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Abstract 

 The understanding of Arctic vegetation patterns and dynamics is necessary to accurately 

assess carbon gains and ecosystem resistance under projected warming. Uncertainties in 

determining the relative importance of physical and biological drivers of Arctic vegetation 

productivity remain, and the potential drivers of vegetation function and functional diversity as 

determined by Ecosystem Functional Types (EFTs) have not yet been evaluated for the Arctic. 

This thesis analyzed the climatic, geologic, biologic, and anthropogenic drivers of vegetation 

productivity, function, and functional diversity across the Yamal Peninsula, a region within the 

northwestern Siberian tundra, between 2001 and 2018. Productivity was assessed using the 

Normalized Difference Vegetation Index (NDVI), a proxy for primary productivity and 

aboveground biomass. Specifically, Max NDVI (representative of peak growing season 

aboveground biomass) and time-integrated (TI)-NDVI (representative of total growing season 

productivity) were used. Vegetation function was assessed using NDVI-based EFTs that 

represent discrete areas with similar carbon gain dynamics, and functional diversity was 

quantified as EFT richness (the number of unique EFTs within a discrete area).  

 The spatial distributions of Max NDVI, TI-NDVI, and EFTs were primarily influenced 

by long-term climate patterns (particularly Summer Warmth Index, the sum of April – 

September monthly mean temperatures > 0 °C) on the Yamal Peninsula, while spatial patterns of 

EFT richness were best predicted by the degree of landscape heterogeneity in an area. Max and 

TI-NDVI increased while EFT richness exhibited no trend across a majority of the Yamal 

Peninsula between 2001 and 2018, indicating that functional diversity was maintained despite 

increases in peak aboveground biomass and total productivity. Positive Max NDVI, TI-NDVI, 

and EFT richness trends were best predicted by distance from the coast, but climate-induced 

permafrost disturbances, elevation, and human modification were also important predictors of 
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positive trends. Findings indicated that the most extreme warming on the Yamal Peninsula could 

cause increases in peak aboveground biomass and total productivity but decrease functional 

diversity. As a whole, this thesis contributes to the knowledge base needed to disentangle the 

effects of environmental and anthropogenic drivers on Arctic vegetation productivity, function, 

and functional diversity. Chapter 1 provides insight into the potential future of Arctic regions 

undergoing warming, moisture regime shifts, and increasing human modification, while Chapter 

2 articulates that Arctic regions with heterogeneous landscapes shaped by permafrost disturbance 

regimes are more likely to experience increases in functional diversity under changing climate 

conditions. 

Introduction 

Arctic vegetation plays a critical role in global climate feedbacks (Pearson et al., 2013), 

permafrost dynamics (Blok et al., 2010), and the distribution of herbivore populations connected 

to the livelihood of Arctic communities (Forbes and Kumpula, 2009). Despite a net increase in 

Arctic vegetation productivity between 1982 and 2019 (Frost et al., 2020), the direction and 

magnitude of productivity trends have exhibited substantial spatiotemporal heterogeneity across 

multiple scales (e.g., local to continental, inter-annual to decadal) (Berner et al., 2020; Dutrieux 

et al., 2012; Elmendorf et al., 2012; Frost et al., 2020; Lara et al., 2018). This spatiotemporal 

heterogeneity is likely due to complex vegetation interactions with climatic, geologic, biologic, 

and anthropogenic drivers (Frost et al., 2019; Walker et al., 2009). While understanding Arctic 

vegetation dynamics is necessary to accurately model future climate scenarios (Pearson et al., 

2013), there are uncertainties in determining the relative importance of drivers across regions 

with varying climatological conditions, landscapes, and vegetation responses (Bhatt et al., 2021; 

Dutrieux et al., 2012; Epstein et al., 2004; Lara et al., 2018; Walker et al., 2006; Walker et al., 

2009; Yu et al., 2017).   
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Shifts in the seasonal dynamics of productivity (aboveground biomass accumulation and 

phenology) have also been reported throughout the Arctic (Berner et al., 2020; Elmendorf et al., 

2012; Frost et al., 2020; Post et al., 2016; Prevéy et al., 2019; Zeng et al., 2011). These seasonal 

dynamics of productivity can be used to define Ecosystem Functional Types (EFTs), patches of 

the landscape with similar carbon gain dynamics (Alcaraz-Segura et al., 2013; Armstrong et al., 

in prep.; Cabello et al., 2013; Cazorla et al., 2021; Ivits et al., 2013; Paruelo et al., 2001; Pérez-

Hoyos et al., 2014; Villarreal et al., 2018).  EFT richness, the number of unique EFTs within a 

prescribed area, represents functional diversity (Alcaraz-Segura et al., 2013; Cabello et al., 2013; 

Cazorla et al., 2021; Paruelo et al., 2001). EFTs can be used to determine which conditions cause 

Arctic vegetation communities to have differential functionality, while functional diversity 

provides insight into ecosystem resistance through differential responses to environmental 

changes and disturbances. However, the drivers of EFT distribution and EFT richness have not 

yet been evaluated for the Arctic, and it is unclear if EFT richness is increasing or decreasing in 

response to climate change.  

The goal of this thesis was to examine the effects of environmental and anthropogenic 

drivers on the vegetation productivity, function, and functional diversity of the Yamal Peninsula, 

Siberia, Russia between 2001 and 2018 in order to increase understanding of the heterogeneous 

response of Arctic vegetation to climate change. The Yamal Peninsula was chosen as the study 

site, because it is characterized by a unique combination of features (e.g., steep climate and 

geological gradients, ice-rich continuous permafrost, diverse Arctic vegetation, indigenous 

reindeer herding, and natural resource extraction operations) that make it representative of 

current and future conditions in other Arctic regions (Macias-Fauria et al., 2012; Walker et al., 

2009). In Chapter 1, Yamal Peninsula productivity was assessed using the Normalized 
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Difference Vegetation Index (NDVI), a remotely-sensed proxy for primary productivity and 

aboveground biomass (Berner et al., 2018, 2020; Epstein et al., 2012, 2021; Jia et al., 2006; 

Raynolds et al., 2012; Reichle et al., 2018). In Chapter 2, Yamal Peninsula vegetation function 

and functional diversity were assessed using NDVI-based EFTs developed by Armstrong et al. 

(in prep.) for the circumpolar Arctic. In both chapters, a suite of climatic, geologic, biologic, and 

anthropogenic drivers were used as explanatory variables in spatial and temporal analyses. 

Together, these chapters provide the first comprehensive assessment of how these drivers 

influence vegetation productivity, function, and functional diversity over space and time in the 

Arctic. Independently, these chapters contribute to the base of knowledge necessary for 

predicting Arctic carbon balance under projected warming (IPCC, 2021) and outline a 

methodology for assessing the individual impacts of interacting drivers on Arctic vegetation 

dynamics. 
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Chapter 1: Drivers of Spatial and Temporal Heterogeneity in Vegetation 

Productivity on the Yamal Peninsula, Siberia, Russia 
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1.0 Abstract 

The direction and magnitude of Arctic vegetation productivity trends inferred from the 

Normalized Difference Vegetation Index (NDVI) have exhibited spatiotemporal heterogeneity 

over recent decades, which has led to uncertainty in the future of global climate feedbacks, 

permafrost stability, and herbivore populations under continued warming. The mechanisms 

behind this heterogeneity are unclear; however, determining the relative importance of climatic, 

geologic, biologic, and anthropogenic drivers across regions with varying climatological 

conditions, landscapes, and vegetation responses can provide insight into the variable spatial and 

temporal patterns of Arctic vegetation productivity. In this study, I examined the spatial and 

temporal drivers of peak growing season aboveground biomass (represented by Max NDVI) and 

total growing season productivity (represented by time-integrated [TI]-NDVI) on the Yamal 

Peninsula, Siberia, Russia between 2001 and 2018.  

Summer Warmth Index (SWI), the timing of snowmelt, and physiognomic vegetation unit 

best explained the spatial distribution of Max and TI-NDVI on the Yamal Peninsula, with the 

highest mean Max and TI-NDVI occurring where summer temperatures were higher, snowmelt 

occurred earlier, and erect shrub and wetland vegetation communities were dominant. Max and 

TI-NDVI trends were positive across the majority of the Peninsula (57.4% [5.0% significant] and 

97.7% [13.8% significant], respectively) between 2001 and 2018, and divergent trends in some 

areas could be the result of a shift from shrub to graminoid dominance. Max and TI-NDVI trends 

had variable relationships with drivers and were primarily influenced by coastal-inland gradients 

in summer warmth and soil moisture. Max and TI-NDVI trend relationships with SWI, soil 

moisture, and precipitation trends were possibly tied to the influence that these drivers have on 

permafrost degradation and subsequent shifts in hydrological conditions that have differential 

effects on Arctic growth forms. Both Max and TI-NDVI trends were negatively impacted by 
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human modification, highlighting how human disturbances are becoming an increasingly 

important driver of Arctic vegetation dynamics in remote but developing areas. Overall, these 

findings provide insight into the potential future of Arctic regions experiencing warming, 

moisture regime shifts, and human modification, and demonstrate the usefulness of considering 

multiple NDVI metrics to disentangle the effects of individual drivers across heterogeneous 

landscapes.  

2.0 Introduction 

Arctic vegetation plays a critical role in global climate feedbacks (Pearson et al., 2013), 

permafrost dynamics (Blok et al., 2010), and the distribution of herbivore populations connected 

to the livelihood of Arctic communities (Forbes and Kumpula, 2009). Changes in Arctic 

vegetation since the 1980s have been monitored using the Normalized Difference Vegetation 

Index (NDVI) (Frost et al., 2020), a proxy for primary productivity that remotely quantifies 

photosynthetically-active green vegetation (Jia et al., 2006; Reichle et al., 2018). Several studies 

have provided evidence of a strong relationship between Arctic aboveground biomass and 

NDVI, allowing in situ vegetation changes to be inferred from NDVI metrics (Berner et al., 

2018; Epstein et al., 2012, 2021; Jia et al., 2006; Raynolds et al., 2012). Max NDVI (the greatest 

intra-annual NDVI value) represents peak growing season aboveground biomass, whereas time-

integrated (TI)-NDVI (the sum of growing season NDVI values > 0.10) represents total growing 

season productivity (Bhatt et al., 2021; Frost et al., 2020; Jia et al., 2006).  

Despite a net increase in Max and TI-NDVI between 1982 and 2019 (Frost et al., 2020), 

the direction and magnitude of Arctic vegetation productivity trends exhibit substantial 

spatiotemporal heterogeneity across multiple scales (e.g., local to continental, inter-annual to 

decadal) (Berner et al., 2020; Dutrieux et al., 2012; Elmendorf et al., 2012; Frost et al., 2020; 
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Lara et al., 2018). This spatiotemporal heterogeneity is likely due to complex vegetation 

interactions with climatic, geologic, biologic, and anthropogenic drivers (Frost et al., 2019; 

Walker et al., 2009). While some of these relationships are well-studied, there are uncertainties 

in determining the relative importance of drivers across regions with varying climatological 

conditions, landscapes, and vegetation responses (Bhatt et al., 2021; Dutrieux et al., 2012; 

Epstein et al., 2004; Lara et al., 2018; Walker et al., 2006; Walker et al., 2009; Yu et al., 2017).  

Arctic vegetation productivity is generally limited by summer warmth (Raynolds et al., 

2008); however, increased productivity in response to warming has not been uniform across the 

Arctic, indicating the presence of other limiting drivers (Berner et al., 2020; Bhatt et al., 2021; 

Dutrieux et al., 2012). Other climatic drivers such as precipitation, soil moisture, and the timing 

of snow melt mediate the response of Arctic vegetation to warming through their influence on 

water availability (Campbell et al., 2021; Gamon et al., 2013; Li et al., 2016; Myers-Smith et al., 

2015; Tape et al., 2012) and the stability of ice-rich permafrost (Leibman et al., 2014; Macias-

Fauria et al., 2012; Walker et al., 2009; Zhang, 2005). Additionally, the timing of snowmelt 

determines the start of the growing season (Bieniek et al. 2015). Climatic drivers can be 

mediated by others that influence temperature and precipitation, such as sea ice 

concentration/extent (Bhatt et al., 2010, 2013) and elevation (Raynolds et al., 2006), in addition 

to glacial history (Raynolds and Walker, 2009; Walker et al., 1995), soil texture (Epstein et al., 

2021; Macias-Fauria et al., 2012), substrate chemistry (Raynolds et al., 2006), vegetation type 

(Elmendorf et al., 2012; Epstein et al., 2021; Walker et al., 2006), and the extent of human 

disturbance (Forbes, 1999; Johnstone and Kokelj, 2008; Walker and Everett 1987; Walker et al., 

1987, 2010).  
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The goal of this study was to examine the effects of environmental and anthropogenic drivers 

on the spatial and temporal patterns of vegetation productivity on the Yamal Peninsula, Siberia, 

Russia. The Yamal Peninsula is located in one of the warmer regions of the Arctic (Raynolds et 

al., 2008), has steep climate and geologic gradients, ice-rich continuous permafrost, diverse 

Arctic vegetation, indigenous reindeer herding, and natural resource (gas) operations (Figures 1 

and 2; Walker et al., 2009). These conditions allowed it to serve as a case study for determining 

the critical drivers of Arctic vegetation productivity (Macias-Fauria et al., 2012) under projected 

warming (IPCC, 2021), increasing oil/gas development (UNEP, 2001; Walker et al., 2010), and 

ongoing herbivory. Specifically, I aimed to answer the following questions: 

1) Which environmental and anthropogenic drivers exerted the greatest influence on the 

spatial distribution of Max and TI-NDVI across the Yamal Peninsula between 2001 and 

2018? 

