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Abstract 

A novel finite-volume based homogenization theory for damage evolution in periodic materials 

is proposed, verified and utilized to uncover previously undocumented phenomena at micro- and 

meso-levels. Displacement discontinuity functions are introduced into the formulation which 

facilitate separation of the system of equations that controls the response of a periodic composite 

undergoing damage evolution into primary and auxiliary systems, with the primary system 

solved just once. The formulation eliminates the necessity to re-assemble the global system of 

equations during damage evolution, determined by iteratively solving the auxiliary system of 

equations which governs damage progression. This formulation facilitates the implementation of 

any traction-displacement separation law to model damage, including traction-free boundary 

conditions to simulate crack growth and concomitant energy release rates, and a cohesive zone 

model (CZM) incorporated into the framework. 

The proposed CZM-based finite-volume direct averaging micromechanics (FVDAM) 

theory is verified upon comparison with exact elasticity solutions in the elastic stage of damage 

evolution, and experimental data and finite-element simulations at both the micro-level and 

macro-level in the nonlinear stage. The comparison with finite-element simulations of interfacial 

debonding in a SiC/Titanium composite reveals the beauty of the newly developed approach 

wherein once the stress normal to a failing interface become compressive, the corresponding 

governing equations are simply eliminated in the auxiliary system of equations to avoid 

interfacial interpenetration. This contrasts with the finite-element damage simulation approaches 

based on carefully chosen interfacial stiffness to resist the interpenetration. Following the 

extensive verification of CZM-based FVDAM, the newly developed approach is incorporated 

into a global optimization method, Particle Swarm Optimization (PSO) algorithm, and the 

marriage produces a powerful design tool for identifying optimal material architectures as well 

as parameters that are not easily measured experimentally, such as the CZM parameters or the 

elastic moduli of graphite fibers.  

With the newly developed computation tool in modeling damage evolution in composite 

materials, three practical and important engineering problems are investigated and important 

fundamental findings are uncovered and documented. The first one is the study of interfacial 

debonding in SiC/Ti unidirectional composites under transverse loading. The simulation 
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produces good correlation with test data and correctly captures the evolution of fiber/matrix 

interfacial debonding and subsequent arrest due to the development of compressive stress normal 

to the interface. The importance of residual stresses is revealed, demonstrating that correct 

simulation of fiber/matrix debonding is not possible without these stresses.  

The second application involves the simulation of evolving damage on the fly in 

polymeric matrix cross-ply laminates, caused by progressive cracking of the inner 90𝑜  plies 

leading to subsequent delamination of adjacent plies. The effect of evolving damage on the 

homogenized axial stress-strain and transverse Poisson's responses, as well as crack density, are 

compared with available experimental results, taking account of residual stresses, interfacial 

resin-rich region and variable strength of the 90𝑜  plies. The comparison demonstrates the 

theory's ability to capture the dramatic effect of transverse cracking on the homogenized 

transverse Poisson's ratio that increases with increasing 90𝑜ply thickness, and the damage mode 

bifurcation from transverse cracking to interfacial delamination, both for the first time. 

Moreover, the finite-volume simulations indicate that many features observed in the transverse 

and through-thickness Poisson's response of graphite/epoxy cross-ply laminates may be related 

to the underpinning damage modes more readily than in the axial response. 

The last application involves simulation of damage in graphite/polyimide unidirectional 

off-axis specimens based on the hypothesis of shear-dominated fiber/matrix interfacial 

degradation as the primary cause of the observed nonlinearity. For the first time, this study 

reveals that the off-axis dependent nonlinearity in this material system comprised of elastic fibers 

and brittle, linearly elastic matrix may be accurately captured using a damage evolution model 

rather than plasticity, viscoelasticity or viscoplasticity approaches typically employed for the 

matrix phase. 

The results presented in this dissertation demonstrate that the CZM-based FVDAM and 

the FVDAM-driven PSO algorithm are efficient and robust tools to model damage evolution in 

heterogeneous materials characterized by complex microstructures, optimize material 

performance through microstructural identification and calibrate micro-level material properties.  
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Chapter1 

Introduction 

1.1 Motivation 

Fiber-reinforced composites are used with increasing frequency in aerospace, civil, marine, 

automotive and many other industries due to their high performance. To make good use of these 

materials, it is critically important to have a good understanding and predictive capability of their 

failure behavior. Simulation of damage evolution in fiber-reinforced materials remains a 

challenging problem due to the myriad of failure mechanisms and modes, and their complex 

nature that may be activated at different scales. As illustrate in Figure 1.1, in composite 

laminates comprised of differently-oriented unidirectional plies, for example, these modes, 

which are hierarchical and may interact with each other, include microcracks, fiber/matrix 

debonding, ply cracking and interfacial delaminations, (Hassan and Batra 2008, Njuhovic et al. 

2015).  For instance, accumulation of microcracks in the matrix phase can cause ply cracking, 

and ply cracking may induce delamination. Although the different failure modes have distinctive 

observable behavior, they are governed by the same fundamental failure process, namely damage 

initiation and propagation. A damage simulation approach, therefore, will be extremely valuable 

in improving understanding of, and predicting, material failure behavior, and in reducing 

experimental testing and hence accelerating material design, if it can predict damage initiation 

and propagation in different material phases and at different material length scales, as well as 

capture interaction and transition between different failure modes.  

Damage involves surface separation, which can be characterized by crack initiation and 

growth. Various approaches have been developed to treat crack problems. In general, these 

approaches can be categorized into three categories according to their ability to predict crack 

initiation and growth in the presence or absence of pre-exiting cracks. The first category involves 

calculation of stress intensity factors or energy release rates analytically or numerically for a 

stationary crack. The second one involves modeling crack growth when crack exists in the 
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analysis domain.  And the third one involves predicting crack initiation and propagation with or 

without pre-existing cracks. These approaches and the related literature are described below. 

 

Figure 1.1 Schematic figure of damage in a laminated plate under thermal shock (reproduced 

from the image on the webpage of Center for Nondestructive Evaluation, ISU). 

1.2 Literature Review 

1.2.1 Stress Intensity Factor and Energy Release Rate Calculations 

Cracks produce singular stress fields at the crack tips whose strength is characterized by stress 

intensity factors. Crack-face separation is typically described in terms of three modes. Mode I, 

the opening mode, is due to a tensile stress normal to the plane of the crack. Mode II, the sliding 

mode, is induced by shear stress acting parallel to the plane of the crack and perpendicular to the 

crack front. Mode III, the tearing mode, is caused by a shear stress acting parallel to the plane of 

the crack and parallel to the crack front. Linear elasticity theory can be used to determine the 

stress distribution around crack tips in polar coordinate, which typically takes the form: 

𝜎𝑖𝑗(𝑟, 𝜃) =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 (1.1) 

where K is the stress intensity factor and 𝑓𝑖𝑗 is a dimensionless quantity that varies with the load 

and geometry. Once the actual stress distribution is obtained for a given problem, the 

corresponding stress intensity factors are determined by taking the limits below, 

𝐾𝐼 = lim𝑟→0 √2𝜋𝑟 𝜎𝑦𝑦(𝑟, 0),    𝐾𝐼𝐼 = lim𝑟→0 √2𝜋𝑟 𝜎𝑦𝑥(𝑟, 0),     

𝐾𝐼𝐼𝐼 = lim𝑟→0 √2𝜋𝑟 𝜎𝑦𝑧(𝑟, 0) 
(1.2) 

As an example, for an infinite plate under uniform far-field tension perpendicular to the 

crack face, the crack-tip stress distributions are obtained in closed form  
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(1.3) 

from which the Mode I stress intensity factor 𝐾𝐼  is obtained as 𝜎√𝜋𝑎 . Similar results are 

obtained for the two remaining crack-opening modes. As discussed in the sequel, calculation of 

stress intensity factors using the elasticity approach is limited by the available analytical 

solutions. The propensity of a crack to propagate is defined by the critical stress intensity factor 

associated with a given crack-opening mode which is determined experimentally. 

 A related measure of a crack’s propensity to propagate is the energy release rate which is 

the energy dissipated during fracture per unit of newly created fracture surface area. It is 

typically calculated by assuming a self-similar crack growth in the direction of the crack plane. 

Crack closure technique can be used to determine energy release rate if the release energy is only 

dissipated by newly created surfaces and not dissipated in other forms, such as sound, heat etc. 

The idea behind the crack closure technique is that if a crack extends by a small amount 𝛿, the 

energy released in the process is equal to the work required to bring the crack to its original 

length. After taking the limit of 𝛿, the released energy converges to corresponding energy release 

rate. When stress fields at the crack tip are available in closed form, energy release rates can be 

determined analytically. Figure 1.2 shows the closure of crack tip in an infinite plane under 

Mode I loading and associated crack extension in the crack’s plane. For this loading the energy 

release rate may be calculated using the expression 

𝐺𝐼 = lim
𝛿→0

2

𝛿
∫

𝜎𝑦𝑣

2
𝑑𝑟

𝛿

0

 (1.4) 

where 𝜎𝑦 is normal stress determined with original crack length and v is vertical displacement 

determined in the configuration by assuming 𝛿 extension. Both of these have the functional form  

𝑣 =
2𝐾𝐼

𝐸√𝜋
√2(𝛿 − 𝑟),         𝜎𝑦 =

𝐾𝐼

√2𝜋𝑟
 (1.5) 
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Figure 1.2 Closure of an extended crack tip. 

𝑣 =
2𝐾𝐼

𝐸√𝜋
√2(𝛿 − 𝑟),         𝜎𝑦 =

𝐾𝐼

√2𝜋𝑟
 (1.6) 

Employing the above expressions in the energy release rate equation and taking the limit 

of the crack extension going to zero, the following relation is obtained between the Mode I stress 

intensity factor and the energy release rate, 

𝐺𝐼 =
𝐾𝐼

2

𝐻
 (1.7) 

where 𝐻 = 𝐸/(1 − 𝜈2) for plane stress and 𝐻 = 𝐸 for plane strain. Similar results are obtained 

under Mode II and Mode III loading. 

 The significance of the above result is that the energy release rate may be calculated from 

the knowledge of the stress singularity strength for a stationary crack once the crack-tip stress 

field is known. 

1.2.1.1 Analytical Approach  

A great deal of research work had been conducted on analytical solutions to crack 

problems since Griffith formulated the theory of brittle fracture using elastic strain energy 

concepts in 1920’s, Griffith (1921, 1924). Generally speaking, the various analytical approaches 

are based on either the complex potential approach of Muskhelishvili’s (1953a, b) or Fourier 

transform and series techniques employed by Sneddon (1951, 1961). In particular, complex 

potential approach is amenable to the treatment of this class of problem when a periodic array of 

cracks is along a single horizontal row or a single vertical column in an infinite homogenous 
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medium, which can be effectively reduced to a single crack problem, Westergaard (1939), Koiter 

(1959), Sneddon and Srivastav (1965), Lowengrub (1966), as discussed by Sneddon and 

Lowengrub (1969). This approach was extended by Erdogan in 1962 to analyze two collinear 

interacting cracks, while Rice and Sih (1965) considered cracks along an interface separating two 

dissimilar half planes. Moreover, Delameter et al. (1975) analyzed doubly-periodic crack arrays 

by using the singular integral equation and Green's function approach within a unit cell 

framework based on periodic boundary conditions using complex potentials.  

To conduct the analysis, a pre-existing crack is required and self-similar crack growth is 

usually assumed which allows calculation of the strain-energy release rate using the same 

solution form. As stated in the foregoing, self-similar crack growth means that the crack extends 

along the same crack front, producing similar stress and displacement fields in the original and 

extended crack configuration. However, these assumptions clearly cannot be used to predict non-

self-similar crack growth. In those instances where self-similar crack growth is applicable, at 

least initially, such as delamination in multilayered media, the Fourier transform technique is an 

important technique that may be used to solve this type of problem. Erdogan and Gupta (1971) 

and Erdogan (1971) proposed a general procedure to analyze a single crack in a multilayered 

medium, which facilitated reduction of the problem to a system of singular integral equations 

governing the crack opening displacement components. This approach was extended by 

Chatterjee et al. (1982) and Chatterjee (1987) to deal with arbitrarily layered media with 

isotropic, orthotropic and monoclinic plies containing multiple cracks along different interfaces 

using the local/global stiffness matrix approach, Bufler (1971). Since considerable computational 

difficulties exist in treating interacting cracks, numerical results were limited to single 

delaminations due to limited computational resources in the 1970’s and 1980’s. Pindera (1991) 

applied this approach to analyze interlaminar stress distributions in a bi-material beam with two 

symmetrical positioned non-interacting disbonds under three-point bending and results were 

compared with experimental and finite-element results. Additional results were provided by Choi 

and Thangjitham (1994), who followed the work of Chatterjee et al. (1982), Chatterjee (1987), 

Pindera (1992).  

In contrast, limited analytical work has been conducted in analyzing multiple crack 

interactions in homogenous or layered media with finite dimensions. Isida (1971) analyzed width 

and length effects of rectangular plates on the stress intensity factors of centrally positioned 
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cracks by using Laurent series representation of complex potentials together with a boundary 

collocation procedure. By making use of quarter-range Fourier series representation of the 

displacement field in each layer and the local/global stiffness matrix approach, Chatterjee (1979) 

investigated two symmetric cracks in finite multilayered isotropic or orthotropic media pinned 

vertically at right and left ends under three point bending. Chen and Pindera (2007a, b) 

developed exact elasticity solutions for finite multilayered domains which can admit arbitrarily 

distributed interacting or non-interacting cracks parallel to the horizontal bounding surfaces at 

specified elevations or interfaces. In this work, Fourier series representation of the displacement 

field was employed that satisfied the Navier’s equations for isotropic, orthotropic and monoclinic 

layers. Using this representation, a local stiffness matrix for each layer was constructed that 

related the harmonic coefficients of the surface displacements to the corresponding traction 

coefficients. This construction facilitated efficient satisfaction of traction and displacement 

continuity conditions between adjacent layers. To account for interfacial cracks, displacement 

discontinuity functions were introduced in terms of integrals of distributions of unknown 

functions. Satisfaction of traction and displacement continuity conditions produced the global 

system of equations, Eq. (1.8) that included the harmonics of the common displacements, U̅m 

and the corresponding displacement discontinuities U̅m∗ across cracked interfaces.  

𝐊m�̅�m = �̅�m − 𝐋m�̅�m∗ (1.10) 

where U̅𝛼
𝑚∗(𝑝)

=
2

𝑚𝜋
∫ 𝜉𝑚Θ𝛼

(𝑝)𝑑𝛼
(𝑝)

𝑐𝛼
(𝑝) (𝑥′)𝑑𝑥′ , 𝜉𝑚  is the matrix containing trigonometric functions 

and Θ𝛼
(𝑝)

(𝑥′) is the displacement discontinuity density vector.  

The problem can be reduced to a system of coupled singular integral equations with 

Cauchy-type kernels, Eq. (1.9), which describe the crack singularity exactly 

𝐓𝛼
+ (𝑥,

ℎ𝛼

2
) = �̅�𝛼

∗ 𝚯𝛼
(𝑝)(𝑥) +

1

𝜋
∫ �̅�𝛼

∗
𝚯𝛼

(𝑝)
(𝑥′)

𝑥′ − 𝑥
𝑑𝑥′

𝑑𝛼
(𝑝)

𝑐𝛼
(𝑝)

+
1

𝜋
∑ ∑ ∫ �̅�𝛼𝛽(𝑥, 𝑥′)𝚯𝛽

(𝑞)(𝑥′)𝑑𝑥′
𝑑𝛽

(𝑞)

𝑐
𝛽
(𝑞)

𝑄(𝛽)

𝑞=1

𝑛

𝛽=2

+ 𝐅𝛼(𝑥) 

(1.9) 

Where n in the summation limit is the total number of layers, 𝑄(𝛽) is numbers of cracks on the 

𝛽th interface, 𝐓𝛼
+(𝑥) is the traction vector specified on the bottom face of the 𝑝th crack on the 

cracked 𝛼th  interface, 𝚯𝛼
(𝑝)(𝑥)  is the unknown displacement discontinuity density vector, 
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�̅�𝛼𝛽(𝑥, 𝑥′) are regular Fredholm kernels, 𝐅𝛼(𝑥) is the specified external load vector, and �̅�𝛼
∗ , �̅�𝛼

∗  

are constant square matrices whose elements depend only on the material properties of adjacent 

layers. 

To determine the unknown displacement discontinuity distribution functions, traction-

free condition on the crack faces was then employed, enabling determination of the displacement 

field in each layer in the presence of interfacial cracks.  

 The strain energy release rate caused by an infinitesimal crack extension of the 𝑝th crack 

along the 𝛼th interface under self-similar crack growth is calculated by evaluating the integral 

given below 

𝜕𝑈𝛼
(𝑝)

𝜕𝑎
= lim

𝛿→0

1

𝛿

1

2
∫

(𝑑𝛼
(𝑝)

− 𝑐𝛼
(𝑝)

)

2

±1±𝛿′

±1

T𝛼
+ (𝑡𝛼

(𝑝)
) °U𝛼

∗ (𝑡𝛼
′(𝑝)

)𝑑𝑡𝛼
(𝑝)

 (1.10) 

where the symbol ° denotes dot product operation, and the sign ± refers to the right or left crack 

tip. The corresponding stress intensity factors at the right and left crack tips are given by the  

following formula 

𝐾𝛼
𝑝 = lim

𝑡→±1
(−1 ± 𝑡𝛼

(𝑝)
)

1
2
𝑇𝛼

+(𝑡𝛼
(𝑝)

) (1.11) 

where 
)( pt  is the normalized coordinate measured from the pth crack’s centered. 

The strength of the analytical approach is that stress intensity factor and energy release 

rate can be determined analytically by taking the limit as the crack extension tends towards zero. 

Quite often, however, it’s very difficult to find analytical solutions for crack problems involving 

non-similar crack growth, crack interaction, complex geometries, boundary conditions and 

nonlinear material properties, which are common in actual applications. 

1.2.1.2 Numerical Approach  

With the emergence of numerical approaches, especially the finite-element approach, the stress 

and displacement fields in the analysis domain evolving complex geometries, material 

properties, boundary conditions usually can be accurately determined except for the area around 

the crack tip where large gradients due to singular stress fields occur. Hence in order to 

determine stress intensity factor and energy release rate, additional treatments are required. Two 

major approaches can be used to determine stress intensity factors and concomitant energy 
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release rates: one is first to accurately determine the stress field using singular elements with 

built-in crack singularity and then extract stress intensity factors and energy release rates with 

different techniques, which will be discussed in this section. Another approach is directly based 

on the standard finite-element approach and makes use of the crack closure method proposed by 

Irwin (1958). In contrast to the analytical expression, Eq. (1.4), of calculating energy release rate, 

Eq. (1.12) is the numerical implementation and various techniques have been developed to 

implement the crack closure method, which is can be easily adapted to simulate crack growth 

and will be discussed later in section of 1.2.2.   

𝐸𝑅𝑅 = lim
∆𝑎→0

1

2∆𝑎
∫ 𝑇𝑖∆𝑢𝑖𝑑𝑠

𝑎+∆𝑎

𝑎

 (1.12) 

where 𝑇𝑖 are stresses extracted from the elements ahead of the crack tip in the range of [𝑎 𝑎 +

∆𝑎] by keeping the original crack length and ∆𝑢𝑖 are displacements determined in the range of [𝑎 

𝑎 + ∆𝑎] by assuming ∆𝑎 extension towards the original crack. 

To calculate the stress intensity factor, the first step is to generate accurate singular stress 

field and after that proper techniques need to be used to determine its value. It is known that the 

standard finite-element approach will only produce finite stress at the crack tip and this makes it 

difficult to extract the crack-tip singular behavior. To overcome this disadvantage, researchers 

developed singular crack-tip elements, (Byskov 1970, Walsh 1971, Tracey 1971), which 

incorporate singular stress behavior into the shape functions.  The disadvantage of this approach, 

however, is the extra work involved in embedding singular elements into regular finite-element 

meshes.  

Subsequently, Barsoum (1974) and Henshell and Shaw (1975) proposed quarter-point 

singular elements based on isoparametric elements, Figure 1.3, to overcome the disadvantage. 

The pioneering work of Barsoum (1974) and Henshell and Shaw (1975) stimulated extensive 

subsequent work as described in two comprehensive reviews by Banks-Sills (1991, 2010), and 

now the capability is also available in commercial finite-element packages, such as Abaqus and 

ANSYS. After obtaining accurate singular stress and corresponding displacement fields, the next 

step is to extract the stress intensity factor, which can be obtained via four approaches: 

displacement extrapolation, the stiffness derivative, J-integrals and M-integrals. 
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Figure 1.3 Eight-node: (a) parent element in 𝜂 − 𝜉 plane, (b) quarter-point element in the 𝑥 − 𝑦 

plane and (c) Quarter-point collapsed triangular element.  

The first approach is known as a direct method and the other three are indirect methods 

based on energy quantities. With the displacement extrapolation method, (Chan et al. 1970, 

Banks-Sills and Einav 1987), stress intensity factor is found by extrapolating the displacement 

along the crack face and linear regression may be employed to determine the value. The 

extrapolation operation does not guarantee results’ accuracy, and therefore this method is 

considered less accurate than other three energy-based indirect approaches, Banks-Sills (1991). 

On the other hand, this approach is easy to implement and can be used to calculate stress 

intensity factors for mixed-mode problems as well, (Banks-Sills et al. 2005, Freed and Banks-

Sills 2005). Regarding the energy approaches, virtual crack extension is required to assist with 

the generation of some derivative terms, which is a very small length on the order of 10−6 of a 

characteristic element length (Banks-Sills 1991) and the singular element with virtual extension 

retains the character of quarter-point (Banks-Sills 1989).   

Towards the calculation of pure mode I stress intensity factor via indirect approach, J-

integral energy needs to be determined, which was originally presented by Rice (1968) for 2D 

geometries as 

𝐽 = ∫ 𝑊𝑛1 − 𝑇𝑖(𝜕𝑢𝑖/𝜕𝑥1)𝑑𝑠
Γ

 (1.12) 

where Γ is any path beginning at the lower crack face, encircling the crack tip and ending at the 

upper crack face as shown in Figure 1.4. And two approaches can be used to determine J-integral 

energy: one approach is the stiffness derivative technique proposed by Parks (1974) and another 

one is the technique suggested by Li et al. (1985), in which J-integral is expressed via a set of 

basis functions along the crack front. For linear elastic materials or materials that experience 



10 
 

small-scale yielding at crack tip, J-integral is equal to strain energy release rate and they can be 

related to mode I stress intensity factor via Eq. (1.7). 

 

Figure 1.4 Example of line J-integral path. 

From the above discussion we can see that the J-integral, which is a single value, can 

only be directly related to one type of stress intensity factor instead of three different stress 

intensity factors, 𝐾𝐼 , 𝐾𝐼𝐼 , 𝐾𝐼𝐼𝐼 , which exist when the crack is under mixed-mode deformation. 

Mixed mode stress intensity factors can be separated via the M-integral, which was first derived 

by Chen and Shield (1977) based on the J-integral and implemented by Yau et al. (1980), see a 

comprehensive review provided on this topic by Banks-Sills (2010).  

1.2.2 Crack Growth Simulation  

One of the most common failure modes for composites structures is delamination, (Garg 1988, 

Bolotin 1996, Pagano and Schoeppner 2000). Over the past two decades, fracture mechanics 

approaches have been extensively used to characterize the onset and growth of delamination, 

(O’Brien 1982, 1998, Martin 1998). In particular, Rybicki and Kanninen (1977) proposed the 

Virtual Crack Closure Technique (VCCT), which is widely used for computing energy release 

rate and predicting crack propagation based on 2D or 3D finite element results due to its 

simplicity in methodology and ability in handling mixed-mode failure, (Raju 1987 and Buchholz 

et al. 1988). It is necessary to keep in mind, however, that this approach requires pre-existing 

cracks in the analysis domain.  

In general, numerical implementation of the crack closure method may be divided into 

three categories. The first one is to take the limit numerically for the released energy normalized 

by different crack extensions, in which the multiple normalized release energy rates are 
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calculated based on different crack extension lengths. Subsequently, the sought energy release 

rate is obtained by extrapolating the normalized released energy rates to the point ∆𝑎= 0. This 

approach was employed using FVDAM to determine the energy release rates of a crack 

propagating along the fiber/matrix interface, Tu et al. (2012). Figure 1.5 shows the unit cell 

discretization and the initial crack configuration. To determine the energy release rate at each 

crack length around the interface, released energy was calculated for different crack extensions, 

Figure 1.6, and the asymptotic limit was obtained by extrapolation to the point of ∆𝑎= 0. Figure 

1.7 shows the distribution of energy release rates for different crack lengths and the distribution 

indicates that the crack is likely to get arrested around ±650. This observation is consistent with 

the results obtained by Tu and Pindera (2014) based on the CZM-based simulations described in 

Chapter 4.  

 

Figure 1.5 Discretization of unit cell and initial crack distribution with small crack. 

 

Figure 1.6 Illustration of crack extension with different length. 
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Figure 1.7 Energy release rate for different crack lengths. 

The second one is to use two analysis steps (Broek 1991 and Krueger 2002) as discussed 

by Kruger (2002), in which the released energy Δ𝐸 is equal to the energy required to close the 

crack extension ∆𝑎 from the original crack length a to crack length 𝑎 + ∆𝑎 and energy release 

rate is equal to the released energy Δ𝐸 divided by crack extension ∆𝑎.  In this approach, one 

assumption is implied that  ∆𝑎 is small comparing with crack length.  And the third approach, 

VCCT, is modified based on the second approach and only one analysis step is required, in 

which the released energy is calculated based on reaction forces at the crack tip and nodal 

displacements just ahead of the crack tip. Also this approach implies crack extension is small and 

it does not cause changes of stress and displacement fields around the crack tip. A sensitive study 

conducted by Rybicki and Kanninen (1977) shows that for the problem of a finite plate with a 

central crack, accuracy of the VCCT’s results is within 6% of the reference solution when the 

crack extension ∆𝑎 is up to 20% of the crack length.  

 VCCT does not employ assumptions on the functional form of stresses and displacements 

and the regular finite-element approach is used. However, with the availability of singular 

quarter-point elements which capture the crack-tip stress field singularity, VCCT also has been 

incorporated into the framework of quarter-point elements to determine the energy release rate, 
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first proposed by Raju (1987),  Ramamurthy et al. (1986) and later followed by Narayana et al. 

(1990), Narayana and Dattaguru (1996), Sethuraman and Maiti (1988). Because quarter-point 

elements are not readily available in many finite-element codes and the quarter-point elements 

cannot be easily deployed to simulate crack growth because of changing crack tip position during 

the crack growth process, the major developments and applications of VCCT are limited to the 

regular finite-element method. The discussion in this dissertation will also be confined to the 

regular finite-element approach. VCCT has been extensively implemented into 2D and 3D 

frameworks and became available in commercial finite-element software such as Abaqus, 

ANSYS and Marc.  

Regarding the method’s usage in real practice, Krueger (2002) provided the insights 

summarized below: 1) For geometric nonlinear analysis, both tractions and displacements used 

in calculating the energy release rates need to be transformed to a local coordinate system. 2) 

Original paper written by Rybicki and Kanninen (1977) imposed the assumption that element 

lengths for the elements in front and behind the crack tip are identical, which restricts the 

application of the approach in practice since in complex models equal element size cannot be 

easily obtained, especially when modeling crack propagation. To overcome this disadvantage, 

correction factors are used in the formula for energy release rate calculation by taking into 

account the element lengths in front and behind the crack tips, with similar approach in treating 

3D crack fronts. 3) Extra care needs to be taken in obtaining the energy release rate using VCCT 

when the crack is situated along a bi-material interface, (Raju et al. 1988, Hwu and Hu 1992, Sun 

and Jih 1987, Sun and Manoharan 1989) because of stress oscillation at the crack tip.  To 

overcome this problem, one way is to insert a resin rich layer between the adjacent plies, (Raju et 

al. 1988 and Dattaguru et al. 1994). However, this requires significant refinement in the thin 

resin layer, which increases the model size dramatically. Another more realistic way is to control 

the element size in from and behind the crack front, which should be small enough to assure a 

converged finite-element solution but large enough to avoid oscillatory behavior, (Krueger 1994, 

Sun and Qian 1997). 

From the above review of the crack closure technique implemented within the finite-

element framework, we can see that this approach is powerful and versatile in calculating energy 

release rates and treating crack propagation problems. However, this approach has some intrinsic 

shortcomings. First, the approach cannot predict crack nucleation and thus the analysis domain 
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has to have pre-existing cracks, which is often not true in reality. Another problem is that the 

length of pre-existing cracks is important, and hence cannot be arbitrary, since the majority of 

numerical implementations are based on the assumption that the crack extension does not alter 

the crack-tip stress fields. Moreover, the mesh in front the crack tip cannot be arbitrary, requiring 

extra attention. 

1.2.3 Crack Initiation and Propagation Simulation  

To naturally track the evolution of localized failure modes, the cohesive zone model proposed by 

Barenblatt (1959, 1962) for fracture of brittle materials, and subsequently extended by Dugdale 

(1960) for perfectly plastic materials, has been adopted by numerous researchers during the past 

30 years. The model is based on a traction-interfacial separation relation which describes the 

interfacial degradation process between two adjacent phases or subdomains. As the interface 

separates, traction first increases until the interfacial strength is reached, and then decreases to 

zero, where complete separation occurs. The contributions of Needleman and coworkers (1987, 

1994), and Ortiz and coworkers (1993, 1996), have spurred extensive use of this model in 

simulating fracture phenomena in a wide range of materials due to its ability to mimic 

spontaneous crack nucleation, crack branching and fragmentation, as well as crack propagation 

without an external fracture criterion, and in the absence of self-similar crack growth. Reviews of 

the different aspects and applications of the cohesive zone model have been provided by Elices 

et al. (2002), Banea et al. (2009), and Park and Paulino (2011).  

In order to overcome the mesh dependence in finding non-smooth solutions involving 

discontinuities, singularities, high gradients etc., enrichment functions have been introduced into 

the classic finite-element approaches, (Belytschko et al. 2000, Zienkiewicz and Taylor 2000), 

which were customized to capture jumps, singularities, etc. This approach has two different 

names: one is known as the generalized finite-element method (GFEM) which was adopted by 

the Texas school in 1995-1996, (Duarte and Oden 1996, Melenk and Babuska 1996, Melenk 

1995) and another name is the extended finite-element method (XFEM), which was coined by 

the Northwestern school in 1999, (Moes et al. 1999, Belytschko and Black 1999). GFEM/XFEM 

may be used to analyze stationary cracks and model crack initiation and propagation. Different 

forms of the asymptotic crack-tip functions were discussed by Sukumar et al. (2004), Sukumar 

and Prevost (2003), and Elguedj et al. (2006). However, accurate modeling of the crack-tip 
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singularity can be inconvenient using this approach since the degree of crack singularity depends 

on the crack location in a non-isotropic material, which may change during the crack propagation 

process, (Abaqus 6.14 Manual). One alternative approach within the GFEM/XFEM framework 

to avoid modeling the crack-tip stress singularity is to use the traction-separation behavior which 

describes crack initiation and propagation. Different from the cohesive zone model in the classic 

finite-element approach, which requires the cohesive surface to align with element boundaries 

and the crack to propagate along pre-defined paths, the GFEM/XFEM-based cohesive segments 

method allows cracks to initiate and propagate along an arbitrary, solution-dependent path in the 

bulk materials since crack propagation is not tied to the element boundaries in a mesh. Song 

(2006) and Remmers (2008) have used this approach to simulate crack initiation and propagation 

of multiple cracks in solids, which provides an effective and attractive engineering method and 

now is available in the commercial finite-element package, Abaqus. Currently, the development 

of XFEM/GFEM is still in its early stage and many promising applications remains, (Belytschko 

et al. 2009). 

1.3 Finite-Volume Theories in Solid Mechanics Applications 

From the above literature review, we see that the cohesive zone model has demonstrated 

its unique capability in simulating complex fracture phenomena either with or without pre-

existing cracks, which intrinsically exist at different length scales and ultimately lead to failure 

of composite materials. While the majority of cohesive zone model applications are based on 

variational techniques, it is only relatively recently that the cohesive zone model has been 

incorporated into finite-volume based techniques to simulate damage evolution.  

The finite-volume method has proved an attractive alternative to the established finite-

element analysis of boundary-value problems in solid mechanics, (Berezovski et al. 2008) 

following its origins in fluid mechanics, (Leveque 2002, Versteeg and Malalasekera 2007). In 

contrast to variational techniques, local equilibrium is satisfied in integral sense at the discretized 

subdomain level in the finite-volume method, offering solution stability and other advantages, 

Cavalcante et al. (2012). There are three variants of finite-volume methods that can be identified 

in the analysis of solid mechanics problems: the cell-centered finite-volume technique, the cell-

vertex finite-volume techniques and the surface averaging finite-volume techniques. These 
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variants of the finite-volume method differ in the manner of analysis domain discretization, 

subdomain field variable approximation and solution technique as described below. 

 Similar to the finite-volume method employed in fluid mechanics, the cell-centered 

finite-volume method employs control volumes which are centered around grid points at which 

field variables are defined, Figure 1.8a. In the early development stage, in order to satisfy 

equilibrium equations at the discretized volume level in an integral sense, Taylor series 

expansion was utilized to approximate surface variables in terms of the control volume-center 

variables, (Demirdzic et al. 1988, Demirdzic and Martinovic 1993, Demirdzic and Muzaferija 

1994).  Linear displacement field approximation along control volume faces was implemented 

by Wheel (1996, 1999) in solving axisymmetric linear and incompressible elasticity problems. 

Recently, Falla (2006, 2008) introduced shape functions into the cell centered finite-volume 

framework in conjunction with parametric mapping in the solution of plane problems base on the 

Mindlin-Reissner plate theory. This practice provided a better approximation of the variation of 

unknown variables across control volume faces, which facilitate calculation of interfacial stress 

resultants.  

 

(a) Cell centered control volume                      (b) Vertex based control volume 

Figure 1.8 Control volumes employed in cell centered and vertex based finite-volume analyses of 

homogeneous material and structural problems in solid mechanics. 

The cell-vertex finite-volume approach leverages elements of the finite-element method 

in domain discretization and displacement field approximation. The analysis domain is first 

discretized into elements, and the field variables are defined at the common vertices of adjacent 

elements using shape functions borrowed from the finite-element approach. Control volumes 

center around the vertices are constructed by using element and face centers as control volume 

corners, Figure 1.8b. Thus the control volume geometry and displacement field approximation 
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are directly linked to element discretization and shape functions and the local equilibrium 

equations can be satisfied over all control volumes. This approach was first proposed by Fryer et 

al. (1991) for the analysis of 2D elasticity problems and subsequently extended to 3D problems 

by Bailey and Cross (1995), and then applied by Taylor et al. (1995, 2003) , Fallah et al. (2000), 

Wenke and Wheel (2003), Wheel (2008) and Pan et al. (2010).  

