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Abstract

Standard closed-orbit techniques for Twiss parameter measurement are not ap-
plicable to the open-ended Continuous Electron Beam Accelerator Facility (CE-
BAF) at Je�erson Lab. The evolution of selected sets of real orbits in the accel-
erator models the behavior of a �synthetic� beam. This process should provide
the distributed optical information needed to optimize beamline tuning for an
open-ended system. This work will discuss the development and current state
of this technique, as well as examples of its use in the CEBAF machine.
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Introduction

The Continuous Electron Beam Accelerator Facility (CEBAF) at Je�erson Lab
is a medium-energy electron accelerator consisting of two superconducting linacs
connected by independent recirculation arcs. It can accurately be described as
a series of concatenated transfer lines. Polarized electrons pass through the
racetrack system up to �ve times, reaching a maximum energy of 6 GeV, and
can then be used by up to three experimental halls. Beam quality requirements
include speci�cations for beam size and position stability at various locations,
including the physics target in the experimental hall. The accelerator is in the
process of having its energy doubled and a fourth experimental hall added. With
this upgrade, the beam must be more tightly controlled in order to minimize
the emittance growth.

Beam matching requirements internal to the accelerator are expected to
be more stringent after the ongoing 12 GeV Upgrade is completed. Current
methods of measuring the optical parameters of the beam are able to provide
local information, but fail to provide a global understanding of the optics of
the machine. The diagnostics in use do not provide adequate measurements of
the evolution of the Twiss parameters through the accelerator, so optical errors
cannot easily be localized.

The method we are developing uses a family of di�erential orbits selected
as a surrogate for a real beam: a �synthetic beam� if you will. The goals of
this method are the identi�cation of point errors and detection of distributed
errors along the beamline. By injecting into the beamline a family of rays which
occupies the phase space boundary of the design beam, the transformed Twiss
parameters can be read o� from local beam position measurements. The hor-
izontal (X) and vertical (Y) trajectories are measured simultaneously at every
beam position monitor (BPM) in the machine. The extreme values of the X and
Y measurements for the injected rays provide a model-independent measure of
the envelope of the �synthetic beam�. Short-range optical modeling provides the
necessary angular information from beam position measurements. The bunch
charge and self-�eld e�ects of the CEBAF beam are small enough that the trans-
fer properties of the lattice in the zero-current limit are applicable for use in
characterizing the beam optics.
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Chapter 1

Outline of Je�erson Lab's

CEBAF

1.1 Overview [16, 17, 24]

Je�erson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) was
originally constructed as a 4 GeV, 200 µA recirculating electron accelerator.
The beam energy was later upgraded to 6 GeV, and the machine is currently
undergoing a further upgrade to reach energies of up to 12 GeV. Figure 1.1 shows
a general schematic of CEBAF, including the placement of the new experimental
Hall D.

Figure 1.1: Diagram of CEBAF Layout

The beam at this facility starts in the Injector, which is located in the upper-
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left of Figure 1.1. It is here that three 499 MHz lasers create a beam of electrons
by striking a cathode. This cathode is held at a potential of 130 kV, and consists
of a wafer of Gallium Arsenide. Next, the electrons are accelerated through
some focusing solenoids and spin rotators, a pre-buncher, a ∼400 keV room-
temperature copper cavity, and then two 5-cell superconducting radio frequency
(SRF) cavities. Finally, they are accelerated to up to 67 MeV using two 8-
cavity SRF cryomodules. At this energy, the electrons are optically matched
and injected into the North Linac (NL).

In the NL, the electrons are accelerated to 667 MeV through twenty cryomod-
ules containing eight 5-cell SRF cavities. At the end of the North Linac, the
beam reaches a region called the Spreader. In the Spreader, the di�erent energy
beams are vertically separated by large dipole magnets; the lowest-energy, �rst-
pass beam is steered toward the topmost arc, Arc 1, while the highest-energy
beam is steered toward the lowest arc, Arc 9. Part of the West Arc, which is
nearly identical to the East Arc, can be seen in Figure 1.2. Each pass then
follows its respective arc around a 180◦ bend to the Recombiner region. The
Recombiner, the beginning of which can be seen in Figure 1.3, is a mirror-image
of the Spreader, and recombines the separate passes back into a single beamline.
The section consisting of the Spreader, Arc, and Recombiner does not increase
beam energy, as there are no accelerating cavities. It is also isochronous and
achromatic, meaning that all electrons will take the same amount of time to
travel the same distance independent of energy, and that the position and angle
of the beam at the exit of this region is independent of energy.