2) What were the direction and magnitude of Yamal Peninsula Max and TI-NDVI 

temporal trends between 2001 and 2018?  

3) Which drivers best predicted variations in Max and TI-NDVI temporal trends across 

the Yamal Peninsula? 

These questions were addressed using Max and TI-NDVI derived from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices product and a suite of 

climatic, geologic, biologic, and anthropogenic drivers (Table 1). Climatic drivers considered 

included Summer Warmth Index (SWI, sum of April – September monthly mean temperatures > 

0 °C), mean growing season (April – September) precipitation and soil moisture (hereafter, 

precipitation and soil moisture), and snow-free period onset date (first day of the year with 0% 
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snow cover). Geologic drivers included coast distance (a proxy for sea ice influence on 

temperature), elevation, landscape age (time since last glaciation), soil texture, and substrate 

chemistry. The biologic driver considered was physiognomic vegetation unit (as determined by 

the Circumpolar Arctic Vegetation Map) (Walker and Raynolds 2018). While reindeer herbivory 

is common throughout on the Yamal Peninsula, a lack of quantitative data and exclusion areas 

limited the potential for a meaningful assessment of reindeer effects as a biologic driver (Walker 

et al., 2009). The anthropogenic driver considered was human modification, a cumulative 

measure of the area impacted by natural resource extraction, infrastructure, and settlements 

(Kennedy et al., 2019).  

I expected the spatial and temporal drivers of Yamal Peninsula vegetation productivity to 

differ. First, it was hypothesized that the climatic drivers and physiognomic vegetation unit 

would best explain the spatial distribution of Max and TI-NDVI, because of the influence of 

long-term climate patterns and growth form-specific physiological requirements on Arctic 

vegetation distribution (Raynolds et al., 2008; Walker et al., 2002). It was hypothesized that both 

Max and TI-NDVI temporal trends would be positive across a majority of the Yamal Peninsula; 

however, spatial heterogeneity in trend magnitude and direction was also expected due to the 

variable climatological and landscape conditions of the Peninsula. Last, it was hypothesized that 

geologic and anthropogenic drivers would best explain variations in Max and TI-NDVI trends 

due to their ability to mediate the effects of climate on vegetation productivity. 

3.0 Methods 

3.1 Study Area 

The Yamal Peninsula, located within the Arctic tundra of northwestern Siberia, Russia, is 

approximately 600 km long (including Belyy Island in the north) and up to 250 km wide (Figure 

1, Walker et al., 2009). Between 2001-2018, the mean annual temperature ranged from -13 to -8 
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°C (Wan et al., 2015), and mean annual precipitation ranged from 240 to 367 mm (Abatzoglou et 

al., 2018). The Yamal Peninsula has predominantly flat topography, with a majority of slopes < 

7°, and elevations reaching 86 m above sea level (Figure 1; Leibman et al., 2014; Rizzoli et al., 

2017). The landscape is underlain by ice-rich continuous permafrost and dominated by river 

networks, sandy ridges, and lowland valleys with abundant thermokarst lakes, drained 

thermokarst lake basins, and polygonal peatlands (Walker et al., 2009; Verdonen et al., 2020). 

Cryogenic landslides controlled by summer thaw depth and soil water content are the primary 

landscape forming process on the Yamal Peninsula (Leibman, 1995; Leibman et al., 2014; 

Macias-Fauria et al., 2012). Landslides occur when heavy precipitation and/or summer thawing 

expose ice-rich sediments (Leibman, 1995; Leibman et al., 2014), but are also common along the 

eroded banks of seasonally-flooded rivers and streams (Lemenkova, 2015; Walker et al., 2009).    

The Peninsula was last glaciated during the late Pleistocene, with a majority (84%) of the 

Peninsula deglaciating ~25,000 years ago (Figure 2a; Walker and Raynolds, 2018). Yamal 

Peninsula soils are comprised of nutrient-poor marine sands, nutrient-rich clays, and primarily 

acidic substrates; however, circumneutral and saline substrates are present in the central and 

northern regions (Figure 2b; Walker and Raynolds, 2018; Yu et al., 2011). The dominant soil 

textures are loam (53%), silt loam (32%), and sandy loam (12%) (Figure 2c; FAO et al., 2012). 

Vegetation transitions from erect low shrub tundra in the south to sedge, dwarf prostrate shrub, 

and moss tundra in the north (Figure 2d; Walker et al., 2009). Shrubs are present throughout the 

Yamal Peninsula, but increase in abundance from north to south (Epstein et al., 2021).  

3.2 Data Sources and Pre-Processing 

Pre-processing was completed using a combination of Google Earth Engine (GEE), 

ArcGIS (Redlands, CA), and R version 4.0.0 (R Core Team, 2020). GEE allows for cloud-based 
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pre-processing of spatial data from a variety of sources. Max and TI-NDVI, precipitation, soil 

moisture, snow-free period onset date, SWI, and human modification driver datasets were 

derived from products available through GEE (Table 1). All other driver datasets were 

downloaded from their respective sources and uploaded to GEE for pre-processing. Pre-

processing was tailored to each driver dataset, but generally entailed evaluating pixel quality, 

masking surface water, deriving the parameter of interest for the 2001-2018 study period, 

resampling to a 1-km spatial resolution, and developing georeferenced tables for statistical 

analysis. Product developers evaluated data quality, and when applicable removed low-quality 

pixels affected by cloud cover, aerosols, and viewing angle (Abatzoglou et al., 2018; Didan, 

2015; FAO et al., 2012; Hall et al., 2016; Kennedy et al., 2019; Rizzoli et al., 2017; Walker and 

Raynolds, 2018; Wan et al., 2015). Marginal-quality pixels were used to supplement the spatial 

coverage of snow-free period onset, SWI, Max NDVI, and TI-NDVI datasets when high-quality 

data were unavailable. Permanent surface water bodies were masked using the GlobCover 

Global Land Cover Map available through GEE (ESA and UC Louvain, 2010). When required, 

mean aggregation was used to decrease spatial resolution in GEE, while bilinear interpolation or 

nearest neighbor resampling was used to increase spatial resolution in ArcGIS. Georeferenced 

tables were developed using the terra package in R (Hijmans, 2021).  

3.3 Max and TI-NDVI Calculation 

The MODIS Vegetation Indices product (MOD13Q1.006) provides NDVI calculated 

using the equation (NIR – R)/(NIR + R), where NIR equals the spectral reflectance of near-

infrared radiation (0.7 - 1.1 µm), and R equals the spectral reflectance of visible red radiation 

(0.6 - 0.7 µm) (Didan, 2015). Annual Max and TI-NDVI values were derived from 16-day 

maximum value composites (i.e., representative images of the 16-day maximum NDVI values) 

(Didan, 2015). Max NDVI for each pixel was determined by selecting the maximum NDVI value 
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from composites covering June 26 - September 13 (period of peak vegetation productivity on the 

Yamal Peninsula). Barren, snow-covered, and ephemeral water-covered land surfaces were 

excluded by masking pixels with Max NDVI values below 0.1. TI-NDVI for each pixel was 

calculated by summing NDVI values above 0.1 from composites covering the entire growing 

season (April – September). Each composite included in the Max and TI-NDVI calculations had 

variable spatial coverage due to the exclusion of low-quality pixels. At the pixel scale, this 

resulted in variable intra-annual coverage and a bias toward artificially low Max and TI-NDVI 

values. This bias was removed by developing spatially-consistent composite masks for each year, 

ensuring that annual Max and TI-NDVI were only calculated when all composites considered 

were available. 

3.4 Spatial Analyses 

Spatial correlations among Max NDVI, TI-NDVI, and continuous drivers 

 

 Pairwise Spearman’s correlation was used to determine the direction and significance of 

the spatial relationships among Max NDVI, TI-NDVI, and the continuous drivers (Table 1).  The 

2001-2018 means of Max NDVI, TI-NDVI, and climatic drivers were included as inputs. All 

other included variables (coast distance, elevation, and human modification) were constant over 

the 2001-2018 study period. The Bonferroni correction was applied to account for multiple 

comparisons. Spearman’s correlations were also run on stratified random samples using 2/3 and 

1/2 of the input dataset. Spearman’s correlation was implemented using the psych package in R 

(R Core Team, 2020; Revelle, 2020). 

Spatial correlations among Max/TI-NDVI and categorical drivers 

Chi-Square (χ2) Tests of Independence were employed to determine if there were 

significant spatial associations among mean Max/TI-NDVI and categorical drivers (Table 1). 
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Mean Max and TI-NDVI were divided into high, mid-, and low categories using the Jenk’s 

natural breaks classification method (implemented using the BAMMtools package in R) (R Core 

Team, 2020; Rabosky et al., 2014). Chi-Square Tests of Independence were also run on stratified 

random samples using 2/3 and 1/2 of the input datasets. The χ2 test statistics and residuals were 

compared to determine the direction and significance of the spatial associations.  

3.5 Temporal Analyses 

Max NDVI, TI-NDVI, and climatic driver trend detection 

 Mann-Kendall trend tests were implemented to detect the presence of pixel-scale 

monotonic trends in Max NDVI, TI-NDVI, and climatic drivers between 2001 and 2018. Pixels 

with fewer than 15 years of data were excluded from the analyses. First, the Durbin-Watson test 

was used to test residuals for lag-1 serial autocorrelation, which can result in the erroneous 

detection of significant trends (Kulkarni and von Storch, 1995). Modified Mann-Kendall trend 

tests that applied pre-whitening to input time series were also run to verify that pixels with 

significant serial autocorrelation (< 5% of pixels) did not affect trend significance. Non-

parametric Sen’s slope estimation was used to determine the direction and magnitude of Max 

NDVI, TI-NDVI, and climatic driver trends. Trend detection analyses were completed using the 

car (Fox and Weisberg, 2019), Kendall (McLeod, 2011), modifiedmk (Patakamuri and O’Brien, 

2020), and trend packages (Pohlert, 2020) in R. To facilitate an illustrative examination of 

changes in Max and TI-NDVI, GEE was used to calculate 2001-2008 and 2009-2018 mean 

NDVI values for each growing season composite.  

Drivers of Max and TI-NDVI trends 

 Random Forest regression models were used to determine the most important drivers 

(i.e., the best predictors) of Max and TI-NDVI trends (Sen’s slopes) across the Yamal Peninsula. 
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All drivers were included as explanatory variables in the models, and the Sen’s slopes of climatic 

drivers were also used (Table 1). A pairwise Spearman’s correlation was used to confirm that 

multicollinearity (r > 0.75 or < -0.75) was not present among the continuous input drivers 

(Berner et al., 2020; Oliveira et al., 2012). Random Forest regression is a non-parametric 

machine-learning method that utilizes independent decision tree models of bootstrapped data 

(Breiman, 2001; Liaw and Wiener, 2002). Data excluded from the trees, or out-of-bag (OOB) 

data, were used to determine prediction accuracy (inferred from mean square error [MSE]) and 

variable importance (inferred from mean decrease in accuracy [% IncMSE]) (Liaw and Wiener, 

2002; Oliveira et al., 2012). Models were repeatedly fit to determine the number of randomized 

drivers considered at each tree node (mtry) that resulted in the lowest MSE (Oliveira et al., 

2012). The % IncMSE metric determined variable importance by measuring the decrease in 

prediction accuracy when OOB data for a given variable were permuted in the model (Liaw and 

Wiener, 2002). Random Forest regression modelling was completed using the University of 

Virginia’s high-performance computing system (Rivanna) along with the caret (Kuhn, 2020), 

randomForest (Liaw and Wiener, 2002), and doParallel packages (Microsoft and Weston, 2020) 

in R. 

 The relationships between Max/TI-NDVI trends and the six most important drivers 

identified by the Random Forest regression models were evaluated using partial dependence 

plots and Spearman’s correlations. Partial dependence plots were used to evaluate the average 

predicted relationships between Max/TI-NDVI Sen’s slopes and individual drivers across their 

range of values while still considering the average effects of the other drivers (Goldstein et al., 

2014). Pixel-scale Spearman’s correlations were run between linearly-detrended Max/TI-NDVI 

and precipitation, soil moisture, and SWI time series to assess their interannual covariation 
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irrespective of trends. These analyses were completed using the pdp (Greenwell, 2017), pracma 

(Borchers, 2019), and psych packages (Revelle, 2020) in R. 

4.0 Results 

4.1 Spatial Analyses 

Spatial correlations among Max NDVI, TI-NDVI, and continuous drivers 

 

 There was a significant (p-value < 0.05), strong, and positive spatial correlation between 

2001-2018 mean Max and TI-NDVI (r = 0.93, Figures 3 and 4). Mean Max NDVI exhibited 

significant spatial correlations with all of the continuous drivers except for elevation, and spatial 

correlations with mean SWI, mean precipitation, and mean snow-free period onset date were the 

strongest. Mean Max NDVI was positively correlated with mean SWI (r = 0.40) and mean 

precipitation (r = 0.39), and negatively correlated with mean snow-free period onset date (r = -

0.40). Therefore, areas with high Max NDVI coincided with high SWI, high precipitation, and 

earlier snowmelt. Additionally, mean Max NDVI was positively correlated with human 

modification (r = 0.27) and weakly correlated with mean soil moisture (r = 0.02) and coast 

distance (r = -0.02). Mean TI-NDVI exhibited similar spatial relationships with the continuous 

drivers; however, mean TI-NDVI was not significantly correlated with mean soil moisture, and 

was better correlated with mean SWI, mean precipitation, mean snow-free period onset date, 

human modification, coast distance, and elevation than mean Max NDVI (Figure 3). Results 

were similar for analyses run on stratified random samples using 2/3 and 1/2 of the input dataset. 