The research based on cell-centered and vertex-based finite-volume methods has 

demonstrated that the finite-volume method is a very viable alternative to the finite-element 

approach in the solution of structural and solid mechanics boundary-value problems involving at 

least homogeneous materials. Following the success of CZM in finite-element applications, 

CZM has recently been implemented into the cell-centered finite-volume framework, (Stylianou 

and Ivankovic 2002) and applied to study crack propagation along a bi-material interface 

(Carolan et al. 2013).  

The third variant of the finite-volume method has been developed independently of the 

above two approaches to model materials with heterogeneous microstructures, (Suquet 1987, 

Charalambakis and Murat 2006, Buryachenko 2007, Birman and Byrd 2007, Chatzigeorgiou et 

al. 2008, and Paulino et al. 2008). It is rooted in so-called Higher-Order Theory for Functionally 

Graded Materials (HOTFGM), developed in a sequence of papers in the 1990's and summarized 

in Aboudi et al. (1999). The homogenized counterpart was constructed by Aboudi et al. (2001), 

which was subsequently renamed as the High-Fidelity Generalized Method of Cells (HFGMC) 

by Aboudi et al. (2002) although predictions of HFGMC generally do not reduce to those of the 

Generalized Method of Cells (GMC), (Paley and Aboudi 1992), as expected of theories related to 

each other through similar names. By simplifying the discretization of analysis domain which, in 

turn, facilitated implementation of the efficient local/global stiffness matrix approach (Bufler 

1971, Pindera 1991), the structural and homogenized versions of these so-called higher-order 

theories were subsequently re-constructed in a sequence of papers by Bansal and Pindera (2003, 

2005) and Zhong et al. (2004). This significant re-construction revealed the above higher-order 

approaches to be in fact finite-volume theories. To faithfully reflect the fundamental character of 

these re-constructed theories, the version of the finite-volume theory developed for periodic 

materials within the homogenization framework was subsequently named finite-volume direct 

averaging micromechanics (FVDAM) theory, Bansal and Pindera (2006).  The re-constructed 

finite-volume theories are similar to the cell-centered techniques that evolved in parallel for 
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homogeneous materials and structures during roughly the same period. However, in contrast with 

the cell-centered techniques, the re-constructed methods utilize explicit displacement field 

approximation within individual subvolumes and apply both interfacial displacement and traction 

continuity conditions at the same time in a surface-averaged sense, following the original idea 

proposed by Achenbach (1975). This leads to the satisfaction of equilibrium equations in a 

surface-averaged sense and the explicit construction of local stiffness matrix for the individual 

subvolumes following the elasticity approach.  

To enable efficient modeling of complex microstructures, parametric mapping was 

incorporated into these re-constructed theories. This mapping capability was first introduced by 

Cavalcante (2006) and Cavalcante et al. (2007a, b) into the structural version of the finite-

volume theory originally developed by Bansal and Pindera (2003) and Zhong et al. (2004). 

Subsequently, following the work of Cavalcante et al. (2007a, b), Gattu et al. (2008) and Khatam 

and Pindera (2009a, b) introduced parametric mapping into the rectangular subvolume-based 

version of the FVDAM theory originally developed by Bansal and Pindera (2005, 2006). Both 

the structural and homogenized versions of the parametric finite-volume theory have proved to 

be attractive alternatives to the finite-element analysis of heterogeneous materials and the 

predictive capability of the reconstructed theory has been verified both analytically, numerically 

and experimentally. In particular, the accuracy of homogenized and local responses has been 

shown to be comparable to the finite-element method with the added advantage that explicit 

relations between surface-averaged tractions and displacements are available through a local 

stiffness matrix that governs the equilibrated response of a subdomain. This circumvents the 

problem of accurate stress extrapolation to the subdomain surfaces encountered in other finite-

volume as well as finite-element approaches. The analytical relations between interfacial 

tractions and interfacial displacements provide a natural way to incorporate cohesive zone model 

into the FVDAM framework absent in other approaches. This and other features of FVDAM set 

it apart from the other two variants of the finite-volume method, Pindera et al. (2009). Herein, we 

refer to this version of the parametric FVDAM theory as standard parametric FVDAM theory. 

However, interfacial interpenetration and discontinuity of the non-traction stress 

components are shortcomings which remained to be addressed in the standard parametric 

FVDAM theory, Cavalcante et al. (2012a). Nonetheless, the subvolume average values of both 

traction and non-traction stress components are reliable (Cavalcante et al., 2008, 2011), as 
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reported by Katham and Pindera in their papers. To overcome the above shortcomings of the 

standard parametric FVDAM theory, a generalized finite-volume theory has been developed by 

Cavalcante and Pindera (2012a, b) based on rectangular analysis subdomain for elasticity 

analysis that employs a higher-order displacement field representation within individual 

subvolumes of a discretized analysis domain, in contrast with the second-order expansion 

employed in the 0th order theory. The predictive capability of the generalized theory has been 

further demonstrated by analyzing diverse problems involving finite deformation, viscoelastic 

and elastic-plastic analyses, (Cavalcante and Pindera 2014a, b, Cavacante and Marques 2014, 

Cavalcante and Pindera 2016).  Most recently Chen et al. (2016) extended the rectangular 

version of FVDMA theory developed by Bansal and Pindera (2005, 2006) to three dimensions 

based on cubic subdomains and the developed theories also incorporated the Bodner-Partom 

(1975) constitutive model, which is a state-variable-based viscoplastic model. 

1.4 Objectives 

The overall objective of the proposed work is to produce a unique and novel finite-volume based 

homogenization theory for the response of unidirectionally-reinforced periodic materials with 

evolving damage and optimization capabilities. This theory will take the form of generalized 

Hooke’s law that simulates damage initiation and growth under combined three-dimensional 

loading in the macroscopic strain or stress spaces. Relatively little work has been done in 

constructing a homogenization theory leading to the homogenized Hooke's law valid under 

combined three-dimensional loading which takes into account the various damage modes, their 

evolution and transition. In contrast with commercial finite-element codes such as Abaqus or 

Ansys, the three-dimensional loading capability will be intrinsic to the theory, requiring only 

specification of the loading path in terms of macroscopically applied strains or stresses. In 

commercial finite-element codes, such capability is accomplished by imposing appropriate 

boundary conditions on the unit cell representative of the simulated material’s mirostructure on a 

case-by-case basis. The boundary conditions in the proposed theory will be an integral part of the 

theoretical framework and hence transparent to the user.  

The proposed theoretical framework is semi-analytical, with a straightforward input data 

construction. This enables automated manipulation of the input data in parametric or 

optimization studies. To leverage this capability in a number of applications, ranging from 
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material architecture designs that meet targeted performance to material parameter identification 

that may otherwise be difficult to determine experimentally, the proposed homogenization theory 

will be incorporated into a robust optimization algorithm and demonstrated through relevant 

examples. 

Finally, upon validation, the homogenization theory will be employed to revisit classical 

and emerging problems to demonstrate its capabilities and to address important and unanswered 

questions. This includes damage model bifurcation in symmetric cross-ply laminates and the 

relationship between homogenized response features at the macroscale and the underpinning 

damage mechanisms. 

1.5 Methodology  

The construction of the generalized Hooke’s law with evolving damage capability is based on the 

standard parametric FVDAM theory of Khatam and Pindera (2009 a, b). This version was the 

most updated one when the author initiated his work whilst the development of the generalized 

version of FVDAM was taking place in parallel. Although interfacial interpenetration and 

discontinuity of non-traction stress components occur in the standard parametric FVDAM 

theory, (Cavalcante et al. 2012), the surface-averaged values of both traction and non-traction 

stress components are reliable, Cavalcante et al., (2008, 2011), especially if the heterogeneous 

materials are not subjected to large deformation, Khatam and Pindera (2012), which is the 

scenario of interest herein. 

The incorporation of damage capability into the parametric FVDAM theory is carried out 

using a unified approach that allows simulation of both progressive phase separation based on 

the cohesive zone model as well as crack presence and growth within the same framework. To 

accomplish this, displacement discontinuity functions �̂�∗
′  previously used in the solution of 

interfacial crack problems in multilayered materials, (Chen and Pindera 2007a, b), are first 

introduced into the FVDAM framework. As in the exact elasticity framework of Chen and 

Pindera (2007a, b), the introduction of these functions modifies the global system of equations 

for the unknown surface-averaged interfacial displacements, called the primary system of 

equations, which is obtained through the satisfaction of interfacial displacement and traction 

continuity conditions,  

                                                     𝕜�̂�𝑜
′ = ∆𝐂�̅� + ∆𝚪Δ𝑇 − 𝕃�̂�∗

′                                              (1.14)  
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In the above,  �̂�𝑜
′  and �̂�∗

′  are common surface-averaged fluctuating displacements and 

displacement discontinuities, respectively, 𝕜 is the global stiffness matrix containing information 

on subvolume geometry and material assignment, the matrix ∆𝐂 is comprised of differences in 

material stiffness matrices of adjacent subvolumes, 𝕃 is the matrix that represents contributions 

from damaged or cracked interfaces, and �̅� is the applied (specified) homogenized strain that 

represents loading.  

The discontinuity functions are obtained upon solution of auxiliary equations that 

represent either traction-free crack face conditions along interfaces with existing cracks, or 

interfacial degradation between phases governed by nonlinear traction-interfacial separation laws 

along interfaces undergoing damage 

                                                 𝐓 = 𝐊∗�̂�∗
′ + 𝐊𝑜�̂�𝑜

′ + 𝐂�̅� + 𝚪Δ𝑇                                           (1.15) 

In contrast with the exact elasticity approach of Chen and Pindera (2007 a, b) which describes 

the crack tip singularity exactly by reducing the related system of equations to a system of 

coupled Cauchy-type singular integral equations, in the present approach the above system of 

equations is solved directly for the unknown displacement discontinuity functions as described 

below. 

For stationary cracks, the left-hand side of the equations is set to zero which enables 

direct solution of �̂�∗
′  in conjunction with Eq. (1.14). The penalty is extensive crack-tip mesh 

refinement needed to capture the stress singularity accurately enough for an accurate energy 

release rate calculation. This is offset by much greater flexibility than the elasticity approach 

since the proposed approach does not have limitations on crack distributions, model geometry 

and boundary conditions. 

 Alternatively, for interfaces undergoing damage evolution and ultimately separation, the 

cohesive zone model is introduced which provides traction-displacement separation relation to 

describe crack initiation and growth. The traction vector on the right-hand side of Equation 

(1.15) is replaced by the nonlinear separation law represented by the cohesive zone model. As 

observed above, the introduction of displacement discontinuity functions directly facilitates the 

implementation of cohesive laws since the interfacial tractions are available in terms of explicit 

functions of the displacement discontinuity. The two-level global system of equations includes 

the primary global system of equations, which only needs to be solved once during the analysis 

process and the global auxiliary system of equations which only contains the degrees of freedom 
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associated with the cohesive interfaces. This system is solved iteratively and incrementally 

during the process of modeling interfacial non-linear behaviors. 

In contrast with the manner of incorporating CZM into the finite-element framework 

where nodal displacements are the basic unknowns, within the FVDAM framework the surface-

averaged displacements at subvolume interfaces undergoing evolving damage are expressed as 

sums of continuous displacements and displacement discontinuities. The explicit relations 

between interfacial tractions and displacements available through the local stiffness matrix 

formulation enable us to construct the auxiliary system of equations directly. This manner of 

reformulating the governing system of equations for the unit cell response provides two very 

attractive advantages. As already mentioned, the incorporation of CZM is straightforward due to 

the explicit traction-interfacial separation relations. Moreover, in order to obtain converged 

solutions for the displacement discontinuities, only the auxiliary system of equation needs to be 

solved iteratively, unlike the finite-element framework where the entire global system is solved 

at each load increment. The number of auxiliary equations is equal to the number of interfaces 

undergoing damage multiplied by the associated degrees of freedom. When this number is small 

compared to the total number of interfaces within the discretized unit cell, as in the case of 

interfacial debonding in fiber-reinforced materials, the auxiliary system of equations is also small 

facilitating very efficient solution. 

The robust optimization algorithm chosen for use in conjunction with the extended 

FVDAM is the Particle Swarm Optimization (PSO) algorithm. This is a non-gradient based 

technique that is well-suited for optimization problems involving objective functions that vary 

non-smoothly with design variable changes, thereby providing robustness in a wide class of 

optimization problems. The utility of the developed FVDAM-PSO algorithm is illustrated by 

identification of optimal CZM interface parameters, which are difficult to measure 

experimentally, in the simulation of interfacial fiber/matrix debonding in a unidirectional metal-

matrix composite. This capability can be very attractive for material design, especially nowadays 

with the rapid advancement in 3D printing techniques.  

The extended FVDAM theory is verified using modified Eshelby problems under in-

plane tensile and out-of-plane shear loading when interfaces are within the linearly elastic range. 

Its capability in simulating crack initiation and propagation is critically evaluated upon 

comparison with the results generated using the commercial finite-element code Abaqus.  
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Experimental validation is provided through comparison of the FVDAM simulations with 

experimental response of unidirectional SiC/Ti composites undergoing fiber/matrk debonding as 

well as damage evolution in polymeric matrix cross-ply laminates. 

1.6 Outline of Dissertation  

The dissertation is organized as follows. In Chapter 2, the 0th-order parametric FVDAM theory 

is further extended in order to model the evolution of damage in periodic heterogeneous 

materials using the displacement discontinuity function techniques. The cohesive zone model 

(CZM) is then implemented to simulate progressive separation of adjacent phases or 

subdomains. The new capability is verified in the linear region upon comparison with an exact 

elasticity solution for an inclusion surrounded by a linear interface of zero thickness in an infinite 

matrix that obeys the same law as CZM before the onset of degradation. In Chapter 3, critical 

evaluation is conducted regarding the interfacial debonding simulation of fiber-reinforced 

composite materials with FVDAM and Abaqus. In Chapter 4 the extended theory's utility is 

demonstrated by revisiting the classical fiber/matrix debonding phenomenon observed in SiC/Ti 

composites and its ability to accurately capture the mechanics of progressive interfacial 

degradation is illustrated. In Chapter 5, the extended theory is incorporated into Particle Swarm 

Optimization and the optimal interfacial properties are identified effectively. In Chapter 6, the 

classical phenomenon of progressive cracking of 90° plies in polymeric matrix cross-ply 

laminates, and potential or subsequent delamination along the 0°/90° ply interface, is critically 

revisited using a finite-volume homogenization theory with damage evolution capability. In 

Chapter 7, damage evolution in off-axis laminates is investigated. Summary and conclusion, and 

a discussion of possible future work are presented in Chapter 8. 
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Chapter 2 

Cohesive Zone Model-Based Finite-Volume 

Homogenization Theory 

2.1 Introduction 

In this chapter, we extend the parametric FVDAM theory using a unified approach that allows 

simulation of both progressive phase separation based on CZM and crack growth within the 

same framework. To accomplish this, displacement discontinuity functions previously used in 

the solution of interfacial crack problems in multilayered materials, (Chen and Pindera 2007a), 

are introduced into the FVDAM framework. The discontinuity functions are obtained upon 

solution of auxiliary equations that represent either traction-free crack face conditions, or 

interfacial degradation between phases governed by nonlinear traction-interfacial separation 

laws. The approach is verified in the linear range upon comparison with an exact elasticity 

solution for the problem of an interface-clad cylindrical inclusion embedded in an infinite matrix 

under far-field unidirectional loading and out-of-plane shear loading. 

2.2 Theoretical Framework 

The unit cell's microstructure is discretized into quadrilateral subvolumes designated by the 

index (𝑞)  whose location is specified by the subvolume vertices (𝑦2
(𝑝,𝑞)

, 𝑦3
(𝑝,𝑞)

) . The qth 

quadrilateral subvolume is generated by mapping the reference subvolume in the 𝜂 − 𝜉 plane 

bounded by −1 ≤ 𝜂 ≤ 1 and −1 ≤ 𝜉 ≤ 1 onto its actual location in the unit cell, Figure 2.1, 

using the transformation 

𝑦𝑖
(𝑞)(𝜂, 𝜉) = ∑ 𝑁𝑝(𝜂, 𝜉)

4

𝑝=1

𝑦𝑖
(𝑝,𝑞)

,        𝑖 = 2,3 (2.1) 

where 𝑁1(𝜂, 𝜉) =
1

4
(1 − 𝜂)(1 − 𝜉) , 𝑁2(𝜂, 𝜉) =

1

4
(1 + 𝜂)(1 − 𝜉) , 𝑁3(𝜂, 𝜉) =

1

4
(1 + 𝜂)(1 + 𝜉) 

and 𝑁4(𝜂, 𝜉) =
1

4
(1 − 𝜂)(1 + 𝜉).  Following the convention of Cavalcante et. al. (2006), the 
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subvolume's vertices are numbered in counterclockwise manner starting from lower left 

corner(𝑦2
(1,𝑞)

, 𝑦3
(1,𝑞)

). Accordingly, the faces are numbered counterclockwise with the face𝐹𝑝 

defined by the endpoints (𝑦2
(𝑝,𝑞)

, 𝑦3
(𝑝,𝑞)

)  and (𝑦2
(𝑝+1,𝑞)

, 𝑦3
(𝑝+1,𝑞)

)  for 𝑝 = 1, 2, 3, 4  such that 

𝑝 + 1 → 𝑝  when𝑝 = 4 . The orientation of the face is defined by the unit normal 𝑛(𝑝,𝑞) =

[𝑛2
(𝑝,𝑞)

, 𝑛3
(𝑝,𝑞)

] whose elements are defined by the vertex coordinates and the associated lengths. 

 

Figure 2.1 A reference square subvolume in the 𝜂 − 𝜉 plane (left) mapped onto a quadrilateral 

subvolume in the 𝑦2 − 𝑦3 plane (right) of the actual microstructure. 

Following the 0th-order homogenization theory, (Bensoussan et al. 1978, Suquet 1987, 

Charalambakis 2010), the displacement field in the qth subvolume is represented by the two-

scale expansion involving macroscopic and fluctuating components 

𝑢𝑖
𝑞(𝒙, 𝒚(𝜂, 𝜉)) = 𝜀�̅�𝑗𝑥𝑗 + 𝑢𝑖

′(𝑞)
(𝜂, 𝜉) (2.2) 

The fluctuating displacements 𝑢𝑖
′(𝑞)

 (𝑖 = 1, 2, 3) are approximated by the 2nd order, Legendre-

type polynomial expansion in the reference coordinates (𝜂, 𝜉) consistent with the generalized 

plane strain constraint which ensures that 𝜀1̅1 = 𝜀1̅1
(𝑞)

 for all subvolumes under all loading 

conditions, 

𝑢𝑖
′(𝑞)

= 𝑊𝑖(00)
(𝑞)

+ 𝜂𝑊𝑖(10)
(𝑞)

+ 𝜉𝑊𝑖(01)
(𝑞)

+
1

2
(3𝜂2 − 1)𝑊𝑖(20)

(𝑞)
+  

1

2
(3𝜉2 − 1)𝑊𝑖(02)

(𝑞)
 

(2.3) 

The unknown coefficients 𝑊𝑖(𝑚𝑛)
(𝑞)

are ultimately expressed in terms of the surface-averaged 

displacements. 

The local strains are then obtained in terms of the macroscopic and fluctuating strain 

components upon use of the strain-displacement relations 
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𝜀𝑖𝑗
(𝑞)

= 𝜀�̅�𝑗 + 𝜀𝑖𝑗
′(𝑞)

= 𝜀�̅�𝑗 +
1

2
(
𝜕𝑢𝑖

′(𝑞)

𝜕𝑦𝑗
+

𝜕𝑢𝑗
′(𝑞)

𝜕𝑦𝑖
) (2.4) 

Subsequently, a local stiffness matrix for the qth subvolume is constructed by relating the 

surface-averaged fluctuating displacements to the surface-averaged tractions on each face of the 

subvolume. Towards this end, we express the 15 unknown coefficients 𝑊𝑖(𝑚𝑛)
(𝑞)

 in the 

displacement field representation in terms of the surface-averaged displacements. The definitions 

of the surface-averaged displacements provide 12 relations between the surface-averaged 

displacements and the unknown coefficients. These can be compactly expressed in terms of 

equations relating the 1st and 2nd order coefficients,𝑊𝑖(10)
(𝑞)

, 𝑊𝑖(01)
(𝑞)

 and  𝑊𝑖(20)
(𝑞)

 , 𝑊𝑖(02)
(𝑞)

 to the 

surface-averaged displacements and the 0th order coefficients 𝑊𝑖(00)
(𝑞)

. The remaining three 

relations are obtained from the three equilibrium equations satisfied in the large (volume-

averaged sense or surface-averaged sense through the Gauss theorem) for each subvolume. The 

integration of interfacial displacements is done in the η − ξ plane, while interfacial tractions are 

integrated along quadrilateral subvolume faces in the actual microstructure using the coordinate 

transformation described in the sequel. Following Achenbach (1975), the surface-averaged 

displacements on the pth face of the qth subvolume are defined by 

�̂�𝑖
′(1,3)

=
1

2
∫ 𝑢𝑖

′(𝜂, ∓1)𝑑𝜂
+1

−1

,            �̂�𝑖
′(2,4)

=
1

2
∫ 𝑢𝑖

′(±1, 𝜉)𝑑𝜉
+1

−1

 (2.5) 

which are expressed in terms of the unknown 0th, 1st and 2nd order 𝑊𝑖(𝑚𝑛)
(𝑞)

 coefficients upon 

integration. The superscripts 𝑝 = 1, 2, 3, 4 indicate subvolume face number, Figure 2.1, omitting 

for clarity the superscripts (𝑞) which identify a given subvolume. 

Similarly, the surface-averaged tractions are defined as follows 

�̂�𝑖
′(1,3)

=
1

2
∫ 𝑡𝑖(𝜂, ∓1)𝑑𝜂

+1

−1

,            �̂�𝑖
′(2,4)

=
1

2
∫ 𝑡𝑖(±1, 𝜉)𝑑𝜉

+1

−1

 (2.6) 

where 𝑡𝑖
(𝑝)

= 𝜎𝑗𝑖
(𝑝)

𝑛𝑗
(𝑝)

from Cauchy's relations. The stresses associated with each surface are 

expressed in terms of the corresponding strains through Hooke's law for the qth subvolume, 

𝜎𝑖𝑗
(𝑞)

= 𝐶𝑖𝑗𝑘𝑙
(𝑞)

(𝜀𝑘𝑙
(𝑞)

− 𝜀𝑘𝑙
𝑡ℎ(𝑞)

) (2.7) 

where 𝜀𝑘𝑙
𝑡ℎ(𝑞)

= 𝛼𝑘𝑙
(𝑞)

∆𝑇  are the thermal strains and 𝛼𝑘𝑙
(𝑞)

are the components of the thermal 

expansion tensor. The elastic subvolumes may be orthotropic or (transversely) isotropic. 
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The surface-averaged strains on the faces of quadrilateral subvolumes in the actual 

microstructure needed in the expressions for the surface-averaged tractions are generated using 

the following relations between surface-averaged partial derivatives of the displacement field in 

the two coordinate systems 

[
 
 
 
 
𝜕𝑢𝑖

′̂

𝜕𝑦2

𝜕𝑢𝑖
′̂

𝜕𝑦3]
 
 
 
 
(𝑝)

= �̂� 

[
 
 
 
 
𝜕𝑢𝑖

′̂

𝜕𝜂

𝜕𝑢𝑖
′̂

𝜕𝜉 ]
 
 
 
 
(𝑝)

   where  �̂�−1 = 𝐉̅ =
1

4
∫ ∫ 𝐽 𝑑𝜂 𝑑𝜉

+1

−1

+1

−1

 (2.8) 

where J is the Jacobian of the transformation. The superscripts 𝑝 and �̂� denote the faces of 

quadrilateral and reference subvolumes, respectively, with the following correspondence 

�̂� = 1, 3 →  𝜉 = ∓1  and �̂� = 2, 4 →  𝜂 = ±1 . The local stiffness matrix construction is 

simplified by approximating the relation between surface-averaged displacement gradients on the 

𝑝th face of the 𝑞th subvolume in the reference and actual coordinate systems using volume-

averaged Jacobian 𝐉̅ in the above equation. 

The surface-averaged strains are obtained in terms of the unknown coefficients in the 

subvolume displacement representation which are then expressed explicitly in terms of the 

surface-averaged fluctuating displacement components upon use of the definitions given in Eq. 

(2.5) and the application of equilibrium equations in the large (which provide the remaining three 

equations) 

∫ 𝜎 ∙ 𝑛 𝑑𝑆 =
𝑆𝑞

∫ 𝑡 𝑑𝑆 =
𝑆𝑞

∑ ∫ 𝑡(𝑝) 𝑑𝑙𝑝
𝑙𝑝

4

𝑝=1

= ∑ 𝑙𝑝�̂�(𝑝)

4

𝑝=1

= 0 (2.9) 

This leads to the relationship between the surface-averaged tractions and surface-averaged 

fluctuating displacements given in terms of the local stiffness matrix 𝐊(𝑞) for the 𝑞th subvolume 

�̂�(𝑞) = 𝐊(𝑞)�̂�(𝑞) + 𝐍(𝑞)𝐂(𝑞)(�̅� − �̂�𝑡ℎ(𝑞)) (2.10) 

where �̂� = [�̂�(1) �̂�(2) �̂�(3) �̂�(4)]T, and N = [𝐧(1) 𝐧(2) 𝐧(3) 𝐧(4)]Tcontains unit vectors that define the 

orientation of each of the four subvolume faces. For subvolumes containing orthotropic, 

transversely isotropic or isotropic materials, the stress-stain relations are separated into out-of-

plane shear and in-plane normal and shear contributions, and consequently the corresponding 

relations  between surface-averaged tractions and surface-averaged fluctuating displacements are 

separated. The local stiffness matrices 𝐊(𝑞) for in-plane and out-of-plane loading share the same 
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form of general expression, which is the product of the matrices �̅� and �̅� shown in the following 

with the omission of superscript q, 

𝐊 = �̅��̅�,with �̅� = 𝐃𝐂𝐄𝐁𝐀,   �̅� = �̅� − 𝐍𝚽−𝟏𝚯𝐌 (2.11) 

where D is an assembly of normal vectors associated with subvolume faces, C is the matrix of 

material properties, B is an assembly of Jacobian matrices arranged diagonally, A contains 

information on subvolume vertices, 𝚽 and 𝚯  contain information on material properties and 

Jacobian matrix,  𝐄 , �̅� , 𝐍 ,  𝐌  are supplementary matrices containing only 0 and 1 elements, 

(Khatam and Pindera  2009a).  

For both in-plane and out-of-plane problems, the relationships between surface-averaged 

tractions and surface-averaged fluctuating displacements have the same form, Eq. (2.10). The 

local stiffness matrix 𝐊(𝑞) is comprised of 4x4 submatrices 𝐊𝑖𝑗
(𝑞)

 as shown below 

𝐊(𝑞) = [

𝐊11    𝐊12    𝐊13    𝐊14

𝐊21    𝐊22    𝐊23    𝐊24

𝐊31    𝐊32    𝐊33    𝐊34

𝐊41    𝐊42    𝐊43    𝐊44

]

(𝑞)

 

For the in-plane traction components, a submatrix 𝐊𝑖𝑗
(𝑞)

 contains 2x2 elements, for instance, 

𝐊11
(𝑞)

= [
𝑘11 𝑘12

𝑘21 𝑘22
]
(𝑞)

. For the out-of-plane traction components, 𝐊𝑖𝑗
(𝑞)

 contains a single element, 

for instance, 𝐊11
𝑞 = [𝑘11

𝑜𝑝]
(𝑞)

. Eqs. (2.12-2.13) below illustrate the closed-form expressions for 

the elements 𝑘11  and 𝑘11
𝑜𝑝

 of the for qth subvolume under in-plane and out-of-plane loading, 

respectively.  

𝑘11 = −
1

2
𝑛2

(1)
𝐶22𝐽23 −

1

2
𝑛3

(1)
𝐶44𝐽33

− 3(𝑛2
(1)

𝐶22𝐽23 + 𝑛3
(1)

𝐶44𝐽33) (
1

2
− Φ11

−1Θ12 − Φ12
−1Θ22)

+ 3(𝑛3
(1)

𝐶44𝐽23 + 𝑛2
(1)

𝐶23𝐽33)(Φ21
−1Θ12 − Φ22

−1Θ22) 

(2.12) 

𝑘11
𝑜𝑝 = −

1

2
𝑛2

(1)
𝐶66𝐽23 −

1

2
𝑛3

(1)
𝐶55𝐽33 − 3(𝑛2

(1)
𝐶66𝐽23 + 𝑛3

(1)
𝐶55𝐽33) (

1

2
−

𝛩12
𝑜𝑝

𝛷𝑜𝑝
) (2.13) 

where n is the normal vector to subvolume face,  and 𝐽 is volume-averaged Jacobian matrix. 
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2.3. Traction and Displacement Continuity at Subvolume Interfaces 

The unknown interfacial surface-average displacements are determined by solving a global 

system of equations generated by first enforcing traction continuity at each interface between 

two adjacent subvolumes, followed by direct enforcement of displacement continuity. In the 

present FVDAM version, row-wise and column-wise unit cell discretization is employed. Hence, 

proceeding from left to right, row-wise enforcement of traction continuity between adjacent 

subvolumes takes the form 

�̂�(2,𝑞−1) + �̂�(4,𝑞) = 0 (2.14) 

Similarly, proceeding in the upward direction, column-wise enforcement of displacement 

continuity between adjacent subvolumes takes the form 

�̂�(3,�̅�−1) + �̂�(1,�̅�) = 0 (2.15) 

In the above equations, the superscripts 𝑞 − 1, 𝑞 and �̅� − 1, �̅� are associated with adjacent 

subvolumes along rows and columns, respectively. The traction continuity equations are then 

expressed in terms of surface-averaged displacements, applied macroscopic and thermal strains 

using the local stiffness matrix relations given by Eq. (2.10). In the case of intact or continuous 

interfaces considered in numerous previous FVDAM investigations, the displacement continuity 

is satisfied directly by setting equal the interfacial displacements at the common faces of adjacent 

subvolumes.  

In the case of interfaces that undergo separation considered herein, we introduce 

displacement discontinuity functions as follows. Proceeding from left to right and then upward, 

we define 

�̂�′(4,𝑞) − �̂�′(2,𝑞−1) = �̂�∗
′(4,𝑞)

 

 �̂�′(1,�̅�) − �̂�′(3,�̅�−1) = �̂�∗
′(1,�̅�)

 
(2.16) 

Following Chen and Pindera (2007a), the interfacial displacements are then expressed in terms of 

continuous and discontinuous contributions. For the surface-averaged displacements between 

adjacent subvolumes along the rows, we have, 

�̂�′(2,𝑞−1) = �̂�𝑜
(4,𝑞)

− [𝐊∗,𝑞]−1𝐊44
(𝑞)

�̂�∗
(4,𝑞)

 

�̂�′(4,𝑞) = �̂�𝑜
(4,𝑞)

+ [𝐊∗,𝑞]−1𝐊22
(𝑞−1)

�̂�∗
(4,𝑞)

 
(2.17) 

where [𝐊∗,𝑞]−1 = [𝐊22
(𝑞−1)

+ 𝐊44
(𝑞)

]−1, and along the columns 
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�̂�′(3,�̅�−1) = �̂�𝑜
(1,�̅�)

− [𝐊∗,�̅�]−1𝐊11
(�̅�)

�̂�∗
(1,�̅�)

 

�̂�′(1,�̅�) = �̂�𝑜
(1,�̅�)

+ [𝐊∗,�̅�]−1𝐊33
(�̅�−1)

�̂�∗
(1,�̅�)

 
(2.18) 

where [𝐊∗,�̅�]−1 = [𝐊33
(�̅�−1)

+ 𝐊11
(�̅�)

]−1 , Figure 2.2. For intact interfaces, we recover standard 

interfacial displacement continuity conditions: �̂�′(2,𝑞−1) = �̂�′(4,𝑞) = �̂�𝑜
′(4,𝑞)

 and �̂�′(3,�̅�−1) =

�̂�′(1,�̅�) = �̂�𝑜
(1,�̅�)

. 

 

Figure 2.2 Interfacial discontinuity between two adjacent subvolumes. 

 

Using the above surface-averaged displacement representations in the presence of interfacial 

separation, and assuming isolated interfaces that undergo separation, the traction continuity 

relations given by Eqs. (2.14-2.15) become, 

𝐊24
(𝑞−1)

�̂�𝑜
′(4,𝑞−1)

+ (𝐊22
(𝑞−1)

+ 𝐊44
(𝑞)

) �̂�𝑜
′(4,𝑞)

+ 𝐊42
(𝑞)

�̂�𝑜
′(4,𝑞+1)

+ 𝐊21
(𝑞−1)

�̂�′(1,𝑞−1)

+ 𝐊23
(𝑞−1)

�̂�′(3,𝑞−1) + 𝐊41
(𝑞)

�̂�′(1,𝑞) + 𝐊43
(𝑞)

�̂�′(3,𝑞)

+ (𝐂(𝑞−1) + 𝐂(𝑞))(�̅� − �̂�𝑡ℎ(𝑞)) = −𝐋(4,𝑞)�̂�∗
′(4,𝑞)

 

(2.19) 

and 

𝐊31
(�̅�−1)

�̂�𝑜
′(1,�̅�−1)

+ (𝐊33
(�̅�−1)

+ 𝐊11
(�̅�)

) �̂�𝑜
′(1,�̅�)

+ 𝐊13
(�̅�)

�̂�𝑜
′(1,�̅�+1)

+ 𝐊32
(�̅�−1)

�̂�′(2,�̅�−1)

+ 𝐊34
(�̅�−1)

�̂�′(4,�̅�−1) + 𝐊12
(�̅�)

�̂�′(2,�̅�) + 𝐊14
(�̅�)

�̂�′(4,�̅�)

+ (𝐂(�̅�−1) + 𝐂(𝑞))(�̅� − �̂�𝑡ℎ(𝑞)) = −𝐋(1,�̅�)�̂�∗
′(1,�̅�)

 

(2.20) 

where  

𝐋(4,𝑞) = (𝐊44
(𝑞)[𝐊∗,𝑞]−1𝐊22

(𝑞−1)
− 𝐊22

(𝑞−1)[𝐊∗,𝑞]−1𝐊44
(𝑞)

) 

𝐋(1,�̅�) = (𝐊11
(�̅�)[𝐊∗,�̅�]−1𝐊33

(�̅�−1)
− 𝐊33

(�̅�−1)[𝐊∗,�̅�]−1𝐊11
(�̅�)

) 



31 
 

In the presence of additional separations along the remaining interfaces of the adjacent 

subvolumes (𝑞 − 1, 𝑞) and (�̅� − 1, �̅�) the above equations are modified accordingly. 