Figure 1.2: West Arc

After exiting the Recombiner, the beam is then accelerated in the South
Linac (SL) to 1267 MeV in the same manner as the NL. The beam then enters
the West Spreader region, and can either continue around the West Arc, or
be extracted to any or all of the experimental halls. The extraction occurs
between the spreader and arc and is accomplished with the use of RF separator
cavities, which operate at 499 MHz, and septum magnets. These RF cavities
are used to de�ect the correct energy beam to the experimental hall in which
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Figure 1.3: Beginning of the Recombiner and a Recombiner Dipole

it is required. Electrons which are to be accelerated to higher energies are then
sent into the arc, and recirculated through the machine in the manner which
has been described in order to gain momentum. To be sure that the higher-pass
beams arrive at the crest of the accelerating RF wave, a series of three dipole
magnets, arranged in a three-element symmetric chicane, called doglegs are used
to steer the beam and vary the path by up to 1 cm, which corresponds to 18◦

for the 1497 MHz wave used at CEBAF.

1.2 Magnetic Control of Beam Optics

The optics of the electron beam at Je�erson Lab are controlled using approxi-
mately 2800 magnets of varying types. In general terms, quadrupole magnets
are used as lenses to focus or defocus the beam, while dipole magnets are used
to control the trajectory of the beam by providing steering control. This section
will discuss some of the basic principles of some of the magnets used in CEBAF.
[19]

1.2.1 De�ning Magnetic Fields

In order for an accelerator to successfully transport particles to an experimental
hall, precise control of the envelope and trajectory of the particle beam must
be maintained. At CEBAF, the particle beam is made up entirely of electrons
which, due to Coulomb forces, are repelled from each other. More importantly, it
is impossible to create a unidirectional beam from an in�nitely small spot at the
gun. The beam divergence must be controlled to keep the electrons travelling
in the same direction. In order to accomplish this, quadrupole magnets are
precisely placed throughout the machine in a design lattice. This design lattice
is based upon a pattern called a FODO lattice, which refers to the focusing of the
quadrupoles in a plane. The �F� refers to a focusing quadrupole, the �D� refers
to a defocusing quadrupole, and the �O� refers to a drift. The electromagnetic
forces of the quadrupoles act as a restoring force for the particles, and originate
from the classical Lorentz equation. A quadrupole that focuses in the x plane
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will defocus in the y plane, so this pattern allows for control of the beam in
both planes.

Starting with the Lorentz equation:

~F = e[ ~E + ~v × ~B] =
d(γm~v)

dt
, (1.1)

one can see that at relativistic momenta (~v → c), the electric �eld contribu-
tion (from negligible Coulomb repulsion) will be much smaller than that of
the magnetic �eld. Setting the electric �eld component to zero, the magnetic
components become:

d(γmvx)

dt
= e[vyBz − vzBy] (1.2)

d(γmvy)

dt
= e[vzBx − vxBz] (1.3)

d(γmvz)

dt
= e[vxBy − vyBx]. (1.4)

One can set the Bz term to zero because the length of the magnets are much
larger than their apertures. This approximation is known as a hard-edge ap-
proximation, and is valid because the transverse �elds (x and y planes) are
much greater than the longitudinal �eld (z plane). In setting Bz = 0, and
describing the time component in terms of longitudinal velocity and magnet
length,∆t = L

vz
, the change in transverse momentum can be written as

∆(γmvx) = |e|[vzBy]
L

vz
(1.5)

∆vx =
|e|
γm

ByL. (1.6)

The relationship between the transverse and longitudinal velocity goes as, vx =
vz tan θ, where vz � vx. Using the small angle approximation, ∆θ = ∆vx

vz
, one

can see that the change in the angle is inversely proportional to the longitudinal
momentum of the beam:

∆θ =
|e|

γmvz
ByL. (1.7)

In terms of units, Equation 1.7 can be written as

∆θ[radians] = 2.9979× 10−4By[gauss]L[cm]

pz[MeV/c]
.