Notable spatial correlations among the continuous drivers were present. Mean 

precipitation was positively correlated with mean SWI (r = 0.88), and both mean precipitation 

and mean SWI were negatively correlated with mean snow-free period onset date (r = -0.86 and -

0.85, respectively; Figures 3 and 5). Human modification was positively correlated with mean 
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SWI (r = 0.32) and mean precipitation (r = 0.47), and negatively correlated with mean snow-free 

period onset date (r = -0.44). Additionally, coast distance was positively correlated with 

elevation (r = 0.63) and mean SWI (r = 0.40), and negatively correlated with mean soil moisture 

(r = -0.72).  

Spatial correlations among Max/TI-NDVI and categorical drivers 

Of the categorical drivers, vegetation unit had the strongest spatial association with mean 

Max NDVI categories (ꭕ2 = 10,674), followed by substrate chemistry (ꭕ2 = 5,672), soil texture (ꭕ2 

= 2,337), and landscape age (ꭕ2 = 128, Table 2). Similarly, vegetation unit had the strongest 

spatial association with mean TI-NDVI categories (ꭕ2 = 25,781), followed by soil texture (ꭕ2 = 

3,771), substrate chemistry (ꭕ2 = 3,017), and landscape age (ꭕ2 = 1,774). Overall, Max and TI-

NDVI exhibited similar relationships with the categorical drivers, and results were similar for 

analyses run on stratified random samples using 2/3 and 1/2 of the input datasets (Table 3). High 

mean Max and TI-NDVI were associated with erect shrub and wetland vegetation (a 

combination of sedges, mosses, and erect shrubs) (Raynolds et al., 2006), whereas low mean 

Max and TI-NDVI were associated with graminoid and prostrate shrub vegetation. High mean 

Max and TI-NDVI were associated with circumneutral substrates, whereas low mean Max and 

TI-NDVI were associated with acidic and saline substrates. Last, high mean Max and TI-NDVI 

were associated with clay loam and silt loam soil textures, whereas low mean Max and TI-NDVI 

were associated with loam, sand, and sandy loam soil textures. Mean Max and TI-NDVI 

exhibited slightly different relationships with landscape age. High mean Max NDVI was 

associated with older landscapes (~70,000 years old), and low mean Max NDVI was associated 

with younger (~25,000 years old) and recently disturbed landscapes (~1,000 years old). Mid- 

mean TI-NDVI was associated with older landscapes (result not shown), and low mean TI-NDVI 
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was associated with younger and recently disturbed landscapes. However, high mean TI-NDVI 

was also associated with younger landscapes.  

4.2 Temporal Analyses 

Max NDVI, TI-NDVI, and climatic driver trends 

 Max and TI-NDVI increased across a majority of the Yamal Peninsula between 2001 and 

2018 (Figure 6). Max NDVI trends were positive across 57.4% of the Peninsula (5.0% 

significant positive trends [p-value < 0.05]) and negative across 17.8% (0.6% significant 

negative trends). Additionally, 25.4% of the Peninsula exhibited no Max NDVI trend (p-value > 

0.05 and Sen’s slope = 0.000). Max NDVI Sen’s slope ranged from -0.022 to 0.045 yr-1, with the 

mode between 0.000 and 0.001 yr-1. TI-NDVI trends were positive across 97.7% of the Peninsula 

(13.8% significant positive trends) and negative across 1.9% (< 0.1% significant negative 

trends). Only 0.3% of the Peninsula exhibited no TI-NDVI trend. TI-NDVI Sen’s slope ranged 

from -0.144 to 0.244 yr-1, with the mode between 0.020 and 0.030 yr-1. Overall, 71.2% of the 

Yamal Peninsula exhibited simultaneous increases in Max and TI-NDVI, while 26.7% saw 

divergent trends in Max and TI-NDVI (Figure 7).  

 The direction and magnitude of climatic driver trends were variable (Figure 8). SWI 

trends were positive across 84.1% of the Yamal Peninsula (1.5% significant positive trends). 

Precipitation trends exhibited more variability than SWI trends, but increased across a slight 

majority (50.6%) of the Yamal Peninsula (no significant trends). Generally, positive precipitation 

trends were stronger where SWI also increased (r = 0.41). Snow-free period onset date trends 

were negative across 78.3% of the Peninsula (5.1% significant negative trends), indicating trends 

toward earlier snow melt. Negative snow-free period onset date trends were stronger where SWI 
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increased (r = -0.42). Soil moisture trends were negative across 85.3% of the Yamal Peninsula 

(3.9% significant negative trends), and were less negative where SWI increased (r = 0.44).  

Drivers of Max and TI-NDVI Trends 

The Max NDVI Random Forest regression model explained 65% of Max NDVI Sen’s 

slope variance. The most important drivers of Max NDVI trends were coast distance, human 

modification, soil moisture Sen’s slope, precipitation Sen’s slope, elevation, and SWI Sen’s 

slope (Figure 9). On average, positive Max NDVI trends were strongest further inland, at higher 

elevations, and where SWI trends exceeded approximately 0.5 °C months yr-1 (Figure 10). 

However, some strong, positive Max NDVI trends occurred along the southeastern coastline at 

elevations between -15 m and -13 m (< 1.0% of pixels). Additionally, only 1.7% of the Yamal 

Peninsula experienced increases in SWI greater than 0.5 °C months yr-1 (equivalent to a 

cumulative SWI increase of greater than 9 °C months). Prior to reaching this threshold, Max 

NDVI and SWI trends exhibited a slightly negative relationship. The covariation between 

detrended Max NDVI and SWI time series was variable, with 53.9% of pixels exhibiting a 

negative correlation (4.9% significant, p-value < 0.05) and 46.1% exhibiting a positive 

correlation (3.5% significant) (Figure 11).  

On average, positive Max NDVI trends were strongest where human modification was 

limited, soil moisture trends were negative, and precipitation trends were negative (Figure 10). 

Most pixels had less than 3% of their area modified by gas operations, infrastructure, and/or 

human settlement; however, pixels comprised of 30% or more modified area exhibited negative 

Max NDVI trends. Detrended Max NDVI and soil moisture time series were negatively 

correlated across 68.5% of the Peninsula (4.5% significant) and positively correlated across 

31.5% (1.5% significant) (Figure 12). Similarly, detrended Max NDVI and precipitation time 
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series were negatively correlated across 62.8% of the Peninsula (4.3% significant) and positively 

correlated across 37.2% (1.6% significant) (Figure 13). These correlations, although spatially 

variable, indicate that above-average Max NDVI co-occurred with below-average soil moisture 

and precipitation across a majority of the Yamal Peninsula. 

The TI-NDVI Random Forest regression model explained 69% of TI-NDVI Sen’s slope 

variance. Max and TI-NDVI Sen’s slopes were best predicted by the same six variables; 

however, the importance of these variables varied (Figure 9). The most important drivers of TI-

NDVI trends were coast distance, precipitation Sen’s slope, elevation, human modification, SWI 

Sen’s slope, and soil moisture Sen’s slope. On average, positive TI-NDVI trends were strongest 

at higher elevations, where SWI trends exceeded approximately 0.1 °C months yr-1, and where 

soil moisture trends were slightly positive around 0.5 mm yr-1 (Figure 14). The positive 

relationship between TI-NDVI and SWI trends became stronger after SWI Sen’s slopes reached 

0.5 °C months yr-1.  Detrended TI-NDVI and SWI time series were positively correlated across 

99.9% of the Yamal Peninsula (76.9% significant), indicating that annual TI-NDVI and SWI 

positively covaried across nearly the entire Peninsula (Figure 15). Positive TI-NDVI trends were 

consistently stronger where soil moisture Sen’s slopes were less negative and approaching 0 mm 

yr-1. Detrended TI-NDVI and soil moisture time series were negatively correlated across 66.3% 

of the Peninsula (9.7% significant) and positively correlated across 33.7% (2.3% significant) 

(Figure 16). Therefore, although TI-NDVI and soil moisture trends exhibited a positive 

relationship, they did not positively covary interannually across a majority of the Peninsula.  

On average, positive TI-NDVI trends were strongest closer to the coast, where 

precipitation trends were negative, and where human modification was limited (Figure 14). TI-

NDVI trends fluctuated with distance from the coast, but were strongest between 0 and 75 km 
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inland. The relationship between TI-NDVI and precipitation trends was unimodal, with the 

strongest TI-NDVI trends occurring where precipitation decreased by approximately 0.5 mm yr-

1. Detrended TI-NDVI and precipitation time series were positively correlated across 74.0% of 

the Peninsula (2.3% significant) and negatively correlated across 26.0% (0.1% significant); 

therefore, TI-NDVI and precipitation positively covaried interannually across a majority of the 

Peninsula despite the trends exhibiting a negative relationship where precipitation trends were 

greater than -0.5 mm yr-1 (Figure 17). As with Max NDVI trends, positive TI-NDVI trends were 

weakest where 30% or more of the area had been modified by humans.  

5.0 Discussion 

5.1. Spatial Drivers of Peak Biomass and Total Productivity 

 Climatic drivers (except soil moisture) and physiognomic vegetation unit best explained 

the spatial distribution of peak aboveground biomass and total productivity on the Yamal 

Peninsula. On average, areas with higher Max and TI-NDVI coincided with warmer summer 

temperatures, higher precipitation, earlier snow melt, and vegetation units dominated by erect 

shrubs and wetland vegetation. Although soil moisture has been found to influence Arctic 

vegetation distribution (Raynolds et al., 2008; van der Kolk et al., 2016; Walker et al., 2001) and 

has a more direct effect on water availability than precipitation, it did not exhibit a spatial 

correlation with Max or TI-NDVI. This implies that the positive spatial correlations among 

Max/TI-NDVI and precipitation may have been driven by the strong spatial relationship 

precipitation had with SWI and snow-free period onset date, rather than spatial patterns of water 

availability. In addition to influencing water availability (Gamon et al., 2013), the timing of snow 

melt determines when the growing season can begin (Bieniek et al. 2015). Vegetation 

distribution may have been more limited by summer warmth and growing season onset than 

water availability because the continuous permafrost underlying the Yamal Peninsula restricts 
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drainage and generally facilitates high soil moisture conditions (Bieniek et al., 2015). 

Additionally, our results are consistent with findings that more productive Arctic vegetation with 

higher aboveground biomass is found where growth is not limited by low temperatures or shorter 

growing seasons (Epstein et al. 2021; Jia et al., 2006; Raynolds et al., 2006). The positive spatial 

correlations between Max/TI-NDVI and human modification were likely the result of warmer 

areas with earlier snowmelt also coinciding with more human activity. However, re-vegetated 

off-road vehicle tracks on the Yamal Peninsula near concentrated areas of infrastructure have 

been found to have higher aboveground biomass than surrounding undisturbed areas 

approximately 20 years after revegetation (Forbes et al., 2009). 

 Although less important than vegetation unit, the other categorical variables considered 

(substrate chemistry, soil texture, and landscape age) also influenced spatial patterns of peak 

aboveground biomass and total productivity. Max and TI-NDVI were highest on nutrient-rich 

circumneutral substrates as well as clay loam and silt loam soil textures, similar to other studies 

from the region (Epstein et al., 2021; Macias-Fauria et al., 2012; Walker et al., 2005). The weak 

positive association with high TI-NDVI and younger landscapes was unexpected because older 

landscapes can have greater nutrient availability and erect shrub coverage after the development 

of fine-grained soils and stream networks, vegetation succession, and peat accumulation (Walker 

et al., 1995). However, the negative spatial association between high TI-NDVI and younger 

landscapes was much stronger and drove the significance of the spatial relationship between TI-

NDVI and landscape age.  

5.2. Peak Biomass and Total Productivity Trends 

 Peak aboveground biomass and total productivity increased across a majority of the 

Yamal Peninsula between 2001 and 2018. The magnitude and direction of the trends were 
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spatially variable, with most pixels exhibiting insignificant (p-value > 0.05) change. Max NDVI 

has consistently increased across a majority of the Yamal Peninsula for the past three decades 

(Berner et al., 2020; Bhatt et al., 2021; Frost et al., 2020; Myers-Smith et al., 2020), while the 

nearly uniform increase in TI-NDVI indicates a recent shift from negative to positive TI-NDVI 

trends in some areas (Bhatt et al., 2021; Frost et al., 2020). The co-occurrence of negative Max 

NDVI and positive TI-NDVI trends could be explained by the different aspects of productivity 

and phenology that these variables represent (Jia et al., 2006). Max NDVI better identifies the 

contribution of the growth form with the greatest aboveground biomass at the peak of the 

growing season (erect shrubs across a majority of the Peninsula) than TI-NDVI, which better 

captures the contributions of all growth forms (shrubs, graminoids, forbs, lichens, and mosses) 

by summing NDVI values across the entire growing season (Bhatt et al., 2021; Frost et al., 2020; 

Jia et al., 2006; Mikola et al., 2018). Therefore, areas with divergent Max and TI-NDVI trends 

likely experienced total productivity increases despite potential decreases in peak erect shrub 

biomass due to the expansion of graminoids (Forbes et al., 2009; Kumpula et al., 2011; 

Magnússon et al., 2021; Raynolds et al., 2006; van der Kolk et al., 2016). This shift in 

community composition has been reported for the central Yamal Peninsula following disturbance 

from off-road vehicle tracks and heavy reindeer grazing (Forbes et al., 2009; Kumpula et al., 

2011), but could not be confirmed for other areas without ground verification (Myers-Smith et 

al., 2020). However, Max NDVI has been found to have a strong relationship (r2 = 0.82) with 

shrub aboveground biomass (Berner et al., 2018).  