2.4 Periodic Boundary Conditions 

In the extended FVDAM theory, interfaces undergoing damage are not allowed to be inserted 

along the unit cell boundaries. Hence the same manner of applying periodic boundary conditions 

used by Khatam and Pindera (2009a, b), Bansal and Pindera (2006) is employed. Figure 2.3 

illustrates the enforcement of periodic boundary conditions for a square unit cell with row-wise 

and column-wise discretization. Along row-wise direction the tractions along left face (face 2) of 

the 1st subvolume are balanced by the tractions along right face (face 4) of the qth subvolume 

and the displacements along left face of the 1st subvolume are set equal to the displacements 

along right face of the qth subvolume.  Similarly, along column-wise direction the tractions 

along bottom face (face 1) of the 1̅st subvolume are balanced by the tractions along top face 

(face 3) of the �̅�th subvolume and the displacements along bottom face of the 1̅st subvolume are 

set equal to the displacement along top face of the �̅�th subvolume.  

 
Figure 2.3 Imposition of periodic boundary conditions for a square unit cell.  
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2.5 Primary and Auxiliary Global Systems of Equations 

As shown in Eqs. (2.19-2.20), imposition of interfacial traction and displacement continuity 

conditions at the common subvolume faces, together with periodic boundary conditions, 

produces the global system of equations containing the common surface-averaged fluctuating 

displacements and the displacement discontinuities that symbolically takes the form, 

𝕜�̂�𝑜
′ = ∆𝐂�̅� + ∆𝚪Δ𝑇 − 𝕃�̂�∗

′  (2.21) 

where 𝕜 is the global stiffness matrix containing information on the subvolume geometry and 

material assignment, the matrix ∆𝐂  is comprised of the differences in the material stiffness 

matrices of adjacent subvolumes, and 𝕃 is the matrix that represents contributions from damaged 

or cracked interfaces. This is the primary system of equations that is used to express the 

continuous surface-averaged fluctuating interfacial displacements �̂�𝑜
′  in terms of the 

corresponding displacement discontinuities �̂�∗
′ . The additional or auxiliary equations necessary 

for the determination of the displacement discontinuities come from the traction conditions 

applied to the damaged interfaces described next. 

The interfacial tractions are related to the fluctuating surface-averaged common 

displacements and the corresponding displacement discontinuities in the presence of interfacial 

damage via the local stiffness matrix expression given in Eq. (2.10). In the latter case, tractions 

may be specified directly, e.g., using traction-free crack-face condition or via a chosen traction-

interfacial separation relation. In the presence of multiple interfaces undergoing damage, the 

local stiffness matrix relationship for a particular interface involves displacement discontinuities 

associated with the faces of the particular subvolume as well as displacement discontinuities 

associated with other interfaces. This coupling comes through the adjacent continuous surface-

averaged interfacial displacements obtained from the solution of the primary system of 

equations. The auxiliary equations for the tractions along the interfaces undergoing damage may 

be symbolically expressed as follows 

𝐓 = 𝐊∗�̂�∗
′ + 𝐊𝑜�̂�𝑜

′ + 𝐂�̅� + 𝚪Δ𝑇 (2.22) 

where the matrix 𝐊∗ contains the elements associated with displacement discontinuities, which 

are products of the local stiffness matrices 𝐊(𝑞) and elements of the matrices appearing in Eqs. 

(2.17-2.18), 𝐊𝑜 contains the local stiffness matrices associated with the undamaged interfaces, 

and 𝐂�̅� and 𝚪Δ𝑇 are the assembled loading vectors. Eq. (2.23) shows the detailed expressions 
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appearing in the auxiliary equations extracted from the left and bottom subvolume faces for two 

cases with interfaces inserted between adjacent subvolumes (𝑞 − 1, 𝑞)  and (�̅� − 1, �̅�) , 

respectively, with the corresponding primary system of equations shown in Eqs. (2.16-2.17). It 

should be noted that displacement continuity conditions were employed in those two equations 

along row-wise and column-wise directions, respectively. 

�̂�(4,𝑞) = 𝐊44
(𝑞)

[𝐊∗,𝑞]−1𝐊22
(𝑞−1)

�̂�∗
′(4,𝑞)

+ 𝐊44
(𝑞)

�̂�0
′(4,𝑞)

+ 𝐊42
(𝑞)

�̂�𝑜
′(4,𝑞+1)

+ 𝐊41
(𝑞)

�̂�′(1,𝑞)

+ 𝐊43
(𝑞)

�̂�′(3,𝑞) + 𝐂(𝑞)(�̅� − �̂�𝑡ℎ(𝑞)) 

�̂�(1,�̅�) = 𝐊11
(�̅�)[𝐊∗,�̅�]−1𝐊33

(�̅�−1)
�̂�∗

′(1,�̅�)
+ 𝐊11

(�̅�)
�̂�𝑜

′(1,�̅�)
+ 𝐊13

(�̅�)
�̂�𝑜

′(1,�̅�+1)
+ 𝐊12

(�̅�)
�̂�′(2,�̅�)

+ 𝐊14
(�̅�)

�̂�′(4,�̅�) + 𝐂(�̅�)(�̅� − �̂�𝑡ℎ(�̅�)) 

(2.23) 

From the primary system of equations we then obtain the continuous fluctuating surface-

averaged interfacial displacements in terms of displacement discontinuities, 

�̂�𝑜
′ = 𝕜−1(∆𝐂�̅� + ∆𝚪∆𝑇 − 𝕃�̂�∗

′) (2.24) 

Substituting the expression for �̂�𝑜
′  into the auxiliary system of equations, we finally obtain the 

auxiliary system of equations that relates the tractions of damaged interfaces to the 

corresponding displacement discontinuities and the applied loading, 

𝐓(�̂�∗
′) = (𝐊∗ − 𝐊𝑜𝕜

−1𝕃)�̂�∗
′ + 𝐊𝑜𝕜

−1∆𝐂�̅� + 𝐊𝑜𝕜
−1∆𝚪Δ𝑇 + 𝐂�̅� + 𝚪Δ𝑇 (2.25) 

The tractions appearing on the right hand side of the auxiliary system of equations may be 

specified directly or through a chosen traction-displacement discontinuity relation 𝐓(�̂�∗
′). In the 

case of a nonlinear traction-displacement discontinuity relation, an incremental and iterative 

(Newton-Raphson) procedure is applied to solve the auxiliary system of equations. 

2.6 Cohesive Zone Model Implementation 

Herein, for in-plane normal and shear problems we incorporate the coupled bilinear traction-

separation relations, whereas for out-of-plane shear problems the bilinear traction-separation 

relation is incorporated assuming no coupling between in-plane and out-of-plane traction-

separation relations.  In the following, the procedures to incorporate the coupled bilinear 

traction-separation relation are discussed in detail, while the procedure to incorporate the 

uncoupled bilinear traction-separation relation is straightforward and is described briefly.   
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The coupled bilinear traction-separation relations incorporated herein are frequently 

employed in finite-element CZM-based damage evolution studies, (Geubelle and Baylor 1998, 

Chandra et al. 2002, Matous and Geubelle 2006, Song et al. 2006). The non-dimensional 

effective separation displacement defined by 

𝜆𝑒 = √(
𝛿𝑛

Δ𝑛
𝑐 )

2

+ (
𝛿𝑡

Δ𝑡
𝑐)

2

 (2.26) 

is employed to couple the normal traction-displacement discontinuity and shear traction-

displacement discontinuity relations. In the above definition, 𝛿𝑛  and 𝛿𝑡  are the normal and 

tangential displacement discontinuities, and Δ𝑛
𝑐  and Δ𝑡

𝑐  are the corresponding critical values at 

complete separation. Following common practice, we set the critical values equal, Δ𝑛
𝑐 = Δ𝑛

𝑐 =

Δ 𝑐 . The maximum non-dimensional displacement 𝜆𝑚𝑎𝑥  which corresponds to the maximum 

tractions is incorporated to adjust the elastic stiffness by adjusting the pre-peak slope of the 

traction-separation relation. With the above defined quantities, the bilinear interfacial separation 

relation takes the following forms for the respective loading cases when the interface is under 

tension: 

For 𝛿𝑛 > 0 and 𝜆𝑒 < 𝜆𝑚𝑎𝑥 

𝑡𝑛 = 𝜎𝑚𝑎𝑥

1

𝜆𝑚𝑎𝑥
(
𝛿𝑛

Δ𝑐
),             𝑡𝑡 = 𝜎𝑚𝑎𝑥

1

𝜆𝑚𝑎𝑥
(
𝛿𝑡

Δ𝑐
)   (2.27) 

For 𝛿𝑛 > 0 and 𝜆𝑒 > 𝜆𝑚𝑎𝑥 

𝑡𝑛 = 𝜎𝑚𝑎𝑥

1 − 𝜆𝑒

1 − 𝜆𝑚𝑎𝑥

1

𝜆𝑒
(
𝛿𝑛

Δ𝑐
),            𝑡𝑡 = 𝜎𝑚𝑎𝑥

1 − 𝜆𝑒

1 − 𝜆𝑚𝑎𝑥

1

𝜆𝑒
(
𝛿𝑡

Δ𝑐
)   (2.28) 

when the interface is under compression, 𝛿𝑛 = 0 and only the shear traction relations hold in the 

above. 

In order to implement an iterative Newton-Raphson technique in the solution of Eq. 

(2.25), the Jacobian of the stiffness matrix obtained from the gradient form of the traction-

interfacial separation relations is required, 

[
𝑑𝑡𝑛
𝑑𝑡𝑡

] =

[
 
 
 
 
𝜕𝑡𝑛
𝜕𝛿𝑛

   
𝜕𝑡𝑛
𝜕𝛿𝑡

𝜕𝑡𝑡
𝜕𝛿𝑛

    
𝜕𝑡𝑡
𝜕𝛿𝑡    ]

 
 
 
 

[
𝑑𝛿𝑛

𝑑𝛿𝑡
] = [

𝐶𝑛𝑛  𝐶𝑛𝑡

𝐶𝑡𝑛  𝐶𝑡𝑡
] [

𝑑𝛿𝑛

𝑑𝛿𝑡
] (2.29) 

 

 



35 
 

For 𝜆𝑒 < 𝜆𝑚𝑎𝑥 

𝐶𝑛𝑛 =
𝜕𝑡𝑛
𝜕𝛿𝑛

=
𝜎𝑚𝑎𝑥

𝜆𝑚𝑎𝑥Δ𝑐
 

𝐶𝑛𝑛 = 𝐶𝑡𝑛 = 0 

𝐶𝑡𝑡 =
𝜕𝑡𝑡
𝜕𝛿𝑡

=
𝜎𝑚𝑎𝑥

𝜆𝑚𝑎𝑥Δ𝑐
 

(2.30) 

 For 𝜆𝑒 > 𝜆𝑚𝑎𝑥 

𝐶𝑛𝑛 =
𝜕𝑡𝑛
𝜕𝛿𝑛

=
𝜎𝑚𝑎𝑥

(1 − 𝜆𝑚𝑎𝑥)Δ𝑐
(

1

𝜆𝑒
−

(𝛿𝑛)2

(Δ𝑐)2
 
1

λ𝑒
3 − 1) 

𝐶𝑛𝑡 =
𝜕𝑡𝑛
𝜕𝛿𝑡

= −
𝜎𝑚𝑎𝑥

(1 − 𝜆𝑚𝑎𝑥)
 
𝛿𝑛𝛿𝑡

(𝛥𝑐)3
 
1

𝜆𝑒
3 

𝐶𝑡𝑛 =
𝜕𝑡𝑡
𝜕𝛿𝑛

= −
𝜎𝑚𝑎𝑥

(1 − 𝜆𝑚𝑎𝑥)
 
𝛿𝑡𝛿𝑛

(Δ𝑐)3
 
1

λ𝑒
3 

𝐶𝑡𝑡 =
𝜕𝑡𝑡
𝜕𝛿𝑡

=
𝜎𝑚𝑎𝑥

(1 − 𝜆𝑚𝑎𝑥)Δ𝑐
(

1

𝜆𝑒
−

(𝛿𝑡)
2

(Δ𝑐)2
 
1

λ𝑒
3 − 1) 

(2.31) 

Figure 2.4 illustrates graphically the coupled normal and tangential interfacial separation 

laws and the resulting interaction effects. The coupling between the normal and tangential modes 

may be eliminated by eliminating coupling in the expression for the non-dimensionalized 

effective separation displacement. In this case, strictly bilinear traction-interfacial separation 

relations for each mode are obtained which are also included in Figure 2.4. These correspond to 

the planes 𝛿𝑡 = 0 and 𝛿𝑛 = 0 in the normal and tangential separation laws, respectively. For out-

of-plane shear loading, the separation law is the same as the in-plane bilinear traction-interfacial 

separation relation in tangential direction, Figure 2.4(b).  
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(a) Coupled separation laws 

 

(b) Uncoupled separation laws 

Figure 2.4 Traction-interfacial separation relations for the cohesive zone model in normal (left 

column) and tangential (right column) directions to the interface: graphical representations of (a) 

coupled and (b) uncoupled relations.  

The interfacial separation laws are given in terms of normal and tangential displacement 

discontinuities, whereas the displacement discontinuities defined within the FVDAM framework, 

Eqs. (2.17-2.18), are referred to the Cartesian coordinate system associated with the unit cell. 

Hence, in order to implement the above separation laws into the FVDAM framework the traction 

and displacement discontinuities appearing in the auxiliary global equations, Eqs. (2.25), are 

transformed to local coordinate systems that are normal and tangential to the subvolume faces 

undergoing separation. When the normal traction is compressive for the particular interface, the 
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corresponding equation in the transformed system of auxiliary equations is simply eliminated 

and the standard traction and displacement continuity conditions, expressed through the common 

surface-averaged displacements appearing in the primary system of equations, suffice. This 

straight forward approach of implementing CZM into our finite-volume framework, enabled by 

partitioning the surface-averaged interfacial displacements using Eqs. (2.17-2.18), contrasts with 

the corresponding finite-element based implementation where large interfacial stiffness is 

employed in the interfacial traction-separation law in compression, potentially leading to 

material interpenetration. This significant difference will be discussed, and its effects illustrated, 

in more depth in Chapter 3. 

2.7 Homogenization 

Solution of the auxiliary system of equations for the surface-averaged displacement 

discontinuities �̂�∗
′ , followed by the determination of the continuous surface-averaged fluctuating 

displacements �̂�𝑜
′  enables determination of the localization relations for the 𝑞th subvolume 

�̅�(𝑞) = 𝔸(𝑞)�̅� + 𝔻(𝑞) (2.32) 

where 𝔸(𝑞)  are Hill's strain concentration matrices, Hill (1963). Application of one non-zero 

macroscopic strain component in the absence of damage determines one column vector of 𝔸(𝑞), 

which is done just once. On the other hand, the vector 𝔻(𝑞)  which contains thermal and 

displacement discontinuity contributions to the 𝑞th subvolume average strain is obtained at each 

increment of the applied macroscopic strains �̅� upon solution of the unit cell boundary-value 

problem which generates �̅�(𝑞). Hence, 𝔻(𝑞) = �̅�(𝑞) − 𝔸(𝑞)�̅�. Use of localization relations in the 

average composite stress definition, in conjunction with the volume-averaged stress strain 

relations for each subvolume, yields the homogenized or macroscopic constitutive equation for a 

multiphase composite in the presence of evolving interfacial damage, 

�̅� =
1

𝐕
∫ 𝛔(𝑥)𝑑𝑉 = ∑ 𝑣(𝑞)�̅�

(𝑞)

𝑁𝑞

𝑞=1𝑉

= 𝐂∗[�̅� − (�̅�𝑡ℎ + �̅�𝑑)] (2.33) 

where 𝑣(𝑞) = 𝑉𝑞/𝑉  is the volume fraction of the 𝑞th subvolume. The homogenized stiffness 

matrix 𝐂∗ and the thermal and damage strains are given in terms of the subvolume geometry, 

material properties, elastic concentration matrices and their thermo-damage counterparts 
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𝐂∗ = ∑ 𝑣(𝑞)𝐂
(𝑞)𝔸(𝑞)

𝑁𝑞

𝑞=1

 

  �̅�𝑡ℎ + �̅�𝑑 = −
[𝐂∗]−1

V
∑ 𝑣(𝑞)[𝐂

(𝑞)𝔻(𝑞) − 𝚪(𝑞)∆𝑇]

𝑁𝑞

𝑞=1

 

(2.34) 

As observed in Eqs. (2.21-2.25), the solution of the unit cell boundary-value problem is obtained 

for any combination of specified macroscopic strains �̅�. In order to simulate loading by specified 

stress components, the strain components are adjusted accordingly using the homogenized 

constitutive equation �̅� = 𝐂∗([�̅� − (�̅�𝑡ℎ + �̅�𝑑)]). In the absence of damage and thermal loads, 

constant strain ratios that correspond to fixed stress ratios are obtained in terms of the 

homogenized moduli 𝐂∗. In the presence of damage and thermal loads, the incremental version 

of the homogenized constitutive equations, 

𝑑�̅� = 𝐂∗(𝑑�̅�−𝑑�̅�𝑑 − 𝑑�̅�𝑡ℎ) (2.35) 

is employed, and strain increment ratios are adjusted iteratively at each load increment to 

generate the desired load path specified in terms of macroscopic stresses. 

The above CZM-based homogenization framework may be checked for consistency by 

comparing the applied macroscopic strains �̅� with the homogenized strains obtained from the 

solution of the unit cell boundary-value problem at each load increment. Specifically, the 

average strain obtained from the unit cell surface displacement 

𝜀�̅�𝑗 =
1

𝐕
∫

1

2
(𝑢𝑖𝑛𝑗 + 𝑢𝑗𝑛𝑖)

𝑆

𝑑𝑆 (2.36) 

may be expressed in terms of the volume average subvolume contributions through the use of 

Gauss theorem and the contributions due to the displacement discontinuities, yielding 

𝜀�̅�𝑗 =
1

V
∫ 𝜀𝑖𝑗(𝐱)
𝑉

𝑑𝑉 −
1

2V
∫ (𝛿𝑢𝑖𝑛𝑗 + 𝛿𝑢𝑗𝑛𝑖)
𝑆𝑑

𝑑𝑆                      

= ∑ 𝑣(𝑞)𝜀�̅�𝑗
(𝑞)

𝑁𝑞

𝑞=1

−
1

2V
∑ 𝑙𝑑

(𝑞)
(𝛿�̂�𝑖

(𝑞)
𝑛𝑗 + 𝛿�̂�𝑗

(𝑞)
𝑛𝑖)

𝑁𝑞
∗

𝑞=1

 

(2.37) 

where 𝑁𝑞
∗  is the number of damaged interfaces, 𝑙𝑑

(𝑞)
 is the length of the damaged interface 

and 𝛿�̂�𝑖
(𝑞)

 are the surface-averaged displacement discontinuities. This formula will be employed 
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to verify the correctness of the implemented CZM and the accuracy of the CZM-based solution 

for the investigated unit cell problems. 

2.8 Verification  

The implemented CZM capability is first verified in the linear elastic region by comparison with 

an exact elasticity solution for an inclusion surrounded by a linear interface of zero thickness that 

obeys the same constitutive law as CZM before the onset of unloading. The inclusion is 

embedded in an infinite matrix and subjected to uniform far-field loading. This is the classical 

Eshelby problem, Eshelby (1957), with a linearly elastic flexible interface whose solution can be 

readily obtained by specializing the available solutions in cylindrical coordinates, (Drago and 

Pindera 2008). Two types of far-field loading conditions are applied: in-plane far-filed 

loading,𝜎22
∞  and out-of-plane shear, 𝜀12

∞ .  

2.8.1 In-Plane Far-Field Loading 

For the Eshelby in-plane problem, the displacement field in the inclusion and the matrix under 

plain strain conditions that satisfies the Navier's equations and far-field loading condition reads, 

𝑢𝑟
𝑓
(𝑟, θ) = 𝐴10

𝑓
𝑟 − [2𝑣𝑓/(9 − 6𝑣𝑓)𝐴12

𝑓
𝑟3 + 𝐴22

𝑓
𝑟]𝑐𝑜𝑠2𝜃 

𝑢𝜃
𝑓
(𝑟, θ) = (𝐴12

𝑓
𝑟3/3 + 𝐴22

𝑓
𝑟)𝑠𝑖𝑛2𝜃 

(2.38) 

and 

𝑢𝑟
𝑚(𝑟, θ) = 𝐴10

𝑚 𝑟 + 𝐴20
𝑚 /𝑟

+ (−𝐴22
𝑚 𝑟 − 𝐴32

𝑚 𝑟−3/3 + 2(1 − 𝑣𝑚)/(1 − 2𝑣𝑚)𝐴42
𝑚 𝑟−1)𝑐𝑜𝑠2𝜃 

𝑢𝜃
𝑚(𝑟, 𝜃) = (𝐴22

𝑚 − 𝐴32
𝑚 𝑟−3/3 − 𝐴42

𝑚 𝑟−1)𝑠𝑖𝑛2𝜃 

(2.39) 

The unknown coefficients 𝐴10
𝑚  and 𝐴22

𝑚 are obtained from the far-field loading condition 

𝜎𝑟𝑟
𝑚(𝑟 → ∞, 𝜃) = 1/2𝜎22

∞(1 − 𝑐𝑜𝑠2𝜃) (2.40) 

and the remaining six unknown coefficients are determined from displacement discontinuity 

conditions at the fiber/matrix interface 𝑟 = 𝑎, 

𝑢𝑟
𝑚(𝑎, 𝜃) − 𝑢𝑟

𝑓(𝑎, 𝜃) = 𝑢𝑟
∗   and    𝑢𝜃

𝑚(𝑎, 𝜃) − 𝑢𝜃
𝑓(𝑎, 𝜃) = 𝑢𝜃

∗  (2.41) 

where the interfacial constitutive relations are 

𝜎𝑟𝑟
𝑖𝑛𝑡 = 𝑘𝑟

∗𝑢𝑟
∗      𝑎𝑛𝑑     𝜎𝜃𝜃

𝑖𝑛𝑡 = 𝑘𝜃
∗𝑢𝜃

∗  (2.42) 

and interfacial traction continuity conditions 
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𝜎𝑟𝑟
𝑓 (𝑎, 𝜃) = 𝜎𝑟𝑟

𝑚(𝑎, 𝜃)   and   𝜎𝑟𝜃
𝑓 (𝑎, 𝜃) = 𝜎𝑟𝜃

𝑚(𝑎, 𝜃) (2.43) 

For comparison purposes, we employ the uncoupled CZM separation law with 𝑘𝑟
∗ = 𝑘𝜃

∗  

and choose fiber and matrix material parameters given in Table 2.1 which do not produce 

cohesive zone interpenetration due to the applied horizontal loading. The unit cell constructed for 

FVDAM computations for comparison with the modified Eshelby solution is shown in Figure 

2.5, together with a close-up of the interfacial region. The fiber radius is one, producing volume 

fraction for this unit cell of 0.05, and the discretization employed is 120×120 subvolumes. Figure 

2.6 illustrates comparison of the interfacial displacement discontinuities along radial and 

tangential directions under loading by 𝜎22
∞ = 1 MPa, and plane strain condition 𝜀1̅1 = 0 along the 

fiber direction. As observed, the FVDAM results coincide with the modified Eshelby solution 

nearly everywhere around the entire fiber/matrix interface both in the radial and tangential 

directions. Similar observation holds for the normal and tangential traction distributions (not 

shown). The corresponding full-field stress distributions in Cartesian coordinates, 𝜎22(𝑦2, 𝑦3), 

𝜎23(𝑦2, 𝑦3)  and 𝜎33(𝑦2, 𝑦3) , are given in Figure 2.7 and demonstrate the accuracy of the 

FVDAM predictive capability with the newly incorporated CZM in the linearly elastic range. We 

note that the 𝜎22(0, 𝑎) stress concentration is substantially less than 3 because the fiber/matrix 

Young's modulus mismatch is just 1/4 for this case and 𝑘𝑟
∗ = 106 MPa/unit length. To 

demonstrate that the FVDAM theory with the implemented CZM can reproduce the well-known 

Kirsch solution which produces the stress concentration factor of 3 at the apex of the hole under 

horizontal loading, we can either reduce the interfacial stiffness to a negligible level or reduce 

the fiber Young's modulus without changing the interfacial stiffness such that the fiber 

approximates a circular hole. Both approaches were taken. Figure 2.8 compares the normal and 

tangential stress distributions for the case when the interfacial stiffness has been degraded to a 

small number, namely 𝑘𝑟
∗ = 3 MPa/unit length. As observed, the stress magnification of 3 is 

obtained as in the Kirsch problem. The same distributions are obtained when the inclusion 

properties are reduced to a very small number and the interfacial stiffness is kept at 𝑘𝑟
∗ =

3 × 106 MPa/unit length. 
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Table 2.1 Elastic parameters for the modified Eshelby problem. 

Material  E (GPa) 𝜈 𝑘𝑟
∗ = 𝑘𝜃

∗ (MPa/length) 

Inclusion  100 0.35 --- 

Matrix 400 0.25 --- 

Interface ---- ---- 3.0 × 106 

      

                Unit cell geometry                                            Detailed region near the inclusion 

Figure 2.5 Unit cell geometry containing 0.05 fiber volume fraction (left) and a detailed close-up 

(right) used for comparison with the Eshelby solution for an inclusion with a linear interface in 

an infinite matrix. 

  

Figure 2.6 Comparison of radial and tangential displacement discontinuities around the 

fiber/matrix interface obtained from dilute FVDAM and Eshelby solutions. 
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 Eshelby FVDAM 

𝜎22 

  

𝜎33 

  

𝜎23 

  

Figure 2.7 Comparison of normal and tangential stress fields in the region occupied by the unit 

cell obtained from dilute FVDAM and Eshelby solutions. 
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 Kirsch FVDAM 

𝜎22 

  

𝜎33 

  

𝜎23 

  

Figure 2.8 Comparison of normal and tangential stress fields in the region occupied by the unit 

cell obtained from dilute FVDAM and Eshelby solutions with the interfacial properties set to 

simulate the Kirsch solution. 

 



44 
 

2.8.2 Out-of-Plane Far-Field Loading 

For out-of-plane shear loading, 𝜀12
∞ , the displacement field in the inclusion and the matrix 

satisfies the following equations: 

𝑢𝑧
𝑓(𝑟, 𝜃) = 𝐵𝑓𝑟𝑐𝑜𝑠𝜃 − 𝜀12

∞  𝑟 𝑐𝑜𝑠𝜃 (2.44) 

𝑢𝑧
𝑚(𝑟, 𝜃) = (𝐵𝑚𝑟 + 𝐶𝑚/𝑟)𝑐𝑜𝑠𝜃 − 𝜀12

∞  𝑟 𝑐𝑜𝑠𝜃 (2.45) 

The unknown coefficient, 𝐵𝑚 can be obtained from far-field condition. The other two unknown 

coefficients are determined from displacement discontinuity conditions at the fiber/matrix 

interface, 𝑟 = 𝑎, where the interfacial constitutive relations are  

𝑢𝑧
𝑚(𝑎, 𝜃) − 𝑢𝑧

𝑓(𝑎, 𝜃) = 𝑢𝑧
∗    (2.46) 

where the interfacial constitutive relation is  

𝜎𝑧
𝑖𝑛𝑡 = 𝑘𝑧

∗𝑢𝑧
∗ (2.47) 

and interfacial traction continuity condition is 

𝜎𝑧
𝑓(𝑎, 𝜃) = 𝜎𝑧

𝑚(𝑎, 𝜃) (2.48) 

Two sets of results with different interfacial properties are presented for comparison 

purpose. Figures 2.9-2.10 show the results when interfacial stiffness is 𝑘𝑧
∗ = 3 × 106 MPa/unit 

length and Figure 2.11 shows the comparison when interfacial stiffness is 𝑘𝑧
∗ = 3MPa/unit 

length. The same unit cell, discretization, fiber/matrix properties are used as in the case for in-

plane verification and the applied loading is 𝜀1̅2 = 0.02%. Examining Figures 2.9-2.11, we see 

that the results have very good agreement between analytical solutions and FVDAM’s results, 

and further when the interfacial properties are extremely weak, the stress field in the inclusion is 

almost zero due to the loss of load transfer capability from the matrix to the inclusion. 
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Figure 2.9 Comparison of displacement discontinuity and traction around the fiber/matrix 

interface obtained from dilute FVDAM and Eshelby solutions. 

 Analytical FVDAM 

𝜎12 

  

𝜎13 

  

Figure 2.10 Comparison of out-of-plane shear stress fields in the region occupied by the unit cell 

obtained from dilute FVDAM and Eshelby solutions. 



46 
 

 Analytical  FVDAM-CZM 

𝜎12 

  

𝜎13 

  

Figure 2.11 Comparison of out-of-plane shear stress fields in the region occupied by the unit cell 

obtained from dilute FVDAM and Eshelby solutions with extremely small interfacial properties.  

2.9 Summary  

The Cohesive Zone Model (CZM) has been incorporated into the parametric FVDAM theory in 

order to accommodate damage evolution based on displacement discontinuity functions under in-

plane loading and out-of-plane shear loading. With the aid of displacement discontinuity, the 

system of governing system of equations that control the response of a periodic composite 

undergoing damage response is separated into primary and auxiliary system of equations, with 

the primary system solved just once. To analyze a damage evolution problem, only the auxiliary 
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system of equations needs to be solved iteratively without re-assembling the global system of 

equations. The added benefit is that the propagation of stationary cracks, and calculation of 

concomitant energy release rates, is also treated within the same framework upon modifying the 

auxiliary system of equations in a straightforward manner. Another important feature of the 

framework is the ease with which compressive stress normal to the interface undergoing damage 

is treated. In contrast with typical finite-element approaches which rely on artificially large 

interfacial stiffness when the normal stress becomes compressive, in the developed approach the 

governing equations for a damaged interface in the auxiliary system of equations are simply 

eliminated. Further, the implemented CZM has been verified in the linear elastic region upon 

comparison with modified Eshelby solutions for both in-plane loading and out-of-plane shear 

loadings, which accounts for an elastic cohesive interface between the fiber and matrix phases. 

Both the interfacial separations and tractions around the interface and the full-field stress 

distributions have been captured by the extended FVDAM with fidelity comparable to the 

elasticity solution. 
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Chapter 3 

Assessment of CZM-FVDAM and Abaqus 

Predictive Capabilities 

3.1 Introduction  

In Chapter 2, CZM-FVDAM’s ability and accuracy in predicting interfacial separation and 

traction were verified upon comparison with the modified Eshelby solution when the cohesive 

law remained in the linearly elastic stage. In this chapter, CZM-FVDAM’s ability and accuracy 

in predicting interfacial debonding of fiber-reinforced materials is critically and fully assessed 

against the commercial finite-element code, Abaqus extensively used by the design and 

development and research communities. The chosen material system is SiC/Ti in which 

premature fiber/matrix interfacial debonding occurs at low transverse normal stresses due to 

fiber/matrix interface degradation produced by a fabrication-induced chemical reaction. Hence, 

this composite system is a realistic candidate to assess the debonding modeling capability of the 

finite-volume and finite-element based approaches. 

In Section 3.2, unit cell geometry and discretization, cohesive law used in Abaqus and 

FVDAM and the manner of applying periodicity conditions are described. In Section 3.3, the 

effect of interfacial stiffness under compressive normal stress employed in Abaqus is 

investigated. The choice of interfacial stiffness affects the correctness of simulation results 

because of the extent of fictitious material interpenetration that may occur if the stiffness is too 

low. Conversely, unnecessarily large interfacial stiffness may produce incorrect results. In 

Section 3.4, interfacial separation predicted by Abaqus and FVDAM simulations at selected 

segments along the fiber/matrix interface is compared under pure traction or combined normal 

and shear tractions. In Sections 3.5 and 3.6, detailed comparison of the homogenized response, 

interfacial separations, and full-field stress distributions predicted by Abaqus and FVDAM is 

conducted under biaxial strain loading and transverse shear loading. In Section 3.7, the effect of 

fiber and matrix modulus contrast is discussed.  Section 3.8 is the summary and discussion.  
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3.2 Model Set-Up in CZM-FVDAM and Abaqus 

3.2.1 Unit Cell Geometry and Discretization  

In this study, the unit cell is loaded subject to plane strain constraint and hence 2D plane strain 

elements CPE4 available in Abaqus are used to discretize the analysis domain. Figure 3.1 shows 

representative unit cell used in FVDAM and Abaqus simulations of the unidirectional SiC/Ti 

composite in the cross section normal to the fiber direction with the highlighted cohesive zone 

around the entire fiber. The elastic moduli of SiC fiber and titanium matrix are given in Table 

3.1. The SiC fiber volume fraction is 0.325, the diameter of the fiber is 142 𝜇𝑚 and the unit cell 

dimensions are 221×221𝜇𝑚. The unit cell used in FVDAM simulations shown on the left is 

discretized into 52x52 subvolumes or 2704 subvolumes in total, and the unit cell used in Abaqus 

simulations shown on the right is discretized into 2944 elements using similar discretization as 

that in FVDAM. The fiber/matrix interface in both models has the same discretization which 

contains 120 subvolume faces in FVDAM and 120 2D COH2D4 cohesive elements in Abaqus.  

           

Mesh in FVDAM                                                Mesh in ABAQUS 

Figure 3.1 Unit cell geometry and discretization containing 0.325 fiber volume fraction used in 

FVDAM (left) and Abaqus (right). 

The cohesive zone model in Abaqus is implemented via cohesive (interface) elements 

shown in Figure 3.2, which are compatible with regular solid elements. The relative motion of 

the bottom and top face of the cohesive element is characterized by interfacial opening or closing 

of the interface along thickness direction and transverse shearing. Figure 3.3 shows the node 

ordering and face numbering of the cohesive element COH2D4 and positions of integration 

points and element centroid. The bulk or solid elements are connected to cohesive elements by 

shared nodes. When traction-separation relation is specified for the cohesive element, which will 
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be discussed in sub-section 3.2.2, there are two stress and two strain outputs. These are direct 

through-thickness and transverse shear stresses, S22 and S23, and the corersponding strains, E22 

and E23, respectively. The output can be obtained from element nodes, integration points, and 

the element centroid. In the employed Abaqus analysis, the cohesive element thickness is zero, 

the strains E22 and E12 are equal to the normal and tangential separations 𝛿𝑛  and 𝛿𝑡 , 

respectively, and the stress S22 and S12 are equal to the normal and tangential tractions 𝑡𝑛 and 

𝑡𝑡. 

 

Figure 3.2 Schematics of 2D cohesive elements. 

 

Figure 3.3 Node ordering and face numbering of cohesive element COH2D4 and positions of 

integration points and element centroid.  

Table 3.1 Elastic properties of the SiC fibers and Ti matrix. 

 E(GPa) 𝜐 

Fiber 400 0.25 

Matrix 92.38 0.35 

 

 



51 
 

3.2.2 Cohesive Law in Abaqus  

Cohesive law characterizes the interfacial traction-separation relation, which can be generally 

divided into three stages: elastic opening, interfacial degradation, final separation.  Coupled 

bilinear cohesive law implemented into the thesis is widely used by many researchers, Eqs. 

