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ABSTRACT

Monte Carlo numerical solutions to the radiation transfer equation in curved spacetime require both

sampling of radiation-matter interactions and calculation of the null geodesics for photon trajecto-

ries. Our code, written in C++ using the Athena++ grid framework, integrates geodesics in general

spacetimes, with a particular focus on Kerr metric of spinning black holes. Since our main intent is

studying accretion disks around supermassive black holes, we include free-free absorption and emission

along with polarized or unpolarized Compton scattering. After showing convergence and performance

comparisons to other codes on test problems, we generate synthetic spectra from accretion disk models

and simulations.

Keywords: accretion, accretion disks – black hole physics – methods: numerical – radiative transfer –

relativistic processes

1. INTRODUCTION

It is currently agreed that quasars and active galac-

tic nuclei (AGN) must be accreting supermassive black

holes (SMBH) due to their high luminosities and small

spatial scales. While the physical processes governing

their behavior are well understood, solving these inter-

dependent, non-linear, multivariable equations nearly

necessitates either unrealistic assumptions or numeri-

cal methods. AGN have become a hot topic in re-

cent literature because of the growing tensions between

accretion disk theory and observations (See Davis &

Tchekhovskoy 2020, in press, for a recent review) and

the Event Horizon Telescope Collaboration’s first im-

age of the supermassive black hole in M87 (Akiyama

et al. 2019a) and expected image of Sgr A* in the near

future. Modeling these objects requires Monte Carlo ra-

diative transfer methods (MCRT), and Akiyama et al.

(2019b) show how successfully these simulations can in-

fer physical properties from observations. It is integral

to continue bridging the disparities between observation
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and theory, and one essential avenue is creating realistic

synthetic images based on numerical simulations.

Within the past 20 years, numerous general relativis-

tic magnetohydrodynamic methods (GRMHD) using

MCRT have emerged, each with their own set intended

problems (Gammie et al. 2003; Li et al. 2005; Dolence

et al. 2009; Schnittman & Krolik 2013; Ryan et al. 2015).

These codes each have their advantages for their own ap-

plications and include complex processes such as Comp-

ton scattering and synchrotron radiation. Beyond cap-

turing these physical mechanisms, simulations need to

integrate the photon geodesics, either quasi-analytically

(e.g., Dexter & Agol 2009) or numerically (e.g., Dolence

et al. 2009), to an observer at infinity to generate mock

images and spectra. These methods have significantly

improved our understanding of the interplay between

AGN jets and the black hole proprieties, but they lack

flexibility to other astrophysical objects beyond neutron

stars, core-collapse supernovae and X-ray binaries.

We present a general relativistic MCRT code written

in C++ based on the Athena++ grid framework (Stone

et al., in press). The MCRT branch is relatively self-

contained as it only relies on Athena’s grid framework,

but it has access to Athena’s MHD solvers allowing

for complex modeling within one code (Davis et al., in
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prep.). This code with the implementation of the gen-

eral relativistic photon integrator can be used for a large

number of astrophysical problems, and we focus on ap-

plications for AGN in the Kerr metric of a spinning black

hole. We numerically integrate photon geodesics using

the Verlet algorithm (Verlet 1976) and transform be-

tween reference frames using a tetrad basis formulation

based on the fluid and magnetic field four-vectors with

Gram-Schmidt orthogonalization. We include free-free

absorption and emission in addition to unpolarized and

polarized Compton scattering based on our MCRT al-

gorithms.

The goal of this paper is to outline generally how the

code runs, provide test problems and comparisons to

other simulations and show example applications. § 2

outlines the methods used, including an introduction

to MCRT in curved spacetime (§ 2.1), an explanation

of how photon initialization (§ 2.2), the definitions of

the tetrad formalism (§ 2.3) and the implementation of

the covariant integrator for the photon four-wave-vector

(§ 2.4); § 3 details three example problems, namely a

test of numerical artifacts related to the Verlet algo-

rithm, the orthonormal tetrad formulation using a rel-

ativistic Cartesian box and the null geodesic integrator

by comparing trajectories around a spinning black hole

to geokerr (Dexter & Agol 2009); § 4 gives an exam-

ple application problem for ray-traycing photons to an

observer at infinity for synethic images; and § 5 summa-

rizes the results.