5.3. Temporal Drivers of Peak Biomass and Total Productivity 

 The six drivers that best predicted peak aboveground biomass and total productivity 

trends were a combination of geologic (coast distance and elevation), anthropogenic (human 

modification), and climatic (precipitation trends, soil moisture trends, and SWI trends) drivers. 
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Positive Max and TI-NDVI trends exhibited similar relationships with precipitation trends, 

elevation, and human modification but had opposing relationships with the most important driver 

(coast distance), soil moisture trends, and SWI trends less than 0.5 °C months yr-1. These 

relationships could be due to erect shrubs and other growth forms in the vegetation community 

having differential responses to some drivers and coordinated responses to others. While these 

findings elucidated the relationships between positive Max/TI-NDVI trends and the drivers, they 

also provide insight into the potential causes of divergent Max and TI-NDVI trends.  

 Coast distance captured the effect of coastal-inland gradients in SWI on the Yamal 

Peninsula. The consistently cooler coastal temperatures influenced by sea ice (Bhatt et al., 2010) 

and maritime air flow (Bhatt et al., 2021) potentially facilitated graminoid, forb, moss, and lichen 

growth (indicated by stronger positive TI-NDVI trends) and limited shrub growth (indicated by 

weaker positive Max NDVI trends) (Walker et al., 2005). As coastal temperatures increase due 

to melting sea ice (Bhatt et al., 2021), shrub growth may become less limited near the Yamal 

Peninsula coastline. The spatial relationship between coast distance and mean soil moisture may 

also point to the influence of other factors, such as nutrient availability, on Yamal Peninsula 

vegetation productivity trends. Graminoids are able to take advantage of low nutrients in high 

soil moisture conditions that can limit shrub growth (van der Kolk et al., 2016), and soil organic 

nitrogen content has been found to limit increased shrub growth in response to warming on the 

Yamal Peninsula (Yu et al., 2011). Additionally, limited shrub growth along the coast would 

facilitate moss and lichen growth by decreasing light competition and burial under litter (van 

Wijk et al., 2003).  

The opposing relationships between Max/TI-NDVI trends, soil moisture trends, and SWI 

trends indicate that climate-induced permafrost degradation may have driven moisture regime 
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shifts that favored shrub growth and positive Max NDVI trends where drying was more 

pronounced, but graminoid, forb, and moss growth and positive TI-NDVI trends where drying 

was less pronounced or wetting occurred (Jorgenson et al., 2015; Magnússon et al., 2020, 2021; 

van der Kolk et al., 2016). Warming has been found to increase shrub, graminoid, and forb 

growth (Elmendorf et al., 2012; Walker et al., 2006; Yu et al., 2011) and would be expected to 

have a positive relationship with Max and TI-NDVI trends without the influence of other 

limiting factors (Berner et al., 2020; Bhatt et al., 2021; Dutrieux et al., 2012). Prior to reaching 

the 0.5 °C months yr-1 threshold that resulted in the strongest positive relationships between 

Max/TI-NDVI trends and SWI trends, the influence of positive SWI trends on permafrost thaw 

and subsequent soil moisture conditions was likely more important than their direct effects on 

vegetation growth. Ice wedge degradation and the expansion of thermokarst features (lakes, 

gullies, and pits) could have countered negative soil moisture trends through surface wetting that 

caused shrub death and the succession of graminoids, forbs, and mosses (Frost and Epstein, 

2014; Jorgenson et al., 2015; Magnússon et al., 2020, 2021; Osterkamp et al., 2009; van der Kolk 

et al., 2016). Conversely, thermokarst that causes lake drainage and the drying of areas adjacent 

to depressions could have contributed to strong negative soil moisture trends that favored shrub 

growth (Jin et al., 2020; Lantz, 2017; Loiko et al., 2020; Osterkamp et al., 2009; van der Kolk et 

al., 2016). Ice wedges, thermokarst features, and drained thermokarst lakes have been observed 

on the Yamal Peninsula (Leibman et al., 2014; Nitze et al., 2018; Verdonen et al., 2020; Walker 

et al., 2009), and the above processes have been reported elsewhere in the Eurasian (Frost and 

Epstein, 2014; Loiko et al., 2020; Magnússon et al., 2020, 2021) and North American (Jorgenson 

et al., 2015; Lantz, 2017; Osterkamp et al., 2009) Arctic. However, further research using in situ 

or high-resolution remote measurements of ice wedge degradation and thermokarst processes are 
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needed to confirm their influence on Yamal Peninsula peak aboveground biomass and total 

productivity trends. The negative relationship between positive Max NDVI trends and soil 

moisture trends could also be the result of spectral contamination within pixels with high soil 

moisture (Myers-Smith et al., 2020); however, I would have expected a similar impact on TI-

NDVI trends if this were the case.  

Increasing precipitation has been found to benefit graminoid growth over shrub growth in 

mixed vegetation communities; however, positive Max and TI-NDVI trends had a negative 

relationship with precipitation trends (van der Kolk et al., 2016). These similar relationships 

could have been associated with the effect of precipitation on the frequency of cryogenic 

landslides (Leibman et al., 2014) and/or an increase in early growing season rain-on-snow events 

(Bartsch et al., 2010; Phoenix and Bjerke, 2016). Increased precipitation is the primary cause of 

cryogenic landslides (Leibman et al., 2014) that result in shear surfaces that remain bare or 

sparsely vegetated for decades before recolonization by shrubs (Verdonen et al., 2020; Walker et 

al., 2009). Additionally, April rain-on-snow events followed by below-freezing temperatures 

have been recorded on the Yamal Peninsula during the study period (Bartsch et al., 2010) and 

can result in the death of vegetation due to ice encasement and the formation of ice crusts 

(Bartsch et al., 2010; Phoenix and Bjerke, 2016). 

While the observed relationships revealed how overall change in the most important climatic 

drivers influenced overall change in Max and TI-NDVI, their degree of positive or negative 

interannual covariation provided insight into the more immediate responses of vegetation to 

fluctuating SWI, soil moisture, and precipitation conditions that may or may not be reflected by 

the average trend relationships (Myers-Smith et al., 2020). For example, detrended TI-NDVI and 

precipitation were positively correlated across 74.0% of the Yamal Peninsula, but positive TI-
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NDVI trends had a negative relationship with precipitation trends greater than -0.5 mm yr-1. 

Higher precipitation during any given year could have immediate beneficial effects on TI-NDVI 

by limiting water stress (Epstein et al., 2018; Opala-Owczarek et al., 2018), whereas increases in 

precipitation over time could cause an increase in landslides (Leibman et al., 2014; Verdonen et 

al., 2020) and/or early growing season rain-on-snow events (Bartsch et al., 2010; Phoenix and 

Bjerke, 2016) that would weaken positive TI-NDVI trends. Additionally, the correlations among 

Max/TI-NDVI and SWI, soil moisture, and precipitation detrended time series revealed spatial 

heterogeneity in the direction and magnitude of covariation, with concentrated areas of strong 

positive and negative covariation occurring throughout the Yamal Peninsula. For instance, strong 

positive covariation between Max NDVI and SWI occurred along the central western coastline, 

while strong negative covariation occurred in the central northern region of the Peninsula (Figure 

11). This heterogeneity is reflective of the spatiotemporal variation in the suite of drivers that 

influence Arctic vegetation productivity, and highlights the difficulty in generalizing the effects 

of individual drivers on Arctic vegetation productivity across large regions.  

5.4. Summary and Conclusions 

 These findings indicate that spatial patterns of peak aboveground biomass and total 

productivity were similarly influenced by SWI, growing season onset, and vegetation type, 

whereas peak aboveground biomass and total productivity trends had variable relationships with 

drivers and were primarily influenced by coastal-inland gradients in SWI and soil moisture. Max 

and TI-NDVI increased across a majority of the Yamal Peninsula, and TI-NDVI trends may have 

recently shifted from negative to positive in some areas (Bhatt et al., 2021; Frost et al., 2020) 

despite some concurrent decreases in Max NDVI. Relationships among Max/TI-NDVI trends 

and climatic driver trends pointed to the potential influence of permafrost degradation on Max 

and TI-NDVI via changes in hydrological conditions. While remote sensing analyses can miss 
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the impact of fine-scale landscape features related to permafrost degradation (Myers-Smith et al., 

2020), the comparison of Max and TI-NDVI trend relationships indicated that permafrost 

processes may be causing differential vegetation responses and divergent trends. Divergent 

trends were likely caused by a shift from shrub to graminoid dominance (Forbes et al., 2009; 

Kumpula et al., 2011; Magnússon et al., 2021; Raynolds et al., 2006; van der Kolk et al., 2016), 

which can occur following heavy reindeer grazing (Forbes et al., 2009; Olofsson et al., 2009). 

Additional research detailing the interaction between permafrost degradation and reindeer 

herbivory is needed to determine their combined effects on Yamal Peninsula peak aboveground 

biomass and total productivity. Further, the importance of the negative relationships between 

Max/TI-NDVI trends and human modification indicates that anthropogenic disturbances are 

becoming an increasingly important mediator of Yamal Peninsula vegetation responses to 

changing climate and landscape conditions (Walker et al., 2009). This study provides insight into 

the potential future of Arctic regions undergoing warming, moisture regime shifts, and increasing 

human modification, and demonstrates the usefulness of considering multiple NDVI metrics to 

disentangle the effects of individual drivers across heterogeneous landscapes.
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6.0 Figures 

 

Figure 1. The Yamal Peninsula with elevation (m above sea level) and locations of population centers, 

infrastructure, and gas fields (adapted from Forbes 1999 and Gazprom 2021). The inset map shows the location 

of the Yamal Peninsula (outlined by the black box).   
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Figure 2. Yamal Peninsula (a) landscape age, or time since last glaciation, (b) substrate chemistry, (c) soil 

texture, and (d) physiognomic vegetation unit representing the dominant vegetation type. Permanent surface 

water bodies are masked.   

a) b) 

c) d) 
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Table 1. Datasets included in the analyses and their respective types, years collected, native spatial resolutions, 

and sources. 
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Figure 3. Spearman’s correlation coefficients (r) for correlations between Max NDVI, TI-NDVI, and 

continuous drivers. The 2001-2018 means of Max NDVI, TI-NDVI, precipitation (Precip), snow-free period 

onset date (SnowFree), soil moisture, and Summer Warmth Index (SWI) were used. Human modification 

(HumanMod), elevation, and coast distance (CoastDist) values included were constant over the study period. 

Max and TI-NDVI correlations are highlighted by the thicker black boxes. *Insignificant at the 95% confidence 

level.   
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Figure 4. Yamal Peninsula 2001-2018 mean (a) Max NDVI and (b) TI-NDVI. Max NDVI is the maximum 

NDVI value, and represents peak growing season aboveground biomass. TI-NDVI is the sum of all NDVI 

values > 0.01 and represents total growing season productivity.  

   

a) b) 
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Figure 5. Yamal Peninsula 2001-2018 mean (a) mean growing season precipitation, (b) snow-free period onset 

date (Julian date), (c) mean growing season soil moisture, and (d) Summer Warmth Index (SWI).   

a) b) 

c) d) 
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Table 2. Chi-Square Test of Independence results. All tests were significant at the 95% confidence level. A 

larger ꭕ2 value indicates a stronger spatial association. Bolded residual values with the largest absolute values 

had the greatest influence on the spatial associations. Positive residuals indicate a positive relationship, and 

negative residuals indicate a negative relationship. The mid- mean Max and TI-NDVI categories are excluded 

because the most influential relationships were associated with high and low mean Max and TI-NDVI 

categories. 
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Figure 6. Trends in (a) Max NDVI and (b) TI-NDVI inferred from Mann-Kendall trend tests and Sen’s slope 

estimation. Pixels were classified based on trend significance at the 95% confidence level and Sen’s slope 

direction. Pixels classified as no trend had insignificant trends and Sen’s slopes = 0.000. Permanent water 

bodies and pixels with < 15 years of data (due to low quality data or conditions preventing vegetation growth) 

were masked. 

  

a) b) 
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Figure 7. Phenology curves for pixels where a) Max and TI-NDVI increased and b) where Max NDVI 

decreased while TI-NDVI increased. Mean 2001-2008 and 2009-2018 NDVI values were calculated for each 

16-day growing season composite image to assess how Max and TI-NDVI shifted between the first and second 

halves of the study period. Max NDVI is represented by the peak mean NDVI value at the top of each curve, 

and TI-NDVI is represented by the area under the curve. The line at mean NDVI = 0.1 indicates the minimum 

threshold for NDVI values included in TI-NDVI calculation.  
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Figure 8. Trends in (a) mean growing season precipitation, (b) snow-free period onset date, (c) mean growing 

season soil moisture, and (d) Summer Warmth Index (SWI) inferred from Mann-Kendall trend tests and Sen’s 

slope estimation. Pixels were classified based on trend significance at the 95% confidence level and Sen’s slope 

direction. Pixel with marginal significance had p-values = 0.05. Pixels classified as no trend had insignificant 

trends and Sen’s slopes = 0.000. Permanent water bodies and pixels with < 15 years of data (due to low quality 

data or conditions preventing vegetation growth) were masked.  

a) b) 

c) d) 
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Figure 9. Variable importance for the prediction of a) Max NDVI Sen’s slope and b) TI-NDVI Sen’s slope. 

Variable importance was determined by the Random Forest regression models and quantified with %Inc MSE 

parameter. %Inc MSE measures the percent increase in MSE when a predictor variable is permuted in the out-

of-bag (OOB) data while all other predictor variables remain unchanged (Liaw and Wiener 2002). A higher 

%Inc MSE value indicates greater importance.  

