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1 

EXECUTIVE SUMMARY 

Statistics education is widely considered a necessary area of study due to the 

prevalence of statistical information in today’s world. Introductory statistics courses are 

especially important because they provide a foundation for conducting and interpreting 

quantitative research. Unfortunately, student encounter difficulty grasping statistical 

concepts and especially struggle with statistical inference. Students too often memorize 

steps without fully comprehending the reasons behind the procedures and are unable to 

retain and transfer information. To solve this problem, many statistical educators 

recommend using computer simulations to help students visualize statistical concepts and 

to emphasize the logic of inference. However, the research on the effectiveness of 

simulation-based inferential methods is sparse. In addition, there is a disagreement 

between statistics educators about using simulations for instruction. While some 

educators recommend both formula- and simulation-based instructional methods, others 

advocate implementing only simulation-based approach. 

 The purpose of this study was to investigate students’ thinking, reasoning, and 

views on simulation-based methods of statistical inference. In addition, the study 

examined instructors’ attitudes toward teaching hypothesis testing through computer 

simulations. 

 The study participants consisted of four statistics instructors and six students at a 

community college in Virginia (CCCC). The instructors were interviewed about their 

experience with teaching statistics and their views on their students’ understanding of and 
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difficulties with statistical inference. They were shown examples on how to use 

simulations designed by Rossman and Chance (2009) to make inference about a 

population proportion and to compare two population means. Afterwards, the instructors 

shared their reactions toward each simulation and provided recommendations on 

implementing simulation-based inference (SBI) in introductory statistics courses.  

 Four of the interviewed students completed an introductory statistics course at 

CCCC, while two students had no previous statistical background. All six students were 

presented with three tasks and were guided through the investigation process. After that, 

students were asked to share their views on simulations.  

 The instructor and student cases were examined in a cross-matrix to develop 

multi-case assertions. Results from the instructor cross-case analysis included:  

1) Instructors believe that their students struggle most with statistical inference 

because of their inability to understand statistical concepts and interpret results as 

well as their difficulty with selecting an appropriate test for a problem. 

2) All instructors expressed mostly positive views of SBI, citing various benefits of 

the simulations. 

3) Most instructors regard the binomial simulation as a better statistical approach 

than its corresponding formal test. They view the randomization test as either 

comparable to its corresponding formal 2-sample t-test, or have no opinion on this 

matter. 
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4) Instructors provided different recommendation for using SBI in the classroom 

ranging from using simulations as a substitute for traditional methods to not using 

them at all.  

Results from the student cross-case analysis included:  

1) Most students who took a statistics course reported having difficulty with 

hypothesis testing and retained minimal and mostly factual knowledge shortly 

after taking the course.  

2) Most students were able to understand screen representations but struggled with 

comparing results of the experiment with the empirical distribution and with 

making conclusions. 

3) After using the simulations all students who took an introductory statistics course 

made some connections between SBI and formal methods and understood better 

the concepts learned in their statistics classes. 

4) All students expressed mostly positive views on SBI, citing various benefits of the 

simulations. 

5) Most students reported that formal and informal methods have their own strength 

and weaknesses. For this reason, five out of six students expressed preference for 

a blended learning approach. 
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Based on the study results, I propose the following recommendations:   

1)  A combination of formal and informal inferential methods should be used in 

an introductory statistics course. 

2) Simulation-based approach should be introduced before formal methods. 

3)  Instructors should be offered a professional development opportunity for 

understanding and implementing SBI. 

4)  Continue to explore student understanding and difficulties with SBI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

5 

1. PROBLEM OF PRACTICE 

Introduction  

With the growing presence of quantitative information and statistical claims in 

today’s world, people need to be able to understand and intelligently evaluate data-based 

arguments. The field of statistics offers methods for using data to describe a phenomenon 

and to make informed decisions. In order to produce statistically literate individuals who 

can understand and also apply statistical methods, introductory statistics courses have 

been widely offered in high schools as well as universities. According to the Conference 

Board of Mathematical Sciences’ (CBMS) 2010 national survey of undergraduate 

education, overall enrollment in probability and statistics courses from 2005 to 2010 has 

increased from 260,000 to 370,000 students in four-year colleges and universities and 

increased from 117,000 to 137,000 in two-year colleges students (CBMS, 2010). 

Due to the prevalence of numerical information and increased number of students 

taking statistics courses, statistics education is a necessary and important area of study. In 

recent years, statistical researchers and educators have focused their attention on 

developing students’ statistical reasoning and conceptual understanding of statistical 

ideas (e.g. Garfield & Ben-Zvi, 2007; Nikiforidou, Lekka, & Pange, 2010).  They 

suggested improving student understanding of statistical concepts by creating student-

centered activities, making students aware of their errors, using appropriate technological 

tools, and providing consistent and helpful feedback (Garfield & Ben-Zvi, 2007). 
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National organizations, such as The National Council of Teachers of Mathematics 

(NCTM) and The American Statistical Association (ASA), also recognize the need for 

quality statistics education. NCTM (2000) has included data analysis and probability 

standards as early as in elementary grades.  The Board of Directors of the ASA endorsed 

Guidelines for Assessment and Instruction in Statistics Education (GAISE) for the 

teaching of an entry-level high-school and college statistics courses. According to the 

GAISE college report (ASA, 2005), “the desired result of all introductory statistics 

courses is to produce statistically educated students, which means that students should 

develop statistical literacy and the ability to think statistically” (p.11). In order to achieve 

this goal, the report recommends utilizing technology, using real data, stressing 

conceptual understanding of statistical ideas, and fostering active learning in the 

classroom. 

Clearly, researchers and national organizations emphasize developing students’ 

statistical thinking and reasoning rather than mere memorization of formulas and 

procedures. 

Statement of Problem 

In spite of the growing importance of statistics and recommendations from 

national organizations, students find the subject challenging and counterintuitive. They 

often reason incorrectly about statistical ideas and are unable to understand and 

remember basic statistical concepts (e.g. Garfield & Ben-Zvi, 2008). Students especially 

struggle with inferential reasoning as it requires understanding multiple concepts 
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including descriptive statistics, basic probability rules, and sampling distributions (Castro 

Sotos, Vanhoof, Noorgate, & Onghena, 2009; Castro Sotos, Vanhoof, Noortgate, & 

Onghena, 2007, Garfield & Ben-Zvi, 2008). In addition, learners focus on numbers, 

computations, and formulas, which limits their ability to connect different concepts and 

make sense of statistical information (Garfield & Ben-Zvi, 2008). When students are first 

taught the formal method of hypothesis testing, they are introduced to many new terms 

(null and alternative hypotheses, critical value, critical region, Type I, Type II errors, etc). 

Learning new terminology places a high cognitive demand on students and makes it 

difficult for them to understand the main idea of inference. Therefore, students too often 

memorize steps without fully comprehending the reasons behind the procedures and are 

unable to retain and transfer information.   

Attempts to Solve the Problem 

Many researchers suggest reforming not only teaching methods, but also the 

content of introductory college-level statistics courses in order to improve students’ 

statistical reasoning and thinking (Carver, 2011; Cobb, 2007; Garfield, delMas, & 

Zieffler, 2012). They recommend eliminating elementary probability, manual 

computations, and reading tables to allow time for in-depth statistical investigations as 

shown in Table 1.  A typical introductory statistics course consists of descriptive and 

inferential statistics as well as elementary probability concepts. While descriptive 

statistics is used to summarize and describe data, inferential statistics involves using a 
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sample to either estimate a population parameter (confidence intervals) or to evaluate a 

research hypothesis (hypothesis testing). 

Table 1 

Carver’s Proposed Curricular Changes (Carver, 2011, p.3) 

OUT: Topics We Can Afford to Drop 

 Most manual computations 

using small datasets 

 All software-based computation 

using artificial data 

 Defining histogram bins 

 Most elementary probability 

 Reading tables of t, z, F, etc. 

 

In: Formerly “Advanced” or 

Neglected Topics 

 Data preparation, missing data, 

and data management 

 Writing about statistical 

investigations 

 Resampling and Permutation 

tests 

 Analysis of Probabilistic non-

SRS data using sampling 

weights 

 Nonparametric methods 

 Non-linear models 

 Multivariate models 

 

Rather than teaching descriptive and inferential statistics separately as is done in a 

traditional introductory statistics curriculum, some researchers (Carver, 2011; Cobb, 

2007; Garfield, Zieffler, & Ben-Zvi, 2015) propose emphasizing the logic of inference 

throughout the course, which will make the curriculum more coherent and less 

compartmentalized, resulting in students making connections between statistical 

concepts. Researchers suggest using “informal” methods of inference in order to bridge 

the gap between descriptive and inferential statistics. While formal inferential methods 

require computations, the use of formulas, and reference to statistical tables, informal 

approaches rely only on students’ intuitive reasoning and a “big picture” of hypothesis 
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testing. Students make judgements, claims, or predictions about a population based on 

samples, without formal statistical procedures and methods. An informal approach offers 

simplicity and access to understanding inference. According to Pfannkuch et al. (2011), 

informal methods of inference “will decrease cognitive load by reducing the number of 

concepts that need to be activated simultaneously” (p. 911). 

Many educators recommend using computer simulations for teaching inference in 

introductory statistics courses. While some researchers suggest using informal 

simulation-based inference as an introduction to the formal methods of constructing 

confidence intervals and testing hypothesis (Garfield, delMas, & Zieffler, 2012), others 

propose completely replacing formal methods with the informal inferential approach 

(Carver, 2011; Cobb, 2007). In either case, it is important to examine student reasoning 

about informal inferential ideas and whether this method of teaching improves learners’ 

understanding of statistical concepts.  

Purpose of Study 

  Although students’ difficulty with inference is widespread throughout the nation, 

the problem is also very profound at a local community college where I teach 

mathematics and statistics. Therefore, it is important to explore the alternative ways for 

teaching inference. The purpose of this proposed capstone project is to investigate student 

thinking and reasoning about simulation-based methods of inference at the college. The 

study will also examine the teachers’ views of their students’ current understanding of 

inferential statistics and their reaction to informal methods of inference. The research 
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questions and the conceptual framework are presented in the next chapter after the 

literature review.  

Definition of Terms 

The following is a list of definitions of key terms used in the context of this study. 

 Statistical Inference – a process that aims at learning characteristics of the population 

from a sample. Hypothesis testing is one method of statistical inference 

 Hypothesis Testing – a procedure that uses a sample data to draw conclusions about 

one or more populations  

 Computer Simulation – a computer program that provides a model of hypothesized or 

natural phenomena that allows users to explore the implications of manipulating 

parameters within the program. 

 Applet – a web-based computer application. The term is often used synonymously 

with simulation.  

 SBI- simulation-based inference.  

 GAISE – the Guidelines for Assessment and Instruction in Statistics Education. A 

framework for statistics education for pre-K–12 and college-level students. The 

reports are published by ASA. 

 ASA – The American Statistical Association. It is the world’s largest community of 

statisticians that supports the excellence in the development, and dissemination of 

statistical science through meetings, publications, and membership services 

(http://www.amstat.org/about/index.cfm)  

http://www.amstat.org/about/index.cfm
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2. LITERATUFRE REVIEW 

Hypothesis Testing Theories 

The method of hypothesis testing, also referred to as significance testing, uses 

sample data to draw conclusions about one or more populations. Although statistics 

textbooks typically present a single model of statistical inference, there are several views 

of hypothesis testing, which differ philosophically and methodologically (Hubbard & 

Bayarri, 2003). In Ronald Fisher’s model the researcher sets up a null hypothesis, which 

states that a sample comes from a hypothetical population with a known sampling 

distribution. The researcher then proceeds to calculate the test statistic that measures the 

difference between what is observed and the null hypothesis. The test statistic is then 

converted to a probability, called a p-value.  This probability measures the likelihood of 

obtaining the observed, or more extreme difference, given the truth of the null hypothesis. 

If this probability is low (typically less than 5%), then the null hypothesis is rejected or 

disproved. A low probability of obtaining the sample data given the null hypothesis is 

true indicates that either a very rare event occurred or the null hypothesis is false (Fisher, 

1959). As Hubbard & Bayarri (2003) explain, “A p value for Fisher represented an 

objective way for researchers to assess the plausibility of the null hypothesis” (p. 172).  

Jerzy Neyman and Egon Pearson intended to improve Fisher’s theory and put 

forward a different model known as Neyman-Pearson approach (Hubbard & Bayarri, 

2003). According to this model, there are two competing hypotheses, the null (H0) and 

the alternative hypothesis (HA). It should be noted that the alternative hypothesis is not 
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explicitly stated in the Fisher’s approach and was a source of disagreement between the 

two perspectives. 

 Another difference is that the Neyman-Pearson hypothesis testing framework 

specifies errors researchers are willing to accept. There are two errors possible when 

making a decision about the rejection of the null hypothesis. The first error (Type I error) 

is false rejection of the null hypothesis, and the second error (Type II error) deals with 

false acceptance of the null hypothesis. The probabilities of Type I and Type II errors are 

denoted by 𝛼 and 𝛽 respectively. Additionally, the Neyman-Pearson approach introduces 

the concept of statistical power (1 − 𝛽), which gives the probability of correctly rejecting 

the null hypothesis. 

Rejecting the true null hypothesis is considered to be a more serious error. For 

this reason, researchers specify a significance level before testing a hypothesis and 

typically set it at 5%.  The selected probability of type I error determines the rejection 

region for the null hypothesis. The rejection region specifies the values of the test statistic 

which lead to rejection of the null hypothesis. The more the data deviates from the null 

hypothesis, the higher the test statistic, and the more likely to refute the null hypothesis. 

The critical value is a point that separates the rejection region from the non-rejection 

region.  

Biau, Jolles, and Porcher (2010) summarize the differences between Fisherian and 

Neyman-Pearson’s approaches as presented in Table 2.  
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Table 2 

Comparison of Fisher’s and Neyman-Pearson’s Approaches (Biau, et al., 2010. p. 887). 

 

Hubbard & Bayarri (2003) explain that Fisher’s approach is inductive in nature as 

it moves from specific to general. Based on the extremity of sample results, the 

researcher makes inferences about characteristics of a population. On the other hand, 

Neyman-Pearson’s approach argues from the general to the particular because it 

establishes rules “for choosing between two alternative courses of action, accepting or 

rejecting the null hypothesis” (p. 273). 

Another major difference exists between the concepts of Fisher’s p-value and 

Neyman-Pearson’s 𝛼. While 𝛼 is specified prior to the collection of data, p-value is a 
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random variable over the interval [0,1] as it is calculated based on the sample obtained 

from the experiment. Moreover, a p-value applies to a single experiment and refers to the 

probability of obtaining data this extreme (or more extreme) under the null hypothesis. 

On the other hand, Neyman and Pearson’s 𝛼 deals with a long-run frequency of 

experiments and does not provide evidence by itself for rejection or acceptance of a 

particular hypothesis. A 5% type I error rate indicates that “of all the tests being carried 

out around the world, at most 5% of them result in a false rejection of the null” (Hubbard 

& Bayarri, 2003, p. 176). The Neyman-Pearson framework is concerned with minimizing 

errors, which only applies to long-run repeated sampling situations, not to individual 

experiments.  

Both p-value and Type I error rate 𝛼 are both tail probabilities, and therefore are 

often confused by students and researchers. Moreover, since p-value is sometimes 

referred to as an observed error rate, it is often mixed up with 𝛼 as they both are viewed 

as errors (Hubbard & Bayarri, 2003).  

Despite the differences in the two theories of hypothesis testing, contemporary 

approaches blend the methods. This often leads to misuse of the original approaches not 

only by students, but also novice researchers and statisticians (Biau et al., 2009; Hubbard 

& Bayarri, 2003; Shelskin, 2007). Textbooks typically present Fishers’ idea of disproving 

the null hypothesis, but use Neyman-Pearson concepts of alternative hypothesis, Type II 

errors, and the power of statistical tests. Most textbooks fail to acknowledge the 

embedded model of the hypothesis testing theory, creating confusion not only because of 
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a large amount of new concepts, symbols, and definitions, but also due to the conflicting 

philosophies (Hubbard & Bayarri, 2003). 

Understanding of the theory of hypothesis testing is critical for planning, 

conducting, interpreting, and reporting scientific experiments (Biau et al., 2009). 

Unfortunately, many students struggle to comprehend the concepts and logic of 

hypothesis testing. The section below reviews student difficulties in this area. 

Student difficulties with Hypothesis Testing 

While students typically are able to perform a formal procedure of hypothesis 

testing, they are rarely able to grasp its meaning (Castro Sotos, Vanhoof, Noortgate, and 

Onghena, 2009; delMas, Garfield, Ooms, & Chance, 2007; Haller & Krauss, 2002). 

Student errors have been documented during all stages of hypothesis testing including 

misconceptions concerning the definition of hypotheses, the significance level, the 

interpretation of a p-value, and the logic of the overall hypothesis test.  These difficulties 

are discussed below. 

Castro Sotos et al. (2009) investigated students’ misconceptions regarding the 

definition of hypothesis test, p-value, and significance level.  They administered a 

questionnaire to 144 (95 females, 48 males) university undergraduates majoring in 

mathematics (21%), medicine (52%), and business (23%) who recently completed an 

introductory statistics course. The questionnaire consisted of five multiple-choice 

conceptual questions about hypothesis testing. The researchers found that students lacked 

understanding of what a hypothesis test means. For example, 21% believed that it is a 
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mathematical proof of the null hypothesis, and 19% thought it is a probabilistic proof by 

contradiction. Similarly, students had difficulty interpreting p-value and significance 

level. Twenty-one percent of the students identified p-value as the probability of the null 

hypothesis and 16% interpreted it as the probability of incorrectly rejecting the null 

hypothesis. As far as significance level, 17% of students interpreted it as the probability 

of the null hypothesis and 17% indicated that 1- α is the probability of rejecting the null 

hypothesis.  

Unfortunately, many students do not gain an understanding of statistical ideas 

after completing an introductory college-level course. In order to measure students’ 

conceptual understanding of essential statistical ideas, delMas et al.  (2007) developed the 

Comprehensive Assessment of Outcomes in Statistics (CAOS) test consisting of 40 

multiple choice items. With Cronbach’s alpha coefficient of 0.82, the assessment 

exceeded suggested internal consistency levels. CAOS was administered to 763 

introductory statistics students in 20 different two-year and four-year institutions from 14 

different states before and after completing the course.  

The study showed that students had a very low performance on both pre- and 

post- tests on items regarding hypothesis testing. About half of the students incorrectly 

interpreted results of a significance test when the null hypothesis was rejected on the 

post-test. Moreover, even though 58.6% of the students recognized a correct 

interpretation of a p-value, the majority of these students also chose an incorrect 

interpretation, failing to recognize a contradiction between the two interpretations. 
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Students also demonstrated difficulty with concepts of sampling distribution and 

sampling variability, which are fundamental for understanding hypothesis testing 

(Garfield, Le, Zieffler, & Ben-Zvi, 2014). 

Another common misconception deals with the interpretation of the type I error as 

the probability of the null hypothesis being true given that it has been rejected. The 

confusion results from switching the conditional statement as the correct interpretation is 

the probability of rejecting the null hypotheses given that it is true. In a study by 

Vallecillos (2002), 53% of 436 college students agreed with the following incorrect 

statement: “A significance level of 5% means that, on average, 5 times out of every 100 

times we reject the null hypothesis, we will be wrong.”  

With regards to the mistakes about role of the hypotheses, many students 

mistakenly believe that (a) Null hypothesis is the hypothesis to be proved, (b) Null 

hypothesis refers to either the population or the sample, and (c) Null hypothesis refers to 

only one population or only one parameter (Vallecillos, 1999). 

In summary, students hold numerous and deep misconceptions in statistical 

inference. Table 3 summarizes and classifies student errors based on reviewed studies. It 

is important to understand the source of these errors, which is addressed in the next 

section. 
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Table 3 

Summary of Student Misconceptions about Hypothesis Test 

 

Nature of Hypothesis Test 

 Mathematical proof of the null hypothesis 

 Probabilistic proof by contradiction 

 A proof of the probability or improbability of H0 

 

 

Hypotheses 

 Null hypothesis refers to either the population or the sample  

 Null hypothesis refers to only one population or only one parameter 

 

 

Significance Level 

 α is the probability of the null hypothesis 

 1- α is the probability of the null hypothesis 

 α is the probability of the null hypothesis being true given that it has been 

rejected 

 Confusing the significance level with the p-value 

 

 

P-value 

 If p-value is smaller than alpha, then a definitive statement about  a 

hypothesis can be made 

 p-value is the probability of the null hypothesis being true 

 p-value is the probability of incorrectly rejecting the null hypothesis 

 p-value is the probability of obtaining the same or more extreme results 

 A small p-value means the results have significance (statistical and practical 

significance are not distinguished) 
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The Source of Student Misconceptions 

  Misinterpretation of inferential concepts is widespread among students. Possible 

reasons for student misconceptions are (1) a complex nature of hypothesis testing, (2) 

teachers’ misunderstanding of inference, and (3) misinterpretation of statistical concepts 

in textbooks. Each of these sources is discussed below.  

Complex Nature of Hypothesis Testing 

One reason for student misunderstandings could be the fact that hypothesis testing 

involves not only understanding, but also relating many abstract concepts. In addition, as 

mentioned earlier, hypothesis testing is presented as a hybrid between Fisher’s and 

Nyman-Pearson’s approaches, which could result in a confusion (Castro Sotos, Vanhoof, 

Noortgate, and Onghena, 2007). Furthermore, inconsistent and incorrect terminology, 

such as referring to p-value as an error rate, could be the cause of misunderstanding 

(Hubbard & Bayarri, 2003).  

Castro Sotos et al. (2007) provided possible explanations for some of the above 

stated errors. For example, students consider hypothesis testing as a mathematical proof 

because they believe that as any mathematical proof, the test results are also 

deterministic. As a result, they believe that the null hypothesis is proven to be either true 

or false. Some students view hypothesis testing as proof by contradiction because of their 

similarity in structure or reasoning. The proof by contradiction is based on the logical 

modus tollens method, which states that if P implies Q, then the contradictory of Q 

implies the contradictory of P. The authors give the following example. If it is raining 
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there are clouds. Therefore, if there are no clouds, it is not raining. Students apply similar 

logic to hypothesis testing. They reason that if H0 is true, then there is a high probability 

that the p-value is large. Therefore, if p-value is small, then H0 is improbable. However, 

the authors explain that this reasoning is incorrect because “a low probability event does 

not make the premise from which it is drawn improbable” (p. 106). The logic only works 

in case of deterministic events (when probabilities are zero and one). 

According to Thompson, Saldanha, and Liu (2004), students struggle with 

inference because they have to attend to two aspects of a sample.  First, they have to 

focus on one sample and its statistical summary and second, they need to understand 

variability of a summary measure among collection of samples. Unfortunately, students 

find the second task challenging and are unable to attend to variability between samples 

(Garfield, Zieffler and Ben-Zvi, 2015; Lee, Angotti, and Tarr, 2010). 

Teacher Difficulties with Hypothesis Testing 

The concepts of hypothesis testing are challenging not only for students, but also 

for researchers and instructors. Haller and Krauss (2002) presented six wrong statements 

about hypothesis testing to a group of statistics and methodology instructors, scientists, 

and psychology students in six German universities. They found that 80% of 

methodology instructors, 90% of scientists, and 100% of students chose at least one of 

the false statements as correct. The most popular incorrect statement was “you know, if 

you decide to reject the null hypothesis, the probability that you are making the wrong 

decision” (p.5).  This idea appears similar to the definition of Type I error (the probability 
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of rejecting the true null hypothesis). However, having actually rejected the null, this 

decision would be wrong if and only if H0 were true. Thus, the given statement is 

equivalent to the knowledge of the probability of the null hypothesis being true, which 

we cannot gather from performing a hypothesis test.   

Liu and Thompson (2005) examined understanding of hypothesis testing of eight 

high-school mathematics teachers who had at least a BA in mathematics or mathematics 

education and statistics teaching experience. Teacher interviews revealed that most of the 

teachers did not understand the logic of hypothesis testing as their knowledge of 

probability and statistical inference was highly compartmentalized. The teachers 

struggled with the concept of statistical “unusualness” within hypothesis testing and had 

difficulty deciding for what types of questions hypothesis testing methods were 

appropriate. Most of the teachers also demonstrated “commitment” to the null hypothesis 

and did not want to reject it, even with a very small p-value. As authors explained, the 

teachers did not want to reject the null hypothesis on the basis of one sample because 

“any rare sample could still occur theoretically” (p. 4).   

Misrepresentation of Statistical Concepts in Textbooks 

Another explanation for student difficulties could be misrepresentation of 

statistical concepts in textbooks. Glinger, Leech, and Morgan (2002) reviewed a diverse 

set of twelve textbooks used in graduate-level research and statistics courses in an 

education department. At least two researchers reviewed each book and produced high 

interrater reliability ratings. The authors reported that only 17% of textbooks addressed 
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the controversy between Fisher’s and Neyman-Pearson’s methods of inference. In 

addition, 33% of the textbooks failed to emphasize that the size of the p-value does not 

indicate the strength of treatment, which is a common student error. While some of the 

texts mentioned effect size, most did not. Finally, although a majority of textbooks (84%) 

addressed the difference between statistical and practical significance, it was often 

unclear how to assess practical significance of a result.  

Without a doubt, student understanding of hypothesis testing needs to be 

improved because drawing inferences from data and evaluating results of research studies 

is an important skill for all adults (Garfield & Ben-Zvi, 2008). The following section will 

present several suggestions on enhancing students’ understanding of this topic. 

Improving Student Understanding of Inference 

There are several recommendations for teaching inference to make it more 

accessible for students. For instance, Garfield and Ben-Zvi (2007) recommend shifting 

from teaching computations to enhancing student’s conceptual understanding of 

statistical ideas. They suggest implementing student-centered activities, making students 

aware of their errors, using appropriate technological tools, and providing consistent and 

helpful feedback. 

Rossman and Chance (1999) claim that in an introductory statistics course 

inference is being taught as an isolated subject without any connection to the exploratory 

data analysis and suggest the following “Top Ten” list of recommendations for teaching 

hypothesis testing: 
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1) Insist on complete presentation and interpretation of results in the context of 

the data.  

2) Help students to see the common elements of inference procedures. 

3) Always examine visual displays of the data. 

4) Always consider issues of data collection. 

5) Stress the limited role that inference plays in statistical analysis. 

6) Help students to recognize that insignificant results do not necessarily mean 

that no effect exists. 

7) Accompany tests of significance with confidence intervals whenever possible. 

8) Present tests of significance in terms of p-values rather than rejection regions. 

9) Encourage students to use technology to explore properties of inference 

procedures. 

10) Have students perform physical simulations to discover basic ideas of 

inference 

 

The authors argue that computer simulations are more effective than formal 

probability for introducing students to the concepts of sampling distribution and 

hypothesis testing.  They also advocate using the p-value method when making decisions 

and emphasizing reasoning process underlying inference formulas.  

Garfield and Ben-Zvi (2008) believe that by integrating the foundations of 

statistical inference throughout the course, students will be “less confused by the formal 

ideas, procedures, and language when they finally reach the formal study of this topic” 

(p. 264). In order to help students understand the process of testing hypothesis, the 

authors suggest using the logic of argumentation. They view hypothesis testing as a 

method for supporting an argument. The argument is about claims (hypotheses), which 

can be either true or false. While the researchers cannot prove whether the hypothesis is 

true or false, they can gather evidence to support the argument. Garfield and Ben-Zvi 

provide the following four “building blocks” to make a convincing argument: 



  

 

 

24 

1. A clear claim we are making (and a counterclaim that includes all other 

possibilities). 

