but

final goods are comparatively less tradable than intermediates, as Table 1.11 shows.

Greater tradability in intermediates means that the prices of intermediates should be

less variable across locations than the prices of final goods and services. Table 1.12

demonstrates this by reporting the standard deviation by end-use classification for

industry-demeaned prices. Intermediate prices are less variable than final prices, and

the same holds within goods and services classifications. Higher income countries

have a higher technology level in intermediates, overall and for goods and services,

so it follows that these countries will have a higher relative price of the less tradable

good—or, equivalently, that lower income countries will have a higher relative price

of the more tradable good, the intermediate (Table 1.10).

1.8 Simulation

In this section I solve the full general equilibrium model to determine the effect

that incorporating end-use variation has on the gains from trade relative to a model

without end-use variation. The labor, capital, and input shares (αkn, βkn, and ηk,k
′

n ),

size of the labor force (Ln), and capital stock (Kn) are constructed from WIOD as

described in Section 1.6. The technology and trade cost parameters (T
k(u)
i and τ

k(u)
ni )

are estimated according to the procedure described in Section 1.5, and θ is taken to

be 4. The model solves for costs ckn, wages wn, rental rates rn, prices p
k(u)
n , trade

shares π
k(u)
ni , industry demand for labor and capital, Lkn and Kk

n, and each industry-

level trade surplus Skn. I solve the model with and without end-use variation and

compare the gains from trade. In the version without end-use variation, I re-estimate

the parameters using trade data that is not distinguished by end use—that is, the

left side of the estimating equation (1.26) is ln
(
πkni
πknn

)
. The gains from trade relative
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to autarky for the models with and without end-use variation, and the discrepancy

between the two, are shown in Tables 1.13 and 1.14. In line with the literature,

sectoral heterogeneity, input-output linkages, and multiple factors tend to raise the

gains from trade: the gains from trade are larger under the full model than under

the simple model (recall Tables 1.2 and 1.4) on average and for the majority of

countries. As Tables 1.13 and 1.14 show, end-use variation also raises the gains from

trade. The gains from trade are 14.4 percent higher on average under the model

with end-use variation than under the model without, and are also higher for each

income classification and for each country. Relative to the addition of other forms of

heterogeneity, the contribution of end-use variation is sizeable. The gains from trade

contributed by end-use variation alone are more than one-third the size of the gains

from trade contributed by sectoral heterogeneity, input-output linkages, and multiple

factors of production.26 As in the analytical exercise, the contribution of end-use

variation to the gains from trade is the largest for the lower income countries—26.3

percent on average for the upper middle income countries and 25.6 percent for the

lower middle income countries.

1.9 Conclusion

In this paper I show that a proper calculation of the gains from trade requires allowing

for differences in the characteristics of intermediate and final goods trade. Domes-

tic expenditure shares and prices vary by intermediate and final use, indicating the

presence of productivity differences that generate gains from trade. This source of

productivity differences has not previously been identified nor has it been explored as

26The average gains from trade under the full model with end-use variation are 33.3 percent,
compared to 29.7 percent for the full model without end-use variation, and 19.4 percent for the
standard one-sector, one-factor model.
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an avenue for the gains from trade. Distinguishing intermediate and final goods trade

is of added importance because intermediates are used in the production of other

goods and final goods are not—meaning that the gains from trade in intermediates,

but not final goods, accumulate through the production process. I construct a sim-

ple model that allows for productivity differences in the production of intermediate

and final goods, and show analytically that the gains from trade are always weakly

understated in a model that does not include this variation. Using a novel data set,

I show that the average discrepancies using the simple model and country-level data

are 11.1 percent for high income countries, 15.1 percent for upper middle income

countries, and 16.2 percent for lower middle income countries, and that the gains

from trade are two to three times more responsive to changes in intermediates trade

than to final goods trade. To more fully assess the size of the discrepancy, I construct

a model that features variation in intermediate and final use at the industry level,

linkages between industries, and multiple factors of production. Solving the model

numerically, I find that the average gains from trade are 9.0 percent, 26.3 percent,

and 25.6 percent higher for high, upper middle, and lower middle income countries,

respectively, under the end-use model. Low income countries benefit more from trade

across intermediate and final use, and this appears to be related to the nature of com-

parative advantage. The parameter estimates show that low income countries have a

comparative disadvantage in the production of intermediates; thus, opening to trade

allows these countries to import intermediates—which generate cumulative gains from

trade—from the more productive high income countries. Given their comparative dis-

advantage in intermediates, access to imported intermediates is particularly central

to welfare in lower income countries. Despite this, the parameter estimates reveal

that trade costs pose a disproportionate burden for trade in intermediates in low in-

come countries: lower income countries pay relatively more to import intermediate
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goods than final goods compared to higher income countries. The combination of a

comparative disadvantage in intermediates and a relatively higher cost to import in-

termediates results in a higher relative price of intermediates in low income countries.

Higher prices of intermediates present an important policy challenge, as they limit

the competitiveness of countries seeking greater access to international production

networks. This study suggests that policies that target productivity improvements

in intermediates and the lowering of barriers to trading intermediates may generate

important welfare gains in low income countries.
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1.10 Tables

Table 1.1: Determinants of the Gains from Trade Discrepancy:
Domestic Expenditure Shares and Labor Shares

Income Classification Overall Final Int. Final/Int. Labor Share

High 0.80 0.86 0.75 1.17 0.34
Upper Middle 0.83 0.87 0.79 1.11 0.31
Lower Middle 0.93 0.96 0.91 1.06 0.27

Notes: Income classifications are for the year 2007 and are defined by
the World Bank, see Table 1.5. Average shares, the ratios of final to in-
termediate domestic expenditure shares, and labor shares for the groups
are simple averages across countries. Labor shares are computed as
labor compensation/(gross output − capital compensation) for each coun-
try.

Table 1.2: Gains from Trade: Comparison of End-Use and Standard
Models

Income Classification Standard End-Use Discrepancy Relative Elasticity

High 0.214 0.245 0.111 2.06
Upper Middle 0.178 0.204 0.151 2.27
Lower Middle 0.074 0.085 0.162 3.05

Notes: Income classifications are for the year 2007 and are defined by the World
Bank, see Table 1.5. Gains from trade are computed with θ = 4, and are net gains
from trade (Ŵ −1). Gains from trade, the discrepancy between the two models (re-
ported in percent), and the relative elasticities are averages across countries within
each income classification.
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Table 1.3: Determinants of the Gains from Trade Discrepancy: Domestic
Expenditure Shares and Labor Shares

Overall Final Int. Final/Int. Labor Share

Australia 0.92 0.93 0.92 1.01 0.36
Austria 0.77 0.83 0.71 1.17 0.37
Belgium 0.71 0.80 0.64 1.25 0.32
Bulgaria 0.72 0.77 0.68 1.15 0.22
Brazil 0.96 0.97 0.94 1.04 0.37
Canada 0.84 0.87 0.81 1.08 0.39
China 0.93 0.96 0.92 1.04 0.17
Cyprus, Luxembourg, & Malta 0.58 0.77 0.46 1.65 0.25
Czech Republic 0.74 0.81 0.70 1.15 0.24
Germany 0.82 0.86 0.79 1.10 0.37
Denmark 0.78 0.85 0.70 1.22 0.38
Spain 0.87 0.90 0.85 1.06 0.34
Estonia 0.74 0.80 0.69 1.16 0.31
Finland 0.82 0.89 0.77 1.15 0.33
France 0.88 0.91 0.85 1.07 0.38
United Kingdom 0.88 0.90 0.86 1.04 0.40
Greece 0.84 0.89 0.75 1.19 0.44
Hungary 0.67 0.80 0.57 1.41 0.29
Indonesia 0.93 0.96 0.89 1.07 0.33
India 0.94 0.96 0.91 1.06 0.32
Ireland 0.68 0.80 0.60 1.33 0.29
Italy 0.89 0.91 0.87 1.05 0.35
Japan 0.95 0.96 0.94 1.03 0.37
Korea 0.88 0.92 0.85 1.08 0.31
Lithuania 0.74 0.80 0.67 1.19 0.36
Latvia 0.78 0.80 0.75 1.06 0.31
Mexico 0.86 0.92 0.76 1.22 0.30
Netherlands 0.78 0.86 0.70 1.22 0.36
Poland 0.81 0.86 0.77 1.12 0.29
Portugal 0.83 0.85 0.80 1.06 0.36
Romania 0.81 0.85 0.76 1.12 0.36
Russia 0.91 0.89 0.92 0.97 0.36
Slovak Republic 0.70 0.80 0.62 1.28 0.19
Slovenia 0.72 0.79 0.66 1.19 0.34
Sweden 0.80 0.86 0.75 1.16 0.36
Turkey 0.90 0.93 0.86 1.09 0.25
Taiwan 0.79 0.86 0.74 1.17 0.29
United States 0.94 0.95 0.92 1.03 0.42

Notes: Labor shares are computed as labor compensation/(gross output −
capital compensation).
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Table 1.4: Gains from Trade: Comparison of End-Use and Standard Models

Country Standard End-Use Discrepancy Relative Elasticity

Australia 0.059 0.061 0.019 1.80
Austria 0.195 0.215 0.103 1.71
Belgium 0.303 0.337 0.113 2.12
Bulgaria 0.448 0.505 0.126 3.52
Brazil 0.030 0.035 0.156 1.73
Canada 0.117 0.125 0.073 1.60
China 0.108 0.119 0.094 4.93
Cyprus, Luxembourg, and Malta 0.730 0.898 0.230 2.99
Czech Republic 0.376 0.405 0.077 3.20
Germany 0.139 0.148 0.069 1.69
Denmark 0.182 0.206 0.128 1.63
Spain 0.106 0.114 0.077 1.95
Estonia 0.275 0.306 0.112 2.26
Finland 0.157 0.176 0.118 2.02
France 0.087 0.095 0.089 1.66
United Kingdom 0.083 0.087 0.044 1.47
Greece 0.106 0.132 0.248 1.30
Hungary 0.410 0.495 0.207 2.45
Indonesia 0.059 0.071 0.197 2.06
India 0.054 0.064 0.195 2.16
Ireland 0.396 0.455 0.149 2.48
Italy 0.087 0.093 0.069 1.90
Japan 0.035 0.038 0.077 1.71
Korea 0.105 0.114 0.078 2.20
Lithuania 0.232 0.266 0.149 1.77
Latvia 0.222 0.235 0.059 2.19
Mexico 0.138 0.198 0.436 2.32
Netherlands 0.186 0.211 0.134 1.76
Poland 0.193 0.215 0.115 2.44
Portugal 0.137 0.147 0.067 1.78
Romania 0.162 0.181 0.114 1.81
Russia 0.068 0.065 -0.048 1.74
Slovak Republic 0.593 0.731 0.232 4.14
Slovenia 0.270 0.295 0.093 1.94
Sweden 0.166 0.183 0.098 1.79
Turkey 0.108 0.136 0.253 2.92
Taiwan 0.224 0.251 0.119 2.50
United States 0.039 0.042 0.069 1.41

Notes: Gains from trade are computed using the domestic expenditure and labor shares re-
ported in Table 1.3 with θ = 4, and are net gains from trade (Ŵ − 1). The discrepancy is the
percent difference across the two models.
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Table 1.5: List of Countries

Country Abbreviation Income Classification, 2007

Australia AUS High
Austria AUT High
Belgium BEL High
Bulgaria BGR Upper Middle
Brazil BRA Upper Middle
Canada CAN High
China CHN Lower Middle
Cyprus, Luxembourg, and Malta CYP-LUX-MLT High
Czech Republic CZE High
Germany DEU High
Denmark DNK High
Spain ESP High
Estonia EST High
Finland FIN High
France FRA High
United Kingdom GBR High
Greece GRC High
Hungary HUN High
Indonesia IDN Lower Middle
India IND Lower Middle
Ireland IRL High
Italy ITA High
Japan JPN High
Korea KOR High
Lithuania LTU Upper Middle
Latvia LVA Upper Middle
Mexico MEX Upper Middle
Netherlands NLD High
Poland POL Upper Middle
Portugal PRT High
Romania ROM Upper Middle
Russia RUS Upper Middle
Slovak Republic SVK High
Slovenia SVN High
Sweden SWE High
Turkey TUR Upper Middle
Taiwan TWN High
United States USA High

Notes: This table shows the list of countries, and their abbreviations and 2007 income
classifications, included in the World Input-Output Database. Income classifications
are determined by GNI per capita thresholds set by the World Bank. The thresh-
olds, in US dollars, for Lower Middle, Upper Middle, and High income countries,
respectively, are: $936-$3,705; $3,706-$11,455, and > $11,455.
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Table 1.6: List of Industries

NACE Code Description Classification Aggregation

AtB Agriculture, Hunting, Forestry and Fishing Agriculture AtB

C Mining and Quarrying Mining C

15t16 Food, Beverages and Tobacco

Manufacturing

15t16
17t18 Textiles and Textile Products 17t18

19 Leather, Leather and Footwear 19
20 Wood and Products of Wood and Cork 20

21t22 Pulp, Paper, Paper, Printing and Publishing 21t22
23 Coke, Refined Petroleum and Nuclear Fuel 23
24 Chemicals and Chemical Products 24
25 Rubber and Plastics 25
26 Other Non-Metallic Mineral 26

27t28 Basic Metals and Fabricated Metal 27t28
29 Machinery, Nec 29

30t33 Electrical and Optical Equipment 30t33
34t35 Transport Equipment 34t35
36t37 Manufacturing, Nec; Recycling 36t37

E Electricity, Gas and Water Supply

Services

E
F Construction F
50 Sale, Maintenance and Repair of Motor Vehicles and Motorcycles

50, 51
51 Wholesale Trade and Commission Trade
52 Retail Trade, Except of Motor Vehicles and Motorcycles 52
H Hotels and Restaurants H
60 Inland Transport 60
61 Water Transport 61
62 Air Transport 62
63 Other Supporting and Auxiliary Transport Activities 63
64 Post and Telecommunications 64
J Financial Intermediation J
70 Real Estate Activities 70

71t74 Renting of M&Eq and Other Business Activities 71t74
M Education M
N Health and Social Work N
L Public Admin and Defence; Compulsory Social Security

L, O, PO Other Community, Social and Personal Services
P Private Households with Employed Persons

Notes: This table shows the NACE code, description, classification, and aggregation scheme for
industries in the World Input-Output Database.