If we de�ne the momentum rigidity as Bρ = pz
e , and the radius of curvature,

R, as ∆θ
L = 1

R , we can then set 1
R = 1

BρBy. The transverse size of the beam is
very small compared to the radius of curvature. This means that we can use a
power series to expand the magnetic �eld, giving:

1

Bρ
By(x) =

1

Bρ
[B0 +

dBy
dx

x+
1

2!

d2By
dx2

x2 +
1

3!

d3By
dx3

x3 + · · · ]. (1.8)
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One can then de�ne the coe�cients in Equation 1.8 as constants:

1

R
=

B0

Bρ
, (1.9)

k =
1

Bρ

dBy
dx

, (1.10)

m =
1

Bρ

d2By
dx2

, (1.11)

o =
1

Bρ

d3By
dx3

. (1.12)

The �rst term, from Equation 1.9, is the dipole component of the �eld. This
�eld is responsible for beam steering. The second term, from Equation 1.10, is
the quadrupole component of the �eld. This �eld is responsible for the focusing
and defocusing of the particle beam. The next two terms, m and o, are the
sextupole and octupole �eld terms, respectively. These are nonlinear terms
used for chromatic compensation and �eld error compensation, respectively.
The work of this dissertation focuses on the linear optics of the machine, thus
the dipole and quadrupole �elds are of primary concern.

1.2.2 Dipole Magnets

Dipole magnets are used primarily as bending and steering control in acceler-
ators. They vary in size from small corrector dipoles to the large dipoles used
in the bending arcs and Spreaders and Recombiners. Referring back to Figure
1.3, one can see some examples of dipoles. On the left are horizontally bending
dipoles, and on the right is one of the large vertically bending dipoles used in
the Recombiner. In Figure 1.4, the small blue magnet on the left is a vertical
corrector dipole.

From Ampere's Law, and the fact that the current density is zero in the
beam pipe, one can determine the shape of the transverse �eld within a magnet
by �rst de�ning the magnetic �ux density in a plane as

By(x, y) = Gy(x) + f(y), (1.13)

where Gy(x) is the �eld in the y direction as one moves in the x direction, and
f(y) is the �eld dependence on the y-coordinate. Thus, the potential is

Φ(x, y) =

ˆ
Bydy

= Gy(x)y +

ˆ
f(y)dy. (1.14)
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Figure 1.4: Corrector Dipole, BPM, Quadrupole in between Cryomodules

Using Laplace's equation in two dimensions,

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2

=
d2Gy(x)

dx2
y +

df(y)

dy

= 0. (1.15)

Therefore, solving for f(y) and substituting back into Equation 1.14 (and inte-
grating), the potential is then

Φ(x, y) = Gy(x)y − 1

6

d2Gy(x)

dx2
y3. (1.16)

Looking at the expansion in Equation 1.8, one can �nd the correct values

of Gy(x) and
d2Gy(x)
dx2 for the di�erent types of magnets. Once these values are

found, the gradient of the potential is taken, yielding the �eld distribution in
the magnetic aperture.

For a dipole, one investigates the relationship in Equation 1.9, which is
constant in the y direction. Thus, for a dipole,

Φ(x, y) = B0y, (1.17)
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Figure 1.5: Schematic of Dipole [19]

which yields the �elds:

Bx(x, y) =
∂(B0y)

∂x
= 0, (1.18)

By(x, y) =
∂(B0y)

∂y
= B0. (1.19)

Looking at Equation 1.19 and Figure 1.5, it becomes apparent how the dipole
�eld acts to steer or bend the beam.

To show the �eld dependence on the current in the coils and the aperture,
one starts with Ampere's Law,

¸
~H · d~s = Itotal. Here, Itotal = nI, where n is

the number of conductors, as shown in Figure 1.6. Therefore, Ampere's Law
can be rewritten as ˛

~H · d~s = nI = HFelFe +H0h. (1.20)

One can relate the permeability of free space to the permeability of iron as
µr = µFe

µ0
� 1. Thus,

˛
~H · d~s = nI = HFelFe +H0h

≈ H0h

H0 =
nI

h
. (1.21)

Since B0 = µ0H0, the �eld of a dipole can be written as

B0 =
µ0nI

h
. (1.22)
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Figure 1.6: C-type Dipole with Integration Path [19]

Thus, the dipole �eld is inversely proportional to the gap between the poles,
and directly proportional to the current through the coils of wire.