(2.27-2.28). To the best of author’s knowledge, in Abaqus the cohesive law with uncoupled 

elastic traction-separation behavior before damage initiation, with maximum nominal stress 

criterion for damage initiation, Eq. (3.1) and with linear damage evolution, Eq. (3.2) is the 

closest one to the coupled bilinear cohesive law. 

𝑚𝑎𝑥 {
〈𝑡𝑛〉

𝑡𝑛
𝑜 ,

𝑡𝑡
𝑡𝑡
𝑜} = 1 (3.1) 

where <> is the Macaulay bracket,  𝑡𝑛
𝑜 is the interfacial strength in normal direction and 𝑡𝑡

𝑜is the 

interfacial strength in transverse shear direction.  

𝑡𝑛 = {
(1 − 𝐷)𝑡�̅�,     𝑡�̅� ≥ 0  

𝑡�̅�,              other wise
 

𝑡𝑡 = (1 − 𝐷)𝑡�̅� 

(3.2) 

where 𝑡�̅�, 𝑡�̅� are the stress components predicted by the elastic traction-separation behavior for 

the current strains without damage and D is a scalar damage variable, which represents the 

overall damage in the material and has the following expression, Eq. (3.3), with linear softening 

assumption, Figure 3.4.  

𝐷 =
𝛿𝑚

𝑓 (𝛿𝑚
𝑚𝑎𝑥 − 𝛿𝑚

0 )

𝛿𝑚
𝑚𝑎𝑥(𝛿𝑚

𝑓
− 𝛿𝑚

0 )
 (3.3) 

where 𝛿𝑚
𝑚𝑎𝑥 refers to the maximum value of the effective displacement attained during the 

loading history,  𝛿𝑚
0  is the effective displacement at damage initiation and 𝛿𝑚

𝑓
 is the effective 

displacement  at complete failure. The effective displacement and traction are defined in Eq. 

(3.4).  

𝛿𝑚 = √〈𝛿𝑛〉2 + 𝛿𝑡
2 

𝑡𝑚 = √〈𝑡𝑛〉2 + 𝑡𝑡
2 

(3.4) 
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Figure 3.4 Linear damage evolution. 

Since in the Abaqus Manual 6.14, the cohesive law is described with a mixture of text 

and formula, it is more difficult to accurately interpret the law than that described by a pure math 

formula. So the best way to compare the cohesive laws is to plot the interfacial traction-

separation relation for an individual interface segment obtained from FVDAM and analyses. 

Such comparison will be presented and discussed in detail in Section 4. 4.  

In addition, Section 3.2.1 illustrates that the output of tractions and displacement 

separations can be specified to different positions in the element, such as element nodes, 

integration points, and element centroid. In Abaqus, the user has a choice to specify the position 

at which the corresponding traction and displacement separation quantities will be used for the 

cohesive law, with the default position setting the centroid, which is used in the current analysis. 

Since in FVDAM the interfacial quantities are surface-average quantities, the corresponding 

position is at the middle of subvolume face. With the centroid setting in Abaqus, outputs of 

interfacial quantities from two approaches can be compared directly without additional post-

processing because the cohesive element thickness is zero. 

3.2.3 Imposition of Periodic Boundary Conditions in Abaqus 

In FVDAM, periodic boundary conditions are incorporated into the theory intrinsically, see 

Figure 2.3, whereas in Abaqus the condition is imposed by constraining the nodal displacements 

along the unit cell boundary pairs via coupling equations, (Kulkarni 2012, Yang 2016). In this 

chapter the unit cell subjected to two types of loading is analyzed: one is bi-axial strain loading 

with non-zero 𝜀3̅3 and 𝜀2̅2, which has a fixed ratio of -1/2 and another one is transverse shear 

loading with only non-zero 𝜀2̅3 and those two types of loadings are applied in all analysis. Figure 

3.5 is a schematic figure of the square unit cell with fiber in the center. For the bi-axial strain 



53 
 

loading the boundary conditions described in Eq. (3.5) are applied, and for transverse shear 

loading the boundary conditions described in Eq. (3.6) are applied.  

 
Figure 3.5 Schematic figure of square unit cell with fiber in center under plane strain condition. 

𝑢𝑖(0,0) = 0, 𝑖 = 2, 3 

𝑢2(𝐿, 𝑥3) − 𝑢2(0, 𝑥3) = 𝜀2̅2𝐿; 𝑢3(𝐿, 𝑥3) − 𝑢3(0, 𝑥3) = 0 

𝑢2(𝑥2, 𝐿) − 𝑢2(𝑥2, 0) = 0; 𝑢3(𝑥2, 𝐿) − 𝑢3(𝑥2, 0) = 𝜀3̅3𝐿 

(3.5) 

  

𝑢𝑖(0,0) = 0, 𝑖 = 2, 3 

𝑢2(𝐿, 𝑥3) − 𝑢2(0, 𝑥3) = 0; 𝑢3(𝐿, 𝑥3) − 𝑢3(0, 𝑥3) = 𝜀2̅3𝐿 

𝑢2(𝑥2, 𝐿) − 𝑢2(𝑥2, 0) = 𝜀2̅3𝐿; 𝑢3(𝑥2, 𝐿) − 𝑢3(𝑥2, 0) = 0 

(3.6) 

3.3 Effect of Interfacial Stiffness under Compressive Normal Stress 

In the actual implementation of the cohesive zone model, one important question that needs to be 

addressed is how to treat the interfacial behavior when the interface is under normal compressive 

stress. The most common approach is to use large stiffness along normal direction to resist 

interpenetration, which is also used by the commercial finite element packages such as Abaqus 

and Ansys. In contrast, when the interface is under compressive normal stress, the corresponding 

auxiliary equation in FVDAM, Eq. (2.25), for that interface along the normal direction is 

eliminated from the system. In this way, traction-separation relation in the normal direction is 

𝑥3 

L 

L 

𝑥2 

(0, 0) 
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replaced by the corresponding traction and displacement continuity conditions without the need 

to re-assemble the primary system of equations, with the added advantage that absence of 

interpenetration is guaranteed along the normal direction.  

There is no general rule to determine compressive interfacial stiffness and ideally, the 

stiffness should be infinite producing no interpenetration. However, large interfacial stiffness 

potentially could create numerical problems, (Turon et al. 2007, Song 2008). Here a parametric 

study is conducted aimed at identifying the appropriate compressive stiffness in the conducted 

simulations. Interfacial parameters in Table 3.2 are employed in the analysis, which are the same 

as those in the modeling of fiber/matrix debonding in SiC/Ti composites in Chapter 4. In 

Abaqus, the default compressive interfacial stiffness is the same as tensile interfacial stiffness, 

𝑘𝑛
0  and the compression factor, f, can be used to adjust the normal compressive interfacial 

stiffness, which is equal to𝑓 ∗ 𝑘𝑛
0, as illustrated in Figure 3.6. 

 

Figure 3.6 Schematic figure of interfacial stiffness and compression factor, f. 

Table 3.2 Interfacial strength parameters for the SiC/Ti composite. Note: 𝑘𝑛
0 = 𝜎𝑚𝑎𝑥/Δ𝑛

𝑜 . 

𝜎𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥(MPa) 𝑘𝑛
0 = 𝑘𝑡

0(𝑀𝑃𝑎/𝜇𝑚) Δ𝑛
0 = Δ𝑡

0(𝜇𝑚) Δ𝑛
𝑐 = Δ𝑡

𝑐(𝜇𝑚) 

50 3000 0.0167 0.46 

 

𝑘𝑛
0 

𝑓 ∗ 𝑘𝑛
0 

𝛿𝑛 

𝑡𝑛 
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(a)                                                                                 (b) 

Figure 3.7 Selected homogenized responses with different compression factors in x2 , x3 

directions under  biaxial strain loading. 

Figure 3.7 shows the selected homogenized responses of a square unit cell under bi-axial 

strain loading with different compressive stiffness. The transverse shear stress 𝜎23 is zero and the 

normal stress 𝜎11 is not shown here. Boundary conditions and loading are prescribed using Eq. 

(3.5). The ratio between the applied strains 𝜀3̅3 and 𝜀2̅2 is -1/2.  When the compression factor  

𝑓 = 1, Abaqus terminates at loading step 31 due to numerical problems. When the compression 

factor increases to 1e2, Abaqus can complete the analysis and the homogenized responses along 

x1, x2, x3 directions are similar to the responses obtained with the compression factor of 1e4. 

Further, if the compression factor is increased to 1e14, Abaqus will run into numerical problems 

at the first loading step. Further when the compression factor is 1, then tensile homogenized 

responses  σ̅22  are similar to the reponse with higher compression factors, whereas the 

compressive homogenized response σ̅33  is more compliant than the response with higher 

compression factors. The difference between homogenized responses with different compression 

factors can be explained by looking at the interfacial traction and displacement discontinuity 

distributions shown in Figure 3.8. As observed, normal interpenetration occurs around the top 

and bottom area of the fiber/matrix interface for the low compression factor and the normal 

traction in these areas is also lower than the normal tractions in cases with higher compression 

factors. The tangential tractions and displacement discontinuities are not affected by the 

compression factors.   
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Figure 3.9 illustrates full-field stress distributions with different compression factors at 

step 20. The stress distributions with compression factors of 1e2 and 1e4 are almost identical and 

the distributions with a compression factor of 1 are different from these two, with the high-stress 

distributions patterns around fiber top and bottom areas not well captured due to interpenetration. 

          

             

Figure 3.8 Interfacial displacement discontinuity (Left) and traction distributions (Right) around 

fiber/matrix interface at loading step 20. 

 

 

 

 

 



57 
 

f=1 f=1e2 f=1e4 

    

    

     

Figure 3.9 Full-field stress distributions with different compression factors at loading step20. 

3.4 Damage Evolution along Specific Interfaces  

As mentioned in Section 3.2.2, the explicit mathematical formula in the Abaqus 6.14 manual for 

the cohesive relation is not amenable for direct comparison with the CZM equations 

implemented into the FVDAM framework. Hence in this section the interfacial traction-

separation relations implemented in FVDAM and Abaqus will be illustrated in great detail by 

tracking the interfacial separation process for individual interfaces during simulations. A single 

discretized interface could fail under three types of stress states: 1) under pure normal tensile 

traction, 2) under pure shear traction, 3) under combined normal and shear tractions.  To 

demonstrate these three types of interfacial failure behavior, 1st and 11th interfaces in Figure 

3.10 were selected. More specifically, the 1st interface is expected to fail under pure tensile 
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loading and the 11th interface is expected to fail under combined normal and shear stress when 

the unit cell is under bi-axial strain loading characterized by non-zero 𝜀2̅2 and 𝜀3̅3 applied in the 

ratio of -1/2. Also, the 1st interface is expected to fail under pure transverse shear stress and the 

11th interface is expected to fail under combined normal and shear stresses when the unit cell is 

subjected to transverse shear loading characterized by non-zero shear strain 𝜀2̅3 only.  

 

Figure 3.10 Selected interfaces for the purpose of tracking interfacial separation process. 

3.4.1 Bi-axial Strain Loading 

First, interfacial behavior of the 1st and 11th 
interfaces is investigated when the unit cell 

is subjected to bi-axial strain loading. As shown in Figure 3.11, FVDAM simulation predicts that 

the 1st interface separates completely at step 23 and 11th interface fails at step 24 whereas 

Abaqus predicts that the 1st interface separates completely at step 24 and 11th interface fails at 

step 26. Figures 3.12(a, b, c) compare the FVDAM and Abaqus predictions of the traction-

separation relations for the 1st  interface in terms of effective traction, normal traction, and 

tangential traction. Since the interfacial degradation process in both cohesive laws is based on 

the effective displacement discontinuity, the traction quantities are plotted against the effective 

displacement discontinuity. The interface failure processes predicted by FVDAM and Abaqus 

are very close, except for the slight difference in the shear response.  The failure process is 

dominated by normal tensile loading and the effective and normal traction responses are also the 

same since the contribution from shear traction is negligible. Also, we observed that the interface 
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starts degrading when the interfacial strength, 50MPa , is attained and interface separates 

completely when final separation distance, 0.46𝜇𝑚, is reached. These observations also verify 

the correct implementation of the cohesive law in FVDAM and Abaqus.  

 
Figure 3.11 Homogenized response 𝜎22 and indication of loading steps at which the 1st and 11th 

interfaces separate completely. 

Figures 3.12 (d, e, f) compares the FVDAM and Abaqus predictions of the traction-

separation relations for the 11th interface, which is under combined normal and shear loading, in 

terms of effective traction, normal traction, and tangential traction. The interfacial separation 

processes predicted by FVDAM and Abaqus simulations are similar in the elastic opening stage 

and final separation stage, with the interface failing completely when the effective displacement 

reaches 0.46μm. The main difference lies in the interfacial softening process. According to 

FVDAM simulation, the interface starts softening when the effective traction attains the 

interfacial strength 50MPa  and the relation between the effective traction and effective 

displacement relation in the softening stage is linear, as indicated in the cohesive equations, Eqs. 

(2.27-2.28). In contrast, Abaqus damage initiation in Abaqus is determined by maximal normal 

or tangential traction, indicated in Eq. (3.1), instead of the effective traction. Hence the 11th 

interface starts softening when the normal traction attains the interfacial strength 50MPa  as 

shown in Figure 3.9(b). Because of the different manner of treating damage initiation, Abaqus 

predicts softening at a higher effective stress level, 65MPa in this case, compared with 50MPa 

predicted by FVDAM. Nonetheless, both methods predict complete interfacial failure when the 

effective displacement reaches 0.46𝜇𝑚 . Hence under combined tractions, the interface in 

Abaqus simulations will dissipate more energy than its counterpart in FVDAM, potentially 
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leading to stiffer homogenized response. In the following two sections of simulation result 

comparison, this point will be illustrated and confirmed. 

      
(a)                                                 (d) 

       
(b)                                                          (e) 

         
 (c)                                                             (f) 

Figure 3.12 Effective traction (a, d), normal traction (b, e), tangential traction (c, f) VS effective 

displacement discontinuity for 1st interface (left) and 11th interface (right) under biaxial strain 

loading. 
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3.4.2 Transverse Shear Loading 

As indicated in Figure 3.13, FVDAM simulations predict that both the 1st and 11th interfaces 

separate completely at step 47, whereas Abaqus predicts complete separation of the 1st interface 

and 11th interfaces at steps 49 and 50, respectively. Figures 3.14(a, b, c) show the interfacial 

separation process for the 1st interface when the unit cell is under transverse shear. As expected 

the interface failure process is dominated by shear traction and interfacial behavior follows the 

bilinear relation along shear direction, along which the interface starts softening at 50MPa and 

separates completely at 0.46𝜇𝑚. Excellent agreement is observed between FVDAM and Abaqus 

simulations, especially for the effective and normal traction responses, which are almost identical 

since the shear contribution is negligible. Figures 3.14(d, e, f) illustrate the interfacial separation 

process for the 11th interface, which is under combined normal and shear loading. Similar to 

Figures 3.12(d, e, f), when the interface is under combined stress state, damage initiation occurs 

at higher level of interfacial normal and tangential stresses. Hence to completely separate the 

interface, more energy needs to be dissipated in Abaqus simulation. Because of the stiffer 

interfacial behavior during the interfacial degradation stage, the corresponding homogenized 

response predicted by Abaqus is also slightly stiffer than the response generated by FVDAM, as 

shown in Figure 3.13.  

 
Figure 3.13 Homogenized response 𝜎23 and indication of loading steps at which the 1st and 11th 

interfaces separate completely. 
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(a)                                                 (d) 

      

(b)                                                  (e) 

      

(c)                                                 (f) 

Figure 3.14 Effective traction (a, d), normal traction (b, e), tangential traction (c, f) VS effective 

displacement discontinuity for 1st interface (left) and 11th interface (right) under transverse 

shear loading. 
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3.5 Numerical Results under Bi-Axial Strain Loading 

From Section 3.3, it is known that when compression factor is 1e2, the homogenized responses, 

interfacial traction and displacement discontinuity and full-field stress distributions behave well. 

In the next two sections, comparison between CZM-FVDAM and Abaqus predictive capabilities 

in modeling interfacial debonding under bi-axial strain and transverse shear loading will be 

illustrated. For bi-axial strain simulations, the ratio of -1/2 between normal strains 𝜀33 and 𝜀22 is 

employed, and a compression factor of 1e2 is used in Abaqus simulations, unless explicitly 

stated otherwise. 

       
Figure 3.15 Selected homogenized responses in FVDAM and Abaqus under biaxial strain 

loading. 

Figure 3.15 presents comparison of selected homogenized responses 𝜎22 and 𝜎33 along 

the 𝑥2  and 𝑥3  directions, illustrating very good agreement between FVDAM and Abaqus 

simulations. The homogenized normal response, 𝜎22 vs 𝜀2̅2, can be generally divided into three 

stages. The first stage is linear which is characterized by elastic interfacial opening occurring 

between steps 1 and 2. The second stage is non-linear which involves interfacial degradation 

and debonding occurring between steps 3 and 29. The third stage is linear because of the arrest 

of interfacial cracking around the top and bottom regions of the fiber/matrix interface due to 

negative compressive normal stress. In the second stage of the non-linear homogenized 

response 𝜎22 vs 𝜀2̅2 , Abaqus’ prediction is slightly stiffer than the FVDAM’s because more 

energy needs to be dissipated in Abaqus simulation when the interface is under combined 

normal and shear tractions. This was already seen in Figures 3.12(d, e, f) and 3.14(d, e, f), in 
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which both normal and tangential tractions predicted by Abaqus simulations were always 

higher relative to FVDAM. 

     

     

Figure 3.16 Interfacial traction and displacement discontinuity distributions in FVDAM and 

Abaqus at step 1. 

 Figure 3.16 shows the interfacial traction and displacement discontinuity distributions 

predicted by FVDAM and Abaqus at step 1, which is characterized by elastic interfacial 

behavior. The FVDAM and Abaqus predictions have excellent agreement except for the slight 

difference in normal traction around the top and bottom regions of the fiber/matrix interface. 

Figure 3.17 shows the corresponding interfacial traction and displacement discontinuity 

distributions at step 10, where interfaces at, and in the vicinity of, 00  and 1800 regions are 

experiencing interfacial degradation. Generally, very good agreement between the two sets of 

predictions is observed, especially for displacement discontinuity distributions, with some 

differences for the interfaces around 00 and 1800 locations which are experiencing degradation. 

Tractions predicted by Abaqus are slightly higher than those predicted by FVDAM because of 
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the stiffer response of traction-separation relation for damage evolution, which was illustrated 

in Figures 3.12(d, e, f) and 3.14(d, e, f). 

      

      
Figure 3.17 Interfacial traction and displacement discontinuity distributions in FVDAM and 

Abaqus at step 10. 

Figure 3.18 illustrates interfacial traction and displacement discontinuity distributions 

predicted by FVDAM and Abaqus simulations at step 30, at which interfacial debonding is 

arrested around the angle of ±650. Normal and shear displacement discontinuity distributions 

and tangential traction distributions are almost identical. For normal traction, the difference is 

located around top and bottom regions of the fiber/matrix interface, where interfaces are under 

compressive tractions, with the compressive tractions predicted by Abaqus simulations higher 

than the corresponding tractions predicted by FVDAM. If a higher compression factor is used in 

Abaquis simulations then higher compressive tractions can be expected. 
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Figure 3.18 Interfacial traction and displacement discontinuity distributions in FVDAM and 

Abaqus at step 30. 

 Figures 3.19-3.21 illustrate in-plane stress evolution at steps 1, 10 and 30 predicted by 

FVDAM and Abaqus simulations, with excellent agreement observed for all steps. With the 

development of interfacial degradation and debonding, normal stress 𝜎22 and shear stress 𝜏23 

decrease along the left and right hand side of the fiber/matrix interface. This decrease is 

accompanied by dramatic evolution of stress concentrations around the top and bottom regions 

of the fiber/matrix interface because of the loss of load carrying capability in the center portion 

of the fiber/matrix interface.  
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FVDAM                                                                   Abaqus 

Step 1 

 
Step 10 

  
Step 30 

   

Figure 3.19 σ22 distributions in FVDAM and Abaqus at difference steps. 
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FVDAM                                                                   Abaqus 

Step 1 

 
Step 10 

 
Step 30 

  

Figure 3.20 σ33 distributions in FVDAM and Abaqus at difference steps. 
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FVDAM                                                                   Abaqus 

Step 1 

 
Step 10 

  
Step 30 

  

Figure 3.21 σ23 distributions in FVDAM and Abaqus at difference steps. 
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3.6 Numerical Results under Transverse Shear 

In this section, detailed comparison between FVDAM and Abaqus is conducted under transverse 

shear strain loading, including unit cell homogenized responses, interfacial traction and 

displacement distributions and full-field stress distributions. Figure 3.22 shows the selected 

homogenized responses of 𝜎22  and 𝜎23 , noting that 𝜎22  has the same response as 𝜎33 . The 

responses predicted by FVDAM and Abaqus simulations are very similar, with the 𝜎23 response 

being slightly stiffer because in Abaqus simulations the interface under combined tensile and 

shear loading is more difficult to fail as shown in Figures 3.12(d, e, f) and 3.14(d, e, f), leading to 

higher normal and tangential tractions during the interfacial degradation stage. 

 

Figure 3.22 Selected homogenized responses with FVDAM and Abaqus under transverse shear. 

 Figures 3.23-3.25 present comparisons of the interfacial traction and displacement 

discontinuity distributions predicted by FVDAM and Abaqus simulations at step 1 with the 

interface responding elastically, at step 20 with the interface experiencing degradation, and at 

step 50 when the interface is debonded. Generally, results from FVDAM and Abaqus 

simulations exhibit very good agreement at all steps, with some slight differences. Specifically, 

in Figure 3.23, interfacial normal tractions around 1350  and 3150 locations are slightly higher 

in Abaqus predictions at step 1 due to high penalty stiffness used to resist interpenetration, in 



71 
 

contrast with the direct enforcement of traction and displacement continuity conditions in 

FVDAM.  

    

    

Figure 3.23 Interfacial traction and displacement discontinuity distributions in FVDAM and 

Abaqus at step 1. 

Figure 3.24 illustrates the interfacial degradation responses predicted by FVDAM and 

Abaqus simulations at step 20, with the degradation initially occurring around 450 and 2250 

and propagating away from those two locations. For the degraded interfaces, both normal and 

tangential tractions are higher in Abaqus than FVDAM predictions because of the stiffer 

response during the damage evolution stage seen in Figures 3.12(d, e, f) and 3.14(d, e, f) when 
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the interfaces are under combined normal and tangential tractions. Figure 3.25 illustrates the 

extensive interfacial debonding in the range of [00 1000] and [1800 2800] at step 50. Outside 

of these ranges, debonding is arrested due to compressive normal tractions. FVDAM and 

Abaqus produce the same predictions. 

 

     

Figure 3.24 Interfacial traction and displacement discontinuity distributions in FVDAM and 

Abaqus at step 20. 
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Figure 3.25 Interfacial traction and displacement discontinuity distributions in FVDAM and 

Abaqus at step 50. 

Figures 3.26-3.28 present full-field stress distributions at steps 1, 20 and 50, 

respectively, illustrating that excellent agreement is observed between FVDAM and Abaqus 

predictions. Particularly, by looking at the evolution of the transverse shear stress 𝜎23 , the 

interfacial debonding process can be understood transparently, with interfacial damage 

initiating at two angular orientations of 450 and 2250 and then propagating away from these 

two locations.  

 

 



74 
 

 

FVDAM                                                                   Abaqus 

Step 1 

 
Step 20 

  
Step 50 

 

Figure 3.26 σ22 distributions in FVDAM and Abaqus at difference steps. 
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FVDAM                                                                   Abaqus 

Step 1 

 
Step 20 

 
Step 50 

 

Figure 3.27 σ33 distributions in FVDAM and Abaqus at difference steps. 
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FVDAM                                                                   Abaqus 

Step 1 

 
Step 20 

 
Step 50 

 

Figure 3.28 σ23 distributions in FVDAM and Abaqus at difference steps. 
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3.7 Effect of Fiber/Matrix Modulus Contrast  

From previous study, it is known that for the SiC/Ti material system when the elastic interfacial 

stiffness 3 × 103MPa/μm and compression factor 100 are used, Abaqus is able to complete the 

analysis without convergence issues, and the interfacial separation process can be captured 

correctly for both bi-axial and transverse shear loadings. Also, very good agreement between 

Abaqus and FVDAM predictions is obtained for the unit cell homogenized response, interfacial 

separation, and full-field stress distribution. In these simulations, the Young’s modulus ratio 

between fiber and matrix was 4.3. Figure 3.29 compares the homogenized response of SiC/Ti 

predicted by Abaqus and FVDAM simulations with the homogenized response of a 

unidirectional composite with a soft fiber whose Young’s modulus is 1/2 of the titanium matrix 

and the Poisson’s ratio is the same as that of the SiC fiber. As observed in the figure, the Abaqus 

simulation terminates at the load level of 0.4% because of convergence issues. On the other 

hand, if a compression factor of 10 instead of 100 is used for the system, as shown in Figure 

3.30, Abaqus can complete the analysis without convergence issues. Hence the compression 

factor is affected by the fiber/matrix modulus mismatch and parametric study needs to be 

conducted before specification of the factor for a particular material system. 

   

Figure 3.29 Homogenized response predicted by FVDAM and Abaqus when compression factor 

of 100 is used in Abaqus simulations. 
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Figure 3.30 Homogenized response of FVDAM and Abaqus when compression factor of 10 is 

used in Abaqus simulations. 

3.8 Summary and Discussion 

FVDAM’s and Abaqus’s capability in predicting interfacial debonding was critically assessed 

under biaxial strain and transverse shear loading. Excellent agreement was obtained between the 

predictions of both approaches for the homogenized responses, interfacial quantity distributions 

and stress field distributions provided that a suitable compression factor is chosen for Abaqus. 

This factor should be high enough to resist interfacial interpenetration when the interface is 

under normal compressive stress, but cannot be excessively high in order to avoid numerical 

problems. In addition, suitable compression factor needs to be identified for different 

fiber/matrix modulus mismatch rather than using the same number. In contrast, the 

interpenetration issue does not exist in FVDAM simulations because the interfacial traction-

separation relation in the normal direction is replaced by traction and displacement continuity 

conditions directly once the interface is under compressive normal traction. This is efficiently 

accomplished by eliminating corresponding equations in the global auxiliary system of equations 

without re-assembling the primary global system of equations. 

When an interface is under pure tensile traction or shear traction, the cohesive law in 

FVDAM and Abaqus behave exactly the same and follows the bilinear separation relation. When 

an interface is under combined normal and tangential tractions, the interfacial damage evolves 

differently. Damage initiation in FVDAM is determined by the effective traction whereas 
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damage initiation in Abaqus is determined by either the maximal normal or tangential traction. In 

Abaqus, damage evolution failure process dissipates more energy than in FVDAM and this is 

also reflected by the slightly stiffer homogenized responses in the non-linear stage.  

In FVDAM, periodicity boundary conditions are directly incorporated into the theory and 

the desired loading types can be easily applied by adjusting average strains via homogenized 

Hook’s law. In Abaqus, periodicity boundary conditions need to be applied carefully by correctly 

constraining the nodal displacements along boundary pairs of the unit cell. Another difference 

between these two approaches is how the analysis is conducted when the unit cell is under out-

of-plane shear loading. In FVDAM the analysis employs the same 2D discretization as that used 

in this chapter with an even smaller system of equations than under in-plane loading. FVDAM 

simulation results under combined in-plane and out-of-plane loading will be presented in Chapter 

7 using 2D discretization of a unit cell. In contrast, the same problem analyzed in Abaqus 

requires 3D simulation which is much more costly with regard to computational efficiency. 
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Chapter 4 

Debonding in SiC/Ti Composites 

4.1 Introduction  

To demonstrate the capability of the implemented CZM within the FVDAM framework in 

simulating progressive interfacial damage evolution leading to phase separation in heterogeneous 

materials, we revisit the classic SiC/Ti debonding problem. Unidirectionally-reinforced SiC/Ti 

composites were first proposed in the 1990's for use in aircraft engine turbine blades to increase 

the engine’s operating temperature, and hence efficiency, by reducing creep. However, the high 

consolidation temperature of the SiC/Ti material system produces a chemical reaction at the 

fiber/matrix interface which results in substantially degraded chemical bond, leading to 

premature fiber/matrix interfacial debonding at low transverse normal stresses. Hence this 

system is a good candidate to validate the predictive capability of the CZM-based FVDAM 

theory relative to the available experimental data reported by Johnson et al. (1990).  

In section 4.2, the response of the SiC/Ti composite under transverse loading based on a 

square unit cell architecture is simulated immediately after the fabrication cooldown when the 

fiber/matrix interface is presumed intact. In section 4.3, the subsequent response after initial pre-

load cycles is simulated and the parametric study is carried out to determine the extent of the 

damage caused by initial preload cycles. During the fabrication process, local fiber arrangement 

may be disturbed, resulting in regions with a mixture of square and hexagonal fiber distributions. 

Hence the effects of unit cell architecture and loading direction on interfacial damage evolution 

and homogenized response are also investigated in sections 4.4 and 4.5, respectively. The effect 

of loading direction on interfacial damage and homogenized response is limited to hexagonal 

unit cells because of the loss of transverse isotropy in the inelastic region for this material 

architecture. 
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Figure 4.1 Unit cell geometry and discretization containing 0.325 fiber volume fraction. 

Table 4.1 Thermoelastic properties of the SiC fibers and Ti matrix. 

Material E (GPa) 𝜈 𝛼(𝜇/℃) 𝜎𝑦(MPa) 

SCS6 400 0.25 4.86 --- 

Ti-15 92.38 0.35 9.72 689.5 

The unit cell representative of the unidirectional SiC/Ti composite in the cross section 

normal to the fiber direction and its discretization into 52×52 subvolumes is shown in Figure 4.1 

with the highlighted cohesive zone around the entire fiber. The SiC fiber volume fraction is 

0.325, the diameter of the fiber is 142 μm and the unit cell dimensions are 221×221 μm. The 

elastic moduli and thermal expansion coefficients of the phases are given in Table 4.1. The yield 

stress of the titanium matrix included in the table was used to ensure that the simulated response 

remained elastic, as plastic effects were not included in the CZM implementation in the present 

version. Given that the interfacial elastic parameters are not known for the SiC/Ti system, the 

value of the initial stiffness was chosen such that the initial response of the unit cell coincided 

with the experimentally measured transverse response of the unidirectional SiC/Ti composite. 

The value of the final separation distance was based on the maximum interfacial strength of 138 

MPa (which coincides with the knee of the homogenized stress-strain curve observed 

experimentally) and the ratio between the elastic limit of initial separation and final separation of 

10 suggested by Geubelle and Baylor (1998). Hence the only parameter that was varied, in order 

to determine the optimum value which produced the best correlation with experimental data 
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during the interfacial degradation stage of the response, was interfacial strength. Table 4.2 

summarizes these CZM parameters. 

Table 4.2 Interfacial strength parameters for the SiC/Ti composite. Note: 𝑘𝑛
0 = 𝜎𝑚𝑎𝑥/Δ𝑛

𝑜 . 

𝜎𝑚𝑎𝑥 = 𝜏𝑚𝑎𝑥(MPa) 𝑘𝑛
𝑜 = 𝑘𝑡

𝑜(MPa/μm) ∆𝑛
𝑜= ∆𝑡

𝑜(𝜇𝑚) ∆𝑛
𝑐 = ∆𝑡

𝑐(𝜇𝑚) 

138 3000 0.0460 0.46 

70 3000 0.0233 0.46 

50 3000 0.0167 0.46 

In order to model residual stresses after consolidation, the unidirectional SiC/Ti 

composite was first subjected to a temperature cooldown which was followed by pure transverse 

loading. Following Johnson et al. (1990), temperature cooldown of ΔT=-555°C was employed to 

simulate fabrication-induced residual stresses. This was based on the observation that any 

stresses that may develop during the fabrication process at the actual consolidation temperature 

greater than one half of the melting point of the matrix would be relieved by creep, Dieter 

(1976). The inclusion of residual stresses is critically important in correctly capturing the 

fiber/matrix interfacial separation mechanism owing to the high compressive radial stress at the 

interface that must be first overcome by the applied load. Two cases were then considered for 

comparison with the experimental data. First, the breaking of the chemical bond leading to 

fiber/matrix interfacial separation was modeled by the CZM during initial transverse loading 

immediately following fabrication cooldown in the absence of prior mechanical preload. 

Subsequently, the composite was subjected to transverse loading in the presence of residual 

stresses but with the chemical bond assumed to be destroyed over a certain arc length of the 

fiber/matrix interface by the initial preload. In this case, the interfacial separation occurred when 

the residual radial stress at the fiber/matrix interface was overcome by the applied transverse 

load. The individual results are presented in the sequel. 

4.2 Progressive Interfacial Degradation after Fabrication Cooldown 

The response of the SiC/Ti composite under transverse loading is simulated immediately after 

the fabrication cooldown when the fiber/matrix interface is presumed intact. In this case, the 

interface is assumed to be capable of supporting load in both normal and tangential directions. 

To demonstrate the importance of residual stresses, Figure 4.2 presents comparison of 



83 
 

homogenized transverse responses generated using temperature changes of ΔT=0°C and ΔT=-

555°C for interfacial strengths ranging from 138 MPa to 0 MPa. For this comparison, the 

uncoupled interfacial separation law was employed. The asymptotic responses which converge to 

the same limiting behavior regardless of the interfacial strength magnitude, which also depend on 

the cooldown temperature, provide additional validation of the implemented cohesive zone 

model in the nonlinear region when the interface undergoes degradation. The same asymptotic 

response is expected upon complete separation of the fiber/matrix interface along the largest 

possible arc length before its arrest regardless of the interfacial strength magnitude, as was also 

observed by Raghavan and Ghosh (2005) in the absence of residual stresses. The presence of 

residual stresses shifts the asymptotic homogenized response upward as additional load is 

required to overcome the radial compressive stress at the fiber/matrix interface before separation 

initiates. 

 

Figure 4.2 Initial transverse response of the unidirectional SiC/Ti composite with different 

interfacial strengths, illustrating the effect of fabrication-induced residual stresses. 
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Figure 4.3 Comparison of the applied (vertical axis) and calculated (horizontal axis) 

homogenized strains based on Eq. (2.33), demonstrating consistency and accuracy of the 

implemented solution technique for the nonlinear response of the unit cell based on the 

implemented CZM, and importance of the contributions of the interfacial displacement 

discontinuities toward total homogenized strains. 