Table 1.7: OLS, PPML, and GPML R-squared

PPML v. OLS GPML v. OLS PPML v. GPML

Trade Cost Estimates 0.84 0.81 0.66
Fixed Effects 0.43 0.50 0.40
Entire Regression 0.54 0.57 0.48

Notes: This table shows the R-squared from a regression of the coefficients from
one estimation method against the coefficients from another estimation method
with the coefficient on the independent variable constrained to be one.
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Table 1.8: Average Absolute Value of Estimate

OLS PPML GPML

Distance [0,375) 3.78 4.38 4.23
Distance [375,750) 4.02 4.87 4.64
Distance [750,1500) 4.40 5.40 5.18
Distance [1500,3000) 4.99 6.10 6.15
Distance [3000,6000) 6.30 6.22 6.92
Distance [6000,max] 7.02 6.84 7.53
Shared border 0.74 0.82 0.95
Shared language 0.32 0.44 0.57
Competitiveness Fixed Effect 1.51 1.67 2.01
Exporter Fixed Effect 3.72 3.30 3.75

Notes: This table shows the average value of the absolute
value of the estimated coefficients across estimation meth-
ods.
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Table 1.10: Regression of Log Relative Parameters on
Log GDP Per Capita, OLS Estimates

Intermediate/Final

Coef. Std. Err. R-sq. N
Technology

All Industries 0.06*** (0.02) 0.36 1,184
Agriculture 0.19*** (0.04) 0.26 37
Mining 0.12 (0.12) 0.04 37
Manufacturing 0.09*** (0.03) 0.15 518
Services 0.03* (0.02) 0.46 592

Trade Costs (Exporter)
All Industries 0.04* (0.02) 0.41 45,283
Agriculture 0.25*** (0.07) 0.23 1,444
Mining 0.18 (0.13) 0.06 1,333
Manufacturing 0.09** (0.04) 0.18 20,031
Services -0.04* (0.02) 0.48 22,475

Trade Costs (Importer)
All Industries -0.01* (0.00) 0.41 45,283
Agriculture 0.01 (0.01) 0.00 1,444
Mining -0.08** (0.04) 0.01 1,333
Manufacturing -0.02** (0.01) 0.15 20,031
Services 0.00*** (0.00) 0.47 22,475

Prices
All Industries -0.05*** (0.02) 0.58 1,184
Agriculture -0.17*** (0.04) 0.27 37
Mining -0.18* (0.10) 0.12 37
Manufacturing -0.05** (0.02) 0.30 518
Services -0.04** (0.01) 0.56 592

Notes: All regressions include industry fixed effects. The export
trade cost estimates are obtained by regressing bilateral trade costs
on exporter GDP and the import trade cost estimates are obtained
by regressing bilateral trade costs on importer GDP. Standard er-
rors are clustered at the country level. Significance at the one
percent level is represented by ***, at the five percent level by **,
and at the ten percent level by *.
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Table 1.11: Trade Cost Components, OLS Estimates

Coefficients

All Industries Goods Services
Variable Int. Final Int. Final Int. Final

Distance [0,375) -2.13 -3.15 0.93 0.64 -5.19 -6.93
Distance [375,750) -3.22 -4.21 -0.36 -0.63 -6.07 -7.80
Distance [750,1500) -3.87 -4.79 -1.33 -1.41 -6.41 -8.16
Distance [1500,3000) -4.51 -5.47 -2.10 -2.26 -6.93 -8.68
Distance [3000,6000) -5.90 -6.70 -3.80 -3.64 -8.01 -9.77
Distance [6000,max] -6.66 -7.37 -4.48 -4.10 -8.84 -10.64
Shared border 0.76 0.73 0.78 0.69 0.73 0.76
Shared language 0.28 0.33 0.25 0.31 0.32 0.35

Notes: The trade cost components are the average distance, border, and
language coefficients across industries from equation (1.26).

Table 1.12: Standard Deviation of Prices by
End Use, OLS Estimates

All Industries Goods Services

Intermediate 0.27 0.15 0.35
Final 0.34 0.24 0.41

Notes: Prices are demeaned by industry before com-
puting the standard deviation.

Table 1.13: Gains from Trade Simulation: Comparison
of End-Use and Standard Models

Income Classification No End-Use End-Use Discrepancy

High 0.343 0.372 0.090
Upper Middle 0.245 0.312 0.263
Lower Middle 0.060 0.076 0.256

Notes: Income classifications are for the year 2007 and are defined
by the World Bank, see Table 1.5. Gains from trade are computed
solving the full model (with and without end-use variation) with
parameter values obtained as described in Sections 1.5 and 1.6,
and are net gains from trade (Ŵ − 1). Gains from trade and the
discrepancy between the two models (reported in percent), are
averages across countries within each income classification.
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Table 1.14: Gains from Trade Simulation: Comparison of End-Use
and Standard Models

Country No End-Use End-Use Discrepancy

Australia 0.063 0.069 0.084
Austria 0.411 0.444 0.082
Belgium 0.988 1.052 0.064
Bulgaria 0.639 0.675 0.055
Brazil 0.020 0.029 0.434
Canada 0.283 0.299 0.058
China 0.079 0.104 0.321
Cyprus, Luxembourg, and Malta 1.172 1.315 0.122
Czech Republic 0.674 0.707 0.050
Germany 0.234 0.250 0.068
Denmark 0.421 0.439 0.043
Spain 0.160 0.172 0.073
Estonia 0.465 0.516 0.109
Finland 0.149 0.159 0.064
France 0.205 0.209 0.019
United Kingdom 0.135 0.145 0.075
Greece 0.213 0.242 0.133
Hungary 0.621 0.667 0.075
Indonesia 0.036 0.045 0.234
India 0.065 0.078 0.212
Ireland 0.477 0.501 0.051
Italy 0.118 0.153 0.295
Japan 0.039 0.045 0.135
Korea 0.185 0.201 0.087
Lithuania 0.263 0.332 0.264
Latvia 0.536 0.918 0.713
Mexico 0.108 0.121 0.119
Netherlands 0.377 0.399 0.059
Poland 0.255 0.274 0.074
Portugal 0.193 0.211 0.093
Romania 0.202 0.228 0.126
Russia 0.069 0.097 0.402
Slovak Republic 0.343 0.375 0.092
Slovenia 0.548 0.599 0.093
Sweden 0.198 0.203 0.026
Turkey 0.099 0.117 0.177
Taiwan 0.166 0.198 0.189
United States 0.059 0.064 0.096

Notes: Gains from trade are computed solving the full model (with and
without end-use variation) with parameter values obtained as described in

Sections 1.5 and 1.6, and are net gains from trade (Ŵ − 1). The discrepancy
is the percent difference across the two models.
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1.11 Figures

Figure 1.1: Country-Level Domestic Expenditure Share, Intermediate vs. Final
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Notes: This figure plots the intermediate domestic expenditure share

πIii against the final domestic expenditure share πFii for the 40 countries

in the sample. The 45◦-line is included for reference.
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Figure 1.2: Country-by-Industry-Level Domestic Expenditure Share, Intermediate vs.
Final

Japan, Leather Goods
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Notes: This figure plots the intermediate domestic expenditure share

πI,kii against the final domestic expenditure share πF,kii for the 38x32

country-industry pairs in the sample. The 45◦-line is included for

reference.
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Figure 1.3: Gains from Trade Discrepancy, End-Use vs. Standard Model

Notes: This figure plots the discrepancy between the end-use and

standard gains from trade formulas given by equation (1.8) for

θ = 4.
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Figure 1.4: Domestic Expenditure Share, Prices, and Comparative Advantage

(a) Relative Domestic Expenditure Shares and
Income
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(b) Relative Prices and Income
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(c) Relative Technology and Income
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Notes: This figure plots the ratio of country-level intermediate to

final domestic expenditure shares (a), prices (b), and technology

levels T Ii /T
F
i implied by equation (1.9) (c) against log GDP per

capita for the 27 countries with relative price data.
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Figure 1.5: OLS v. Poisson PML v. Gamma PML

(a) Trade Cost Coefficients

Notes: This figure plots the estimated trade cost coefficients (distance, border, and

language effects) for one estimation method (OLS, PPML, or GPML) against the

same coefficients for another estimation method (OLS, PPML, or GPML). The 45◦-

line is provided for reference.

(b) Fixed Effects

Notes: This figure plots the estimated fixed effects (competitiveness and exporter)

for one estimation method (OLS, PPML, or GPML) against the same coefficients for

another estimation method (OLS, PPML, or GPML). The 45◦-line is provided for

reference.
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Chapter 2

Decomposing the Distance Effect
when Zero Trade Flows are
Prevalent

2.1 Introduction

It is well documented that distance affects international trade. Disdier and Head

(2008) consider 103 papers and 1,467 distance elasticity estimates and find that a 10

percent increase in distance reduces bilateral trade by 9 percent on average. Distance

elasticity estimates capture the impact of trade costs that are either a direct conse-

quence of, or more peripherally related to, geographical proximity. Direct distance-

related trade costs include freight and time-in-transit costs, and communication costs

and cultural differences may act as barriers to trade that are more indirectly related to

the physical distance goods travel. Evidence suggests that trade costs of each type are

declining. Hummels (2007) shows that prices of ocean and air freight have declined

steadily in the 20 years since the mid-1980s. Harrigan (2010) demonstrates that the

decline in the cost of air transport, a much faster shipping method, has been sharper

since 1990, and that transport has shifted accordingly toward air in the US. Rauch

and Trinidade (2003) note the importance of the internet in allowing firms searching



58

for trading partners to make better “first cuts,” which reduces the cost of finding a

suitable match. It is reasonable then to suspect that the importance of distance to

international trade is waning. In fact, evidence points to the contrary. Despite the

apparent decline in distance-related trade costs, distance seems to inhibit trade to an

increasing extent. Disdier and Head (2008) find that estimated distance effects have

not fallen, and in most specifications are rising. This presents an important puzzle

that many authors have attempted to resolve, but the literature remains inconclusive.

Berthelon and Freund (2008) identify aggregation as a potential problem, noting

that rising distance sensitivity might be the result of increased trade in distance-

sensitive products (a compositional effect), rather than individual industries neces-

sarily becoming more sensitive to distance. They find, however, that adjustments in

the composition of trade over time (1985-2005) have had little effect on the distance

elasticity and that increased distance sensitivity is the result of increases in 40 percent

of industries. With this knowledge they investigate the reasons that industry-level

distance sensitivity has risen. Rather than changes in trade costs affecting distance

sensitivity, they find that substitutability—whether a good is considered homogenous

or its elasticity of substitution has risen—is positively related to an increase in the

distance effect. Berthelon and Freund use ordinary least squares and a log-linearized

gravity equation to estimate the distance elasticities that underlie these conclusions.

This is the standard approach, but it is limited in that it cannot handle observations

of zero trade. Zeros in the trade data are prolific, and to exclude them is to overlook

relevant information about trade patterns and, importantly, may bias the elasticity

estimates. Zero trade often occurs when trading partners are distant, meaning that

estimates that exclude zeros are likely to understate the importance of distance.

The standard log-linearized gravity equation presents an additional problem. San-

tos Silva and Tenreyro (2006) show that, in the presence of heteroskedasticity, elas-
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ticity estimates derived from a log-linearized specification are biased. They propose a

Poisson pseudo-maximum-likelihood (PPML) method that is consistent in the pres-

ence of heteroskedasticity and is estimated in levels rather than logs, providing a

natural way to handle zeros.

In this paper, I expand upon the work of Berthelon and Freund by incorporating

zero trade flows into the estimation of disaggregate gravity equations and acknowl-

edging the potential threat that heteroskedasticity poses to the consistency of the

estimates. I do this using Tobit and PPML methodologies, in addition to a baseline

OLS specification. Tobit estimation is useful in that it acknowledges the censoring

of observations below zero, and thus the large mass of observations at or near that

level. However, zero-valued observations still cannot be handled directly in a Tobit

specification of a log-linear gravity model. The PPML procedure is thus an improve-

ment in that trade values enter in levels rather than logs, eliminating the problem

of incorporating zero-valued observations. The Tobit and PPML methodologies are

discussed in greater depth in Section 2.5. I estimate the models using bilateral trade

data for 224 countries and 764 industries over the periods 1997-2000, 2001-2005, and

2006-2009.

I find that the incorporation of zeros and the methodology used to estimate the

distance coefficients matters. Like Berthelon and Freund, I find that distance sensitiv-

ity increases over time in the OLS specification. Incorporating zero trade flows and

adjusting the methodology paints a different picture. Whereas distance sensitivity

increases by 9.6 percent on average from the first time period to the second and 7.3

percent from the second to the third using the OLS specification, the corresponding

figures for the PPML technique are 0.4 percent and 1.3 percent. Tobit estimation

shows that distance sensitivity has declined, by 3.2 percent and 14.3 percent. Further,

measures of substitutability and trade costs affect the level of the distance coefficient,
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but not the change in the distance coefficient when the PPML method is used to

estimate distance sensitivity.

In Section 2.2, I discuss literature related to the inclusion of zeros and disaggrega-

tion in gravity equation estimation, and how these adjustments affect the direction of

the estimated distance coefficients over time. Section 2.3 presents the gravity model

of international trade and describes the Berthelon and Freund aggregation method in

detail. I then describe the data and discuss what constitutes a zero for the purposes

of this paper in Section 2.4. The three estimation methods are presented in Sec-

tion 2.5. Sections 2.6 and 2.7 present the results of the gravity equation estimation

and disaggregation. Section 2.8 examines the reasons distance sensitivity varies by

industry and Section 2.9 concludes.

2.2 Related literature

Many recent papers have acknowledged the problem of discarding zero trade flow ob-

servations in a gravity model and present ways to handle them. Common approaches

are Tobit estimation, which acknowledges the positive mass of observations near zero

but does not explicitly allow for them in a log-linearized model, and Poisson pseudo-

maximum-likelihood, which is estimated in levels, and can therefore incorporate zero

observations directly. Disdier and Head (2008) find that methods that incorporate

zeros tend to produce larger distance coefficients (PPML notwithstanding), which is

not surprising given that countries that do not trade are farther apart on average than

those that do. Figure 2.1, discussed in Section 2.4, demonstrates this fact. Though

the coefficients tend to be larger, they are also more likely to decline over time, sug-

gesting that methods that allow for zeros provide a potential solution to the distance

puzzle.
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Felbermayr and Kohler (2006) estimate a Tobit model with panel data for the

years 1950-1997, adding one to all trade values to incorporate zeros. Whereas an OLS

specification shows that distance coefficients have increased over time, they find that

distance sensitivity has actually declined as time has progressed when the extensive

margin of trade is considered. However, procedures that incorporate zeros into a

log-linearized specification by increasing all trade values by a constant have been

criticized. King (1998) demonstrates that the choice of constant can substantially

affect the estimated coefficient. Coe, Subramanian, and Tamirisa (2007) estimate a

panel gravity model for the periods 1980-1989 and 1990-2000 using both Tobit and

Poisson pseudo-maximum-likelihood, and find that the estimated distance coefficients

decline in both periods.

Liu (2009) also uses Tobit and Poisson pseudo-maximum-likelihood approaches,

but considers a much longer time horizon, 1948-2003. His main objective is to examine

the effect of GATT/WTO on trade over time, but in the process finds that many of the

coefficients estimated using a random effects Tobit model are unrealistically large. Liu

cites probable violation of the homoskedasticity and normality assumptions as likely

causes, and considers the Poisson estimates to be more reliable. The Poisson method

also tends to produce distance elasticities that are smaller than the OLS estimates.

Using a cross section of 136 countries, Santos Silva and Tenreyro (2006) find that the

PPML method produces distance elasticity estimates that are close to half the size of

the OLS estimates. This has been a consistent finding in more recent work using the

Poisson method. Liu (2009), An and Puttitanun (2009), and Boulhol and de Serres

(2010) all find estimated PPML distance elasticities to be smaller than OLS distance

elasticities.

Each of the papers mentioned above estimates distance sensitivity using country-

level data. Papers that estimate gravity equations at a disaggregate level are less
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common. In addition to Berthelon and Freund (2008), Siliverstovs and Schumacher

(2008) use disaggregate data to address the distance puzzle. They estimate gravity

equations using OLS for 25 manufacturing sectors and show that distance sensitiv-

ity increases for only five of these industries. This stands in contrast to Berthelon

and Freund’s finding that distance sensitivity increases in 40 percent of industries.

The level of aggregation is the likely reason for the discrepancy, as Berthelon and

Freund consider 776 industries, a significantly finer degree of disaggregation. Despite

the extensive distance literature and the renewed focus on zero trade flows, to my

knowledge there are no papers that combine a handling of zeros in gravity equation

estimation with the extremely disaggregate level of data that I use.

2.3 Gravity model and aggregation

In this section I follow Berthelon and Freund in detailing the problems that arise from

aggregation in estimating distance elasticities using a gravity model. Aggregating

across industries introduces two potential problems. First, distance does not enter

log-linearly in an aggregate gravity equation that is constructed from industry-level

gravity equations. This means that the distance coefficient estimated on an aggregate

sample will be biased. Second, changes in aggregate elasticity may be the result

of changes in the composition of trade rather than actual adjustments in distance

sensitivity at the industry level.

The standard gravity model relates bilateral trade flows to the product of the

income of each trading partner and the distance between them. At the industry-

level, the gravity equation takes the form

xijk = Ak
Y α
i Y

β
j

Dγk
ij

, (2.1)
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where xijk is exports from country i to country j in industry k, Y(i)j is GDP in country

i(j), and Dij is the distance between i and j. Ak is a constant term that reflects the

share of industry k exports among total exports, α and β are income elasticities, and

γk is the distance elasticity in industry k.