2. Data to support our argument. 

3. Evidence that the data are accurate and reliable, not misleading. 

4. A good line of reasoning that connects our data to our argument. (p. 271) 

 

The authors explain that just like in real life whether we win or lose an argument 

depends on the strength of the evidence for our claim, in hypothesis testing we also use 

data as an evidence for or against a hypothesis. The farther is our data from the claim we 

are arguing against, the more evidence we have to reject that claim. 

The recommendations presented above are closely related to the idea of Informal 

Statistical Inference (ISI), which has been an interest for many researchers as well as 

teachers of statistics in recent years, and is discussed in the following section.    

Informal Inference 

Many researchers suggest using informal inference as a bridge between 

descriptive statistics and formal inferential methods (Makar and Rubin, 2009; Zieffler, 

Garfield, delMas, and Reading (2008). There are various definitions of Informal 

Inference. Makar and Rubin (2009) define informal inference as “the process of making 

probabilistic generalizations from (evidenced with) data that extend beyond the data 

collected” (p. 83). According to Pfannkuch (2006), ISI is “the drawing of conclusions 

from data that is based mainly on looking at, comparing, and reasoning from distributions 

for data” (p. 149). Finally, Zieffler et al. (2008) view informal inference as “the way in 

which students use their informal statistical knowledge to make arguments to support 

inferences about unknown populations based on observed samples” (p.44). These 
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definitions imply that ISI involves making judgements, claims, or predictions about a 

population based on samples, without using formal statistical procedures and methods. 

Makar and Rubin (2009) suggest introducing students to ISI at an early age long 

before they are taught formal inferential techniques. The authors identify three key 

features that form statistical inference: (1) Generalization beyond describing the given 

data, (2) Use of data as evidence to support these generalizations, and (3) Employment of 

probabilistic (non-deterministic) language that supports some level of uncertainly about 

the conclusions drawn. 

In the first principle the authors argue that inference should extend beyond 

descriptive statistics and should make a claim about a wider universe. While we often use 

descriptive statistics as a means to describe the available data, the main purpose of 

statistics is looking beyond the data to make estimates and predictions. The second 

principle stresses the need for using strong forms of evidence rather than mere anecdotes 

or beliefs. Finally, the third feature emphasizes that our generalizations are  not definite 

since we only consider a sample drawn form a larger population. Makar and Rubin 

express that the level of uncertainty does not have to be quantified with younger children 

and can be addressed with the introduction of confidence interval or p-value. 

Another relatively new concept in research literature related to ISI is the idea of 

Informal Inferential Reasoning (IIR). Zieffler et al. (2008) define IIR as “the way in 

which students use their informal statistical knowledge to make arguments to support 

inferences about unknown populations based on observed samples” (p. 44).  
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Makar, Bakker, and Ben-Zvi (2011) present three key elements that support 

students’ Informal Inferential Reasoning (IIR). These elements are (1) An inquiry-based 

learning environment, (2) A set of cognitive and social elements, and (3) A conflict 

between students’ expectations and statistical results.  

The design of inquiry-based environment incorporates relevant tasks, 

technological tools, and scaffolds by the teacher and educational materials. The cognitive 

features include individual and collaborative reasoning processes in identifying beliefs 

and doubts, resolving conflicts, formulating questions, drawing conclusions, and coming 

up with explanations. On the other hand, the social elements encompass social and 

statistical norms, including seeking peer consensus and clarification, asking meaningful 

questions, and searching for explanations. Finally, students’ doubts as they obtain 

unexpected results create a cognitive conflict, which propels their inquiry and search for 

explanations. 

In order to study students’ informal inferential reasoning, Zieffler et al. (2008) 

suggest to utilize tasks that challenge students to  

1. Make judgments, claims, or predictions about a population based on samples, 

but not using formal statistical procedures and methods (e.g., p-values, t tests); 

2. Draw on, utilize, and integrate prior knowledge (formal and informal) to the 

extent that this knowledge is available; and 

3. Articulate evidence-based arguments for judgements, claims, and predictions 

about populations based on samples (p.46). 

 

The first component helps reveal whether the student made reasonable inferences 

about one or more populations based on one or more samples. The second component 

helps shed light on how students making inferences integrate informal knowledge, such 
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as everyday knowledge about the problem context, prior statistical knowledge, real world 

knowledge and experience, and statistical language. Finally, the third item examines how 

the student use the evidence to substantiate his/her arguments in making conclusions and 

drawing inferences and how well the evidence supported the inferences made.  

Researchers advocate using informal inferential methods not only with young 

children, but also in college-level introductory statistics classes (Carver, 2011; Cobb, 

2007; Tintle, 2015). These methods are based on data-simulations and are discussed 

below. 

Simulation-Based Informal Inference 

Some educators suggest radically different approaches to statistical inference in 

introductory, university-level statistics courses. They recommend using simulation 

methods to build informal inferential reasoning without focusing on the details of 

formulas and computations (Cobb, 2007; Garfield and Ben-Zvi, 2008; Tintle, 2015), and 

propose completely abandoning formal inference.  

Simulation-based inference (SBI) typically refers to binomial simulations, 

randomization tests, or bootstrapping. Binomial simulations are used to conduct 

significance test of a single proportion. Randomization (also called re-randomization or 

permutation) tests are utilized to simulate the re-randomization of subjects to treatment 

groups in order to evaluate statistical significance of an observed treatment effect (Tintle, 

2015). Finally, bootstrapping illustrates sampling variability and determines confidence 

intervals without relying on a theoretical sampling distribution. Simulation-based 
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inferential methods produce the distribution of any test statistic specified under a null 

hypothesis by reshuffling the original data many times. They are not restricted to the 

mean and can be used for a variety of quantities of interest, such as medians, quartiles, 

and measures of variation (Cobb, 2007). These methods differ from formal inferential 

methods in that they do not rely on asymptotic approximations (Budgett, Pfannkuch, 

Regan, & Wild, 2013).  

George Cobb is the driving force behind the movement toward teaching 

introductory statistics with SBI. Cobb (2007) criticizes existing curriculum for being 

centered on the normal distribution instead of on the logic of inference, making the 

subject confusing and incoherent. He argues that before the existence of computers, 

researchers had to use analytical methods of inference since computation was impossible. 

However, due to the advancement of instructional technology and the increase in 

computational power, it is no longer necessary to assume normality of a sampling 

distribution or to make corrections to allow for non-normality. Instead, he proposes 

abandoning formal methods of hypothesis testing and basing inference on data simulation 

following the three R’s of inference model: “Randomize, Repeat, and Reject any model 

that puts your data in its tail” (p. 12). The idea is for the students to generate a random 

sample and, if applicable, to split data randomly into groups, then randomize data 

production over and over to see which outcomes are typical, which are not, and, finally, 

reject the hypothesized model if the original sample is unlikely.  
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Based on Cobb’s (2007) recommendations on teaching statistics, Carver (2011) 

offers an introductory statistics curriculum that is designed to improve students’ 

statistical thinking. He suggests taking out some topics (e.g. manual computations, 

elementary probability, reading tables) in order to free up time for in-depth statistical 

investigations, nonparametric tests, and non-linear and multivariate models. Carver’s 

course design follows Plan-Do-Report (P-D-R) iterative cycle, during which students (1) 

raise data driven question and plan for data collection, (2) perform statistical analysis 

using both formal and informal techniques, and (3) report and explain the results. 

Other researchers were also inspired by Cobb’s ideas. Tintle, Topliff, 

VanderStoep, Homes, and Swanson (2011) redesigned the introductory statistics course 

with an emphasis on the logic of inference using a randomization approach to hypothesis 

testing.  The new curriculum introduced an informal approach of inference early in the 

course and was later connected to formal asymptotic tests.  

Similarly, Garfield, delMas, and Zieffler (2012) developed a simulation-based 

curriculum called Change Agents for Teaching and Learning Statistics (CATALST). 

From the first day of instruction, students using this curriculum make informal inference 

by creating a model for a problem, simulating data from that model, and using the 

developed distribution to make statistical inference.  

The next section provides examples of the binomial and randomization methods 

of inference.  
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Examples of Simulation-Based Inference 

Binomial simulation. A commonly used example of binomial simulation is a 

“Toy Preference” problem borrowed from Hamlin, Wynn, and Bloom’s (2007) study, in 

which 10-month-old infants were shown a character trying to climb a hill. Then, children 

were shown another two scenarios. One, in which another character (“helper”) pushes up 

the climber, and second, in which the climber was pushed back down the hill by a 

different character (“hinderer”). After that, sixteen infants were offered either “helper” or 

“hinderer” character to play with. Fourteen infants chose the helper toy. 

Rossman (2008) demonstrated how to investigate whether infants prefer the 

helper to the hinderer using a computer simulation. He explained that while more than 

half of the infants chose the helper toy, this selection could have occurred by chance. 

Assuming that infants have no genuine preference (null model), Rossman suggested to 

model the infants’ selection as flips of a fair coin, but on a computer. He simulated 16 

fair coin flips 1000 times and recorded the number of heads (which corresponds the 

number of infants choosing the helper toy) occurring in each simulation as shown in 

Figure 1 below. The histogram reveals that out of 1000 groups of 16 infants only two 

samples provide the same results as the one in the study (14 helper toy selections), 

assuming no genuine preference. Given that it is very unlikely to find 14 or more 

choosing the helper toy, there is strong evidence to conclude that infants genuinely tend 

to prefer the helper toy over the hinderer toy.  
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Figure 1 

Binomial simulation for helper toy study (Rossman, 2007. p. 8). 

 

 Randomization Method. Pfannkuch et al. (2011) provide an example that 

compares diastolic blood pressure of individuals following fish oil and regular oil diets 

based on Knapp and Fitzgerald’s study (1989). Fourteen males with high blood pressure 

were randomly assigned to either a fish oil (treatment) or a regular oil (control) diet, each 

lasting four weeks. After that, the diastolic blood pressure reduction level was calculated 

for each individual in millimeters of mercury. The average reduction level of males in the 

treatment group was 7.71 mmHg higher than the average reduction level of those in the 

control group. As Pfannkuch et al. explain, there are two possible explanations for the 

observed difference.  
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1. The variability can be entirely explained by chance factors (differences 

between individuals who happened to be randomly assigned to each group and 

measurement errors) alone. That is, in this example, the fish oil diet is no 

better than the regular oil diet. 

2. The variability required explanation by both chance factors and the treatment 

factor. That is, in this example, the fish oil diet treatment is effective (p. 905) 
  

 The researchers randomly reassigned the participants to one of the two groups and 

recorded the difference in the group means. After they repeated this process 1000 times, 

they noticed that the proportion of times the mean difference was greater than or equal to 

the observed difference of 7.71 mmHg was equal to 0.005. The authors concluded the 

observed difference is unlikely to be accounted for by chance alone and that the fish oil is 

in fact effective for reducing blood pressure.  

While informal and simulation-based inferential methods appear promising for 

student understanding of hypothesis testing due to their simplicity and logical 

argumentation, it is important to examine empirical studies on their effectiveness. Below 

I summarize research examining the impact of informal inferential techniques on young 

children followed by studies investigating the effects of SBI on college. 

Empirical Studies on Informal Inference 

Young Children’s Experiences with Informal Inference 

Students can start learning informal methods of inference as early as in 

elementary or middle school. Several important themes emerged from the literature on 

young children’s understanding of informal inference including (1) student understanding 

of variability, (2) the importance of selection and enactment of quality tasks, (3) the role 
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of context, (4) student reasoning about uncertainty, and (5) student use of language. 

These are described in detail below. 

 Understanding variability. Understanding of sampling distribution is fundamental 

for inferential reasoning. When students recognize how samples taken from the same 

population vary due to random chance, they are able to make better judgements about 

whether or not an observed result is unusual (Garfield, Zieffler, & Ben-Zvi, 2015; Wild, 

Pfannkuch, Regan, and Horton, 2011). Unfortunately, students experience difficulties 

when reasoning about variability between samples. Lee, Angotti, and Tarr (2010) 

examined how middle school students engaged in an informal hypothesis testing using a 

computer-simulated die-tossing experiment. They asked six students in an urban, public 

middle school to investigate the fairness of a die by simulating rolls of the die. 

Through observations and interviews, they found that the students generally reasoned 

about variability within samples (how frequencies of outcomes differed in one sample), 

rather than across samples (how distributions of outcomes varied from sample to sample). 

In rare instances, when students did notice how results across samples varied, they failed 

to keep the sample size consistent from one sample to another. 

In a similar qualitative study involving two students aged 10-11 years, Pratt and 

colleagues (Pratt, Johnston-Wilder, Ainley, and Mason, 2008) noted that learners 

struggled with variability.  As students simulated rolls of dice, they expected invariance 

in the data distribution, even with the small samples. As the researchers explained, 

“seeing repeated change seemed to makes some children distrust taking larger samples” 
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(p. 124).  As a result, the students did not place a greater confidence on inferences based 

on large samples of data than those made from small samples. Another interesting result 

was that the students searched for stability at the wrong level. They expected that a 

different set of data would produce similar results (invariance across samples), rather 

than achieving stability with the increase of the sample size.  

It should be noted that in both studies the participants were not given any 

directions about how much data to simulate or which graphical representation to use. 

Perhaps, entry-level statistics students should be guided on how to conduct data-driven 

investigations until they gain experience with such tasks. This recommendation is 

supported by Makar and Rubin’s (2009) study, in which learners were asked to compare 

handspan data from their class to the data of their neighboring class. Based on the 

similarities and differences between the two data sets, the teacher encouraged and guided 

the learners to make predictions about the distribution of handspan data in a third class. 

This activity exposed students informally to the idea of variability between distributions 

and provided a foundation for drawing inferences.  

 Selection and enactment of quality tasks. The selection and implementation of a 

task is extremely important for the development of students’ statistical reasoning. In their 

qualitative study of twenty-two 8-year-old students, Paparistodemou and Meletiou-

Mavrotheris (2008) found that students were highly engaged with the task of collecting 

and analyzing data about health, nutrition, and safety habits of students in their school. 

They were eager to learn more about their school and often made conjectures based on 
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their personal experiences. For example, they found that older students tend to play less 

with scissors at school and explained this result by arguing that older students understand 

better that playing with scissors could be dangerous. Similarly, they found that boys in 

their school exercised more than girls and explained that this is because more boys 

participate in sports. Since the students were familiar with the context of the problem, 

they were able to understand and explain results. 

 Makar and Rubin (2009) also stressed the importance of choosing age-appropriate, 

relevant, and engaging tasks in their study mentioned above. One of the teachers in their 

study asked her fifth-grade students to investigate the opinions of children and adults 

about their views of Australian rights of citizenship. Her students struggled to make any 

conclusions based on their collected data. The teacher later reflected that students were 

not interested in the topic because it was not relevant to them. In addition, the data was 

dichotomous and lacked sufficient complexity to be used for making generalizations. 

 Not only selection but also implementation of a task affects the development of 

student statistical reasoning. In Makar and Rubin’s (2009) study discussed above, the 

teacher did not pose a driving question. Therefore, the students did not have a clear 

purpose of making generalizations and predictions from their data. Instead, they focused 

on summarizing and describing data. On the other hand, when another teacher guided 

students to think beyond their collected data, they moved from focusing on individual 

data points to thinking holistically, considering the context and the problem of inquiry.  

 Holistic or global thinking is typically challenging for students. In the study 
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described earlier, Pratt et al. (2008) reported that the participants in his study were more 

concerned with individual trials than with the aggregated long-term outcomes. Perhaps 

students were not able to think globally because they were not guided through the 

investigation process and because their die-tossing task was not as relevant to them.  

Context. Context is an important factor in developing students’ inferential 

reasoning. Students often have difficulty focusing on the context under investigation. 

They treat data as an isolated artifact and therefore are unable to link their conclusions to 

the data and make generalizations (Makar and Rubin, 2009).  

Pfannkuch (2011) distinguished two types of context that affect IIR: data-context 

and learning-experience-context. Data-context is the context of the real-world situation in 

which the problems arose, including the subject matter knowledge, how the data were 

obtained and how variables were measured. Learning-experience-context involves the 

prior statistical knowledge students bring to class. Based on her qualitative study of 29 

tenth-grade female students, the author concluded that while a data-context can assist 

learners in understanding and explaining patterns in their data, it can also interfere with 

the reasoning process. For example, the data-context can divert student attention during 

the construction and application of concepts as learners begin to attend to context more 

than to properties that data reveal. The students in Pfannkuch’s study became engaged 

with explaining possible reasons for having an outlier in their data and did not pay 

attention to variation between medians, which hindered their understanding of the 

sampling variability concept. On the other hand, the learning-experience-context played a 
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crucial role in developing students’ IIR. The author concluded that “instruction may need 

to deliberately suppress the data-context at salient moments” (p.43). 

Other researchers believe that students develop their statistical reasoning through 

an interaction between their contextual knowledge about the data set and their 

background statistical knowledge (Makar, Bakker, & Ben-Zvi, 2011; Neumann, Hood, & 

Neumann, 2013). Teachers need to help students coordinate contextual and statistical 

knowledge to help them make sense of a discrepancy between what they know from their 

prior experience and what they observe in data (Makar et al., 2011). 

Reasoning about uncertainty. In the process of drawing conclusions about 

populations based on sample data, it is crucial to recognize the presence of uncertainty 

(Makar and Rubin, 2009; Manor, Ben-Zvi, & Aridor, 2014). 

In their qualitative study, Manor et al. (2014) examined two 12-year-old male 

students’ development of reasoning about uncertainty while engaging with informal 

inferential methods. The learners had to make inferences about a population distribution 

by examining random samples drawn from a population. The variables under interest 

were average time spent on social networks and number of friends in social networks.  

The authors identified two types of uncertainty in the students’ expression: 

contextual and statistical. The contextual uncertainty originated from a conflict between 

data and the students’ contextual knowledge. When the boys examined a sample size of 

10, one of the students found it unbelievable that a fourth-grade student had 600 friends 

in his social network, which made him resistant to make a conclusion from such a small 
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sample. On the other hand, statistical uncertainty stemmed from when the students 

observed variability in the data and variability between sample means. This phenomenon 

made the boys uncertain about inferring from a single sample of a specific size.  

The authors concluded that “contextual uncertainty drove the boys to refine their 

methods of examining, controlling, and quantifying the statistical uncertainty” (p. 6) as 

the students transitioned between the following four stages: (1) Account for uncertainty, 

(2) Examine uncertainty, (3) Control uncertainty, and (4) Quantify uncertainty.  

Research shows that young students are able to make generalizations and at the 

same time realize that their conclusions might be wrong. Paparistodemou and Melatiou-

Mavrotheris (2008) studied twenty-two 8-year-old students in Cyprus to investigate how 

young learners begin to reason about informal inference by collecting and analyzing data 

about health, nutritional, and safety habits of students in their school. The study revealed 

that the students often went beyond their data and made general conclusions about all 

children in Cyprus while recognizing that their conclusions were not certain.  Using 

probabilistic language, such as “more likely”, “might be”, “more possible to,” etc., allows 

students to take risks in making their predictions without worrying about being wrong 

(Makar & Rubin, 2009). 

Use of language. Language has an important role in developing students’ 

statistical reasoning. Pfannkuch, et al. (2010) expressed that almost all pedagogical 

attention is focused on technical capability and not enough attention is paid to the 

integration of statistical concepts, extracting meaning, and increasing students’ 
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communicative capability. The researchers urged educators to encourage students’ use of 

language to “tell stories” from data. However, the language used might cause confusion. 

The authors claimed that the use of dense, technical jargon often creates 

misunderstandings in students, whereas natural, everyday language might lead to 

ambiguity. Nevertheless, the authors suggested to “operate as closely as possible to 

natural language but with some compromises around shared meanings” (p.3), such as 

“center,” “shape,” “spread” etc. The authors called these terms “loosely defined pieces of 

jargon,” which are in between technical terms and natural language. We adapted these 

terms from everyday language “to convey the essence of a few very broad ideas” (p.3). 

 Caution should also be used with the use of metonymies, which occurs when 

students or teachers use approximate, but closely associated, terminology with a given 

concept. In their qualitative study, Null and Hancock (2015) showed that the use of 

metonymies can help but also sometimes hinder students’ understanding of inference. 

While using their own terms might help students express their ideas quickly, without 

articulating every detail, it can often result in misconceptions. For example, when using 

the term “collection of many samples” for sampling distribution, students might 

incorrectly conclude that sampling distribution is formed by combining many small 

samples to form a large sample. The authors also warned that teachers should be cautious 

when they naturally shorten sentences without emphasizing the details of statistical terms. 

They need to give careful attention to concepts and their meanings, especially when they 

are first introduced.  
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In summary, statistics instruction can promote the development of students’ 

inferential reasoning at an early age when students are (1) engaged in a variety of 

authentic activities related to their interests, (2) guided in the investigation process, (3) 

encouraged to use appropriate language and articulate uncertainty, and (4) prompted to 

pay attention to variability within and between samples. 

Effectiveness of Simulation-Based Inferential Methods 

 The literature on simulation-based methods of inference is sparse and is 

summarized below. 

Effectiveness of simulation-based curricula. As stated earlier, several 

researchers reformed and implemented a traditional introductory statistics course to 

include simulation-based inferential methods throughout the course. In their curriculum 

redesign, Tintle et al. (2011) deemphasized descriptive statistics and only covered 

probability and sampling distribution concepts implicitly while teaching randomization 

tests. They compiled the new curriculum into a textbook titled An Active Approach to 

Statistical Inference (Tintle, VanderStoep, &Swanson, 2009) and implemented it in eight 

sections of statistics course at Hope College, located in Holland, Michigan. The course 

was taught in a computer lab following an active-learning approach. The researchers 

administered the CAOS (delMas, Garfield, Ooms, & Chance, 2006) test to 202 students 

before and after the course. They compared results to the scores of 195 students who took 

the same course using a traditional curriculum two years earlier. In addition, they 
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compared the results to a nationally representative sample of 5,362 students who used a 

traditional curriculum and took pre and post versions of CAOS assessment.  

The authors found that while the aggregate CAOS scores were similar across the 

three groups, there were significant differences in some topics. Students following the 

new curriculum outperformed the other two groups in questions regarding tests of 

significance, design, and simulation. However, they had poorer performance on 

estimating standard deviation from boxplots.  

The study had several limitations. First, the test-taking conditions were different 

across the samples. Students in the new curriculum group took the tests at home with no 

performance (only completion) incentive, whereas the traditional curriculum students 

took the tests in a computer lab and were offered a performance incentive on the post-

test. Second, the treatment consisted of the change in the curriculum as well as in 

pedagogy. Therefore, it is unclear which of these two contributed to the difference in 

scores. Finally, the CAOS assessment consists of multiple-choice questions with 2-4 

response options. Therefore, many answers might be based on chance rather than on true 

understanding. Open-ended questions or student interviews would have provided more 

in-depth information on student thinking and would have strengthened the study.  

Similarly, Garfield, delMas, and Zieffler (2012) tested their CATALST 

curriculum on 102 students enrolled in four sections of introductory statistics course at 

the University of Minnesota (78 students) and at North Caroline State University (24 

students). Three assessment instruments were developed, two of which, (GOALS and 
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MOST) measured students’ statistical thinking and reasoning and one assessed students’ 

attitudes toward the course. It should be noted that reliability and validity of these 

instruments were not studied.  

The researchers found that the majority of students felt the course helped develop 

their ability to think statistically and understand statistical information they hear or read 

in the news. The students performed well on questions involving graphical 

representations of data and the use of a randomization test, but struggled with reasoning 

about the effect of increasing sample size on test results. They had the most difficulty on 

the items related to testing a claim about a percentage. 

The researchers compared the students’ performance on GOALS items to the data 

from a national sample of 5,362 students who completed similar items on the CAOS test 

and found that CATALST students outperformed non-CATALST students on nine out of 

twelve items and did slightly worse on two items. The analysis was not rigorous and 

involved only descriptive statistics. In addition, the authors did not specify on which 

questions they found differences in student performance, making the results unclear. 

Maurer and Lock (2016) criticized the above-mentioned studies for their weak 

design (the lack of random assignment) and non-rigorous analytical methods. They 

randomly split 101 students at Iowa State University into treatment and control groups. 

The treatment group covered simulation-based inferential methods (for both confidence 

intervals and hypothesis tests) in addition to formal inference, whereas the control group 

students were only exposed to formal approaches to inference. Based on the Assessment 
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Resource Tools for Improving Statistical Thinking (ARTIST, 2006), the researchers 

concluded that while students in the simulation group had significantly higher learning 

outcomes for the topics related to confidence intervals, the two groups did not differ on 

hypothesis testing topics. The authors attributed this result to the fact that the treatment 

group students had to learn both, formal and informal, methods of hypothesis testing in 

the same amount of time. 

The above studies indicate that simulation-based inferential methods have a 

potential for increasing students’ understanding of concepts related to hypothesis testing. 

However, because the researchers assessed the curriculum as a whole and did not 

supplement their quantitative findings with qualitative results, the results are of limited 

value and do not depict a complete picture about the impact of such methods on student 

knowledge.    

Retention. Only one study was found on student retention of statistical concepts 

after exposure to randomization-based methods of inference. Tintle, Topliff, 

VanderStoep, Homes, and Swanson (2012) compared the conceptual understanding of a 

cohort of 79 students who used a traditional curriculum to a cohort of 76 students who 

took a randomization-based curriculum. Students in each group completed the CAOS 

assessment at three separate times: during the first week of class, during the last week of 

class, and four months after finishing the course. After controlling for pre-test and post-

test scores, a multiple regression model revealed a significant difference (p = 0.002) in 

aggregate retention between the two groups, with the randomization group having higher 
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retention. The largest difference was found in the areas of data collection/design and 

statistical tests (logic and interpretation of p-value). The authors attribute these 

differences not only to curricular changes, but also to active-learning pedagogy that 

incorporated more projects, lab exercises, group problem solving, and discussion 

compared to the traditional group.  

It should be noted that only 40% of the students took the test four months later 

and the students self-selected, weakening the validity of the results.   

 SBI terminology. When teaching simulation-based methods, it is important to pay 

close attention to the language used in describing concepts. Pfannkuch et al. (2011) 

demonstrated the randomization method for comparing two means. They re-randomized 

participants into the treatment and control groups 1000 times and constructed a dot plot 

depicting the mean differences between groups. The authors argued that the graph cannot 

be called a “sample distribution” because the data were not obtained by drawing samples 

from the population. In addition, they called the process of random re-assignment of units 

into groups “re-randomization,” which could be misleading for observational studies, in 

which the participants are not randomly assigned to groups from the beginning. They also 

suggest using the term “tail proportion” for describing the proportion of re-

randomizations that produced a difference in the group means at least as big as the 

observed difference. Although the concept of tail proportion is similar to the notion of the 

p-value, the authors suggest not using the latter term because not all possible random 

allocations were generated when producing the dot plot. Finally, the authors claim that 
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randomization methods are often referred to as re-sampling methods, which is misleading 

because sampling is not occurring in the data production process.  

 Student difficulty with language and misuse of terminology was documented in 

several of studies. For instance, Budgett et al. (2013) observed that students struggled to 

understand double negatives in statistical conclusions. The authors proposed rephrasing 

the statement “I have no evidence that she has not brushed her teeth” with “I am still not 

sure if she has brushed her teeth” (p. 15). Moreover, students often confused the terms 

random assignment and random selection. However, their oral responses indicated that 

they understood the purpose of random assignment and simply misinterpreted the 

language of multiple-choice questions. Likewise, Pfannkuch and Budgett (2014) reported 

that a student in their study incorrectly used the term “resample,” instead of “re-

randomize” for describing random reassignments of participants in treatment and control 

groups. In spite of difficulty with terminology, the student was able to correctly explain 

each stage of the randomization method and interpret the results.  

 In summary, language is an important part of understanding and expressing 

statistical ideas. Student responses on multiple-choice assessments might not reveal their 

true understanding of concepts and, if possible, should be accompanied with interviews 

and oral clarifications. 