1.2.3 Quadrupole Magnets

Looking back again at Equation 1.10 and Figures 1.4 (the red magnet) and 1.7,
one sees that the strength of the �eld decreases linearly as one moves along the
x-axis closer to the center of the quadrupole. De�ning g =

dBy

dx , and substituting
into Equation 1.16, the potential of the quadrupole is then

Φ(x, y) = gxy. (1.23)

Taking the derivatives for each plane, the quadrupole �elds are:

Bx(x, y) = gy, (1.24)

By(x, y) = gx. (1.25)

The force on an electron moving with velocity~v = v0ẑ is given by

~F = q~v × ~B = −ev0g (~y − ~x) ,

~F = ev0g (~x− ~y) . (1.26)

Thus, for positive (negative) g, the electron experiences a defocusing (focusing)
force in the x̂ (ŷ) direction.

The dependence on the quadrupole aperture and coil current is found in a
similar manner as for a dipole. The di�erence is in the path of integration,
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Figure 1.7: Schematic of Quadrupole [19]

Figure 1.8: Integration Path of Quadrupole [19]
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shown in Figure 1.8. There are three di�erent segments of the integration path
for a quadrupole. The �rst is path within the steel, which is small compared
to that of the gap. The second is along the x-plane, where B · ds = 0 because
it is perpendicular to the �eld. Finally, there is a part which connects the
center of the quadrupole to the pole face. In this third path, H0 = g

µ0
r, where

r =
√
x2 + y2. Integrating from the center of the aperture to the pole tip,

aˆ

0

H0dr =

aˆ

0

g

µ0
rdr

=
ga2

2µ0
= nI. (1.27)

Solving for g, and setting g = ∂B
∂x , the quadrupole �eld can then be expressed

as

By =
2µ0nIx

a2
. (1.28)

Thus, the �eld depends linearly upon the x-coordinate and the current, and
is inversely proportional to the square of the distance from the center of the
aperture to the pole tip.

1.3 Beam Position Monitors [9, 19]

Figure 1.9: Beam Position Monitor (BPM)

Beam position monitors (BPMs) are used to measure the trajectories of the
beam throughout the beamline. They are placed in carefully-selected areas of
the beamline, and measure the position of the beam with respect to the center of
the beam pipe. This section will discuss some basic concepts of how the BPMs
work.
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The concept behind a BPM is that the electric �eld produced by the beam
will induce a charge on an insulated metal plate, which can then be measured.
This information can then be used to �nd the position of the beam in the beam
pipe. Particle beams are made up of small collections of electrons, referred to
as bunches, which are time-dependent. This means that the electric �eld of
the beam is also time-dependent, and that an alternating current (AC) signal
will be seen on the plates in the BPM. In order to determine the position of
the beam centroid, four pickup plates are installed 90◦ apart around the beam
pipe. The di�erence in signals measured on plates opposite each other yields
the transverse position of the center of charge of the beam.

In general, the electric �elds produced by the charged particle beam couple
to the pickups. For relativistic particles, the transverse �eld components as seen
in the lab frame increase when compared to the rest frame of the beam. This
can be described by the Lorentz transformation from the beam's rest frame at
time t′ to the lab's frame at time t for the transverse �eld component,

E⊥lab(t) = γE⊥beam(t′), (1.29)

where the Lorentz factor is de�ned as γ = 1√
1−( v

c )2
. The transverse �eld com-

ponent increases with the Lorentz factor, and even at moderate ( vc ≡ β > 0.5)
beam velocities can be approximated by the transverse electric and magnetic
(TEM) �eld distribution. The electric and magnetic �eld vectors are perpendic-
ular to the direction of particle propagation in a TEM mode, and a TEM wave
can be substituted for the beam for most calculations. It is assumed that the
power carried by the beam is much greater than the power coupled out by the
detector.

There are several basic types of BPMs which are used for di�erent types
of accelerators and beam parameters. Je�erson Lab uses what is known as a
stripline style BPM, one of which is pictured in Figure 1.9. For a more in-
depth discussion of the di�erent styles of BPMs, as well as why one would use
a speci�c style, see the work of Peter Forck, et al. [9] Je�erson Lab uses several
con�gurations of stripline BPMs. This dissertation will focus mainly on what
is called an M20, which has antenna-style pickups and is located throughout
ARC1 and ARC2, as well as the Extraction Region. This will be the style of
BPM described in this section. Di�erences with other BPMs will be discussed
as needed throughout other sections and chapters in this work.