  

a) b) 
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Figure 10. Partial dependence plots for the six most important drivers of Max NDVI Sen’s slope: distance from 

the coast, human modification, mean growing season soil moisture Sen’s slope, mean growing season 

precipitation Sen’s slope, elevation, and Summer Warmth Index (SWI) Sen’s slope. Partial dependence plots 

display the average predicted relationships between Max-NDVI trends and individual drivers across their range 

of values while still considering the average effects of the other drivers (Goldstein et al., 2014). Dashed lines 

indicate outlier driver variable values.  
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Figure 11. Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly 

detrended Max NDVI and SWI time series (2001 – 2018). The inset histogram displays the frequency of r 

values across the Yamal Peninsula. 
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Figure 12. Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly 

detrended Max NDVI and mean growing season soil moisture time series (2001 – 2018). The inset histogram 

displays the frequency of r values across the Yamal Peninsula. 
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Figure 13. Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly 

detrended Max NDVI and mean growing season precipitation time series (2001 – 2018). The inset histogram 

displays the frequency of r values across the Yamal Peninsula. 
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Figure 14. Partial dependence plots for the six most important drivers of TI-NDVI Sen’s slope: distance from 

the coast, mean growing season precipitation Sen’s slope, elevation, human modification, Summer Warmth 

Index (SWI) Sen’s slope, and mean growing season soil moisture Sen’s slope. Partial dependence plots display 

the average predicted relationships between TI-NDVI trends and individual drivers across their range of values 

while still considering the average effects of the other drivers (Goldstein et al., 2014). Dashed lines indicate 

outlier driver variable values. 
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Figure 15. Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly 

detrended TI-NDVI and SWI time series (2001 – 2018). The inset histogram displays the frequency of r values 

across the Yamal Peninsula.  
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Figure 16. Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly 

detrended TI-NDVI and mean growing season soil moisture time series (2001 – 2018). The inset histogram 

displays the frequency of r values across the Yamal Peninsula. 
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Figure 17. Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly 

detrended TI-NDVI and mean growing season precipitation time series (2001 – 2018). The inset histogram 

displays the frequency of r values across the Yamal Peninsula. 
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1.0 Abstract 

Combinations of seasonal Normalized Difference Vegetation Index (NDVI) metrics that 

serve as proxies for aboveground biomass and phenology can be used to define Ecosystem 

Functional Types (EFTs), discrete areas with similar carbon gain dynamics. EFT richness, the 

number of unique EFTs within a prescribed area, represents the spatial heterogeneity in the 

seasonal dynamics of primary productivity across a landscape, and can be used as an index of 

functional diversity. EFTs and EFT richness can be used to gain a more comprehensive 

understanding of how carbon cycling, climate feedbacks, and ecosystem resistance will be 

altered under projected warming; however, the potential drivers of EFT distribution and EFT 

richness have not yet been evaluated for the Arctic. In this study, I used recently developed 

NDVI-based Arctic EFTs and a suite of climatic, geologic, biologic, and anthropogenic variables 

to determine the drivers of ecosystem function and functional diversity on the Yamal Peninsula, 

Siberia, Russia between 2001 and 2018. 

EFTs represented spatially distinct functional niches on the Yamal Peninsula that were 

primarily driven by long-term climate patterns, and their classification probabilities indicated 

that summer warming, earlier snowmelt, and greater moisture availability could eventually result 

in functional convergence driven by shifts towards greater aboveground biomass and earlier peak 

biomass. EFT richness values ranged from 1 to 11 (out of a possible 30), and increased across 

30% of the Peninsula (7% significant trends, p-value < 0.05). The spatial and temporal dynamics 

of EFT richness were primarily driven by landscape heterogeneity and continentality that 

facilitate variable vegetation responses. These findings demonstrate how Arctic EFTs and EFT 

richness are useful tools for monitoring shifting carbon gain dynamics in response to multiple 

driving forces in complex Arctic ecosystems, and how Arctic regions with heterogeneous 

landscapes shaped by permafrost disturbance regimes could experience increases in functional 



65 
 

diversity under changing climate conditions. Additional research is needed to further disentangle 

the drivers of vegetation function and functional diversity for the entire Arctic.  

2.0 Introduction 

Over recent decades, climate change has impacted the seasonal dynamics of Arctic 

vegetation productivity through shifts in aboveground biomass (Berner et al., 2020; Elmendorf et 

al., 2012; Frost et al., 2020) and phenology (Post et al., 2016; Prevéy et al., 2019; Zeng et al., 

2011). The seasonal dynamics of primary productivity can be monitored using the Normalized 

Difference Vegetation Index (NDVI), a satellite-derived proxy for primary productivity that is 

driven by photosynthetically-active green vegetation (Jia et al., 2006; Reichle et al., 2018) and 

has a strong relationship with aboveground biomass (Berner et al., 2018; Epstein et al., 2012, 

2021; Jia et al., 2006; Raynolds et al., 2012). Combinations of seasonal NDVI metrics can be 

used to define Ecosystem Functional Types (EFTs), discrete areas with similar carbon gain 

dynamics that may or may not have similar vegetation structure or composition (Alcaraz-Segura 

et al., 2013; Armstrong et al., in prep.; Cabello et al., 2013; Cazorla et al., 2021; Ivits et al., 2013; 

Paruelo et al., 2001; Pérez-Hoyos et al., 2014; Villarreal et al., 2018). EFT richness, the number 

of unique EFTs within a prescribed area, represents the spatial heterogeneity in the seasonal 

dynamics of primary productivity across a landscape, and can be used as an index of functional 

diversity (Alcaraz-Segura et al., 2013; Cabello et al., 2013; Cazorla et al., 2021; Paruelo et al., 

2001). Similar to structural and compositional diversity, functional diversity provides for 

ecosystem stability through differential responses to environmental changes or disturbances 

(Oliver et al., 2015). Evaluating the drivers of spatial and temporal heterogeneity in Arctic 

ecosystem functioning is necessary to gain a comprehensive understanding of how carbon 

cycling and climate feedbacks will be altered under projected warming (Fernández et al., 2010; 

IPCC, 2021; Oliver et al., 2015; Pearson et al., 2013).  
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NDVI-based EFTs have recently been developed for the circumpolar Arctic tundra as part of 

a NASA-funded project (Armstrong et al., in prep.), generating the capacity to evaluate Arctic 

ecosystem functional diversity. The effects of warming on the seasonal dynamics of Arctic 

vegetation productivity (and therefore EFTs and EFT richness) can be mediated by other climatic 

(Bhatt et al., 2021; Campbell et al., 2021; Gamon et al., 2013; Li et al., 2016), geologic (Lara et 

al., 2018; Macias-Fauria et al., 2012; Raynolds et al., 2006; Raynolds and Walker, 2009), 

biologic (Elmendorf et al., 2012; Epstein et al., 2021), and anthropogenic factors (Forbes, 1999; 

Johnstone and Kokelj, 2008; Walker et al., 2010); however, the potential drivers of EFT 

distribution and EFT richness have not yet been evaluated for the Arctic. The goal of this study 

was to provide the first regional-scale assessment of EFTs and EFT richness in the Arctic by 

determining the drivers of ecosystem function and functional diversity on the Yamal Peninsula 

between 2001 and 2018.  

The Yamal Peninsula, located in the northwestern Siberian tundra, is representative of other 

Arctic regions, with its steep climate and geologic gradients, ice-rich continuous permafrost, 

diverse Arctic vegetation, indigenous reindeer herding, and natural resource (gas) operations 

(Figures 1 and 2; Walker et al., 2009). I used the EFTs developed by Armstrong et al. (in prep.) 

and a suite of climatic, geologic, biologic, and anthropogenic drivers (Table 1) to answer the 

following questions: 

1) Which drivers best predicted the spatial distribution of EFTs and EFT richness across 

the Yamal Peninsula between 2001 and 2018? 

2) What were the temporal trends in EFT richness across the Yamal Peninsula between 

2001 and 2018?  
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3) Which drivers best predicted temporal trends in EFT richness between 2001 and 

2018? 

Climatic drivers included Summer Warmth Index (SWI, sum of April – September 

monthly mean temperatures > 0 °C), mean growing season (April – September) precipitation and 

soil moisture (hereafter, precipitation and soil moisture), and snow-free period onset date (first 

day of the year with 0% snow cover). Geologic drivers included coast distance (a proxy for 

continentality and sea ice influence), water distance (distance from nearest permanent or 

seasonal inland water body), elevation, landscape age (time since last glaciation), percent water 

(percent coverage of permanent and seasonal water bodies), soil texture, and substrate chemistry. 

The biologic driver considered was the Circumpolar Arctic Vegetation Map physiognomic 

vegetation unit (Walker and Raynolds 2018). Reindeer herbivory has been found to influence 

Yamal Peninsula vegetation productivity (Forbes et al., 2009; Olofsson et al., 2009); however, 

limited quantitative data and exclusion areas prevented the inclusion of reindeer herbivory as a 

biologic driver in this analysis (Walker et al., 2009). The anthropogenic driver considered was 

human modification (percent area impacted by natural resource extraction, infrastructure, and 

settlements) (Kennedy et al., 2019). 

Climate patterns were expected to be the primary drivers of EFT distribution, because of 

their influence on Arctic aboveground biomass accumulation and phenology (Bieniek et al., 

2015; Jia et al., 2006; Raynolds et al., 2006). Vegetation unit could be a driver of EFT 

distribution due to the influence of climate on the distribution of Arctic vegetation types 

(Raynolds et al., 2008; Walker et al., 2002); however, functioning can vary within vegetation 

units, and different vegetation units can function similarly (Armstrong et al., in prep.; Euskirchen 

et al., 2017a, 2017b; Lara et al., 2020). Spatial and temporal variation in EFT richness were 
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expected to be primarily influenced by landscape-scale variations in geologic, biological, and 

anthropogenic drivers that result in differential functionality by mediating the effects of climate 

on vegetation productivity (Bhatt et al., 2021; Campbell et al., 2021; Elmendorf et al., 2012; 

Epstein et al., 2021; Forbes, 1999; Gamon et al., 2013; Johnstone and Kokelj, 2008; Lara et al., 

2018; Li et al., 2016; Macias-Fauria et al., 2012; Raynolds et al., 2006; Raynolds and Walker, 

2009; Walker et al., 2010). Last, I expected the strongest positive EFT richness trends to occur 

where high landscape heterogeneity facilitated differential vegetation responses to climate 

change (Oliver et al., 2015). Specifically, I expected positive EFT richness trends to be strongest 

further inland (where there is higher continentality and more topographic variability), where 

there is a high percentage of seasonal and permanent water bodies present, and where multiple 

vegetation, soil texture, substrate chemistry, and landscape age classes occurred. 

3.0 Methods 

3.1 Study Area 

A detailed description of the Yamal Peninsula is included in Chapter 1, Section 3.1. 

3.2 Data Sources and Pre-Processing 

Pre-processing was completed using a combination of Google Earth Engine (GEE), 

ArcGIS version 10.6 (Redlands, CA), and R version 4.0.0 (R Core Team, 2020). EFTs, EFT 

richness, human modification, percent water, precipitation, soil moisture, snow-free period onset 

date, SWI, and water distance datasets were derived from products available through GEE (Table 

1). All other datasets were manually uploaded to GEE for pre-processing. Methods were unique 

to each dataset; however, pre-processing generally required evaluating pixel quality, resampling 

to a 1-km spatial resolution for EFT analyses) or 1.4-km resolution (for EFT richness analyses), 

masking (permanent and seasonal water bodies), and developing georeferenced tables for 

statistical analysis.  
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When applicable, product developers removed low-quality pixels affected by cloud 

cover, aerosols, and viewing angle (Abatzoglou et al., 2018; Didan, 2015; FAO et al., 2012; Hall 

et al., 2016; Kennedy et al., 2019; Rizzoli et al., 2017; Walker and Raynolds, 2018; Wan et al., 

2015). Marginal quality pixels were used to supplement the spatial and temporal coverage of 

EFTs, snow-free period onset date, and SWI datasets when the highest quality data were 

unavailable. When required, mean aggregation was used to decrease spatial resolution in GEE, 

while bilinear interpolation or nearest neighbor resampling was used to increase spatial 

resolution in ArcGIS. The water mask derived by Armstrong et al. (in prep.) for EFT calculation 

was modified and applied to each finalized dataset. The water mask removed large permanent 

water bodies (ESA and UC Louvain, 2010) and pixels where 20% or more of the area was 

covered by permanent or seasonal water bodies (Armstrong et al., in prep.; Pekel et al., 2016). In 

this study, we reprojected the water mask to a 1-km resolution (for EFT analyses) or 1.4-km 

resolution (for EFT richness analyses) to ensure that pixels with greater than 20% water coverage 

were masked after resampling. Last, georeferenced tables were developed using the terra 

package in R (Hijmans, 2021). 

3.3 EFT and EFT Richness Calculation 

Yamal Peninsula 2001-2018 EFTs and EFT richness were derived following methods 

outlined in Armstrong et al. (in prep.) (Figure 3). Ecosystem Functional Attributes (EFAs), or 

seasonal NDVI metrics, were used to construct EFTs and were calculated using the Moderate 

Resolution Imaging Spectroradiometer (MODIS) NDVI product (MOD13Q1.006), which uses 

the equation (NIR – R)/(NIR + R), where NIR equals the spectral reflectance of near-infrared 

radiation (0.7 - 1.1 µm), and R equals the spectral reflectance of visible red radiation (0.6 - 0.7 

µm) (Didan, 2015). For each year, the MODIS growing season data were comprised of multiple 

16-day maximum value composites (i.e., images comprised of the maximum NDVI value over a 
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defined 16-day period) that minimize the effect of clouds, smoke, and viewing angle on 

reflectance values (Didan, 2015; Raynolds et al., 2008; Verbyla, 2008). The 2001-2018 means of 

each 16-day composite were used to calculate EFAs for each pixel. 