2. METHODS

2.1. Monte Carlo Radiation Transfer

Solving the relativistic radiation transfer equation for

complex astrophysical models requires numerical meth-

ods and algorithms (Whitney 2011). There must be a

way for generating photon packets or “superphotons,”

propagating photons along their trajectories, modeling

matter-radiation interactions such as scattering, absorp-

tion and collecting outputs of escaped photons. Pho-

ton emission can be from a point source, distributed or

from the boundaries. For example, an accretion disk

can thermally emit photons based on a probability dis-

tribution function, or a star can be the only source of

emission. MCRT relies on pseudo-random numbers to

simulate superphoton lives from emission to absorption

or escape, where each photon must draw some optical

depth τ to move before getting absorbed or scattered.

In Minkowski spacetime, superphotons travel in straight

lines, so they can be “pushed” to their final position an-

alytically. Then based on the appropriate schemes, such

as free-free absorption or Compton scattering, the pho-

tons’ characteristics evolve and a new optical depth is

drawn. This process repeats until either the superpho-

ton is entirely absorbed or some stopping criterion is

met, such as exiting the simulation domain. Lastly the

relevant outputs are collected and the next process can

begin. By repeating this method for a large number of

photons all undergoing these pseudo-random walks, we

hope to gain physical insights into these astrophysical

objects.

However curved spacetime presents additional chal-

lenges for MCRT methods. First, photon trajectories

are now non-trivial and require solving the null geodesic

equation either analytically or numerically. Further, ab-

sorption and scattering processes occur in the photons’

rest frame, so there must be a system for transform-

ing between the comoving (Lagrangian, fluid) and coor-

dinate (Eulerian, static) frames. These complications

greatly increase the computational resources required

for the simulation, but various algorithms have been

developed to facilitate modeling these systems (e.g., Li

et al. 2005; Dolence et al. 2009; Schnittman & Krolik

2013). Our code boasts the advantages of being well in-

terfaced with the Athena++ grid framework, so it is ap-

plicable to a wide range of astrophysical problems rang-

ing from accretion disks of high spin supermassive black

holes to protoplanetary disks to supernova explosions.

2.2. Photon Initialization

Before integration, each photon must have an initial

position xα, zone indices iα = (i1i2, i3) for the right-

handed triad coordinate system, direction in the local

frame k(a), a weight w, absorption coefficient αabs, scat-

tering coefficient αscat and status flag. These require-

ments are independent of the emission mechanism and

can be defined manually.

The position and zone indices are closely linked, and

essentially choosing one set defines the other. There are

certain cases where choosing the position and matching

the proper indices is preferred, and vice versa. For cre-

ating an observer grid at a specific inclination angle at

infinity to create synthetic images (see § 4) one needs

to choose the initial position of the photon. Alterna-

tively, if the emission depends on the MHD properties

of the cell, then it is better to choose the cell and as-

cribe a position within said cell. In general, the initial

position xα = (xt,x) must lie within the simulation do-

main x1,2,3;min < x1 < x1,2,3;max
1. For zone indices

0 < i1,2,3 < i1,2,3;max, one can choose xα, typically

1 The code requires that the photon does not lie on exactly on a cell
boundary. This is built-in for randomly assigning a position given
the cell indices, and manual definition of the position should be
careful to offset the position from any known boundary by some
small ε.
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with xt = 1, and assign the appropriate zone indices.

Alternatively, one can choose the zone indices and at-

tribute some position within this cell. This process is

independent for the choice of simulation coordinate sys-

tem, though the algorithms for calculating the indices

given the coordinates may vary.