As described previously, the particle beam will couple with the pickups of the
BPM. At CEBAF, the electric �eld created by the electron beam will couple with
the 1

4 -wave antenna pickups in the BPM. To �nd the transverse beam position,
one takes the di�erence of the voltages induced on antennas located 180◦ apart,
divides by the sum of these voltages, and multiplies by a proportionality term:

r ∝ V + − V −

V + + V −
. (1.30)

For a perfectly centered beam, the di�erence between the two induced voltages
would be exactly zero, and the position, r, would also equal zero. The propor-
tionality constant, k, depends upon the geometric design of the BPM. For the
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Figure 1.10: Schematic of BPM used at CEBAF [19]

M20 BPM pictured in the schematic in Figure 1.10, k = 25.56 mm. Addition-
ally, due to possible electronic and mechanical mismatches between the di�erent
channels, another constant, α, must be introduced. The position can now be
written

r = k
V + − αV −

V + + αV −
. (1.31)

As seen in Figure 1.10, the four pickups of the BPM are divided into X
and Y pairs, each pair having antennas corresponding to positive and negative
position o�sets. The four antenna wires are labeled X+, X−, Y +, and Y −.
The proportionality constant, α, is found for each plane through a calibration
procedure. To �nd this constant in the Y -plane, the beam is turned o� and an
RF calibration signal is put through the X− wire, and readings are taken on the
Y wires with this calibration signal on (U±), and then again with the signal o�
(U±off ). The opposite is done to �nd the constant for the X-plane wires. These
constants are related to the signals as

αx =
X+ −X+

off

X− +X−off
, (1.32)

αy =
Y + − Y +

off

Y − + Y −off
. (1.33)

The position of the beam centroid in the beampipe for a single plane can now
be described in general coordinates as

U = k
(U+ − U+

off )− αu(U− − U−off )

(U+ − U+
off ) + αu(U− − U−off )

. (1.34)

This position measurement represents the position of the beam in each plane for
the BPM frame. However, due to the damage that could occur to the antennae
if they were struck with the synchrotron light that is emitted by the electron
beam in either bend plane, or the large photoelectric interference that could
occur on the outboard side of the bend, the BPM frame is actually rotated 45◦
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at Je�erson Lab. Therefore, in order to �nd the position of the beam centroid in
the lab frame, the BPM frame must be rotated back 45◦. Thus, if U = Xrot and
U = Yrot for each plane, the rotation from BPM frame to lab frame is achieved
by a simple coordinate rotation:

X =
1√
2

(Xrot − Yrot), (1.35)

Y =
1√
2

(Xrot + Yrot). (1.36)

For further information about the beam position monitors at Je�erson Lab,
including the manner in which they are calibrated, nonlinearities in measure-
ments at large radii, and some of the related electronics, the reader is directed
to the dissertation of Michael Spata [19].
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Chapter 2

Accelerator Physics

Background

2.1 Beam Dynamics

This section will discuss some of the fundamental concepts of beam dynam-
ics. First, a brief description of phase space will be discussed, followed by a
discussion of the matrix formalism. The chapter will �nish with a description
of the Courant-Snyder, or Twiss, parameters. For more in-depth discussion on
any of these topics, see any of the standard textbooks on Accelerator Physics
[6, 15, 25, 26, 27].

2.1.1 Phase Space

Studying the statistical properties of a collection of particles is both more practi-
cal and more useful than studying the properties of a single particle. In order to
do this, one investigates the dynamics of the particles in six dimensional phase
space, which is represented by the coordinates and momenta, (x, px, y, py, σ, E).
Here x and y are positions, pxp0 ≈ x

′ and
py
p0
≈ y′ show the transverse momenta,

cp0
β = E0 is the ideal particle energy, σ is the coordinate along the trajectory,
and E is the particle energy. Alternatively, E is often represented as an energy
deviation, or a relative energy deviation with respect to a reference, or ideal
particle. Additionally, if beam energy is constant, it is common to use the slope
of the trajectories, x′ and y′, rather than the transverse momenta, as they are
proportional to the momenta and also small, thus allowing one to let sinx′ ≈ x′.