Summing across industries, the gravity equation becomes

Xij = Y α
i Y

β
j

∑
k

Ak
Dγk
ij

, (2.2)

where Xij =
∑

k xij is total exports from country i to country j.

Taking the log of both sides of equation (2.2), we can write

lnXij = α lnYi + β lnYj + ln

(∑
k

Ak
Dγk
ij

)
, (2.3)

noticing that distance does not enter the equation log-linearly.

Estimating the standard gravity equation in the aggregate Xij rather than from

the individual xijk’s yields the following:

lnXij = α lnYi + β lnYj + γ lnDij. (2.4)

Equations (2.3) and (2.4) are clearly not the same. Estimating the latter does not

allow for the possibility that distance elasticities vary across industries, and will there-

fore produce biased estimates of the effect of distance on trade.

To illustrate the second problem, note that the aggregate distance elasticity γ is

the weighted average of industry-level distance elasticities, γk:

γ =
∑
k

skγk, (2.5)
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where sk is industry k’s share of total exports.

Thus, an adjustment in the aggregate distance elasticity γ may be the result of a

change in the composition of trade, a change in the distance sensitivity of individual

industries, or a combination of both. We can therefore decompose a change in the

aggregate distance elasticity over time in the following way:

∆γt ∼=
∑
k

∆skγk +
∑
k

sk∆γk. (2.6)

The first term on the right is the compositional effect, which arises from a change in

the trade share of a particular industry, and the second term is the distance sensitivity

effect, which is the result of industry-level changes in distance elasticity.

For each industry k and time period t, I estimate the distance elasticity and calcu-

late trade shares to determine the overall change in distance sensitivity. I take three

approaches to estimating distance elasticity: OLS following Berthelon and Freund,

and Tobit and PPML to incorporate zeros. Before discussing these approaches in

Section 2.5, I describe the data used to estimate the industry-level gravity equations.

2.4 Data

2.4.1 Trade and distance data

I use 6-digit Harmonized System (HS) 1988/92 import data from UN COMTRADE

concorded to the 4-digit SITC Revision 2 classification to most closely match the data

used in Berthelon and Freund. Import data is believed to be tracked more carefully

because import duties constitute a larger source of revenue than export duties, which

are less common. The data cover 224 reporting and partner countries and 764 indus-

tries. Thus, a matrix of all possible reporter-partner-industry observations in a given
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timeframe contains over 38 million entries. In order to smooth over potential noise in

year-to-year trade, I use average industry-level bilateral trade in three time periods:

1997-2000, 2001-2005, and 2006-2009.

Despite efforts to replicate Berthelon and Freund as closely as possible, there are

a few differences in the data. First, the 6-digit HS data concords to 764 SITC 4-digit

industries, just fewer than Berthelon and Freund’s 776 industries. Second, Berthelon

and Freund use trade data for 100 reporting and 179 partner countries. Because I

cannot be certain which countries they include, and to incorporate as many relevant

trade flows (or trade zeros) as possible, I use the entire set of 224 reporting and

partner countries. Last, I evaluate different time periods. Berthelon and Freund

use average trade in two periods separated by a number of years (1985-1989 and

2001-2005), whereas I use average trade in three consecutive and more recent time

periods.

Bilateral distances are Great Circle distances between the main city, typically the

capital, of each trading partner. CEPII provides the data. Portworld (www.portworld.com)

provides actual sailing distances between ports, but only for 58 countries, a small sub-

set of the 224 countries available in the trade data. I find that port-to-port distances

between these 58 countries are 85 percent correlated with Great Circle distances be-

tween the same countries. Due to the limited availability of actual distance data from

this source, and its strong correlation with Great Circle distances, I use only Great

Circle distances in my analysis.

Following Berthelon and Freund, I summarize the trade and distance data by

calculating the average distance that world trade travels. The average distance, or

ADIS, is calculated as

ADIS =
∑
ij

xij
XW

Dij, (2.7)
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where xij is the value of exports from country i to country j, XW is total world trade,

and Dij is the distance between i and j. Berthelon and Freund show that the average

distance trade travels has been roughly constant from 1985 to 2005. Figure 2.1 shows

this calculation for the period 1997 to 2009. I find that average distance has increased

steadily—albeit slowly—from 2005, rising 8 percent from the series low in 2006 to the

most recent year, 2009. Despite creeping higher, trade still travels a shorter distance

on average than it did in 1997. I also plot the average distance between countries

that do not trade. Unsurprisingly, countries that do not trade are farther apart,

by 77 percent on average in 2009. Interestingly, as the average distance that trade

travels has risen over recent years, the average distance of zero trade has fallen. This

indicates that new trade relationships have not necessarily formed between the closest

of the previously non-trading partners.

2.4.2 Zeros

Log-linearized specifications of the gravity equation do not allow a complete char-

acterization of the relationship between bilateral trade and distance because they

cannot handle zero trade values. The inability to incorporate zeros not only reduces

the amount of information available, but it may also bias the distance elasticity esti-

mates if the presence of zero trade values is not independent of distance. As Figure 2.1

demonstrated, there is indeed a relationship. Countries that do not trade are farther

apart than those that do. This implies that distance estimates that do not incorporate

zeros will be biased downward, underestimating the sensitivity of trade to distance.

Before proceeding further, it is important to clarify what constitutes a zero, as

UN COMTRADE data does not explicitly contain observations recorded as zero. The

observation is either missing, very small, or the record does not exist. In all cases
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that the trade value is missing, the industry is also missing. These observations,

which comprise fewer than one percent of the total number of observations, cannot

be classified by industry so they are dropped from the analysis. In other cases, the

trade value is very small, sometimes as low as one dollar for an observation. In the

Tobit specifications, I define small observations (less than $100) as effective zeros, and

consider them censored observations. Last, and most prevalent, are reporter-partner-

industry combinations for which there is simply no record. Because it is possible

for a trading relationship to exist for all country-pairs across all industries (with a

caveat discussed momentarily), I also classify these occurrences as zeros. Table 2.1

summarizes the incidence of zeros. Roughly half of all country-pairs do not trade

with each other, and the occurrence of industry-level zeros is even more prevalent.

Over 90 percent of all possible trade flows (country-pair by industry) do not exist.

Following Baldwin and Harrigan (2011), I further refine the definition of a zero

by introducing the concept of export and import zeros. I classify an export zero as a

product that is exported by a particular country to at least one other country. Trade

might fail to exist because the exporting country does not produce the product in

question. If we assume that a product never exported is a product never produced, it

is impossible, at any distance, for this product to be traded. Consequently, I do not

consider these non-traded, potentially non-produced products as zeros. This signifi-

cantly reduces the number of zeros, but at more than 60 percent of all observations,

export zeros still constitute a large portion of the sample. Import zeros arise when

a country imports a product from at least one other country, but not others. When

import zeros are considered, any product that a particular country never imports is

thus excluded from the sample. As Table 2.1 shows, the addition of import zeros

further reduces the sample size, but does not change the fact that zeros are prolific.

Products classified as both export and import zeros account for over 40 percent of all
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observations.

2.5 Methodology

In this section I describe the three approaches I take to estimating industry-level dis-

tance elasticities. Each method—OLS, Tobit, and PPML—uses the same underlying

specification. That is, I regress a measure of trade value (in logs or levels) on log

distance and importer and exporter fixed effects. I follow Anderson and van Wincoop

(2003) in using importer and exporter fixed effects to account for multilateral resis-

tance, and to control for country-specific characteristics such as income, technology

level, and openness to trade. In using the three approaches, my interests are two-fold.

I plan first to evaluate how the specification change alone affects the estimates, and

second to understand how the addition of zeros changes the estimates.

2.5.1 OLS

Replicating the methodology used by Berthelon and Freund, I estimate the log-

linearized gravity equation with importer and exporter fixed effects using ordinary

least squares as a baseline specification:

lnxij = αi + αj + γ lnDij + εij, (2.8)

where xij is the value of exports from i to country j, αi and αj are importer and

exporter fixed effects, Dij is the distance between i and j, and εij is the error term.

The parameter of interest is γ, the distance elasticity. I estimate this equation for

764 industries for each of the three time periods. Zero observations are not included.
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2.5.2 Tobit

Next, I use a Tobit specification to account for the fact that trade values cannot be

negative, and are thus censored at zero. In the data, however, the censoring point is

just higher than zero, at one dollar. I have chosen to increase the censoring point in

the model further to $100 because there is a high concentration of trade values less

than $100, after which the frequency declines more steadily as trade values increase.

As in the OLS specification, I regress log trade values on log distance, the only

procedural difference being the use of a Tobit model. I run the Tobit specification

using two different samples. In the first, I include only observations used in the OLS

specification (no zeros). I present results for this specification to gauge how the change

in specification (OLS to Tobit) affects the distance elasticity. In the second, I expand

the data set to include export and import zeros, coding each unrecorded observation

as one dollar, the lowest value in the original data set. This is the primary Tobit

specification, and it can be compared against the baseline Tobit specification to gauge

the effect of including zeros on the distance elasticity. Because the effect of distance

varies with each observation, the results that I present for the Tobit specifications are

average partial effects. Specifically, the effect of a change in an independent variable

xj on the dependent variable y in a Tobit model (when the censoring point is zero)

is given by

∂E(y | x)

∂xj
= Φ(xβ/σ)βj (2.9)

which varies with each value of the vector x. In order to obtain one elasticity estimate

for a regression equation, I calculate the average partial effect, which is the following:

[
N−1

N∑
i=1

Φ(xiβ̂/σ̂)

]
β̂j. (2.10)
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The average partial effect is then the average probability of observing an uncensored

observation (note: P (y > 0 | x) = Φ(xβ/σ)) multiplied by the coefficient on the

variable in question.

2.5.3 Poisson pseudo-maximum-likelihood

While the Tobit specification recognizes the positive probability mass at very low

trade values, it does not explicitly incorporate missing values, as the dependent vari-

able remains logged trade value. The PPML method, proposed by Santos Silva and

Tenreyro (2006), is estimated in levels, eliminating the problem of incorporating zero

trade values. Further, PPML allows for consistent estimation in the presence of het-

eroskedasticity, a feature not shared by OLS estimation of the log-linearized gravity

equation. Santos Silva and Tenreyro demonstrate the inconsistency of OLS using a

log-linearized gravity equation of the form

lnXij = lnα0 + α1 lnYi + α2 lnYj + α3 lnDij + ln ηij, (2.11)

where Xij is the value of exports from country i to j, Yi(j) is the income of country i(j),

Dij is the distance between i and j, and ηij is an error term with E (ln ηij | Yi, Yj, Dij) =

0.

The consistency of OLS relies on the assumption that ln ηij is statistically in-

dependent of the regressors. When the error term is specified as a logarithm, this

assumption cannot be made, as the expected value of the logarithm of a random

variable is a function of higher order moments of the random variable. Therefore,

if the variance of ηij depends on the regressors, the expected value of ln ηij depends

on the regressors, and OLS is neither consistent nor unbiased. It is not difficult to

imagine that the variance of the error term varies with a country’s income. Trade
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values vary immensely, with values ranging from zero to multiple billions of dollars

within a single product category. Large countries with large trade values are likely to

deviate more from the gravity relationship than small countries with small trade val-

ues would be expected to deviate. Santos Silva and Tenreyro (2006) find evidence to

suggest that heteroskedasticity is in fact present in the data, and propose the Poisson

pseudo-maximum-likelihood method, an alternative to OLS that allows for consistent

estimation in the presence of heteroskedasticity.

Under the assumption that the conditional variance of the dependent variable is

proportional to the conditional expectation of the dependent variable, Santos Silva

and Tenreyro show that the nonlinear least squares (NLS) estimator of β from the

model yi = exp(xiβ) + εi, which is analogous to the gravity model when xi = lnDij,

is numerically equivalent to the Poisson pseudo-maximum-likelihood estimator. The

NLS estimator of β is defined as the following

β̂ = argmin
b

n∑
i=1

[yi − exp(xib)]
2, (2.12)

which implies the first order conditions

n∑
i=1

[yi − exp(xiβ̂)] exp(xiβ̂)xi = 0. (2.13)

Santos Silva and Tenreyro note that this set of first order conditions gives more

weight to larger and potentially noisier observations, implying the estimator may

be inefficient. Because the form of the conditional variance of yi is unknown, they

propose making the assumption that it is proportional to the conditional expectation

of yi, and use this information to create a weighted NLS estimator. Dividing by
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E (Yi | Xi) = exp(xiβ̂), the set of first order conditions becomes

n∑
i=1

[yi − exp(xiβ̂)]xi = 0. (2.14)

Santos Silva and Tenreyro note that the estimator defined by equation (2.14) is numer-

ically equivalent to the Poisson pseudo-maximum-likelihood estimator. They propose

the PPML method over OLS when estimating a log-linearized equation for its ability

to consistently estimate the coefficients in the presence of heteroskedasticity and its

ability handle zeros.

As with the Tobit specification I estimate the PPML model using two different

samples. I regress trade value on the log of distance and importer and exporter fixed

effects, first on a sample that does not include zeros, and second on the full trade

matrix inclusive of export and import zeros. Estimates obtained from the sample of

positive trade values will be used to compare the effect of the methodology (PPML

vs. OLS and Tobit) on the distance coefficient. Those obtained from the full sample

are used to evaluate the effect on distance sensitivity of adding zeros.

2.6 Gravity equation estimation and distance co-

efficients

In this section I present results from the gravity equation estimation procedures de-

scribed in the previous section. With bilateral import data for 764 industries, I

estimate the effect of distance on average trade in three periods (1997-2000, 2001-

2005, and 2006-2009) using OLS, Tobit, and PPML specifications. Summary results

are presented in Table 2.2.

The OLS distance coefficients that I estimate are centered around -1.1, implying
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a one percent increase in distance reduces trade by 1.1 percent on average. This

is slightly larger than the -0.9 average estimate found in Disdier and Head’s meta-

analysis, and well within their range of -2.33 to 0.4. Berthelon and Freund estimate

OLS coefficients that are slightly larger, centered around -1.4, likely owing to one or

more of the data discrepancies discussed earlier. Figure 2.2 provides a histogram of

the estimates.

Results from the Tobit estimation using the baseline data set are similar in mag-

nitude to the OLS results. This is not surprising given that I estimate the model

on a positive sample and consider only the few observations less than $100 to be

censored. Interestingly, the Tobit estimates on the zero-inclusive sample are smaller.

This seems to be the result of the very low probability of observing trade values

greater than the censoring point (roughly 15 percent), because the coefficients on the

distance variables themselves are quite large (average in excess of -3.0).

The PPML estimates of distance sensitivity using the baseline data set are similar,

but just smaller in magnitude than the OLS and Tobit baseline estimates, an indica-

tion that the choice of methodology has little impact when zeros are not considered.

The PPML estimates for the zero-inclusive sample are also similar in magnitude to

the OLS estimates, and smaller in the later two later periods. The findings in these

time periods are consistent with the literature that tends to show smaller PPML than

OLS estimates.

With the exception of the Tobit model estimated on a zero-inclusive sample, I find

that the distance coefficients are similar across methodologies. Further, in each of the

OLS and PPML specifications I find that distance sensitivity is increasing over time—

a finding that seems to corroborate the distance puzzle. However, the extent to which

distance sensitivity increases varies by methodology. As Figure 2.3 shows, the OLS

procedure yields an increase in the distance coefficient of more than 6 percent from
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each time period to the next, whereas the PPML-zeros specification shows that the

changes have been much smaller—at or below 2 percent in each case. A comparison

of means that weights each coefficient by the inverse of its standard error reveals that

the PPML coefficients are not statistically different across time periods, but that the

OLS estimates show a significant increase from each time period to the next.

A primary difference between the PPML procedure and the OLS procedure is its

ability to consistently estimate the coefficients in the presence of heteroskedasticity.

