
Course Proposal: Debugging Fundamentals and Techniques

CS4991 Capstone Report, 2024

David Lin

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

lindavid404@gmail.com

ABSTRACT

Software developers spend a large portion

of their time debugging software, so the

software developers that the University of

Virginia produces would greatly benefit from

more exposure to efficient debugging

techniques during their time at the university.

I propose that the computer science

curriculum include more exposure to the

debugging process in the CS curriculum

through a required class or elective for both

BACS and BSCS, where students learn the

fundamentals of debugging and practice

applying them. Alternatively, a section

dedicated to debugging should exist in one of

the appropriate foundation courses:

Introduction to Programming (CS 111x) or

Software Development Essentials (CS 3140).

These changes to the CS curriculum will

prepare students for potential software issues

and help them understand the importance of

writing maintainable code. Currently, the

proposal needs to reach the CS curriculum

designers, who would then design the

necessary optional debugging exposure and

eventually determine its viability before

making it mandatory to all CS students.

1. INTRODUCTION

According to an article on Undo.io (n.d.),

software developers spend about 25-50% of

their time debugging software. Some sources

claim the time spent goes as high as 90%

(Detre, 2020). Since debugging is so time-

consuming for developers, CS students at

UVA would benefit from exposure to

efficient debugging methods within their

curriculum.

Amazon Web Services defines debugging

as: “…the process of finding and fixing errors

or bugs in the source code of any software.

When software does not work as expected,

computer programmers study the code to

determine why any errors occurred” (AWS,

n.d.). Debugging is a critical part of updating

and maintaining software, especially old

software as it is common for the original

developers to be absent from the current team

responsible for maintaining it.

2. RELATED WORKS

Instructors from the University of Illinois

at Urbana-Champaign ran an experiment to

see the effects of giving some students

debugging exercises. Students, who were

given debugging exercises for four out of five

programming assignments, kept an optional

debugging log, and documented “design

decisions, development plans, and overall

debugging experiences'' (Chmiel & Loui,

2004). There was a statistically significant

difference between students that received the

treatment versus the control group: the

treatment group were able to complete the

assignments an hour earlier, on average,

compared to the control group.

Instructors from the University of

Nottingham conducted an experiment with

their students who are novice programmers.

After assessing the student’s competency,

they were placed in overlapping categories:

59 were good programmers, 56 were weak

debuggers, and 35 were good debuggers.

They found that 66% of the good debuggers

were also good programmers, but surprisingly

only 39% of the good programmers were

good debuggers (Ahmadzadeh, et al., 2005).

The experiment, done by instructors from

the University of Illinois at Urbana-

Champaign, points out the effectiveness of

exposing students to debugging exercise

while the experiment conducted by

Instructors from the University of

Nottingham demonstrates that programming

competency does not correlate with

debugging competency. These works

motivated my proposal to incorporate a more

formal debugging education into UVA’s CS

curriculum.

3. PROPOSED DESIGN

My proposal for supplementing

debugging exposure is divided into three

sections: 1) create a stand-alone one-credit

debugging course, 2) add onto existing CS

course, and 3) the pros and cons of either

approach. This would give the curriculum

designers options when considering the

incorporation of debugging exposure. The

following design draws inspiration from

reputable institutions such as Google and

Massachusetts Institute of Technology (MIT)

and the study done by the instructors of

University of Illinois at Urbana-Champaign.

3.1 Option 1: Stand-alone Course

The first option is to introduce a one-

credit course dedicated to debugging. This

class is intended to be low-stress and taken

the semester after Introduction to

Programming (CS 111x) to help novice

developers learn the tools and develop the

mindset for debugging. The course will meet

once a week to discuss the week’s debugging

topic and provide related exercises for

students to work on as homework. Topics this

new course may cover, which I will go more

in depth in this proposal, include: 1) how to

effectively use a debugger, 2) how to write

bug-proof code, and 3) common bugs. Other

potential topics, which will not be covered in

this proposal, may also include how to deal

with ambiguity in instructions and avoiding

introducing new bugs when debugging.