Figure 4.3 provides a consistency and an accuracy check of the unit cell solution 

procedure in the presence of evolving damage through comparison of the applied homogenized 

strains that appear as loading parameters in the solution of the unit cell problem, Eqs. (2.18-

2.21), and the corresponding homogenized strains calculated from the volume-averaged 

subvolume local strains and surface-averaged displacement discontinuities, Eq. (2.33). Included 

in the figure is the comparison between the applied homogenized strains and the volume-

averaged strains alone in order to demonstrate the contribution of the surface-averaged 

displacement discontinuities. The above results, generated using ΔT=0°C and the interfacial 

strength of 138 MPa, provide additional confidence in the simulations that follow. 

Comparison of the simulated results after the ΔT=-555°C cooldown shown in Figure 4.2b 

with experimental data of Johnson et al. (1990) reveals that the best correlation is obtained with 

the interfacial strength of 50 MPa. This comparison is illustrated in Figure 4.4 which also 

includes the corresponding comparison based on the coupled separation law with the interfacial 

strengths of 50 MPa and 70 MPa. As anticipated from the graphical illustration of the interfacial 

separation laws shown in Figure 2.3, the use of the coupled separation law produces a softer 

response for the same interfacial strength of 50 MPa, requiring a higher interfacial strength to 

attain comparable accuracy, namely 70 MPa in the present case. In subsequent presentation of 

the simulation results, we will employ the uncoupled separation law as it appears to yield 
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somewhat better results. This difference, however, may be due to a number of factors which are 

beyond the scope of this work, including deviation from periodicity in the actual composite 

leading to unsymmmetric fiber/matrix separation. 

 
Figure 4.4 Initial transverse response of the unidirectional SiC/Ti composite immediately after 

fabrication cooldown, illustrating the effect of (a) uncoupled and (b) coupled interfacial 

separation laws. 

Next, we examine the evolution of normal and tangential displacement discontinuities 

and tractions around the fiber/matrix interface and the corresponding stress field alterations at the 

different loading steps shown in Figure 4.4 for the uncoupled separation law. Figure 4.5 

summarizes the distributions of normal and tangential displacement discontinuities and the 

corresponding tractions around the fiber/matrix interface, measured counterclockwise from the 

horizontal axis passing through the fiber's center, after the 555°C cooldown and at the 

subsequent mechanical loading steps 5, 7 and 13. During the cooldown cycle, neither interfacial 

normal opening nor tangential degradation occurs because the radial stress at the fiber/matrix 

interface is negative while the tangential stress does not exceed the interfacial shear strength. 

Hence the response remains linearly elastic. The normal interfacial tractions attain their 

maximum values at ±45° locations in the considered ±90° range due to the use of the square fiber 

array for the SiC/Ti composite. At these locations, the tangential tractions are zero while their 

maximum values occur at -67.5° and +22.5°. During subsequent mechanical loading these 

locations are altered. 
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Figure 4.5 Interfacial displacement discontinuity and traction distributions around the 

fiber/matrix interface with progressively greater applied load after fabrication cooldown. 

In order to initiate normal interfacial separation, the compressive residual radial stress 

must be overcome, which occurs between steps 4 and 5 at 0° and is followed by interfacial 

elastic deformation until step 7 at which point the peak interfacial normal stress is attained along 

substantial portion of the interface spanning approximately ±25°. Increasing loading produces 

increasing interfacial degradation accompanied by increasing normal separation characterized by 

increasing arc length and decreasing normal traction seen at step 13. The process is somewhat 

different for interfacial separation in the tangential direction. The interfacial sliding initiates 

much earlier (almost immediately after the cooldown), so that the interfacial shear strength is 

attained at step 4 (not shown). Hence at step 5 the interfacial shear separation is substantially 
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larger in magnitude than the corresponding normal separation. These differences tend to 

disappear with increasing load as seen at step 13. Similar behavior is observed in the traction 

distributions after the interface degrades. The important phenomenon that occurs with increasing 

loading, which may be deduced from the above results, is the eventual arrest of the separation 

zone progression due to rapidly decreasing normal and tangential tractions outside of the 

separated zones around the fiber/matrix interface. This occurs at approximately ±55° and 

±[85°/10°] for the normal and tangential displacement discontinuities, respectively. In fact, the 

normal traction becomes compressive outside of the ±55° interval while the shear traction tends 

to zero outside of the ±[85°/10°] intervals. 

This section is concluded by presenting the full-field stress distributions in Figure 4.6 at 

the loading steps shown in Figure 4.4, including the three in-plane stresses 𝜎22, 𝜎33, 𝜎23 and the 

effective stress 𝜎𝑒𝑓𝑓  which provides indication of yielding. These stress distributions 

demonstrate that the stress transfer mechanism from the region of the damage interface to the 

surrounding matrix is correctly captured by the implemented CZM into the FVDAM framework 

with fidelity comparable to an elasticity solution. In particular, as the interface loses its load-

bearing capability, the matrix picks up a disproportionate portion of the applied horizontal load. 

We note that the effective yield stress at step 13 locally exceeds the yield stress of this particular 

titanium alloy in a small region at the apex of the fiber, requiring consideration of plasticity 

effects beyond this load step. 
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Figure 4.6 Full-field stress distributions at progressively greater applied load after fabrication 

cooldown. 

4.3 Progressive Interfacial Degradation after Initial Preload Cycles 

Initial loading cycles performed by Johnson et al. (1990) on the unidirectional SiC/Ti composite 

produced observable fiber/matrix separation of a certain length around the interface, effectively 

resulting in destruction of the chemical fiber/matrix bond in that region. The extent of this 

damage, that is the arc length of the interface that was damaged and the corresponding applied 

load, however, were not reported. Simulation of the subsequent response after initial pre-load 

cycles requires knowledge of the extent of this damage which has a substantial effect on the 

homogenized response. This is illustrated in Figure 4.7 for different lengths of damaged interface 

relative to the interface that is completely damaged around the entire circumference of the fiber. 
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In performing these simulations, the traction-free condition in the damaged region was employed 

in the auxiliary system of equations used to solve the unit cell problem, while outside this region 

the interfacial separation law was applied. In the present case, the best correlation with 

experiment was obtained when the damage to the fiber/matrix interface caused by cyclic loading 

spans ±45° relative to the horizontal axis as also observed in Figure 4.7. This length is consistent 

with the results of Figure 4.5 which suggest that the maximum length of the fully degraded 

interface cannot exceed ±55°. In fact, it is likely less than ±50° given that the maximum normal 

traction that the interface can support at the onset of degradation does not extend beyond this 

region. 

 
Figure 4.7 Transverse response of the representative unit cell of unidirectional SiC/Ti composite 

with different interfacial debonding lengths after initial preloading. 

Figure 4.8 illustrates the distributions of normal and tangential displacement 

discontinuities and corresponding tractions around the fiber/matrix interface at the same 

subsequent loading steps used in the preceding section in the presence of intact interface after 

fabrication cooldown, namely 5, 7 and 13 which are also indicated in Figure 4.7. At step 5 the 

compressive radial stress is already overcome in the damaged region and the matrix separates 

from the fiber along the entire ±45° arc segment of the interface. The normal traction becomes 

zero in the separated region and negative outside. With the increase in loading, the magnitude of 

the normal displacement discontinuity increases and the fiber/matrix interfacial segment 

undergoing separation progresses further along the fiber's circumference. As expected, the 

displacement discontinuities at each load step are greater in this case relative to the initially 



90 
 

intact interface simulations of the preceding section, Figure 4.5, due to the absence of normal 

traction which constrains the interfacial separation. The interfacial zone progression is 

accompanied by an increase in the normal traction outside of the zero-traction region that drives 

further separation and degradation as the normal traction reaches the interfacial strength. As in 

the preceding case, the interfacial separation process is arrested around ±55° as the normal 

traction decreases rapidly to a negative value outside of the separated zone. The tangential 

displacement discontinuity and traction distributions follow a similar pattern but the maximum 

values are attained much earlier as also observed in the preceding case. 

 
Figure 4.8 Interfacial displacement discontinuity and traction distributions around the 

fiber/matrix interface with progressively greater applied load after initial preloading. 
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Figure 4.9 Full-field stress distributions at progressively greater applied load after fiber/matrix 

degradation by initial preloading. 

Figure 4.9 illustrates the full-field distributions of the three in-plane stresses 𝜎22, 𝜎33, 𝜎23 

and the effective stress 𝜎𝑒𝑓𝑓 for comparison with those of Figure 4.6 with the initially intact 

interface. The rapid opening of the damaged interface once the compressive residual stresses are 

overcome renders the matrix material directly in front of the separated traction-free interface not 

as effective in supporting the applied horizontal load, producing lower magnitudes of the 𝜎22 

stress component. This is accompanied by visibly lower magnitudes of the 𝜎22 stress component 

in this region due to the reduced constraint of the separated interface. 
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4.4 Effect of Unit Cell Architecture on Interfacial Damage 

Following the investigation of progressive interfacial degradation after fabrication cooldown 

with square unit cell, the hexagonal unit cell is utilized to generate homogenized response and 

investigate the interfacial degradation between fiber and matrix. Fiber and matrix properties in 

Table 4.1 are used and uncoupled bilinear cohesive law is adopted with interfacial strength of 

50MPa (see other interfacial parameters in Table 4.2 for reference).  This set of material 

properties generates the best correlation with the experimental response of SiC/Ti composite 

based on the square unit cell under transverse loading after fabrication cool-down, and the 

corresponding homogenized response and interfacial quantities are employed to compare the 

results generated using the hexagonal unit cell.  

  Figure 4.10 shows the hexagonal unit cell geometry and discretization, as well as the 

fiber/matrix interfaces highlighted by red lines. The subvolume size in the hexagonal unit cell is 

similar to the size of subvolumes in the square unit cell shown in Figure 4.1, and the hexagonal 

unit cell with the size of 474.4  μm  in length direction and 410.8  μm  in width direction is 

discretized into 120x100 subvolumes. Figure 4.11 illustrates the comparison of homogenized 

responses generated using square and hexagonal unit cells, with both exhibiting good agreement 

with experimental data. Before step 13, both responses are very close, while after step 13 the 

response based on the hexagonal unit cell becomes more compliant. 

 

Figure 4.10 Unit cell geometry and discretization containing 0.325 fiber volume fraction. 
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Figure 4.11 Initial transverse response generated via square and hexagonal unit cells for 

unidirectional SiC/Ti composite immediately after fabrication cooldown with uncoupled 

separation laws. 

Figure 4.12 illustrates the comparison of interfacial displacement discontinuity and 

traction distributions around the fiber/matrix interface after the −555℃ fabrication cool-down. 

As shown in this figure, normal compressive stress develops around the fiber/matrix interface 

because of mismatch of thermal expansion coefficients between fiber and matrix. Moreover, the 

normal displacement discontinuity is zero because when the interface is under compression, the 

corresponding displacement discontinuity is replaced by the displacement continuity condition. 

This is in contrast with the major finite-element packages such as Abaqus and ANSYS wherein 

high stiffness is used to resist interpenetration. Meanwhile it is easy to observe that normal 

traction, tangential displacement discontinuity and tangential traction distributions for the 

hexagonal unit cell are more uniform compared with the results from square unit cell, because 

the fiber in hexagonal unit cell is more uniformly distributed inside the matrix. 

Step 5 

Step 7 

Step 13 

Step 25 
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Figure 4.12 Interfacial displacement discontinuity and traction distributions around the 

fiber/matrix interface under −555℃ cool-down. 

Figure 4.13 shows the interfacial displacement discontinuity and traction distributions 

around the fiber/matrix interface at step 5. In normal direction, interface in the area around 00 

and 1800 overcomes the compressive stress and maximal interfacial opening and stress appear in 

the hexagonal unit cell while larger interfacial area around the top and bottom of fiber is under 

high compressive stress. Moreover the compressive stress in square unit cell is almost 50% 

higher than the stress in hexagonal unit cell. In tangential direction, interface starts experiencing 

degradation in contrast to the on-set elastic interfacial opening in normal direction and interface 

in square unit cell experiences more severe degradation than interface in hexagonal unit cell, 

while the position with most severe degradation in those two unit cells are nearby but not exactly 

the same.  
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Figure 4.13 Interfacial displacement discontinuity and traction distributions around the 

fiber/matrix interface at step 5. 

Figure 4.14 shows the interfacial displacement discontinuity and traction distributions 

around the fiber/matrix interface at step 13. In normal direction, interface in hexagonal unit cell 

degrades more severely and in tangential direction interface has similar response. And these 

explain the slight compliant response at step 13. Moreover the difference of maximal 

compressive stress between square unit cell and hexagonal unit cell decreases to 25% at this step 

from 50% at step 5. After step 13 the difference between homogenized responses of hexagonal 

unit cell and square unit cell will continue to deviate. As shown in figure 4.15 at step 25 

distributions of interfacial qualities possess very similar shape except for that interface of 

hexagonal unit cell experiences more severe damage in both normal and tangential direction, 

which cause the more compliant response in the homogenized response.  
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Figure 4.14 Interfacial displacement discontinuity and traction distributions around the 

fiber/matrix interface at step 13. 

Figure 4.16 and Figure 4.17 show the full-field stress distributions of hexagonal and 

square unit cells after 555℃ fabrication cool-down and at loading step 13, at which interface 

experiences certain degree of degradation as shown in Figure 4.14. First of all, after 555℃ cool-

down, stress distributions of 𝜎22and 𝜎33 in hexagonal unit cell are not equal to each other after 

90 degrees’ rotation in contrast to the stresses in square unit cell, because in hexagonal unit cell 

the fiber distribution pattern varies after 90 degrees’ rotation. Second of all, in both normal stress 

components of 𝜎22 and 𝜎33, the  compressive stress is higher in square unit cell and this causes 

higher effective stress, which is more uniformly distributed in hexagonal unit cell with hexagonal 

shape comparing with the more localized distribution in square unit cell with square shape.  

Moreover the shear stress 𝜎23is higher in hexagonal unit cell comparing with the corresponding 

shear stress in square unit cell.  
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Figure 4.15 Interfacial displacement discontinuity and traction distributions around the 

fiber/matrix interface at step 25. 

Figure 4.17 shows the full-filed stress distributions at step 13, at which interface in both 

normal and tangential direction experiences some degree of degradation as shown in Figure 4.14. 

As the interfacial degradation happens, which reduces stress transfer ability from fiber to matrix 

along left and right hand sides of interface, high tensile 𝜎22 and compressive 𝜎33are developed 

around the top and bottom area of fiber, which cause the high effective stress in the matrix 

around fiber top and bottom area. Also interfacial degradation is more severe in square unit cell 

than the degradation in hexagonal unit cell and this cause more dramatically loading shifting 

effects in square unit cell, which has higher effective stress around the top and bottom fiber area. 
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Moreover it’s known from Figure 4.13 shear stress is higher in hexagonal unit cell than the stress 

in square unit cell after fabrication cool-down, while after interfacial degradation, the shear stress 

distribution are fairly close to each other, which also can be reflected from the tangential 

interfacial stress distribution in Figure 4.14. 

After 𝟓𝟓𝟎℃ cool-down  

  

  

  

  

Figure 4.16 Full-field stress distributions after 555℃ fabrication cool-down. 
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Step 13 

  

  

  

  

Figure 4.17 Full-field stress distributions at step 13. 
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4.5 Effect of Loading Direction for Hexagonal Unit Cell 

In this section, we look into the effect of loading directions on the homogenized response of the 

hexagonal unit cell and the associated fiber/matrix interfacial behavior. Two types of loading 

conditions are applied to the unit cell: one is transverse loading, denoted by 22 direction in 

Figure 4.18, which was used in Section 4.4 for comparison with the square unit cell response, 

and another one is through-thickness loading direction, denoted by 33 direction in Figure 4.18. 

Figure 4.18 illustrates the homogenized responses of square and hexagonal unit cells under 

transverse and through-thickness loadings for unidirectional SiC/Ti composite with uncoupled 

separation laws immediately after fabrication cooldown. As expected, the response of the square 

unit cell under those two loadings is exactly the same because the interface profile corresponding 

to either of the two loading directions does not change upon 90 degree rotation. For the 

hexagonal unit cell in the elastic stage the homogenized response is the same because of the 

transversely isotropic relation 𝐸22 = 𝐸33 . The onset of interfacial degradation leads to 

anisotropic behavior, with the homogenized response along 33 direction more compliant than the 

response along 22 direction. 

 

Figure 4.18 Initial transverse and through-thickness response generated via square and hexagonal 

unit cells for unidirectional SiC/Ti composite immediately after fabrication cooldown with 

uncoupled separation laws.  

Figure 4.19 and 4.20 illustrate the interfacial displacement discontinuity and traction 

distributions around the central fiber/matrix interface at steps 5 and 13 for the hexagonal unit cell 
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subjected to transverse and through-thickness loading. Since the two loading directions differ by 

90 degrees, the corresponding maximum interfacial openings also differ by 90 degrees. For 

comparison purposes, interfacial quantity distributions under transverse loading are plotted from 

the outer right point along the counterclockwise direction, and the interfacial quantity 

distributions under through-thickness loading are plotted from the top point along 

counterclockwise direction. At step 5, interfacial deformation in the normal direction is in the 

elastic stage and interface opening under transverse loading is slightly higher than under 

through-thickness loading. In the tangential direction, the interface under both loading types 

degrades slightly and the interface under transverse loading experiences slightly more severe 

degradation. Because the interfacial opening difference is small and interfacial damage in the 

tangential direction is in its early stage, the loss of loading capability for both unit cells is 

negligible and therefore the homogenized properties are nearly the same. At step 13 the interface 

under both loading types experiences moderate interfacial damage and the homogenized 

response of the unit cell under through-thickness loading is more compliant than the response 

under transverse loading. As shown in Figure 4.20, the interface in the normal direction under 

through-thickness loading experiences more severe damage than under transverse loading. In 

contrast, in the tangential direction the interface under both loading types experiences similar 

damage. Because of more severe interfacial damage in the normal direction under through-

thickness loading, which causes more severe loss of load transfer ability, the homogenized 

response is more compliant than the response under transverse loading.  

Figures 4.21 and 4.22 illustrate the full-field stress distributions in the hexagonal unit cell 

subjected to transverse and through-thickness loadings at steps 5 and 13. Because of the 90 

degree difference between loading directions, we should compare stress 𝜎22 with 𝜎33 and stress 

𝜎33 with 𝜎22. In Figure 4.21 the maximum and minimum values of the normal stress 𝜎22 along 

the transverse loading direction is similar to the value of the normal stress 𝜎33 along the through-

thickness direction. The shear stress 𝜎23  distribution patterns for both loading types are also 

similar while the shear stress magnitude is higher under transverse loading. Regarding effective 

stress, the maximum value is higher under through-thickness loading because of the higher 

compressive normal stress along the left and right sides of the fiber illustrated in Figure 4.20. 

With the development of interfacial damage, the maximum and minimum values of the normal 

stress 𝜎22 along the transverse loading direction are similar to the values of the normal stress 
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𝜎33 along the through-thickness direction, Figure 4.22. The shear stress 𝜎23 distribution patterns 

as well as the magnitudes are similar. Regarding the effective stress, high values are more 

localized in the top and bottom areas of the fiber under transverse loading, and to the left and 

right of the fiber under through-thickness loading. This occurs because the normal interfacial 

damage and maximum stress are slightly higher under the through-thickness loading due to the 

relatively high compressive normal stress, as seen in Figure 4.20.  

     

  

Figure 4.19 Interfacial displacement discontinuity and traction distributions around the 

fiber/matrix interface at step 5 under transverse and through-thickness loadings. 
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Figure 4.20 Interfacial displacement discontinuity and traction distributions around the 

fiber/matrix interface at step 13 under transverse and through-thickness loading. 
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Figure 4.21 Full-field stress distributions at step 5 along transverse loading (left) and along 

through-thickness loading (right). 

 



105 
 

  

  

  

  

Figure 4.22 Full-field stress distributions at step 13 along transverse loading (left) and along 

through-thickness loading (right). 

4.6 Discussion  

The generated results demonstrate that the 0th-order version of the parametric FVDAM theory is 

capable of accurately capturing interfacial displacement discontinuity and corresponding traction 
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distributions along interfaces undergoing separation based on the bilinear cohesive zone model. 

In this version, only the continuity of interfacial surface-averaged displacements and tractions is 

enforced, in contrast with recently developed generalized version wherein additional higher-

order kinematic and static interfacial variables are also employed producing nearly perfect 

interfacial conformability in the absence of damage, (Cavalcante and Pindera 2014). Such 

capability may be important in problems undergoing very large deformations not pursued herein. 

The present framework, based on the local/global stiffness matrix approach and the 

decomposition of interfacial displacements into continuous and discontinuous contributions, 

provides substantial flexibility in simulating interfacial degradation in heterogeneous materials, 

as well as other related phenomena. The auxiliary system of equations which governs the 

interfacial response admits arbitrary interfacial traction-separation laws, including CZM 

equations employed in the present study. Because the auxiliary equations may be activated by 

problem-specific conditions, various physical phenomena that may arise at different points along 

the loading path may be simulated using this approach. This is similar to the on-demand insertion 

of interface elements within the finite-element framework proposed by Ortiz and Suresh (1993) 

which the present framework enables naturally. 

It is also significant that physically realistic interfacial parameters were identified that 

produced good correlation with the reported experimental response of unidirectional SiC/Ti 

composite. Specifically, the employed maximum interfacial separation distance of 0.46 μm 

corresponding to traction-free interface compares well with the SiC fiber diameter of 146 μm and 

the thickness of the chemically-degraded fiber/matrix interfacial zone that leads to premature 

separation under low transverse load. This is in contrast with the wide range of interfacial 

parameters found in the literature, some of which may be unrealistic as reported by Chandra et 

al. (2002). Identification of realistic interfacial strength parameters may be accomplished by 

incorporating the CZM-based FVDAM theory into an optimization algorithm, as recently 

demonstrated by Tu and Pindera (2013) in the context of bio-inspired microstructures using the 

Particle Swarm Optimization of Kennedy and Eberhart (1995). Similar capability was developed 

in the present context in search of optimal values for the interfacial strength and stiffness by 

allowing these quantities to vary in the ranges 20-140 MPa and 1,000-10,000 MPa/μm, 

respectively. Optimal values of 58.5 MPa for the interfacial strength and 1,090 MPa/μm for the 

initial interfacial stiffness were found that improved the correlation with experiment relative to 
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the predictions based on the best values given in Table 4.2. Details of this combined PSO-

FVDAM optimization capability facilitated by the semi-analytical structure of the FVDAM 

theory will be discussed in Chapter 5. 

4.7 Summary 

The parametric FVDAM theory has been further extended in order to accommodate 

damage evolution based on displacement discontinuity functions. Auxiliary equations that 

represent traction conditions along specified interfaces undergoing separation, which are 

necessary to determine these functions, may be based either on traction-free conditions that 

simulate crack growth or interfacial separation laws based on the flexible interface concept. 

Herein, the cohesive zone model has been implemented into the auxiliary equations to simulate 

progressive damage between adjacent phases within the representative unit cell of a periodic 

material. The extended FVDAM theory was employed to study progressive damage around the 

fiber/matrix interface of a unidirectional SiC/Ti material subjected to transverse loading. 

Consistent CZM parameters have been identified that produced very good correlation with the 

reported experimental response immediately after fabrication cooldown when the interface was 

assumed intact, as well as after several cycles which destroyed the chemical bond along a portion 

of the interface. Examination of the evolution of interfacial displacement discontinuities and 

tractions with increasing load revealed that the extended FVDAM theory with CZM-based 

damage evolution capability correctly captured the mechanics of progressive interfacial 

debonding, with the concomitant local stress fields exhibiting fidelity comparable to an elasticity 

solution. The study also shows unit cell architectures affect the unit cell's homogenized response 

and interfacial damage. In the early stage, homogenized responses generated from square and 

hexagonal unit cells are the same, and the difference between them increases as more severe 

interfacial degradation develops in the square unit cell. Further, the study illustrates that the 

loading direction influences the unit cell's homogenized response and interfacial damage. In the 

early stage, homogenized responses under transverse and through-thickness loadings are the 

same, and the response under through-thickness loading is more compliant because of more 

severe interfacial damage. 
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Chapter 5 

Finite Volume Micromechanics-Driven 

Particle Swarm Optimization 

5.1 Introduction 

In this chapter, the newly developed CZM-based FVDAM is incorporated into the Particle 

Swarm Optimization (PSO) algorithm proposed by Kennedy and Eberhart (1995) to identify 

optimal interfacial properties used for cohesive laws in fiber-reinforced material systems. The 

optimization work is motivated by the observations that: 1) homogenization techniques play an 

important role in the development and design of engineered materials through the establishment 

of a direct link between function and microstructure, which includes geometry and properties, 

(Tu and Pindera 2013); and 2) interfacial properties play a crucial role in transferring load 

between different material phases and in maintaining the integrity of composite material systems, 

Wang and Pindera (2016). Optimization can be an effective tool to either identify parameters that 

can’t be easily calibrated easily or to determine the optimal parameters which optimize the  

performance of material or structure. It is known that the cohesive parameters which control 

interfacial traction-separation relations are very difficult to obtain via direct experimental 

procedure. Very recently a sequence of papers has been published to identify cohesive 

parameters, such as initial interfacial stiffness 𝑘, interfacial strength 𝜎 and energy release rate 𝐺 . 

The general procedure to determine the interfacial parameters is to minimize the difference 

between experimental data of force-displacement response and numerical predictions by 

adjusting the interfacial parameters, (Que and Tin-Loi 2002, Lee et al. 2011, Valoroso et al. 

2013, Svensson  et al. 2014, Bouhala et al. 2015).  

Before incorporating CZM-based FVDAM into the PSO algorithm, we first demonstrate 

the feasibility of this approach through a preliminary study conducted by the author to identify 

combinations of material and geometric parameters of wavy multilayers that best fit the 

experimental response of three types of porcine mitral valve chordae tendineae, namely 

marginal, basal and strut, that stiffen at increasingly greater stretches. This study was conducted 
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by incorporating the finite-deformation based FVDAM theory without damage capability, 

developed by Khatam and Pindera (2012), into the PSO algorithm. The results of this 

investigation demonstrate that the FVDAM-driven PSO algorithm is an excellent tool to identify 

combinations of material and geometric parameters that minimize objective functions which may 

exhibit irregular features, motivating its extension to materials undergoing damage evolution. 

The extended CZM-based FVDAM-driven PSO algorithm is then employed to determine the 

interfacial properties of fiber-reinforced materials based on different unit cell types and 

fiber/matrix interface distributions. 

5.2 FVDAM-Driven Particle Swarm Optimization 

The semi-analytical framework of the theory facilitates implementation into higher-level analysis 

algorithms, such as the Particle Swarm Optimization (Kennedy and Eberhart, 1995) employed in 

this study. This evolutionary nongradient-based optimization algorithm successfully used in the 

design of flat laminates (Chen et al., 2009; Peng et al., 2011) is well-suited for problems wherein 

the objective function exhibits steep gradients and cusps in the design space, and hence becomes 

non-analytic at those points. 

 The PSO algorithm mimics the behavior of a swarm of birds searching for a target. The 

swarm consists of particles whose positions in the design variable space are employed to 

generate candidate solutions based on FVDAM calculations and experimental data. The position 

of the ith particle is given by the vector 𝐗𝑖 = (𝑥1, 𝑥2, … , 𝑥𝐷)𝑖, where the subscript D represents 

the number of design variables, and its velocity by 𝐕𝑖 = (𝑣1, 𝑣2, … , 𝑣𝐷)𝑖. During the search for 

an optimal solution, the particles' positions are updated based on each particle's best previous 

experience denoted by pBest and the best experience of other particles denoted by gBest. The 

updating algorithm is given by the two equations, 

𝑣𝑖𝑑
𝑘+1 = 𝜒[𝜔𝑣𝑖𝑑

𝑘 + 𝑎1rand1
𝑘()(𝑝𝐵𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 ) + 𝑎2rand2

𝑘()(𝑔𝐵𝑒𝑠𝑡𝑖𝑑
𝑘 − 𝑥𝑖𝑑

𝑘 )] 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1 

(5.1) 

where the subscript k represents the iteration number, rand1
𝑘() and rand2

𝑘() are random numbers 

with uniform distributions in the interval [0, 1], 𝑎1  and 𝑎2  are acceleration constants. The 

parameter 𝜔 is the inertia weight parameter defined in terms of its initial and final values, 𝜔𝑚𝑎𝑥 

and 𝜔𝑚𝑖𝑛, and the current and maximum iteration numbers k and 𝑘𝑚𝑎𝑥, 
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𝜔 = 𝜔𝑚𝑎𝑥 − 𝑘(𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛)/𝑘𝑚𝑎𝑥 (5.2) 

The parameter 𝜒 introduced to ensure convergence is called constriction factor, and is defined by 

𝜒 =
2

2 − 𝜑 − √𝜑2 − 4𝜑
 (5.3) 

where 𝜑 = 𝑎1 + 𝑎2 such that 𝜑 > 4. The values of the above parameters in the present study 

based on previous work (Chen et al., 2009; Peng et al., 2011) are listed in Table 5.1. 

 In the present study, the candidate solutions are error functions which are measures of the 

difference between the experimental data of Johnson et al. (1990) for SiC/Ti composite under 

transverse loading immediately after the fabrication 5550C cool-down and response predicted by 

the CZM-based FVDAM theory. In the initial feasibility study, the experimental data was 

comprised of longitudinal stress-stretch responses of three types of mitral valve chordae 

tendineae (Liao and Vesely, 2003b) and the numerical response was generated by the finite 

deformation-based FVDAM theory developed by Khatam and Pindera (2012). The error 

functions are evaluated for each particle 𝐗𝑖  (each set of design variables) in the following 

manner 

𝑒𝑟𝑟𝑜𝑟(𝐗𝑖) =
∑ |(𝑇𝐹𝑉𝐷𝐴𝑀(𝐗𝑖))𝑘

− (𝑇𝑒𝑥𝑝)𝑘|
𝑁
𝑘=1

∑ (𝑇𝑒𝑥𝑝)𝑘
𝑁
𝑘=1

 (5.4) 

at 𝑘 = 1,… ,𝑁 points along the curve of T using experimental and predicted values. The error 

function plays the same role as the objective function employed in other optimization algorithms. 

 As the search for the optimum solution proceeds according to the flow chart given in 

Figure 5.1, it is possible that some of the design variables (particle positions) may become 

negative. Their positions are reset to the lower and upper bounds should their values for an ith 

particle exceed these bounds at any iteration number during the search. 

Table 5.1 Parameters used in the Particle Swarm Optimization algorithm. 

𝑎1 𝑎2 𝜔𝑚𝑖𝑛 𝜔𝑚𝑎𝑥 

2.05 2.05 0.4 0.9 
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Figure 5.1 Flow chart showing the marriage of FVDAM and PSO algorithm. 

5.3 Algorithm Feasibility Study  

Before conducting optimization studies of fiber/matrix interface properties, the FVDAM-driven 

PSO approach is first employed to identify combinations of material and geometric parameters 

of wavy multilayers that best fit experimental response of three types of porcine mitral valve 

chordae tendineae, namely marginal, basal and strut, that stiffen at increasingly greater stretches. 

The employed FVDAM theory developed by Khatam and Pindera (2012) has the capability to 

analyze finite deformation problems but not problems involving damage evolution. 

5.3.1 Model of the Mitral Valve Chordae Tendineae 

Following the previous investigation (Khatam and Pindera, 2012), the complex microstructure of 

porcine mitral valve chordae tendineae is represented by a wavy multilayer unit cell. The 
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construction of the simplified model for simulating the chordae response is based on the reported 

experimental data for this biological tissue, which includes the amplitude and wavelength ranges 

of the crimped collagen fibril bundles and Young's modulus ranges of the limiting tensile 

response of the marginal, basal and strut chordae (Liao and Vesely, 2003a). These are 

reproduced in Table 5.2. The amplitude ranges are based on SEM observations, while a polarized 

light technique had been used to determine the wavelength ranges. The homogenized tensile 

response had been generated in an Instron machine by first preconditioning the chordae at 4mm/s 

to 150 g load in a bath of Hank's solution to simulate physiological environment until the load-

displacement curve became repeatable, which was followed by the actual test in the elastic range. 

Figure 5.2 summarizes the stabilized elastic stress-strain responses of the three chordae types 

(reproduced from Liao and Vesely, 2003b) which will be employed for comparison with 

FVDAM-based simulations.  

 

Figure 5.2 Longitudinal stress-strain response of porcine mitral valve marginal, basal and strut 

chordae (reproduced by digitization from the experimental data of Liao and Vesely, 2003b). 

The above information is used to construct unit cells, comprised of alternating wavy stiff 

and soft layers, Figure 5.3, to target the actual response of marginal, basal and strut chordae 

tendineae. Such a model is obviously a simplification of the actual crimped geometry of chordae 

collagen fibril bundles, but the goal herein is to show that it may be successfully used to simulate 

the actual tensile responses of porcine mitral valve chordae tendineae upon identification of 

optimal geometric and material parameters. In the wavy multilayer model, the stiff phase 
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represents the average behavior of the crimped fibril bundles, and the soft phase the ground 

substance, with the respective volume fractions representative of the actual biological tissue. The 

amplitude and wavelength of the unit cell are varied according to the experimental data in Table 

5.2. The thickness of the reference stiff layer, 0.42 μm, is the same as in the previous study 

(Khatam and Pindera, 2012). Given that the fibril diameter within fibril sub-bundles of the 

crimped marginal, basal and strut chordae lies in the range 45-60 nm (Liao and Vesely, 2003a), 

the thickest stiff layer corresponds to about 7-9 fibril diameters. The overall thickness of the unit 

cell is adjusted such that the overall stiff layer volume fraction is fixed at 0.48 as reported (Liao 

and Vesely, 2003a), with the length dependent on the crimp period. The microstructural 

refinement of the reference unit cell is attained by subdividing the thick stiff layer into 

progressively thinner ones, with the maximum number of subdivisions producing 8 stiff layers 

and the thinnest stiff layer thickness on the order of a single fibril diameter. 

While the previous study (Khatam and Pindera, 2012) was limited to the effect of soft 

layer modulus and stiff layer thickness in the simulation of porcine mitral valve strut chordae 

using mean values of the reported amplitude-to-wavelength ratio of the crimped fibril 

microstructure and the Young's modulus of the limiting chordae response, the present 

verification work is much broader. It includes the effects of variations of amplitude, period, soft 

and stiff layer Young's moduli as well as microstructural refinement for all three chordae models. 

Table 5.2 Ranges of the amplitude and wavelength of the crimped microstructure of the porcine 

mitral valve marginal, basal and strut chordae tendineae and the Young's modulus of the limiting 

linear response (Liao and Vesely, 2003a) employed in the construction of unit cell models and 

the extraction of hyperelastic constitutive model parameters. 

Chordae Type Amplitude (μm) Wavelength (μm) 𝐸𝐶ℎ𝑜𝑟𝑑𝑎𝑒 (MPa) 

Marginal 1.87±0.78 14.8±3.0 84.4±21.2 

Basal 1.87±0.78 14.8±3.0 86.1±20.9 

Strut 1.87±0.78 11.3±1.4 64.2±13.5 
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Figure 5.3 Geometry of the simplified model of the microstructure of porcine mitral valve strut chordae 

employed in the FVDAM simulations based on the reported mean values of amplitude and crimp period 

(Liao and Vesely, 2003a). The top representative unit cell is the reference cell with thickest stiff layer 

which is further subdividing in a manner that retains its volume fraction (middle and bottom unit cells). 