That the difference between the OLS and PPML distance coefficients varies over time

indicates that the bias induced by heteroskedasticity may be stronger in some time

periods than others. If we assume that samples with high variation in trade values

are more likely to exhibit heteroskedasticity—in that the error term is likely to be

larger for larger values of trade, we might conclude that the size of the bias in the

OLS estimates is larger during time periods with more highly varied trade values. In

fact, the variance increased from 1997-2000 to 2001-2005 in 77 percent of industries

and from 2001-2005 to 2006-2009 in 91 percent of industries. This implies that the

size of the bias in the OLS estimates may be increasing over time, and is consistent

with the fact that the PPML and OLS estimates diverge over time. In contrast to the

increase in distance sensitivity revealed by the OLS and PPML approaches, the Tobit

approach indicates that distance sensitivity is falling. This finding, along with the

fact that the PPML estimates are not statistically different across time, demonstrates

that the distance puzzle is challenged when zero trade flows are considered.

2.7 Distance-sensitivity and compositional effect

Following Berthelon and Freund, I now compute the compositional and distance-

sensitivity effects as shown in equation (2.6). Calculating the trade shares sk is a
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straightforward computation of each industry’s share of total trade in a given time

period, and ∆sk is the difference in the calculated shares for two adjacent time periods.

The distance elasticities γk are those described in the previous section. Obtaining

∆γk requires only a simple difference of estimated distance elasticities, but I am

interested in whether the difference is significant, so I estimate ∆γk directly using

each methodology.

For OLS, I estimate a differenced version of equation (2.8):

lnxijt−lnxijt−1 = (αit−αit−1)+(αjt−αjt−1)+(γt−γt−1) lnDij+(εijt−εijt−1), (2.15)

where γt − γt−1 = ∆γk is the parameter of interest.

The nonlinearity in the Tobit and PPML models require that I estimate the change

in elasticity on a combined sample of two time periods (1997-2000 and 2001-2005, for

example), using interactions with a time period indicator to parse out the effect of

distance on the change in trade. A linearized representation of the specification is the

following:

lnxijt = αi + αi ∗ t+ αj + αj ∗ t+ γ lnDij + ∆γ(lnDij ∗ t) + νij, (2.16)

where t = 0 in the earlier time period and t = 1 in the later time period.

Decomposition results are presented in Table 2.3. The distance-sensitivity effect

is much stronger than the compositional effect across most specifications and time

periods. Similar to Berthelon and Freund, I find that trade shares have changed

little over time, so it is not surprising that the compositional effect is small. From

1997-2000 to 2001-2005, the change in trade share is less than 0.1 percent for 98

percent of industries. The corresponding figure for the 2001-2005 to 2006-2009 time
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period is 96 percent. Industry-level changes in distance-sensitivity are thus largely

responsible for increased sensitivity to distance over time. In line with the finding

that distance sensitivity increases very little using the PPML method, the PPML

distance sensitivity effects are also small, and much smaller than the OLS distance

sensitivity effects.

Table 2.4 shows the sign and significance of the change in the distance coefficient

over time for the baseline OLS and PPML-zeros specifications.1 Using the OLS

specification, distance sensitivity increased (negative and significant category) for 42

percent of industries from 1997-2000 to 2001-2005 and 27 percent of industries from

2001-2005 to 2006-2009.2 This indicates that distance is becoming more important

for a sizable number of industries, and is similar to Berthelon and Freund’s finding

that distance sensitivity increased in 40 percent of industries from 1985 to 2005.

However, the result that distance is becoming significantly more important for a large

number of industries does not hold up in the PPML specification. The PPML-zeros

procedure produces a negative and significant change in just 4 percent of industries

from 1997-2000 to 2001-2005 and 2 percent of industries from 2001-2005 to 2006-

2009. If not surprising—given the earlier result that the average change in distance

coefficient was much smaller using the PPML specification—this finding is nonetheless

1Calculating standard errors for the average partial effects in the Tobit regressions requires
bootstrapping or the delta method, and is extremely computationally intensive regardless of which
method is used. Generating a sufficient number of replications for the bootstrap is not feasible given
the already extensive computational requirements needed to estimate the Tobit regression with the
large number of fixed effects. The delta method requires evaluating the matrix of partial derivatives
for each observation (Greene (2012)), which is also exceedingly time consuming given the large
number of observations and number of regressions. For these reasons, I do not present standard
errors for the Tobit average partial effects.

2The total number of industries considered here is less than 764 because standard errors could not
be calculated for all PPML change regressions (the variance matrix was highly singular). Elimination
of some fixed effects solves the problem, but any method to remove some while leaving others would
deviate from the underlying gravity model and be fairly arbitrary. In order to make an accurate
comparison across specifications, I have used only the subset of industries for which calculation of
the PPML standard errors was feasible.
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important. Whereas the OLS findings suggest that the distance puzzle remains intact

and influential for a subset of industries, the PPML results suggest that changes in

distance sensitivity are more subtle and also more evenly split between industries

experiencing positive and negative adjustments in distance sensitivity.

Nevertheless, the magnitude, direction, and significance of the change in distance

coefficients clearly vary across industries. The question then remains—why has dis-

tance become more important for some industries? To answer this question, I focus

attention to the preferred specifications: OLS as the baseline, and PPML-zeros as

the specification that best handles zeros and heteroskedasticity.

2.8 Determinants of distance sensitivity

In this section I follow Berthelon and Freund in examining industry characteristics

that might account for the variation in distance sensitivity across industries. These

characteristics include measures of substitutability and trade costs. Considering the

first, products that are more easily substituted are expected to be more sensitive to

distance. To the extent that trade costs increase with distance, easily substitutable

products should be more readily imported from a nearby trading partner. Conversely,

there may be few alternatives but to import differentiated products with no close sub-

stitutes than from countries that are far away. The explanatory variables that I use

to capture a product’s substitutability are, directly, its elasticity of substitution, and

whether it can be classified as a homogeneous or differentiated good. The elastici-

ties of substitution by industry are given by Broda and Weinstein (2006), and are

constructed from US import data for the periods 1972-1988 and 1990-2001. I use

the 4-digit SITC Revision 3 estimates for the period 1990-2001, which most closely

matches my timeframe, keeping estimates for industries that were not reclassified
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from Revision 2 to Revision 3. Like Berthelon and Freund, I have also dropped ob-

servations for which the increase in the elasticity of substitution was more than 2000

percent (6 observations). The classification of a good as homogeneous or differentiated

comes from Rauch (1999). Rauch classifies goods into three categories: those that are

traded on an exchange, those that are not but have ‘reference’ prices, and all other

goods. Goods that fall into the first two categories are considered homogeneous—and

thus more substitutable—while those in the third are considered differentiated. The

Rauch classifications are at the 4-digit SITC Revision 2 level.

To examine the effect of trade costs on the distance elasticity, I use the simple

average tariff and the cost of insurance and freight as a share of export value, again

following Berthelon and Freund. I use the average ad valorem equivalent applied rate

MFN tariff from the World Integrated Trade System (WITS) by industry for each of

the three time periods. The tariffs are obtained at the 4-digit SITC Revision 2 level.

Transport costs are CIF/FOB rates from US customs data. I use exports from the EU

to the US to obtain a measure of industry-level transport costs that has good coverage

(698 industries), but that does not vary along dimensions related to distance. The

distance coefficient captures transport costs associated with geographical proximity,

so I am interested in aspects of transport costs related to features of the industry—

principally physical characteristics like size and weight. Summary statistics for the

explanatory variables are provided in Table 2.5.

I use weighted least squares to estimate the effect of these industry characteristics

on the distance coefficients obtained from the OLS and PPML-zeros specifications.

The distance coefficients are estimated with varying degrees of precision, so I use

weighted least squares (with the inverse of the standard errors of the estimated dis-

tance coefficients as weights) to downweight the residuals for observations with large

variances. I also estimate the model with 1-digit industry fixed effects to remove
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any variation associated solely with broader characteristics of the good. Table 2.6

shows the results. Like Berthelon and Freund, I find that the Broda and Weinstein

elasticities of substitution are generally not significantly correlated with the distance

coefficients from the OLS specifications. The PPML specifications do provide in-

stances, however, in which the elasticity of substitution is significant and has the

expected sign, but the size of the effect is small. For example, the PPML-zeros spec-

ification for 1997-2000 (Column 1) indicates that a one-unit change in the elasticity

of substitution (7.8 percent of one standard deviation) increases distance sensitivity

by 0.005 (1.1 percent of one standard deviation). Being a reference priced good is

associated with increased distance sensitivity in most specifications, particularly in

the PPML-zeros specifications. The measures of trade costs are significantly corre-

lated with the distance coefficients, have the expected sign in almost all cases, and

are of similar magnitude to the Berthelon and Freund estimates. Industries with

higher tariffs and freight costs are more sensitive to distance. Using the PPML-zeros

2006-2009 specification as an example (Column 6), we see that a one percentage point

increase in average tariffs is associated with an increase of 0.02 in the distance coeffi-

cient, which is 2.1 percent of the mean distance coefficient for this specification and

time period. The distance elasticity is particularly sensitive to freight costs, as a one

percent increase in freight costs corresponds to an increase of more than two in the

distance coefficient.

Next, I examine the effect of industry characteristics on the change in distance

coefficients, again using the distance coefficients estimated with the OLS and PPML-

zeros specifications and weighted least squares. Results are reported in Table 2.7.

While I was not able to estimate the effect of a change in the elasticity of substitution

on the change in distance sensitivity (my more recent timeframe corresponds with

only the later timeframe of Broda and Weinstein’s elasticity estimates), I do find
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that the elasticity of substitution itself is positively related to an increase in distance

sensitivity, and that homogeneous goods (exchange traded and reference priced) are

associated with increased distance sensitivity using the OLS-estimated distance co-

efficients. This echoes Berthelon and Freund’s finding that the substitutability of

a good seems to play a more prominent role as time progresses. However, there is

very little evidence from the PPML-estimated coefficients that measures of substi-

tutability affect distance sensitivity. Tariffs and transport costs are also shown not

to significantly affect the change in distance elasticity in a systematic way in either

the OLS or PPML specifications. The most prominent conclusion to be drawn from

the preferred PPML-zeros specification is that measures of substitutability or trade

costs cannot be said definitively to affect changes in distance sensitivity over time.

2.9 Conclusion

Using industry-level data, I find that the effect of distance on trade is sensitive to the

incorporation of zeros and to the estimation method. The OLS specification of the

gravity model, which neither incorporates zero trade flows nor effectively acknowl-

edges the presence of heteroskedasticity, shows a pronounced increase in distance

sensitivity on average, and for many industries individually. In contrast, estimation

methods that incorporate zeros sufficiently challenge the distance puzzle. Tobit esti-

mation yields coefficients that decline over time on average, and the PPML method

produces coefficients that increase on average, but without statistical significance.

In further contrast to the OLS results, very few industries experience a statistically

significant increase in distance sensitivity when the PPML method is employed. Us-

ing the PPML-estimated coefficients I find that exchange traded and reference priced

goods, as well as those with higher tariffs and transport costs, tend to be more sensi-
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tive to distance. However, these measures of substitutability and trade costs cannot

explain changes in the distance coefficient over time. This is likely a consequence

of the fact that PPML-estimated coefficients change little and not significantly over

time, and provides further indication—along with the Tobit results—that the dis-

tance puzzle loses potency when the estimation procedure is better-suited to the

characteristics of the trade data.
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2.10 Tables

Table 2.1: Incidence of Zeros, Number (Thousands) and Percent of Possible
Observations

97-00 01-05 06-09

Country-level
Potential observations 50.0 50.0 50.0
Zeros 26.0 52% 21.5 43% 22.3 45%

Industry-level
Potential observations 38,163 38,163 38,163
Zeros 35,762 94% 34,886 91% 34,917 91%
Export zeros 23,616 62% 25,325 66% 24,827 65%
Export zeros (and ≤ $100) 23,646 62% 25,482 67% 25,001 66%
Export and import zeros (and ≤ $100) 15,175 40% 17,821 47% 16,268 43%

Notes: This table shows the number (in thousands) of zero trade observations and percent of
possible observations for country pairs overall and at the industry level for each time period.

Table 2.2: Distance Coefficients, Summary Statistics

97-00 01-05 06-09

Method Avg. Coef. Std. Dev. Avg. Coef. Std. Dev. Avg. Coef. Std. Dev.

OLS -0.989 0.325 -1.084 0.349 -1.163 0.374
Tobit -0.972 0.319 -1.035 0.335 -1.107 0.359
Tobit-zeros -0.507 0.176 -0.491 0.173 -0.421 0.164
PPML -0.894 0.382 -0.912 0.363 -0.915 0.402
PPML-zeros -1.036 0.444 -1.041 0.415 -1.054 0.501

Notes: This table reports the average distance coefficient and the standard deviation of the co-
efficients for each estimation method and time period. Regressions are robust to heteroskedas-
ticity and include importer and exporter fixed effects.



83

Table 2.3: Decomposition of the Distance Coefficient

Distance-Sensitivity Effect Compositional Effect Total

97-00 01-05 97-00 01-05 97-00 01-05
Method to 01-05 to 06-09 to 01-05 to 06-09 to 01-05 to 06-09

OLS -0.092 -0.088 -0.007 -0.016 -0.099 -0.104
Tobit -0.062 -0.081 -0.008 -0.016 -0.070 -0.097
Tobit-zeros 0.067 0.039 -0.011 -0.029 0.056 0.010
PPML -0.009 0.006 -0.012 -0.030 -0.021 -0.023
PPML-zeros -0.007 0.011 -0.020 -0.038 -0.027 -0.027

Notes: This table shows the decomposition of the change in the aggregate distance coef-
ficient from one time period to the next into distance sensitivity and compositional effects
for each estimation method.

Table 2.4: Sign and Significance of Change in Industry-Level
Distance Coefficients, 95 Percent Confidence Level

97-00 to 01-05 01-05 to 06-09

Number Percent Number Percent

OLS Specification
Positive and Significant 4 0.6 3 0.4
Positive and Insignificant 83 13.3 138 19.9
Negative and Significant 263 42.1 186 26.9
Negative and Insignificant 274 43.9 365 52.7
Total 624 100.0 692 100.0

PPML-zeros Specification
Positive and Significant 5 0.8 23 3.3
Positive and Insignificant 254 40.7 393 56.8
Negative and Significant 27 4.3 11 1.6
Negative and Insignificant 338 54.2 265 38.3
Total 624 100.0 692 100.0

Notes: This table shows the number and percent of the estimated change
distance coefficients (equations (2.15) and (2.16)) that are positive, neg-
ative, and significant at the 95 percent confidence level for the OLS and
PPML-zeros specifications.
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Table 2.5: Summary Statistics, Explanatory Variables

Period Mean Std. Dev. Min. Med. Max. N

Average tariff 97-00 12.15 6.87 2.25 10.53 59.44 763
01-05 10.22 6.59 1.83 8.44 53.18 763
06-09 8.98 5.73 0.68 7.42 45.96 763

Change 1 -1.93 2.04 -32.44 -1.89 11.13 763
Change 2 -1.25 1.39 -12.84 -1.05 6.03 763

Cost of insurance and freight 97-00 0.07 0.08 0.00 0.05 0.76 698
01-05 0.07 0.07 0.00 0.05 0.57 697
06-09 0.06 0.07 0.00 0.04 0.67 698

Change 1 0.00 0.04 -0.28 0.00 0.21 697
Change 2 -0.01 0.04 -0.34 0.00 0.46 697

Elasticity of substitution 72-88 7.17 16.76 1.10 2.80 131.50 670
90-01 5.39 12.85 1.00 2.40 131.50 514

Change -0.64 18.66 -129.10 -0.20 128.20 513

Differentiated 0.59 0.49 0.00 1.00 1.00 686
Reference 0.30 0.46 0.00 0.00 1.00 686
Homogeneous 0.11 0.31 0.00 0.00 1.00 686

Notes: This table shows summary statistics for potential determinants of the level and change
in distance sensitivity. Average tariffs are the average ad valorem equivalent applied rate MFN
tariff from the World Integrated Trade System (WITS), cost of insurance and freight is the
CIF/FOB rate as a share of export value for exports from the EU to the US, elasticities of
substitution are from Broda and Weinstein (2006), and binary goods classifications are from
Rauch (1999).
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2.11 Figures

Figure 2.1: Average Distance of Trade and Trade Zeros, 1997-2009
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Notes: This figure shows the trade-weighted average distance of trade

and trade zeros calculated using equation (2.7).