3.1.1 Teaching the Debugger

Debuggers are built into many integrated

development environments (IDE). They

provide a convenient interface for seeing the

current state (values of different variables)

and which instruction is executing. Since

students have written python in the PyCharm

IDE during CS111x, this new course can

either expose students to debuggers through

PyCharm or Eclipse, which is the IDE

students would use for the class following

CS111x (Data Structures and Algorithms 1 or

DSA1).

Lecture(s) to introduce debuggers should

explain basic debugging tools such as

breakpoints, stepping into, and stepping over.

It should also give guidance and provide

examples for effective breakpoint placement.

After the lecture, students would debug a

couple of pre-written programs of moderate

complexity (complex enough that it would be

difficult to find the bug just by reading the

code) to practice stepping through the code.

3.1.2 Writing Bug-Proof Code

Handling bugs can happen before they

arise by writing clear and maintainable code.

Lectures for this section can reference

existing coding conventions of reputable

companies, such as Google. Some coding

conventions from Google’s Python Style

Guide (n.d.) provide guidance on how to

document functions, determine if certain lines

of code need to be commented, and name

variables. Another useful convention from

Google’s C++ Style Guide (n.d.) provides

guidance on determining the scope of a

variable on declaration.

Aside from writing clear and maintainable

code, students should be vigilant for potential

bugs as they program. Lectures can provide

guidance on where to check the parameters of

a function or what the ideal data structure is

for different scenarios. MIT’s Software

Construction course’s reading (MIT.edu, n.d.)

provides other strategies for avoiding

potential bugs: use immutable types

whenever possible, localize bugs using

runtime assertion, develop incrementally

though unit and regression testing, and

modularize and encapsulate the code.

Although this reading was intended for

novice programmers learning Java, many of

these ideas are universal and are applicable to

other programming languages and the

software development process.

3.1.3 Recognizing Common bugs

 Another way to prevent injecting bugs

into the code requires knowledge of the

potential bugs. This knowledge will create

awareness of where and how those bugs can

be introduced. Since “a few bug types

account for a lot of the mistakes made by

students learning to program” (Spohrer &

Soloway, 1986), a section of the course will

be dedicated to covering the common bugs

and errors.

Instructors from the University of

Nottingham found that, of the 108,652

records of student Java errors, 32% were

syntax (programming language’s grammar)

errors, 63% were semantic (not consistent

with the language) errors, and 1% were

lexical (unrecognized token) errors. They

also found that the most common semantic

errors were “field not found,” “use of non-

static variable inside the static method,” and

“type mismatch” (Ahmadzadeh, et al., 2005).

This course can prepare students for many

errors by explaining the possible bugs causing

that can cause semantic errors and providing

examples during the lecture. If there is time,

other common errors, including “using a non-

initialized variable,” “method call with wrong

arguments,” and “method name not found,”

(Ahmadzadeh, et al., 2005) could also be

covered. Although syntax and lexical errors

made up the rest of the errors, they can only

be consistently avoided once the developer is

familiar with the language, which requires

time and practice. So, the lecture(s) on this

section will only cover common semantic

errors and the potential bugs that may cause

them.

3.2 Option 2: Addition to Existing Course

The second option is to add a section

dedicated to debugging in an existing CS

course. Since debugging is a skillset that is

beneficial to programmers of all levels, this

addition should complement a class CS

students take early in their curriculum. The

two most relevant classes that could benefit

from additional debugging instructions are

Introduction to Programming (CS 111x) and

Software Development Essentials (CS 3140).

Topics addressed in the previous sections

of the proposal can be added into a new

section of the syllabus of either CS 111x or

CS 3140. It is unlikely that all topics

addressed in this proposal would be

thoroughly covered within a short period of

time, so only the most important topics

should be covered. I believe that these

sections are how to use a debugger and write

bug-proof code.