Detail of the unit cell discretization is shown in the bottom unit cell (note: axes scale is in microns). 

 



115 
 

5.3.1.1 Unit Cell Discretization 

The reference unit cell with a single stiff layer for the marginal and basal chordae is generated 

using mesh discretization of 468×24 quadrilateral subvolumes along the horizontal and vertical 

directions, respectively. This discretization ensures that the aspect ratio of each subvolume is not 

excessively large. Similarly, the reference unit cell for the strut chordae is discretized into 

312×24 subvolumes due to smaller crimp period. Microstructural refinement is accomplished in 

a manner that ensures that the overall unit thickness, stiff layer volume fraction and amplitude-

to-wavelength ratio remain fixed. In this case, the smallest unit cell for the given refinement is 

employed. For instance, the smallest unit cell for the marginal and basal chordae with the thick 

stiff layer subdivided into 8 thinner ones contains a single thin stiff layer which requires the 

discretization of 1080×14 to maintain a reasonable subvolume aspect ratio. A full unit cell 

containing 8 thin stiff layers would be discretized into 1080×112 subvolumes. The corresponding 

discretization for the smallest strut chordae unit cell containing one thin stiff layer is 720×14 in 

contrast with 720×112 subvolumes for the full unit cell with 8 thin stiff layers. 

5.3.1.2 Phase Constitutive Response  

Both the stiff and soft phases of the wavy multilayer model, that represent collagen fibril bundles 

and ground substance material with complicated microstructure comprised of randomly oriented 

network of collagen filaments (elastin) embedded in a hydrated proteoglycan gel producing soft 

and isotropic matrix, are represented by the generalized Mooney-Rivlin material. The strain 

energy density function for this material model is given in terms of the three invariants of the 

right-Cauchy deformation tensor  C, 𝐼1 = 𝑡𝑟 𝐂, 𝐼2 =
1

2
(𝑡𝑟2𝐂 − 𝑡𝑟 𝐂2) , 𝐼3 = det 𝐂,  

𝑊 = 𝑐1 (
𝐼1

𝐼3
1/3

− 3) + 𝑐2 (
𝐼2

𝐼3
2/3

− 3) +
𝜅

2
(𝐽 − 1)2 (5.5) 

where = det F = √𝐼3 , 𝑐1 and 𝑐2 are material parameters with c₁+c₂=μ/2, and μ and κ are shear 

and bulk moduli, respectively. The compressibility or Poisson's ratio may be changed by 

assigning different values for κ=2μ(1+ν)/3(1-2ν). This hyperelastic constitutive model is often 

used for soft materials because of the control of the amount of compressibility. 

 The Young's modulus ranges of the stiff layers, which represent the crimped bundles of 

collagen fibrils in the considered mitral valve marginal, basal and strut chordae tendineae, are 
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determined from the limiting linear response of the experimentally determined chordae stress-

strain curves, Table 5.2. The individual fibrils within the fiber bundles are assumed to have 

straightened out when the chordae stiffening response becomes linear. Using the chordae 

Young's modulus ranges listed in Table 5.2, the volume fraction of collagen fibrils of 0.48, and 

the rule-of-mixtures formula based on the assumption of negligible contribution from the ground 

substance, the Young's modulus ranges of the stiff layers in the simplified wavy model are thus 

obtained and listed in Table 5.3. The knowledge of the Young's moduli, together with an 

assumed Poisson's ratio of 0.30 allows one to calculate the initial shear modulus ranges from the 

isotropic relation μ=E/2(1+ν) and hence the bulk modulus ranges. Taking c₂=0 as in the 

previous study (Khatam and Pindera, 2012), which in fact reduces the generalized Mooney-

Rivlin material to a compressible neo-Hookean one, all the required material parameters needed 

in Eq. (5.5) are obtained. The stiff layer parameter ranges thus extracted from the marginal, basal 

and strut chordae response are included in Table 5.3. 

The following assumption and approximation intrinsic to the above calculations need to 

be highlighted. The stiff layers in the wavy multilayer model are taken as isotropic, while the 

microstructure of collagen fibrils suggests, at least, transversely isotropic properties. However, 

the soft layers representing the ground substance are not expected to significantly affect the 

transverse deformation of the stiff layers under longitudinal loading because the major stress 

component controlling the unfolding and stiffening of the wavy microstructure is along the 

applied load. Hence the transverse properties of the stiff layers will have a minimal influence on 

the axial deformation of the chordae which is the focus in the present study. Clearly, this model 

will not be accurate under multiaxial loading of the considered chordae tendineae which would 

require accurate transverse fibril properties to be realistic. Hence the extraction of the constituent 

phase properties in the manner described above limits the model to longitudinal loading, the 

primary loading for the considered tissue. This circumvents the issue of incompressibility 

assumed for many biological tissues under multiaxial loading, and supports the choice for 

Poisson's ratio values of the stiff and soft layers representative of many polymers. 
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Table 5.3 Elastic parameters of the generalized Mooney-Rivlin model extracted from the 

experimental data on the porcine mitral valve marginal, basal and strut chordae tendineae (Liao 

and Vesely, 2003a) employed in the simplified unit cell models for the response of chordae 

tendineae constituents. The marginal, basal and strut layers are the stiff layers in the simplified 

model and the matrix is the soft layer. 

Material E (MPa) ν κ (MPa) c₁ (MPa) c₂ (MPa) 

Marginal layer 175.83±44.16 0.30 146.53±36.81 33.81±8.49 0.0 

Basal layer 179.37±43.54 0.30 149.48±36.28 34.49±8.37 0.0 

Strut layer 133.75±28.12 0.30 111.46±23.44 25.72±5.41 0.0 

Matrix 0.1 0.30 0.083 0.019 0.0 

5.3.2 Targeting the Response Using Particle Swarm Optimization  

In this section, we present detailed results of optimization studies using fixed amplitude and 

wavelength values identified in the initial sensitivity and optimization studies that minimize the 

error in the predicted homogenized response for the three chordae types. The amplitudes are 

1.09, 1.48 and 1.675 μm for the marginal, basal and strut chordae models, respectively, with the 

corresponding wavelengths set at 17.8, 17.8, and 12.35 μm. Thus the design variables for the 

three chordae models are the number of stiff layers in the range [1,8] at fixed volume fraction, 

the matrix modulus 𝐸𝑚 which lies in the range [0.05, 1.25] MPa, and the stiff layer modulus 𝐸𝑓 

with ranges dependent on the chordae. For the marginal chordae the range of 𝐸𝑓 is [130, 220] 

MPa, while for the basal and strut chordae the respective ranges are [136, 223] MPa and [106, 

162] MPa. The objective function in all cases is the previously defined error that minimizes 

deviation of the predicted response from the experimental data (Liao and Vesely, 2003b). The 

number of particles used in the optimization runs was 12 and the number of allowed iterations 

was 14, which was sufficient to obtain converged results. Figure 5.4 illustrates the error 

convergence as a function of iteration number for the three chordae models. Detailed results 

follow. 

Figure 5.5 illustrates the results of the optimization process for the marginal chordae 

model, which include the initial and final particle distributions in the three-dimensional design 

variable space, and the initial and converged homogenized responses after 10 iterations. The 

error decreases from an initial value of 0.080 to the final value of 0.036 with the concomitant 

design variable changes from 𝐸𝑚 = 0.959, 𝐸𝑓 = 197.0 and 6 stiff layers to the final values of 

𝐸𝑚 = 0.912, 𝐸𝑓 = 219.2 and 8 stiff layers. We note that each set of results represents the design 

variables that produce the best solution of the entire twelve-particle swarm for the given 
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iteration. The above results compare well with the results of the sensitivity studies followed by a 

more intuitive procedure that produced the best homogenized response for the set of design 

variables given by  𝐸𝑚 = 0.75 and 𝐸𝑓 = 219.58 MPa and 4 stiff layers. 

Figures 5.6 and 5.7 present the corresponding results for the basal and strut chordae 

models, respectively. For the basal chordae model, only 5 iterations are required to obtain 

converged homogenized response that minimizes the error relative to the experimental data, with 

the initial error of 0.11 after the first iteration decreasing to 0.0223. The swarm of particles with 

an initially random distribution in the three-dimensional design variable space converges to a 

very small cluster upon final iteration, Figure 5.6a. The best of the initial set of design variables 

after the first iteration, comprised of 𝐸𝑚 = 0.088, 𝐸𝑓 = 159.95 and 6 stiff layers, produces a 

slightly stiffer initial and a more compliant limiting response relative to the experimental data. 

Reduction and increase in the matrix and stiff layer moduli, respectively, yields an optimal set of 

design variables with the best solution comprised of 𝐸𝑚 = 0.05, 𝐸𝑓 = 185.14 and 7 stiff layers 

which yield an excellent agreement with the experimental data, Figure 5.6b. These values 

compare well with those obtained from the parametric sensitivity studies based on the optimal 

amplitude and wavelength identified for the basal chordae model which yielded 𝐸𝑚 = 0.05, 

𝐸𝑓 = 179.37 MPa with the number of stiff layers varying between 3 to 8. 

The initial and final design variable distributions and the corresponding homogenized 

responses for the strut chordae model are shown in Figure 5.7. The best of the initial set of 

design variables whose distribution is shown in Figure 5.7a produces an error of 0.145 based on 

the values of 𝐸𝑚 = 0.115, 𝐸𝑓 = 135.48 and 2 stiff layers. This initial set does not capture well 

enough the initially compliant response, Figure 5.7b, owing to the large bending stiffness and 

hence resistance of the relatively thick stiff layers during the unfolding process. The final particle 

swarm converges to a small cluster in the design variable space with the best set of values given 

by 𝐸𝑚 = 0.05, 𝐸𝑓 = 147.51 MPa and 8 stiff layers. These values produce and error of 0.0377 

between the predicted homogenized response and experimental data which exhibit excellent 

correlation. They also compare well with those obtained from the parametric sensitivity studies 

which yielded 𝐸𝑚 = 0.05, 𝐸𝑓 = 133.75 −  161.00 MPa with the number of stiff layers varying 

between 4 to 8. 
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From the above study we can conclude that the homogenization-based Particle Swarm 

Optimization algorithm is an excellent tool in identifying optimal unit cell architectures in the 

design space that exhibits very steep gradients. The demonstrated feasibility of the FVDAM-

driven PSO approach will be employed in the following section to optimize the CZM parameters 

in order to simulate the response of SiC/Ti unidirectional composites with evolving degradation 

of the fiber/matrix interface.   

 

Figure 5.4 The error convergence with iteration number of the PSO algorithm in simulating the 

homogenized response of porcine mitral valve marginal, basal and strut chordae. 

       
(a)                                                                                     (b) 

Figure 5.5 (a) Initial and final particle distributions. (b) Best initial and final simulated 

homogenized responses of the marginal chordae tendineae. 
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                                     (a)                                                                                     (b) 

Figure 5.6 (a) Initial and final particle distributions. (b) Best initial and final simulated homogenized 

responses of the basal chordae tendineae. 

       

(a)   (b) 

Figure 5.7 (a) Initial and final particle distributions. (b) Best initial and final simulated 

homogenized responses of the strut chordae tendineae. 

5.4 Optimizing CZM Parameters for Interfaces Undergoing Damage 

5.4.1 Interfacial Parameter Optimization based on Square Unit Cell  

In Chapter 4, the best correlation with experimental data of Johnson et al. (1990) for a SiC/Ti 

composite under transverse loading immediately after the fabrication 5550C  cool-down was  

obtained using a trial-and-error procedure by first varying the initial interfacial stiffness and then 
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interfacial strength with the initial stiffness fixed. Using this parametric approach with the 

uncoupled bilinear cohesive law, the best fit to experimental data was obtained for the initial 

interfacial stiffness of 3 × 103μm/MPa  and interfacial strength of 50MPa (Tu and Pindera, 

2014). 

 Here, FVDAM-driven optimization is employed to obtain the best interfacial stiffness 

and interfacial strength. We first verify the optimization algorithm against the results of the 

above parametric study by fixing the initial interfacial stiffness at 3 × 103μm/MPa and using the 

interfacial strength as a design variable in the range of [20 140] MPa with 10 particles and 20 

iterations. The optimal interfacial strength was identified to be 48.9 MPa, which agrees well with 

the value obtained from the parametric study, namely 50MPa, with the objective function 

converging to 0.0412. Figure 5.8a shows the convergence behavior of the objective function, 

illustrating that after 12 iterations optimum interfacial strength that minimizes the objective 

function is obtained. Figure 5.8b shows the comparison between experimental data and optimum 

response from the parametric study of Tu and Pindera (2014) and current optimization, both of 

which agree well with each other and with experiment. 

          

(a)                                                                                  (b) 

Figure 5.8 (a) Optimization convergence curve; (b) Comparison between experimental data and 

optimized homogenized response.  

 Increasing the design variable space to include both the initial interfacial stiffness and 

strength leads to the identification of optimum design variables that further improve correlation 

with experiment. The two design variables are chosen in the ranges [ 0.5 × 103  10 ×

103] μm/MPa and [20 140] MPa for the initial interfacial stiffness and strength, respectively. 
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Figure 5.9a illustrates the convergence of the error with iteration number, showing that after 8 

iterations the objective or error function reaches a small value and the minimum value is 

obtained after the 10th iteration before the maximum step in the analysis is reached.   Figure 5.9b 

illustrates particle distributions at the first and final steps and we observe that at the final step the 

particles converge to a single point in the two-dimensional design space. Figure 5.10 illustrates 

the comparison between experimental data, optimized homogenized response and the best fit 

obtained from the parametric study. The optimized response actually shows better agreement 

with the experimental data than the best case from the parametric study. Moreover the 

optimization results are obtained with much less effort than that expanded in conducting the 

parametric studies.  

        

Figure 5.9(a) Optimization convergence curve; (b) Initial particle distribution and final particle 

distribution.  

  

Figure 5.10 Comparison between experimental data and optimized homogenized response. 
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5.4.2 Effect of Randomness of Active Interfaces on Optimization  

It is known that the high consolidation temperature used to fabricate the SiC/Ti material system 

produces a chemical reaction at the fiber/matrix interface which results in a substantially 

degraded chemical bond, leading to premature fiber/matrix interfacial debonding at low 

transverse normal stresses. However, since the consolidation condition for each fiber and 

adjacent matrix may not be exactly the same, some fiber/matrix interfaces may be consolidated 

better with less damage than others, leading to debonding at a later stage or not at all because of 

the shielding effect. Hence in this section, the effect randomness of active fiber/matrix interfaces 

on the identification of optimum CZM parameters is investigated. Figure 5.11 shows three types 

of fiber/matrix interface distributions with different percentage of active interfaces, which can 

experience damage. In the first scenario, all fiber/matrix interfaces are active and therefore may 

debond, Figure 5.11a. In the second scenario, the percentage of active interfaces is 75% obtained 

by de-activating the central fiber/matrix interfaces in the hexagonal array of fibers, Figure 5.11b. 

In the third scenario, the percentage of active interface is 50% with two fiber/matrix interfaces 

de-activated, Figure 5.11c.  

       

(a)                                            (b)                                      (c) 

Figure 5.11 Active fiber/matrix interface distribution in a hexagonal unit cell: (a) 100% active 

interface; (b) 75% active interface; (c) 50% active interface. 

 In the optimization procedure, the design variables are the interfacial strength and 

interfacial stiffness and they are allowed to vary in the range of [20 140] MPa and [0.5 × 103 

10 × 103 ]MPa/μm . The objective is to minimize the difference between the homogenized 

response and the experimental data for SiC/Ti under transverse loading immediately after the 

fabrication 5550C  cool-down. Figure 5.12 shows the convergences behavior with iteration 

number for the three types of interface distributions shown in Figure 5.11. We observed that for 

two cases convergence occurs after 12 iterations, with one case converging after only 3 
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iterations. For the cases (a) and (b), the smallest difference between experimental response and 

simulation data is 0.015 and for the case (c), the smallest difference between experimental 

response and simulation data is 0.03. Table 5.4 lists the corresponding optimized design 

variables for those three cases. We note that the case (c) has the smallest interfacial strength, 

which also has the least active fiber/matrix interface, because more damage needs to be 

introduced to the active fiber/matrix interface to match the experimental response.  Figure 5.13 

shows the particle distributions after 20th iterations for the three cases. We see that almost all 

particles converge to the optimal values, which are (59.1MPa, 1.33 × 103MPa/μm) , 

(48.7MPa, 0.86 × 103MPa/μm) and (33.4MPa, 9.95 × 103MPa/μm) for the three cases (a), (b) 

and (c), respectively. 

 

Figure 5.12 Convergence responses for three types of interface distributions as shown in Figure 

5.11. 

Table 5.4 Optimized design variables for three types of interface distributions. 

 Percentage of active interfaces 𝜎𝑚𝑎𝑥(MPa) K(MPa/μm) 

a 100% 59.1 1.33 × 103 

b 75% 48.7 0.86 × 103 

c 50% 33.4 9.95 × 103 
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(a)                                                                            (b) 

 

(c) 

Figure 5.13 Particles’ distributions for case (a), (b), (c). 

Figure 5.14 compares the homogenized responses for the three types of interface 

distributions with the optimized design variables listed in Table 5.4. The homogenized responses 

agree very well with the experimental data, which terminates at the strain level of 0.2%. 

However, when the applied strain is higher than 0.2% the three responses diverge, with the 

homogenized response of case (a) being the most compliant one and the homogenized response 

of case (c) the stiffest one. When the applied strain level is low, the case with smaller percentage 

of active interfaces has lower interfacial strength in order to target the experimental response 

because more damage needs to introduced into each active fiber/matrix interface compared with 

the case with higher percentage of active interfaces. With the increase in loading, interfacial 

strength become less important than the number of active fiber/matrix interface. Hence case (a) 



126 
 

is the most compliant one and case (c) is the stiffest one.  The homogenized responses of those 

three cases are illustrated via the full-field stress distributions in Figures 5.15-5.16.  

Figure 5.15 shows the stress distributions for the three cases at step 10. In case (a), all 

interfaces are at a similar interfacial damage stage, at which the fiber/matrix interface 

perpendicular to the loading direction degrades and stress concentration arises in the matrix 

phase above and below the fiber. In cases (b) and (c), the stress inside the fiber surrounded by 

perfectly bonded interface is higher than the stress in the fiber surrounded by an active 

fiber/matrix interface and the corresponding stress concentration in the matrix phase above and 

below the fiber is much less severe. Although in case (a) all fiber/matrix interfaces experience 

degradation in contrast with cases (b) and (c) in which some interfaces remain intact, the 

homogenized responses are the same at the applied strain of 0.2% as shown in Figure 5.14. This 

is because in the early degradation stage the interfacial strengths of cases (b) and (c) are smaller 

than in case (a) and hence experience greater interfacial damage, which is reflected in more 

severe contrast in the normal stress 𝜎22.  

Figure 5.16 shows the stress distributions for the three types of interface distributions at 

step 20 which corresponds to the homogenized stress σ22 of 280MPa for case (a) and 305MPa 

and 333MPa for cases (b) and (c), respectively. The lower homogenized stress in case (a) is due 

to all interfaces experiencing degradation which causes more total loss of load transfer capability 

between matrix and fiber.  In contrast, in cases (b) and (c) some fiber/matrix interfaces are intact, 

and thus the loss of load transfer capability is less dramatic. This is observed in the 𝜎22 stress 

distributions which exhibit relatively high stress magnitudes in both fiber and matrix phases. 

Also it should be noticed that the interface distributions alter the stress symmetry. In cases (a) 

and (b) the symmetrical 𝜎22  and 𝜎33  normal stress distributions and the anti-symmetrical 𝜎23 

shear stress distributions are maintained because of the symmetrical interface distribution. In 

case (c), however, 𝜎22  and 𝜎33  distributions no longer remain symmetric, and 𝜎23  stress 

distribution does not exhibit anti-symmetry with respect to the vertical plane across the center of 

the middle fiber.   
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Figure 5.14 Optimized homogenized responses for three types of interface distributions. 

 

 Case a: 100% Case b: 75% Case c: 50% 

 Step 10:0.2%  

𝜎22 

   

𝜎33 

   

𝜎23 

   

Figure 5.15 Full-field stress distributions at step 10 for case (a), (b) and (c). 
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 Case a: 100% Case b: 75% Case c: 50% 

 Step 20: 0.4% 

𝜎22 

   

𝜎33 

   

𝜎23 

   

Figure 5.16 Full-field stress distributions at step 20 for cases (a), (b) and (c). 

5.5 Summary  

The feasibility of using the CZM-FVDAM theory as a driver for the PSO algorithm in search of 

optimum interfacial stiffness and strength parameters was first confirmed by incorporating the 

finite-deformation version of FVDAM (Hamed and Pindera, 2012) without damage evolution 

capability into the PSO algorithm in order to identify the optimal unit cell architectures and fiber 

and matrix material properties that targeted the response of three types of heart-valve chordae 

tendineae. This feasibility study illustrated that PSO is a well-suited technique for optimization 

problems involving objective functions that vary non-smoothly with design variable changes, 

and that the combination of homogenized-based model and PSO approach is a very powerful tool 

to quickly identify optimal design variables for the unit cell.  Subsequently, the CZM-based 

FVDAM was incorporated into the PSO algorithm to identify interfacial parameters for the 

SiC/Ti material system. Through optimization, interfacial parameters were efficiently identified 

without extensive parametric studies for different types of unit cell, such as square and 

hexagonal unit cells. Moreover, the effect of the number of active interfaces in a multi-inclusion 
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unit cell on the homogenized response was identified, and explained by examining the 

underpinning stress transfer mechanisms affected by the absence of interfaces undergoing 

damage. 

In the early interfacial damage stage for which experimental data was available, different 

combinations of interface distributions and interfacial parameters were shown to produce similar 

responses which correlated very well with experimental data.  As expected, unit cells with fewer 

active fiber/matrix interfaces possess stronger loading capability with evolving damage. Hence 

the range over which the objective function is minimized for a given set of design variables plays 

an important role, and may produce different and non-optimal results outside this range.  

Finally, interface distributions affect stress symmetry. For instance if the interface 

distribution is not symmetric, the stress distributions would also not possess symmetric 

characteristics, leading to potential loss of orthotropy under multiaxial loading for small unit cell 

sizes. Such important and fundamental issues as the effect of evolving damage on the 

preservation or loss of material orthotropy, and the related issue of the appropriate unit cell size 

used in the simulations, may efficiently be addressed using the developed CZM-based FVDAM 

theory in future studies. 
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Chapter 6 

Damage Evolution in Cross-Ply Laminates 

Revisited  

6.1. Introduction 

In this chapter, we employ the FVDAM theory with the incorporated cohesive zone model to 

revisit the classical problem of damage evolution in symmetric cross-ply laminates under 

unidirectional loading due to progressive cracking of the transverse plies which may lead to 

delamination between the outer and inner plies when the transverse cracks reach saturation 

density, Schoeppner and Pagano (1999), Dharani et al. (2003). This hypothesis has been 

accepted by a number of researchers, but universal acceptance remains lacking, McCartney 

(2013). The above well-investigated problem serves as a model problem against which new 

damage evolution approaches may be gauged. It also provides a foundation for understanding 

damage evolution in symmetric laminates other than composites, such as those found in the 

microelectronics industry. 

Hence the objectives of this investigation are several-fold. One objective is to 

demonstrate the finite-volume theory's ability to track the evolution of dispersed damage caused 

by the combined effects of transverse cracking and interfacial delamination, while accounting for 

the important effects of transverse ply strength variability and fabrication cooldown. Successful 

demonstration of this capability is intimately related to establishing the relationship between the 

homogenized response and the underpinning damage mechanisms, an ultimate goal of this 

investigation. In contrast with still-life approaches widely employed to assess the impact of 

damage on homogenized moduli and damage mode transition, the damage evolution in our 

approach is monitored on the fly within a unified homogenization framework that admits 

multidirectional loading. While it is known that certain homogenized moduli are substantially 

more sensitive to damage than others based on snapshot analyses of cracked laminates at fixed 

crack densities, herein we demonstrate on the fly during continuing loading that this sensitivity 



131 
 

has dramatic impact on the homogenized Poisson's response features. This observation suggests 

a diagnostic tool for damage initiation detection and correlation with underpinning local failure 

mechanisms. We start with a brief historical survey of the literature to place our contribution and 

simulation approach in perspective. 

6.2 A Brief Historical Perspective 

The occurrence of successive cracks in the 90° plies of symmetric cross-ply or [0𝑚/90𝑛]𝑠 

laminates loaded axially has been documented as early as the mid 1960's, see Vasilev et al. (1970) 

and the references therein. An approximate analytical model constructed by these authors based 

on the variational approach revealed that a system of cracks a distance π/𝑘2 apart develops in 

the 90° layers when the ply strength is initially reached, where 𝑘2 depends on the thickness and 

material properties of the 0° and 90° plies (see the Appendix I). Subsequent loading produces 

additional cracks in the 90° plies halfway between the first set when the axial stress in these 

locations again reaches the ply strength. The resulting homogenized axial stress-strain curve is 

characterized by jogs that correspond to the successive occurrence of transverse cracks in the 90° 

plies until sufficient stress is reached in the 0° plies to cause catastrophic failure. The severity of 

these jogs that correspond to the energy released by the catastrophic fracture of 90° plies depends 

on the relative proportion of the two sets of plies, and hence the energy associated with the 

stresses carried by the 90° plies. This form of damage also degrades the homogenized moduli 

with the ensuing implications relative to structural analysis and integrity, and has been an intense 

area of research since then. 

The above phenomenon has been re-discovered by Garrett and Bailey (1977), Parvizi and 

Bailey (1978), Bailey et al. (1979), Highsmith and Reifsnider (1982), and others. The period that 

followed was characterized by the development of numerous analytical and numerical models 

aimed at predicting moduli degradation of cross-ply and related symmetric laminates as a 

function of crack density, (Wang 1984, Wang et al. 1985, Talreja 1985, Groves et al. 1987, 

Gudmundson and Ostlund 1992, Lee and Hong 1993, Berthelot et al. 1996, Joffe and Varna 

1999). The various models were based on shear lag assumptions of varying Joffe complexity, 

approximate elasticity-based analytical and variational approaches, and finite-element solutions. 

The variational approach employed by Vasilev et al. (1970) was reproduced by Hashin (1985, 

1986), and applied to calculate homogenized moduli of symmetric cross-ply laminates with 
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uniform crack spacing. It has been used extensively as a benchmark for comparison with other 

solutions as well as experimental data. More recently, boundary-element and finite-element 

solutions of unit cells representative of symmetric cross-ply laminates with evenly spaced 

transverse cracks have been reported, Paris et al. (2010a, b), Akula and Garnich (2012), as well 

as exact elasticity solutions based on the singular integral approach, Wang and Han (2010), and 

non-singular series expansion, Huang et al. (2011). 

While the calculation of stiffness degradation due to transverse cracking in this class of 

laminates is well-established, the evolution of damage continues to receive considerable attention, 

Barbero and Cosso (2014). The problem is complicated by the occurrence of interfacial 

delaminations between the outer 0° and inner 90° plies which may arise when the transverse 

crack density reaches a saturation point, attributed to the occurrence of compressive normal 

stress between two adjacent transverse cracks that develops with sufficient crack density, 

Schoeppner and Pagano (1999). This compressive stress may be used as a criterion to determine 

at what point along the loading history the damage mode switches from transverse cracking to 

interfacial delaminations in order to calculate the effect of the combined damage on stiffness 

degradation, Dharani et al. (2003). While the majority of simplified analytical and finite-element 

unit cell models are based on uniform crack spacing, the in-situ 90° ply strength has a statistical 

distribution which may affect crack density evolution in the early stages, Berthelot and Le Corre 

(1999, 2000). The role of the fabrication-induced residual stress in the crack density evolution is 

also important both at the ply and fiber/matrix level, with the latter not thoroughly explored. A 

thorough review of the literature on this topic up to early 2000's has been provided by Berthelot 

(2003). The current focus is the understanding of factors that affect the transition from vertical 

cracking of the 90° plies to delamination of the 0°/90° interface, Hoiseth and Qu (2003), Paris et 

al. (2010a, b), as will be discussed in the sequel. 

The mentioned approaches for the above class of laminates have been mostly employed 

in a stand-alone fashion to estimate the effect of crack density on stiffness degradation and to 

understand the effect of damage modes on the related stress fields which drive subsequent 

damage evolution. While it is possible to use these approaches to reconstruct the overall or 

homogenized stress-strain response of symmetric cross-ply laminates under simple uniaxial 

loading, relatively little work has been done in constructing a homogenization theory leading to 

the homogenized Hooke's law valid under combined three-dimensional loading which takes into 
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account the various damage modes, their evolution and transition. Such capability is important in 

structural analyses of laminated composites where damage evolution contributes substantially to 

the overall nonlinear response. The FVDAM theory with cohesive zone model capability briefly 

described below provides these means. An alternative approach to damage evolution based on 

the original FVDAM theory has been proposed by Tang et al. (2015). The use of cohesive zone 

models to naturally track the evolution of damage in cross-ply laminates is also being pursued 

within the finite-element framework, Shi et al. (2014), albeit without (thus far) accounting for the 

possibility of interfacial delamination. 

6.3 Material Systems Used in Numerical–Experimental Correlation 

We employ two sets of experimental data on the tensile response of symmetric graphite/epoxy 

cross-ply laminates to gauge the FVDAM theory's capability in capturing the homogenized 

response (both axial and transverse), crack density evolution, damage mode bifurcation and the 

underpinning mechanisms. The first data set had been generated using [02
0/902

0]𝑠 laminates 

fabricated with unidirectionally-reinforced AS4/3501 graphite/epoxy prepreg containing 0.63 

fiber volume fraction, Pindera (1986). The average ply thickness of the fabricated specimens 

comprised of eight layers was 0.1315 mm. For this set, laminate axial tensile and transverse 

Poisson's responses are available, but no information on the crack density as a function of 

applied axial load. The [02
0/902

0]𝑠  graphite/epoxy laminate specimens were tested to failure 

under monotonic loading normal to the inner 90° plies. Axial and transverse strains were 

recorded using 0.125 in (3.175 mm) strain gages bonded to the outer 0° plies which span almost 

two thirds of the unit cell length used in the simulations. 

Unidirectional on-axis and off-axis specimens fabricated using the same prepreg and 

consolidation process were also tested under tensile loading to determine in-plane elastic moduli 

needed to simulate homogenized laminate response and ply-level stress fields. The tension tests 

yielded four of the five elastic moduli necessary for simulating the laminate response. The fifth 

elastic modulus and thermal expansion coefficients needed to simulate post-consolidation 

cooldown and mechanical loading were obtained from FVDAM analysis based on hexagonal 

unit cell representation of the tested unidirectional graphite/epoxy composite shown in Figure 

6.1a. The fiber and matrix elastic moduli employed in the micromechanical analysis are given in 

Table 6.1, and the complete set of thermo-elastic ply-level moduli is reported in Table 6.2. Lastly, 
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the average axial and transverse strengths obtained from the tested 0° and 90° specimens were 

1,550 and 51.7 MPa, respectively. 

 
Figure 6.1 (a) Hexagonal unit cell of unidirectional AS4/3501 graphite/epoxy with fiber volume 

fraction of 0.63 used to generate the missing thermo-elastic moduli for laminate analysis; (b) unit 

cell of a [02
0/902

0]𝑠 laminate. 

The second data set on similar symmetric cross-ply graphite/epoxy laminates with 

individual ply thickness of 0.132 mm and thermo-elastic ply-level moduli given in Table 6.3 had 

been generated by Wang et al. (1985), and was chosen to complement the first set. For this set, 

crack density evolution as a function of applied load is available for laminates with different 

number of the 90° plies. We employ the reported crack density evolution data for [02
0/900 ]

𝑠
and 

[02
0/902

0]𝑠 laminates to further validate the predictive capability of the FVDAM theory. 

Table 6.1 Thermoelastic properties of the AS4 graphite fiber and 3501 epoxy matrix. Note that 

the AS4 fiber is assumed to be transversely isotropic with 𝐸22 = 𝐸33, 𝜈12 = 𝜈13  and 𝐺23 =
𝐸22/2(1 + 𝜈23) and the epoxy matrix is isotropic (Soden et al. 1998). 

Material 𝐸11(GPa) 𝐸22(GPa) 𝐺12(GPa) 𝐺23(GPa) 𝜈12 𝛼11(𝜇/℃) 𝛼22(𝜇/℃) 

AS4 fiber 225 15 15 7 0.2 -0.5 15 

3501 epoxy 4.2 4.2 1.57 1.57 0.34 45 45 
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Table 6.2 Thermoelastic properties of the unidirectional AS4/3501 graphite/epoxy laminate with 

the fiber volume fraction of 0.63, measured experimentally in the case of the moduli 𝐸11, 𝐸22 and 

𝐺12and 𝜈12  and in the case of 𝐺23, 𝛼11and 𝛼22  calculated using the homogenization FVDAM 

theory. 

𝐸11(GPa) 𝐸22(GPa) 𝐺12(GPa) 𝐺23(GPa) 𝜈12 𝛼11(𝜇/℃) 𝛼22(𝜇/℃) 

139.3 9.65 4.48 3.56 0.28 0.047 30.6 

Table 6.3 Thermoelastic properties of the unidirectional graphite/epoxy laminate tested by Wang 

et al. (1985). 

𝐸11(GPa) 𝐸22(GPa) 𝐺12(GPa) 𝐺23(GPa) 𝜈12 𝛼11(𝜇/℃) 𝛼22(𝜇/℃) 

144.8 11.7 6.5 3.8 0.3 0.36 28.8 

6.4 Damage Modes and Enabling Stress Fields 

In order to understand the evolution of damage modes in symmetric cross-ply laminates we first 

analyze stress fields as a function of transverse crack density, both without and with resin-rich 

region at the 0°/90° ply interface and horizontal delamination of different lengths, using the first 

set of data. The approach is to take snapshots of the laminate at different crack densities to 

understand how damage may subsequently evolve. In particular, we address the proposed 

hypothesis of damage mode bifurcation from transverse cracking to interfacial delamination 

upon transverse crack density saturation. In this initial analysis, cracks are treated as traction-free 

surfaces with the interfacial traction-displacement separation law on the left side of Eq. (2.21) 

replaced by zero. The unit cells of the [02
0/902

0]𝑠  laminate employed in the still-life analysis 

contained one vertical crack in the center with the crack density controlled by adjusting the unit 

cell's length. 

At first, transverse cracks in the 90° plies occur far apart with negligible interaction. 