Figure 2.2: OLS Distance Coefficients: 1997-2000, 2001-2005, and 2006-2009

Notes: This figure shows a histogram of distance coefficients (γ) esti-

mated with OLS using equation (2.8) for the 764 industries and three

time periods.
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Figure 2.3: Change in Estimated Distance Coefficients
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Notes: This figure shows the percent change in the average distance

coefficient reported in Table 2.2.
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Chapter 3

Decomposing U.S. Water Use
Since 1950: Is the U.S. Experience
Replicable?1

Co-authored with Peter Debaere, Darden School of Business

3.1 Introduction

Water use in the U.S. has followed a remarkable pattern since 1950. After doubling

between 1950 and 1980, the total volume of water withdrawn has virtually remained

unchanged. Moreover, the newly released U.S. Geological Survey (USGS) data for

2010 reveal that water use has even slightly decreased in the last few years.2 Against

the background of the California water crisis and the mounting global fears of fresh-

water scarcity, the leveling off and slight decrease in U.S. water use is a fascinating

1We received research funding from the Darden Foundation. Chris Hendrickson graciously pro-
vided additional access to his water data. Jorge Miranda provided excellent research assistance. We
benefited from presenting the paper in the University of Virginia Department of Economics, and the
Annual Geophysicist Union in San Francisco, as well as from comments by Paolo D’Odorico, James
Harrigan, Arik Levinson, John Mclaren, Ariell Reshef, and Brian Richter. All remaining errors are
ours.

2Maupin et al. (2014) Estimated Use of Water in the United States in 2010, USGS Circular
1405.
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development.3 The decreasing water use is especially striking since the water data

do not track the relatively steady increase in U.S. population, GDP, and per capita

GDP over the last sixty years. As a matter of fact, population has more than doubled,

GDP has increased more than sixfold and income per capita has tripled since 1950.

Today, half of the world’s cities lie in water-stressed river basins and one-fifth of the

world population suffers from water scarcity.4 Population growth, economic growth,

and rising standards of living and the lifestyle changes they entail are very often

expected to increase the demand for water and to further strain the available water

resources.5 To face the challenge of managing water effectively in the 21st century,

however, will require a solid understanding of the exact drivers of water use and of the

determinants of countries’ overall water efficiency.6 While the focus in the literature

is often on technology improvements, in this paper we show how long-term structural

changes of the U.S. economy next to technological progress have allowed the United

States to produce each dollar of its GDP with increasingly less water.7 The latter

has enabled the United States to call to a halt the increase of its overall water use

in spite of continued population and GDP growth. In addition, our analysis should

prove relevant beyond the U.S. context. In the absence of long-run, high-quality data

of water use on a global scale, our analysis reveals, to some extent, whether the U.S.

experience is replicable in other parts of the world, and also what such replication

3Pilita Clark, A world without water, Financial Times, July 14, 2014; The Economist,
For Want of Drink, Special Report on Water, May 22nd 2010. National Geographic, Wa-
ter Crisis News, http://news.nationalgeographic.com/news/archives/water-crisis/, Fang, Kenny,
The Global Water Crisis: The Innovations to Watch For, Wall Street Journal, 2007,
http://www.wsj.com/articles/SB119042333799235895.

4Richter et al. (2013) and UN Word Water Assessment Programme (2009).
5UN (2012), Rosegrant et al. (2002), Alcamo et al. (2003), and Vörösmarty et al. (2000) also

consider the role of climate change for future water stress.
6See Gleick (2003a, 2003b).
7See Gleick (2003a, 2003b) for discussion of technology improvements.
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would require.8

In this paper we explain U.S. water use in economic terms.9 We start by tying

water use to the dramatic long-term structural changes of the U.S. economy. At the

heart of this structural change is the rise of the United States as a service economy, and

the accelerated demand for services since the mid-1970s to early 1980s. As a matter

of fact, at the beginning of the 21st century, about 75 percent of GDP is spent by

consumers, local and federal governments and investors on services. This is more than

25 percentage points higher than in 1950; see Figure 3.1.10 Related to the shift towards

services, we also consider the drastic decrease of the U.S. manufacturing sector, the

secular decline of agriculture, and the role of globalization that has made the U.S.

an increasingly more open economy.11 Note that the rise of the U.S. service sector

and its implications for water use is directly relevant for assessing water use beyond

the United States since the World Development Indicators reveal that a steadily

8A major challenge is the international comparability of water data, see also Gleick (2003a,
2003b). Shiklomanov (1998), for example, compiled aggregate, international water use data from
country-specific statistics with varying methodologies. Flörke et al. (2013) reconstructed historical
international water use relying on assumptions about human behavior and extrapolating trends in
water productivity growth, some of which we investigate.

9In this paper, water use refers to surface and ground water withdrawal and not to water con-
sumption. Water withdrawal equals both consumptive use and non-consumptive use that flows back
to the environment. Consistent with USGS, we do not include hydropower withdrawals since this
water is returned virtually directly to the environment. Our focus on blue water withdrawal is
informed by data limitations (no consumptive data are available for 1950-1955 or 2000-2010, nor
are disaggregate data available) and by our economic perspective: you pay, if at all, for water with-
drawal, not consumptive use. Note, however, that the limited USGS data on water consumption
between 1960 and 1995 mimic the longer pattern of water withdrawal.

10The reported shares are in current prices. After correcting for changing relative prices, growth
in the share of services persists, and so does the slight acceleration since 1980. Final services demand
is the relevant measure for our approach, see below. Value added or employment numbers also reveal
a shift towards services, see Buera and Kaboski (2012).

11The extensive literature on the environmental Kuznets curve documents the inverted-U-shaped
relationship between environmental degradation and countries’ increasing per capita GDP. Jia et al.
(2006) confirms a Kuznets curve for water use among industrialized countries. We explain overall
(not per capita) water use in the United States (with positive population growth a Kuznets curve
can imply either more or less water use) allowing for scale, changes in composition (of inputs and
final demand) as well as changing technology, and globalization.
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increasing share of services in world GDP in the last couple decades.12 The same is

true for the U.S.’ worsening trade balance since the late 1970s. It raises the question

as to whether the United States was able to reduce its water use by importing more

water-intensive goods, which would question the ability of the rest of the world to

follow the U.S. example.

Our study builds on Leontief’s seminal (1970) input-output analysis that has

deep roots in economics.13 We consider total water use of all final goods that are

produced in the United States and sold to U.S. consumers, investors, governments,

and foreigners—these final goods by definition make up all of U.S. GDP. We study

both the water that is directly withdrawn during the production process of those goods

as well as the water that is indirectly contained in the intermediates that are employed.

While increasingly popular in environmental studies, input-output analyses are not

prominent in water studies and have not been systematically applied to explaining

the dynamics of water use.14

An input-output analysis of direct and indirect water use holds great promise for

investigating water use. So far, the standard presentation of water use data by the

USGS shows direct water use for a few key sectors, with direct water use in the large

services sector barely registering at five percent. The singular focus on direct water

use limits our economic understanding because water is a very important resource

12World Development Indicators, http://databank.worldbank.org/data/. See also Timmer et al.
(2014), and Uy,Yi, and Zhang (2013).

13See especially Miller and Blair (2009), the standard reference on input-output analysis.
14Our study complements innovative research on virtual water by Hoekstra and co-authors. Cha-

pagain and Hoekstra (2008), Hoekstra and Chapagain (2008), Hoekstra and Mekonnen (2012), and
Mekonnen and Hoekstra (2011) calculate virtual water use in agriculture in great detail. Without
input-output tables, the interaction between agriculture and other sectors of the economy lacks
detail. Hoekstra and co-authors study water consumption (not withdrawal), which explains their
singular focus on agriculture. Blackhurst et al. (2010) is one of few who use US input-output tables
to calculate the direct and indirect water content of the sectors of the U.S. economy for 2002, as do
Di Cosmo et al. (2012) who study direct and indirect water content of EU countries for 2005. Like us,
Blackhurst et al. (2010) and Di Cosmo et al. (2012) focus on water withdrawal (not consumption).
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for intermediate goods that are also used in services. Electricity generation and agri-

culture, for example, are responsible for over 70 percent of direct water withdrawals.

While agriculture and electricity generation together account for a mere three per-

cent of U.S. GDP in recent years, their output is widely used as an intermediate in

other sectors. An input-output framework helps tie the majority of direct water use

to the rest of the economy, and reveals that the service sector is in fact the largest

total (direct and indirect) water user of the economy. Linking intermediate and final

goods is all the more important since the open economy that the United States has

become remains very dependent on domestic electricity generation and agriculture

production.15 Indeed, electricity generation is to a very large extent for the United

States a non-traded good that could only be sourced from abroad at considerable

cost, which is why increases in final demand will put additional stress on U.S. water

resources. Similarly, the United States has a revealed comparative advantage in agri-

cultural production, and substituting foreign agricultural inputs for domestic ones is

prone to drive up production costs significantly.

Our empirical analysis decomposes U.S. water use in terms of its key drivers, and

links the improving water productivity of the U.S. economy to the structural change

and technological improvements. We modify in two ways the conventional decom-

position that is perhaps best exemplified by Levinson (2009).16 Following Levinson

(2009), we relate water use to 1) the changing ‘scale’ of the economy, 2) the changing

water productivity of water use at the sectoral level or the changing ‘technique or

technology improvements’ and 3) the changing composition of the economy. Our fo-

cus on final demand and GDP lets us identify changes in scale with GDP growth, as

well as break down the composition effect into a) the changing domestic and interna-

15If electricity were traded internationally at comparable cost, for example, there would be less
of a need to tie final goods demand to electricity use in an analysis to understand U.S. water use.

16See also Brock and Taylor (2005).
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tional demand for U.S. final products (‘demand composition’), and b) the changing

composition of the inputs that are used in the production process (‘input composi-

tion’).17 Our second innovation follows from combining an aggregate and disaggregate

analysis. Initially, we consciously work with aggregate sectors such as services, manu-

facturing, and agriculture that cover all sectors of the economy. Because of this fairly

aggregate level, our decomposition displays the between-sector shifts of demand and

inputs used since 1950. In other words, we can directly link our decomposition to the

long-run structural changes of the U.S. economy whose drivers (human capital accu-

mulation, the skill premium, and globalization) are relatively well understood.18 The

latter, at least to some extent, addresses a perceived shortcoming of decomposition

analyses as failing to establish a causal link between the phenomenon that is studied

(e.g. pollution or in our case water use) and the evolution of GDP, see Levinson

(2008) and Levinson and O’Brien (2015).19 Indeed, few will argue that the larger

structural shift that has fueled the emergence of the service sector is driven by water

scarcity, or by changing water prices for that matter. Finally, tying total water use to

a growing service sector and a declining manufacturing and agricultural sector makes

intuitive sense, since services is by far the least water intensive sector.

We find that the changing composition of the U.S. economy is responsible for

17See Section 3.2 for details. Levinson’s (2009) study of air pollution by manufacturing since 1972
illustrates the standard decomposition well. Our study is different in a number of ways: 1) Unlike
pollution, most water is used in a few intermediate goods producers, which warrants our focus on
the total water content of final demand. Levinson (except when considering pollution content of
international trade) studies the direct pollution content of sectors’ gross output. 2) Focusing on final
demand lets us also break down the composition effect into a demand and input component, as well
as link the scale effect to changing GDP—after all, final demand across the economy sums to total
value added or GDP. Levinson and others investigate changing gross output (not value added) of
individual sectors or the entire economy.

18See Section 3.3, and Buena and Kaboski (2012).
19In Levinson (2015)’s words, extending his critique to Environmental Kuznets curves (EKCs):

“But EKCs are simply conditional correlations, without meaningful interpretations other than that
pollution does not necessarily increase with economic growth.” Because of this critique, Levinson
(2015) turns to examining Environmental Engel Curves.
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between 35 and 50 percent of the increased water productivity in the United States.

The larger part of the changing composition comes from the shifting final demand by

consumers, investors, governments, and foreign customers away from manufacturing

and agricultural products towards services. By default, the overall water productivity

gain that is not explained by the shifts between the key sectors, between 50 and 65

percent, is booked as technique improvement in the initial analysis. This sizable share

is good news if one considers technique improvements opportunities for replication

abroad. Transferring technology can be a more actionable way of bringing about less

water use, especially when compared to the slow-moving process of structural shifts

towards a less water-intensive service economy. In addition, we document that more

than 60 percent of these technical water savings are driven by lower water needs per

kilowatt-hour in the electricity-generating sector. This finding underscores the role

that public infrastructure and regulation can potentially play in constraining water

use.

To make sure the fairly aggregate analysis does not bias our findings, we comple-

ment our between-sector calculations with a more common, granular decomposition

that includes the shifts in demand within the key sectors. For this exercise we rely

on 81 disaggregate sectors based on Blackhurst et al. (2010) who provide very disag-

gregate sectoral water use data for 2000. Our analysis confirms the shift over time

towards less water-intensive products also within services and within manufacturing.

What stands out, however, is that the shift toward less water-intensive products is

only slightly more pronounced with disaggregate data than with the aggregate anal-

ysis. The aggregate between-sector shifts capture 75 percent of the shift toward less

water-intensive (disaggregate) products since 1950, which underscores the explana-

tory power of the broad structural changes to understand water use in the United

States. Note also that the slightly more pronounced shift at the disaggregate level
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suggests that our estimate of the contribution of technology should be interpreted as

an upper bound. At the same time, our more disaggregate analysis documents the

uneven pattern of technological progress that took off especially since the 1970s.

Our analysis finally considers the role of globalization and whether the recent sta-

bilization and decrease in overall water use is due to imports of more water-intensive

products. We study the hypothetical scenario where the United States would have to

produce all the goods it consumes itself (with its own technology). In that case, we

find that water use would have peaked in 2005, instead of in 1980. This result is driven

by the increase in (U.S.) water content of net imports since the 1980s and especially

by the worsening international trade deficit of the United States. It is important to

note, however, that the magnitude of these water savings is a relatively limited: 17

percent of overall savings that can be attributed to the changing composition (both

demand and input composition) and a mere one percent of overall water use. This

finding is important for the international replicability of the U.S. experience. Run-

ning a trade deficit or shifting imports towards more water-intensive imports could

not be a recipe for increasing worldwide water conservation.

The article is structured as follows. First, we lay out the analytical framework that

guides the analysis, and which will be the basis for our description and decomposition

of total U.S. water use. In the next section we summarize direct water use data, before

we specify sectors’ total water use and its link to international trade. The third-to-last

section then presents the results of our decomposition exercise. We finally conclude

after we have corroborated and interpreted our findings in light of more detailed

disaggregation.
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3.2 The analytical framework

To gain a deeper understanding of the drivers of water use in the United States, we

break down water use by its key sources. We propose a modification of the conven-

tional decomposition into scale, composition, and technology effects that accommo-

dates the specifics of water use and how water is reported in the water use statistics.