Using spatial principal components analysis and Pearson’s correlations, Armstrong et al. 

(in prep.) determined the three EFAs that captured the greatest variability in the seasonal 

dynamics of Arctic NDVI: 1) mean growing season (March – October) NDVI, 2) date of the 

greatest positive NDVI slope (start of season [SOS] date), and 3) date of the maximum NDVI 

value (max date). Mean NDVI provides information on growing season primary productivity, 

whereas SOS and max date provide information on phenology. The water mask (described in 

Section 2.2) was applied to EFA images to minimize the potential effects of water on EFA 

values and therefore EFT classification. Next, EFAs were divided into classes based on their 

distributions across the Arctic (quintiles for mean NDVI, and three classes each for SOS and 

max date), defining 45 (5 x 3 x 3) possible Arctic EFTs. Mean NDVI quintiles correspond to 

high, mid-high, mid, mid-low, and low mean NDVI values, while SOS and max date categories 

correspond to early, mid, or late dates. EFTs were numbered by the combination of EFA classes 

(e.g., EFT 523 represents high mean NDVI [5], mid SOS date [2], and a late season Max NDVI 

date [3]) (Armstrong et al., in prep.). EFTs were calculated for the entire Arctic tundra (and 

clipped to the Yamal Peninsula) to facilitate comparison with future analyses of other Arctic 

regions. 

The number of unique EFTs within 6x6 pixel windows (covering a 2 km2 area) were 

counted to determine EFT richness values. This window size ensured that all 30 EFTs on the 

Yamal Peninsula could be counted if present (albeit highly unlikely). Overall 2001-2018 EFT 

richness was used in spatial analyses, and annual EFT richness was used in temporal analyses. 
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To calculate annual EFT richness, the previous steps were repeated for each year in the study 

period. EFA classes used to define the Arctic EFTs remained constant when calculating annual 

EFT richness to facilitate the interpretation of temporal analyses (Alcaraz-Segura et al., 2013).  

3.4 Spatial Analyses 

Drivers of EFT distribution 

 A pairwise Spearman’s correlation between continuous drivers found that mean 

precipitation, mean snow-free period onset date, and mean SWI were highly spatially correlated 

(r > 0.75 or < -0.75). Arctic vegetation is generally limited by summer warmth (Raynolds et al., 

2008); therefore, mean precipitation and mean snow-free period onset date were removed from 

the analysis. All remaining drivers were included as explanatory variables in the spatial analysis 

(Table 1). Random Forest classification was used to determine which drivers best predicted the 

spatial distribution of the most common EFTs on the Yamal Peninsula (322, 323, 422, 423, 522, 

523). The frequencies of the EFTs were variable; therefore, the input dataset was balanced by 

randomly sampling each EFT class to have the same number of occurrences. Random Forest 

classification is a non-parametric machine-learning method that utilizes independent decision 

tree models of bootstrapped data to rank the predictive power of explanatory variables (Breiman, 

2001; Liaw and Wiener, 2002). First, data were randomly partitioned into model training (2/3 of 

the data) and testing (1/3 of the data) sets. Models constructed using the training data were 

repeatedly fit to determine the number of randomized drivers considered at each tree node (mtry) 

that resulted in the highest out-of-bag (OOB) classification accuracy (Berner et al., 2020). 

Classification accuracy was cross-validated using testing data. Variable importance was 

determined by the mean decrease in accuracy metric, which measures the decrease in 

classification accuracy when OOB data for a given variable is permuted in the model (Berner et 
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al., 2020; Han et al., 2016; Liaw and Wiener, 2002). Last, for the six most important drivers, 

partial dependence plots were used to evaluate the classification probability of each EFT across 

the range of driver values while still considering the average effects of the other drivers 

(Goldstein et al., 2014). The Spearman’s correlation was implemented using the psych package 

in R (Revelle, 2020). Random Forest classification and evaluation with partial dependence plots 

was completed using the University of Virginia’s high-performance computing system (Rivanna) 

along with the caret (Kuhn, 2020), randomForest (Liaw and Wiener, 2002), doParallel 

(Microsoft and Weston, 2020), and pdp packages (Greenwell, 2017) in R.  

Spatial correlations among EFT richness and continuous drivers 

 Pairwise Spearman’s correlation was used to determine the direction and significance of 

the spatial relationships among EFT richness and the continuous drivers (Table 1).  The overall 

EFT richness values and means of climatic drivers were included as inputs. All other included 

variables (coast distance, elevation, human modification, percent water, and water distance) were 

constant over the study period. The Bonferroni correction was applied to account for multiple 

comparisons. Spearman’s correlations were also run on stratified random samples using 2/3 and 

1/2 of the input dataset. Spearman’s correlations were implemented using the psych package in R 

(Revelle, 2020). 

Spatial correlations among EFT richness and categorical drivers 

 Chi-Square (χ2) Tests of Independence were employed to determine if there were 

significant spatial associations among EFT richness and categorical drivers (Table 1). Overall 

EFT richness was divided into high and low categories using the Jenk’s natural breaks 

classification method (implemented using the BAMMtools package in R) (Rabosky et al., 2014). 
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Chi-Square Tests of Independence were also run on stratified random samples using 2/3 and 1/2 

of the input datasets. The χ2 test statistics and residuals were compared to determine the direction 

and significance of the spatial associations. 

3.5 Temporal Analysis 

EFT richness and climatic driver trends 

 Pixel-scale monotonic trends in EFT richness and climatic drivers between 2001 and 

2018 were detected using Mann-Kendall trend tests. Pixels with 15+ years of data were included 

in the analyses, and time series residuals were tested for lag-1 serial autocorrelation using the 

Durbin-Watson test. Pre-whitened Mann-Kendall trend tests were also run to verify that pixels 

with significant serial autocorrelation did not affect trend significance (Kulkarni and von Storch, 

1995). Non-parametric Sen’s slope estimation was used to determine the direction and 

magnitude of EFT richness and climatic driver trends. Trend detection analyses were completed 

using the car (Fox and Weisberg, 2019), Kendall (McLeod, 2011), modifiedmk (Patakamuri and 

O’Brien, 2020), and trend packages (Pohlert, 2020) in R. 

Drivers of EFT richness trends 

 Random Forest regression was used to determine the most important drivers (i.e., the best 

predictors) of EFT richness trends (Sen’s slopes). EFT richness Sen’s slopes = 0.000 were 

excluded from the analysis. All drivers were included as explanatory variables in the model, 

including the Sen’s slopes of climatic drivers (Table 1). A pairwise Spearman’s correlation was 

used to confirm that multicollinearity (r > 0.75 or < -0.75) was not present among the continuous 

drivers (Berner et al., 2020; Oliveira et al., 2012). The Random Forest regression algorithm and 

procedure is similar to that described for Random Forest classification in Section 2.4; however, 

the division of data into training and testing sets was not required (Cutler et al., 2007; Oliveira et 
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al., 2012). Prediction accuracy was determined by the OOB mean square error (MSE), and 

variable importance was assessed with the mean decrease in accuracy metric (% IncMSE), which 

measures the decrease in prediction accuracy when the OOB data for a given driver is permuted 

in the model (Liaw and Wiener, 2002; Oliveira et al., 2012).  

4.0 Results 

4.1 Spatial Analyses 

Drivers of EFT distribution 

 Thirty of the 45 Arctic tundra EFTs were present on the Yamal Peninsula. Six EFTs (322, 

323, 422, 423, 522, 523) with mid- to high mean NDVI, mid SOS dates, and mid to late season 

max dates covered > 99% of the Peninsula (Figure 4). The most common EFT was 423, which 

corresponds to mid-high mean NDVI, a mid SOS date, and a late season max date. The least 

common of the 6 EFTs was 322, which corresponds to a mid-mean NDVI, a mid SOS date, and a 

mid max date. 

 The Random Forest classification model had an overall accuracy of 48%; however, the 

balanced classification accuracy was 68% for EFT 322, 72% for EFT 323, 67% for EFT 422, 

65% for EFT 423, 72% for EFT 522, and 71% for EFT 523. The six most important predictors of 

EFT distribution were mean SWI, mean soil moisture, coast distance, human modification, 

elevation, and percent water (Figure 5). Mean SWI exhibited strong correlations with mean 

precipitation (r = 0.89) and mean snow-free period onset date (r = -0.85); therefore, mean 

precipitation and mean snow-free period onset date were also important predictors of EFT 

distribution. The presence of each EFT was influenced by a unique combination of driver 

conditions; however, EFTs with the same mean NDVI and max date classifications had similar 

relationships with some drivers (Figure 6). EFTs with mid- mean NDVI (322 and 323) most 
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often occurred where mean SWI and precipitation were lower, where snowmelt occurred later, 

and where human modification did not exceed 2.5% of the pixel area. EFTs with mid-high mean 

NDVI (422 and 423) most often occurred where mean soil moisture was lower. EFTs with high 

mean NDVI (522 and 523) most often occurred where mean SWI, mean precipitation, and mean 

soil moisture were higher; where snowmelt occurred earlier; closer to the coast; at low 

elevations; and where percent water was lower. EFTs with mid- max dates (322, 422, and 522) 

most often occurred at low elevations associated with inland drainages, whereas EFTs with late 

max dates (323, 423, and 523) most often occurred closer to the coast and where percent water 

was lower.  

Spatial correlations among EFT richness and continuous drivers 

 Overall EFT richness values ranged from 1 to 11 (out of a possible 30) across the Yamal 

Peninsula (Figure 7). EFT richness values of 2 and 3 were the most common (29.8% and 32.0% 

of the Peninsula, respectively), and values between 6 and 11 were rare (3.3% of the Peninsula). 

EFT richness exhibited significant (p-value < 0.05) spatial correlations with all of the continuous 

drivers (Figure 8). The strongest correlations were with percent water (r = 0.57) and water 

distance (r = -0.56, Figure 9). Mean snow-free period onset date exhibited the strongest 

correlation with EFT richness of the climatic drivers (r = -0.44, Figure 10), indicating that EFT 

richness was higher where snow melt occurred earlier. EFT richness was also positively 

correlated with mean precipitation (r = 0.35), mean SWI (r = 0.24), human modification (r = 

0.22), coast distance (r = 0.06) and mean soil moisture (r = 0.01), but negatively correlated with 

elevation (r = -0.27). Among the continuous drivers, notable correlations were present between 

mean SWI and mean precipitation (r = 0.90), mean SWI and mean snow-free period onset date (r 

= -0.83), mean precipitation and mean snow-free period onset date (r = -0.86), mean soil 
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moisture and coast distance (r = -0.73), as well as coast distance and elevation (r = 0.65). In 

addition to being negatively correlated with each other (r = -0.75), water distance and percent 

water exhibited opposing relationships with elevation (r = 0.44 and -0.43, respectively). Similar 

to EFT richness, human modification was negatively correlated with mean snow-free period 

onset date (r = -0.46) and positively correlated with both mean precipitation and mean SWI (r = 

0.46 and 0.35, respectively). Results were similar for analyses run on stratified random samples 

using 2/3 and 1/2 of the input dataset. 

Spatial correlations among EFT richness and categorical drivers 

 Overall EFT richness had significant spatial associations with all of the categorical 

drivers (p-value < 0.05). The association with vegetation unit was the strongest (ꭕ2 = 6,759), 

followed by substrate chemistry (ꭕ2 = 2,269), landscape age (ꭕ2 = 584), and soil texture (ꭕ2 = 295, 

Table 2). High EFT richness (4 – 11) was associated with erect shrub and wetland vegetation (a 

combination of sedges, mosses, and erect shrubs) (Raynolds et al., 2006); acidic and saline 

substrates; younger (~25,000 years old) and recently disturbed landscapes (~1,000 years old); as 

well as clay loam, loam, sand, and sandy loam soils. Low EFT richness (1 – 3) was associated 

with graminoid and prostrate shrub vegetation, circumneutral substrates, older landscapes 

(~70,000 years old), and silt loam soils. 

4.2 Temporal Analysis 

EFT richness and climatic driver trends 

 The direction and magnitude of 2001-2018 EFT richness trends were heterogeneous 

across the Yamal Peninsula (Figure 11). There was no trend (Sen’s slope = 0.000, p-value > 

0.05) in EFT richness across a majority of the Peninsula (67.1%). However, 30.0% of pixels 

exhibited positive EFT richness trends, 7.0% of which were significant (p-value ≤ 0.05) and 
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2.9% of pixels exhibited a negative EFT richness trend (0.3% significant). EFT richness Sen’s 

slopes ranged from -0.400 to 0.620 yr-1, with the mode between -0.100 and 0.000 yr-1. EFT 

richness Sen’s slopes below -0.107 yr-1 and greater than 0.178 yr-1 were outliers. 

The direction and magnitude of climatic driver trends were also heterogeneous (Figure 

12).  SWI trends were positive across 83.1% of the Peninsula (1.3% significant), while 

precipitation trends were positive across 50.9% (no significant trends). Generally, positive 

precipitation trends were stronger where SWI increased (r = 0.46). Snow-free period onset date 

trends were negative across 85.0% of the Peninsula (4.1% significant), indicating trends toward 

earlier snow melt. Negative snow-free period onset date trends were stronger where SWI 

increased (r = -0.44). Soil moisture trends were negative across 85.0% of the Peninsula (3.8% 

significant) and were less negative where SWI increased (r = 0.43). 