Figure 6.2 illustrates stress distributions within 90° and 0° plies in the vicinity of an isolated 

transverse crack as a function of normalized distance x/t from the crack front at different 

elevations z/t from the midplane, where 2t is the total thickness of the inner 90° plies, including 

the interfacial resin-rich layer. The stress distributions have been normalized by the axial stress 

𝜎𝑥𝑥
𝑜  that would develop in undamaged 90° plies. The crack density corresponding to this damage 

state is 0.19 cracks/mm, yielding crack spacing ten times the inner ply thickness, or 20t. The 

axial stress 𝜎𝑥𝑥 in the 90° plies varies pronouncedly in the thickness direction, in contrast with 
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the variational solution of Vasilev et al. (1970) which neglects this variation, and asymptotically 

attains its uncracked value for all elevations approximately two and a half crack lengths from the 

crack front. Hence another set of cracks will occur at that distance in the absence of transverse 

strength variation. The local maxima very close to the vertical crack face in the 90° plies along 

the 0°/90° ply interface suggests a potential crack initiation site. Complete through-thickness 

propagation requires sufficient crack-driving force which, however, may not be available due to 

the crack-shielding effect. 

The vertical crack produces singular-like behavior in the transverse shear and normal 

stress components 𝜎𝑥𝑧 and 𝜎𝑧𝑧, respectively, along the 0°/90° ply interface. While the normal 

stress 𝜎𝑧𝑧 is compressive in the middle of the 90° ply immediately adjacent to the crack face, it 

becomes tensile at the 0°/90° ply interface, serving as a potential delamination driver. The 

variational solution fails to predict this stress reversal, making it unsuitable for delamination 

analysis, but provides a reasonable estimate in the midplane. Interfacial shear stress at the crack 

tip of comparable magnitude provides additional delamination driving energy. The vertical crack 

also alters the stress field in the 0° plies, producing substantial amplification in the axial stress 

𝜎𝑥𝑥  directly ahead of the crack front that mimics the singular elasticity solution for a crack 

perpendicular to a bi-material interface. This stress amplification may produce local fiber 

breakage in the final stage of the damage evolution process, leading to the 0° ply fracture and 

hence laminate failure. 

Increasing crack density alters the stress fields in the 90° and 0° plies as shown in Figure 

6.3 for the crack density of 0.95 cracks/mm or crack spacing of 4t. In contrast with the isolated 

crack case, the axial stress 𝜎𝑥𝑥 attains different asymptotic values at different elevations halfway 

between adjacent cracks, indicating that the propensity for the formation of new cracks decreases. 

A local maximum in the axial stress is also observed along the 0°/90° ply interface close to the 

crack face, suggesting a potential crack initiation site (but not an instantaneous vertical crack 

formation). The transverse normal and shear stresses 𝜎𝑧𝑧 and 𝜎𝑥𝑧 at the 0°/90° interface remain 

little affected by the crack spacing decrease from 20t to 4t, suggesting little change in 

delamination initiation propensity. The axial stress concentration in the 0° ply directly above the 

vertical crack also remains unchanged, promoting local fiber breakage with increasing load. 

Figure 6.4 summarizes the results in the above two figures for the crack densities 0.19, 

0.95, 1.95 and 3.80 cracks/mm or crack spacings of 20t, 4t, 2t and t, respectively. The through-
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thickness variation of the normal stress 𝜎𝑥𝑥  halfway between two adjacent vertical cracks is 

presented as a function of the normalized coordinate z/t whereas the transverse shear and normal 

stresses 𝜎𝑥𝑧and 𝜎𝑧𝑧 are given along the 0°/90° interface as a function of the normalized axial 

coordinate x/t. These distributions demonstrate the interplay between decreasing axial stress in 

the 90° plies with increasing crack density, and interfacial tractions along the 0°/90° interface 

potentially leading to delamination. As observed and discussed by others, Schoeppner and 

Pagano (1999), Dharani et al. (2003), the axial stress halfway between two adjacent vertical 

cracks decreases to a negative value over a substantial distance separating the 0° plies with large 

enough crack density. This partially supports the hypothesis regarding vertical crack density 

saturation and subsequent delamination initiation, or damage mode bifurcation. On the other 

hand, crack-tip concentrations in the interfacial normal and transverse shear stresses are 

attenuated with increasing crack density, suggesting decreasing propensity for delamination as 

the vertical crack spacing reaches saturation. To address this, the effect of local delamination 

emanating from the vertical crack tip is considered below. The effects of resin-rich layer at the 

0°/90° interface on stress fields between interacting vertical cracks within 90° plies as a function 

of crack density are included in Figure 6.4. The presence of a softer thin layer of matrix 

separating the 0° and 90° plies produces further reductions in the through-thickness and 

interfacial stress distributions, accelerating crack density saturation. 

The effect of interfacial debonding between the resin-rich layer and the 0° ply on stress 

fields between interacting vertical cracks within 90° plies is shown in Figure 6.4 for the four 

crack densities and two initial delamination lengths of 0.2t and 0.4t. While the through-thickness 

axial stress halfway between two adjacent vertical cracks is little affected by the delaminations, 

the crack-tip magnitudes of the interfacial normal and transverse shear stress experience 

substantial changes. For a fixed vertical crack density, the maximum normal stress at the 

delamination tip decreases with increasing delamination length relative to the intact interface. In 

contrast, the maximum transverse shear stress increases with increasing delamination, potentially 

providing sufficient driving force. 
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(a) 90° plies                                                               (b) 0° plies 

Figure 6.2 Stress distributions in 90° and 0° plies of a graphite/epoxy [02
0/902

0]s laminate in the 

vicinity of an isolated vertical crack (crack density of 0.19 cracks/mm) at different elevations 

from the midplane. Comparison with the variational solution of Vasilev et al. (1970). 
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(a) 90° plies                                                               (b) 0° plies 

Figure 6.3 Stress distributions in 90° and 0° plies of a graphite/epoxy [02
0/902

0]s  laminate 

between interacting vertical cracks (crack density of 0.95 cracks/mm) at different elevations 

from the midplane. Comparison with the variational solution of Vasilev et al. (1970). 



140 
 

      (a)    

 

      (b)    

 

              

                           without resin-rich layer             (c)                    with resin-rich layer 

Figure 6.4 Effect of resin-rich layer and crack density on stress distributions between adjacent 

vertical cracks in 90° plies of a [02
0/902

0]s laminate: (a) through-thickness 𝜎𝑥𝑥 stress distributions 

halfway between vertical cracks; (b-c) 𝜎𝑥𝑧 and 𝜎𝑧𝑧 stress distributions along the 0°/90° interface. 
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       (a)     
 

       (b)      
 

       (c)      

                       (a) 0.2t delamination length                          (b) 0.4t delamination length 

Figure 6.5 Effect of interfacial debonding between the resin-rich layer at the 0°/90° interface and 

the 0° ply on stress distributions between adjacent vertical cracks in 90° plies of a 
s]90/0[ 22

  

laminate: (a) through-thickness xx  stress distributions halfway between vertical cracks; (b-c) 

xz  and zz  stress distributions along the 0°/90° interface. 
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6.5 Homogenized Axial and Transverse Response: Theory vs 

Experiment 

Given the preceding still-life analysis of the damage modes and their interaction, we conduct 

damage evolution simulations where vertical cracks and 0°/90° delaminations are allowed to 

occur on the fly, consistent with the cohesive-zone model constraint, as the cross-ply laminate is 

loaded. In simulating the laminate response in the presence of evolving damage, we account for 

the fabrication-induced residual stresses by first subjecting the laminate to a temperature 

cooldown of ΔT=-100°C followed by mechanical loading due to uniaxial stress 𝜎𝑥𝑥. 

The unit cell of the [02
0/902

0]𝑠 laminate with homogenized ply moduli and dimensions 

used in the damage evolution simulations is shown in Figure 6.1b. The axial dimension of the 

unit cell, 5 mm, is sufficiently long to accommodate large enough number of vertical interfaces 

to enable modeling of the laminate response with nonuniform strength of the 90° plies. Towards 

this end, twenty equally-spaced vertical interfaces that mimic the fracture process using the 

cohesive-zone model were inserted along the length of the unit cell. Hence the maximum crack 

density that can be obtained with this unit cell is 4 cracks/mm if all the interfaces separate to 

produce vertical cracks, which is substantially greater than experimentally observed for this 

cross-ply laminate. Each vertical interface was assigned a different strength using random 

distribution in the range [77 87] MPa. Included in the unit cell model is a thin resin-rich layer 

between the 90° and 0° plies that was observed after fabrication. Horizontal interfaces were also 

inserted along the 0°/90° ply interface in order to simulate potential interfacial degradation and 

delamination. The cohesive zone model parameters for the vertical and horizontal interfaces are 

given in Table 6.4. As the vertical crack growth tends to proceed catastrophically at first, (Wang 

1984), characterized by distinct jogs in the homogenized response and hence a sudden release of 

energy, no degradation of the vertical interfaces was assumed past the maximum stress in the 

cohesive zone model. The discretization of the above unit cell into 88×400 rows and columns 

produced the same discretization per vertical interface/crack as the unit cells constructed for the 

still-life analyses. 

The lower limit of the vertical interface strength distribution corresponds to the ply-level 

axial stress in the 90° plies at the first-ply failure event observed in the laminate stress-strain 

response, which was calculated from the FVDAM simulation of temperature cool-down and 
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initial mechanical loading. This range is higher than the average transverse strength of 51.7 MPa 

of the tested 90° specimens, and is consistent with the experimental observations of Bader et al. 

(1979) and the argument based on the availability of energy that drives the vertical crack, as also 

discussed by Wang (1984). The difference, which depends on the number of 90° plies, is rooted 

in the constraining effect of the external 0° plies and the available energy trapped within the 90° 

plies. In addition to the impact at the ply-level, this constraint also alters the constituent-level 

stress field and hence the microstructure-controlled vertical crack propagation characteristics. 

The impact of this constraining effect on constituent-level stress fields is discussed below. The 

effect of 90° ply microstructure on vertical crack growth characteristics will be addressed 

elsewhere. 

6.5.1 The Effect of Residual Stresses 

The fabrication process induces residual stresses at the fiber/matrix level within the ply and at 

the ply level within the laminate. Hence the in-situ strength of the 90° plies in a cross-ply 

laminate may be different than that of the 90° plies tested separately due to the constraint of the 0° 

plies which alters the residual stress state. If the transverse failure is due to a combination of 

progressive debonding of the fiber/matrix interface, crack propagation through the fibers, and 

fracture of the surrounding matrix, then the fabrication-induced residual stresses will play a role. 

While this issue has been recognized in the literature, little work has been done to separate the 

influence of the constituent-level and ply-level residual stresses. Hence in this section we 

perform an analysis of the fabrication-induced residual stresses in 90° plies separately as well as 

in-situ in the presence of the constraint of the outer 0° plies, and compare the resulting stress 

fields at failure using the stand-alone 90° specimen strength. The question that we address is 

whether the 90° ply strength obtained from unidirectional specimens tested alone may be used 

directly in the cohesive zone model as a maximum interface strength parameter in simulating 

damage evolution with residual stresses accounted for at the ply-level. 

To generate constituent-level stress fields in the unidirectional 90° specimens at failure, 

temperature cooldown of ΔT=-100°C was first applied followed by unidirectional loading by 𝜎𝑥𝑥 

up to the measured failure stress of 51.7 MPa. The stress fields were generated using the 

repeating unit cell with hexagonal array of graphite fibers in the epoxy matrix shown in Fig.6.3, 

representative of the unidirectional composite, with the thermoelastic moduli reported in Table 
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6.1. The ply-level stress field history was then generated by subjecting the [02
0/902

0]𝑠 laminate, 

with the homogenized elastic moduli obtained from the hexagonal unit cell analysis, to the same 

temperature change followed by uniaxial loading applied to the laminate up to the point at which 

the transverse stress in the 90° plies reached the ply strength. This thermo-mechanical loading 

history was then employed in the calculation of constituent-level stress fields in the 90° plies of 

the [02
0/902

0]𝑠 laminate for comparison with the corresponding stress fields in unidirectional 90° 

plies analyzed separately. 

The constituent-level stress fields that develop in unidirectional 90° specimens after 

fabrication cooldown and subsequent loading to failure are compared with the corresponding 

fields in the 90° plies of the [02
0/902

0]𝑠 laminate in Figure 6.6. The constraining effect of the 0° 

plies produces strictly tensile 𝜎𝑥𝑥 stress field in the fiber and matrix phases of the in-situ 90° 

plies immediately after the fabrication cooldown with maximum values occurring between 

adjacent fibers. This is in contrast with the unconstrained plies wherein compressive 𝜎𝑥𝑥 stress 

occurs in the same location. Subsequent mechanical loading further increases the tensile stress 

𝜎𝑥𝑥 in the constrained 90° plies between adjacent fibers to the value of 76.6 MPa at the laminate 

stress that produces ply-level axial stress of 51.7 MPa corresponding to transverse strength of the 

tested unidirectional specimens. The above constituent-level stress is somewhat higher than the 

corresponding stress in the unconstrained plies, 68.5 MPa, due to the initially compressive 

cooldown stress. Nonetheless, the normal stress field in the constrained 90° plies is not as 

conducive to rapid matrix or fiber/matrix fracture due to the observed horizontal bands of low 

stress regions through which a crack would need to propagate in order to cause complete failure. 

This is in contrast with the unconstrained 90° plies where the normal stress between horizontal 

rows of fibers is substantially larger, promoting vertical crack growth through the matrix phase 

and around the fiber/matrix interface. The above observations suggest that the in-situ fracture 

strength of the 90° plies is larger than the strength determined from uniaxial tensile tests on 90° 

coupons. This is consistent with energy-release rate arguments employed to explain the typically 

larger in-situ 90° ply strength and the experimental observation that this in-situ strength 

decreases with increasing 90° ply thickness, (Crossman and Wang 1982, Wang 1984, and Wang 

et al. 1985). 
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(a) After cooldown 

 

      

(b) After mechanical loading corresponding to initial failure of 51.7 MPa in the 90° plies. 

Figure 6.6. Effect of fabrication cooldown on the microlevel xx  stress fields in stand-alone (left) 

and in-situ (right) 90° plies at failure. 

6.5.2 Features of the Homogenized Response and Underpinning Mechanisms 

The simulated homogenized axial stress-strain and transverse Poisson's responses are compared 

with the experimental data obtained from the tested graphite/epoxy [02
0/902

0]𝑠 laminate in Figure 

6.7a. Three laminate cases have been considered that illustrate the effects of resin-rich layer at 

the 0°/90° interface, and uniform versus random vertical strength distributions for fixed cohesive 

zone parameters that characterize the horizontal interface strength, Table 6.4. These are 

laminates with variable and uniform transverse strength of the 90° plies, respectively, each with 

resin-rich layer, and a [02
0/902

0]𝑠 laminate with variable strength of the 90° plies without resin-

rich layer. In the case of laminates with variable 90° ply strength, representative responses of 

five realizations are shown in the figure. While the first-ply failure event is clearly discernible in 

the homogenized axial responses of all three laminates, subsequent fracture events are masked to 

a large extent. Moreover, little effect of the resin-rich layer region and vertical strength 
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variability is observed. For the considered cross-ply laminates with equal proportion of 0° and 90° 

plies, the contribution of the 90° plies towards axial load-bearing capacity is low due to the low 

Young's modulus in the direction of loading. Hence this is reflected in the insensitivity of the 

homogenized axial response to the varied parameters. This is in stark contrast with the transverse 

Poisson's response where evidence of multiple vertical fracture events is clearly observed 

throughout the entire response. Inclusion of resin-rich layer yields simulated homogenized 

Poisson's response closest to the experimental data in the linear region before the onset of 

progressive vertical fractures. The absence of the resin-rich layer lowers the transverse Poisson's 

response noticeably. The vertical fracture events manifest themselves as distinct jogs in the 

homogenized Poisson's response, closely mimicked by the FVDAM simulations. The jogs are 

smaller and more in line with the experimental results for simulations with the resin-rich layer 

and variable 90° ply strength than the corresponding results based on uniform strength. The large 

jogs observed in the transverse Poisson's response based on uniform 90° ply strength and resin-

rich layer presence indicate rapid formation of multiple vertical fractures with small load 

increases, which reduce the constraint on the transverse deformation of 0° plies . 

The FVDAM simulations for the considered three laminate cases are characterized by 

apparently straight and jog-free segments of the transverse Poisson's response in the later stages 

of loading. Closer examination reveals a slight dip in the response of the cross-ply laminate with 

variable strength of the 90° plies and resin-rich layer. Internal stress fields reveal no further 

vertical fracture accumulation along the final loading segment for this laminate, but the dip is 

directly linked to the initiation and stable growth of delamination at the 0°/90° interface between 

some vertical cracks that had already formed, indicative of damage mode bifurcation 

hypothesized in the literature, and in fact observed by Paris et al. (2010b). Examination of 

internal stress fields in the remaining two cases reveals no evidence of delamination initiation. 

However, gradual vertical crack growth is observed in the laminate without resin-rich layer, 

resulting in additional vertical crack formation without sudden release of accumulated strain 

energy that would produce visible jogs in the homogenized response. In this case, vertical crack 

saturation is not attained in the considered loading range even though axial stress between two 

adjacent vertical cracks becomes negative. The delamination and gradual vertical crack growth 

phenomena are illustrated in greater detail later. 
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The simulated through-thickness Poisson's response and crack density evolution with the 

applied laminate stress 𝜎𝑥𝑥 for the three laminate types are shown in Figure 6.7b. The features of 

the homogenized through-thickness Poisson's response involving jogs that correspond to sudden 

vertical fracture events and dip that corresponds to the delamination initiation are similar to those 

observed in the transverse Poisson's response. The main difference is the smaller impact of the 

resin-rich layer and the 90° ply strength variability on the homogenized response which 

manifests itself in smaller differences amongst the three simulated through-thickness Poisson's 

responses. The crack density evolution curves provide support for the foregoing discussion that 

relates vertical crack evolution to the features of the homogenized transverse Poisson's response. 

Specifically, continuous vertical crack accumulation is observed in the cross-ply laminate 

without resin-rich layer despite no apparent evidence of sudden fracture events seen in the 

homogenized Poisson's response in the later stage of loading characterized by a linear segment. 

In contrast, crack density saturation is observed in the remaining two cross-ply laminates. The 

simulations predict lower saturation crack density for the laminate with variable interface 

strength, 1.2 cracks/mm versus 1.6 cracks/mm for the laminate with uniform interface strength, 

which is consistent with the literature. Because the experimental data for the considered cross-

ply laminate does not include crack density evolution, the FVDAM theory's ability to capture 

this feature will be validated in the sequel using experimental data widely employed in the 

literature for this purpose. Nonetheless, comparison with the saturation crack density of 1.7 

cracks/mm for a similar graphite/epoxy cross-ply laminate reported by Wang et al. (1984) 

provides confidence in the generated results. 

Figure 6.8 illustrates the gradual formation of vertical cracks along the last segment of 

the transverse Poisson's response shown in Figure 6.7a characterized by straight line between 

steps 52 and 70 in the [02
0/902

0]𝑠  laminate without resin-rich layer but with variable 90° ply 

transverse strength. Axial through-thickness stress distributions are shown along those interfaces 

that have not failed up to step 52. The absence of resin-rich layer with lower elastic modulus 

produces high axial stress at the 0°/90° interface where gradual crack growth initiates along a 

vertical interface with a lower strength relative to other intact interfaces. The crack progresses 

towards the laminate's midplane until complete fracture occurs. Partial vertical cracks along 

adjacent interfaces begin to form with increasing load until they too produce complete through-

thickness fractures of the 90° plies. 
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(a) Experimental vs simulated response 

 

          
(b) Simulated response 

Figure 6.7 Homogenized axial, transverse and through-thickness Poisson’s responses of a 

s]90/0[ 22

  laminate under uniaxial loading, and crack evolution with applied stress, demonstrating 

the effects of resin-rich interfacial layer and transverse interface strength variability of the 90° 

plies. 

Table 6.4 Cohesive zone model parameters for the graphite-epoxy [02
0/902

0]𝑠 laminate tested by 

(Pindera, 1986). Note: 𝑘𝑛
0 = 𝜎𝑚𝑎𝑥/Δ𝑛

0 . The parameters for the 00/900 interface are based on the 

strain energy release rates of 𝐺𝐼𝐶 = 298𝐽/𝑚2 and 𝐺𝐼𝐼𝐶 = 142𝐽/𝑚2, (Wilkins et al. 1982). 

Interface type kn
o = kt

o(GPa/mm) σmax = τmax(MPa) Δn
o = Δt

o(mm) Δn
c (mm) Δt

c(mm) 

90o/90o lower − upper 9.65 × 102 [77 87] [7.98 9.02] × 10−5 [7.98 9.02] × 10−5 [7.98 9.02] × 10−5 

Epoxy resin 4.20 × 102 69 1.64 × 10−4 1.64 × 10−4 1.64 × 10−4 

0o/90o 4.20 × 102 50 1.19 × 10−4 1.19 × 10−2 5.68 × 10−3 
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Step 51. Interfaces 1, 5, 7, 9, 11, 13, 15, 17, 19 have failed catastrophically during loading to this 

step (see abrupt discontinuities in the tranverse Poisson’s response in Figure 6.7. 

       
Step 53: Initiation of partial transverse crack         Step 61: Just before formation of vertical crack 

      
Step 62: Formation of complete transverse crack    Step 70: Formation of additional complete  

                                                                                                transverse cracks 

Figure 6.8 Through-thickness axial stress distributions along vertical interfaces that have not 

failed up to Step 51, illustrating gradual transverse crack progression with increasing load that 

does not produce a discontinuity in the transverse Poisson’s response (see Figure 6.7a).  

6.5.3 Damage Mode Bifurcation 

Further to the foregoing discussion, Figure 6.9 illustrates the initiation and growth of 

delamination at the fourth vertical interface of the [02
0/902

0]𝑠 laminate with variable transverse 

strength of the 90° plies and resin-rich layer. The delamination initiation occurs at step 63 which 

corresponds to the start of gradual dip seen in the transverse Poisson's response in Figure 6.9a. 

Growth of the delamination is accompanied by increasing length of traction-free segment of the 

0°/90° interface, shifting of the interfacial tangential traction and the concomitant growth of the 
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tangential displacement discontinuity. Included in the figure are the full-field stress distributions 

𝜎𝑥𝑥, 𝜎𝑥𝑧 and 𝜎𝑧𝑧 in the region between two adjacent vertical cracks where delamination initiates 

and grows, beginning at step 32 at which vertical crack has formed in the considered location, 

i.e., at the fourth vertical interface. The delamination growth reduces axial stress transfer into the 

90° plies through interfacial shearing action as observed in the 𝜎𝑥𝑥 and 𝜎𝑥𝑧 distributions at steps 

63 and 75. 

The results in Figures 6.7-6.9 are based on the horizontal interface strength of 50 MPa 

obtained from the strain energy release rate data reported by Wilkins et al. (1982), Table 6.4. 

Additional simulations were performed using horizontal interface strengths of 40 and 60 MPa to 

determine the effect of this parameter on the damage mode transition from vertical cracking of 

the inner 90° plies to horizontal delamination of the 0°/90° interface. As the horizontal interface 

strength was decreased and increased from the reference strength of 50 MPa, the remaining 

cohesive zone model parameters were adjusted accordingly in order to keep the critical energy 

release rate 𝐺𝐼𝐼𝐶  unchanged. The ensuing homogenized transverse Poisson's responses are 

compared in Figure 6.10 together with the vertical crack evolution. The simulation based on the 

lowest horizontal interface strength indicates that substantial interface degradation occurs at a 

low applied stress, as suggested by the gradual change in the transverse Poisson's response, 

leading to subsequent delamination initiation and stable growth at lower applied stress relative to 

the response based on the interface strength of 50 MPa. Hence vertical crack saturation also 

occurs at a lower applied stress. Increasing the horizontal interface strength to 60 MPa 

suppresses horizontal interface degradation and promotes unstable delamination growth when the 

interfacial strength is achieved. This is observed in the homogenized transverse Poisson's 

response which remains piece-wise linear until delamination instability occurs at approximately 

the same applied stress that initiates stable delamination growth for the 50 MPa horizontal 

interface. The simulation was terminated at this point. 

Finally, the results in Figures 6.7-6.9 were generated using a particular random strength 

distribution for the vertical interfaces in the [77  87] MPa interval. Additional simulations with 

different vertical strength distributions and horizontal interface strength of 50 MPa indicate that 

crack density saturation occurs at the same level around 1.2 cracks/mm and roughly the same 

applied axial stress, and delamination initiation and stable growth occur in the same loading 

history interval, despite differences in fracture locations in the early stages of loading. 
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(a) 

 

                       Step 32               Step 63               Step 75 

xx      

xz      

zz      

(b) 

Figure 6.9 (a) Initiation and progression of delamination along the 0°/90° interface of a 
s]90/0[ 22

  

laminate in the vicinity of a vertical crack in the 90° plies; (b) corresponding stress fields. 
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Figure 6.10 Homogenized transverse Poisson’s response of a 

s]90/0[ 22

  laminate under uniaxial 

loading, and crack evolution with applied stress, demonstrating the effects of horizontal interface 

strength variability of the 90° plies. 

6.6 Crack Density Evolution – Theory vs Experiment 

The simulated crack density evolution for the cross-ply laminate of the preceding section cannot 

be verified directly due to the lack of experimental data. The best that can be concluded is that 

the events observed in the simulated homogenized transverse Poisson's response are directly 

related to fracture events in the 90° plies which correlate well with the recorded experimental 

data. Hence in this section we directly compare the crack density evolution experimentally 

recorded by Wang et al. (1985) with FVDAM simulations for two laminates, namely [02
0/900 ]

𝑠
 

and [02
0/902

0]𝑠 with the latter the same as the lay-up of the preceding section. Comparison of the 

ply-level thermo-elastic moduli of the two material systems given in Tables 6.2 and 6.3 reveals 

their similarity. To simulate the fabrication-induced residual stresses, temperature cooldown of 

125°C was first applied, following Wang et al. (1985), subsequent to mechanical loading. The 

cohesive zone model parameters for Wang's data are given in Table 6.5. The lower bounds on the 

in-situ 90° ply strengths were calculated using the experimentally observed occurrence of first-

ply failure for both laminates, and subsequent FVDAM simulations were performed using 

random vertical interface strength distributions with the range of 10 MPa following the range 

used in the preceding section. 
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Figure 6.11 presents comparison of the simulated crack density evolution with 

experimental data for the two cross-ply laminates. For each laminate type, the simulations were 

performed using two strengths for the 0°/90° horizontal interface of 65 and 200 MPa, and the 

same random strength distributions for the vertical interfaces. Hence the differences in crack 

density evolution for each laminate type are due to the differences in horizontal interfacial 

degradation, with the highest strength of 200 MPa producing interfacial separations within the 

elastic range. In the case of the [02
0/900 ]

𝑠
 laminate, little difference is observed between 

simulations based on the two horizontal interfacial strengths throughout almost the entire loading 

range, suggesting that no damage mode bifurcation occurs in the considered loading range. 

Examination of the interfacial tractions indicates some degradation of the weaker horizontal 

interface, albeit without complete separation or delamination, while the stronger interface 

continues to load in the elastic range. For the weaker interface, the rate of crack density evolution 

decreases dramatically beyond the applied stress of around 800 MPa which corresponds to 1.6 

cracks/mm, increasing slowly to 1.8 cracks/mm just before laminate failure at the axial strain of 

1.23%. The laminate with the stronger interface experiences similar crack evolution until the last 

stage of loading that initiates at 1.8 cracks/mm. Beyond this point, a rapid and continuous 

vertical crack increase is observed until failure. Simulations based on both horizontal interface 

strengths produce crack density evolution which closely follows the experimental results of 

Wang et al. (1985). 

Greater differences in the crack density evolutions due to the different horizontal 

interface strengths are observed in the simulations of the [02
0/902

0]𝑠 laminate response. While 

crack density saturation at around 1.8 cracks/mm is observed for the lower interfacial strength at 

the stress level substantially below the laminate failure stress, continued vertical crack growth 

with applied stress occurs for the larger strength which does not saturate up to the maximum 

applied stress. As in the preceding case, degradation of the horizontal interface without 

delamination does occur for the weaker interface while the stronger interface loads elastically. 

The simulated crack density evolutions follow the experimental data quite well. 

To gain additional insight into the vertical crack evolution in the above two 

configurations following the preceding section's results, the corresponding transverse Poisson's 

responses were also simulated, Figure 6.12. The simulations show that increasing the content of 

90° plies substantially decreases the transverse Poisson's response while increasing the severity 
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of vertical fracture events due to the greater constraining effect of the transverse plies. The 

simulated transverse Poisson's response of Wang's [02
0/902

0]𝑠  laminate is very similar to the 

corresponding laminate investigated in the preceding section, but does not exhibit gradual dips 

associated with interfacial delaminations. 

      

                                    s]90/0[ 2

                                                            
s]90/0[ 22

  

Figure 6.11 Crack density evolution as a function of applied axial stress in cross-ply laninates 

with different thickness of the inner 90° plies tested by Wang et al. (1985) under uniaxial 

loading. 

 

      
                                  s]90/0[ 2

                                                                 
s]90/0[ 22

  

Figure 6.12 Predicted homogenized transverse Poisson’s responses of cross-ply laminates with 

different thickness of the inner 90° plies tested by Wang et al. (1985) uniaxial loading. 
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6.7 Discussion 

The simulation of damage evolution on the fly in cross-ply laminates is a relatively recent 

endeavor enabled by the cohesive zone model. While transverse cracking in this class of 

laminates has been investigated recently by Shi et al. (2014) using the cohesive zone model 

approach within the finite-element framework, the authors are not aware of an investigation 

addressing dynamic transition from vertical crack evolution in 90° plies to interfacial 0°/90° 

delamination. This is in contrast with the still-life analyses of damage mode evolution tendency 

that involve calculation of energy release rates associated with vertical crack growth and 

subsequent delamination emanating from the vicinity of the vertical crack tip, (Wang et al. 1985, 

Dharani et al. 2003). The study of Paris et al. (2010a,b) on the different scenarios associated with 

the mechanics of vertical crack growth and subsequent delamination at, or parallel to, the 0°/90° 

interface is the most recent example of this approach which provided insight into the importance 

of microstructural details based on experimental evidence. Nonetheless, the question of damage 

mode bifurcation in cross-ply laminates remains open in the absence of an accepted criterion for 

crack deflection along a bi-material interface. While the calculation of strain energy release rates 

can be carried out for a deflected crack along the bi-material interface, an initial crack size is 

required for the calculation to proceed. Because the singular stress field at the bi-material 

interface changes upon crack deflection, it is not easy to calculate strain energy release rate 

associated with damage mode bifurcation which would provide a basis for formulating an 

energy-based criterion. The alternative is to use the cohesive zone model as a vehicle to 

determine under what conditions such bifurcation is possible in the absence of an assumed 

flaw/crack size. This model's parameters are also based on critical energy release rates but these 

rates are associated with the different crack propagation modes. Hence it may be argued that the 

preference of one over the other is based on the overall equilibrium considerations satisfied in 

the course of the boundary-value problem solution. 

The dynamic damage evolution simulations proved useful in revealing the dramatic effect 

of vertical cracking on the laminate transverse Poisson's response that depends on the 90° ply 

content. While the effect of crack density on the transverse Poisson's ratio is known to be 

substantially more dramatic than on the axial Young's modulus, Smith and Wood (1990), there is 
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virtually no experimental data on the transverse strain vs axial strain response of cross-ply 

laminates which is an excellent indicator of evolving damage. 

6.8 Conclusions 

In this contribution we have examined the evolution of two types of damage modes in polymeric 

matrix cross-ply laminates and their effect on the homogenized response using a recently 

developed cohesive zone model-based homogenization theory for periodic materials. The theory 

naturally enables simulation of damage mode evolution in cross-ply laminates on the fly without 

the use of a damage bifurcation criterion typically employed in the literature. The quantity that 

controls damage evolution is the critical strain energy release rate associated with the different 

damage modes which, in turn, is characterized by three cohesive zone model parameters. These 

parameters naturally control damage mode transition from transverse cracking of the 90° plies to 

delamination of the 0°/90° horizontal interface. The outcomes of finite-volume simulations are 

homogenized responses in the presence of evolving damage that are generated on the fly as the 

load increases, internal stress fields and details of damage evolution. Comparison of the 

simulations with experimental response of graphite/epoxy cross-ply laminates leads to the 

following conclusions: 

 Damage evolution events are much more pronounced (and observable) in the 

homogenized transverse Poisson's response than the axial response throughout the entire 

loading range: large jogs in the transverse Poisson's response are directly related to the 

occurrence of abrupt vertical cracks in the 90° plies, which are readily observed in the 

axial response at first-ply failure but not subsequent failure events 

 Damage events may be related to the type of damage: while vertical cracks in the 90° 

plies are characterized by abrupt jogs in the transverse Poisson's response during initial 

loading stages, progressive or stable delamination of the 0°/90° horizontal interface is 

characterized by a gradual slope change 

 Gradual vertical crack growth has been observed in later stages of loading characterized 

by linear transverse Poisson's response in the absence of resin-rich region at the 0°/90° 

horizontal interface and horizontal interface delamination 
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 Vertical crack density saturation is influenced by the 90° ply strength variability and the 

presence of resin-rich layer at the 0°/90° horizontal interface 

 Damage mode bifurcation has been observed to occur from vertical crack evolution in the 

90° plies to progressive delamination of the 0°/90° horizontal interface in the case of the 

[02
0/902

0]𝑠 laminate with variable vertical interface strength, proper choice of horizontal 

interface strength and presence of resin-rich layer 

Comparison of the finite-volume simulations of crack density evolution with experimental 

data on similar graphite/epoxy cross-ply laminates with different 90° ply proportions supports 

the above observations and provides additional insight into the effect of 90° ply thickness, which 

substantially enhances the effect of vertical cracks on the transverse Poisson's response. 
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Chapter 7  

Off-Axis Loading 

7.1 Introduction 

Polymeric matrix composites are known to exhibit substantial inelastic behavior under off-axis 

loading which is often employed to characterize the response of unidirectional laminae. Four of 

the five elastic moduli that define the elastic response of transversely isotropic materials are 

obtained from the so-called off-axis test of unidirectional plies, including the axial shear modulus 

𝐺12  obtained from the 100  off-axis specimen. The inelastic behavior is typically more 

pronounced in the presence of shear stress in the principal material coordinate system, which is 

the dominant stress component that governs matrix-dominated inelastic response in low off-axis 

specimen configurations. The nature of the inelastic response at the homogenized level in 

polymeric matrix composites is not always clear, unlike metal matrix composites, and 

accordingly has been simulated by viscoplastic, elastic-plastic and viscoelastic constitutive 

models. Approaches based on the assumption that inelastic response is due to damage evolution 

are rare. 