Hands-on vs. computer-based activities. Many researchers suggest engaging 

students in tactile activities, such as simulating binomial distribution with a coin flip or 

randomizing subjects into groups by shuffling cards, before exposing them to computer 
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simulations. Fitch and Regan (2014) claim that “the randomization method lends itself to 

tactile and visual experiences” (p.3). Budgett et al. (2013) also believe that “the hands-on 

component is a critical part of the conceptual understanding of the randomization test and 

that without it students will have difficulty in reconstructing the process when faced with 

a new scenario” (p. 16). Many of their students indicated that the hands-on activity 

helped them understand the components of the computer program. The researchers 

suggested using the combination of technology and hands-on activities in order to 

facilitate student understanding of the randomization method. However, Holcomb and 

colleagues (Holcomb, Chance, Rossman, Tietjen, and Cobb, 2010) provided 

contradictory findings.  

They divided 43 students into two, “tactile followed by simulation” and “only 

simulation” groups and exposed them to a task involving simulation of sampling 

distribution about proportion. The students then were given a quiz that tested their 

understanding of concepts related to the task. The researchers did not find significant 

differences between the two groups on student performance on the quiz. However, about 

half of the students in the tactile group commented that the hands-on simulation with card 

was beneficial because it “helped them understand what the computer was doing, 

involved them in the process, and … is better for visual learners” (p.6). 

Students’ interaction with dynamic visualizations. Students’ experiences with 

computer simulations for statistical inference are mixed. When Rossman and Chance 

(2014) piloted their revised curriculum incorporating simulation- and randomization-
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based inference, they observed that some students struggled to understand the purpose of 

the simulation and incorrectly believed that it was used for replicating a research study. 

Other students did not understand what a simulation was and thought that it referred to 

any piece of technology. Learners also had difficulty understanding what observation 

units and variables were in a randomized distribution and struggled to identify the 

parameter of interest. Likewise, Gould, Davis, Patel, and Esfandiari (2010) reported 

student problems with basic computer operations, such as being able to find downloaded 

files, or perform data cleaning procedures, which created frustration in students and 

distracted them from understanding simulations.  

On the positive side, many researchers uncovered benefits in using computer 

simulations for understanding inferential concepts. Budgett et al. (2013) reported all ten 

participants in their mixed-methods study understood every component of the program 

and were able to explain what each one represented. The authors advised using software 

in combination with verbalizations and language to help students understand and reason 

about simulated data. Similarly, Lipson, Kokonis, and Francis (2003) found their 

simulation effective. The researchers were guiding students during their interaction with 

the software. They discovered that initially students in their study had difficulty 

interpreting the sampling distribution. However, after going back to generating the 

empirical sampling distribution, the learners understood how the sampling distribution 

was obtained, which the researchers attributed to the dynamic nature of the simulation. 

The authors recommended accompanying simulation activities with a series of questions 
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in order to ensure that students understand and pay attention to all of the components of 

the screen display.  

In conclusion, a computer-program alone is not likely to promote student 

understanding of statistical concepts, unless it is scaffolded with directions and 

explanations.  

Student understanding of inference with simulations. Studies on student 

reasoning about concepts of hypothesis testing using the randomization and resampling 

methods are limited. Lipson et al. (2003) studied how a group of eight students interacted 

with a computer simulation activity to explore the concepts of hypothesis testing using 

binomial simulation prior to learning about formal methods of inference. The students 

were given a real-life example, in which the Australian postal service claimed that at least 

96% of its letters were delivered on time, while sample data collected by a journalist 

suggested that the on-time delivery rate was in fact equal to 88%.   

 Student interviews revealed that in order for them to understand the logic and 

concepts of inference, the learners had to move through the following four stages: 

recognition, reconciliation, contradiction, and explanation. During the first stage students 

interpreted and connected various screen representations and constructed their schema for 

empirical sampling distribution for the proportion. In the reconciliation stage students 

linked the journalist’s sample results with the sampling distribution, and realized that the 

journalist’s sample was unlikely. In the third stage, students observed the contradiction 

between the journalist’s result and the post-office’s claim. Finally, the fourth stage 
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involved consideration of the possible statistical explanations for the contradiction 

between the observed sample and the hypothesized sampling distribution.  

 Students struggled the most in the final stage. They used absolute terms, such as 

“the Australia Post lied,” rather than statistical explanations to interpret the conflict 

between the journalist’s sample and the hypothesized population. On the other hand, 

some students did not reject the post-office’s claim in spite of the small probability of the 

journalist’s result.  The authors explained that the context of the problem played a role in 

distrusting the sample results. The students viewed Australia Post as a large and reputable 

organization, while the journalist was perceived as a corrupt individual.  

 In their mixed-methods study, Budgett et al. (2013) also explored student 

understanding of statistical concepts with the randomization method using dynamic 

visualizations. Ten high school and university students of varied backgrounds were given 

a two-hour teaching session on randomization tests and then were interviewed and tested 

one week later. The researchers found that many students considered 10% as a strict cut-

off between significant and non-significant results. In fact, one student thought that the 

tail proportion was a measure of the effectiveness of the treatment, tail proportion of 

about 50% indicates that the treatment is not useful, around 27% somewhat useful, and 

less than 10% useful. 

On a positive note, all of the students were able to explain how re-randomization 

distribution was obtained, which was a problem with Gould et al.’s (2010) participants, 

who thought that re-randomized distribution was the observed data distribution. 
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Another controversy deals with student understanding of significant and non-

significant results. While some researchers showed (Pfannkuch & Budget, 2014) that 

students are equally capable of interpreting both significant and non-significant findings, 

others (Holcomb et al., 2010) demonstrated that “students find it easier to spot a 

surprising outcome than a non-surprising one” (p.5). The latter statement was confirmed 

by Budgett et al. (2013), who found that most of their students incorrectly interpreted a 

large p-value as “evidence in favor of the chance-alone explanation” (p. 13). The learners 

applied an indirect logic, reasoning that if small tail proportions provide evidence against 

the null model, then large tail proportions will give evidence in favor of the null model. 

However, this logic is false because while a large tail proportion provides no evidence 

against chance acting alone, there might be some other factors acting along with the 

chance.  

In summary, while some students are able to grasp simulation-based inferential 

methods, others experience misconceptions, such as, significance level is a strict cutoff 

score between significant and non-significant results, a large p-value indicates that 

chance is acting along, re-randomized distribution is the same as the distribution of the 

observed data, and conclusions based on inference are deterministic. Clearly, more 

research is needed to understand student reasoning with informal, simulation-based 

methods and what is the source of student misconceptions.  
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The Present Study 

As shown above, the research on student understanding of randomization and 

permutation tests is scarce and conflicting. While there are several studies examining 

student understanding of simulation-based inferential methods (Budget et al., 2013; 

Garfield et al., 2012; Holcomb et al., 2010; Lipson et al., 2003; Pfannkuch & Budget, 

2014; Tintle et al., 2011), they are not in-depth and lack rigor. The studies either rely on 

multiple-choice questions (Holcomb et al., 2010), report results for only one student 

(Pfannkuch and Budgett, 2014) or one activity (Lipson et al., 2003), or assess the impact 

of curricular changes as a whole, lacking qualitative support (Garfield et al., 2012; Tintle 

et al., 2011). In addition, none of the presented studies explore teachers’ interpretation of 

and views on simulation-based inferential methods. Finally, no studies were found 

examining community college students’ experiences with SBI.   

This project will attempt to close the above-mentioned gaps in the literature and 

examine in detail students’ and teachers’ reactions to SBI in a community college setting. 
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Research Questions 

The study will investigate the following research questions: 

1) How do instructors describe their students’ understandings and misunderstandings 

of inference? 

2) What are instructors’ attitudes toward simulation-based inference?  

a. How do instructors compare formal and informal inferential methods as 

instructional approaches in introductory statistics courses? 

b. How do instructors compare formal and informal inferential methods as 

statistical methods?    

3) What do community college students who took an introductory statistics course 

recall and understand about formal hypothesis testing? 

4) How do community college students with and without a statistics background 

understand the functionality and logic of the simulations? 

a. What do students understand and what difficulties do they experience 

when learning inference through a simulation-based approach? 

b. To what extent do students who had exposure to formal inferential 

methods make connections between informal and formal inferential 

methods?  

c. How do students who had exposure to formal inferential methods compare 

and contrast formal and simulation-based inferential approaches?  
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Conceptual Framework (adopted from Lipson et al. (2003))  

 The conceptual framework for this project is based on Lipson et al.’s (2003) 

qualitative study that examined students’ interaction with a computer simulation designed 

to support their understating of hypothesis testing. The authors found that students moved 

through the following four stages in the process of understanding the logic of inference: 

Recognition, Reconciliation, Contradiction, and Explanation. I slightly modified the 

second and third stages to fit the purpose of this project and depicted them in the visual 

below (see Figure 2). 

Figure 2   

Conceptual Framework  
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 According to Lipson et al. (2003), the recognition stage involves three substages: 

(1) interpretation of the components of the computer screen, (2) understanding that 

sample results vary even though they are taken from the same population, and (3) 

interpretation of the empirical sampling distribution.  

The authors suggest that at the second stage students link the observed sample 

results with the hypothesized sampling distribution and calculate the likelihood of the 

occurrence of the observed sample results. However, I would like to observe first whether 

students are able to compute the likelihood of various possible outcomes of the empirical 

distribution and to distinguish common results from those that are improbable.  

 I renamed the third stage from “contradiction” to “comparison.” Students at this 

stage compare the obtained sample results to the initial assumption. Since I want to 

observe how learners explain both extreme and likely outcomes, there is not always a 

contradiction. Instead, students should decide whether they have enough evidence against 

the null hypothesis based on the likelihood the obtained results.  

At the final stage students consider the possible statistical explanations for their 

observed results and formulate their final conclusion. 
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3. METHODOLOGY 

Research Design  

Rationale for Qualitative Methods  

This study investigated how students and instructors reason about simulation-

based inferential methods. Since the questions focus on process rather than on variance, 

qualitative methods are most appropriate (Maxwell, 2005). Marshall and Rossman (2010) 

emphasize the strengths of qualitative methodology for eliciting tacit knowledge and 

interpretations of participants and for in-depth exploration of the complexities of a 

phenomenon. The authors argue that, since human actions are significantly influenced by 

the settings in which they occur, the studies should take place in real-life situations. In 

addition, qualitative methods allow researchers to collect data in natural settings and 

uncover multiple versions of reality.  

According to Maxwell (2005), “The strengths of qualitative research derived 

primarily from its inductive approach, its focus on specific situations or people, and its 

emphasis on words rather than numbers” (p.22). The present study focused not only on 

whether SBI improves student statistical reasoning, but on how students interpret and 

justify each step of the hypothesis testing process. Moreover, I examined how 

participants make meaning of statistical inference in the context of computer simulations, 

which directly fits a qualitative research approach. Specifically, I employed a case study 

design. According to Yin (2014), case studies are appropriate when the research 

questions depend on the contextual settings of the events. Since the questions and 
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findings of this study depend on the school settings, case study design was most 

favorable.  

Research Paradigm 

 I approached this study through an interpretive paradigm lens. I believe that 

people construct their realities and make their own meanings based on their experiences. 

This paradigm assumes that the researcher and participants are interactively creating 

findings during the study. According to Guba and Lincoln (1994), “constructivism’s 

relativism assumes multiple, apprehendable, and sometimes conflicting social realities 

that are the products of human intellects, but that may change as their constructors 

become more informed and sophisticated” (p. 111). In my view, teachers and students 

make their own meaning and interpretation of the SBI. In addition, I as a researcher was  

part of the meaning-creating process.  

Site and Methods 

Site  

I collected data from statistics instructors and students at a mid-sized community 

college in Central Virginia (CCCC). According to an institutional research report 

published by the college in 2016, the student population consists of 79% part-time and 

21% full-time students. 59% of the students are female while 41% are male. The average 

age of the students is 22.8 years.  
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Participants 

 The participants consisted of four statistics instructors and six students. All 

instructors are full-time faculty at CCCC with a rank of Instructor of Mathematics. They 

were chosen for the study because they have previously taught elementary statistics. 

Their education and teaching experience is outlined in Table 4.  

Table 4 

Instructor Information  

 Scott Morgan Cassidy Clark 

CCCC 

Teaching 

Experience 

2.5 years 2 years 5 years 10 years 

Total 

Teaching 

Experience 

14 years 23 years 21 years 35 years 

Statistics 

Teaching 

Experience 

2.5 years 2 years 2 years 35 years 

Education B.S. in 

Mathematics, 

M.Ed 

 

B.S. & M.S. 

in 

Mathematics 

B.S. in 

Mathematics, 

M.Ed  

B.S. in 

Mathematics, 

M.S. in 

Statistics 

 

 Six students participated in the study, four of which completed an introductory 

statistics course at CCCC while two students had no previous statistical background (see 

Table 5). 

About 250 CCCC students were contacted via email and asked to volunteer in this 

study (see email in Appendix B). Approximately half of these students have previously 

taken an introductory statistic course at the college. Sixteen students expressed interest in 
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participating, seven of which had completed statistics within the last year. I chose four 

students with a statistics background and ensured that they were diverse in terms of 

grades in the statistics course. Out of twelve students who had not taken statistics at 

CCCC, ten were excluded due to one of the following reasons: (1) they were younger 

than 18 years, (2) they took statistics in high school, (3) they either did not respond to 

emails with scheduling requests or did not show up for the interview.  

Table 5 

Student Information  

 

Research Methods 

The research methods consisted of teacher and student interviews, each having the 

following three phases: 1) pre-simulation interview, 2) exploration of SBI, and 3) post-

simulation interview. Student and instructor interviews were audio-recorded and 

transcribed within 24 hours from the interview. During student interaction with 

simulations in addition to voice recording, the computer screen was captured via a video 

platform, Panopto. 

The main method of data-collection consisted of in-depth interviews. Marshall 

and Rossman (2010) argue that in-depth interviewing is an effective way for gauging 

participants’ views on the phenomenon of interest as it helps uncover their emic 

 Lena Natalie Casey Derek Ethan Anne 

Age 21 19 20 21 20 23 

Statistics Grade A B C D - - 

Degree Program Business 

Admin. 

General 

Studies 

Nursing Education Music Nursing 
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perspectives. Interviews provide rich data because they allow for immediate follow-up 

and clarification. According to Patton (2002), interviews are most appropriate when we 

need to learn about participants’ feelings, thoughts, and intentions, which are difficult to 

uncover from other data-collection approaches. Specifically, I utilized task-based 

interviews, which allowed me to ask probing questions in order to gauge the participants’ 

understanding of the logic and functionality of the simulations through their explanations.  

The interview questions can be found in Appendix A. Below I describe data-

collection methods in detail. 

Instructor interviews. Each instructor interview lasted about an hour and 

consisted of three phases described below.  

Pre-simulation interview. During the first phase the instructors were asked about 

their experiences with teaching statistics and their views about their students’ 

understanding of inference. The purpose of this phase was to gauge the instructors’ 

attitudes toward teaching statistic and to uncover their perceptions of students’ 

understandings and challenges related to statistical concepts.  

Exploration of SBI. At the second phase the instructors were shown examples on 

how to use simulations to make inference about population proportion and to compare 

two population means. They were also asked probing questions to gather their 

understanding of SBI. 

Post-simulation interview. After exposing instructors to informal statistical 

inference through simulations, they were asked to share their reactions toward 
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simulations, their views on informal statistical inference, and whether teaching SBI is 

likely to be beneficial for students. In addition, the instructors were asked for their 

recommendations about implementing SBI in introductory statistics courses.  

Student Interview. Each student interview lasted 65-75 minutes and consisted of 

three phases described below. 

 Pre-simulation interview. Those students who took a statistics course were asked 

about their statistics experience and what they remembered about hypothesis testing. The 

questions were open-ended and inquired about their understanding of the purpose of 

hypothesis testing in general and of specific concepts related to this topic. The purpose of 

this phase was to gauge students’ current knowledge of hypothesis testing before 

exposing them to simulations.  

Guided exploration. After assessing students’ understanding of statistical 

inference, I introduced them to binomial simulations and randomization tests. Those 

students who have not taken statistics were directly presented with simulations. Research 

suggests scaffolding students through the investigation of computer-based simulations 

methods to ensure that they can understand and verbalize every step of the process 

(Budgett et al., 2014; Lipson et al., 2003). I walked students through the stages described 

in the conceptual framework, assessing their reasoning at each stage. 

Students were presented with two examples to help them explore informal 

inference. In the first example, students were guided to investigate whether a coin is fair if 

10 tosses produced nine heads. In the second example, they explored whether fish oil is 
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effective in reducing blood pressure using data from Knapp and Fitzgerald’s (1989) study 

described earlier.  

The learners were also presented with a task that required them to transfer their 

understanding of binomial simulation from coin flipping to a more complex, but also more 

realistic, context. They were asked to use the binomial simulation to decide whether drug 

Y, which produced an improvement of 12 out of 20 patients, is more effective than drug 

X, which has an improvement rate of 40%. The purpose of this task is to assess whether 

students understood the binomial simulation and can apply it to a different task. 

Post-simulation interview. After student exposure to simulations, I inquired about 

their views on SBI. In addition, I asked students who took a statistics course whether they 

prefer learning inference with simulation-based approach, with formal methods, or with a 

combination of the two approaches.  

Computer Simulations 

I used simulations developed by Rossman and Chance (2009A, 2009B). The 

researchers argue that technology should be easy to use so that students can focus on 

statistical ideas rather than on technological issues (Rossman & Chance, 2014). Below I 

describe binomial simulation and randomization test for two quantitative variables. 

Binomial simulation. The binomial simulation applet (Rossman and Chance, 

2009A) allows to make inference for a proportion. Students enter the null value to be 

tested, the sample size, and the number of repetitions to be simulated. They can choose 

which statistic to analyze: sample proportion or number of successes. They can calculate 
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an approximate p-value from the simulations results by entering the observed number of 

successes in the relevant box. The binomial simulation directly resembles by-hand 

simulation because the applet displays coins being tossed when the null probability is 

one-half, and displays spinners for the other values of the null hypothesis. Figure 3 

depicts 1000 simulations of 10 tosses of a fair coin. It also shows that only five out of 

1000 experiments result in 9 or 10 heads.    

Randomization test. The randomization test for quantitative response applet 

(Rossman and Chance, 2009B) allows students to compare two groups with numerical 

responses (see Figure 4). Users can input their own data and calculate descriptive 

statistics for each sample. They can choose to compute one of the following statistics: 

difference in means, difference in medians, mean absolute difference, or range.  The 

program allows to re-shuffle the original responses, compute the difference between 

desired statistics and construct the distribution of the differences. Finally, students can 

calculate the proportion of the observed or more extreme difference and draw a 

conclusion about the likelihood of the observed results.   

Pilot Work 

 I conducted two pilot interviews with students in August, 2016. The purpose for 

these interviews was to practice my interviewing skills and to refine the tasks as well as 

the interview questions. The chair of my capstone committee attended the interviews and 

provided suggestions on the wording and sequencing of the questions, which I took into 

consideration for the actual interviews. For instance, during the first pilot interview I 
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presented the student with complete tasks from the beginning, which created confusion. 

We found that it was more beneficial to break the problems down. For example, it was 

preferable to first ask students to generate a sampling distribution for drug X and then ask 

the question about the effectiveness of drug Y. 

During the pilot interviews, we also noticed that students were confused with the 

wording “reduction in blood pressures” presented in the randomization task. It took 

students time to understanding that as a positive reduction means that blood pressure 

dropped. As a result, we altered the wording “reduction” to “change” and switched the 

signs of presented numbers from positive to negative and vice versa.  

Another benefit of the pilot interviews was to revise our conceptual framework 

described earlier. Finally, the pilot interviews helped me maintain the focus on my 

research questions instead of spending time on less relevant topics.  
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Figure 3 

Binomial Simulation of a Fair Die 
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Figure 4 

Randomization Test for Quantitative Response 
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Data Analysis 

Data collection and data analysis occurred concurrently as advised by Miles, 

Huberman, and Saldana (2014). I employed Erickson’s (1986) method of analytic 

induction that suggests creating assertions based on the data and repeatedly testing and 

modifying the assertions until they fit all instances. I proposed assertions through the 

process of memoing and reading interview transcripts multiple times. I then looked for 

disconfirming and confirming evidence and modified assertions when necessary.  

I organized data in different ways – by cases, by research questions, and by 

interview questions. I created a matrix display of the data, which is useful for 

“condensing material into an ‘at-glance’ format for reflection, verification, conclusion 

drawing, and other analytic acts” (Miles et al., 2014, p. 91). The matrix display helped 

me observe patterns and themes in my data that I either verified or disproved by another 

round of data examination. Stake (2006) also proposed using a matrix to compare 

findings across cases and develop multi-case assertions. Student exploration of SBI was 

examined in a cross-case matrix over the four stages described in the conceptual 

framework: Recognition, Integration, Comparison, and Explanation.   

I documented my reflections and thinking process about the data in my analytic 

memos. According to Miles et al. (2014), analytic memos are useful for synthesizing data 

into high level analytic meanings. They “tie together different pieces of data into a 

recognizable cluster, often to show that those data are instances of a general concept” (p. 

96).  
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Validity 

 Researchers provide different checklists in order to deal with various validity 

threats (Guba and Lincoln, 1989; Maxwell 2005, Patton, 2000). Maxwell (2005) warns 

that not every strategy works with a given study and urges the researcher to apply those 

strategies that are most feasible and efficient. In this study, I established validity by 

collecting “rich,” detailed data that will be varied enough to provide a full picture of 

student and instructor reactions to and understanding of SBI. In addition, I “member-

checked” the instructors’ responses in order to validate their views. I followed up with 

each instructor to make sure I correctly interpreted their views on SBI and their 

recommendations on using them. Finally, I searched for disconfirming evidence and 

reported conflicting cases.  

Ethical Considerations 

I aimed to conduct this study in an ethically appropriate manner. I obtained access 

by applying to the Institutional Review Board at the University of Virginia. After the 

approval, I gained access to the site from the Director of Research at CCCC. 

The participants were provided with a detailed explanation of the study and were 

given an informed consent letter (see Appendix B). I kept the identity of the participants 

and the research site confidential, and I provided anonymity through the use of 

pseudonyms. Participation in the study was voluntary, and students as well as instructors 

could drop out of the study at any point. Finally, all data were stored electronically on a 

password-protected computer. 
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Although I am in close collegial relationships with the instructors, I do not have 

any position of power over them. Moreover, I did not select any of my former or current 

students for participation in the study.  

One possible risk is that the reader of study will identify the school and the 

teachers. In order to reduce this risk, I included a minimal information about the teachers.  

Reflexive Statement 

I am a full-time associate professor at CCCC where I teach statistics and 

mathematics courses. I have a master’s degree is applied mathematics with concentration 

in statistics. Although I took five graduate statistics courses as part of my master’s 

program, I gained a true understanding of inferential concepts only after I began teaching 

introductory level statistics courses. As an instructor, I have witnessed even high-ability 

students struggling with the concepts of statistical inference. While most of them are able 

to follow steps and perform computations, few of them truly understood the purpose and 

meaning of the concepts. Reading research articles about informal inference sparked my 

interest in trying this method of teaching. However, before radically changing my 

teaching approach, I decided to investigate the usefulness of simulation-based inferential 

methods. 

I acknowledge that my experience, relationships with the participants, and my 

personal traits had an unavoidable effect on the data collection and interpretation. I tried 

to address my personal biases and preconceptions through reflexive journaling as 

suggested by Lincoln & Guba (1985). 
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4. INSTRUCTORS’ EXPLORATION OF SBI 

 This chapter presents the analysis and results of instructor interviews. For the sake 

of anonymity, the names and pronouns used to describe the instructors do not reflect their 

genders.  

Instructor Scott 

Instructor Background 

 Instructor Scott has been teaching mathematics and statistics at CCCC for 2.5 

years and has a total of 14 years of teaching experience. Prior to working at the college, 

Scott taught mathematics at a local high-school. He has taught a variety of courses 

ranging from arithmetic to differential equations and started teaching statistics about two 

years ago.  Scott has an undergraduate degree in mathematics and a master’s degree in 

education.  

Attitudes toward Statistics 

Professor Scott took an introductory statistics course in college but did not like it 

because “it seemed like it was just a rote memorization of formulas instead of the 

application of concepts.” However, once he started teaching the course and gained a 

better understanding of concepts, Scott started enjoying it.  

 Scott reported three reasons for liking teaching statistics. First, he had not been 

exposed to this side of mathematics for many years and finds discovering new ideas 

enjoyable. Second, the instructor appreciates connections between statistics and calculus, 

which he was unable to make as a student. Scott frequently shows these connections to 



  

 

 

70 

students. For example, he demonstrates in class how to derive the slope of a regression 

line, which involves the use of derivatives. While most of the students have not taken 

calculus, Scott believes that it is important for students who took or will take calculus to 

be able to see how it relates to statistics.  Finally, the professor appreciates that statistics 

is very applicable compared to an algebra course, in which “it’s really tough to argue 

with a student that it’s gonna be used in real life.” 

 Scott especially likes teaching hypothesis testing because it is applicable and 

“lends itself to fun class examples.” He spoke with enthusiasm about the activities they 

do in class before introducing this topic. Scott provides students with a deck of cards, in 

which 75% of cards are black. Students select cards one by one and soon start 

questioning the assumption of having a typical deck with 50% black cards.  

 Scott also spoke with fascination about the Central Limit Theorem saying, “It’s 

amazing... It’s beautiful… I love the fact that it does not really matter what you have to 

start with. It’s gonna become a normal distribution.” He expressed that at first the 

theorem does not appear intuitive, but after thinking about it for a while, it makes perfect 

sense. The instructor uses a computer simulation in class to help students visualize why 

the theorem works. 

 Scott does not enjoy teaching how to construct graphs and charts because “it’s too 

simple and most students already know this.”  The only exception to this is introducing 

students to misleading graphs, which is interesting and new to them. 
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 In summary, Scott appreciates the mathematics behind statistical concepts as well 

as their applications, and tries to explain to students the meaning of statistical ideas rather 

than simply teaching facts and procedures.  

Perception of Student Understanding of and Difficulties with Statistical Concepts 

 Scott believes that students find the mathematics part of the course easy because 

an introductory statistics course does not require strong algebra skills. Students typically 

are able to perform computations and find the right answer. However, in Scott’s view, 

students too often have difficulties interpreting their answers, and, generally, they 

struggle with language. He feels that inference is most problematic for students because 

the wording of the questions. For example, students have a hard time deciding which 

hypothesis test to use, whether they are comparing proportions or means, whether the 

samples are independent or dependent, etc.   

Binomial Simulation 

 Exploring the simulation.  As I was demonstrating the binomial simulation with 

the coin example, Scott quickly and correctly answered my questions, demonstrating an 

understanding of the program. He predicted an approximately normal empirical sampling 

distribution for a fair coin and the fact that obtaining nine out of ten heads when tossing a 

fair coin would be quite unlikely. Once we calculated the tail proportion, Scott remarked, 

“Look at the p-value, it is as low as we expected,” making connections between the 

simulation and the formal hypothesis testing. 
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 When I presented the problem about drug X, Scott was able to set up the 

simulation correctly. He laughed when the program displayed spinners instead of coins 

and thought that it was a good visual. After computing the tail proportion of 0.046, Scott 

remarked, “I guess based on 5% cut-off, drug Y is better.”  

 Scott was interested in comparing the simulation results, the exact binomial 

proportion, and the p-value. He was very surprised when we observed a large difference 

between the binomial probability of tossing 9 or 10 heads (0.0565) and the p-value using 

a normal approximation (0.0339) as shown in Figure 5. Scott exclaimed, “That’s so 

crazy! One is clearly reject and another is fail to reject!” Scott expected the two 

proportions to be closer to each other, saying “I explain to my students that a normal 

distribution is a decent approximation of the binomial distribution, but I haven’t seen this 

comparison… I did not realize they are so far!” 