3.3 New Class vs. Enhancing an Existing

Class

UVA CS curriculum designers should

weigh time against the importance of having

a solid debugging foundation when deciding

whether to dedicate a class to debugging or

supplement a pre-existing course with the

content outlined in the previous sections.

Dedicating a class to debugging ensures

students receive proper guidance on this

critical skill. This class would compete for

time against other courses on students’

schedule, but it would place debugging in the

spotlight rather than mentioning many of its

concepts as a side note. Highlighting this skill

as the main focal point draws students’ focus,

thus helping them build the correct

foundation for software development.

4. ANTICIPATED RESULTS

Although students may not continue to

use the programming language or debugging

tools that this course or section teaches the

different debugging concepts with,

developing the correct mindset would be

beneficial regardless of what language or

tools the student programs with. Exposing

students to these concepts and tools opens

their minds to looking for similar concepts or

tools that would aid them in their

programming endeavors.

Another benefit of having experience and

understanding of debugging is improving the

chances of a student receiving return offers

from an internship. Currently, the University

relies on internships to help translate

theoretical concepts taught in classrooms into

applicable knowledge and experience. This is

indeed an efficient approach, but not all

concepts taught in classrooms are applicable

for each unique company. Understanding how

to approach debugging a piece of software,

however, will almost always be applicable.

Ensuring that a student understands efficient

debugging techniques will certainly allow

them to work more efficiently and place them

in the best possible light for a chance at a

return offer from their internship.

5. CONCLUSION

UVA CS curriculum will benefit from

incorporating more debugging exposure as a

new class or as a supplement to existing

classes. Novice developers will greatly

benefit from formal debugging training as it

would help them develop the proper mindset

to efficiently resolve bugs and write code in a

way that makes introducing bugs difficult. By

developing this mindset, students will find

building large projects or working with

prewritten code to be less overwhelming.

6. FUTURE WORK

Since this is currently a proposal, nothing

has been forwarded to the CS curriculum

designers. However, a conversation can be

started with any CS professors, explaining the

benefits of including more debugging

exposure in their curriculum. The more

curriculums that include debugging as part of

their syllabus, the more likely the curriculum

designers would take notice.

After the curriculum designers recognize

the benefits of formal debugging concepts

and exposure to the curriculum, they can

make it optional. They can survey or use

other methods to gauge the success and

comfortability of CS students that have

debugging exposure versus students that do

not have the debugging exposure. Once there

is data suggesting that formal guidance in

debugging is beneficial to the success of CS

students, the debugging class (or addition to

an existing class) should be made mandatory.

REFERENCES

Ahmadzadeh, M., Elliman, D., & Higgins, C.

(2005). An analysis of patterns of

debugging among novice computer

science students. SIGCSE Bulletin,

37(3), 84–88.

https://doi.org/10.1145/1151954.1067

472

Detre, G. (2020, August 10). How to write

good software faster (we spend 90%

of our time debugging). Making Data

Mistakes.

https://www.makingdatamistakes.com

/how-to-write-good-software-faster-

we-spend-90-of-our-time-debugging/

Chmiel, R., & Loui, M. C. (2004).

Debugging: from novice to expert.

SIGCSE Bulletin, 36(1), 17–21.

https://doi.org/10.1145/1028174.9713

10

Google C++ Style Guide. Google C++ style

guide. (n.d.).

https://google.github.io/styleguide/cpp

guide

Google Python Style Guide. (n.d.).

https://google.github.io/styleguide/pyg

uide

MIT.edu. (n.d.). Reading 08: Avoiding

Debugging. 6.005: Software

Constructionhttps://web.mit.edu/6.005

/www/fa15/classes/08-avoiding-

debugging/

Undo. (n.d.). Reduce time spent debugging.

https://undo.io/solutions/developer-

productivity/reduce-time-spent-

debugging

Spohrer, J., & Soloway, E. (1986). Novice

mistakes: are the folk wisdoms

correct? Communications of the ACM,

29(7), 624–632.

https://doi.org/10.1145/6138.6145

AWS. (n.d.). What is debugging?

https://aws.amazon.com/what-

is/debugging/