The photon’s direction k(a) is initialized in the locally

flat frame and then transformed to the coordinate frame

at the start of propagation (see § 2.3). The temporal

component k(t) is directly related to the energy of the

photon, and the eventual changing of its value (in the co-

ordinate frame) describes the gravitational redshift the

photon experiences during integration. The weight w

is conceptually the number of photons within a given

“superphoton” or photon packet and is invariant under

frame transformations. This is typically set based on

the emissivity of the cell or set to unity. The absorp-

tion αabs and scattering αscat coefficients determine how

quickly the optical depth τ decreases to 0. There are

various processes available, such as Thomson, Comp-

ton, none or user-defined functions. The status flag

– EVOLVING, DESTROYED, ESCAPED – describes

the current state of the photon before and after an in-

tegration step. EVOLVING tells the code to continue

integration as normal, and ESCAPED means that the

photon has left the simulation domain and tabulate the

output. DESTROYED is more ambiguous, but it stops

integration and discards the output. The flag can be set

to DESTROYED if the photons gets absorbed, enters

the black hole event horizon or any other user-enrolled

status condition.

2.3. Orthonormal Tetrad Formulation and Frame

Transformations

Once the photon properties are set, we need to trans-

fer it to the coordinate frame for integration using an

orthonormal tetrad basis eα(a). We couple the tetrad to

the fluid four-velocity uα and possibly to the magnetic

field bα by creating a trial basis ẽα(a)

ẽα(0) = uα (1a)

ẽα(1) = bα or (0, 1, 0, 0) (1b)

ẽα(2) = (0, 0, 1, 0) (1c)

ẽα(3) = (0, 0, 0, 1) (1d)

We attempt to couple the basis to the magnetic field,

but if bα = 0 then we default to a vector parallel to

index-1. We employ a Gram-Schmidt orthogonalization

scheme to sure that eα(a)e
(a)
α = 0. First, we normalize

ẽα(0)

NORM
[
ẽα(0)

]
≡

ẽα(0)√
|uαgαβuβ |

(2)

Here gαβ is the covariant metric that raises and lowers

the fluid velocity: uα = gαβu
β , uα = gαβuβ . Then we

project eα(0) onto ẽα(1) and subtract:

PROJSeα
(0)

(
ẽα(1)

)
≡ ẽα(1) − eα(0)

(
ẽα(1)gαβe

α
(0)

eα(0)gαβe
α
(0)

)
(3)

Then we normalize and repeat the process for the re-

maining basis four-vectors

eα(0) = NORM
[
ẽα(0)

]
(4a)

eα(1) = NORM
[
PROJSeα

(0)

(
ẽα(1)

)]
(4b)

eα(2) = NORM
[
PROJSeα

(1)

(
PROJSeα

(0)
(ẽα(2))

)]
(4c)

eα(3) = NORM
[

PROJSeα
(2)

(
PROJSeα

(1)
(PROJSeα

(0)
(ẽα(2)))

)]

(4d)

This completes the orthonormal tetrad basis. The pho-

ton direction can now be transformed between frames

using

kα = eα(a)k
(a) (5a)

k(a) = e(a)
α kα (5b)

where e
(a)
α = gαβe

α
(a). Additionally, να is a conserved

quantity, where ν and α = αabs + αscat are the pho-

ton’s frequency and opacity respectively. The frequency

is related to the time-like component of the photon’s

direction

νtet = −eα(0)kα = −uαkα (6a)

νcoord = −kαgαβuβ = kt (6b)

Then the opacities can be transformed using the the

photon’s direction and and fluid four-velocity

αtet =

(
νtet

νcoord

)
αcoord = −

(
kt

kαuβ

)
αcoord (7a)

αcoord =

(
νcoord

νtet

)
αtet = −k

αgαβu
β

kt
αtet (7b)
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2.4. Covariant Integrator

Unlike in Minkowski spacetime where photons can be

analytically pushed until hitting a boundary or reach-

ing an optical depth of 0, radiation transfer in arbitrary

spacetimes require integration of the geodesic equation.