Reactions to the simulation. Even before I inquired about Scott’s views on the 

binomial simulation, he remarked that the program was helpful for explaining the 

meaning of p-value because often students confuse a p-value with confidence level. Scott 

elaborated, 

This is where students often get hung up. Because a lot of times, and I am sure 

you had that too, students get confused that a low p-value is good… they are 

thinking back like 98% confidence level, and they want p-value to be close to 

one…this [program] shows them what the p-value is. To me, seeing this and 

saying [to students], “It looks like if you run this experiment a bunch of times, 

you know you’re gonna get different results. This is how often you’re gonna get 

the result described in this problem. That seems kind of unlikely to me, how about 

to you?” I think it seems very tangible. So, I think it makes the concept easier to 

understand, especially probably the first time someone sees it. 
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Figure 5 

Comparison of Tail Proportions 

 

 

Scott also liked the binomial simulation because it clearly depicts that the 

sampling distribution is discrete. Scott noted that with a normal approximation, students 

often incorrectly assume that the sampling distribution is continuous.  He remarked, “It’s 

funny… They [students] have a hard time understanding discrete and continuous data, 
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and yet we only let them deal with continuous data for their cdf’s [cumulative distribution 

functions]. That does not make sense.” 

 Using the simulation for teaching. Scott expressed that the simulation would be 

especially useful for introducing students to hypothesis testing. When he first started 

teaching statistics one of the students had a difficult time understanding the p-value 

concept. Scott shared, 

I ended up calling my brother, who I knew had not had stats, but I also knew he 

was a smart guy, so I kinda wanted to explain this idea to him... Kind of run it by 

and see if it seems like it was tough for him or not. He ended up getting it, but it 

was hard [to explain]. With this I think he would have gotten it right away... It 

[the simulation] definitely makes it very visual. I love it! 

 

 In Scott’s view, the binomial simulation is a great tool for introducing students to 

hypothesis testing. The instructor reported, “I would use this [simulation] to introduce the 

topic, and maybe come back to it every once in a while to reinforce the concept… and I 

will use it to compare the answers.”  

In summary, Scott viewed the simulation as a very helpful tool for explaining the 

concepts of hypothesis testing to students. He reported, “There is no way that I would 

teach this [hypothesis testing] again without showing this [binomial simulation].”  

Despite Scott’s positive views of the simulation, he did not feel comfortable 

completely abandoning the formal method for the following reasons. First, the professor 

was worried about the departmental final exam, which requires the use of formal 

methods. However, even when I asked him to put aside departmental restrictions and 
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imagine having the freedom to design a statistical curriculum, Scott still reported 

favoring a blended approach.  

I don’t know… I don’t love seeing how off the binomial and normal 

approximations are. Hm… I like the concepts behind what I am used to doing. 

But it makes you really wonder about standard error that we are using. And how 

off it is when we do it… I think that I would still do the two together. 

 

It appears that Scott advocates for the blended approach because he appreciates 

the mathematics behind the formal method even though it does not always produce 

accurate results. When I shared Cobb’s (2007) claim that our traditional curriculum is 

deceptive, Scott reported, 

Right, right… But if you are teaching [the two methods] side by side, you are not 

totally deceiving students if you come clean and say that this is a decent 

approximation of the binomial distribution. 

 

Simulation as a statistical method. As far as using binomial simulation as a 

statistical procedure, Scott correctly noticed that “the results [of the simulation] approach 

the exact binomial probabilities as we increase number of trials.” This indicates his 

understanding that the simulation is more precise than the normal distribution 

approximation. Therefore, as far as the precision of the results, with sufficiently many 

repetitions, Scott reported favoring the binomial simulation. 

Randomization Test 

Exploring the simulation.  After reading the randomization example about 

comparing mean blood pressure reduction levels of individuals following regular and fish 

oil diets, Scott noted that the fish oil diet appeared to be more effective, however, he 

correctly suggested that the difference in means of 7.714 might not be large enough given 
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the small sample sizes. When Scott initially observed on the screen the reassignment of 

participants into different groups, he quickly understood the idea of randomization, 

without much guidance, as demonstrated by the interview excerpt below. 

Researcher: Let’s run the simulation [performs the first reassignment of 

participants into the two groups]. What do you think is happening? 

 

Scott: Are we reassigning the same people into different groups? 

 

Researcher: Yes 

 

Scott: Maybe not all the folks from one group to another, just totally randomly. 

 

Researcher: Exactly. Do you understand why? 

 

Scott: [paused for about 5 seconds] Oh, because if the fish and the regular had 

nothing to do with it… OK… then it does not matter whether you put them in the 

fish or in the regular. 

 

Researcher: Right. The assumption here is that the two means are equal. 

 

Scott: Yes, this is always an assumption of the hypothesis testing, that they are not 

different. At first, I was like, how did you get new data on those diets if they tried 

fish instead of regular? But I see that it does not matter! 

 

Scott quickly understood that we were trying to figure out the likelihood of 

obtaining the difference of means equal to -7.714 or more extreme and was able to 

complete the problem. He was curious to compare the results of the simulation to those of 

the t-test and found a difference of only .003 in the tail proportions, which Scott viewed 

as a reasonable discrepancy.   
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Reactions to the simulation. The instructor realized that the logic of the 

randomization test was different from the logic used in the t-test for comparing two 

independent means, saying 

Wait, when you are comparing two means, it’s totally different… this is neat, this 

is really neat. I don’t think I would think to shuffle data like that. It think it’s 

cool… but if your null hypothesis is that there is no difference in the groups then 

why not? You would get the same data if they [the means] are the same. 

 

Scott appreciated the randomization test can also be done for statistics other than 

the mean and reported, “what if we are comparing incomes? Then medians would be 

more appropriate.” During the interview, several times the instructor indicated that the 

randomization simulation was “neat,” “awesome,” and noted multiple times that this 

approach was “completely different.” Scott liked that the method used “the real imperfect 

data instead of using results based on mathematical ideal.” He meant that the simulation 

did not have a normal distribution assumption, but instead the distribution was generated 

empirically based on the given data.  

Using the simulation for teaching. While Scott seemed fascinated by the logic 

of randomization test, he did not think that students would benefit as much from this 

program as from the binomial simulation. Scott reported, 

I think that the first one [simulation] takes the same concepts and makes them 

seem even clearer. This one [randomization test] is a little different. It’s different 

than most people think of hypothesis test but really neat. I think this is cool for 

seeing a different perspective. This is definitely a different perspective. The first 

one seems like it’s just adding to the explanation without increasing to overall 

knowledge base, without trying to shovel more content into the students’ brains. 

This one is a different enough approach that it would be throwing more into their 

brains, but it is a very cool thing to see.  
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Scott was concerned that the simulation approach would not help students 

understand the formal method of hypothesis testing involving two independent means, as 

it involves different reasoning. For this reason, he did not recommend using this program 

as much as the binomial simulation. 

Ah, I don’t know if it is as easy to see that this should work out to give you the 

same or at least very similar results to a traditional 2-sample test…I would use it, 

but I think I would use it less. That shuffling thing might seem confusing to 

students…Maybe I would do it with a class or two and go from there. 

 

Scott did not want to make a definite recommendation before trying the program 

with students. He correctly saw the different logic between randomization and the formal 

approaches but concluded that using both methods would confuse rather than help 

students. The instructor was reluctant to recommend giving up the formal methods. One 

reason is that Scott had a difficult time envisioning students’ assessments with 

simulation-based curriculum. Second, he was uncomfortable with the idea of a statistics 

course without any formulas, stating, “They are awesome tools to use in a classroom. 

Doing the whole course though? Would most formulas get cuff off entirely? That’s 

strange.”  

 Scott did not want to eliminate the formal approach because the instructor likes 

connections between mathematics and statistical methods and feels that formal methods 

provide these connections.  

Simulation as a statistical method. Scott was resistant to give up the formal 

method of comparing two independent means because he believes that “mathematics in 

statistics is needed.” However, Scott did not think there is a flaw in using the 
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randomization simulation as a statistical method and believes that “even though the 

fundamental approach is different, they have the same core fundamentals.” Scott 

explained that both methods were making the same assumptions of equal means. 

However, while the formal method compares two distributions, the randomization test 

combines them into one distribution of mean differences. It appears that Scott did not 

have a problem using the simulation as a statistical method instead of the formal 

approach of testing two independent means because the results were very close, which 

was not the case for the binomial simulation and its corresponding test.  

Instructor Morgan 

Instructor Background 

Instructor Morgan has been working at CCCC for two years with a total of 23 

years teaching at other community colleges and high schools.  While she has taught a 

variety of courses ranging from arithmetic to Calculus II, Morgan started teaching 

statistics two years ago for the first time. The instructor has both bachelor’s and master’s 

degrees in mathematics. 

Attitudes toward Statistics 

 Morgan took one undergraduate and one graduate level statistics course. She had 

a positive experience as a student and reported enjoying both classes. However, she did 

not retain much information and had to relearn almost all the material before teaching the 

course.  
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Morgan likes the course, although the first time teaching required a lot of 

preparation. The instructor shared:  

I’ve been teaching for a long time, but I had never taught statistics, so I had to 

make sure that I understood it and knew why it was the way it was. So, that was a 

little bit of work, but I enjoy this class a lot.  

 

Morgan likes that statistical concepts can easily be applied to students’ lives and 

thinks “It’s fun for the students. They can relate it to stuff that they see and deal with all 

the time… That’s a lot different than your pre-calculus class, so that makes it really 

enjoyable.” 

Morgan finds it most rewarding to teach students “to be critical of what they see,” 

and to be able to use real data for examples, which students often find interesting.  For 

example, she used data from U.S. department of Labor on students’ employment rate and 

year of education and demonstrated that there was a correlation between the two 

variables.  

Morgan’s least favorite topic to teach is hypothesis testing. She expressed, “Some 

of the stuff, I feel they will never do unless they are either doing research or become 

statisticians themselves. Like hypothesis testing, they are not even gonna do that in the 

future.” For this reason, Morgan believes that it’s not necessary for the students to know 

the computations, but they should have “the actual understanding of what it [the result] 

means” in order to understand and evaluate research studies.  
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Perception of Student Understanding of and Difficulties with Statistical Concepts 

 Morgan believes that students struggle the most with confidence intervals and 

hypothesis testing. She reported that students typically do not have difficulties with 

computations and procedures, but they struggle to understand the concepts. However, the 

latter is exactly what the instructor wants students to get out of the course, as explained in 

the interview excerpt below: 

Understanding of why they are doing what they are doing and what the result is 

saying to them in terms of the original question is very challenging to them... 

Sometimes I think, like in an algebra class, they just want an algorithm that they 

follow and get an answer, and they aren’t necessarily paying attention to the 

understanding of what this is, what it represents. They just want to get the 

numbers… [Morgan points to a spot on the paper.] There is my answer… But 

that’s not what I want, I want them to understand what this confidence level 

represents… And there is a gap between “I know how to do the calculations on 

my calculator” and the understanding of it.  

 

 In summary, it appears that the Morgan strives to provide a foundation for 

students’ conceptual understanding of statistical ideas so that the learners can critically 

evaluate quantitative information. She does not like teaching inference because most 

learners are only worried about obtaining the correct answer, making it difficult to foster 

an understanding of complex inferential concepts.  

Binomial Simulation 

 Exploring the simulation. Morgan was quick to understand the binomial 

simulation with a coin example and was able to make and verify the predictions. She 

reasoned, “It’s unlikely to have 9 or 10 heads… it’s unlikely that this coin is fair.” 
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 When we switched to the drug problem, it took Morgan some time to realize 

what the spinners represented, asking “Is blue success? And the black line is where it is 

falling, yes?” Once Morgan figured the meaning of spinners, she was able to set up the 

problem and to correctly solve it.  

 Reactions to the simulation. In Morgan’s view, the binomial simulation, with 

50% probability of success, would be easier for students to understand than the drug 

problem, with the assumed improvement rate of 40%, because the latter problem 

involved two different drugs. Nevertheless, she liked the simulation and found it useful: 

I like the visuals; I like the simulation a lot. This is the best way to see for them 

where it is likely, where it is unlikely. For the students that’s really effective… 

It’s interesting because we bring the whole idea of the confidence level and where 

the cut-off is… and show what’s reasonable and what’s not reasonable so they 

can make those connections. 

 

Morgan was referring to making connections between confidence intervals and 

hypothesis testing, which the simulation allows. She believes that, in general, simulations 

are great tools for visualizing statistical concepts. Morgan uses a similar visual in class; A 

program that simulates the rolls of two or more dice, then computes the average of n rolls 

and constructs a histogram of sample means.  The professor uses the program to discuss 

with students which values for the average are common and which are rare and to 

introduce the concepts of critical value and critical region.  

Morgan also reported that students often confuse the sample size with the number 

of times the experiment is performed and thought that the simulation would help them 

clear this confusion. 
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Using the simulation for teaching. Morgan reported that she would use the 

binomial simulation in the classroom as it would help students understand the big picture 

of hypothesis testing. The instructor views formal methods in an introductory course as 

unnecessary because the “nitty-gritty calculations” prevent students from understanding 

important concepts: 

I think simulations are important. Well, in a very introductory course I can see 

completely throwing out the calculations, because, as I said, they are not really 

ever going to do that… But understanding is important, like why it is a critical 

region… it’s so abstract when it’s just pushing buttons on their calculator. They 

[students] don’t understand what’s happening and what is literally taught. 

Although Morgan is in favor of abandoning formal inferential methods, she is 

concerned about testing students with simulations. When I suggested assessing student 

learning in a computer lab, Morgan was still uncomfortable with them getting different 

answers for the p-value and reaching different conclusions. We then discussed that test 

results would be more similar if we repeated the experiment many times. After a short 

pause, the instructor concluded, “Yeah, I think in a very introductory course, just to 

explain the concepts of what’s happening, I can see using only simulations. So, I would 

say yes [to using only simulations].” 

Simulation as a statistical method. Morgan did not expect the difference 

between exact binomial probabilities and a normal approximation to be so large. She 

remarked, “So if someone had done a study and this is what they got [pointing at the 

binomial probability of 0.0565], they would conclude that drug Y is not better, but the 
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normal approximation shows to reject [the null that they are the same]. I don’t know what 

to say…” 

The drug example made Morgan doubt the formal method of testing for one 

proportion, and she suggested that it was necessary to address this discrepancy in class.  

Randomization Test 

 Exploring the simulation. After reading the blood pressure reduction problem, 

Morgan noted that the fish oil diet seemed more effective, however the sample size was 

too small to make a definite conclusion. As we discussed reshuffling the participants into 

different groups, she asked, “So everyone go to a normal diet or they stay on the diet that 

they are on?” Morgan was initially unsure what the simulation was doing, asking 

questions, “So the red ones are all these original people, yes?” or “Are they keeping their 

scores?” After a minute, the instructor figured out the logic of the test, noting,  

OK, I see what’s happening. They are keeping their scores, and I reshuffle them… 

I got it! We are going to keep doing it [reassigning the participants into groups] so 

we get the whole bunch of differences. Ok… and we are going to compare and 

see if this is [the difference obtained in the study] unreasonable. 

After this, the instructor finished up the problem and concluded that the fish oil diet is 

more effective.  

Reactions to the simulation. Morgan stated that it was not very easy to 

understand the reassignment of participants into the regular and fish oil diet but found the 

process very logical. Morgan reported, “I think the hard part is just recognizing 
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reshuffling, but we are assuming no difference, so that makes sense. I like that! It’s really 

cool!” 

The instructor thought that randomization reasoning would be more 

understandable to students than the current method of teaching t test for two independent 

means. 

I think that’s really cool. I think they [students] would understand this idea 

actually better than the way we teach it right now. They will get it. I am assuming 

they [the means] are equal, so it does not matter where they [the participants] will 

go. I think that they can really understand this simulation. It took me a second… I 

can reshuffle them because my assumption is that there is no effect… It makes 

perfect sense that that [-7.714] is an extreme value. 

Morgan also noticed that there was no normality assumption for this method, 

which she found interesting and beneficial. However, she initially did not recognize that 

the logic of the test is different than that of the formal test of two independent means. We 

then discussed that in this method the researchers are not generalizing a bigger population 

as there is no assumption of random sampling. After that, Morgan saw the differences 

between the formal and informal approaches, saying, “yes, it is a different idea.” 

Using the simulation for teaching. Morgan found the randomization simulation 

even more effective than the binomial one. She shared, “Once you start comparing two 

populations or two sets of data students have a really hard time with it.” 

Morgan expressed that she would definitely use the program in the future. If the 

college requires teaching formal methods of inference, then she would start the topic with 

the simulation so that the students see the reasoning process and then do the “nitty-gritty 
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with using symbols and formulas.” However, given a choice, Morgan would prefer 

teaching students inference only using simulations.  

Simulation as a statistical method. As far as using the randomization simulation 

as an instructional method, Morgan did not give a definite answer. However, she kept 

stressing that a simulation-based course would be beneficial for those students “who will 

not do research in the future.” It appears that the instructor views formal methods as the 

correct way to perform statistical analysis compared to simulations, which are simply 

tools for explaining concepts to students.  

Instructor Cassidy 

Instructor Background 

 Instructor Cassidy has a total of 21 years of teaching experience, which includes 

teaching at various two-year colleges and high schools. She has been teaching at CCCC 

for five years and was primarily hired to teach non-college level mathematics. However, 

in addition to developmental courses, she has taught pre-calculus, linear algebra, and 

elementary statistics.  

Cassidy has a bachelor’s degree in mathematics and a master’s degree in 

education. She took an undergraduate statistics course and three graduate-level courses 

(Statistics for Engineers, Regression I, and Regression II). 

Attitudes toward Statistics 

Despite teaching elementary statistics for four semesters, Cassidy does not feel 

fully prepared to teach the course. She expressed, “I am not as comfortable with it 
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[statistics] as I am in an algebra-based class…I have a little bit of anxiety before I teach 

it.” Cassidy has not been teaching the course continuously, so the instructor needs to 

review and “re-learn” the material before teaching it every time, after which she gets 

more comfortable and feels prepared.  

Cassidy appreciates that statistics is very applied and often tries to relate its 

concepts to real-life problems. For example, she used to work as a property underwriter at 

an insurance company. She often uses the example of computing standard deviations for 

assessing risk as a class example. Cassidy explained, “I tell students that a large standard 

deviation is equivalent to instability, whereas small standard deviation means more 

predictability and consistency.”  

The instructor likes teaching hypothesis testing the most because of “the structure 

of the 5-step process,” and the fact that the same procedure works for all tests. However, 

she does not find teaching the introductory chapter enjoyable, which includes many 

definitions such as types of data, levels of measurement, and others. Cassidy shared, “It’s 

not math. I like calculations and chapter one does not do that.” 

Perception of Student Understanding of and Difficulties with Statistical Concepts 

 Cassidy believes that in general students “understand” statistical concepts, 

provided they spend sufficient time studying. The instructor shared, 

My students this past summer understood everything. Quite a few got A’s in the 

class, so they understood. I don’t think students who did not get good grades spent 

enough time, and that was the reason why. Students who put the time and did the 

homework assignments seem to really do well in class. 
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  Cassidy thinks that students did well in the summer class because they were 

required to do all computations by hand. The instructor is against using calculators and 

believes that students learn better when they work out problems by hand.  

This is the first time I did not use the calculator. You know, I had them use the 

formulas and stuff and it worked fine. They did fine because they did everything 

by hand. We practiced in class, and I gave them pretty much similar problems for 

the assessments, whereas before, they would have to put things into the calculator, 

press buttons and get the answers. So, I feel they were not really learning 

anything.  

 

Students were shown how to compute descriptive statistics on a calculator, but 

they had to work out formulas by hand and use statistical tables, even for estimating p-

values for t and Chi-square distributions. 

Cassidy believes that students learn better when they perform computations 

manually. However, it appears that she equates conceptual understanding with the ability 

to follow steps, as demonstrated by the interview excerpt below: 

Researcher: Do you think they found it easy to understand the concepts? I don’t 

mean how to perform computations. 

 

Cassidy: Yeah, yeah, I think so. We did enough problems so they just kind of 

follow that procedure for every one of them. You get a problem with different 

numbers and the application of how to do them is still same.  

 

Researcher: I see. How about making meaning of their answers? Do you feel 

students know what a p-value means? 

 

Cassidy: Yes, yes, it’s the area. They know that if this area is less that the 

significance level, they need to reject the null hypothesis.  

 

It seems that Cassidy places emphasis on manual computation and working out 

many problems in class so that students are able to master procedures.  
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Binomial Simulation 

 Exploring the simulation.  When we started investigating fairness of a coin by 

tossing it 10 times, Cassidy predicted that if the coin produced 9 heads, it could be a fair 

coin. However, she had difficulty making a definite conclusion because of the small 

sample size. After simulating an empirical sampling distribution, Cassidy correctly noted, 

“it’s probably not fair because it’s [tail proportion] so low. If you keep performing it over 

and over again, it’s [9 heads] gonna be unlikely. It might happen once or twice, but it’s 

not gonna happen often.” 

 Cassidy was also able to correctly set up the drug problem, although she wished 

to test it on more patients. After we discussed that it is often difficult to have large 

samples in real life, Cassidy noted, “Right, this could be a start.” She correctly stated that 

based on a 5% cut-off a 6% chance was likely so that “drug Y may not be more 

effective.” 

 Cassidy did not have any difficulty with the program and was able to correctly 

predict and interpret the results.  

Reactions to the simulation. Before I had a chance to ask what Cassidy thought 

of the program, she remarked, 

I think it’s a good way to demonstrate this stuff in class, you know. I think it’s 

[the program] very visual, you know. Rather than reading it from the book, you 

use the simulation to show, you know, the likelihood or certainty of something 

happening. Students will see what it really means. 

 

 Cassidy liked the program because it gave an opportunity to solve the problems 

and felt the program would benefit students because “they have a natural tendency to use 
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computers and electronic devices.” Therefore, performing and understanding statistical 

tests with simulations might be easier for them than working out problems by hand.  

 Using the simulation for teaching. Cassidy advised using the binomial 

simulation as a supplement to the formal method to compare the results of the two 

approaches. she did not feel that the formal one-proportion z-test should be replaced with 

the binomial simulation because the latter method provides structure:  

Cassidy: I think it’s important to show them [students] the five steps of hypothesis 

testing. Why not show this [simulation] as an example to relate it?  

Come up with a p-value here and compare what you do in class... 

 

Researcher: Why do you think it’s important to teach the 5-step method? 

 

Cassidy: It’s structure, you know? You go by a structure by means of testing the 

hypothesis to get a conclusion… Here [in the simulation] you just throw stuff in 

there… Everybody will be coming up with a different answer… and where is the 

level of significance here? 

 

Researcher: You can pick it, just like the researchers do in real life.  

 

Cassidy: Right, right.  

 

Cassidy was concerned if students are not given steps to follow, they will be 

confused with the process and will not be able to perform the procedure. I suggested 

giving a structure to the simulation methods, asking students to first identify the assumed 

proportion, then determine the sample size, after which generate the sampling 

distribution, and finally, compute the likelihood of obtaining results from the experiment. 

Cassidy felt that this would give students more “structure” so that “everybody will be at 
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the same place.” However, she still felt that working the problems by hand was important 

for student understanding.  

We still do the same thing with the formal method, but we do it by hand. Here, the 

program is doing it for you, whereas the students have to do it themselves. They 

will have to, you know, look at the chart, figure out, and pull the stuff out. I think 

you understand, when you do things yourself and you have to set it up, you have a 

better understanding… I am not saying that this [the simulation] is not good. It’s 

just different. It’s like a calculator doing fractions for you and you don’t 

understand how to do it. 

 

When I shared the concern that while students are able to follow the procedure for 

hypothesis testing, they struggle with interpretation of results, such as the meaning of the 

p-value, Cassidy agreed. She stated that that most students probably lack the 

understanding of this concept and added that they would probably never have to perform 

calculations by hand. She felt students are likely to understand the program and the 

meaning of the concepts. In addition, Cassidy remarked that the advantage of using 

simulations alone is that they would free up time for coverage of other important 

statistical tests. Yet, the professor still felt that the simulation should be taught in parallel 

with the formal method.  

Simulation as a statistical method. Cassidy noted a difference in results for the 

binomial simulation and its corresponding approach, but was not as concerned about it. 

The instructor did not feel qualified to make any comparison between the use of the 

simulation as a statistical procedure.  
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Randomization Test 

Exploring the simulation.  After reading the problem about effectiveness of fish 

oil diet, Cassidy recognized right away that a two-sample t-test would be appropriate for 

the data. As we started re-assigning participants into groups, she became confused and 

stated that it was tricky. She thought that people follow a different diet once they are 

switched to a new group. After I explained the reshuffling process, Cassidy was able to 

calculate the tail proportion and conclude that the fish oil diet was more effective. 

Reactions to the simulation. Cassidy expressed that the simulation provided a 

different way of thinking about the problem. The instructor expressed, “It’s a good way 

for interpreting the problem. It’s a good learning tool. It makes sense that the fish oil is 

more effective, because the difference between means is so unlikely.” However, the 

instructor was still unsure why we re-randomized the participants, expressing, “I am still 

confused a little bit about the whole reshuffling, but you cannot go by me because I am 

not an expert in statistics.” It seemed that the instructor did not completely agree that we 

can simply reassign people into groups without performing the experiment over and over.  

Using the simulation for teaching. The lack of Cassidy’s confidence in 

statistical knowledge prevented her from making specific recommendations. Before using 

the simulation, she wanted to think more about it and practice many different examples. 

The way you explained the whole thing was logical, but I don’t feel comfortable 

enough to actually do it in class, you know… I would have to learn more. This is 

a new way of presenting stuff, a totally different way. I have a harder time 

learning this way, than I do with paper and pencil from the notes. I could not 

explain it as well as you did. I would have to take notes and practice, but this does 
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not mean others should not use it. Don’t go by me. Students might actually do 

better with this because they are computer savvy.  

 

Cassidy also inquired if there was any study on which approach was more 

beneficial for students and expressed interest in seeing research on this topic.  

Simulation as a statistical method. Unlike the binomial simulation, which 

resamples the corresponding formal method closely, the randomization test involves a 

different reasoning than the formal test of comparing two independent means. While 

Cassidy understood the main idea of the simulation, she struggled with some parts of it, 

specifically regrouping data, and did not feel ready to provide any recommendations for 

using simulations as a teaching and a research tool.  

Instructor Clark 

Instructor Background 

 Instructor Clark has been working at CCCC for ten years and has a total of 35 

years of experience teaching mathematics and statistics at various two-year colleges. 

Clark has an undergraduate degree in mathematics and a master’s degree in statistics. At 

CCCC, he typically teaches elementary statistics, pre-calculus, and non-college level 

mathematics.  

Attitudes toward Statistics 

 Clark likes teaching statistics because it is “more applied than mathematics” and 

is used in many disciplines. He especially likes teaching hypothesis testing because “it’s 

the same procedure across different tests” and because it is very easy to find applications 
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for it. There are no topics in introductory statistics course that Clark does not like 

teaching. 

Perception of Student Understanding of and Difficulties with Statistical Concepts 

 Clark feels that students like statistics because “it does not involve a lot of 

algebra.” He expressed, “Many years ago, statistics was very difficult because 

computations had to be done manually. Now computers make everything easy for us.” 

Clark thinks that students struggle less with statistics because they can perform all 

statistical procedures on a graphing calculator. Despite that, he believes that most 

students still have difficulties with hypothesis testing because they are often confused 

about which test applies to a given problem. Once students figure out the appropriate test, 

they can easily follow the steps because the procedure is the same for all hypothesis 

testing problems. 

Clark associates student understanding with their ability to perform computations 

and follow procedures. 