Drivers of EFT richness trends 

 The EFT richness Random Forest regression model explained 51% of EFT richness Sen’s 

slope variance. The six most important drivers of EFT richness trends were coast distance, 

elevation, human modification, precipitation trends, summer warmth trends, and water distance 

(Figure 13). On average, positive EFT richness trends were stronger further inland, where human 

modification was greater, where precipitation increased, and where SWI increased (Figure 14). 

Positive EFT richness trends were also stronger at lower elevations and closer to inland water 

bodies.  

5.0 Discussion 

5.1. Spatial Drivers of EFT Distribution 

The use of Arctic tundra EFTs based on seasonal vegetation productivity dynamics 

allowed for the characterization of functional variability across the Yamal Peninsula. Although 
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30 of the 45 EFTs were present, 6 EFTs distinguished by varying mean NDVI values and max 

dates (322, 323, 422, 423, 522, 523) covered more than 99% of the Peninsula. Each of these 

EFTs were most likely to occur under a unique set of driver conditions, indicating the presence 

of distinct functional niches. The occurrence of each EFT was best predicted by climatic drivers 

(mean SWI, mean precipitation, mean snow-free period onset date, and mean soil moisture), and 

patterns emerged when EFTs grouped by similar mean NDVI and max classes were compared.  

EFTs with high mean NDVI (522 and 523) occurred where summers were warmer, 

precipitation and soil moisture were higher, and where snowmelt occurred earlier. Conversely, 

EFTs with mid- mean NDVI (322 and 323) occurred where summers were cooler, precipitation 

was lower, and snowmelt occurred later, and EFTs with mid-high mean NDVI (422 and 423) 

occurred where soil moisture was lower. These findings are consistent with previous research 

that found aboveground biomass was higher where Arctic vegetation growth was not limited by 

low summer temperatures, low water availability, and/or shorter growing seasons due to 

prolonged snow cover (Elmendorf et al., 2012; Epstein et al. 2021; Jia et al., 2006; Myers-Smith 

et al., 2015; Raynolds et al., 2006). EFT-climate driver relationships show how variable climate 

conditions facilitated functional heterogeneity on the Yamal Peninsula; however, observed 

changes in SWI, precipitation, the timing of snowmelt, and soil moisture could eventually alter 

long-term climate patterns. Summer warming, earlier snow melt, and increased water availability 

could cause shifts in functionality and the loss of less common EFTs (322 and 422), which could 

decrease ecosystem resistance and diversity in ecosystem services (Cazorla et al., 2021; Manning 

et al., 2018; Oliver et al., 2015).   

Although infrastructure and settlements are largely confined to areas surrounding gas 

operations on the Yamal Peninsula, human modification was an important driver of EFT 
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distribution. EFTs with the lowest mean NDVI (322 and 323) were most likely to occur where 

human modification was limited, whereas human modification had mixed effects on EFTs with 

higher mean NDVI (422, 423, 522, and 523). Human modification could have a positive 

relationship with EFTs characterized by mid-high and high mean NDVI (422 and 523), because 

human modification was greater where climate conditions favored these EFTs. However, re-

vegetated off-road vehicle tracks near Yamal Peninsula gas fields and settlements have been 

found to have higher aboveground biomass than surrounding undisturbed areas approximately 20 

years after revegetation (Forbes et al., 2009). 

Geologic drivers (coast distance, elevation, and percent water) also influenced EFT 

distribution. EFTs with mid-season max dates (322, 422, and 522) occurred at low elevations, 

whereas EFTs with late season max dates (323, 423, and 523) occurred closer to the coast and 

where percent water was lower (i.e., where fewer water bodies were present). Elevation is 

generally lower closer to the coast on the Yamal Peninsula; however, low elevation landforms 

(drainages, landslide depressions, ice-wedge troughs, and drained thermokarst lakes) are present 

inland where summer temperatures are higher. Although not detectable at the 1-km spatial 

resolution used in this analysis, these landforms can have higher soil moisture than surrounding 

areas (Walker et al., 2009), which in conjunction with warmer temperatures may have facilitated 

peak aboveground biomass earlier in the growing season (May et al., 2020). Later peak 

aboveground biomass seemed to occur where either temperature or soil moisture conditions were 

not optimal. Summer temperatures were lower closer to the coastline due to the influence of sea 

ice (Bhatt et al., 2010) and maritime air flow (Bhatt et al., 2021), and areas with fewer water 

bodies generally have lower soil moisture (Raynolds et al., 2006) and occur at higher elevations 

(where soil moisture is lower) on the Yamal Peninsula. If coastal temperatures on the Yamal 
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Peninsula rise, decreases in EFTs with later max dates (323, 423, and 523) could occur; however, 

the draining of coastal thermokarst lakes (Nitze et al., 2018) could limit shifts towards earlier 

peak aboveground biomass by decreasing percent water and soil moisture.  

5.2 Spatial Drivers of EFT Richness 

 Calculating EFT richness at a 1.4-km resolution allowed for the evaluation of functional 

diversity patterns across the Yamal Peninsula. EFT richness was generally higher in the south 

and values ranged from 1 to 11, with 2 and 3 occurring the most frequently. Of the continuous 

drivers considered, percent water and water distance had the strongest spatial relationships with 

EFT richness. The occurrence of higher EFT richness where lakes and drainages were more 

abundant was likely due to the landscape heterogeneity in these areas that allows for micro-

habitats distinguished by fine-scale differences in temperature, soil conditions, and topography 

(Oliver et al., 2015; Raynolds et al., 2006, 2008).  

The occurrence of higher EFT richness where snow melted earlier, where precipitation 

was higher, and where summers were warmer (primarily in the southern region of the Peninsula) 

was possibly related to the north-south gradients in percent water and water distance. These 

conditions also facilitate higher species richness (Billings, 1987; Walker et al., 2019) and 

permafrost disturbances on the Yamal Peninsula (e.g., thermokarst lake formation/draining, ice-

wedge degradation, landslides, erosion) that increase landscape heterogeneity (Ardelean et al., 

2020; Leibman et al., 2014; Nitze et al., 2018; Verdonen et al., 2020; Walker et al., 2009; Zhang, 

2005). Further, vegetation less limited by summer temperature, growing season length 

(influenced by the timing of snow melt), and precipitation could exhibit more variable growth 

and phenology in response to landscape conditions (Bieniek et al. 2015; Billings, 1987; 

Elmendorf et al., 2012; Keenan and Riley, 2018). In situ observations and/or high-resolution 
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imagery that can detect changes in fine-scale (< 1-km) conditions (e.g., temperature, soil 

moisture, topography, species richness, extent of permafrost degradation) are needed to verify 

their effects on the spatial distribution of EFT richness across the Yamal Peninsula. Although 

fine-scale variability cannot be resolved at the 1.4-km resolution used here, these results suggest 

that the percent water and water distance metrics may be useful proxies for remotely capturing 

landscape heterogeneity at coarser resolutions (Lara et al., 2020). 

 Of the categorical drivers considered, vegetation type had the strongest spatial association 

with functional diversity. While each vegetation unit on the Yamal Peninsula (erect shrub, 

graminoid, prostrate shrub, and wetland) is characterized by multiple species, EFT richness was 

higher in erect shrub and wetland vegetation units. Both erect shrub and wetland vegetation units 

occurred closer to water bodies and where percent water was high, whereas graminoid and 

prostrate shrub units occurred further from water bodies and where percent water was low 

(results not shown), indicating that the landscape heterogeneity associated with lakes and 

drainages likely drove higher functional diversity within erect shrub and wetland vegetation 

units. However, there are three other potential explanations for the higher variability in 

aboveground biomass and phenology in these vegetation units: 1) higher vascular species 

richness in the southern region where these units are dominant (Walker et al., 2019), 2) variable 

climate sensitivity of erect shrubs (also present in some wetlands) (Myers-Smith et al., 2015; 

Raynolds et al., 2006), and 3) reindeer grazing of deciduous shrubs (Olofsson et al., 2009; Yu et 

al., 2011). Therefore, the variability in aboveground biomass accumulation and phenology within 

erect shrub and wetland vegetation units may demonstrate how functional diversity can be 

independent of compositional or structural diversity, but additional research would be needed to 

confirm this.  
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Substrate chemistry, landscape age, and soil texture also exhibited significant spatial 

associations with EFT richness. Circumneutral substrates with higher nutrient availability 

generally support greater vegetation diversity in the Arctic (Raynolds et al., 2006; Walker et al., 

2001). However, acidic and saline substrates with lower nutrient availability were associated 

with high EFT richness on the Yamal Peninsula. The high EFT richness on acidic substrates 

could have been driven by an abundance of acidophilic shrub species (Raynolds et al., 2006; 

Walker et al., 2001), and the high EFT richness on saline substrates (associated with floodplains 

and marshes) could have been driven by landscape heterogeneity (Moskovchenko et al., 2017). 

High EFT richness on younger and recently disturbed landscapes that have been less developed 

by erosion, peat accumulation, and vegetation succession was also likely facilitated by landscape 

heterogeneity (Walker et al., 1995). Of the five soil texture classes present on the Yamal 

Peninsula, silt loam and sandy loam drove the significant spatial association between EFT 

richness and soil texture. Again, EFT richness was unexpectedly higher where nutrient 

availability was likely lower (on sandy loam soils) than where nutrient availability was likely 

higher (on silty loam soils). The concentration of sandy loam soils along drainages (Figure 2) 

could have resulted in the association with high EFT richness.  

5.3. Temporal Drivers of EFT Richness 

 The six drivers that best predicted EFT richness trends were a combination of geologic 

(coast distance, elevation, and water distance), anthropogenic (human modification), and climatic 

drivers (precipitation trends and SWI trends). The most important driver, coast distance, captured 

coastal-inland gradients in continentality and topographic variability on the Yamal Peninsula.  

Stronger positive EFT richness trends further inland indicate that greater seasonal temperature 

fluctuations and landscape heterogeneity facilitated increases in functional diversity, particularly 

in areas with low-elevation inland drainages, landslide depressions, degraded ice-wedge troughs, 
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and/or drained thermokarst lake basins. Decreasing continentality across the Arctic due to 

melting sea ice (Bhatt et al., 2021) could eventually reverse the positive EFT richness trends on 

the Yamal Peninsula. However, inland topographic variability along with increasing precipitation 

and SWI that facilitates permafrost disturbances and the formation of inland low-elevation 

landforms could mitigate the effect of decreasing continentality on functional diversity (Ardelean 

et al., 2020; Becker et al., 2016; Leibman et al., 2014; Jorgenson et al., 2015; Walker et al., 

2009). Vegetation succession that occurs in landslide depressions, ice-wedge troughs, and 

drained thermokarst lakes likely contributed to the stronger positive EFT richness trends at lower 

inland elevations (Jorgenson et al., 2015; Lantz, 2017; Loiko et al., 2020; Walker et al., 2009). 

Additionally, landslides often occur along the banks of lakes and drainages, and human 

modification has been found to exacerbate permafrost degradation on the Yamal Peninsula 

(Ardelean et al., 2020).  

Although positive EFT richness trends were strongest where SWI increased, SWI 

increases exceeding 0.2 °C months yr-1 (3.6 °C months increase over 18-year study period) 

exhibited a negative relationship with positive EFT richness trends. Summer warming exceeding 

this threshold may have weakened positive EFT richness trends by causing shifts towards higher 

aboveground biomass, earlier SOS dates, and earlier max dates (Elmendorf et al., 2012; Post et 

al., 2016; Prevéy et al., 2019; Walker et al., 2006). Increases in shrub and graminoid 

aboveground biomass have been linked to warming (Elmendorf et al., 2012; Walker et al., 2006), 

and warming has been found to advance the phenology of Arctic vegetation species that flower 

later in the growing season more than those that flower earlier (Prevéy et al., 2019). Reindeer 

grazing on the Yamal Peninsula could maintain functional diversity by limiting aboveground 

biomass increases (Olofsson et al., 2009; Yu et al., 2011); however, phenological convergence 
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towards earlier SOS and max dates could result in a trophic mismatch that would negatively 

impact reindeer (Kerby and Post, 2013; Post et al., 2008). Future research is needed to better 

understand the interacting effects of warming and herbivory on Arctic vegetation in order to 

better predict shifts in aboveground biomass and the timing of resource availability for reindeer.  

5.4. Summary and Conclusions 

 This study demonstrates the usefulness of Arctic EFTs for identifying distinct functional 

niches and evaluating both the spatial and temporal drivers of functional diversity. EFT 

distribution was primarily influenced by long-term climate patterns, while the spatial and 

temporal dynamics of EFT richness were primarily driven by landscape heterogeneity and 

continentality that facilitate variable vegetation responses. Warming, earlier snowmelt, and 

greater moisture availability could eventually result in functional convergence driven by shifts 

towards higher aboveground biomass and earlier max dates on the Yamal Peninsula (and 

potentially elsewhere in the Arctic), thereby reducing ecosystem resistance (Cazorla et al., 2021). 