First, the photon’s direction kα is defined by

kα ≡ dxα

dλ
(8)

where λ is the affine parameter. Then the geodesic equa-

tion governing the changing photon direction and energy

is
dkα

dλ
= −Γαβγk

βkγ (9)

where Γαβγ are the connection coefficients defined by

Γαβγ ≡
1

2
gαδ (gδβ,γ + gδγ,β − gβγ,δ) (10)

for arbitrary metrics and and any coordinate basis.

There are four constants of motion, listed in Kerr-Schild

coordinates (t, r, θ, φ): the energy at infinity E = kt;

the angular momentum l = kφ; Carter’s constant Q =

k2
θ + k2

φ cot2 θ − a2k2
t cos2 θ where a is the dimension-

less black hole spin parameter; and the photon trajec-

tory must be time-like kαkβ = 0 (Carter 1968). These

constraints can be used to solve differential equations

Eqs. (9), (10) analytically to obtain xα and kα based on

the initial or final position and wave vector, as is done

in geokerr (Dexter & Agol 2009).

However, we choose an ordinary differential equation

algorithm rather than directly integrating the the equa-

tions of motion. We use the velocity Verlet algorithm

because it requires only one evaluation of the connection

coefficients Γαβγ per step ∆λ, and Dolence et al. (2009)

showed that this method is faster than higher order inte-

gration schemes in grmonty. For the geodesic equation

Eq. (9), the Verlet algorithm for iteration n+ 1 is

xαn+1 = xαn + kαn∆λ+
1

2

(
dkα

dλ

)

n

(∆λ)2 (11a)

kαn+1,p = kαn +

(
dkα

dλ

)

n

(∆λ) (11b)

(
dkα

dλ

)

n+1

= −Γαβγk
β
n+1,pk

γ
n+1,p (11c)

kαn+1 = kαn +
1

2

[(
dkα

dλ

)

n

+

(
dkα

dλ

)

n+1

]
(∆λ) (11d)

where Γαβγ = Γαβγ (xn+1) are the connection coefficients

evaluated at the position three-vector xn+1 of iteration

n + 1. Eq. (11) is repeated until the error is less than

some tolerance E ∼ 10−3 − 10−5:

E <
∣∣kαn+1 − kαn

∣∣
kαn

(12)

or if the maximum number of iterations is reached (very

rarely and then the photon is destroyed). This typically

requires < 10 iterations for our conservative tolerance

chosen E = 10−5. The photon’s energy En+1 is also

updated at each step

En+1 = En

(
ktn+1

ktn

)
(13)

after kαn+1 has converged.

The stepsize is parameterized by a fractional value ε

relating the physical size of the grid cell and the photon’s

wave vector. In grid cell i the stepsize is defined by

∆λ = MIN

[
MAX(αi)−MIN(αi)

kα

]
ε (14)

where α = x1, x2, x3 are the right-hand triad for spatial

coordinates.

3. COMPARISONS AND PERFORMANCE TESTS

We create and run test problems to ensure the accu-

racy of the various parts – stepsize effects, orthonormal

tetrad formulation, Verlet integration of the geodesic

equation – of the photon propagation.

First, we test the affect of the stepsize parameter on

the photon propagation. We emit 103 photons uniformly

and isotropically in a spherical-polar domain of radius

R = 100r0 in arbitrary units. Then we vary the step-

size parameter in units of r0 and integrate the photons

until they exit the simulation domain. We compute the
difference between the numerical and analytic solution’s

exit positions and divide by the simulation domain size

R. Figure 1 graphs the median of this fractional er-

ror versus ε, and the results follow a linear relation-

ship. We consider stepsizes ε . 10−2, with median error

∆r/R ∼ 10−3, to be sufficiently accurate while main-

taining efficiency; we choose ε = 10−2 for the remainder

of this paper unless otherwise stated. However, for very

large simulation domains that use logarithmic spacing,

we recommend smaller stepsizes ε . 10−3 to ensure the

accuracy of geodesic integration.

Second, we test the frame transformations using a

moving Cartesian box and coordinate basis (t, x, y, z).