Researcher: You are saying that students can easily follow steps of the process. 

Clark: Yes, easily. 

Researcher: Do you think they understand the meaning of the concepts. For 

example, what does a p-value mean? 

 

Clark: Sometimes it’s hard for them to understand, but most of the time the 

calculator will compute it. 

 

Researcher: But, do you think they can interpret what it means? 
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Clark: Yes, because we tell them if p-value is less than or equal to alpha, they 

have to reject the null. Sometimes they find it difficult, but most of the times it is 

okay. 

 

In summary, Clark feels that students prefer an introductory statistics course to 

other mathematics courses because they don’t need to have a strong mathematical 

background to be able to get a good grade in the statistics. With the help of a calculator, 

learners are able to perform computations, provided they can identify what type of test is 

needed for the given data. It appears that Clark does not stress interpretation of concepts 

and is more concerned with students’ mastery of computations and procedures.  

Binomial Simulation 

Exploring the simulation.  Clark found the coin problem easy to understand and 

was able to explain the process. He correctly set up the drug problem and noted that drug 

Y would appear better than X if it produced 13, rather than 12 improvements in 20 

patients. This statement was correct as 13 improvements would result in the tail 

proportion of about 2%, compared to approximately 6% in case of the 12 successes.  

Reactions to the Simulation. When I inquired about Clark’s views on the 

simulation, the instructor reported that it was “nice, because it is different” and that 

“students might like it.” However, he did not seem very impressed with the simulation. 

“It’s a good program, but technology is going to keep improving, after couple of years 

this might be trash,” remarked Clark with a smile. It appears that he is skeptical about 

technology as it continuously changes and improves.  



  

 

 

96 

 When we compared the exact binomial probability to a normal approximation, 

Clark noticed the difference of more than 2.5% in the tail probabilities and remarked that 

the two methods would lead to different conclusions based on the 5% significance level. 

However, Clark was not too surprised by this difference and reported that “statistics is 

based on approximations.”  He did not expect to see a small discrepancy between exact 

binomial probabilities and normal approximation as the instructor regarded the formal 

test as a rough approximation to the binomial probabilities.  

Using the simulation for teaching. Clark did not see a need for using the 

simulation in class because “only about 30% of students are good students who will learn 

with either method. The rest of the students just want to pass the course and get out of 

there [the class].” Clearly, Clark thinks motivated students will learn no matter how the 

material is presented. He does not feel that the simulation would help students understand 

the material any better than traditional methods. Clark believes that students learn with 

practice, and “only when they do it on their own.” In other words, whether the teacher 

presents a simulation or a formal method does not make a difference in students’ 

learning, unless they “practice procedures on their own.” 

As the instructor kept stressing students’ practice of procedures, it appears that 

Clark, again, was referring to mastery of skills and not the understanding of the logic of 

inference. 

When I shared that some institutions were only using simulations for teaching 

inference, Clark was surprised and could not envision the instruction and assessment of 
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such curriculum. When I explained that classes were held in a computer lab, and tests 

were done through the simulations, he expressed concern that this would “reduce 

students’ brain power.” Clark feels that with the increased usage of computers and 

calculators for instruction in the recent years, expectations for student learning has been 

decreasing. “Before using calculators, everyone knew mathematics. Now they [students] 

cannot even multiply and divide.” 

Clark’s views are similar to Cassidy’s ideas in that both instructors believe that 

reliance on technology decreases student learning as calculators and simulation perform 

computations for students.  

Simulation as a statistical method. For Clark, the choice of a statistical method 

did not matter much, because “statistics is an approximation.” In other words, in either 

method, we are not calculating the exact probability. We discussed that with the increase 

of the number of trials, simulated distribution was approaching the exact binomial 

distribution. Therefore, the simulation can be more precise than the normal 

approximation. Clark then suggested that “with health- and safety-related problems, we 

should use the exact [binomial], otherwise, it does not matter.” 

Randomization Test 

 Exploring the simulation. Clark initially had a hard time understanding the 

reshuffling process, but he quickly figured out the logic, “Aaah, we are assuming equal 

means so that we can switch people to groups.” Clark requested to compare the medians 

and ranges instead, and got interested in other simulations. We ended up looking at 
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simulations that compared multiple proportions and means. After which he requested the 

link to the programs.  

Reactions to the simulation. Clark seemed more interested in the randomization 

simulation than in the binomial program, repeating “nice,” and “interesting” several 

times. Clark was able to correctly predict that the distribution of differences would be 

normal and to calculate the appropriate probability.  

 The instructor appreciated that the simulation could test for the difference in 

medians and other statistics and the absence of test requirements, expressing, “In real life 

no way you can have a random sample of patients.”  However, he did not trust this 

program completely because he did not see why it would produce similar results as the t-

test for two independent means. Although the results of formal and informal tests for the 

blood pressure study were similar, Clark wanted to test the program on other data in order 

to compare the results of the t-test and the simulation for different data-sets, stating, “We 

have to do many other comparisons for other data. It’s not clear how it works.”  

 Using the simulation for teaching. Despite of Clark’s interest in the program, he 

was unsure whether students would understand the simulation. He shared, “I like it, but 

students might not be able to understand this. You have to test it [on students] first.”  

Simulation as a statistical method. Clark could not provide any 

recommendations on using the simulation as a statistical tool because he was not sure 

how close it is to the corresponding formal method. It is interesting, however, that even 

though Clark suggested that statistics was an approximation, he still viewed the formal 
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method as the ideal. Clark stated that it was important to test the randomization test on 

many different data sets and compare it to the formal t-test. This statement suggests that 

he will only accept the randomization method if it provides similar enough results to the 

corresponding formal approach, which implies that for Clark, the formal method is “the 

true” procedure. 

Several times after my interview with Clark, I inquired again about the 

instructor’s views on the randomization simulation, but he did not have time to further 

explore the program. 

Instructor Cross Case Analysis 

Table 6 presents a cross case matrix comparing the results across the four 

instructor cases in order to answer the following research questions: 

1) How do instructors describe their students’ understandings and misunderstandings 

of inference? 

2) What are instructors’ attitudes toward simulation-based inference?  

i. How do instructors compare formal and informal inferential methods as 

instructional approaches in introductory statistics courses? 

ii. How do instructors compare formal and informal inferential methods as 

statistical methods?    

The instructors in the matrix are presented in order from most to least open to using SBI.  
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Table 6 

Instructor Cross-Case Matrix 

 Morgan Scott Cassidy Clark 

Student 

Understanding 

of and struggles 

with Inference 

Students can generally 

follow procedures but 

have difficulties with 

language and 

interpretation of 

concepts. 

 

Students typically 

are able to perform 

computations, but 

do not understand 

meanings of 

concepts. 

 

Most students do 

well because they 

have sufficient 

practice 

opportunities and 

are required to 

perform 

computations 

manually. 

Understanding and 

the ability to 

compute are 

synonymous.  

Most students do well 

because calculator does 

computations for them. 

Once students know 

which test applies, they 

can easily follow steps 

because they are the 

same for every test. 

Understanding and the 

ability to compute are 

synonymous. 

Binomial 

Simulation as 

Instructional 

Method 

Use the simulation to 

help students 

understand the 

fundamental concepts 

of inference and make 

connections between 

hypothesis testing and 

confidence intervals. 

Use the simulation 

before introducing 

formal methods of 

inference to explain 

the big picture and 

go back to the 

simulation to 

compare results. 

Both simulations are 

beneficial for 

computer savvy 

students. Formal 

methods are 

important because 

they provide 

“structure” and 

because students 

learn better if they 

work out problems 

manually. 

 

Students might benefit 

from the simulation. 

However, instructional 

method does not make 

a difference. Students 

who are motivated will 

learn either way. 

 

Randomization 

Test as 

Instructional 

Method 

Use it more than the 

binomial simulation 

because students 

struggle more with 

multiple samples. 

 

Use the 

randomization 

simulation less than 

the binomial one as 

the connection to 

the formal test 

might be unclear. 

Might be confusing for 

students. 

Simulations as 

Statistical 

Tools 

The binomial 

simulation is more 

accurate than the 

corresponding formal 

method. Unsure about 

the precision of the 

randomization 

program.   

Both simulations 

are good statistical 

tools. The binomial 

simulation provides 

a more accurate 

result than the 

normal 

approximation. The 

randomization 

simulation and the 

2-simple t-test 

provide similar 

results. 

Doesn’t feel 

qualified to provide 

any 

recommendations. 

Use the binomial 

simulation for problems 

involving “risk.” 

Otherwise, it does not 

matter as statistics 

always involves 

approximations. More 

comparison between 

the methods comparing 

two means is needed. 
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Research Question 1.  How do instructors describe their students’ understandings 

and misunderstandings of inference? 

 Analysis of the cross-case matrix yielded three assertions described below. 

Assertion 1. Students in an elementary statistic course are typically able to perform 

necessary procedures and computations.  

All instructors reported that, in general, their students can follow steps and 

perform the computations needed in an introductory statistics course because it does not 

require strong algebra skills. All instructors except Cassidy allow students to perform 

computations with a graphing calculator. Although Cassidy requires manual calculations, 

she does not feel that students find them difficult, as they practice many problems in 

class. 

It is not surprising that introductory statistics students find statistical procedures 

easy as the course only requires basic computations compared to other college-level 

mathematics courses. In addition, as Cassidy and Clark reported, while different formulas 

are appropriate for different statistical tests, the general steps are the same, which makes 

it easy for students to follow statistical procedures.  

Assertion 2. Instructors have varied beliefs about what is important for students to learn 

from an introductory statistics course.  

 Although all four instructors like teaching statistics because of its wide 

applicability compared to other mathematics courses, they have different expectations in 

terms of student learning. 
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 In Morgan’s view, most students taking an elementary statistics course will never 

have to conduct their own research studies. However, they must understand claims made 

by others and, therefore, should learn how to think critically about statistical information. 

Thus, Morgan is less concerned with the mathematics behind statistical analysis and 

places more emphasis on interpretation of statistical concepts.  

 Scott also values students’ conceptual understanding, but unlike Morgan, he 

stresses connections between mathematics and statistics. Scott derives some formulas 

using calculus and feels that student understanding of mathematical formulas is crucial.  

 For Clark, it’s important that students understand what procedure applies for a 

given situation and that they can perform that procedure. He does not stress the reason 

behind each step of the process and is more concerned with students’ ability to decide 

which test to use and to correctly work it out. 

Cassidy appreciates structure in hypothesis testing and the fact that the process is 

the same across different tests. Just like Clark, the instructor believes that students 

understand hypothesis testing if they can work out examples. However, unlike Clark, 

Cassidy requires all computations to be done by hand as she believes that manual 

computation improves student understanding.  Both Cassidy and Clark associate 

conceptual understanding with procedural fluency.  
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Assertion 3. While most instructors view inference as the most problematic area, they 

report different reasons for student difficulties with this topic, including inability to (a) 

select an appropriate test for a problem, (b) understand meanings of the concepts, and (c) 

correctly interpret results.  

 All four instructors reported that hypothesis testing is most problematic for 

students, but for different reasons. 

 Morgan stated that students struggle with hypothesis testing because they have a 

hard time understanding the meaning of the concepts. Therefore, they have difficulties 

interpreting their results.  

 Likewise, Scott feels that students typically have difficulties with language in 

statistics and find the wording of hypothesis testing challenging. In addition, they often 

get confused whether the test involves means or proportions, one sample or two samples, 

dependent or independent samples, etc. 

 Clark believes that since students are allowed to use calculators, they do not 

struggle as much with statistics. However, like Scott, Clark also feels that students are 

often confused about which statistical test they should use for a given problem.  

 Cassidy is the only instructor who feels that students generally do not have 

difficulties with this topic, provided they put in sufficient time to practice the process. As 

mentioned earlier, the instructor was referring to mastering the procedure rather than 

understanding the logic and concepts of hypothesis testing.  
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Research Question 2. What are instructors’ attitudes toward SBI?  

 Three assertions were developed regarding the instructors’ attitudes toward SBI 

and are presented below. 

Assertion 1: All four instructors expressed mostly positive views of SBI, citing various 

benefits of the simulations. 

 While all instructors conveyed generally positive attitudes toward simulations, 

their reasons for this attitude varied.  

 In Morgan’s view, simulations would help students visualize complex statistical 

concepts and help them understand the big picture of hypothesis testing. She also felt that 

the programs would assist students in making connections between confidence intervals 

and hypothesis testing as well as in understanding the difference between sample size and 

number of samples. Morgan found randomization test more beneficial than the binomial 

simulation, because students typically struggle more with statistical inference involving 

two samples.  

 Like Morgan, Scott also commented that both simulations were very visual and 

are great tools for introducing the topic to students. He also appreciated that the binomial 

simulation clearly depicted that the sampling distribution is discrete. Since the formal 

method approximates a discrete binomial distribution with a continuous normal curve, 

students often incorrectly assume that the binomial distribution is continuous. Scott also 

liked that the randomization test allows for comparison of medians and other statistics, 

whereas the corresponding formal methods is performed for only means. Finally, he 
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reported liking the simulations because they deal with real data instead of being based on 

“ideal” mathematical models.  

 Cassidy thought the simulations would benefit students since they are generally 

very good with technology and therefore, might find a computer program easier than 

working out problems by hand.  

 Clark reported liking the binomial simulation, but seemed indifferent toward the 

program. He reported that with the constant change in technology, the program might not 

be useful in the next few years. Clark expressed more interest in the randomization test 

and appreciated that this method did not require a normal assumption and random 

sampling. Similar to Scott, Clark also liked that the randomization test can be performed 

for statistics other than the mean. 

All instructors, except Scott, found the re-shuffling process slightly unclear at 

first, but understood it quickly. The only exception was Cassidy, who seemed to 

understand the logic of the process, but was not quite sure why re-assignment of 

participants into groups was possible.  

Assertion 2: Most instructors regard the binomial simulation as a better statistical 

approach than its corresponding formal test. They view the randomization test as either 

comparable to its corresponding formal 2-sample t-test, or have no opinion on this matter. 

Scott correctly indicated that the binomial simulation is more precise than its 

corresponding formal method when the number of trials is sufficiently large. All 

instructors except Clark did not expect to observe a large difference in tail proportions for 
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the two methods (close to 3%) and felt that it was important to address this discrepancy in 

class. According to Clark, the binomial simulation is more appropriate for “serious 

problems” that are concerned with health and safety, but the choice of the method does 

not matter for less important issues as statistical procedures are not precise in general. 

Cassidy did not feel qualified to make any recommendations regarding the usefulness and 

precision of either method. 

As far as the randomization test, the instructors were less comfortable making a 

comparison between the simulation-based and formal methods.  All of them appreciated 

that the simulation works for statistics other than the means, and that it does not have a 

random sample and normal distribution requirements. However, Scott was the only 

instructor who thought that simulation-based and formal methods in general would 

produce similar results. The other three instructors did not feel comfortable enough to 

comment on the effectiveness of the simulation as a statistical tool. Clark expressed 

interest in testing the simulation on different data sets and comparing the results to the 

formal method, but did not have a chance to do so. Nevertheless, he doubted the 

randomization simulation and would only accept it as a valid statistical method if it was 

close enough to the t-test.  

Similarly, Morgan seemed to perceive formal methods as more mathematically 

correct. She expressed several times that SBI would be useful in a very introductory 

statistics course, implicitly indicating that formal methods still should be used in more 

advanced courses.  
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Assertion 3: Instructors provided different recommendation for using SBI in the 

classroom ranging from using simulations as a substitute for traditional methods to not 

using them at all.  

Table 7 provides a summary of the instructor recommendations for teaching 

statistical inference. 

Table 7 

Instructors’ Preferred Teaching Approach 

 Morgan Scott Cassidy Clark 

Formal     

Binomial     

Randomization  Unsure   

 

Morgan was the only instructor who recommended abandoning formal methods of 

inference in an introductory statistics course because formulas and symbols hinder 

student understanding of the logic of inference. She believes that since most of the 

students will never perform computations by hand, they do not need to know the formal 

procedures. However, they need to be able to interpret statistical concepts. Although 

Morgan could not envision student assessment via simulations and was concerned that 

learners would be getting different answers, she still advocated for the replacement of 

formal inference with SBI.  

Both Scott and Cassidy suggested using a combination of formal and informal 

methods when teaching inference. The instructors expressed that using the simulations 

would be beneficial for introducing students to the concepts of interference and to 
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compare the results of formal and informal approaches.  Although Scott was surprised by 

the difference between the outcomes of the binomial simulation and the normal 

approximation methods, he still did not want to give up the formal method. According to 

Scott, it’s crucial that students understand the mathematics behind statistical procedures. 

As far as the randomization simulation, Scott felt that the logic of the process is different 

from its formal method and, therefore, he was worried that presenting both methods to 

students might hinder their understanding.  

  Cassidy’s reasons for employing both methods were different from Scott’s. 

Because the instructor herself prefers learning using “paper and pencil” and formulas, 

Cassidy believes that some students would benefit more from the formal methods. In 

addition, she feels that formal methods provide more structure and, therefore, might be 

easier for students to follow. Finally, Cassidy is convinced that students learn better from 

performing computations manually. Since the simulations perform the computations for 

learners, they limit students’ understanding of the process.  

Clark was the only instructor who did not see a benefit of using simulations in 

class. Although he reported liking the programs, Clark expressed that good students learn 

no matter which instructional approach is used. Moreover, he was not convinced that 

students would understand the simulations, especially the randomization test, and 

suggested testing it on students before making any recommendations.  
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5. STUDENTS’ EXPLORATION OF SBI  

Lena 

Student Background 

 Lena is a 21-year-old student who is finishing up her associates degree in business 

administration. She completed a condensed, eight-week summer statistics course three 

months prior to our interview and received an A with a part-time instructor who was not 

interviewed for this study. Despite it being a fast-paced class, Lena enjoyed it mainly 

because of her instructor, who was very organized and detailed. Lena explained, “She 

[the teacher] had an outline written out for us for every week. Every detail was written 

out there and all the deadlines. She really broke down every problem.” 

Student’s Prior Knowledge of Hypothesis Testing 

 Lena felt that at the time of taking the course she had a good understanding of 

concepts related to statistical inference. She especially liked hypothesis testing because 

“it was pretty much the same every time and she [the instructor] would tell us why we 

were doing things.” 

 Although Lena felt she had a good grasp of hypothesis testing, she did not retain 

much information and only had a partial understanding of the concepts. She described the 

purpose of hypothesis testing as “to prove whether something… whether statistic is 

reasonable or not, whether it’s within a certain range of probability of happening... 

Whether it’s useful data or not.” 
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 Lena was correct in saying that when testing a hypothesis, we examine whether 

our sample statistic is reasonable (under a certain assumption about the population 

parameter), but hypothesis testing is certainly not used for determining the usefulness of 

data.  

 Lena did not remember much about null and alternative hypotheses other than that 

“they are opposite of each other.” She also could not fully recollect what a p-value was 

and said that it is “the number that helps you decide the usefulness of the test and whether 

or not the null is true.”  Although Lena remembered that a p-value is used to make a 

decision about the null hypothesis, she could not recall how.  

Binomial Simulation 

 Student Exploration of the simulation. Lena correctly predicted that the 

distribution of the number of heads out of ten tosses of a fair coin “would be normally 

distributed with five at the mean.” She explained, “Over the time… over many, many 

tests that’s where the mean would fall. If you do it only couple of times, it’s not reliable.” 

Lena meant that with only ten coin flips the number of heads is difficult to predict, but, 

with the repetition of the experiment, most of the times we would obtain five heads. Lena 

demonstrated an understanding of the empirical distribution and correctly indicated that 

“the farther away we move from the center, the less likely [obtaining that number of 

heads] will be.” 

 I then asked Lena to make a conclusion about the fairness of a coin that produced 

nine out of ten heads. She correctly indicated, “I would say it’s not fair, but there is still a 
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chance that it could be fair.” While her reasoning was correct, she initially struggled to 

relate her decision to the empirical distribution. Instead, she was trying to calculate the 

probability of the coin being fair, saying “There is a 10% chance for it to be fair [one out 

of ten].”  

 Lena’s reasoning demonstrated that she has a common misconception that when 

testing a hypothesis, we can calculate the probability of the null hypothesis being true 

(Castro Sotos et al., 2009; delMas et al., 2007). However, computing this probability is 

impossible. We can only calculate the likelihood of obtaining the results of the 

experiment, given the truth of the null hypothesis. 

 When I prompted Lena to calculate the likelihood of tossing nine or ten heads 

with a fair coin using the simulation, she found the probability to be 1% and correctly 

reported, “Oh, I see. I would say it’s not fair. Normally, with an even coin, there would 

be a 1% chance that that [result] would occur, so, if it’s fair, it is very unlikely that that [9 

out of 10 heads] would happen.” 

 I then asked Lena if her conclusion would change if we obtained eight instead of 

nine heads. She calculated the tail proportion to be 5.5% and reported, “I am not sure, but 

it’s much more likely to happen.” As her cut-off between a likely and unlikely result, she 

chose 10% and correctly reasoned that with eight heads the coin would be considered as 

unfair (tail proportion = 5.5%), but with seven heads (tail proportion = 17.9%) as 

possibly fair. 
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 The drug example was a little more challenging for Lena. She correctly predicted 

that if drug X, which had a 40% improvement rate, was given to different samples of 20 

patients, most likely eight patients would improve, with a slight variation. She reported, 

“40% on average would improve, but could be more or less.” While the student had a 

good understanding of the empirical distribution and correctly indicated which numbers 

of improved patients for drug X were likely and which were unlikely, she struggled to use 

the empirical distribution to decide whether drug Y, which improved 12 out of 20 

patients, could be considered more effective than drug X. Lena calculated that 12 out of 

20 was 60% and decided that drug Y was more effective than drug X because 60% is 

larger than 40%. Lena failed to recognize that drug Y was only tested on 20 patients and 

could produce such high success rate by chance. The following interview demonstrates 

Lena’s gradual understanding of the decision process:  

Lena: I would say that drug Y is more effective than drug X. 

 

Researcher: why?   

  

Lena: Because it has a greater chance of being successful. 

 

Researcher: Right, but we only tested drug Y on 20 patients, whereas we know 

that drug X has the true improvement rate of 40%. 

 

Lena: So you just have to test this one [drug Y] more. 

 

Researcher: That would be nice, but what if we can’t? what if it’s too expensive? 

Can you try to make a conclusion with these data?  

[pause] 

 

Researcher: Can drug X improve 12 patients?  

 

Lena: Yes 
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Researcher: What is the likelihood of that?  

 

[Lena types 12 in the program and finds the tail proportion of 5.9%] 

 

Researcher: What does this mean? 

 

Lena: There is a 5.9% probability that in a long run you would get 12 or more 

successes. 

  

Researcher: Out of?  

 

Lena: Out of 20.  

 

Researcher. With which drug? 

 

Lena: Drug X. 

 

Researcher: Is it likely? 

[pause] 

 

Lena: It’s not very likely, but it’s definitely possible.  

 

Researcher: What would you conclude? 

 

Lena: I would say it’s possible that they [the two drugs] are the same. 

 

Researcher: Because? 

 

Lena: Because drug X could have gotten the same results.  

 

 When I inquired whether Lena would change her conclusion if instead drug Y 

produced an improvement in 13 patients, she quickly entered 13 in the program, found 

the tail proportion of 1.6% and correctly concluded, “I would say that Y is better than X 

because it [this result] is unlikely with X.”  

 It appears that Lena struggled the most with the comparison stage (stage III) of 

the conceptual framework. Even though she understood the sampling variability 
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produced by drug X and knew which results were improbable, she had a hard time using 

this information for making a decision about drug Y. The guiding questions helped Lena 

clear this confusion and relate the results of drug Y to the sampling distribution of drug 

X. Once she made this connection, Lena was able to move to the explanation stage (stage 

IV) and make the correct conclusions for both significant and non-significant results.  

 Making connections between formal inference and SBI. Initially, Lena 

struggled to relate the program to the corresponding formal test probably because she had 

a vague memory of what she learned in the course. She originally thought that for the 

coin example the null hypothesis was obtaining at least nine out of ten heads. When I 

explained that the null hypothesis was the assumption we made for the construction of an 

empirical distribution, she quickly corrected herself, “Oh, the assumption is that you 

would get heads five times and tails five times, so it [the coin] is fair.” She did remember 

(although she was unsure) that the tail proportion corresponded to a p-value, and that “a 

low p-value means that the null is false.” In addition, she recalled, “we used [in class] 

anything below 5% as a low chance.”  

 Lena was able to correctly formulate the hypotheses for the drug problem and 

reason, “They can’t conclude that Y is better than X because the chance of having 12 

successes or more would be possible with drug X. So, you won’t reject the null that Y 

and X are the same.” 

Student’s view of the simulation.  Lena liked the simulation because “it’s very 

simple looking and not complicated.” She elaborated, 
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I think once you realize and understand the basic aspects of it, like where the 

number of samples and sample size goes, then it should be very easy to use… I 

can see, what’s reasonable and what’s not by looking at the graph, and I can see 

the p-value.  

 

 Lena liked that the simulation provided a clear visual for the problem. She 

expressed that the program was more useful than a calculator because while a calculator 

provided a graph of the standard normal distribution with a shaded area, the simulation 

“shows the graph as it’s happening.” In other words, Lena liked to observe the process of 

constructing the sampling distribution, rather than just seeing the end result.  

Randomization Test 

 Student Exploration of the simulation. After reading the problem about fish and 

regular diets, Lena correctly predicted, “Probably the fish oil diet is better because most 

of the participants have their blood pressure going down.”  

While Lena needed some assistance in understanding the reason for re-

randomization, she quickly explained, “so we want to see what are the possible 

differences in results. If the diets are the same, we can move numbers from one group to 

another.”   

Lena seemed to understand the empirical distribution of the re-randomized 

differences. She said, “So, if the fish oil diet and regular oil diet had the same 

effectiveness, the differences in the means should be most likely zero.”  She correctly 

explained that the likely differences in mean were “between -6 and 6, and outside this 

range they [the differences] are unlikely.”  
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 Lena also correctly stated that at the next stage we had to compare the result of 

the experiment to the empirical distribution and calculated the tail proportion of 0.0008. 

While she had the correct interpretation of the tail proportion and knew that it was very 

small, she still concluded that the two diets were equally effective.  She reasoned, “If 

both groups have the same effectiveness, then the difference should fall on that curve… It 

[the observed difference of -7.714] is not very likely, but it falls within the curve of no 

effectiveness.” Lena argued that even though our result is unusual, it can still occur if the 

two diets are equally effective. Therefore, she did not feel comfortable with rejecting the 

null hypothesis of equal means.  

 Reluctance to reject the null hypothesis even with a small p-value is documented 

in the literature. Liu and Thompson (2005) reported that teachers often demonstrate 

“commitment to null hypothesis.” They reason that even though sample results are 

unlikely, they could still occur. 

 Once I reminded Lena that just like with previous example, at some point we need 

to reject the null hypothesis, she reported, “So there is a 0.8% chance that there isn’t any 

difference… The chance for it helping is much greater. So, the fish oil diet is a more 

successful treatment.”  

 While Lena correctly concluded that the fish oil is more effective for reducing 

blood pressure, she misinterpreted the p-value as the probability of the null hypotheses 

being true. It appears that her misconception was so deep that it was not changed by the 
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program in such a short time. We then discussed again that a p-value is a conditional 

probability and is calculated under the assumption of the null hypothesis being true.  

Student’s view of the simulation. In Lena’s view, the randomization test is more 

difficult to understand than the binomial simulation, but “it’s still a great visual and is 

definitely useful.” The student thought that the interpretation of the differences and 

knowing what they represented was not easy and the program “definitely needs 

explanation with it, it cannot just be [used] by itself.” While Lena understood the re-

shuffling process, she reported that the process was a bit confusing and “needs assistance 

or guidance, like a teacher.” Nevertheless, she liked the dynamic representation of 

reshuffling and that the program clearly depicted how the graph [of the shuffled 

differences] was constructed. Although Lena found the randomization test more complex 

than the binomial simulation, she still felt that the program would “only benefit, I don’t 

think it would hinder learning.” 