These shifts could be mitigated by reductions in soil moisture following the draining of 

thermokarst lakes (Nitze et al., 2018). Additionally, potential decreases in EFT richness due to 

decreasing continentality (Bhatt et al., 2021) could be offset by inland topographic variability 

and a climate-induced increase in permafrost disturbances that help maintain landscape 

heterogeneity (Ardelean et al., 2020; Becker et al., 2016; Jorgenson et al., 2015; Loiko et al., 

2020; Walker et al., 2009). However, SWI increases exceeding a 0.2 °C months yr-1 threshold 

may facilitate increased aboveground biomass and advanced phenology that weaken positive 

EFT richness trends (Elmendorf et al., 2012; Post et al., 2016; Prevéy et al., 2019; Walker et al., 

2006). At existing levels, human modification on the Yamal Peninsula had mixed effects on EFT 

distribution and positive effects on EFT richness, but extensive vegetation removal would be 

expected to reduce functional diversity. Overall, I found that Arctic EFTs and EFT richness are 
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useful tools for monitoring shifting carbon gain dynamics in response to multiple driving forces 

in complex Arctic ecosystems, and that Arctic regions with heterogeneous landscapes shaped by 

permafrost disturbance regimes are more likely to experience increases in functional diversity 

under changing climate conditions. Future research utilizing high-resolution imagery that can 

capture fine-scale landscape features, in situ species richness measurements, and/or herbivory 

data is needed to further disentangle the drivers of Arctic functioning and functional diversity.
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6.0 Figures 

 

Figure 1. The Yamal Peninsula with elevation (m above sea level) and locations of population centers, 

infrastructure, and gas fields (adapted from Forbes 1999 and Gazprom 2021). The inset map shows the location 

of the Yamal Peninsula (outlined by the black box).   
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Figure 2. Yamal Peninsula (a) landscape age, or time since last glaciation, (b) substrate chemistry, (c) soil 

texture, and (d) physiognomic vegetation unit representing the dominant vegetation type. Permanent surface 

water bodies and pixels with > 20% water coverage are masked.   

a) b) 

c) d) 
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Table 1. Datasets included in the analyses and their respective types, years collected, native spatial resolutions, 

and sources. 
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Figure 3. Ecosystem Functional Attribute (EFA), Ecosystem Functional Type (EFT), and EFT richness calculation. a) Derive EFAs (mean NDVI, 

SOS date, and max date) from the mean intra-annual NDVI curve of each pixel. b) Divide the EFAs into classes. The frequency distribution of mean 

NDVI was divided into quintiles representing low, mid-low, mid, mid-high, and high mean NDVI values. SOS and max dates were divided into 3 

classes (early, mid, and late) based on natural breaks in their frequency distributions. The EFT of each pixel is determined by a combination of these 

classes. c) Map the EFTs to evaluate their spatial distribution. d) Calculate EFT richness by counting the number of EFTs within a 6x6 pixel window, 

which is conceptually represented by the inset maps. The use of the 6x6 pixel window (containing 36 pixels) allows for all 30 EFTs on the Yamal 

Peninsula to be counted if present. Both the EFT and EFT richness images display the northernmost point of the Yamal Peninsula. Permanent surface 

water bodies and pixels with > 20% water coverage are masked

a) b) 

c) d) 
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Figure 4. Yamal Peninsula Ecosystem Functional Types (EFTs) for 2001-2018. Red pixels represent an EFT 

that occurred across < 1% of the Yamal Peninsula. Permanent surface water bodies and pixels with > 20% water 

coverage are masked. 

  



91 
 

 

Figure 5. Variable importance for the prediction of EFT spatial distribution. Variable importance was 

determined by the Random Forest classification model and quantified with the mean decrease in accuracy 

metric, which measures the decrease in classification accuracy when out-of-bag (OOB) data for a given variable 

is permuted in the model (Berner et al., 2020; Han et al., 2016; Liaw and Wiener, 2002). A higher mean 

decrease in accuracy value indicates greater importance.  
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Figure 6. Partial dependence plots for the six most important drivers of EFT spatial distribution: mean Summer 

Warmth Index (SWI), mean growing season soil moisture, distance from the coast, human modification, 

elevation, and percent water in a pixel (0 – 20%). Partial dependence plots display the classification probability 

of each EFT across the range of driver values while still considering the average effects of the other drivers 

(Goldstein et al., 2014). Dashed lines indicate outlier drive variable values.  
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Figure 7. Yamal Peninsula overall EFT richness (2001-2018). EFT richness values 6 – 11 occurred across 3.3% 

of the Peninsula. Permanent surface water bodies and pixels with > 20% water coverage are masked. 
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Figure 8. Spearman’s correlation coefficients (r) for correlations between overall EFT richness (2001-2018) 

and continuous drivers. The 2001-2018 means of precipitation (Precip), snow-free period onset date 

(SnowFree), soil moisture, and Summer Warmth Index (SWI) were used. Distance from the coast (CoastDist), 

human modification (HumanMod), elevation, percent water, and distance from inland water bodies (WaterDist) 

were constant over the study period. EFT richness correlations are highlighted by the thicker black boxes. All 

correlations were significant at the 95% confidence level.   
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Figure 9. Yamal Peninsula (a) percent water in a pixel, and (b) distance from inland water bodies. Permanent 

surface water bodies and pixels with > 20% water coverage are masked. 

  

a) b) 
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Figure 10. Yamal Peninsula 2001-2018 mean (a) mean growing season precipitation, (b) snow-free period 

onset date (Julian date), (c) mean growing season soil moisture, and (d) Summer Warmth Index (SWI). 

Permanent surface water bodies and pixels with > 20% water coverage are masked. 

a) b) 

c) d) 
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Table 2. Chi-Square Test of Independence results. All tests were significant at the 95% confidence level. A 

larger ꭕ2 value indicates a stronger spatial association. Bolded residual values with the largest absolute values 

had the greatest influence on the spatial associations. Positive residuals indicate a positive relationship, and 

negative residuals indicate a negative relationship.  
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Figure 11. EFT richness trends inferred from Mann-Kendall trend tests and Sen’s slope estimation. Pixels were 

classified based on trend significance at the 95% confidence level and Sen’s slope direction. Pixels classified as 

no trend had insignificant trends and Sen’s slopes = 0.000. Pixels with > 20% water coverage and pixels with < 

15 years of data (due to low quality data or conditions preventing vegetation growth) were masked. 
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Figure 12. Trends in (a) mean growing season precipitation, (b) snow-free period onset date, (c) mean growing 

season soil moisture, and (d) Summer Warmth Index (SWI) inferred from Mann-Kendall trend tests and Sen’s 

slope estimation. Pixels were classified based on trend significance at the 95% confidence level and Sen’s slope 

direction. Pixels classified as no trend had insignificant trends and Sen’s slopes = 0.000. Pixels with > 20% 

water coverage and pixels with < 15 years of data (due to low quality data or conditions preventing vegetation 

growth) were masked.  

a) b) 

c) d) 
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Figure 13. Variable importance for the prediction of EFT richness Sen’s slope. Variable importance was 

determined by the Random Forest regression model and quantified with %Inc MSE parameter. %Inc MSE 

measures the percent increase in MSE when a predictor variable is permuted in the out-of-bag (OOB) data 

while all other predictor variables remain unchanged (Liaw and Wiener 2002). A higher %Inc MSE value 

indicates greater importance. 
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Figure 14. Partial dependence plots for the six most important drivers of EFT richness Sen’s slope: coast 

distance, elevation, human modification, mean growing season precipitation Sen’s slope, mean SWI Sen’s 

slope, and water distance. Partial dependence plots display the average predicted relationships between EFT 

richness trends and individual drivers across their range of values while still considering the average effects of 

the other drivers (Goldstein et al., 2014). Dashed lines indicate outlier driver variable values. 
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Summary and Conclusions 

 Assessing the drivers of peak aboveground biomass (Max NDVI), total productivity (TI-

NDVI), ecosystem function (EFTs), and functional diversity (EFT richness) provided multiple 

perspectives on how vegetation communities were influenced by persistent and changing 

conditions on the Yamal Peninsula between 2001 and 2018. Spatial analyses found that Max 

NDVI, TI-NDVI, and EFT distribution were primarily influenced by long-term climate patterns 

(particularly SWI) on the Yamal Peninsula, while spatial patterns of EFT richness were best 

predicted by the degree of landscape heterogeneity in an area (captured by the percent water and 

water distance drivers). Higher SWI and earlier snowmelt facilitated higher Max and TI-NDVI, 

and spatial gradients in these drivers (in addition to soil moisture and precipitation) allowed for 

the formation of distinct functional niches on the Yamal Peninsula that were captured by EFTs. 

EFT-driver relationships indicated that climate change could eventually result in functional 

convergence driven by shifts towards higher aboveground biomass and earlier max dates, 

thereby increasing carbon uptake but reducing ecosystem resistance (Cazorla et al., 2021). 

Higher SWI and longer growing seasons also supported erect shrub and wetland vegetation units 

with higher Max NDVI, TI-NDVI, and EFT richness. However, it was unclear if the high EFT 

richness in erect shrub and wetland units was driven by higher landscape heterogeneity, or 

favorable climate conditions that facilitate more variable vegetation responses and higher species 

richness (Bieniek et al., 2015; Billings, 1987; Elmendorf et al., 2012; Keenan and Riley, 2018; 

Walker et al., 2019).  

 The direction and magnitude of peak aboveground biomass, total productivity, and 

functional diversity trends were variable across the Yamal Peninsula. Max and TI-NDVI 

increased across a majority of the Yamal Peninsula between 2001 and 2018, and comparisons to 

previous studies indicate a recent shift from negative to positive TI-NDVI trends in some areas 



113 
 

113 
 

(Bhatt et al., 2021; Frost et al., 2020). The discrepancy between this study and previous findings 

could be due to the timeframe considered, data product used, or the method used for calculating 

TI-NDVI. Here, TI-NDVI was only calculated for pixels with all growing season composites 

available to eliminate bias towards low TI-NDVI values due to variable intra-annual coverage. 

Divergent peak aboveground biomass and total productivity trends (concurrent increases in TI-

NDVI and decreases in Max NDVI) observed across 26.7% of the Peninsula were likely caused 

by a shift from shrub to graminoid dominance (Forbes et al., 2009; Kumpula et al., 2011; 

Magnússon et al., 2021; Raynolds et al., 2006; van der Kolk et al., 2016). Although this study did 

not utilize in situ vegetation observations to verify this, shifts from shrub to graminoid 

dominance following disturbance from off-road vehicle tracks and heavy reindeer grazing have 

been observed on the Yamal Peninsula (Forbes et al., 2009; Kumpula et al., 2011). EFT richness 

exhibited no trend across a majority of the Peninsula, but 30.0% did exhibit positive EFT 

richness trends. These findings indicate that functional diversity was maintained despite 

increases in peak aboveground biomass and total aboveground productivity; however, areas 

exhibiting divergent trends could be contributing to increasing functional diversity.  

Max NDVI, TI-NDVI, and EFT richness trends were best predicted by coast distance, 

which captured gradients in continentality and SWI due to the influence of sea ice, as well as soil 

moisture and topographic variability. Higher mean SWI and lower mean soil moisture further 

inland resulted in stronger positive Max NDVI trends and weaker positive TI-NDVI trends, 

whereas greater continentality and topographic variability further inland drove stronger positive 

EFT richness trends by facilitating variable vegetation responses. Melting sea ice is driving 

coastal increases in SWI (Bhatt et al., 2010) and decreases in continentality (Bhatt et al., 2021), 

which could facilitate increased shrub growth closer to coastlines and reduce the functional 
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diversity of inland areas; however, the effect of decreasing continentality could be mitigated by 

inland topographic variability. Additionally, the Max NDVI, TI-NDVI, and EFT richness trend 

relationships with climatic driver trends pointed to the influence of climate-induced permafrost 

disturbances that alter hydrological conditions and increase landscape heterogeneity (Becker et 

al., 2016; Jorgenson et al., 2015). SWI increases below 0.2 - 0.5 °C months yr-1 seemed to 

primarily impact Max NDVI, TI-NDVI, and EFT richness trends via effects on permafrost 

disturbances, while more extreme SWI increases exceeding these thresholds likely resulted in 

increased shrub and graminoid growth (Elmendorf et al., 2012; Walker et al., 2006) that caused 

stronger positive Max and TI-NDVI trends, but weaker positive EFT richness trends. Shifts 

toward higher aboveground biomass as warming intensifies is expected to result in positive 

climate feedbacks that further increase warming by altering albedo and evapotranspiration 

(Pearson et al., 2013), and advancing phenology could result in trophic mismatch between Arctic 

vegetation and herbivores (Kerby and Post, 2013; Post et al., 2008). While greater human 

modification weakened positive Max and TI-NDVI trends and strengthened positive EFT 

richness trends, extensive vegetation removal associated with infrastructure and permanent 

settlement expansion would be expected to eventually reduce functional diversity.  

 As a whole, this thesis provides a comprehensive assessment of vegetation dynamics 

across the Yamal Peninsula between 2001 and 2018 and highlights the importance of coast 

distance, elevation, permafrost disturbances, and human modification in addition to climatic 

drivers. Chapter 1 provides insight into the potential future of other Arctic regions undergoing 

warming, moisture regime shifts, and increasing human modification, and demonstrates the 

usefulness of considering multiple NDVI metrics to disentangle the effects of individual drivers 

across heterogeneous landscapes. Chapter 2 found that Arctic EFTs and EFT richness are useful 
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tools for monitoring shifting carbon gain dynamics in response to multiple driving forces in 

complex Arctic ecosystems, and that Arctic regions with heterogeneous landscapes shaped by 

permafrost disturbance regimes are more likely to experience increases in functional diversity 

under changing climate conditions. Additional research utilizing in situ vegetation data, reindeer 

herd numbers and migration patterns, and high-resolution imagery that can discern fine-scale 

landscape features (such as permafrost disturbances) is needed to further elucidate driver effects 

on Yamal Peninsula vegetation productivity, functioning, and functional diversity. Further, 

understanding how productivity and functional diversity trends are related could provide insight 

into how ecosystem resistance may be altered as productivity increases or decreases.  
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