At the same time, however, our approach should be applicable more broadly: 1) We

look at the ‘scale’ of the U.S. economy and in particular how the changing overall

size of the U.S. economy as measured by its GDP affects its water use. 2) We inves-

tigate how the ‘composition’ or how the changing sectoral structure of the economy

affects water use. We propose to break up the traditional composition effect into two

segments. One part reflects how output of final goods or, alternatively, the demand

for final U.S. products changes. Final products are the products that are produced

in the United States and bought by its consumers, investors, governments, and also

by foreigners for their own use and not to be employed as intermediates in further

production. This part of the composition effect reflects most clearly the changing

demand that is driven by changing incomes as well as shifting preferences for U.S.

products domestically and abroad. The second element of the composition effect is

determined by the changing links between the sectors in the economy as mapped by

the input-output table. The input-output table lays out how intermediate goods from

one sector are used in another. This second composition effect captures changes in

how intermediate goods are being combined into final goods. It is not so much associ-

ated with changing demand, but rather with the changing production process of final

goods as such. 3) We finally investigate how ‘technique’ or the changing technologies

yield water efficiency gains.20

20This breakdown into scale, composition, and technique follows an emerging convention in envi-
ronmental economics; see Grossman and Krueger (1993), Copeland and Taylor (2005), and Levinson
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Equation (3.1) is a good starting point to introduce the equation that guides our

decomposition of total water use in the United States, or of W . We define W as the

following multiplication of vectors and a scalar,

W = w′θY (3.1)

The n×1 vector w captures for each sector i the total domestic water that is needed to

produce one dollar of its final output in the United States. The vector w encompasses

both direct and indirect water use. This includes both the water used directly in a

sector’s output as well as the water contained in the intermediate products that are

employed in the sector. Since the sum of domestic and foreign demand for sectors’

final products totals a country’s GDP, the U.S. total water use, W , is obtained by

simply multiplying w by the value of final demand in each sector, which is identical

to the product of θ, an n× 1 vector of the shares of sectors’ final output/demand in

U.S. GDP, and by Y , a scalar that measures U.S. GDP.

We borrow from Leontief’s (1970) input-output analysis to calculate the total

(direct and indirect) water use vector w. Equation (3.2) characterizes the well-known

relationship between sectors’ gross output (or, the total value of shipments) as the

sum of the intermediate and the final products that sectors sell.

x = Ax + y (3.2)

The n × 1 vector x contains sectors’ gross output. Ax is the product of the gross

output vector and an n× n matrix A of input coefficients that characterizes sectors’

intermediate goods use. To be precise, the elements aij of A indicate how much of

sector i’s intermediates are used in another sector j (as a fraction of gross output

(2009).
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in sector j). The input coefficients are directly derived from the U.S. input-output

table. The n × 1 vector y reports sectors’ final output. Sectors produce these final

products for domestic and foreign customers. With some matrix manipulation we can

rewrite equation (3.2) and directly relate sectors’ gross output to their final demand

as in equation (3.3).

x = (I−A)−1y = Ly (3.3)

To be clear, (I − A)−1 is the famous Leontief matrix L; I is the n × n identity

matrix. The elements of the Leontief matrix lij report the total amount of sector

i’s intermediate output required to generate one dollar of final output in industry

j, which includes whatever amount of sector i is used in all other industries whose

intermediates are employed in j, as well as the amount of i used in the inputs to those

industries.

We obtain total U.S. water use or W in equation (3.4a) when we pre-multiply

equation (3.3) with the n × 1 vector w of sectors’ direct water use per unit of gross

output in the United States. Using the notation of equation (3.1) we can rewrite

expression (3.4a) as equation (3.4b). To be clear, the vector of total water use w

equals w′L.

W = w′x = w′Ly (3.4a)

W = w′LθY (3.4b)

The last expression (3.4b) is the equation that we will use in our decomposition

to study the water use over time. To isolate the scale effect, we want to study what
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water use W would be if only the scale Y changed, all else equal. To be clear: as Y

changes, we will assume there is no change in the technology w, nor in the distribution

of input use as found in L or in the distribution of final demand that is characterized

by θ. Similarly, to isolate the two composition effects and the effect of technology,

we will respectively let L, θ or w change over time while keeping all other factors the

same.

Note that expressions (3.4a) and (3.4b) are particularly well fit for a decomposi-

tion of U.S. water use, in light of how the water data are reported and of how water

use is distributed. As will be especially clear when we describe U.S. water data in

the next section, the heaviest reported water users that are responsible for over 60

percent of overall water use are electricity generation, agriculture, and water utilities.

Together these sectors are relatively small, accounting for less than three percent

of GDP. Moreover, they are largely providing intermediate inputs to other sectors

that comprise 97 percent of GDP. To understand changes in water use, therefore, it

is instrumental to figure out what is driving this intermediate good demand, which

warrants our focus on changing final demand, the engine for demand for intermedi-

ates. To be explicit, understanding that water use increases because water utilities

deliver more water, or because more electricity is generated is one thing. It is es-

pecially informative to understand why more water is used, and which sectors use

the electricity and for what. Therefore, once we focus on sectors’ final demand and

consider their total water use, we are explicitly accounting for the water contained in

their intermediates and we link final and intermediate demand. Note also that our

focus on final demand allows us to explicitly link water use to GDP, since the sum of

sectoral final demand is total GDP.21

21If one focuses on the direct water content, one would have to interpret scale as total gross
output (which is different from GDP). For reference, Levinson (2009) calculates the direct pollution
content of gross output for manufacturing. Only when considering exports and imports does he
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A second reason that our decomposition based on (3.4a) and (3.4b) will be infor-

mative relates to the non-tradable nature of a major water user such as electricity

generation. For a large country such as the United States, most electricity is gen-

erated domestically. Because of this, any increase in production of all sectors that

use electricity will put additional pressure on U.S. water resources. Our total (direct

and indirect) water use measures reflect this. A similar argument could be made

with respect to agriculture. Since the U.S. has a comparative advantage in agricul-

tural production, increases in domestic manufacturing through its use of domestic

agricultural inputs will pose additional pressure on domestic water resources.22

We will proceed with the implementation of the input-output analysis in two steps.

First we will conduct the investigation at a relatively aggregate level, allowing us to

directly link water use to the broad structural shifts between the major sectors in the

economy. Next, we will rely on a more granular approach with more disaggregate

data that allows us to study water use within the major sectors. Comparing between

and within results will, on the one hand, reveal any biases involved and, more im-

portantly, underscore the significant contribution of the large structural changes for

understanding U.S. water use.

3.3 Data

Figure 3.2 shows how water withdrawals have evolved in the United States between

1950 and 2010 based on data from the USGS. The graph shows the cumulative water

use of eight sectors of the economy—the data representation closely relates to how

the USGS presents the water data. The USGS provides blue water withdrawal (not

focus on the total (direct and indirect) pollution.
22See Debaere (2014).
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consumption) data since 1950 at five year intervals for the following eight aggregate

sectors: industrial (manufacturing), mining, water utilities, electric utilities, livestock,

agriculture, commercial use (services), and residential use. From an economic point of

view, withdrawal data (rather than consumption data of water that is not returned

to the environment) are more relevant, since you tend to pay for withdrawal, not

consumption. In addition, water withdrawal data are preferred for our analysis since

the consumption data are of lower quality, and only available for a limited period of

time (1960-1995).23 We also do not have for water consumption a comparable source

to Blackhurst et al. (2010) that provides very disaggregate water withdrawal data

(see discussion in Section refsec:water˙disaggr). Moreover, our choice of water with-

drawal as the focus of the analysis relates well to the point made by Gleick (2003)

that over-emphasizing water consumption rather than withdrawal sometimes tends

to underestimate the real local water savings associated with water withdrawal re-

ductions, even when such withdrawal reductions were to have no impact on the water

availability downstream.24 Note also that the USGS data for electricity generation

traditionally do not include hydropower, and we follow that convention.

In some years, the USGS does not break down industrial water use into water

use by mining and manufacturing, nor does it identify residential demand. We rely

on secondary data sources (often the input-output tables) to attribute water use to

these sectors.25 Note that sectoral water use as reported by USGS typically refers

to self-supplied water, i.e., water supplied to wells—a notable exception is residential

demand. For our decomposition of water use across the major, aggregate sectors of

the economy, as well as in Figure 3.2, we have supplemented the provided self-supplied

23The consumption data between 1960 and 1995 do show the same pattern as the withdrawal
data.

24Indeed, local reductions in withdrawal, for example, make it not necessary to tap into additional
resources that could have downstream consequences.

25See Appendix.
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water data of the major sectors with the water that these sectors draw from water

utilities.26 To distribute water from utilities across sectors we rely on estimates by

the USGS, complemented by information from the input-output tables that specifies

the payments of other sectors to the water utilities. Note that we have to interpolate

the data from the input-output tables to match the five-year intervals of the USGS

water data.27

After we have redistributed the water use by the water utilities to all its customers,

the water that remains is that which water utilities use in their process. As should be

clear from Figure 3.2, agriculture and electric utilities are by far the heaviest (direct)

water users, which over the entire period are responsible for 70 percent or more of

all water withdrawn in the United States. Direct water use by services, on the other

hand, is relatively minor at less than five percent in 2010.

As noted, to implement our decomposition of water use across the eight aggregate

sectors, we match the USGS data with the sectoral information of the input-output

data. We take the input-output data from the Bureau of Economic Analysis. Given

the level of aggregation of our structural analysis, it is relatively straightforward to

match gross output data and water use data in order to construct the direct water

use vectors w, and to link the gross output x and final output data y. We also draw

on the export and import data as provided in the input-output tables.28,29

26See Appendix.
27The available data from the input-output tables are 1947, 1958, 1963, 1967, 1972, 1977, 1982,

1987, 1992, 1997, 2002, and 2007. We interpolate to match the water data that are available every
five years from 1950 to 2010

28In some years, the utilities sector is not divided into electric and water utilities, and net exports
are not divided into exports and imports. See Appendix for the methods we use to impute these
values.

29In some sectors and years, the gross output numbers going across the rows of the input-output
table do not match the gross output going down the columns. Even though the maximum difference
is less than one percent, we need the gross output numbers to match for the decompositions, so
that total water use matches the sum of water use across sectors. To maintain the equality of gross
output by rows and columns, we adjust final demand.
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The input-output data are reported in nominal values. To deflate the nominal

values we take two different approaches, with our preference going to the double

deflation method because it allows deflation by sector-specific price indexes. In the

double deflation method, the output of a particular industry is first deflated by that

industry’s price index. The value added price index is then derived so that the

fundamental identity that the total value of output equals the total value of input

holds. See Miller and Blair (2009) for a detailed description of the double deflation

procedure. The price indexes for our aggregate categories are chain-type price indexes

for gross output by sector from the Bureau of Economic Analysis.30,31 In the second

deflation method, we simply deflate all values in the input-output table by the price

index for value added, also from the BEA.

3.4 Total water use across sectors and international

trade

Figure 3.3 presents U.S. water data in a different way. We depict the total (direct and

indirect) water that is contained in the final demand for the eight sectors mentioned

above. When compared to the standard categorization of water use in Figure 3.2,

Figure 3.3 tells a very different story that more clearly reflects the dramatic changes

in the U.S. economy since 1950. As the United States became a service economy,

the relative importance of its manufacturing sector diminished and agriculture expe-

30Prior to 1977, real gross output is not available to construct the price indexes, so we use
appropriately scaled price indexes for corresponding sectors from the U.S. Bureau of Labor Statistics.

31We use the BEA price indexes for all sectors except the electricity-generating sector, for which
we use the real total price of electricity (supplied to residential and industrial consumers) from
the Energy Information Administration. This price index better captures price movement in the
electricity-generating sector than the price index for utilities, which is the most closely related price
index provided by the BEA.
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rienced a secular decline as a fraction of GDP. As noted, since no sector in the U.S.

economy can produce without electricity, the heaviest direct user of water, the total

(direct and indirect) water content calculations of final demand show how much the

final demand for products in various sectors puts pressure on the U.S. water resources.

The same is true to some extent for the intermediate use of agricultural products.

Since the United States has a comparative advantage in agriculture, increased input

demand due to final demand for manufacturing goods will also strain U.S. water re-

sources. As Figure 3.3 illustrates, manufacturing and the service sector’s total (direct

and indirect) water use comprise 60 percent or more of water use, and the role of

the service sector as far as total water demand goes is ever increasing.32 As a matter

of fact, in 1950 services total water use was a mere 18 percent of all water use in

the U.S, and grew by just three percent over the next three decades. After 1980,

water use accelerated markedly, and by 2010 it stood at 35 percent of total water use.

Manufacturing, on the other hand, initially accounted for 54 percent of U.S. water

use, a number that dropped to 39 percent in 1980 and finally 23 percent in 2010.

To fully assess U.S. water, we also want to study how globalization has altered

U.S. water use. We ask the question whether the United States would use more or

less water in the hypothetical situation that it had to produce the goods it consumes

(as in a closed economy).33 To determine whether U.S. water saving is due to its

exchange with the rest of the world economy, we calculate the total water content of

net imports in Figure 3.4 using U.S. technology.34 The exercise is particularly relevant

if one is interested in assessing to what extent the U.S. experience can be replicated

32The line for electricity utilities reflects the direct electricity used by residents and the water use
it implies.

33Needless to say, this exercise is just a thought experiment—we assume that prices, production
and consumption patterns are not altered by becoming a closed economy.

34There is a long tradition in the international trade literature to calculate the total factor content
of net trade, see Baldwin (2008), as opposed to just comparing the direct factor content of exports
and imports which ignores the factors used in the production of the intermediate goods used.
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abroad.

Before assessing our findings, we should clarify two complications that come with

calculating the water content of net imports. First, in order to produce goods, the

U.S. economy uses imported intermediate inputs. There is no perfect way to account

for the imported intermediates, which are typically not fully specified in an input-

output table. The most common way to “scrub” the imports from intermediate

inputs is to use a proportionality assumption. In this case one assumes that each

sector uses imported intermediates to the same extent (i.e., the use of imported

intermediates does not vary across the various sectors that one sector produces for).

To that effect we multiply the input-output coefficients aij in the input coefficient

matrix A by the adjustment factor for sector i. We follow Levinson (2009) and Miller

and Blair (2009) and use for each sector the ratio of imports/(domestic production+

imports − exports) as the adjustment factor.35 Note that because we are interested

in evaluating what it would cost the United States in terms of water to produce the

imported products itself, we evaluate imports by U.S. technology.36

We also want to address a second concern that relates to the level of aggregation

as we assess the water content of net imports—aggregation will also play a role in

how we interpret our decomposition results below. We can easily calculate the water

content of net imports with our relatively aggregate data as WT = w′T = w′LT,

where T is the vector of imports minus exports and w and w respectively the vector

of total and direct water use for our major sectors in the United States. One might

be concerned, however, about systematic differences in the mix of water-intensive

35This adjustment factor is implied by the proportionality assumption, as described in Antràs et
al. (2012), who use the assumption to construct an open-economy adjustment to their measure of
the upstreamness of production.

36We are able to relax the proportionality assumption with import shares computed from the
Asian Input-Output tables, which distinguish U.S. imports by use. We apply the distribution of
import shares across use within an industry for the year 2000 to the import shares computed using
the BEA input-output tables. The decomposition results are unchanged.
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products within the major sectors that we consider between imports, exports, and

what the U.S. produces. In such a case, applying the aggregate w and in particular

the w measures that are based on the water use of the mix of goods of U.S. production

sectors to the aggregate trade data T should bias the water content calculations.37 We

therefore propose to adjust our water content of net trade measures WT by using more

disaggregate data, while at the same time working around the constraint that we only

have disaggregate water use data for one year—Blackhurst et al. (2010) disaggregate

the USGS water data for 2000 and assign them to the 428 NAICS categories of the

input-output table.

Here is how we proceed. For each year t in our sample, 1) we calculate the water

content of exports and imports with our aggregate data that are readily available,

WE
t = w′tLtEt and W IM

t = w′tLtIMt, where Et and IMt are respectively the export

and import vector; 2) we construct the water content of exports and imports for

that year with the aggregate water use vector for the year 2000, w(2000), and obtain

WE
t(2000) = w′(2000)LtEt andW IM

t(2000) = w′(2000)LtIMt and, 3) we calculate the water con-

tent of the 81 disaggregate export and import sectors using the vectors Edt and IMdt,

the disaggregate water use vector for 2000, wd(2000), and the disaggregate Leontief

matrix, Ld, to obtain WE
dt(2000) = w′d(2000)LdtEdt and W IM

dt(2000) = w′d(2000)LdtIMdt. Be-

cause of differences in product mix between exports, imports, and production within

more aggregate sectors, it is possible that the total water content of, say, exports,

WE
t(2000) differs from the disaggregate calculation WE

dt(2000). If we find that WE
dt(2000)

differs from WE
t(2000) by a factor αt in a particular year, we propose to pre-multiply

our aggregate WE
t measures by αt to correct for a potential bias. Needless to say, αt

will vary over time. We do the same for the factor content of imports. For reference,

37This concern does not arise when dealing with domestic final demand, as by construction
w′θY = w′dθdY .
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we find that both the product mix of exports and imports tends to be somewhat

less water-intensive than that of production, and on balance, especially for the later

years, the water content of net trade that takes into account the variation in product

mix is less water-intensive than the more aggregate net water content of trade, see

Appendix.