Student’s Learning Preference 

 Lena viewed both simulations helpful for understanding and visualizing the 

concepts of hypothesis testing and recommended using them together with the formal 

methods. She clarified, 

I like both [methods] because I think that students learn differently. I am a visual 

learner and I don’t like numbers, but I think both are beneficial, because this 

[simulation]would be a good visual, but maybe people who are better in math will 

like to have formulas written out… Sometimes formulas do help me too. I need as 

many sensory aids, such as hearing, seeing, touching or manipulating … Maybe 

use the formal methods first and then have these [simulations] to reinforce it. 

Like, if you didn’t understand one way, you could go though it the other way. 
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 In summary, Lena felt that using both formal and informal methods would help 

students understand and reinforce inferential concepts. She expressed that it is beneficial 

to have different representations, such as hearing the teacher’s explanation, seeing 

visuals, writing formulas, and manipulating paraments within the simulations.  

Natalie 

Student Background 

 Natalie is a 19-year old sophomore planning to major in psychology. She 

completed elementary statistics, taught by instructor Clark, six months prior to our 

interview. Although the class heavily relied on a calculator, Natalie found it very difficult 

and reported that her “main struggle was with equations and memorizing what goes 

where.” Despite Natalie’s belief that she was “weak in math,” she worked hard and 

“managed to get a B.” 

Student’s Prior Knowledge of Hypothesis Testing 

 Natalie did not remember much about hypothesis testing. She reported that its 

purpose is “to figure out if the data is correct.” Although she remembered the terms 

associated with the test, such as null and alternative hypotheses, significance value, and 

p-value, she could not recall what any of them meant. She reported that while taking the 

class, she knew “how to do stuff” but did not understand the meaning of ideas. She 

explained, “With math I am always like this. These are the steps; this is how you do it.”  
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Binomial Simulation 

 Student Exploration of the simulation. Natalie was able to correctly predict that 

with ten flips of a fair coin, the distribution of the number of heads resembles “a bell 

curve with five in the middle.” She correctly interpreted the empirical graph and 

indicated that getting the number of heads close to five was likely. However, as we move 

away from the center, the probability of getting that number decreased. Although Natalie 

seemed comfortable with screen representations and sampling distribution, she struggled 

at the comparison stage as illustrated below:  

Researcher: Imagine you have a coin, and you don’t know whether or not it is 

fair. You flipped it 10 times and obtained nine heads. What would you conclude? 

 

Natalie: It [the coin] would definitely favor heads   

  

Researcher: why? 

 

Natalie: because it landed on it nine heads out of ten flips. 

 

Researcher: Can this graph [distribution for a fair coin] help you to decide? 

 

Natalie: Since it’s unfair, no. Because it’s unfair, right?  

 

Researcher: We don’t know, that’s what we’re trying to figure out. 

 

Natalie: We don’t know, right. 

 

At first, Natalie did not see the connection between the result of the experiment 

and the empirical sampling distribution because she was convinced that the coin was 

unfair and, therefore, viewed the graph for a fair coin as being irrelevant. Her other issue 

was that she was trying to draw a definite conclusion about fairness of the coin. Even 
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with seven heads (tail proportion of about 18%) she concluded, “It’s more likely unfair 

than fair.” 

Natalie was trying to form her conclusion in terms of “unfair” versus “fair” rather 

than “appears unfair” versus “possibly fair.” When I clarified that we were not trying to 

prove that the coin was fair, her reasoning changed, and she began incorporating 

probabilistic language in her explanations. Natalie correctly concluded that for seven or 

eight heads, “It could happen, the coin could be fair,” but for nine heads, “It could happen 

with a fair coin, but odds are, it wouldn’t.” 

 Natalie seemed to understand the logic of inference. She had less trouble with 

language for the drug example. She correctly interpreted the graph for the number of 

improved patients with drug X, stating, “So, x [axis] is the number of successful patients 

that improved out of 20 and the y [axis] is the number of times that improvement 

happened.”  

 However, when I asked if drug Y was better than X given that it worked for 12 

out of 20 patients, Natalie concluded, “I would say Y is better, just because 10 is 50% 

and we have 12, so that means we got more than 50%.” She failed to account for 

sampling variability when drug X is administered to different sets of 20 patients. I then 

inquired if the same result could happen with drug X, after which she quickly realized 

that it was possible. She calculated the tail proportion to be about 5.5% and concluded, 

“Yes, it could, but 12 is out here in the tail. It’s not likely that it would happen [with drug 

X].” Natalie also correctly reasoned, “With 13 improvements the probability is 2%, 
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which is even less likely... It’s unlikely for drug X to reach 13 improvements, so I would 

say that Y is better.” However, if less than 12 patients improved with drug Y, she 

concluded, “It’s more likely to get this [result] with [drug] X, so we cannot conclude that 

Y is better [than X].”  

 To summarize, even though Natalie needed some guidance at the comparison 

stage to relate the drug Y result to the sampling distribution for drug X, she was able to 

reason correctly. She considered 10% as her cut-off value between usual and unusual 

results, and based her conclusions accordingly. She also properly phrased a non-

significant finding in terms of “they could be the same” rather than making a 

deterministic conclusion, such as, “they are the same.” 

Making connections between formal inference and SBI. Natalie was unable to 

relate the presented problems to the formal inference possibly because, as she stated, she 

did not have a good understanding of the process in class. She remembered, though, “If 

it’s [test statistic?] in the tails, it’s unlikely, and if it’s in the middle between the certain 

range than it’s likely.” Natalie did not have a recollection of the null and alternative 

hypotheses. However, she remembered, “If p is low, you let it go.” Natalie laughed when 

she said this phrase and confessed that it she never understood its meaning in class. 

However, now she had a correct interpretation of the p-value. The student reported, “This 

[the simulation] helps me understand that the 2% [the tail proportion] means that 2% of 

the times it happening that 13 or more out of 20 patients would improve, so I understand 

what it means.” 
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When Natalie tried making connections between the binomial simulation and 

hypothesis testing, she initially got confused and thought that with a low tail proportion 

she was rejecting the claim that drug Y is better than X. It seemed that when Natalie tried 

recalling the rule for rejecting the null hypothesis and what the null represented, she 

stopped thinking logically and tried to follow the process she used in her statistics class. 

Natalie said, “So when p is low, let it go, so you reject your hypothesis that Y is better 

than X. Isn’t it what we are doing?” After about half a minute of thinking about it, she 

correctly concluded, “No, if the percentage is low, you reject that X and Y are the same.” 

Student’s view of the simulation.  Natalie reported that the binomial simulation 

was easy to understand, and that “the most confusing part was to remember what I 

learned in stats.” She, elaborated, 

I think that if I was to start on this program I could get a lot out of it, especially 

because it has lots of visual aids in it. That helps a lot. And it’s showing you 

where it exactly is and marking the percentage for you. 

 

Natalie appreciated that the visuals made it easy to understand what the tail 

proportion represented and made the reasons behind the process of hypothesis testing 

clear.  

Student’s learning preference. Natalie shared that given a choice of learning 

inference with either the formal or simulation-based methods, she would prefer using the 

simulation approach. She explained, 

This [the binomial simulation] makes a lot more sense that that one [the formula-

based method]. In my stats class I kind of tried to figure it out, but it was a little 

hard. This [program] has a visual aid that helps a lot, so I would prefer this type of 

class.  
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When I suggested an option of using both simulation-based and formal methods, 

Natalie chose using only SBI because “if you try to correspond formulas, it gets 

confusing.” As she shared earlier, the struggled with using formulas in class mainly 

because she was confused with the meaning of the different symbols. With the binomial 

simulation, instead of having to memorize notation, she could “look at it [the graph] and 

figure out what is what and why.” 

Randomization Test 

 Exploring the simulation. Natalie found the randomization test less intuitive 

than the binomial simulation. She correctly interpreted the graph of blood pressure 

reductions of people in the fish and regular oil diets and predicted, “The fish oil seems 

better.” However, she struggled to understand the reasoning behind re-randomization. 

She was unsure why we could assume that the two diets are equally effective, asking, 

“how are you supposed to know if they are the same of not? You did not redo it [the 

experiment].” It took Natalie some time to understand that we did not know for sure 

whether the effectiveness of the two diets was the same or different. However, we wanted 

to obtain possible differences in means assuming equally effective diets. Natalie still 

thought that moving people from one group to another was wrong without repeating the 

experiment. She inquired, “When you are putting them into different groups, then it 

changes the outcome, right?” Again, while Natalie agreed that if the two diets were the 

same, they would produce the same result, she did not feel comfortable assuming equal 

effectiveness of the diets.  
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 Natalie correctly interpreted the distribution of the shuffled differences, “The x 

axis represents the differences in the means and the y is the amount of times that you 

shuffled that.” She also concluded based on the empirical distribution that having a mean 

difference of “zero is likely and anything farther than 5 or 6 is unlikely.” When I asked 

her to use the graph for making a conclusion, Natalie located the observed difference of -

7.714 on the graph, calculated the tail proportion of 0.07%, and concluded that based on a 

very small tail proportion, the fish oil diet is more effective than the regular oil diet. She 

explained,  

The graph represents that if both fish and regular were the same, these differences 

would apply. There is 0.0007 possibility to get -7 if they were the same. Because 

our difference is so unlikely to happen, it’s proving that the fish oil is better.  

 In summary, Natalie understood all stages of the process, but struggled with the 

reasoning we used for constructing the empirical distribution of mean differences.  

Student’s view of the simulation. Natalie expressed that the randomization 

simulation was more challenging “because of the switching.” She felt it would be easier 

if the empirical distribution was provided to her without her having to see the re-

randomization process.  

I feel like if they just gave you the graph, it would be more helpful. The graph and 

having to put the 7 in there made sense. I did not feel that the steps in between, 

like switching them around was necessary. I kept thinking that they were redoing 

the experiment, but they were just placing the numbers on different rows and 

that’s all it was.  
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  Natalie shared that while in the binomial simulation the visual aid helped her, in 

this program it confused her. It seems like she found it counterintuitive to regroup data 

without repeating the study.  

Student’s learning preference. In Natalie’s view, it would be more beneficial to 

see both formal and simulation-based methods for comparing two independent means. 

She found the re-grouping part of the process confusing and for this reason recommended 

a blended approach. 

It would help me for this [problem] if I got to use the equations and this 

[simulation] the same time. In the classroom, I felt like I got the gist of it a little 

faster, and I wasn’t as confused. If I were to calculate it myself, I would have a 

better understanding of why the numbers were there and what they are for. So I 

think the two combined would work really well.   

Casey 

Student Background 

Casey is a 20-year-old nursing student who completed an elementary statistics 

class six months prior to the interview with instructor Morgan and earned a C.  She took 

the class as a pre-requisite for a BSN program. Casey explained that toward the end of 

the semester her attendance and commitment to the class dropped due to family 

circumstances, and for this reason she ended up with a low grade. She felt the class was 

not very hard and said, “If you paid attention and did your homework, you could do it.” 
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Student’s Prior Knowledge of Hypothesis Testing 

 Casey reported that she struggled the most with hypothesis testing because she 

could not differentiate various tests. She felt that she had a good grasp of the concepts, 

but since procedures are very similar to each other, she often mixed them up.  

 Casey described the hypothesis testing as an “if then statement” but could not 

explain what she meant so I provided an example shown below:  

Researcher: Suppose you want to test a claim that the average salary in the U.S. is 

more than $40,000. How would you go about that? 

 

Casey: I would formulate hypotheses and then gather people. I don’t know if you 

would exactly do the outliers… It’s hard to recall. 

 

Researcher: You mentioned hypotheses. What are they and why do we need 

them? 

 

Casey: I remember that’s what you test for and that’s kind of your goal for what 

you want. If you say $40,000 is the average income, then… I am not sure what for 

then [laughing]. 

By “if then statement,” Casey probably meant that if we assume the null is true, 

then we can calculate the likelihood of our sample results. While Casey vaguely 

remembered the idea of hypothesis testing, she lacked understanding of the concepts. She 

could not recall anything about a p-value other than “I do remember that it was very 

hard.” 

Binomial Simulation 

 Exploring the simulation. Casey correctly reasoned that, for a fair coin, out of 

ten tosses we expect the number of heads to “stay around five, and it’s more likely to be 

more in the middle than below 3 or above 7.” 
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 Casey concluded that a coin that produced nine out of ten heads would be “loaded 

on one side because you got closer to the end of the graph than the middle.” She 

compared the distribution of heads for a fair coin and the given result of the experiment 

and understood that nine out of ten heads is an unlikely outcome for a fair coin. However, 

she struggled to draw a conclusion for nonsignificant results. For seven heads (tail 

proportion of 18.2%), she reasoned, “It’s more unlikely that it’s likely, so it still favors 

heads.” For Casey, the cutoff percentage between likely and unlikely results was “50%, 

right at 5, or maybe 6.” She explained, “The definition of fair is five [heads] out of ten, so 

theoretically speaking, it would be hard to say that six out of ten is still fair.” 

 Although Casey correctly interpreted the sampling distribution, she did not 

consider it when arriving at her conclusion. She failed to take into account the fluctuation 

in the number of heads produced by a fair coin between experiments. Therefore, she 

concluded that if an experiment did not produce exactly five heads, the coin had to be 

unfair. We then discussed that even for a fair coin different results were possible and 

distinguished theoretical and empirical probability. After that her reasoning improved. In 

the case of nine or ten heads she concluded, “The coin seems to favor heads.” However, 

with five to eight heads, she inferred, “It could be a fair coin.”  Casey began 

incorporating uncertainty in her conclusions, demonstrating an understanding that the 

result is possible with a fair coin, so it is difficult to make a deterministic conclusion.  

 Unfortunately, Casey’s improvement in reasoning did not transfer to the drug 

example.  She again did not account for variability in drug X results, saying, “Drug Y is 
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better than drug X” because twelve improved patients out of 20 is greater than 40%. I 

then encouraged her to use the simulation to examine a possible number of improvements 

for drug X. Casey correctly set up the simulation and obtained the distribution of the 

number of improved patients. She noted, “Likely outcomes are between six and ten; 

others are less likely.” She also realized that the peak of the graph was at eight, because it 

was 40% of 20. However, she had a hard time understanding what the x and y axes 

represented. She interpreted, “This [pointing at the x-axis] would be the number of trials 

and this [pointing at the y-axis] would be the number of patients, I guess.” 

 We reset the program and started constructing an empirical distribution from the 

beginning, which cleared Casey’s confusion. 

 I understand now, I am just trying to put it into words.  It [x-axis] would be the 

number of effective trials of one sample size, which would be 20. So how many people 

you got that were effected positively by the drug. This [the y-axis] is the total number you 

got in that column.  

 I then prompted Casey to look at drug Y results and form her conclusion. While 

she was correct in saying that “12 is toward the tail, so probably Y is better,” she was 

unable to explain the details of the process. When I inquired why we used the distribution 

for drug X to make a conclusion about the effectiveness of drug Y, she answered, 

“Because it was tested on more people, I guess.” I then scaffolded her reasoning as 

demonstrated below.  

Researcher: Could 12 out of 20 patients improve with drug X? 

 

Casey: Yes 

 

Researcher: Is it likely?  
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Casey: No, but it could still happen [tail proportion of 5.3%] 

 

Researcher: So what would you conclude? 

 

Casey: They could be the same. 

 

 With 13 improved patients for drug Y, Casey concluded, “They can still be the 

same, but it’s just very unlikely. I would probably say that drug Y is better.” While her 

conclusion was correct, her explanation suggests that she incorrectly interprets the tail 

proportion as the likelihood of the two drugs being equally effective.  

 In summary, Casey struggled at all stages of the inferential reasoning process but 

needed the most assistance at the comparison stage.  

Making connections between formal inference and SBI. Casey recalled that the 

tail proportion is the p-value. She remembered, “If it [p-value] was less than a certain 

number you don’t exactly throw it out but it’s very unlikely.” She did not quite remember 

what she was rejecting, calling it “the claim,” and had no recollection of null and 

alternative hypotheses. She also did not remember the cut-off value between likely and 

unlikely, thinking it was 50%.  

 Student’s view of the simulation. Casey reported liking the program overall, but 

she found it a little confusing at first. She shared:  

“There is a lot of numbers here [pointing at sample size and number of 

repetitions]. I think if I use it more, then I can probably figure it out, but it’s new 

to me, so it’s just difficult to visualize just because it’s new. “ 
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Casey struggled at the recognition stage of the process. She had difficulty 

interpreting the graph and seeing the difference between sample size and number of 

samples.  

Student’s learning preference. Casey described herself as “old school” because 

she likes “pen and paper” work. She thinks she learns better from formulas, but she is not 

opposed to using the simulations in class, as long as they are accompanied by formal 

methods.  

I think this [method] is reinforcement of formulas. If I saw both, I think if I had 

them both [formal and formal methods], I would have understood them better, I 

would have a better grasp of what exactly it was. 

Casey also believed that different types of student would benefit more from 

different methods, saying “I am an old school, but my sister would prefer this by far 

because she is good with computers. It just depends on the type of person.”  

Randomization Test 

 Exploring the simulation. Casey predicted that the fish oil diet is more effective 

than the regular oil diet based on the given data. She correctly interpreted the initial 

graphs, stating “The x-axis would be your blood pressure reduction and then the y-axis 

shows whether it’s fish or regular.” She also understood the re-randomization process. 

Casey explained, “The people got reshuffled into different groups… The numbers did not 

change because in order to change the scores, you have to do the experiments again.”  

Although she did not figure out herself why the re-assignment of the participants was 



  

 

 

131 

possible into groups, she seemed to understand my explanation, saying, “oh, so if the 

diets are equally effective, it does not matter which diet they are on.” 

 Casey also correctly explained the distribution of shuffled mean differences, “So 

the x shows you the differences in means and y shows how many times you got those 

differences in means.” She also was right in saying “according to the graph, [the 

differences] between -4 and 4 are likely and those in the tails are unlikely.” 

 While Casey was comfortable with the recognition, integration, and comparison 

stages, her conclusion was incorrect. She reasoned, “We got -7.714 and the p-value of 

.0012, so 12 out of 1000 shuffled differences. It’s not likely. Which means that they are 

probably equal to each other.”  Casey made a wrong conclusion because she was using a 

wrong assumption for constructing the empirical distribution. Since she noticed from the 

original data that the fish oil was better and we were working with the same data to 

construct the distribution, she thought a small p-value rejects the hypothesis that the fish 

oil is better.  

By this [pointing at the original data], I would conclude that the fish oil is better. 

By that [pointing at the empirical distribution], I would conclude that they are the 

same because you are keeping the values, you are just switching between graphs. 

 When I emphasized that the graph represented possible differences in means for 

equally effective diets, Casey quickly corrected herself, “Now I understand when you 

assume they are the same, that’s your null and you want to prove that wrong.”   

Student’s view of the simulation. Casey reported liking the randomization 

simulation more than the binomial program even though she thought the binomial 
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program looked simpler. She appreciated that the second simulation displayed the 

original graph together with the sampling distribution – although, it could be the reason 

she was initially working under a wrong assumption, since the data clearly showed that 

fish oil blood pressure reductions were greater than those of regular oil. 

Casey felt that the program was easy to use and helped her understand the 

construction of the empirical distribution and the meaning of the p-value. 

I think if I saw this [simulation] in class, it would have sculpted my learning in a 

way that I would have understood the p-value a little bit more…proving the null 

hypothesis wrong because when you do it on pen and paper, you don’t see 1000 

trials, you just see that one trial.  

The program allowed Casey to understand the process of obtaining sampling 

distribution by repeatedly reassigning participants into groups. 

Student’s learning preference. Casey still wanted to see both instructional 

methods in class. In her view, each method has its strength and weaknesses. With 

simulations, students do not perform computations by hand and therefore might not 

understand the theory behind the process. However, with formulas, students only see the 

end result of the graph, and might not know what the empirical distribution and the p-

value represents. 

I think the blended [approach] would be better just because you get both. If you 

only have the formula than it’s hard to understand how it’s done and when you 

have only this [simulation], you have a computer kind of doing everything for 

you, so you don’t exactly understand the formula. So, I think that the blended 

method would be better to learn in class.  

 

 



  

 

 

133 

Derek 

Student Background 

 Derek is pursuing an associate’s degree in Education. He is a 21-year-old 

sophomore who took elementary statistics with instructor Cassidy as a five-week course 

over the summer three months before the interview and received a B. Derek explained 

that the course was very fast-paced and did not provide enough time to grasp the material. 

He is retaking the course with instructor Morgan and feels that he has a better 

understanding of the concepts. During our interview he only covered the descriptive 

statistics portion of the course. Therefore, Derek was only exposed to inferential statistics 

once in his summer course. 

Student’s Prior Knowledge of Hypothesis Testing 

 Derek remembered that each hypothesis test involved two hypotheses and that the 

procedure for testing a claim consisted of five steps. He also recalled, “You never accept 

the hypothesis.” Derek meant that the null hypothesis is never proven, but he did not 

remember the reason for it. He also recalled that there are two methods of conducting a 

hypothesis test – critical value and p-value. He clarified, “p-value only works if alpha 

was something greater than five, maybe?” It appears that Derek vaguely remembered that 

when a p-value was less than typically 5%, the null hypothesis was rejected. However, he 

incorrectly thought that the value of alpha determines the method used for hypothesis 

testing. Clearly, all his recollection dealt with remembering procedures rather than big 

ideas. 
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No, I definitely did not understand them [the concepts]. I understood the process 

of steps. I also did not understand how to pull the information out of the question 

and put it into the right places of the steps. I can work through equations all day 

long, it’s ok. What portions I put where, was the most difficult part.  

 It appears that Derek was confused with symbolic representations and was unsure 

about the meanings of the notations used in the formulas.  

Binomial Simulation 

 Exploring the simulation. Derek correctly predicted that the distribution for the 

number of heads out of 10 flips “would have the most number of five’s. To have a higher 

concentration one way or another would be unlikely, and the least likely possibilities 

would be to get ten heads or ten tails.”  

 Derek concluded that a coin producing nine out of ten heads would be loaded and 

was able to relate his decision to the empirical distribution, “You would expect this 

[pointing on 9 on the x-axis] to be taller for this graph with your own fair coin.” Derek 

meant that if the coin was fair, the likelihood of flipping nine out of ten heads would be 

larger. When we calculated the tail proportion of 20/1000, he correctly explained, “If you 

would have done this [experiment] 1000 times, you would expect that 20 of those times 

you would get nine or ten heads.” Derek realized that the tail proportion is unlikely, and 

explained, “This is very, very far away from the average of five.” 

 While Derek’s conclusion was correct, it seems that he did not understand that 

nine heads was obtained for one coin using one experiment.  

So we start with saying that we know the fair coin produces for 10 flips an 

average of five heads. Your set of coins when flipped produced an average of 

nine, which is far from five.  
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When I pointed out to Derek that we were only using one coin and flipping it ten 

times once, he quickly corrected himself and claimed that this was clear to him. 

However, a couple of other times he used the term “average of nine,” which indicates that 

he was either using an incorrect term or he was thinking that the experiment was done 

more than once. It is possible that the process of repeatedly tossing ten coins when 

constructing the empirical distribution made him incorrectly believe that the coin we 

were testing was also flipped ten times over and over.  

Derek found the drug problem more confusing. He correctly set up the simulation 

and interpreted the distribution for drug X, “So the horizontal axis is showing the number 

of improvement using drug X out of 1000 samples of 20.” Derek then looked at drug Y 

results and explained, “So if Y is as effective as X, it’s unlikely that your sample would 

have had these results.”  

While Derek demonstrated an understanding of the sampling distribution and 

related it to the drug Y result, he had a difficulty making a conclusion with a tail 

probability. He correctly calculated the tail proportion for 12 improved patients to be 

6.2% and concluded, “It’s a low percentage, so Y is better.” However, he struggled to 

decide when he would consider results to be non-significant. First, he decided to take 

30% as a cut-off proportion. He then found the tail proportion for 11 patients to be 13% 

and reported: 

I don’t know if there is a statistical cut-off, but I suppose we can keep going as 

long as Y is greater than 50%... no, no, no...[pause] the cut-off is 40% because at 

this point Y is still better than X… Y still moves your average up. 
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 It seems that Derek lost the link between the number of improvements and the 

tail proportion. He struggled to explained the meaning of the p-value, stating, “There is a 

5.6% chance that drug Y is as effective as X.” When I prompted Derek to explain the tail 

proportion in terms of the number of improved patients, he said, “I think I get it. There is 

a 5.6% chance of 12 successes occurring, or more.” 

Derek correctly concluded that if the number of improved patients was higher 

than 12, he would have more evidence that “Y is better than X.” However, if this number 

was lower than 12, he would conclude, “They might be the same.” He was also able to 

use the tail proportion to make his conclusion, saying, “I see, it [5.6%] is fairly unlikely, 

but depends on the cut-off,” and understood why they were comparing p-value with alpha 

in class.   

In summary, Derek easily moved through the recognition and integration stages 

but required guidance at the comparison and explanation stages. 

Making connections between formal inference and SBI. For the coin problem 

Derek was not able to relate the simulation to its formal method, asking “Is the tail 

proportion the test statistic?” However, after, the drug problem, he explained “if p is low, 

the null has to go, that what it was! Because it’s such a low probability, Y is not as 

effective as X, it’s better.” Although Derek did not remember what the null and 

alternative hypotheses were, he understood that the empirical distribution was 

constructed under the assumption that the success rate of X is 40%, and why this claim 

was rejected made sense to him.    
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 Student’s view of the simulation. Derek reported liking the program because of 

its simplicity and the visualization. 

The visual is very, very helpful for me. This is something I was never given 

before. I like that you very clearly have the places to put each individual piece of 

information because that’s one of the problems I mentioned in the beginning, I did 

not know what part goes where. Now I know and I also understand the main curve 

we are using is for X and we are comparing Y to X. I never really got that. We are 

using two drugs, but we are starting with X, that is our base data and what’s the 

probability that Y is within than data.  

Derek appreciated that the program did not require the knowledge of various 

symbols because their descriptions were written out in words, such as, “Probability of 

success,” “Number of samples,” etc. The program also helped him understand that the 

distribution is based on a certain assumption, which he never realized before. The 

sampling z distribution they used in class was standardized and centered round zero. 

Therefore, it was unclear that it was constructed for the parameter given in the null 

hypothesis. The binomial simulation showed clearly that the sampling distribution was 

for drug X and that the result for Y was compared to it.  

Derek suggested that it would be helpful if the program included a cut-off value 

between likely and unlikely outcomes. 

Randomization Test 

 Exploring the simulation. When we moved to the second simulation, Derek 

seemed to already know the reasoning process as demonstrated below.  

Derek: The fish oil looks far more effective. You still have some zeros, but the 

average [reduction] seems much higher 
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Researcher: Right, but again, could this difference have occurred by chance, even 

though the two diets are equally effective? 

 

Derek: Sure, it can, especially because of the small sample size. But what’s the 

probability of that happening?  

Derek seemed to have a better sense of the logic used in hypothesis testing. He 

was also pretty quick to understand the re-randomization process. For the first re-

shuffling, he inquired, “Did we change what diet they are on? Have we done a new 

experiment or have we rearranged our data?” When I explained that we are just 

rearranging numbers because we want to see what are the possible differences in means 

assuming equally effective diets, Derek quickly understood the idea, saying, “I see, so we 

are assuming the two diets are the same so it does not matter.” 