2.1.2 Matrix Formalism [15, 25, 26, 27]

The theory of strong focusing, as developed by Courant, Snyder, Livingston, and
Christo�los, [7] is based on the use of quadrupole magnets for focusing. Use of
this approach allows for a smaller magnetic aperture, as the strong focusing of
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the quadrupoles restricts the particles to a much smaller cross-sectional area.
The following discussion will show the common treatment of the physics for
strong focusing machines, such as CEBAF. The focus of the discussion will be
on linear optics. Additionally, the horizontal and vertical planes will, for the
most part, be treated independently, as there exists only small cross coupling
at CEBAF.

For a beam bent in the horizontal, x, plane, one can express the bending
and quadrupole magnetic �elds as

Bx = −gy,
By = By0 + gx,

where By0 is the dipole �eld, and g is the gradient of the quadrupole �eld.
De�ning κ as the local curvature vector with κi = 1

ρi
(ρ is the local bending

radius), and k = eg
p = 1

lf as the energy independent focusing strength (l is
the particle's path length in the magnetic �eld and f is the magnet's focal
length), one can obtain the linear approximation of the equations of motion
(Hill's Equation):

x′′ + (k0 + κ2
0x)x = 0, (2.1)

y′′ − k0y = 0. (2.2)

The magnetic strength parameters depend upon the location of the magnets
along the beamline, thus depending upon the z coordinate. These equations are
useful in �nding the focusing power along the beamline. By integrating them
over a small distance along the beamline, the de�ection angle is directly found:

ˆ
y′′dz = y′ − y′0 = δ.

De�ning δ to be the de�ection angle;

δ = −r
l

= − l
ρ
,

and taking
´
k0ydz ≈ k0y∆z, general expressions for the focal length of the

magnetic gradient �elds can written:

1

fx
= k0∆z =

e

cp

∂By
∂x

∆z, (2.3)

1

fy
= −k0∆z = − e

cp

∂Bx
∂y

∆z. (2.4)

Knowledge of any segment's �eld gradient can yield either the segment's focusing
power or its equations of motion. All of the focusing in a segment, both from
the bending magnets and the quadrupoles, can be combined:

K(z) = k0(z) + κ2
0x(z). (2.5)
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A very informative and convenient way to describe the trajectories of parti-
cles through a beamline is through use of the matrix formulation. The matrix
formulation I will describe uses the hard edge model, which assumes that the
magnet strength parameters within a magnet are constant, and fringe �elds and
other such factors are ignored. In this model, the magnet parameter, K, varies
in a stepwise fashion, as the magnetic �eld is either present at a given location,
or not present. Additionally, K is a constant, and the equations of motion can
be represented as a harmonic oscillator in matrix form:[

u(z)
u′(z)

]
=

[
Cu(z) Su(z)
C ′u(z) S′u(z)

] [
u0

u′0

]
(2.6)

where u is a generalized coordinate for either x or y. C and S are cosine and
sine functions and are de�ned as:

K > 0 : C(z) ≡ cos(
√
Kz) and S(z) =

1√
K

sin(
√
Kz),

K < 0 : C(z) ≡ cosh(
√
|K|z) and S(z) =

1√
|K|

sinh(
√
|K|z).

The 2 × 2 generalized matrix can also be expanded in such a way that both x
and y terms are shown:

x(z)
x′(z)
y(z)
y′(z)

 =


Cx(z) Sx(z) 0 0
C ′x(z) S′x(z) 0 0

0 0 Cy(z) Sy(z)
0 0 C ′y(z) S′y(z)



x0

x′0
y0

y′0

 . (2.7)

The matrix terms that are null in Equation 2.7 represent cross-coupling terms.
Additionally, this matrix can be further expanded to include terms for energy
and dispersion.

In a drift, where there exists no focusing, as well as in areas of weak bending,
where 1

ρ20
≈ 0 and k0 = 0, the focusing parameter, K, is zero, and the matrix is

then: [
u(z)
u′(z)

]
≈
[

1 z − z0

0 1

] [
u0(z0)
u′0(z0)

]
.