 In this chapter we consider a polymeric matrix unidirectional composite, 

graphite/polyimide, that was developed by NASA in the 1980’s for the now-decommissioned 

space shuttle cargo bay door. The polyimide resin was developed for elevated temperature 

exposures up to 6000𝐹, and exhibits an essentially linearly elastic response at room temperature 

in tension, compression and shear, characterized by brittle fracture. When tested along different 

directions relative to the fiber orientation, the unidirectional composite containing approximately 

60% Celion 6000 graphite fibers stiffens under tensile loading along the fiber direction and 

remains nearly elastic under transverse tension perpendicular to the fiber direction, failing 

catastrophically in a brittle fashion. In contrast, under off-axis loading for low off-axis 

configurations, substantial nonlinearity and dissipation are observed that are traced to the 

inelastic response in shear in the principal material coordinate system. Figure 7.1 summarizes 

these different response characteristics. 
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 In this chapter, the off-axis inelastic response of the graphite/polyimide specimens is 

simulated based on the assumption that the observed nonlinearity is largely due to the 

fiber/matrix interfacial sliding arising from the significant inplane shear stress component in the 

principal material coordinate system. The interfacial sliding is simulated by the cohesive zone 

model implemented for off-axis loading. The advantage of the developed CZM-based FVDAM 

theory over a comparable finite-element  simulation using a commercial code such as Abaqus is 

the FVDAM’s ability to model the combined out-of-plane response of unidirectional composites 

without resorting to a full three-dimensional model. In this chapter, the full capability of the 

developed FVDAM theory is displayed as the simulation of the inelastic response caused by 

evolving fiber\matrix interfacial damage requires knowledge of the unknown elastic moduli of 

the fiber and matrix phases, CZM parameters, and the effect of residual stresses. Towards this 

end, the FVDAM-based PSO algorithm is employed as the first step in simulating the interfacial 

damage-induced inelastic response. 

     

(a)                                             (b)                                             (c) 

Figure 7.1 Pure tensile response along the fiber direction (a) and perpendicular to the fiber 

direction (b), and shear response in the principal material coordinate system of a 150 off-axis 

specimen subjected to uniaxial loading in the laminate coordinate system (c). 

7.2 Implementation of Off-Axis Loading 

Figure 7.2 illustrates a specimen with the fiber direction rotated by an angle 𝜃 about the 𝑥3 axis, 

uniaxially loaded by the normal inplane stress 𝜎𝑥𝑥, or 𝝈𝑥 = [𝜎𝑥𝑥 0 0] with reference to the global 

coordinate system (x, y, z). In the principle material coordinate system(𝑥1, 𝑥2, 𝑥3), the material 

experiences a combined state of plane stress characterized by 𝜎11 , 𝜎12  and 𝜎22  or 𝝈 =

[𝜎11 𝜎12 𝜎22]. The 𝑥1 axis is along the fiber direction, 𝑥2 is perpendicular to the fiber direction in 

the specimen’s plane, and 𝑥3 is the out-of-plane axis. The in-plane stress and engineering strain 
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in two coordinates systems are related by the familiar transformation relations 𝝈 = 𝐓1𝝈𝑥  and 

𝜺 = T2𝜺𝑥, where 𝐓1 and 𝐓2 are the transformation matrices for coordinate rotation by 𝜃 about the 

𝑥3 axis (Herakovich, 1998). 

 The ability to simulate crack initiation and propagation in a unidirectional composite 

subjected to off-axis loading sets FVDAM apart from other micromechanics models, and 

particularly from the readily available commercial finite-element codes that require a three-

dimensional unit cell analysis to accommodate the out-of-plane shear stress that arises under 

such loading. In contrast, the two-dimensional micromechanics framework described in Chapter 

2 is valid for any combination of macroscopic stress and strain components, including the out-of-

plane contributions. Eq. (2.33) defines the macroscopic strain path for the given macroscopic 

stresses in principal material coordinates. The adaptation of Eq. (2.33) to off-axis loading is done 

in the following manner.  

 First, the effective stiffness matrix 𝐂∗ is calculated in the principal material coordinate 

system for a given unit cell irrespective of the applied loading. Then the effective stiffness matrix 

𝐂∗  in the global coordinate system, in which loading is applied, is calculated via the 

transformation law 𝐂∗ = 𝐓1𝐂
∗𝐓2

−1.  With the aid of the effective stiffness matrix C̅∗ in the global 

coordinate system, the total macroscopic �̅�𝑥  strain components can be determined via the 

transformed macroscopic constitutive equation 

�̅�𝑥 = 𝐂∗�̅�𝑥 − (�̅�𝑇 + �̅�𝑑)𝑥 (7.1) 

in which a combination of any six components of the vector {�̅�𝑇 + �̅�𝑑}𝑥 is obtained from  

(�̅�𝑇 + �̅�𝑑)𝑥 = 𝑇1
−1(�̅�𝑇 + �̅�𝑑),  

where �̅�𝑇 + �̅�𝑑  are the macroscopic thermo-inelastic contributions in the principal material 

coordinate system. Once all six components of the total macroscopic strain in the global 

coordinate system are obtained, the components of the total macroscopic strain in the principal 

material coordinate system are calculated using the transformation equations �̅� = T2�̅�𝑥, which 

are used directly in the global primary and auxiliary systems of equations.   
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Figure 7.2 An off-axis specimen uniaxially loaded in the global coordinate and the corresponding 

transformed combined in-plane stresses in the principal material coordinate system. 

7.3 Determination of Fiber and Matrix Properties 

The material system mentioned in the Introduction under investigation in this chapter is 

composed of Celion 6000 graphite fibers developed by Celanese Corporation and a high-

temperature polyimide system PMR-15 developed at NASA-Lewis. The nominal fiber volume 

fraction is 60% and the recorded volume fractions range from 59.77% to 62.5% (Pindera 1981). 

The averaged value of the recorded volume fraction is 61%, which is used in the present 

analysis. The glass transition temperature for the material system is 327℃ (Pindera 1981). Figure 

7.3 illustrates the geometry and discretization of the hexagonal unit cell employed in the 

simulations which produces transversely isotropic behavior in the elastic range.  

 

Figure 7.3 Hexagonal unit cell with volume fraction of 61%, which is the average value of the 

recorded volume fraction. 

The ply properties are transversely isotropic, which had been characterized by Pindera 

(1981) except for the transverse shear modulus 𝐺23 and the Poisson’s ratio 𝜈23, Table 7.1. The 

Celion 6000 fiber properties are assumed transversely isotropic, but had not been measured.  

PMR-15 resin is considered to be isotropic and different matrix properties of PMR-15 have been 

reported. The material properties in Table 7.2 have been reported by Pindera (1981), while Jones 
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reports a different Young’s modulus, 4.26GPa. From the above discussion, it is clear that there 

are a lot of uncertainties about the fiber and matrix properties. Hence the purpose of this section 

is to determine the fiber properties of 𝐸22, 𝜈23, 𝐺12, 𝜈12  and matrix Young’s modulus, 𝐸𝑚 by 

minimizing the difference between the homogenized properties generated from FVDAM 

simulations and the tested ply properties, Eq. (7.2). After determining the unknown fiber and 

matrix properties, the missing ply property 𝐺23 or 𝜈23 then can be calculated using FVDAM. 

Table 7.1 Ply properties of Celion 6000/PMR-15 (Pindera, 1981). 

𝐸11(GPa) 𝐸22(GPa) 𝐺12(GPa) 𝐺23(GPa) 𝜈12 

136.6 9.8 5.0 ----- 0.35 

Table 7.2 PMR-15 matrix properties (Pindera, 1981) and the thermal expansion coefficients 

(Papadopoulos and Bowles, 1990). 

E(GPa) 𝜈 G(GPa) 𝛼(𝜇/℃) 

3.13 0.391 1.13 36 

 

𝐸𝑅𝑅 =
1

4
(
|𝐸11

∗ − 𝐸11
𝑒𝑥𝑝|

𝐸11
𝑒𝑥𝑝 +

|𝐸22
∗ − 𝐸22

𝑒𝑥𝑝|

𝐸22
𝑒𝑥𝑝 +

|𝐺12
∗ − 𝐺12

𝑒𝑥𝑝|

𝐺12
𝑒𝑥𝑝 +

|𝜈12
∗ − 𝜈12

𝑒𝑥𝑝|

𝜈12
𝑒𝑥𝑝 ) (7.2) 

Before characterizing the fiber and matrix properties based on the implemented PSO 

algorithm, reasonable ranges must first be assigned to the design variables. Because there is little 

data on the elastic moduli of Celion 6000 fibers, the elastic properties of the much better 

characterized T300 graphite fibers are often employed instead, (Papadopoulos and Bowles’s 

1990,  Ran et al. 2014, Lu and Hutchinson 1995). These properties are listed in Table 7.3.  In the 

current work, the fiber properties of T300 are treated as the reference points for the design 

variables. The lower bounds on the design variables are 20% lower that the reference points and 

the upper bounds on the design variables are 20% higher than the reference points, Table 7.4, but 

the Poisson’s ratio cannot exceed 0.5. If it is exceeded during the optimization process, then the 

upper limit is reset to 0.49. 

Table 7.3 T300 fiber properties (Pindera 1981) and thermal expansion coefficients 

(Papadopoulos and Bowles, 1990). 

𝐸11(GPa) 𝐸22(GPa) 𝜈23 𝐺12(GPa) 𝜈12 𝛼𝐴(𝜇/℃) 𝛼𝑇(𝜇/℃) 

227.5 22.4 0.45 22.1 0.41 -0.54 10.08 
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Table 7.4 Design variables range for Celion 6000 fiber properties (20%). 

 𝐸11(GPa) 𝐸22(GPa) 𝜈23 𝐺12(GPa) 𝜈12 𝐸𝑚 

Lower bound 182 17.9 0.36 17.7 0.33 3.13 

Upper bound 273 26.9 0.49 26.5 0.49 4.26 

During the optimization procedure, 20 particles are used and the maximum iteration 

number is 15. As shown in Figure 7.4, the optimization process converges at step 12 and the 

difference between homogenized properties and test data is only 0.2% according to the definition 

of Eq. (7.2).  Table 7.6 presents comparison between test data and homogenized properties based 

on the optimal design variables in Table 7.5, showing that the homogenized properties are 

identical with the available test data.  These fiber and matrix properties backed-out via 

optimization are used in all the following simulations. 

 

Figure 7.4 Convergence curve.  

Table 7.5 Optimized design variables. 

𝐸11(GPa) 𝐸22(GPa) 𝜈23 𝐺12(GPa) 𝜈12 𝐸𝑚 (GPa) 

221.6 17.9 0.49 26.1 0.33 4.1 

Table 7.6 Test data and homogenized properties based on optimized material properties.  

 𝐸11(GPa) 𝐸22(GPa) 𝐺12(GPa) 𝐺23(GPa) 𝜈12 

Testing 136.6 9.8 5.0 ----- 0.35 

Opt 136.6 9.8 5.0 3.2 0.35 

7.4 Interfacial Properties Calibration 

To model the homogenized response under off-axis loading, the in-plane and out-of-plane 

cohesive parameters need to be calibrated first. In Section 7.4.1 the in-plane cohesive parameters 
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are calibrated by targeting the experimental transverse response for which specimen failure is 

due to in-plane fiber/matrix interfacial debonding and matrix cracking. In Section 7.4.3 the out-

of-plane cohesive parameters are calibrated by targeting the 150  off-axis specimen response for 

which non-linear homogenized out-of-plane shear response is assumed to be due to the 

interfacial damage along the fiber direction. It is known that the Celion 6000/PMR-15 composite 

is consolidated at a very high temperature since the glass transition temperature for the resin is 

327℃. As the room temperature is assumed to be 25℃, cool-down temperature of 302℃ is used 

in the analysis before the mechanical loading is applied. And the temperature cool-down effect is 

investigated in section 7.4.2.  

7.4.1 In-Plane Cohesive Properties 

The uncoupled bilinear cohesive law is employed for in-plane loading and the cohesive 

parameters are assumed to be the same for normal and tangential directions. Three parameters 

need to be determined, namely the elastic interfacial stiffness, 𝑘0, the interfacial strength and the 

final separation distance ∆𝑐. Figure 7.5 shows one type of CZM-based distribution of interfaces 

that may experience damage leading to specimen failure under transverse loading. For this 

distribution, the specimen failure under transverse loading is characterized by fiber/matrix 

debonding and matrix cracking. To account for these damage and failure modes, CZM-based 

interfaces are inserted along the fiber/matrix interfaces and inside the PMR-15 matrix.  

 The principle used to determine the elastic interfacial stiffness,  𝑘0 is that the value of 𝑘0 

is high enough so that the unit cell with or without interface produces similar response in the 

elastic stage of the cohesive law. The value of 20x10
3
 MPa/𝜇𝑚 satisfies this requirement. Figure 

7.6 illustrates the homogenized out-of-plane shear response for three different final separation 

distances and fixed interfacial strength of 61MPa, denoted as Cases 1, 2 and 3 in Table 7.7. In 

the actual experiment, the specimen experiences ultimate failure when the tensile stress reaches 

52MPa, and all three cases show very good agreement with the experimental data before the 

ultimate failure. Regarding the ultimate failure, the final separation distance ∆𝑐  controls how 

dramatic the unit cell will fail. As observed in Figure 7.6 when the final separation is smaller, the 

specimen fails more dramatically. The final separation distance 0.17 𝜇𝑚 provides a significant 

loading drop although not complete failure. To model the complete failure, the interface 
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distribution in the unit cell needs to be further redesigned to enable complete and continuous 

separation of the material inside the unit cell.  

 

Figure 7.5 Interface distributions inside a hexagonal unit cell. 

Table 7.7 Interfacial parameters used for transverse loading. 

Case type 𝐾𝑛
0 = 𝐾𝑡

0 = 𝐾𝑜𝑝
0  

(MPa/𝜇𝑚)  

G(J/m
2
) Interfacial strength 

(MPa) 
∆𝑛

0= ∆𝑡
0= ∆𝑜𝑝

0  

(𝜇𝑚) 

∆𝑛
𝑐 = ∆𝑡

𝑐= ∆𝑜𝑝
𝑐  

 (𝜇𝑚) 

Case 1 20x10
3
 15.25 61 3.05x10−3 0.5 

Case 2 20x10
3
 7.6 61 3.05x10−3 0.25 

Case 3 20x10
3
 5.2 61 3.05x10−3 0.17 

 
Figure 7.6 Homogenized responses with interfacial strength 61MPa and different final separation 

distance. 

Figure 7.7 illustrates the stress distributions at the step when damage initiates and at the 

final loading step. It is no surprise that the stress distributions in all three cases are initially the 

same before and at damage initiation step, step 28, since they are the same problem when the 

interfaces are in the elastic stage. Figure 7.6 shows that the drop in load capacity increases with 

decreasing final separation distance. This is directly reflected in the 𝜎22 stress distributions of 
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Figure 7.7 at step 40, the final loading step, where in general the stress distribution in both matrix 

and fiber phases for Case 3 is substantially lower than the other two cases. 

 

 Case 1: ∆𝑐= 0.5 𝜇𝑚 Case 2: ∆𝑐= 0.25 𝜇𝑚 Case 3: ∆𝑐= 0.17 𝜇𝑚 

 Step 28: 0.56% (damage initiation) 

𝜎22 

   
𝜎33 

   
𝜎23 

   
 Step 40: 0.8% 

𝜎22 

   
𝜎33 

   
𝜎23 

   

Figure 7.7 Stress distributions at damage initiation step and final loading step. 
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7.4.2 Effect of Temperature Cool-Down  

In the unit cell analysis of the preceding section, cool-down temperature of 302℃ was used to 

estimate the residual stresses before characterizing the interface parameters. Because of the 

mismatch between fiber and matrix thermo-elastic moduli, substantial residual stresses are 

introduced into the material system after the fabrication temperature cool-down. The residual 

stresses may potentially affect the response of the material. In this section, the impact of residual 

stresses on the interfacial property determination is demonstrated. 

 Figure 7.8 shows the homogenized response of the unit cell under transverse loading with 

and without consideration of temperature cool-down when the cohesive parameters of Case 3 

listed in Table 7.7 are used. As observed in the figure, if temperature cool-down is not 

considered, the material will start failing at 44MPa, which is lower than the test data and the 

prediction with temperature cool-down, 52MPa. Also, the failure process for the case without 

temperature cool-down is less catastrophic than the case with temperature cool-down. In 

contrast, experiment indicates the material system fails catastrophically during the test. 

Therefore, to correctly capture the experimental response, the temperature cool-down effect 

needs to be taken into account in characterizing the interface parameters. 

 

Figure 7.8  Homogenized response under transverse loading with and without consideration of 

temperature cool-down. 

 

Step 24 

Step 28 

Step 34 
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 Figure 7.9 shows the stresses developed inside the unit cell due to temperature cool-

down, which are substantial relative to the interfacial strength of 61MPa calibrated by targeting 

the experimental response under transverse loading. Figures 7.10-7.11 illustrate the stress 

distributions at steps 24 and 34 of the unit cell with and without consideration of temperature 

cool-down. At step 24, the interface is about to reach damage initiation when temperature cool-

down is not considered whereas this occurs at step 28 when temperature cool-down is 

considered. The 𝜎22 
stress distribution in the unit cell with consideration of temperature cool-

down is much more uniform than the distribution in the unit cell without consideration of 

temperature cool-down. Because of this, when 𝜎22 attains interfacial strength in the case with 

temperature cool-down, interface damage will develop much quicker than the case without 

temperature cool-down. As illustrated in Figure 7.11, 𝜎22 in the unit cell with temperature cool-

down is substantially lower than the stress in the unit cell without temperature cool-down.  

   

(a) 𝜎22                                            (b) 𝜎22                                                 (c) 𝜎23 

Figure 7.9 Full-field stress distributions after temperature cool-down of 302℃. 

 

 

 

 

 

 

 

 



169 
 

 302℃ cool-down No temperature cool-down 

 Step 24 

𝜎22 

  

𝜎33 

  

𝜎23 

  

Figure 7.10  Full-field stress distributions at step 24 with and without temperature cool-down. 
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 302℃ cool-down 0℃ cool-down 

 Step 34 

𝜎22 

  

𝜎33 

  

𝜎23 

  

Figure 7.11 Full-field stress distributions at step 34 with and without temperature cool-down. 

 

 

 

 



171 
 

7.4.3 Out-of-Plane Cohesive Properties 

Similarly, there are three parameters that need to be determined for the out-of-plane cohesive 

law, namely the elastic interfacial stiffness, 𝑘𝑜𝑝
0 , the interfacial strength and the final separation 

distance ∆𝑐 .  The interfacial stiffness can be relatively easily determined by choosing a high 

value which produces similar response for the unit cell with or without interfaces experiencing 

damage. The value of 20x10
3
 MPa/μm satisfies this requirement. The other two out-of-plane 

cohesive parameters, interfacial strength and final separation are calibrated by targeting the 15℃ 

off-axis specimen loading case for which the non-linear homogenized out-of-plane shear 

response is due to the interfacial damage along the fiber direction.  

 Figure 7.12 shows two types of damage-evolving interface distributions in a hexagonal 

unit cell. In Case 1 cohesive interfaces are inserted around all fiber/matrix interfaces, while in 

Case 2 no interfaces are inserted around the middle row of fibers. Figure 7.13 illustrates the 

homogenized out-of-plane shear response for the two types of cohesive interface distributions 

shown in Figure 7.12 with the parameters given in Table 7.8. As observed in Figure 7.13, the 

simulated homogenized response exhibits excellent agreement with the experimental data with 

the cohesive interface distribution of Case 2 when the interfacial strength is 30MPa and the final 

separation distance is 0.5MPa/𝜇𝑚. The reason why the response of Case 2 is stiffer than that of 

Case 1 in the non-linear stage is because the central part of the unit cell can continuously sustain 

loading. This point will be illustrated in the sequel by examining the stress distributions.  

      

Case 1                                                     Case 2 

Figure 7.12 Interface distributions inside a hexagonal unit cell. 
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Table 7.8 Interfacial parameters for out-of-plane shear response.   

Case type 𝐾𝑜𝑝
0 (MPa/𝜇𝑚)  G(J/m

2
) Interfacial strength 

(MPa) 
∆𝑜𝑝

0  (𝜇𝑚) ∆𝑜𝑝
𝑐 (𝜇𝑚) 

Case 1 20x10
3
 7.5 30 1.5x10−3 0.50 

 

 

Figure 7.13 Homogenized shear response of 15℃  off-axis specimen for different interface 

distributions. 

Figures 7.14-7.16 illustrate the stress distributions for the above two cases at steps 10, 14 

and 18. These distributions include the transverse normal and shear stresses 𝜎22 and 𝜎23 due to 

the macroscopic stress 𝜎22  in the principal material coordinate system, and the axial shear 

stresses 𝜎12 and 𝜎13  due to the macroscopic stress 𝜎12 . The stress distributions 𝜎22  and 𝜎23  in 

both cases at the selected steps are similar because they are not sufficiently high to reach the 

interfacial normal and tangential strengths of 61MPa calibrated in Section 7.4.1 under transverse 

loading.  It is the axial shear stress 𝜎12 which is dominant for this off-axis configuration and 

which initiates interfacial degradation leading to the homogenized response dramatically 

sensitive to the placement of interfaces that experience damage shown in Figure 7.13. 

Specifically, after damage initiation at step 10, the axial shear stress in Case 1 is substantially 

lower than its counterpart in Case 2 because in the former case all fiber/matrix interfaces 

experience degradation, while in Case 2 the central region of the unit cell continuously supports 

loading. This type of interface configuration targets the experimental data very well, illustrating 

that it is sufficient for only some of the interfaces to contribute to the nonlinear response.  To 

Step 10 

Step 18 

Step 14 

Step 18 

Step 14 
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model complete failure, more interfaces with different interfacial strengths need to be inserted 

into the unit cell, so that the material can completely fail when the ultimate strength is reached. 

The study of complete failure is out of the scope of current thesis.  

 Case 1 Case 2 

 Step 10 

𝜎22 

  

𝜎23 

  

𝜎12 

  

𝜎13 

  

Figure 7.14 Stress distributions for two types of interface configuration at step 10. 



174 
 

 

 Case 1 Case 2 

 Step 14 

𝜎22 

  

𝜎23 

  

𝜎12 

  

𝜎13 

  

Figure 7.15 Stress distributions for two types of interface configuration at step 14. 

 



175 
 

 

 Case 1 Case 2 

 Step 18 

𝜎22 

  

𝜎23 

  

𝜎12 

  

𝜎13 

  

Figure 7.16  Stress distributions for two types of interface configuration at step 18. 
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7.5 Numerical Results 

7.5.1 Monotonic Response in Principal Material Coordinates 

It is known that for the considered unidirectional composite substantial nonlinearity is observed 

in the shear response of off-axis specimens in the principal material coordinate system. In 

contrast, the nonlinear transverse response is minimal and the axial response is elastic. Hence the 

nonlinear shear response controls the observed nonlinear response in the laminate coordinates 

system of the tested graphite/polyimide off-axis specimens. In Section 7.4.1, the in-plane 

cohesive properties have been calibrated using the transverse tension results of  900 specimens, 

and in Section 7.4.3 the out-of-plane cohesive properties and the corresponding interface 

configuration have been identified by targeting the test data obtained from 150  off-axis 

specimens. In this section the shear responses of specimens with different off-axis angles are 

predicted based on the previously calibrated in-plane and out-of-plane cohesive parameters and 

the identified interface distribution.  

 Figure 7.17 illustrates the comparison between FVDAM’s predictions and experimental 

data for 10℃ and 45℃  off-axis specimens where very good agreement is observed between 

theoretical results and experiment, especially for the 450  off-axis loading case. Figure 7.18 

summarizes the experimental and theoretical comparison for different off-axis loading angles.  

As expected, the elastic response of the tested specimens does not change with off-axis 

orientation as there is no coupling between normal and shear stress and strain components for 

transversely isotropic materials. The theoretical predictions confirm this, exhibiting excellent 

correlation with the experiment. 

In the nonlinear region, however, small but consistent differences are observed in the 

experimental results among the different off-axis orientations. These differences indicate the 

presence of interaction between the three stress components 𝜎11 , 𝜎22  and 𝜎12  in the principal 

material coordinate system of the tested specimens. In the current version of FVDAM this 

interaction is absent with the result that the same nonlinear shear response is predicted in the 

principal material coordinate system regardless of the off-axis loading angle. This is a direct 

result of the absence of coupling between the out-of-plane and in-plane cohesive laws. 

Nonetheless, the differences amongst the shear responses for different off-axis loading angles are 
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limited, with the FVDAM predictions bounded by the experimental data, thereby capturing the 

average nonlinear shear response of the tested specimens.  

   
Figure 7.17  Homogenized shear responses under 100 (Left) and 450 (Right) off-axis loading. 

 

 

Figure 7.18  Shear responses under different off-axis loading angles and FVDAM’s prediction. 

7.5.2 Monotonic Response in the Laminate Coordinate System 

In this section, responses of the tested off-axis graphite/polyimide specimens are compared with 

the FVDAM predictions in the laminate or global coordinate system that is the coordinate system 
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aligned with the specimens’ axes. This is a critical test of the FVDAM predictive capability as 

the initial elastic response rapidly varies with the off-axis angle, decreasing from a large value 

for the 00 specimens to a small value for the 900 specimens. 

    

      (a)                                                                   (b) 

Figure 7.19. Comparison between experimental data and FVDAM’s predictions for laminate 

response under different off-axis loading axis. 

The comparison between experimental data and FVDAM predictions is illustrated in 

Figure 7.19 for six off-axis configurations ranging from 100 to 750. Figure 7.19(a) shows the 

comparison in the small off-axis range where the change in the elastic response is most rapid. 

The nonlinear response is also more pronounced in this off-axis range because of the high out-of-

plane shear stress component 𝜎12 which induces interfacial damage. Excellent agreement of the 

FVDAM predictions with experimental data is observed in this range, suggesting that the effect 

of stress interaction observed in the shear response in the principal material coordinate system is 

relatively small in this off-axis range. Figure 7.19(b) shows the corresponding comparison for 

off-axis loading with bigger angles where substantially smaller nonlinearity is observed as the 

transverse stress component 𝜎22 becomes dominant for angles greater than 450. In this case good 

agreement is also observed, with FVDAM predictions correctly predicting smaller nonlinearity 

with increasing off-axis angles observed in the experimental data. 
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 7.6 Summary 

In this chapter, the off-axis response of graphite/polyimide specimens was simulated based on 

the assumption that the observed nonlinearity is largely due to the fiber/matrix interfacial 

damage arising from the significant out-of-plane shear stress components 𝜎12 in the principal 

material coordinate system. The simulated responses were shown to exhibit good agreement with 

the experimentally measured shear responses of the tested off-axis specimens in the principal 

material coordinate system, as well as with the normal stress responses in the laminate 

coordinate system. 

The experimental-theoretical correlation procedure demonstrated the full range of the 

developed CZM-based FVDAM damage-simulation capability. Specifically, the simulation 

analysis required accurate determination of certain fiber and matrix thermo-elastic moduli as 

well as the in-plane and out-of-plane cohesive parameters. The fiber and matrix phase properties 

were systematically determined by targeting the homogenized moduli of the tested specimens via 

the Particle Swarm Optimization approach. The in-plane and out-of-plane cohesive parameters 

were obtained by targeting the experimental responses of tested 900and 150 off-axis specimens, 

accounting for the temperature cool-down effects which produce higher damage initiation loads 

and more catastrophic failure modes. The adopted procedure produced theoretical predictions 

with very good correlation with experiment, supporting the original hypothesis that the observed 

nonlinearity in this brittle-brittle composite system may be explained by shear-dominated 

interfacial damage evolution. 
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Chapter 8 

Accomplishments, Summary and 

Conclusions 

This work has produced a new approach for simulating damage evolution in heterogeneous 

materials characterized by complex microstructures which possess periodicity in one plane and 

which do not vary along the orthogonal direction. Unidirectional composites characterized by 

periodically distributed reinforcement in the orthogonal plane belong in this category. These 

unidirectional composites are the building blocks for composites laminates used across 

disciplinary boundaries from aerospace and civil engineering structural components to electronic 

devices such as circuit boards. Hence the characterization of the inelastic response of these 

building blocks due to damage is the first step in simulating the structural response of laminated 

constructs. The developed theory may also be used to simulate damage at the meso-level where 

damage evolution does not vary along one direction. An example of this includes damage 

evolution in symmetric bidirectional laminated plates where damage occurs in the plies with 

fibers oriented orthogonally to the applied load. 

The developed approach combines the finite-volume direct averaging micromechanics 

(FVDAM) theory with cohesive zone model capability, incorporated with the aid of 

displacement discontinuity functions. This framework essentially separates the system of 

governing equations that control the response of a periodic composite undergoing damage 

evolution into primary and auxiliary systems, with the primary system solved just once. The 

formulation eliminates the necessity to re-assemble the global system of equations during 

damage evolution, determined by iteratively solving the auxiliary system of equations which 

governs damage progression. The added benefit is that the propagation of stationary cracks, and 

calculation of concomitant energy release rates, is also treated within the same framework upon 

modifying the auxiliary system of equations in a straightforward manner. Another important 

feature of the framework is the ease with which compressive stress normal to the interface 

undergoing damage is treated. In contrast with typical finite-element approaches which rely on 
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artificially large interfacial stiffness when the normal stress becomes compressive, in the 

developed approach the governing equations for a damaged interface in the auxiliary system of 

equations are simply eliminated. This circumvents the problem of large compressive normal 

stresses arising at the interface undergoing damage when stress reversal occurs. Overall, the 

developed homogenized theory provides an efficient and convenient tool that may be used to 

characterize the effect of damage on the elastic and inelastic response of periodic materials with 

oriented reinforcement and damage evolution at the micro-scale (constituent phase) or the meso-

scale (lamina) levels. 

The novelty arises from the finite-volume framework that is just beginning to be 

employed to investigate damage evolution in periodic materials within the homogenization 

theory, and the cohesive zone model capability incorporated via the displacement discontinuity 

functions. This general formulation facilitates the incorporation of any interfacial traction-

displacement discontinuity constitutive law, including the CZM capability illustrated in this work. 

The semi-analytical framework with derived closed-form expressions for the local stiffness 

matrix elements that govern the individual subvolume response facilitated incorporation of the 

developed theory into the Particle Swarm Optimization algorithm, producing a powerful design 

tool for identifying optimal material architectures as well as parameters that are not easily 

measured experimentally, such as the CZM parameters or the elastic moduli of graphite fibers. 

The CZM-based FVDAM theory has been verified upon comparison with exact elasticity 

solutions in the elastic stage of damage evolution, and experimental data and finite-element 

simulations at both the microlevel and macrolevel in the nonlinear stage of damage evolution. 

The computational tool has also been employed to investigate the response of composite 

materials undergoing damage and the underpinning mechanisms. The major accomplishments 

are described below. 

 Validation with the experimental data on SiC/Ti unidirectional composites under transverse 

loading correctly captured the evolution of fiber/matrix interfacial debonding and 

subsequent arrest of the debond progression due to the development of compressive stress 

normal to the interface. The importance of residual stresses has been revealed, 

demonstrating that correct simulation of fiber/matrix debonding was not possible without 

these stresses. 
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 Comparison with finite-element simulation of evolving fiber/matrix interfacial damage in 

SiC/Ti unidirectional composites under transverse loading did not reveal any differences in 

the entire loading range, including elastic response, damage initiation, progression and 

separation. While appropriate adjustment of the interfacial stiffness under compressive 

normal stresses was required to obtain accurate and converged results with the employed 

commercial finite-element code, this problem is not an issue with the developed CZM-based 

FVDAM theory. 

 Simulation of evolving damage on the fly in polymeric matrix cross-ply laminates, caused 

by progressive cracking of the inner 90𝑜 plies and interfacial debonding between adjacent 

plies, produced good correlation with experimental data, revealing previously undocumented 

and dramatic effect of damage on the transverse Poisson’s response. This effect was an 

excellent indicator of both damage initiation and evolution in contrast with the axial 

response. Moreover, several features observed in the homogenized transverse response 

could be correlated with the underpinning mechanisms such as instantaneous and 

progressive cracking and delamination. Another significant result was the demonstration of 

a damage mode switch from transverse cracking of the 90𝑜 plies to delamination between 

the 0𝑜and 90𝑜  plies. While postulated by a number of researchers, this phenomenon was 

demonstrated on the fly for the first time in the present work. 

 The simulation of damage in graphite/polyimide unidirectional off-axis specimens based on 

the hypothesis of shear-dominated fiber/matrix interfacial degradation mimicked well the 

nonlinear homogenized response in both the principal material and laminate coordinate 

systems. This study revealed for the first time that the off-axis dependent nonlinearity in this 

material system comprised of linearly elastic fiber and matrix phases could be captured 

using a damage evolution model rather than a plasticity, viscoelasticity or viscoplasticity 

approach for the matrix phase.  

This investigation has demonstrated the feasibility of employing a finite-volume based 

homogenization theory coupled with an efficient implementation of a cohesive zone model to 

simulate on the fly damage evolution in periodic materials characterized by oriented 

microstructures and damage modes. While more work remains to be done to enhance the 

theory’s predictive capability for simulating damage in the considered class of microstructures, 

the generated results suggest that the theory’s extension to enable damage simulation in three-
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dimensional microstructures will be successful. The present version will benefit from the 

incorporation of inelastic effects at the constituent phase level, such as plasticity, viscoplasticity 

and viscoelasticity theories for the matrix phase, as well as the implementation of an algorithm to 

track damage evolution in arbitrary directions. 
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Appendix I:  

Vasilev et al. (1970) considered the axial deformation of a symmetric cross-ply laminate with 

glass reinforcement loaded by an axial force P in the x-z plane, with the inner 900 ply thickness 

2ℎ2, outer 00 ply thickness ℎ1, and unit width. Assuming that the axial stress 𝜎𝑥𝑥 in both plies 

does not vary with the z coordinate in the presence of a single vertical crack in the inner 900 

plies caused by the applied force p = p1 , the authors derived the following solution for the 

variation of the axial and shear stress in the 90 plies measured from the crack face, 

𝜎𝑥𝑥(𝑥)|90𝑜 = 𝜎𝑥𝑥
𝑜 [1 − 𝑒−𝑘1𝑥 (

𝑘1

𝑘2
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 The maximum value of 𝜎𝑥𝑥(𝑥)|90𝑜 occurs at 𝑥 = 𝜋/𝑘2 where 𝜎𝑥𝑧(𝑥, 𝑧)|90𝑜 is 0. At this 

point, 𝜎𝑥𝑥(𝑥)|90𝑜 is greater than the transverse ply strength and hence it may be assumed that a 

system of vertical cracks spaced 𝜋/𝑘2 apart forms in the 90𝑜plies. 

 For p > p1the axial and shear stresses in the 900plies measured from the origin centered 

between two adjacent cracks are, 

𝜎𝑥𝑥(𝑥)|90𝑜 =
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with the maximum occurring at x=0. A new set of cracks will form at p = p2  for which 

𝜎𝑥𝑥(𝑥)|90𝑜 attains the transverse ply strength. This progressive fracture process of the 90𝑜 plies 

will continue until the outer 0𝑜 plies fail. 

 