Derek correctly interpreted the graph of the mean differences. He explained, “The 

horizontal [axis] is the shuffled differences in the means, and your vertical is the number 

of times that this difference occurred if they [the diets] are the same.” He also moved 

quickly to the comparison stage and observed that the difference of -7.714 was “off the 

charts.” He correctly calculated the tail proportion of about 0.5%. While Derek seemed to 

be comfortable with the first three stages of the process, he struggled with the 

explanation stage, saying, “Your p-value is about half of a percent, which means the null 

must go, so they both [the two diets] are equally effective.” 

Derek was using the rule he learned in class, but forgot that the graph represented 

no differences. It seemed that his previous inferential knowledge prevented him from 

thinking logically. He still was struggling making his conclusions using tail proportions 
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and was more comfortable looking at how the observed difference was from the mean. 

When I asked him to forget about the p-value rule and remember the assumption we 

made when we constructed the graph, he quickly corrected his mistake: 

I see. Assuming that they are equally effective, we would suspect that our data 

[mean difference of -7.714] would fall somewhere near the mean, which is zero, 

but it didn’t. It is way outside, so therefore, we would that the fish oil is way more 

effective. Because the sample that we have is an extreme outlier if they [the diets] 

are the same. 

Initially Derek tried to blindly apply the rule, remembering that something had to 

be rejected. Since the question was whether the fish oil diet was more effective, he 

decided to reject that statement. However, going back to the logic and remembering what 

the sampling distribution represented helped him to realize that the extreme result of the 

experiment would mean that the diets are not equally effective. 

 Student’s view of the simulation. Derek liked “the ability to see our original 

sample and why the graph is normal.” He appreciated that the program calculated the 

shuffled mean differences because “it would be very hard to do this by hand.” Derek 

liked that the process was fast and noted, “You can get caught up in doing each 

individual part, so that once you’ve got your results, you don’t know any more what they 

mean.” In Derek’s view, manual computations are time consuming and often divert from 

the main goal of the problem.  

Student’s learning preference. Derek found both simulations helpful and 

thought they were easier than the formal methods. He shared, “They [the simulations] are 

more streamlined and requires me to remember less about the process, but not about how 
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it works.” In other words, because the programs do not require memorization of symbols 

and steps, Derek finds them simpler. However, he appreciates that the simulations still 

require understanding of the process. “You still have to understand what is given and 

what you are looking for, it’s just an easier way to do it,” he reported. Yet, Derek feels it 

is important for his future profession to know the theory behind the process. Thus, he 

prefers learning both formal and informal methods. 

I would still rather do these [the simulation methods] because they are simpler, 

but the educator in me sees the importance of knowing the formulas. Personally, I 

find technology easier, but if I really want to learn and know why I am getting 

what I am getting, I do need to know the formulas to a certain extent. 

Ethan  

Student Background 

 Ethan is a 20-year-old freshman majoring in music. He has not taken any college 

level mathematics courses, but he is currently enrolled in honors Mathematics for Liberal 

Arts. He also took Geometry and Pre-calculus in high school.  

Ethan describes himself as being good in mathematics. He likes numbers because 

“they make sense” to him. He reported enjoying working with formulas and even 

considers minoring in mathematics after transferring to a four-year school. 

Binomial Simulation 

 Exploring the simulation. Ethan seemed to understand various parts of the 

screen but incorrectly interpreted the empirical distribution for the numbers of heads. He 

said, “This [pointing at the x-axis] represents the number of heads and the y-axis is the 

number of tails.” We started the simulation over, after which he corrected himself, “The y 
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is the number of times this number [of heads] was flipped.” He also explained, “Zero, 

one, nine, and ten heads are unlikely,” and that the other numbers are more frequent.  

 Ethan reasoned that if a coin produced nine out of ten heads, “it’s weighted on 

one side because there are much more heads than tails.” While intuitively he knew that 

the coin would probably be unfair, he could not use the distribution for a fair coin to 

explain his conclusion, stating, “This graph does not help me with my decision because 

we don’t know if it’s a fair coin.” With scaffolding, he was able to reason correctly as 

shown below: 

Researcher: What does this tail proportion mean? [Pointing at 0.9%] 

 

Ethan: There is 0.9% chance of getting nine or ten heads out of a fair coin. 

 

Researcher: So, could a fair coin give you nine heads? 

Ethan: It could, but it’s unlikely. Oh, so it [the coin] is probably unfair. 

Ethan still had a difficulty with nonsignificant results. With eight (tail proportion 

of 4%) and seven (16%) heads Derek still concluded that the coin was unfair. He 

reasoned, “16% is a high chance but I am not a risk taker.” It appears that he was trying 

to prove that the coin was fair, and we discussed that that was not the purpose. Still, he 

struggled to reason with percentages. When I asked Ethan to forget about the tail 

probability and start thinking in terms of the number of heads, he stated: 

With seven heads, I would probably say it could be fair because it can easily 

happen [with a fair coin]. With eight heads, I would say that the chance of getting 

eight heads out of ten flips is so low, so I would say it is unfair. 
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Ethan also needed a lot of guidance with the drug problem. He correctly reasoned 

that out of 20 patients he expected eight of them to improve with drug X. He also 

recognized that “the results are variable” from sample to sample. Moreover, Ethan was 

able to see from the graph that “numbers closer to eight are likely and [those] very far 

away are unlikely.” However, he struggled to compare drug Y results to X. He wanted to 

change the probability of success in the simulation to 60% because drug Y helped 60% of 

the patients. He was trying to generate a sampling distribution for drug Y to see if it 

would be similar to drug X’s distribution. I clarified for Ethan that the success rate for X 

was known to be 40% because it was tested to a very large number of people. However, 

drug Y was only tested on 20 patients since it is a new treatment. Ethan then reported, 

“We cannot conclude anything with such a small sample space” but also agreed that 

having a larger sample was often not feasible. Once I asked him to recall the coin 

example and use the same logic, he correctly stated: 

I would say that Y is no better than X because seeing an improvement in twelve 

patients is likely with X…For 14 patients the probability is low for X, so when Y 

sees that much improvement that leads you to believe that Y is better. 

It is interesting that when I inquired about his cut-off value in terms of the tail 

proportion, he was confused and said, “I would think 40% improvement is a good 

number,” referring to the percentage of patients improving, rather than to the p-value. 

However, when I inquired for how many improved patients he would be comfortable to 

conclude that drug Y is better than X, he understood the question and responded, “I 

would say starting from 13 patients.”  
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Ethan admitted that it was hard for him to reason with tail proportions. Although 

he understood what they meant, he thought comparing values on the horizontal axis was 

“more intuitive” than comparing the likelihoods. He explained that his “brain works 

better this way probably because we read left to right.” Ethan meant that the numbers on 

the horizontal axis increase as we move from left to right, but that the tail proportion 

increases in the other direction, which he found to be counterintuitive.  

In summary, while Ethan eventually was able to understand the functionality and 

logic of the binomial simulation, he required guidance at every stage and especially 

struggled at the comparison stage of the conceptual framework.  

 Student’s view of the simulation. Ethan thought the program was easy to 

understand and very visual, but it is the wording he often finds confusing. The program 

itself was not complicated. However, he was not used to “so much explanation.” Ethan 

also shared that, he is not accustomed to learning mathematics with this type of visual 

representations, but expressed, “Once you learn how to read graph like that, it is easy to 

figure it out.”  

Student’s learning preference. Ethan shared that he typically does better with 

numbers than words and this type of thinking is new to him. He explained, 

I’ve grown up using formulas, so I have no problem with them, and actually 

having this much visual aid is fairly new for me. In some ways, it is actually more 

confusing. It’s more intuitive, but it’s also more confusing because you can wrap 

yourself in your own mind when you are trying to figure something out 

intuitively, whereas with a formula, you can plug and chug and get your answers. 

But there is a downside to formulas. You have to memorize them and sometimes 

they are big and annoying. I think visuals are easier for minds to comprehend. 

However, they would be harder to come up with an answer for, whereas with a 



  

 

 

144 

formula, maybe we don’t really understand it, but it’s easier to come up with the 

answer. 

 It was difficult for Ethan to decide which method he preferred because each has 

its own advantages and disadvantages. While formulas might not make much sense, they 

are easier to use for the sake of obtaining the answer. However, the simulation required 

logical reasoning, which is more complicated and might lead to confusion. Ethan thought 

he would benefit the most by the combination of SBI and formula-based methods. 

Randomization Test 

 Exploring the simulation. Ethan moved much quicker through the fish oil 

example. He was able to explain correctly the screen representations and even understood 

rerandomization process fairly quickly, as illustrated below: 

Researcher: What do you think just happened? 

 

Ethan: So we re-grouped them [the participants], and I am assuming they took the 

diets again. 

 

Researcher: They actually did not, and that’s the key here. You see how these 

people went up [pointing on the graph] without changing values. They kept their 

scores. 

Ethan: Right 

Researcher: Can you think of why? 

Ethan: No, that seems counterintuitive. 

Researcher: So remember, our goal is to see what are the differences in means 

assuming… 

Ethan: Equally effective diets. Yes, that makes sense. They are the same, that’s 

why. 
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Ethan correctly interpreted the empirical distribution of re-grouped mean 

differences and explained, “Between negative six and six [the mean differences] are 

fairly likely.” He knew he had to compare the result of the experiment to the distribution. 

Ethan also correctly computed and explained the tail proportion of 0.02%, saying, “The 

probability of getting a mean difference of -7.714 is very unlikely if the two diets are the 

same” and concluded that “the fish oil diet is better.” 

Ethan seemed to understand the logic for making conclusions, showing a 

significant improvement at each stage of the reasoning process. He shared, “I knew that 

the main focus would be this graph [pointing at the distribution of mean differences] … I 

knew what the goal was and how to think through it.” 

Student’s view of the simulation. Ethan found the randomization test easier to 

understand than the binomial simulation because “there are more numbers involved.” 

Perhaps it’s not the numbers that helped him but his familiarity with the inferential 

reasoning from the previous examples. 

Ethan shared that at first he found the graph of the original data confusing (see 

Figure 6). He explained, 

I don’t particularly like the way these graphs are set up. I’ve never seen a graph 

like that before. It almost feels like having two separate graphs combined at once 

and it’s a little bit confusing. 

Ethan initially found the graph difficult because the vertical axis depicted both 

groups simultaneously –  fish oil and regular oil. However, he was able to make sense of 

the graph without any assistance.   
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Figure 6 

Initial Graph for Randomization Simulation 

 

Student’s learning preference. Ethan expressed that because the simulation is 

very intuitive, it helped him understand statistical ideas. He explained: 

Maybe you won’t understand all the ins and outs of how everything works [using 

the simulation], but you understand the concept better, whereas in algebra you 

understand the process but you don’t understand the outcome. I think this [SBI] 

taps into different parts of your brain. 

Ethan noticed that the program required different skills and understandings than 

an algebra-based class. He recognized that typically in algebra the emphasis is more on 

process and less on the meanings of answers. However, with the simulation he had to 

explain his answers, which required more conceptual understanding. While Ethan thought 

he would “learn more” from simulations, he believed that both algebraic and visual 

approaches are useful because they lead to different types of understanding. For this 

reason, Ethan thought that a blended approach would be optimal for learning inference. 
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Anne 

Student Background 

Anne is 23 years old. She used to be in the Liberal Arts program, but recently 

switched to the Nursing program. She also has been working as a writing tutor for the 

past two years. Anne has not taken any college level math courses, but completed 

developmental level classes which are equivalent to pre-Algebra and Algebra I.  

Anne shared that she does not “find pleasure in mathematics” and gets easily 

“frustrated with it.” She feels she can do mathematics, but it makes her “feel unhappy,” 

mainly because it does not make sense, and she does not find it relevant to her life.   

Binomial Simulation 

Exploring the simulation. Even before we started working with the simulation, 

Anne correctly predicted that for a fair coin out of ten tosses “most likely we get between 

four and six heads.” She was easily able to generate the sampling distribution and 

interpret its meaning. When I asked her to make a conclusion about the fairness of a coin 

producing nine out of ten heads, she correctly reasoned, “I would think it would be 

loaded. I mean, it could be fair because this could just happen one time, but nine out of 

ten for the first time seems a little bit unlikely.”  

Anne interpreted the tail proportion of 0.7% as “seven out of 1000 times we are 

going to get nine or ten out of ten heads for a fair coin, which is very unlikely.” Not only 

did she make the correct interpretation, but she also kept emphasizing that this likelihood 
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was calculated for a fair coin, making a perfect connection between the result of the 

experiment and the empirical distribution. 

For eight heads Anne concluded, “It’s not as unlikely as with nine heads, but I 

would still find it unlikely.” However, for seven heads Anne reasoned, “This can easily 

happen with a fair coin, so it could be fair.” 

 Despite having a weak mathematical and no statistical background, Anne’s 

reasoning was flawless at every stage and incorporated uncertainty in her conclusions. 

She transferred this logic to the drug example. She expected variability in drug X from 

one group of patients to another as demonstrated below:  

People will be affected differently. There are so many patients with different 

chemistries. Say, African Americans we treat differently, Caucasians we treat 

differently, and then Native Americans also differently. There are genetics and so 

many other factors, like lifestyles… 

Anne correctly thought that with drug X most likely out of 20 patients eight 

would improve. She then constructed a sampling distribution and explained, “The 

horizontal axis shows the number of successes in 20 patients and the vertical axis shows 

the number of times it happened.” She then calculated the tail proportion for 12 patients 

to be 6% and said, “I am inclined to say that Y is probably better than drug X because it’s 

unlikely that you would get 12 on the first attempt with X.”  

Anne related drug Y results with the distribution of drug X. She also recognized 

that drug Y was tested only once on 20 patients and  that this result would be unusual 

with X. Anne considered 10% as a cutoff between what is reasonable and what is not. 

She concluded that with 13 improvements (tail proportion of 2%) she “would be more 
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confident in saying that drug Y is better.” However, with 11 patients (14%) she reasoned, 

“I would not say Y is better. Also, it’s a new drug and might be more expensive than X.”  

Anne went beyond statistical significance and considered practical implications of 

the results. The combination of her nursing background and her strong written and 

communication skills might be the reason for her exceptional inferential logic. 

Student’s view of the simulation. Anne reported liking the binomial simulation 

because “it’s simple, it explains to you each number, and has everything you need.” Anne 

liked that the program provided written explanations for what the input values 

represented, such as “Number of successes,” “Sample size,” and “Number of samples.” 

She also appreciated that the simulation showed how the graph was constructed and 

calculated the probability for different outcomes.  

Student’s learning preference. When I inquired whether Anne would prefer 

learning inference through simulations, formula-based method, or with both approaches, 

she responded: 

I would definitely prefer simulations because I really get bogged down trying to 

memorize every formula and I also find it annoying, because it’s not like we are 

living in 1800’s, and we don’t have access to the internet or to books that have 

formulas in them. I do better problem-solving just to trying to talk it out versus to 

take that information and put it on to paper and try to figure it out like a math 

problem with a formula.  

Anne also shared that many times in a math class the problems have very 

unreasonable answers, such as “a person buying 1000 watermelons,“ which often 

confused her. She frequently encountered unauthentic math problems that did not make 

sense, and perhaps that is why she finds math irrelevant. With this program, she did not 
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see any formulas or symbols and only used logic to reach conclusions. Consequently, 

Anne reported favoring the use of only simulations for learning inference.  

Randomization test  

Exploring the simulation. Although Anne predicted that based on the data the 

fish oil diet appeared to be better, she recognized that “it also depends on people they 

have” in the two groups. She understood the reshuffling process, “They are just moving 

the numbers around. I am trying to figure out why you would do this.” Once I prompted 

Anne that we wanted to find the possible differences in means for equally effective diets, 

she quickly understood the reason, stating, “So assuming they are equally effective, it 

does not matter which group they [the participants] are in.” 

Anne explained the distribution of mean differences, “So this axis [pointing at the 

horizontal axis] is saying what are the shuffled differences and over here [pointing at the 

vertical axis] is the number of times that you got that difference.” Without my help, she 

knew she had to compare the result of our experiment to this graph and said, “So -7.7 is 

what we got… so that tells me that fish oil is making a difference because if we assume 

that it does not matter then it is really unlikely that we are going to get this [result].” 

Anne clearly understood the logic of inference and reasoned though the problem 

with minimal guidance.  

Student’s view of the simulation. Although Anne thought that the randomization 

simulation was slightly more difficult that the binomial one, she found it helpful. She 

explained, “I really like it. I feel it helped me understand the concept more. If we were 
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talking about it in class, I don’t know if I would get it. This [program] really helps me see 

why the fish diet it better.” 

Anne also liked that the program calculated means and provided the graph so that 

she could concentrate on the reasoning process rather than on performing computations. 

Student’s learning preference. When I shared that some students think that 

manual computations help them learn, she responded: 

I don’t feel formulas help me learn better. I feel formulas frustrate me. I learn by 

actually thinking about it and I remember how to do it, and why we did it later. I 

feel if the formulas don’t make sense, and you won’t remember them later. I feel I 

usually spend more time memorizing each formula and each symbol and not 

really focusing on the problem. I think some students like formulas because they 

are like an anchor for them. It’s easier for some people –  I just need to plug in 

numbers, but I don’t need to think what they mean. 

Anne’s argument is reasonable. Instructors Morgan and Scott also shared that 

many students often find plugging numbers in the formulas easier, but do not want to 

think what the answer represents. However, according to the GAISE report (2005), the 

introductory statistics course should develop students’ statistical thinking. The inclusion 

of formulas in an elementary statistics course might hinder the reasoning of students like 

Anne. She was very happy to hear that some colleges in the United States are 

implementing simulation-based curriculum and wished that CCCC would adopt it as 

well. 

 

 

 



  

 

 

152 

Student Cross Case Analysis 

Below I present a student cross case analysis in order to answer the following 

research questions:  

3) What do community college students who took an introductory statistics course 

recall and understand about formal hypothesis testing? 

4) How do community college students with and without a statistics background 

understand the functionality and logic of the simulations? 

a. What do students understand and what difficulties do they experience 

when learning inference through a simulation-based approach? 

b. To what extent do students who had exposure to formal inferential 

methods make connections between informal and formal inferential 

methods?  

c. How do students who had exposure to formal inferential methods compare 

and contrast formal and simulation-based inferential approaches?  

Research Question 3.  What do community college students who took an 

introductory statistics course recall and understand about formal hypothesis 

testing? 

The following two assertions were developed by examining the four students’ 

responses: 

Assertion 1. Most of these students reported having difficulty understanding hypothesis 

testing during the course. 
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Lena, who received an A in the course, was the only student who reported 

understanding statistical inference in class. The other three students shared having 

various problems. Natalie and Derek reported not understanding the meaning of the 

concepts and the reasons behind procedures for hypothesis testing in class. While Natalie 

was able to follow steps and perform computations, Derek had a hard time remembering 

symbolic representations and identifying which pieces of information were given. Casey 

struggled with identifying which test was appropriate to use, as all of them used similar 

procedures.  

Assertion 2. During the interviews, students remembered very little about inference. In 

addition, most of their retained knowledge was factual rather than conceptual. 

None of the students could fully explain the purpose of the hypothesis testing and 

the meaning of the concepts associated with it. Lena had a partial understanding of 

inferential ideas. She recalled that hypotheses had to be mutually exclusive and that we 

examined whether our statistic was reasonable.  

 All students eventually recalled that the small p-value led to rejection of the null 

hypothesis, but did not remember why and what the null hypothesis represented. Derek 

also recalled that hypothesis testing could be done two different ways, and that both 

critical value and p-value methods involved five steps. In addition, he remembered that 

the null hypothesis was never proven. 
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Natalie recalled statistical terms, such as p-value and significance level, but could 

not remember what they represented. Although Casey reported understanding the 

concepts in class, she could not explain any of them.  

Research Question 4.  How do community college students with and without a 

statistics background understand the functionality and logic of the simulations? 

Table 9 depicts a cross-case matrix of students’ understanding and difficulties as 

they move through the four stages of inferential reasoning. I coded student responses on a 

scale from zero to three based on the amount of guidance they needed to understand the 

functionality and logic of the simulation. The codes are explained in Table 8 below. 

Table 8 

Coding Descriptions  

Score Description 

3 Understood with no guidance 

2 Understood with minimal guidance 

1 Understood but required a lot of guidance 

0 Did not understand 

 

 Five assertions were developed after analyzing student responses across cases. 

Assertion 1. While exploring the binomial simulation, most students had little difficulty 

at the recognition and integration stages, but struggled during the comparison and 

explanation stages.  

 Below I describe students’ understandings and difficulties during each stage of 

the conceptual framework.  
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Table 9 

Student Matrix across Four Stages of the Conceptual Framework 

 Lena Natalie Casey Derek Ethan Anne 

B
in

o
m

ia
l 

S
im

u
la

ti
o
n

 Recognition 3 3 2 3 2 3 

Integration 

 

3 3 2 3 2 3 

Comparison 2 2 1 1 1 3 

Explanation 3 2 2 2 2 3 

R
a
n

d
o
m

iz
a
ti

o
n

 T
es

t 

Recognition 3 3 3 3 3 3 

Reshuffling 2 0 2 

 

2 2 2 

Integration 3 3 3 3 3 3 

Comparison 3 3 3 3 3 3 

Explanation 2 3 1 2 3 3 

 

Recognition stage. Most of the students could easily interpret the screen 

representations and sampling distributions, but others had difficulty. Casey initially was 

unable to distinguish sample size from the number of experiments. She also incorrectly 

indicated that the horizontal axis of the empirical distribution for the drug example was 

“the number of trials” and the vertical axis was “the number of patients.”  

Likewise, Ethan originally struggled with the binomial distribution indicating that 

the vertical axis represented the number of failures. However, both Casey and Ethan 

corrected their mistakes after resetting the program and reconstructing the graph.  
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Integration stage. The integration stage was relatively straightforward for most 

students. While all of them could distinguish likely outcomes from those that are 

unlikely, Casey and Ethan struggled with tail proportions. Casey considered an outcome 

to be unlikely if it had less than 50% of occurrence.  Ethan was unable to associate the 

probability of an outcome with the corresponding tail proportion. Initially, it was hard for 

him to comprehend that as we move from left to right along the horizontal axis, the tail 

proportion decreases.  

Comparison stage. Students found the comparison stage most problematic and 

required guidance to relate the results of the experiment to the empirical distribution.  

When asked to make a conclusion about fairness of a coin producing nine out of 

ten heads, Lena tried to calculate the probability of the coin being fair. However, 

computing this likelihood is impossible. Likewise, Natalie thought that the distribution of 

a fair coin was irrelevant because a coin resulting in nine heads was unfair. While Natalie 

was convinced that that coin was unfair, Ethan reported that the distribution of the fair 

coin was not useful because we did not know if our coin was fair. Casey also struggled to 

explain why we use the distribution of drug X to make an inference about the 

effectiveness of drug Y.  

Another problem was comparing the result of the outcome to the mean of the 

empirical distribution without considering variability in results for the assumed 

parameter. Three students (Natalie, Casey, and Ethan) reported that drug Y was more 

effective than X because drug Y improved 60% of the patients, whereas X only helped 
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40% of people. These students failed to recognize that even though drug X has a true 

success rate of 40%, it would not produce exactly eight improvements in every sample of 

20 patients. Ethan was confused with a similar issue. He did not recognize which success 

rate represented a sample result and which one was calculated for the larger population. 

When comparing drug Y to drug X, he wanted to generate a distribution for drug Y, 

indicating 60% as its true improvement rate.  

 Half of the students initially struggled with a cut-off value between significant 

and non-significant results, especially in terms of a tail probability.  For Derek, initially 

the cut-off was 30% or 40%. According to Casey, the fair coin had to produce exactly 

five heads out of ten tosses. She did not realize that 50% probability is a theoretical value 

and does not happen for each set of ten tosses. Finally, Ethan also considered a high tail 

proportion (such as 16%) as a significant result because he was trying to prove the coin 

was fair. 

Explanation stage. There were a couple of problems with student reasoning at 

this stage, and they are explained below. First, students had difficulty explaining 

nonsignificant results. Casey would only say that the coin was fair if exactly 50% of the 

times it landed on a head. Similarly, Derek and Ethan expected a high tail proportion 

(more than 30%) to conclude that the coin was fair. The problem with their reasoning was 

that they were trying to prove the fairness of the coin instead of trying to disprove it with 

extreme results. Derek explained that he thought a tail proportion of 16% was not large 

enough and thought it was “risky” to conclude that the coin was fair. The finding that 
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learners struggle more with non-surprising outcomes was found in other studies (Budgett 

et al., 2013; Holcomb et al., 2010). Fortunately, with a little guidance, all students were 

able to clear their confusion and correctly interpret results.  

Another problem with student reasoning was using deterministic rather than 

probabilistic language in making conclusions. For instance, Natalie initially deduced, 

“the coin is definitely unfair,” failing to recognize that even a fair coin could produce 

nine out of ten heads. While Casey and Ethan did not use the term “definitely,” they 

initially concluded that drug Y was more effective than X without considering the chance 

explanation. 

Summary. While all students eventually were able to understand the functionality 

and logic of the binomial simulation, they initially experienced several difficulties that 

are summarized in Table 10 below. 

Table 10 

Student Initial Difficulties with the Binomial Simulation 

 

Recognition  Confusion between sample size and number of samples 

 Inability to interpret the y-axis of a sampling distribution 

Integration  Inability to relate a tail proportion to the likelihood of the 

results 

Comparison  Inability to relate results of the experiment to the sampling 

distribution 

 Comparing the result to the mean of the sampling distribution, 

without accounting for variability 

 Choosing a high cut-off between significant and non-significant 

results 

Explanation  Attempt to prove the null hypothesis 

 The use of deterministic language 
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Assertion 2. While exploring the randomization simulation, all students were comfortable 

at the recognition, integration, and comparison stages. However, some of them struggled 

to understand the rerandomization process and had difficulty drawing conclusions.   

 Below I describe students’ understandings and difficulties during each stage of 

the conceptual framework.  

 Recognition stage. While all students easily understood screen representations 

and correctly interpreted the empirical distribution, they required scaffolding for the 

construction of the distribution. For this reason, I represented students’ results separately 

for screen representations and reshuffling as shown in Table 9. 

 Natalie struggled with the process the most and did not think the participants 

could be re-assigned into different groups without repeating the experiment. In addition, 

she did not feel comfortable assuming the equivalence of the two diets because this was 

the question we were investigating in the first place. 

Integration stage. None of the students required guidance at the integration stage. 

Even Casey and Ethan, who experienced difficulties with tail proportions during the 

binomial simulation were able to reason about probabilities with the randomization tests, 

showing an improvement in their understanding of the concept. 

Comparison stage. All students were able to relate the observed mean difference 

in blood pressure reduction levels with the empirical distribution. As they explained, they 

became familiar with the logic from the binomial simulation. It only took the participants 

couple examples to become comfortable with the reasoning process.  
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Explanation stage. Although students improved their reasoning with the 

randomization simulation by incorporating the probabilistic language and considering the 

chance explanation, other issues immerged.  

While Lena realized that the results of the study were very unusual, she was 

uncomfortable concluding that the fish oil diet was more effective than the regular oil 

diet. It is interesting that she exhibited a commitment to the null hypothesis for the 

randomization example, but not the binomial one. This probably happened because the 

randomization test is more convoluted. During the construction of the sampling 

distribution Lena kept stressing that the graph is for equal means and reasoned that if the 

groups had the same effectiveness, the mean difference should fall on that curve. She 

then concluded that since the difference of -7.714 fell on the graph, the two diets were 

equally effective.  