We emit 105 photons from free-free emission uniformly

from gas of temperature T = 105 [K] within a large box

of size R = 1013r0 in arbitrary units in each direction.

We then attribute some velocity β = v/c that the box
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10−410−310−210−1100

stepsize ε

10−5

10−4

10−3

10−2

m
ed

ia
n

( ∆
r/
R

)

∆r/R = ε

Athena + +

Figure 1. 1000 photons integrated at each step size in
flat spacetime in spherical-polar coordinates, starting at 100

and ending at 10−4 in steps of 10−1/4. The mean frac-
tional error between analytic and integrated exit position
decreases linearly with stepsize parameter. We consider step-
sizes ∼ 10−2 − 10−3 to be sufficiently accurate while main-
taining speed.

moves in the positive x̂ direction. After initializing the

photons in their local rest frame we transform to the

coordinate frame using

ẽα(t) = uα = (γ, γβ, 0, 0) (15)

as the time-like four-vector of orthonormal tetrad where

γ is the Lorentz factor. Then we propagate the photons

until they are free-free absorbed (i.e., until they have

traveled one randomly drawn optical depth τ) and then

are transformed back into the local rest frame. We sum

the energy density and flux of the absorbed photons,

and figure 2 summarizes the results, with the black and

blue curves referring to the energy density and flux re-

spectively. For flat spacetime and a relativistic box, the

energy density u and flux Fx follow analytic expressions

(open squares):

u = aT 4γ2

(
1 +

1

3
β2

)
(16)

Fx =
4

3
γ2aT 4β (17)

where a is the radiation constant (Mihalas & Mihalas

1984). For all velocities tested and a stepsize parameter

ε = 10−2, the analytic and numerical calculations agree

to < 1σ affirming a proper orthonormal tetrad formula-

tion.

Lastly, we test the accuracy of the geodesic equation

integration via Verlet algorithm by propagating pho-

tons near a high spin black hole. We emit 32 photons

isotropically in the rest frame at the radius of the in-

nermost stable circular orbit risco of a black hole of spin

10−410−310−210−1100

1− β
105

106

107

108

109

1010

u
[e

rg
cm
−

3
]

Analytic

Athena + +

103

104

105

106

107

108

109

1010

F
x

[erg
cm
−

2
s −

1]

Figure 2. 105 photons emitted isotropically and propagated
until absorption in a periodic Cartesian box, which moves in
the positive x direction at some velocity β = v/c. The black
curves and left vertical axis are the energy density u, while
the blue curves and right vertical axis are the flux Fx in
the x̂ direction. The analytic and integrated results agree
to < 1σ, typically . 10−2 − 10−3σ, for all velocities and
stepsizes ε . 10−2.

a/M = 0.9375 at the equatorial plane (black dots):

xα = (1, risco, π/2, 0) (18)

We transform into the comoving frame using ring emis-

sion for the fluid velocity

uα = ut (1, 0, 0,Ω) ,

Ω =
1

r3/2 + a

(19)

in Kerr-Schild coordinates where Ω is the prograde or-

bital velocity. The normalization condition in charac-

teristic units of Rg = GM/c2 = 1 yields

uαgαβu
β =

(
ut
)2
gtt + 2

(
ut
)2
gφtΩ +

(
ut
)2

Ω2gφφ = −1

⇒ ut = ±
[ −1

gtt + 2gtφ + Ω2gφφ

]1/2

(20)

and we choose the positive root. We integrate the

geodesic equation until the photon enters the event

horizon rEH = 1 +
√

1− a2 or reaches an outer ra-

dius R = 100Rg, and Figure 3 plots the trajectories

(black circles). Dexter & Agol (2009)’s geokerr’s quasi-

analytic solution are overplotted (red lines) and the two

trajectories agree well, confirming the accuracy of our

geodesic integration.