If one lets l = z − z0, then the drift transformation matrix can be represented
by

Md =

[
1 l
0 1

]
. (2.8)

For a pure quadrupole, the bending term is 1
ρ0

= 0, but the �eld gradient will
be either positive or negative, depending on whether the quadrupole is focusing
or defocusing in the reference frame. For a focusing quadrupole, k0 > 0 and in
this limit, Equation 2.6 becomes
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[
u(z)
u′(z)

]
=

[
cos Ψ 1√

k0
sin Ψ

−
√
k0 sin Ψ cos Ψ

] [
u(z0)
u′(z0)

]
,

where Ψ =
√
k0(z− z0). This matrix holds so long as l is within the con�nes of

the quadrupole length. This means that, for a focusing quadrupole of length l
and strength k0, the transfer matrix can be described by:

MQF =

[
cosϕ 1√

k0
sinϕ

−
√
k0 sinϕ cosϕ

]
(2.9)

where ϕ =
√
k0l. The same is true for a defocusing quadrupole, but the signs

are switched such that the transfer matrix can be described by:

MQD =

[
coshϕ 1√

k0
sinhϕ

−
√
k0 sinhϕ coshϕ

]
. (2.10)

To �nd the transformation matrix for a section of beam line which contains
both quadrupoles and driftspace, one simply multiplies the transfer matrices in
reverse order of occurrence.

2.1.3 The Twiss Parameters [27]

Attributes of the beam can be described by the Twiss parameters. These terms

describe the area in phase space that is occupied by the particle beam. α = −β′

2
is related to the distance to the geometric focus from a lens. When it is positive,
the beam is convergent, and when it is negative, the beam is divergent. β is an
amplitude function, and

√
βε is the radius of the beam, where ε is the emittance.

The emittance is proportional to the area that a set of beams will occupy in
phase space, as Area = πε. γ relates the focusing distance and the amplitude,

and is de�ned as γ ≡ 1+α2

β . These terms are all interrelated, as demonstrated
by the phase ellipse in Figure 2.1.

One can create a transfer matrix for the beam in terms of the Twiss param-
eters as follows:

M =

 √
β2

β1
(cos ∆ψ + α1 sin ∆ψ)

√
β1β2 sin ∆ψ

− 1+α1α2√
β1β2

sin ∆ψ + α1−α2√
β1β2

cos ∆ψ
√

β1

β2
(cos ∆ψ − α2 sin ∆ψ)

 .
(2.11)

Equation 2.11 shows how the Twiss parameters e�ect the evolution of the beam
from one point to another. It uses the α, β, and the phase advance, ψ, to
transform the coordinates of the beam. The phase advance, which is related to
φ by a transformation into a di�erent coordinate system, is de�ned as

∆ψ = tan−1

(
m12

β1m11 − α1m12

)
, (2.12)

where the mij terms refer to the speci�c components in Equation 2.11.
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Figure 2.1: Standard Phase Space Ellipse Labeled with Twiss Parameters

It is important to note that the Twiss parameters have di�erent meanings in
linear versus circular accelerators. A stable circular machine will have a closed
orbit, and any particles injected o� of that closed orbit will sequentially trace
out a bounded curve in phase space at a given location. This bounded curve
de�nes the Twiss parameters at this location. Therefore, the Twiss parameters
in a circular machine are de�ned by the lattice.

In an open-ended machine, the beam only passes through the system once,
and the lattice does not have the same periodic constraints as a circular machine.
Instead, the lattice de�nes the path of the beam and rather than de�ning the
Twiss parameters, it transforms them. In an open-ended machine, the Twiss
parameters are an intrinsic property of the beam, as one can see in the RMS
de�nitions below:

ε2rms = 〈x2〉〈x′2〉 − 〈xx′〉2, (2.13)

β =
〈x2〉
εrms

, (2.14)

α =
〈xx′〉
εrms

, (2.15)

γ =
〈x′2〉
εrms

. (2.16)

The Twiss parameters evolve throughout the beamline, and this evolution
can be found using a transformation matrix. Using the matrix in Equation 2.11,
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a new 3× 3 matrix can be de�ned as

M =

 m2
11 −2m11m12 m2

12

−m11m21 m11m22 +m12m21 −m12m22

m2
21 −2m21m22 m2

22

 . (2.17)

Here,M is the transformation matrix for the Twiss parameters themselves: β
α
γ


2

=M

 β
α
γ


1

. (2.18)
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Chapter 3

Diagnostic Tools Currently in

Use

At the CEBAF machine, two methods are currently used to characterize and
tune the beamline; quadrupole scans, and the Courant-Snyder tool. This chap-
ter will discuss these methods, as well as their strengths and weaknesses.