Casey and Derek recognized that -7.714 was an unusual outcome but incorrectly 

concluded that the diets were equally effective. Both students remembered from their 

statistics classes that a low p-value disproved a hypothesis. They incorrectly decided to 

reject the claim that the fish oil was more effective since this was the original research 

question. However, once I prompted them to again interpret the graph of the differences, 

Derek immediately arrived at the correct conclusion, whereas Casey needed more 

guidance. She struggled to understand that the graph was constructed assuming equally 

effective diets because we used the original data for the construction, which clearly 

depicted that the fish oil was better. It is interesting to observe that students without prior 
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statistical knowledge reasoned better than those who have taken statistics. Ethan and 

Anne did not think about what null and alternative hypotheses represented. They 

understood that the empirical distribution depicted mean differences for equally 

successful diets and correctly concluded that an unusual outcome of the experiment 

disproved the hypothesis of equal effectiveness. 

Summary. While the students demonstrated an improvement in reasoning at the 

recognition, integration, and comparison stages, three of them initially struggled at the 

explanation stage. In addition, all students required an explanation for the reshuffling 

process. Student difficulties with the randomization simulation are depicted in Table 11 

below. 

Table 11 

Student Initial Difficulties with the Randomization Simulation 

 

Recognition  None 

Reshuffling  Inability to understand the logic behind reshuffling in the 

randomization test 

Integration  None 

Comparison  None 

Explanation  Commitment to the null hypothesis even with low tail 

proportions 

 Disproving a wrong hypothesis 
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Assertion 3: All students expressed mostly positive views of SBI, citing various benefits 

of the simulations. 

Table 12 below summarizes student attitudes toward each simulation. 

Table 12 

Student Views on Simulations 

  

Lena Natalie Casey Derek Ethan Anne 

B
in

o
m

ia
l 

S
im

u
la

ti
o
n

 

  

 Easy to use 

 Good visual  

 Shows 

construction 

of the 

distribution 

 Easy to 

understand 

 Helpful 

visual 

 Helps 

understand 

what the p-

value 

represented 

 confusing 

because it has 

“lots of 

numbers”  

  hard time 

differentiating 

number of 

samples and 

sample size 

 Simple 

 Good visual 

 Does not 

require 

memorization 

of symbols 

 Clearly 

shows that 

the graph is 

constructed 

under some 

assumption  

 

 Easy to 

use 

 Helpful 

visual 

 

 Provides 

written 

description of 

input values 

 Calculates 

probabilities 

 Shows 

construction 

of the graph 

 

R
a

n
d

o
m

iz
a
ti

o
n

 T
es

t 

 More 

complex 

than the 

Binomial 

simulation 

 Needs more 

guidance 

 Shows 

construction 

of the 

distribution 

 More 

confusing 

than the 

binomial 

simulation 

 Easier than 

the binomial 

simulation  

 Depicts the 

original data 

together with 

the sampling 

distribution 

 Shows why 

the graph is 

normal 

 Performs 

computations 

 

 

 Easier 

than the 

binomial 

simulation  

 The graph 

for the 

original 

data is 

confusing 

 Slightly more 

difficult than 

the binomial 

simulation 

 Performs 

computations 

 Good visual  

 Helpful for 

understanding 

the reasoning 

process 

 

 

Binomial Simulation. All students except Casey found the binomial simulation 

useful for its helpful visuals and simplicity. Natalie reported that the program clearly 
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explained the meaning of a p-value. Lena, Derek, and Anne appreciated that the 

simulation showed how the empirical distribution was constructed. Anne also liked that 

the screen not only showed the symbols for input parameters, but explained what each 

symbol represented. Derek appreciated that the program made it clear that the distribution 

was constructed based on a certain conjecture (A coin is fair or the two drugs have the 

same success rate), and we compared the results of our experiment to that hypothesis. 

Casey was the only student who initially though that the program was confusing and had 

a hard time understanding what each parameter represented.  

Randomization test. Three students (Lena, Natalie, and Anne) thought that the 

randomization simulation was more difficult than the binomial program compared to two 

students (Casey and Ethan) who had the opposite view. Nevertheless, all students 

reported that the simulation was beneficial for various reasons: (1) Shows the 

construction of the empirical sampling distribution (Lena and Derek), (2) Displays the 

original data together with the sampling distribution (Lena and Derek), (3) Performs 

computations (Derek and Anne), (4) Contains good visuals (Anne), and (5) Makes it easy 

to understand the reasoning process (Anne).  

Natalie thought that the program would be easier if it did not show how the graph 

was constructed. She was confused with the re-assignment of the participants and felt that 

the process diverted her from the main goal. She though it would be more beneficial if 

the static graph of the mean differences was presented instead of the dynamic visual of 

re-grouping.   
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Derek reported that the graph of the original data was confusing because the 

vertical axis represented two different diets but was able to read the graph without any 

assistance. 

Assertion 4: Most students reported that formal and informal methods have their own 

strengths and weaknesses. For this reason, five out of six students expressed preference 

for a blended learning approach. 

 Students provided various benefits and drawbacks for each learning approach as 

illustrated in Table 13. Although Ethan and Anne have not been exposed to formal 

hypothesis testing, they made a comparison between SBI and formula-based learning in 

their algebra classes. 

All six students thought that simulations make it easier to understand inferential 

concepts because of their visual aids. However, not all learners are used to this learning 

method. Ethan expressed that he was used to learning mathematics algebraically and the 

reasoning through a solution process was new to him. Similarly, Casey reported that 

students who are not used to working with technology might experience a steep learning 

curve with simulations. Finally, Natalie shared that some visuals are helpful and others 

are overwhelming. The binomial simulation helped her understand the concepts, whereas 

the reshuffling of data in the randomization test confused her.  
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Table 13 

Pros and Cons of SBI and Formal Inferential Methods 

 

 While Derek and Anne appreciated that the simulations performed computations 

for them, Natalie and Casey reported that manual calculations are needed as they enhance 

learning. Similarly, Lena expressed that working out problems by hand helps reinforce 

the concepts learned through visualizations. Finally, Ethan thought that it was important 

to know theory behind hypothesis testing, which simulations do not provide. 

 All students except Anne viewed a blended approach as an optimal method for 

learning statistical inference as illustrated in Table 14. Lena and Casey expressed that 

depending on their learning preference, different students would have varying benefits 

from the two methods. While formula-based approach might work the best for 

mathematically inclined students, simulations would benefit visual learners and those 

 

Pros Cons 

S
B

I 

 Easy to understand concepts because 

of the visuals (All students) 

 Does not require memorization of 

formulas and symbols (Natalie, Derek, 

Anne) 

 Does not require manual computations 

(Derek, Anne) 

 Frees up time for reasoning (Anne) 

 Too many visuals can be overwhelming 

(Natalie, Ethan) 

 Difficult for less computer savvy students 

(Casey) 

 Requires sophisticated reasoning (Ethan) 

 Does not provide theory (Derek) 

F
o
rm

a
l 

In
fe

re
n

ce
 

 Easy to Come up with the answer 

(Ethan) 

 Deepens knowledge by providing the 

math behind the process (Derek) 

 Formulas might be complex and require 

memorization of symbols (Ethan, Anne) 

 Formulas often don’t make sense (Ethan, 

Anne) 

 Formula-based methods hinder learning as 

the emphasis is on steps and procedures and 

not on understanding (Anne)  
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who are proficient with technology. In addition, the combination of the two methods 

would help students deepen their understanding of inference. 

Similarly, in Ethan’s view each method requires a different type of understanding. 

While formula-based approach stresses knowledge of procedures and the ability to 

perform computations, SBI promotes conceptual understanding and critical thinking 

skills. He also pointed out that it is often easier to come up with a right answer with 

formulas, but the result might not always make sense, while with SBI, you have to have a 

good grasp of concepts in order to reason correctly. Although it is more difficult to obtain 

the right conclusion with simulations, they ensure comprehension of the ideas.  

Anne was the only student who was in favor of learning only through simulations. 

She expressed that memorizing symbols and working out formulas prevent her from 

thinking logically and reasoning about problems. Out of the six students, Anne 

demonstrated the highest degree of understanding in all stages of the process despite 

having the lowest mathematics pre-requisites.  

Table 14 

Students’ Learning Preference 

 

 

 

 Lena Natalie Casey Derek Ethan Anne 

Formal       

Binomial       

Randomization       
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Assertion 5: After using the simulations all students who took an introductory statistics 

course made some connections between SBI and formal methods and understood better 

the concepts learned in their statistics classes. 

 All students realized that a tail proportion in the simulations corresponded to a p-

value in formal methods. While all of them remembered, “when p is low the null must 

go,” the program helped them understand why that was the case. As Derek reported, he 

had no idea prior to using the simulation what a p-value represented. Part of it was 

because he never realized that the sampling distribution was constructed for the null 

hypothesis. With formal methods, it is often unclear what z or t distributions refer to, as 

they are standardized. The simulations depict non-standardized distribution and therefore 

make it more clear that they are constructed for the value of the parameter stated in the 

null hypothesis.  

 Like Derek, Lena also did not remember much about null and alternative 

hypotheses. However, once she realized that it is used to construct the graph, she was 

able to state it correctly for every problem. 

 Casey remembered the least about formal tests, so making any connections was 

difficult for her. She did realize that a tail proportion was equivalent to a p-value and 

seem to understand why the null was rejected with low tail proportions. 

 Trying to make connections between formal and informal methods can impede 

student reasoning. For instance, Natalie found a tail proportion to be small and rejected a 

wrong claim. She remembered a low p-value disproved some hypothesis, but incorrectly 
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rejected the alternative hypothesis. When I encouraged her to reason based on sampling 

distribution instead of trying to remember what she learned in class, she made the correct 

conclusion.  
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6. RECOMMENDATIONS  

Results of the study suggest the following recommendations for teaching 

inference in an introductory statistics course: 

Recommendation 1: A combination of formal and informal inferential 

methods should be used in an introductory statistics course. 

The results of the study revealed several benefits of teaching hypothesis testing 

through simulations. Instructors and students valued the visual representations of 

statistical concepts. They appreciated that the programs clearly depicted how empirical 

distributions were constructed and the assumption they relied on. Another advantage of 

the simulations is that they use actual data to obtain a sampling distribution instead of 

relying on mathematically ideal but practically unrealistic normal distributions. Finally, 

the simulations perform necessary computations allowing users to focus on the 

interpretation of concepts and reasoning. Incorporating simulation in teaching hypothesis 

testing directly aligns with GAISE’s (ASA, 2005) recommendations, which include 

utilizing technology, using actual data, and stressing conceptual understanding of 

statistical ideas. 

While the study participants expressed mostly positive views on the simulations 

and demonstrated an understanding of concepts, they did not support abandoning formal 

methods for various reasons.  Instructor Scott felt that statistics is based on mathematics. 

Therefore, exposing learners to the mathematical theory behind statistical methods is 

crucial. Instructor Cassidy shared that the formal methods provide structure, allowing 
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students to follow specific steps and observe similarity between various statistical tests. 

Students, on the other hand, felt that formal methods provide a different representation of 

the material and help reinforce concepts. 

Morgan was the only instructor advocating using only simulation. While I agree 

with her that students who will never need to perform statistical tests only need to 

understand the main logic of inference, some students taking an introductory statistics 

course are pursuing careers requiring further statistics knowledge. My concern is that 

students taking advanced statistical courses will lack required pre-requisite skills and will 

have difficulty transitioning from SBI to theory-based methods. Currently there are no 

simulation-based methods for more complex tests such as MANOVA, multiple 

regression, and others. Therefore, knowledge of symbols, theoretical distributions, and 

test statistics is necessary for more advanced statistical procedures. For this reason, a 

curriculum that is solely based on simulations might disadvantage students in need of 

further statistical training.  

Some researchers argue for abandoning the formal methods so that students focus 

on the logic and not memorization of symbols and steps (Cobb, 2007; Garfield and Ben-

Zvi, 2008). The results of the present study showed that students understand the logic 

fairly quickly. The participants were exposed to two simulations for less than an hour and 

demonstrated an improvement in reasoning. Incorporating SBI into the curriculum should 

not take a substantial amount of time and could be achieved by giving up the use of tables 

and manual computations, which instructors like Cassidy still rely on. Instructors can use 
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simulations to introduce the logic of inference and core inferential concepts, after which 

they can switch to theory-based methods, making connections between the two. This way 

students will be exposed to both methods, empirical and theoretical, and will have an 

opportunity to understand the meaning of the concepts as well as the mathematics behind 

them. Finally, by combining traditional and simulation-based methods, the curriculum 

will no longer be centered on a normal distribution, as criticized by Cobb (2007), and will 

incorporate randomized data production.  

Recommendation 2: A simulation-based approach should be introduced 

before formal methods. Furthermore, the binomial simulation should precede the 

randomization test.  

Although the purpose of this study was not to determine the details of 

implementing SBI, the results revealed that students exposed to formal methods did not 

understand SBI better than those who did not have statistical background. On the 

contrary, students with no prior inferential knowledge provided a better explanation of 

the results. Casey and Derek disproved an incorrect statement with a low tail proportion. 

Trying to recall procedures learned in class hurt their reasoning. On the other hand, Ethan 

and Anne did not have this problem because they did not know what the null and 

alternative hypotheses represented and simply relied on logic to make the right 

conclusion. While results of a small and voluntary sample cannot be generalized to all 

students, it is natural to introduce a big idea of inference using simulations before going 
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into details of symbols, formulas, and terms. Instructors Scott and Morgan also 

recommended working with simulations before introducing formal methods. 

Most of the participants of the study found the binomial simulation more intuitive 

than the randomization test. The binomial simulation is designed for univariate data 

compared to the randomization test, which involves the comparison of two populations. 

Therefore, it is reasonable to introduce the binomial simulation before the randomization 

program.   

Recommendation 3: Instructors should be offered a professional 

development opportunities (e.g., workshops, small group sessions, instructional 

coaching) for understanding and implementing SBI. 

Instructors might need assistance in understanding simulations and using them in 

their classrooms. Three out of four interviewed instructors were initially puzzled with the 

re-shuffling in the randomization simulation. While two of them (Morgan and Clark) 

understood the reasoning process fairly quickly, Cassidy struggled with it even after my 

explanation. She felt uncomfortable using simulations for teaching inference because this 

approach was new to her. 

Teachers should be not only comfortable with using the simulations, they should 

become aware of students’ common difficulties with them. Although most students 

eventually were able to reason with simulations, the visuals initially created 

misunderstanding in some of them (see Tables 10 and 11). After observing the 

construction of the empirical distribution for the number of heads of a fair coin, Derek 



  

 

 

173 

incorrectly concluded that the coin we were testing was also flipped ten times repeatedly. 

Similarly, Ethan thought that drug Y was testing on many sets of 20 patients. This agrees 

with Rossman and Chance’s (2014) finding that some students incorrectly believe that 

simulation replicates a research study. 

Teachers need to be able to scaffold students through the reasoning process, 

especially when relating results of a study to an empirical distribution. Five out of six 

students needed guidance at the comparison stage. They either found the outcome from 

an experiment irrelevant to the sampling distribution or failed to account for variability in 

the distribution. Finally, students had difficulty reasoning with non-significant results, 

choosing a high cut-off between significant and non-significant outcomes and attempting 

to prove the null hypothesis. Instructors should be mindful of students’ difficulties in 

order to foster their understanding of inferential concepts. 

Recommendation 4: Continue to explore student understanding and 

difficulties with SBI. 

 Although the study showed that students are able to understand inferential 

reasoning with simulations, students’ comprehension of hypothesis testing should be 

examined further by future studies. Transitioning from SBI to formal methods might 

create confusion and a cognitive overload. Instructor Scott expressed a concern for using 

the randomization simulation because conceptually it is different from its corresponding 

formal test. In addition, Natalie was very confused with regrouping participants in the 

fish oil example. Even after my explanation, she still did not agree that reshuffling the 
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participants was justifiable. Like instructor Scott, she thought that while the binomial 

simulation was helpful for reinforcing concepts, the randomization program introduced a 

different idea, which she found counterintuitive. It is possible that seeing the simulation 

before the formal test would be more beneficial, but this possibility requires further 

investigation. 
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APPENDIX A 

Instructor Interview Questions 

Before Simulations 

1. How long have you taught an introductory statistics course? 

2. Describe your general experience with teaching an introductory statistics 

class.  

a. What statistical topic do you like teaching most and why?  

b. What statistical topic do you find most challenging to teach? Why? 

3. Describe your students’ experiences with the course. 

a. Do you believe students find the course more or less challenging than 

other mathematics courses? Why? 

b. In your experience, what are some statistical topics students find 

generally easy to understand? Why? 

c. What are some areas that student struggle with? Why? 

During Simulations 

While showing the simulations to the instructors, I will ask them probing 

questions to assess their understanding of SBI. I will also ask them to conduct a 

simulation analysis to investigate the following problem: 

Suppose that drug X is known to produce improvement in 40% of patients with a 

particular disease. A researcher wants to show that drug Y is more effective than drug X. 

He administers drug Y to 20 patients and observes improvement in 12 patients. Can the 

researcher conclude that drug Y is better than drug X?   
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After Simulations 

1. In general, what do you think about these simulations? 

a. What, if anything, did you like about each of these two simulation-

based inferential methods? 

b. Is there anything you find unclear or confusing about each of these two 

simulations? 

2. Do you think a simulation-based method of teaching inference will benefit 

students or present more challenges for them than traditional methods? 

3. Do you think you might use SBI in your classes? If so, how? 

a. Would you use SBI instead of or in addition to formal methods of 

inference?  

Student Interview Questions 

Pre-Simulation Questions 

1. Which college-level math courses have you taken? 

2. Have you taken an introductory statistics course? If yes, when and why? 

3. What was your experience? 

a. Which topics did you find easy? Why? 

b. Which topics did you find difficult? Why? 

c. What do you remember about hypothesis testing? 
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 [Make sure the student addresses the purpose of hypothesis testing, the reason for 

setting up the null and alternative hypotheses, possible conclusions that are made when 

conducting a hypothesis test, and the meaning of p-value] 

Guided Exploration of SBI (Binomial Simulation) 

1. Given a fair coin, what is the probability of tossing a head? 

2. Suppose you tossed a fair coin 10 times. What results do you expect to get?  

a. How many heads and how many tails do you think you are most likely 

to obtain? Why? 

b. Is it more likely to get 6 heads or 7 heads? Why? 

c. Is it more likely to get 9 heads or 1 head? Why? 

[The researcher starts simulating 10 tosses of a fair coin using this simulation 

http://www.rossmanchance.com/applets/OneProp/OneProp.htm. Then the researcher 

prompts the student to repeat the experiment several times and to interpret the dot plot of 

the empirical sampling distribution] 

3. If we keep tossing the coin 10 times and recording the number of heads, what 

do you think the shape of the graph will look like? 

 [Ask the students to repeat this process until the total number of trials is equal to 100]  

4. What percentage of the times did we obtain 5 heads? 9 heads? 10 heads?  

5. Now imagine that you have a coin, but you don’t know if it’s fair. You toss it 

10 times and obtain 9 heads. What is your conclusion? 

a. The coin favors heads. 

b. The results occurred by chance even if the coin is fair. 

6. What is the likelihood of obtaining 9 or 10 heads if the coin is fair? 

7. What does this likelihood tell you about the “fair coin” assumption? 

8. Can you summarize the reasoning process you used to reach the conclusion? 

9. What if, when we tossed 10 coins, we obtained 8 heads instead of 9? Would 

your conclusion change? If so, how? If not, why? 

http://www.rossmanchance.com/applets/OneProp/OneProp.htm
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 [If the student took a statistics course, ask question number 10. Otherwise, present the 

student with the follow-up task] 

10. Do you see any connection between this example and hypothesis testing 

methods you learned in your statistics class? 

a. What are the hypotheses in this example? 

b. What is an approximate p-value? 

Follow-up Task 

Suppose that drug X is known to produce improvement in 40% of patients with a 

particular disease. 

1. How many improved patients is it possible to get by administering drug X to 

a sample of 20 patients?  

2. How many patients is it likely to get by administering drug X to a sample of 

20 patients?  

3. A researcher administers drug Y to 20 patients and observes improvement in 

12 patients. Can the researcher conclude that drug Y is better than drug X?  

Guided Exploration of SBI (Randomization Test) 

[Ask the student to read the following] 

 

Researchers investigated whether people on a fish oil diet experienced greater reductions 

in blood pressure than those on a regular oil diet. They randomly assigned 14 male 

volunteers with high blood pressure to one of two four-week diets: a fish oil diet and a 

regular oil diet. Each participant’s diastolic blood pressure was measured at the beginning 

and end of the study, and the change was recorded. The resulting differences in diastolic 

blood pressure (measured in mmHg) were:  

Fish Oil Diet -8 -12 -10 -14 -2 0 0 

Regular Oil 

Diet 

6 0 -1 -2 3 4 -2 
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1. What do these numbers represent? (What do the numbers -8, 12, 6, 0 mean?) 

2. Just by looking at these numbers, which diet do you think is more effective in 

reducing blood pressure? 

 

[Enter the following data into the randomization applet: 

http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2 ] 

Treatment BP-Reduction 

Fish -8 

Fish -12 

Fish -10 

Fish     -14 

Fish -2 

Fish 0 

Fish 0 

Reg 6 

Reg 0 

Reg -1 

Reg -2 

Reg 3 

Reg     4 

Reg -2 

 

3. What is the mean difference between the two groups?  

4. Could this difference occur by chance, even if both of these diets are equally 

effective? 

5. If both treatments are equally effective, what possible difference in blood pressure 

reduction can we get by randomly assigning these 14 participants to two different 

treatment groups?  

[The researcher asks the student to re-assign the participants into groups] 

6. What does the new graph show?  

a. What do the red and black squares represent?  

b. What is the mean difference between groups? 

http://www.rossmanchance.com/applets/AnovaShuffle.htm?hideExtras=2
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7. If we continue to re-assign participants in groups and to record the mean 

difference, what do you think the graph will look like? 

a. What is the most likely difference between the means? Why? 

8. In our study the mean difference between groups was -7.714. What is the 

likelihood of obtaining this mean difference given that the two diets are equally 

effective?   

9. Can you conclude that the fish oil diet is more effective in reducing blood 

pressure than the regular diet? 

10. Can you summarize the reasoning process we used to reach the conclusion? 

[If the student took a statistics course, ask question number 11.] 

11. Do you see any connections between this example and hypothesis testing you 

learned in your statistics class? 

a. What are hypotheses? 

b. What is an approximate p-value? 

Post-Simulation Questions [will be asked after each simulation] 

1. In general, what did you think of this simulation? 

2. What, if anything, did you like about the simulation-based method? 

3. Is there anything you find unclear or confusing about this method of hypothesis 

testing? 

4. Do you think the simulation methods helped you understand hypothesis testing? If 

so, how? 

[If the student took an introductory statistics course, ask question 5] 

5. Do you prefer the simulation methods or formal hypothesis testing approaches 

when studying inference, or do you think both methods should be taught in an 

introductory statistics course? Explain why. 
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APPENDIX B  

 

Informed Consent Agreement for Instructors 

Please read this consent agreement carefully before you decide to participate in the 

study. 

Purpose of the research study: The purpose of the study is to investigate instructors’ 

views for their students’ understanding of inferential statistics and instructors’ reactions 

to teaching simulation-based inferential methods.  

What you will do in the study: You will be interviewed about your experience with 

teaching statistics. You will be shown two computer simulations used for performing 

hypothesis testing informally. You will be asked to report your views about teaching 

inference using this method. The interview will be audiotaped and transcribed.  

Time required: The study will require about one hour of your time.   

Risks: There are no anticipated risks to this study. 

Benefits: There are no benefits to you for study participation.  

Confidentiality: The information that you give in the study will be handled 

confidentially. To protect your privacy you will be assigned a pseudonym, which will be 

used during data-collection, analysis, and reporting of findings. After transcribing your 

interviews, the audio tape will be deleted, and the electronic documents will be stored on 

a password-protected computer. 

Voluntary participation: Your participation in the study is completely voluntary.   

Right to withdraw from the study: You have the right to withdraw from the study at 

any time without penalty. Should you decide to withdraw, your audiotaped data will be 

destroyed.   

How to withdraw from the study: If you want to withdraw from the study, please tell 

the researcher to stop the interview. There is no penalty for withdrawing.    

Payment: You will receive a $30 gift-card to Amazon.com for participating in the study.  
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If you have questions about the study, contact: 

Irina Timchenko  

Telephone: (434)961-5440 

Email address: it2h@virginia.edu 

Joe Garofalo, Ph.D. 

Telephone: (434)924-0845 

Email address: garofalo@virginia.edu 

If you have questions about your rights in the study, contact: 

Tonya R. Moon, Ph.D. 

Chair, Institutional Review Board for the Social and Behavioral Sciences 

One Morton Dr Suite 500  

University of Virginia, P.O. Box 800392 

Charlottesville, VA 22908-0392 

Telephone:  (434) 924-5999  

Email: irbsbshelp@virginia.edu 

Website: www.virginia.edu/vpr/irb/sbs 

Agreement: 

I agree to participate in the research study described above. 

Signature: ________________________________________  Date:  _____________ 

You will receive a copy of this form for your records. 
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Informed Consent Agreement for Students 

Please read this consent agreement carefully before you decide to participate in the 

study. 

Purpose of the research study: The purpose of the study is to investigate students’ 

knowledge of statistical inference and their reasoning about and understanding of 

simulation-based inferential methods. 

What you will do in the study: You will be interviewed about your statistical 

background. After that, you will be shown two computer simulations used for performing 

hypothesis testing informally. You be asked questions about your understanding of the 

program components and statistical concepts. You will be then provided with a task and 

asked how you would use the simulation methods to investigate the given problem. 

Time required: The study will require about 1.5 hours of your time.  

Risks: There are no anticipated risks to this study. 

Confidentiality: The information that you give in the study will be handled 

confidentially. To protect your privacy you will be assigned a pseudonym, which will be 

used during data-collection, analysis, and reporting of findings. After transcribing your 

interviews, the audio tape will be deleted, and the electronic documents will be stored on 

a password-protected computer. 

Voluntary participation: Your participation in the study is completely voluntary.   

Right to withdraw from the study: You have the right to withdraw from the study at 

any time without penalty. Should you decide to withdraw, your audiotaped data will be 

destroyed.   

How to withdraw from the study: If you want to withdraw from the study, please tell 

the researcher to stop the interview. There is no penalty for withdrawing.    

Payment: You will receive a $20 gift-card to Amazon.com for participating in the study.  

Benefits: There is no benefit to you for participating in this study. 
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If you have questions about the study, contact: 

Irina Timchenko  

Telephone: (434)961-5440 

Email address: it2h@virginia.edu 

Joe Garofalo, Ph.D. 

Telephone: (434)924-0845 

Email address: garofalo@virginia.edu  

If you have questions about your rights in the study, contact: 

Tonya R. Moon, Ph.D. 

Chair, Institutional Review Board for the Social and Behavioral Sciences 

One Morton Dr Suite 500  

University of Virginia, P.O. Box 800392 

Charlottesville, VA 22908-0392 

Telephone:  (434) 924-5999  

Email: irbsbshelp@virginia.edu 

Website: www.virginia.edu/vpr/irb/sbs 

Agreement: 

I agree to participate in the research study described above. 

Signature: ________________________________________  Date:  _____________ 

You will receive a copy of this form for your records. 
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Student Recruitment Letter 

Dear Student, 

 

I am conducting a research study that explores teaching statistical inference using 

computer simulations. I would like to investigate how students respond to this method of 

teaching and what their attitudes are toward this instructional approach. I am looking for 

student volunteers who will participate in the study. Participants will be interviewed 

about their statistical background. After that, they will be shown computer simulations 

and will be asked a series of questions, guiding them to solve a task using simulations. At 

the end of the interview, the participants will be asked about their views on using 

computer simulations for learning hypothesis testing.  

 

Participation is voluntary and will take up to 1.5 hours of your time. If you chose to 

participate, you will be provided with a $20 gift certificate to Amazon.com.  

If you are interested in being part of the study, please email Irina Timchenko at 

it2h@virginia.edu. 

 

Sincerely, 

 

Irina Timchenko 
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