4. APPLICATION PROBLEMS

One useful application of the general relativistic pho-

ton integrator is creating synthetic observations of ac-

creting black holes. We create a grid of impact param-

eters to initialize photons at a large radius r0 � rg = 1
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Figure 3. 32 photons emitted isotropically in the fluid frame from Risco ∼ 2.04Rg for spin a/M = 0.9375 (compare with
Dolence et al. (2009)’s Figure 1). The stepsize parameter is 10−2, and geokerr’s resolution is 700 points per geodesic. The
Athena++ circles are plotted every 200 steps, and the integration is carried out to 100Rg.

and ray-trace back to the black hole and accretion disk.

In the photon rest frame these parameters are defined

by Cunningham (1973) as

α = lim
r0→∞

−r0
k(φ)

k(t)
(21)

β = lim
r0→∞

r0
k(θ)

k(t)
(22)

Using these definitions in units of k(t) and the null

geodesic condition allow for kα to be set solely by choos-

ing a pair (α, β) (Agol 1997; Dexter & Agol 2009). The

light-like wave-vector yields a quadratic equation for kr
in the coordinate frame

(kr)
2
γ + krζ + ξ = 0,

γ = grr

ζ = kt
(
grt + grθβ − grφα

)

ξ = (kt)
2×

(
gtt + 2gtθβ − 2gtφα+ gθθβ2 + gφφα2 − 2gθφαβ

)

(23)

in Kerr-Schild coordinates. Consequently, choosing

(α, β) uniquely determines kα

kt = 1 (24a)

kr =
−ζ ±

√
ζ2 − 4γξ

2γ
(24b)

kθ = βkt (24c)

kφ = −αkt (24d)

and we choose the root such that kr < 0 for Eq. (24b) so

the photon travels towards the region of interest. Then

we raise the wave vector and divide each component by

kt such that the initial time-like component is kt = 1,

allowing for easy tracking of gravitational redshift and

beaming/lensing effects.

Because the wave-vector is initialized in the coordinate

frame already, we can skip transforming between frames

and begin integrating the geodesic equation. We set the

initial position

xα = (1, r0, θ, 0) (25)

for colatitutde θ ∈ (0, π/2) that can be varied for dif-

ferent viewing inclination angles. We require r0 � rg
and r0 � rdisk, the outer radius of the accretion disk

defining the region of interest. Then we integrate the

geodesic equation until the photon

• reaches the black hole event horizon xr ≤ rEH,

• reaches the equatorial plane xθ ≥ π/2 at xr ≤ Rdisk

• or exits the simulation domain xr ≥ R
If the photon meets the second condition, it is trans-

formed into tetrad frame using the standard ring emis-

sion fluid velocity Eq. (19), (20) to calculate the photon’s

redshift z = k(t) (since ktem = 1). Figure 4 displays

nine example images, showing three inclination angles

µ = cos θ for three different spin SMBHs. For these im-

ages, the integration begins at r0 = 104rg, has a disk

radius Rdisk = 100rg, stepsize ε = 10−3, and α < 0 cor-

responds to the fluid coming towards the observer. Sim-

ilarly, Figure 5 has the same parameters as Figure 4-3a,

except the outer disk radius is Rdisk = 15rg to show the

black hole shadow.

If the photon exits the simulation grid or if it’s final

position is within xr < risco, then we attribute zero in-
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(3a) a = 0.9, µ = 0.1

−10 −5 0 5 10

α
[
GM/c2

]

−10

−5

0

5

10

β
[ G
M
/c

2
]

(3b) a = 0.9, µ = 0.5
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Figure 4. Nine images of supermassive black holes M = 109 M� with three spins a = 0.0, 0.45, 0.9 viewed from three
inclination angles µ = 0.1, 0.5, 0.9. The photons are traced back from a large distance r0 = 104rg back to the black hole disk in
a logarithmic grid and stepsize ε = 10−3, where there are transformed into the fluid frame and emit thermally. These images
assume an observed photon frequency νobs = 5× 1015 Hz, black hole mass MBH = 109 M� an accretion ratio of Ṁ/ṀEdd = 0.1,
and there are 90000 photons emitted uniformly in (α, β) pairs from α, β ∈ (−15, 15). Effects from relativistic beaming, frame
dragging and light bending are present.