Note that to make the disaggregation work, we have to address the changing

classifications of the input-output tables, which is a challenge. In particular, before

1997 the sectors in the input-output tables were classified using SIC codes within

81 broad categories that we can easily follow through time. In later years, however,

NAICS classification codes are used. We have to reconcile the 428 input-output

sectors in NAICS codes with the 81 categories of the input-output table that we were

following before. We build a concordance between 1997 and later years that largely

follows Cicas et al. (2006).38

The lowest line in Figure 3.4 that captures the water content of U.S. net imports

documents that there has been a significant change in the U.S. water exchange with

the rest of the world over time. From 1950 to the 1980s the water content of net

imports was negative as the water content of its exports was higher than the water it

would take the United States to produce the imports itself. Since the 1990s, the total

water use of net imports has turned positive, however. By 2010 the United States

imported on net 3.8 billion gallons of water per day through its trade. This evidence

suggests that some of the water savings achieved in the United States are due to

its changing exchange with the rest of the world. Of particular interest here is the

top curve in Figure 3.4. We have added the water contained in net imports (bottom

line) to U.S. domestic water use (middle line), which is tantamount to assuming

hypothetically that the United States would be producing all the goods it consumes

38See Appendix for further details about the concordance.
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(just like a closed economy).39 As Figure 3.4 makes clear, under such hypothetical

scenario the peak of U.S. water use would be in 2005 instead of 1980, suggesting

indeed that overall water use has not leveled off but increased virtually continuously.

While Figure 3.4 is qualitatively of interest, it should be noted that on balance the

water content of net imports is only one percent of total water use, and as we will

show unlikely an impediment for the replicability of water saving abroad.

3.5 Decomposing U.S. water use

Figure 3.5 presents our key findings for the decomposition of U.S. water use since

1950 that uses double deflation with industry-specific price deflators (see Table 3.1

for the quantified effects).40 The decomposition compares U.S. water use under four

hypothetical scenarios relative to what it was in 1950. Before emphasizing some of

our key findings, let’s make sure we understand the meaning of the various curves in

Figure 3.5. For ease of interpretation we have scaled all curves by total 1950 water

use. or by 180 billion gallons a day. In this way, it is fairly straightforward to assess

changes in water use.

The lowest curve shows the increase of actual total water use as observed in the

USGS data since 1950. Following equation (3.4b), observed water use, Wt, equals

at every moment in time w′tLtθtYt, which involves changes in all of its components

(sectoral water productivity, the changing input-output matrix, the share of sectoral

39It should be emphasized that this is nothing but a hypothetical scenario since prices are assumed
not to change.

40We have also performed the decomposition uniformly applying the GDP deflator across all
sectors, see Figure A.1 and Table A.2. Such an analysis increases the contribution of the changing
composition to the water efficiency gains relative to the one we obtain with double deflation, and
decreases the contribution of technological progress. Closer analysis reveals that deflating especially
electricity generation with the GDP deflator fails to correct for the particular pattern of electricity
pricing, understating technological progress.
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final demand in GDP, and GDP). The top line singles out what happens to water

use (relative to water use in 1950) once the scale of the economy changes, all else

equal. In other words, it depicts what water use would have been if the economy had

grown at its actual rate, while the water productivity (technology), the input-output

relationships, and the distribution of final demand did not change from their 1950

levels. We calculate the water use that is implied by the changing scale of the economy

as w′1950L1950θ1950Yt and divide it by 1950 water use. For ease of interpretation

we introduce the subsequent changes (composition and technology) in a cumulative

fashion. The second and third curves from the top are labeled respectively scale

plus demand composition, and scale plus demand and input composition. They are

calculated as w′1950Ltθ1950Yt and w′1950LtθtYt and compared to 1950 water use. The

second and third curves allow the distribution of final demand, θt, and the input-

output structure of production, Lt, to change over time in addition to the change in

GDP.

With these definitions in mind, it is relatively straightforward to interpret the

curves and the vertical differences between them.

• Since all curves are normalized by 1950 water use, they indicate how strong

the changing scale or the changing scale plus (input and demand) composition

would have pushed water use up compared to 1950, as well as how much actual

water use did rise since 1950.

• Of even greater interest is the vertical difference between the lowest curve (the

actual water use through time) and the highest curve (the scale effect) at every

moment in time, which measures all realized water savings relative to 1950. As

a matter of fact, at every moment in time the ratio of scale to actual water

use is a measure of how water productivity has evolved since 1950, and how



111

much less water it takes to produce one dollar’s worth of GDP since 1950. The

vertical distance between the first and second curve, the second and third curve,

etc.—all the way down to the lowest (actual water use) curve—shows how the

overall water productivity gains for the United States as a whole can be broken

down.

• The difference between the first and the second curve (relative to the difference

between the first and the lowest curve) reveals how important the changing

composition due to the changing structure of final demand is for the improving

water productivity in the United States.

• The difference between the second and the third curve informs us about water-

productivity gains due to the evolving composition associated with the changing

input-output matrix. This difference gets at the varying ways in which vari-

ous intermediates are being combined to produce a final good. This reflects a

changing production process.

• The difference between the third curve and the lowest curve that marks the

actual water use attributes all of the remaining water productivity gains to im-

provements at the sectoral level that are summarized under the label technique

or technology.

When looking more closely at the data, a few observations stand out. First and

foremost, the United States has experienced substantial gains in overall water produc-

tivity between 1950 and 2010. While water use in 2010 was 1.95 times what it was in

1950, the upper, scale curve indicates that water use would have been 6.71 times the

1950 level if technology as well as the structure of demand and of input use had not

changed since then. What can account for this overall increase in water productivity
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of almost 250 percent (6.71/1.95 = 3.44) since 1950? The most drastic water savings

have occurred since the mid 1970s/early 1980s around which time water use was in-

creasingly disconnected from GDP growth. Before water use was increasing virtually

in step with the growing economy: real GDP grew 2.8 times between 1950 and 1980,

and actual water use rose 2.4 times. Since 1980 the picture has been very different.

Actual water use has decreased slightly (by 19 percent) since 1980, whereas GDP for

2010 has increased 2.4 times its 1980 level. In sum, while overall water productivity

has increased a mere 1.2 times (1.2 = 2.8/2.4) between 1950 and 1980, it has grown

2.7 times (2.7 = 2.4/0.89) since 1980.

Tracking for 2010 the vertical difference between the top curve and the second

curve from the top, we notice that the changing composition associated with the

changing final demand can account for 35 percent of the water productivity gains

since 1950. The difference between the second and the third curve from the top

assigns another 15 percent of the productivity gains to the changing input-output

structure. We thus find a total composition effect of 50 percent, which underscores

how crucial the structural shifts in the economy have been for slowing down water

use in the United States.

In our analysis we study the impact of the structural changes of the U.S. economy

on water use. We can draw on an important literature to explain what is behind the

dramatic increase in the size of the service sector and the associated decrease of manu-

facturing and agriculture. A recent contribution, Buera and Kaboski (2012) provides

a succinct summary of the key papers in the literature, from the early observers of the

growth of the employment share of the service sector to the more recent theoretical

contributions that also address increased final demand in services. A key factor in

the emergence of the service sector is the very distinct human capital accumulation

in the United States that is associated with the higher returns of skill acquisition in
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spite of an increase in supply of high-skilled labor.41 According to Buera and Ka-

boski, increased specialization in skills gives way to an increasingly important role for

the market to provide services that used to be provided in-house or in-family. Buera

and Kaboski’s data show that for much of U.S. history, the size of the service sector

stayed relatively stable. By 1950 it began to increase, and since 1980 we even saw

an acceleration of that share. Being able to link our decomposition to the structural

change literature is of particular importance since it brings in an element of causation

to one of the key drivers of water use: few will argue that the larger structural shift

that has driven the emergence of the service sector is driven by water scarcity.42

The increasing relative size of the service sector, however, implies a decline in the

relative size of the other sectors. Over the period that we study the decline of man-

ufacturing is most pronounced since the 1980s. There is also a significant literature

on the impact of globalization on the size of the manufacturing sector. A most recent

article by Autor et al. (2014) in particular shows how increased competition due to

the emerging Chinese economy as a major exporter of manufacturing products has

hastened the decline in U.S. manufacturing.43 Note that the structural change that

we study makes sense in the context of our attempt to explain the stabilization of

water use in the United States. Indeed, the rising service sector is one of the least

water-intensive sectors, whereas the declining sectors, manufacturing and especially

agriculture, are the more water-intensive ones. For reference, Table 3.1 reveals signif-

icant differences in water productivity at the sectoral level by multiple measures. For

comparison, we also include total water use per final demand in a sector. Note that

41The 20 percent increase in the service sector as a share of value added is entirely explained by
the rise of high-skill services, see Buera and Kaboski (2012).

42This, at least for one of the key drivers that mitigated the fast increase in water use, addresses
a criticism that is sometimes leveled at such decompositions, see Levinson (2008) and Levinson and
O’Brien (2015).

43For related literature see Autor et al. (2014).
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while the very stark differences in water productivity remain, counting total water

use relative to final demand does reduce the extent of the sectoral water productivity

differences by a factor of ten.

The remaining difference between the third curve and the lowest one in Figure 3.5

indicates that about 50 percent of the water productivity gains can be attributed

to productivity gains in the water use within the various sectors. For those eager to

replicate the successful reduction in U.S. water use, this is good news, as technological

improvements (especially when compared to the slow-moving shift in a country’s

sectoral structure) are more likely to be influenced by policy and are also potentially

faster to implement. We will come back to this finding as we compare our results

with a more disaggregate analysis. Before doing so, however, we intend to refine

the technology result, assess the impact of globalization, and vary the ranking of the

decomposition.

3.5.1 A closer look at technology

In this section, we take a closer look at the technology improvements. We im-

pute the actual water savings (improvements in water per kilowatt-hour (kWh))

within the thermic electricity-generating sector, which is a good proxy for techni-

cal/technological advancements.44 The imputation yields the fourth curve (the one

right above the actual water use curve). What is striking is that the fourth curve lies

not too far above the actual water use curve. This underscores the key nexus between

energy generation and water use, and between technological improvements and water-

44We formally do this by calculating (and drawing) Wt = w∗
′
LtθtYt, where the sectoral wa-

ter productivity measures in w∗ are identical to those of w1950, except for water use/gross out-
put in electricity generation. Water productivity in electricity generation is allowed to change
with the improvements in water/kWh in the data (U.S. Energy Information Administration), while
kWh/gross output is held constant at its 1950 level. In particular w∗t for electricity generation
= (w/kWh)t ∗ (kWh/gross output)t.
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productivity gains. There are non-negligible returns to water saving technology in

the electricity-generating sector. As a matter of fact, the technological improvements

by the electricity-generating sector are responsible for the vast majority (64 percent)

of the water-productivity gains due to technique or technology.

While we do not formally investigate what is driving the move towards more wa-

ter saving technology in electricity generation, a few facts have to be brought in. As

Kenny et al. (2009) points out the Clean Water Act that amended the 1972 Federal

Water Pollution Control Act most likely played a key role. The Clean Water Act

regulated not only the technology of cooling water intake that should minimize the

environmental effect, but also the cooling system thermal discharges. Increasingly

since the 1970s power plants reduced their water use significantly by recycling water,

or by using air-cooled systems instead of once-through cooling systems. This phe-

nomenon has had a significant hand in accounting for the improvement in the water

productivity. Corroborating this analysis is the fact that water use/gross output for

electricity generation (relative to its 1980s value) shows the strongest decline of all

sectors that we consider, see Figure 3.10. We found that finding the proper defla-

tor (we use the nominal electricity price for residential and industrial use) is also

important.45

3.5.2 International trade and the decomposition

In this section, we get back to the impact of international trade. As noted, the

changing composition of the U.S. economy plays an important role in accounting

for its water savings. The question is whether and to what extent this aspect of

45Using the price index for gross output of the utilities sector overstates the technological im-
provements after 1980 and understates the improvements before 1980. Using the GDP deflator does
not capture the industry-specific price movements and understates the role of technological progress,
see Figure A.1.
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water saving is to be attributed to the import of more water-intensive goods versus

the export of less water-intensive products. Figure 3.6 is similar to Figure 3.5 (see

Table 3.3 for the quantified effects). For simplicity, we have lumped both composition

effects together. In addition, we include two new curves. One curve is similar to the

top curve of Figure 3.4 and adds the water content of net imports to domestic water

use (while not allowing technique to change) in order to assess how much water saving

that is associated with the changing composition of the U.S. economy comes from net

imports. The other curve, then, corrects for the size of the U.S. current account.

Notably, there has been a relatively dramatic change in the external position of the

United States. In 1950 U.S. exports were larger than imports with a trade surplus was

about 3.2 percent of GDP. In 2010, on the other hand, U.S. imports far outstripped

exports, and the trade deficit was 3.3 percent of GDP.

As one can see from Figure 3.6, trade contributes a relatively small portion of

the overall composition effect. If the United States had to produce all of its imports

(the no-trade scenario) it would be saving 17 percent less water. If the United States

were forced, on the other hand to run a level trade balance compared to 1950, it

would reduce its savings by 16 percent. In other words, the trade deficit accounts for

over 94 percent (16/17) of the water saving, and less than 6 percent (1/17) is to be

attributed to a shift towards more water-intensive products. The relatively moderate

role of imports in water savings is good news for the international replicability of U.S.

water savings: running a current account deficit or shifting imports towards more

water-intensive products is not a recipe for water saving that can be implemented by

all countries of the world.
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3.5.3 Varying the order of the decomposition

An attractive feature of our decomposition is that it explains the total change in

water use and water productivity and breaks it down into the salient components,

considering the various drivers of water use in the entire economy (scale, composition,

and technology) cumulatively. A disadvantage is that the decomposition ignores any

interactions between the various components, which is why we investigate the robust-

ness of the decomposition with variations in the sequencing of the changes.46 While

we did investigate all possible orderings, only a few of them are meaningful. The

decomposition that we presented so far is the most intuitive one that is directly in

line with Leontief’s input-output analysis in which change is driven by the chang-

ing final demand. There is one change of sequencing that we did want to report.

We reversed the order of the technological component versus the input and demand

composition component. For the entire period we find a stronger role for technology

(65 percent instead of 50 percent) and a smaller role for the sectoral composition

(35 percent instead of 50 percent). Reporting this decomposition lets us describe

the range of the technology and composition effects. Note that other orderings are

really not meaningful. Since our focus is on explaining changing water productivity

(GDP/actual water use), the scale effect has to remain the first change to consider

in the decomposition, and the actual water use by default the last one. We break

down the overall composition into a demand and an input component. It is hard to

rationalize inserting the technology component in between both composition effects.47

46Note that many decomposition studies cannot investigate the robustness as they do not have
proper measures for all components, often attributing the residual of scale and composition to
technology.

47If one would, one would not find any meaningful difference in the overall decomposition.
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3.5.4 Aggregating up

In this section and in Figure 3.7, we aggregate all the USGS sectors that we have

been using in the decomposition up to two, services and the rest of the economy.

The objective is to illustrate the robustness of the key role that services plays in

the increased water productivity. We want to convince ourselves that what we have

done so far, classifying the (in terms of water use) quite sizeable residential water

and electricity demand as separate entities, did not distort the role of services in the

decomposition of U.S. water saving. Lumping both water and electricity together with

other goods is in line with much of the literature that classifies water and electricity

use as a good, not a service, see Reshef (2013). Figure 3.7 is quite similar to Figure 3.5.