8 Rohr et al.

−5 0 5

α
[
GM/c2

]

−5

0

5

β
[ G
M
/c

2
]

Figure 5. The same black hole as Figure 4-3a, except with
an outer disk radius Rdisk = 15rg to show the black hole
shadow, and the 102400 photons are uniformly emitted in
(α, β) pairs from α, β ∈ (−10, 10).

tensity to this (α, β). For all other photons that reach

the equatorial plane at risco < r < Rdisk we attribute

the general relativistic correction to the blackbody in-

tensity. We use the standard blackbody flux fBB(r) to

calculate the temperature

TBB =

(
fBB(r)

σ

)1/4

(26)

where σ is the Stefan-Boltzmann constant. Then we find

the effective temperature Teff using Novikov (1973)’s

general relativistic temperature correction Tcorr such

that Teff = TBB × Tcorr. Using the observed frequency

νobs and the redshift z to determine the emitted fre-

quency νobs = zνem, we calculate the emitted intensity

Iem = νBν(Teff , νem). Finally, we convert the intensity

from emitted to observed via

Iobs = Iem

(
νobs

νem

)3

(27)

Figure 4 assumes an observed photon frequency νobs =

5× 1015 Hz, black hole mass MBH = 109 M� and an ac-

cretion ratio of Ṁ/ṀEdd = 0.1. Figure 4 emits 90000

photons uniformly in (α, β) pairs from α, β ∈ (−15, 15),

while Figure 5 emits 102400 photons uniformly in (α, β)

pairs from α, β ∈ (−10, 10). The effects from relativis-

tic beaming, frame dragging and light bending are all

present and naturally accounted for via the frame trans-

formations and geodesic integration.

5. SUMMARY

We have presented a fully general relativistic Monte

Carlo radiative transfer branch of the magnetohydro-

dynamic grid-based Athena++. We emphasize that

this code and the entirety of the Athena++ domain

have wide astrophysical applications, but we focus our

attention on bridging the gaps between supermassive

black hole accretion theory and observations. After

outlining the difficulties of solving the relativist radia-

tive transfer equation in curved spacetime, we explain

the code’s methods for creating superphotons within

the Athena++ grid framework. The code utilizes an

orthonormal tetrad formulation based on the Gram-

Schmidt orthogonalization technique and fluid & poten-

tially magnetic field four-vectors to transform between

the fluid and static frames. Upon completion of the

photon initialization, we employ the velocity Verlet al-

gorithm to solve the null geodesic equation while con-

tinuously updating the photon’s properties until termi-

nation or some matter-radiation interaction occurs.

After this detailed explanation of the code’s meth-

ods, we confirm it’s accuracy and speed via compar-

isons to analytic expressions and other works. We test

the accuracy of the Verlet algorithm’s stepsize param-

eter ε by integrating geodesics in spherical-polar coor-

dinates in Minkowski spacetime, where Figure 1 shows

that choosing ε . 10−1 preserves accuracy while main-

taining competitive speed. Figure 2 affirms the accuracy

of the tetrad formulation by calculating the energy den-

sity u and flux Fx of a relativistic Cartesian box and

comparing against expressions from Mihalas & Miha-

las (1984). The final problem tests the accuracy of the

geodesic integration by comparing the trajectories of 32

photons emitted isotropically in the fluid frame at the

innermost stable circular orbit of a spinning black hole
to geokerr’s quasi-analytic solutions (Dexter & Agol

2009), and Figure 3 displays our code’s accuracy.

Finally, we detail an example application problem

of generating synthetic images by creating an observer

grid at infinity and ray-tracing photons back to the

black hole and accretion disk. Figure 4 beautifully

boasts two such photometric images of high spin black

holes viewed nearly edge-on, where beaming, lensing and

light-bending effects are all present. While not shown

here, the same application can be used to create syn-

thetic spectra of AGN.
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