The latter should not surprise. For one, residential water and electricity use are very

small in terms of GDP and have not been growing at the rate that services has. In

addition, both residential water and electricity use are far more water intensive than

services. As such, they add to the water intensity of the slower-growing rest of the

economy, which can only emphasize the water saving through the emergence and fast

expansion of less water-intensive services.

3.6 Disaggregation

So far, we have shown how switches between the major sectors of the economy in

terms of final demand and inputs used have played a non-negligible role next to

technological progress in driving the pattern of water use in the United States. Using

the more disaggregate water data by Blackhurst et al. (2010) we want to double

check this observation and investigate whether and to what extent our finding is a

consequence of ignoring action within our larger sectors. The between-sector analysis

attributes improvements that cannot be explained by composition changes in final
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demand or input use between our major sectors to changes in technique/technology.

Moreover, it treats the major sectors as relatively homogenous units. If it were the

case that there were within agriculture, within manufacturing, or within services a

shift towards the production of more water-intensive goods, our attribution of 50 (65)

percent of the water productivity gains to technology would underestimate the total

contribution of technology. The technological improvements within the respective

sectors would simply have been offset by the consumption (and production) of more

water-intensive final goods in those sectors. Alternatively, with a shift towards more

consumption and production of less water-intensive goods within sectors, we would

have overstated the technique/technology contribution.

In Figure 3.8a, we first confirm the important role of an overall composition shift

over time towards less water-intensive goods also at the more disaggregate level—to

simplify we lump together demand and input composition. Note that since disaggre-

gate sectoral water use data are only for 2000, w2000, our analysis is more constrained

than the between-sector analysis that drew on aggregate sectoral water use data for

all the years of the period that we study. To tease out the composition effect, we com-

pare total water use in 2000, which equals w′d2000Ld2000θd2000Y2000, with what water

use would have been if the United States had to generate its 2000 GDP with its 2000

water technology, but with the composition (final demand and input combinations) of

the other periods, or with w′d2000LdtθdtY2000. We find indeed that the composition of

the earlier years would have given way to significantly more water use—on the order

of 1.8 times as much water as in 2000 if the 1950 composition were used. Because

of this shift towards less water-intensive goods over time within our broader sectors,

the more aggregate between-analysis that we presented before by construction under-

estimates the extent of the composition effect, and hence overestimates the role of

technology. What is striking, however, is that the big structural between-sector shifts
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(in particular the emergence of the service sector) that we have focused on and that

are hard to be rationalize in terms of water scarcity or rising water prices in recent

years account for a very important fraction of the composition effect. Calculating

w′2000LtθtY2000 with aggregate data for 1950, we capture 75 percent of the composi-

tion effect as calculated by disaggregate data w′d2000LdtθdtY2000: the 1950 hypothetical

water use is 1.4 times as high as that of 2000.48

To tease out the impact of technology, in Figure 3.8b we compare with disag-

gregate data, total actual water use in United States or, w′dtLdtθdtYt, with what it

would have been had 2000 technology been used, or with w′d2000LdtθdtYt. We also

draw the same hypothetical water use with aggregate data, or w′2000LtθtYt. As one

can see, there is less of an improvement in technology with disaggregate data than

what our aggregate analysis suggested. As noticed before, technological improve-

ment is unevenly distributed over the time frame, and improvement picks up after

1975. Since we have only disaggregate water use data for one year to work with, we

are constrained in how we can measure technological progress for individual sectors.

We, for example, cannot compare w′dtLdtθidtYit with w′d2000LdtθidtYit, for agriculture,

manufacturing and services, which would let us directly tease out the role of tech-

nology.49 In Figure 3.10 we plot the aggregate w’s for the various sectors—to make

the ratios comparable we divide each water intensity by its 1980 value. What stands

out in the aggregate data is the change in the water to gross output ratio comes from

48For reference, in Figure 3.8a, we only let the composition change over time. If one wanted to
get a sense of what the comparable impact of technology as the only changing factor would be, one
could compare water use of 2000 (w′2000L2000θ2000Y2000) with what water use would have been if one
were to produce the 2000 GDP with the composition of 2000, yet with technology that evolves over
time (i.e., w′tL2000θ2000Y2000). One would find that water use in 1950 would have been 1.9 times
that of 2000. Note that this comparison should be with aggregate data since we have no disaggregate
w vector that changes over time.

49To be explicit, w′dtLdtθidtYit does not correspond to the water use within agriculture, man-
ufacturing or services as reported by the USGS, as it refers to the water contained in final goods
demand/production, not water contained in gross output.
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agriculture and especially from the electricity-generating sector. Since 1960 there is

a continuous improvement in electricity generation, whereas for agriculture we have

to wait till 1980. Combined with the fact that there is initially a slight shift towards

more water-intensive products within agriculture, we know that the technological im-

provement since 1980 may have been stronger in agriculture than what we observe

from Figure 3.10.

In Figure 3.9 we look inside manufacturing and services and compare for those

sectors the water that is contained in final demand in 2000, w′d2000Ld2000θid2000Yi2000,

with what water use would have been if one were to produce the final demand of 2000

in each of the sectors with the 2000 technology but with the changing internal com-

position, or with w′d2000LdtθidtYi2000—i stands for manufacturing or services. There

is a clear shift toward less water-intensive sectors within manufacturing and services

over time.

3.7 Conclusion

In recent years water stress and water scarcity around the globe have received increas-

ingly more attention in the public domain. To manage water stress adequately in the

United States and in the global economy, it is essential that we understand the long-

term drivers behind water use. In this paper we have decomposed the long-term, blue

water use for the United States that in spite of significant GDP growth has stabilized

and even decreased since 1980. To shed light on the significant overall water produc-

tivity growth that made this stabilization in water use possible, we have explicitly

linked the main sectors of the U.S. economy to water through their direct and indi-

rect water use. The literature tends to favor technological/behavioral explanations of

water productivity improvements; we have documented that the changing structure
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of final demand and production of the U.S. economy (the evolving service economy,

the decline in manufacturing, and the secular decline of agriculture) has played a

critical role. It is not the case that water savings are solely driven by improvements

in technology. Thirty-five to 50 percent comes from the changing composition of the

U.S. economy. Moreover, as far as technological improvements go, the lion’s share

comes from efficiency gains in the electricity-generating sector.

Our conclusions for the United States are directly relevant for the global economy,

especially since long-term, detailed and internationally comparable water data are not

available on a global scale. We do not find that the majority of the productivity gains

in the United States are at the expense of the rest of the world. The U.S. current

account deficit and imports of water-intensive goods have an only limited impact on

the overall outcome. More importantly, our finding that structural change that moves

an economy towards services slows down water withdrawals is relevant for a world

economy that is increasingly oriented towards services. Our analysis also suggests

that water productivity gains can emanate from efficiency gains in the electricity-

generating sector.

Read against the background of increased water stress in the United States our

analysis at the same time raises questions for further research. While our analysis

of water demand shows growing restraint and even a slight decrease in demand, it

does not suggest whether such restraint is sufficient. In other words, the demand-side

analysis presented here needs to be complemented with an analysis of water supply, to

see whether, in spite of the slight decrease in water withdrawal, a sustainable level of

water use has been reached. Merging water supply with demand might moreover shed

light on some of the underlying reasons water productivity gains are achieved. In par-

ticular, our analysis takes within-sector shifts towards less water-intensive products

as well as technological improvements that increase water productivity as given. It is
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an open, empirical question whether a causal connection can be established between

the extent of the water scarcity in a region, or some other environmental stress in

a particular time period, and technological progress. Whether and how scarcity and

drought trigger innovation and efficiency gains is an important question that that

needs more empirical research with micro-level data.

Finally, our findings should also matter for ongoing discussions about societal wa-

ter redistribution in the wake of water crises such as the decade-long Big Dry in Aus-

tralia and the current water stress in California. In those discussions, mechanisms—

such as water markets—tend to be favored that channel water from less to more

productive water users. Our analysis confirms that water is on average more produc-

tively used in services and manufacturing compared to agriculture. However, what

our analysis also emphasizes is the need to consider the indirect water use of the key

sectors caught in the debate (services, manufacturing and agriculture) especially since

much of the intermediate water use (such as the water linked to electricity generation)

is non-tradable. Including the indirect water use of sectors indicates that the average

water productivity differences across sectors are still significant but not as stark as

initially assumed.
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3.8 Tables

Table 3.1: Decomposition with Double Deflation

Increase in Water Use Since 1950, Allowing the following to change over time:

Scale 6.71
Scale and Final Demand Composition 5.05
Scale, Final Demand and Input Composition 4.32
Scale, Final Demand and Input Composition, and Water Efficiency of Power
Generation Sector

2.80

Scale, Final Demand and Input Composition, Water Efficiency of Power Gen-
eration Sector, and Technique (Actual Water Use)

1.95

Fraction of Water Productivity Improvement Explained by:

Final Demand Composition 0.35
Input Composition 0.15
Water Efficiency of Power Generation Sector 0.32
Technique 0.18

Notes: The table reports the size of the effects and the fraction of the overall water
productivity improvement explained by each effect for the decomposition shown in Fig-
ure 3.5.

Table 3.2: Measures of Sectoral Water Efficiency Relative to Services
(2005)

Direct Water/
Gross Output

Direct Water/
Value Added

Total Water/Final
Demand

Agriculture 712.9 1,106.4 161.3
Manufacturing 3.5 5.8 4.5
Services 1.0 1.0 1.0

Notes: This table shows measures of water use per dollar of output measure relative
to the services sector.
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Table 3.3: Decomposition: Hypothetical Closed Economy

Increase in Water Use Since 1950, Allowing the following to change over time:

Scale 6.71
Scale, Final Demand and Input Composition; No Trade 4.74
Scale, Final Demand and Input Composition; Current Account = 0 4.71
Scale, Final Demand and Input Composition 4.32
Scale, Final Demand and Input Composition, and Technique (Actual Water
Use)

1.95

Fraction of Composition Effect Explained by:

Trade 0.17
Current Account 0.16

Notes: The table reports the size of the effects and the fraction of the final demand and
input composition effect explained by each trade scenario for the decomposition shown
in Figure 3.6.
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3.9 Figures

Figure 3.1: The Changing Structure of Final Demand Spending (as Fractions of GDP)
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Figure 3.2: Direct Water Use
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Figure 3.3: Total (Direct and Indirect) Water Use
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Figure 3.4: Water Content of Net Imports and the Hypothetical Closed Economy
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Figure 3.5: Decomposition with Double Deflation
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Figure 3.6: Decomposition: Hypothetical Closed Economy
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Figure 3.7: Decomposition with Services and Rest of the Economy
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Figure 3.8: Disaggregation Exercise

(a) Changing composition toward less-water-intensive
products over time: Aggregate vs. Disaggregate Data
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Figure 3.9: Changing Product Compositions by Sector

(a) Changing product composition inside Manufacturing
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Figure 3.10: Water Intensity Across Sectors (Relative to 1980)
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Appendix A

Appendix to Chapter 3

A.1 Data construction

In this section we discuss in detail some of the data issues.

Assigning publicly supplied water to the sectors:

We assign water use in the Public Supply category—water supplied by water utilities—to

the sectors that use the water in the following way:

We first take a fraction of publicly supplied water to be residential use. We take this

share to be 0.58, which is based on the relatively stable share of publicly supplied water use

that goes to residential users that is given by the USGS for the years 1985-1995 and 2005.

We then allocate the remaining publicly supplied water to the sectors using the share of

payments by each sector to water utilities from the input-output tables.

Estimating missing water data:

The USGS does not provide data for all sectors in all years. We use the following procedures

to estimate the missing values:
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Mining

Mining self-supplied water use is included in self-supplied industrial water use for the years

1950-1980. We remove it by taking the ratio of self-supplied to publicly supplied (by water

utilities) mining water use for the years 1985-2005 and applying it to publicly supplied

mining water use for the missing years.

Commercial (Services)

We use the same procedure as for mining above (using data for the years 1985-1995) to

separate commercial self-supplied water use from industrial self-supplied water use for the

years 1950-1980. We also use this method to estimate commercial water use for 2000-2005,

years for which the USGS does not estimate commercial water use as part of any category.

Aquaculture

We remove self-supplied aquaculture water use from self-supplied industrial water use for

the years 1950-1980 by applying the growth rate in aquaculture tonnage to aquaculture

water use for the years with aquaculture water use data (1985-2005).

Industrial (Manufacturing)

We subtract estimated mining, commercial, and aquaculture water use from self-supplied

industrial water use for 1950-1980.

Estimating missing input-output data:

In some years, the input-output tables do not split utilities into water and electric utilities,

and net exports are not split into imports and exports. We impute the missing values in

the following ways:
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Utilities

In 1947 and 1958, electric and water utilities are not split from utilities. We use the 1963

ratio to split the utilities category. The remaining component of utilities, gas utilities, is

added back into services.

Specifically: Using the 1963 data, we compute the share of each cell that involves utilities

(as producing or consuming sector) that is comprised by electric utilities or water utilities.

We apply these shares to the corresponding utilities cells in the 1947 and 1958 input-output

tables. To ensure that gross output balances by sector, we leave one row component of

utilities empty (we use gas utilities), and compute the value as the difference between gross

output computed going across rows and computed going down columns. The final cell (gas

utilities x gas utilities) is calculated such that total gross output in the economy is the same

as before the split was applied.

Trade

In 1958, 1963, and 1967, net exports are not divided into exports and imports.

To split net exports into exports and imports: We compute the growth rate of imports

for each sector: Agriculture, Livestock, Mining, Manufacturing, and Services (Water and

Electric Utilities assumed same rate of growth as Services). Goods import data are SITC

Rev. 1 from the WITS database (World Integrated Trade Solution). Services import data

are from the Balance of Payments from the BEA. We apply the growth rates back from

1972 to compute imports for 1958, 1963, and 1967. The trade data is not available prior

to 1963, so we apply the 1963-1967 growth rate to compute imports in 1958. Exports are

computed as the sum of the estimated import levels and net exports (from the input-output

tables).
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Concordance of input-output tables over time:

To match the sectors over time, we match the input-output sectors for the 1997 data with

the NAICS categories and convert to SIC using a concordance from the BEA. We then

convert the SIC categories to the 1992 input-output classification, also using a concordance

from the BEA. The mapping from NAICS to the 1992 input-output sectors is not one-to-one.

In cases where one NAICS category maps to many 1992 input-output sectors we distribute

the value in the NAICS category according to the relative sizes of the 1992 input-output

sectors within a NAICS category.
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A.2 Tables

Table A.1: Scaling Factor for
the Aggregate Water Content of
Trade

Exports Imports

1950 1.21 0.95
1955 1.44 0.89
1960 1.52 0.86
1965 1.49 0.88
1970 1.17 0.85
1975 1.01 0.80
1980 0.96 0.75
1985 1.01 0.78
1990 0.98 0.79
1995 0.94 0.75
2000 0.90 0.72
2005 0.93 0.79
2010 0.83 0.75

Notes: This table reports the scaling
factors used to adjust the aggregate wa-
ter content of exports and imports.

Table A.2: Decomposition with GDP Deflator

Increase in Water Use Since 1950, Allowing the following to change over time:

Scale 6.89
Scale and Final Demand Composition 4.71
Scale, Final Demand and Input Composition 3.28
Scale, Final Demand and Input Composition, and Water Efficiency of Power
Generation Sector

2.18

Scale, Final Demand and Input Composition, Water Efficiency of Power Gen-
eration Sector, and Technique (Actual Water Use)

1.95

Fraction of Water Productivity Improvement Explained by:

Final Demand Composition 0.44
Input Composition 0.29
Water Efficiency of Power Generation Sector 0.22
Technique 0.05

Notes: The table reports the size of the effects and the fraction of the overall water
productivity improvement explained by each effect for the decomposition shown in Fig-
ure A.1.
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A.3 Figures

Figure A.1: Decomposition with GDP Deflator
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Notes: This figure shows the decomposition using the GDP deflator.

Actual water use allows all components—scale, final demand and in-

put composition, power generation water efficiency, and technique—to

change over time.