3.1 Quadrupole Scan

One powerful tool for determining the local optical parameters of the CE-
BAF beamline is the quadrupole scan. Operators will adjust the strength of a
quadrupole by some known amount, varying the downstream beam size. Beam
pro�le monitors, also called harps or wire scanners, are used to measure the
di�erential beam size. The relationship between the smallest beam radius to
the beam radius at the lens can be used to calculate the uncorrelated angular
spread, which I refer to as the emittance angle. Centrally located beams will
retain the same emittance angle, regardless of the quadrupole value.

If one were to plot the RMS beam radius as a function of the lens strength,
a hyperbola would be seen. Measuring the beam radius at the waist of this
hyperbola will result in a sharp peak. This measurement is vulnerable to beam
jitter, as the width of the peak is narrow. Measuring away from the beam waist
gives a �atter peak, and is more vulnerable to measurement noise.

In order to better explain the way this method works, I will brie�y discuss
the simpli�ed case where the harp and waist are coincident. The emittance of
the beam is related to the beam radius and its angle as ε = θRbeam. Looking
at Figure 3.1, one sees that beams originating at the extremum of the lens will
follow the hyperbolic asymptotes, de�ning the radius of the beam envelope, as
well as the near and far �eld. Beams that originate at the center of the lens will
maintain small angles and run near to the hyperbolic curve at the waist. They
de�ne the core of the beam and undergo free expansion. Ballistic expansion of
these core beam particles governs the size of the beam.
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The radius of the beam at the lens is related to the angle and lens strength
as δθ = Rlens

f . The radius of the beam at the waist has a similar relationship;
θ × l = Rwaist, where l is the distance to the waist. Using these relationships,
one can see the basic idea of how the emittance is found using this method.
The real method, as it is utilized in the machine, uses statistical methods to
calculate these parameters using several quadrupole settings.

While this method can be a powerful tool, and is common in many accel-
erators, there are signi�cant problems with its utilization at CEBAF due to
lab-speci�c limitations. One of the major problems is the sparse coverage of the
machine with harps. Another is the high levels of noise the current monitors
have due to the size of the wires in relation to the small emittance.

The small emittance of CEBAF is another limitation of this method. Due
to the thickness of the wires in our scanners, their accuracy is limited when
measuring such a small beam.

The usage protocols of our harps are a further limitation, as a single cycle
through the beampipe takes two minutes. Since this scan is invasive, the end
users cannot receive beam when these scans are run. Because they are time
consuming, the nuclear physics program must be put on hold for a long time
during this process. To make matters worse, this measurement only provides in-
formation at one part of the beamline. In order to characterize an entire section,
several of these invasive, time-consuming measurements must be performed at
a series of locations.

3.2 The Courant-Snyder Method

One of the methods used to maintain beam envelope matching at CEBAF is a
tool called the �Courant-Snyder,� named after the authors from the 1950s [7].
This tool (CS) takes position and angle information from two kicks provided at
di�erent correctors and compares the values to those in the design optics.

Figure 3.2a is an example of what the design model says things should look
like at a given location in the machine. The red stars indicate the expected
trajectory locations for the given corrector kicks from the model at this location.
When a beam does not follow the model, the real beam may resemble the blue
ellipse in Figure 3.2b, which would represent the real consequence of transport
errors before this point. The blue stars on this ellipse indicate where the real
trajectories have been measured by a beam position monitor at this location.
These measurements are taken at all BPMs in the machine, but this description
will focus on one BPM.

Once these points are measured, the CS tool takes the design values for α and
β and calculates the equivalent Courant-Snyder invariant, ε = γx2+2αxx′+βx′2

(related to the area of the phase ellipse, which is a constant), at those points.
When this occurs, the calculated action associated with this trajectory is not
correct, as seen by the green ellipses in Figure 3.2c. This situation represents a
mismatch and means that the calculated action varies along the beamline.

When tuning with this tool, adjustments are made to move these values (blue
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(a) Design (b) Real Beam (c) CS Mismatch

Figure 3.2: Courant-Snyder Plots

stars) back onto the ellipse of the design value (red stars). However, the CS tool
provides no information about the mismatch; it only detects its presence. This
means tuning must be done in an unguided manner.

By design, this procedure does not require any particular cumulative phase
advance. While this is a strength much of the time, it can also lead to problems
of degeneracy, where the two measured points are indistinguishable from each
other. In Figure 3.3, one sees the problems that can occur when there is a
severe mismatch of the real beam from the design beam. Because the CS tool
does not take into account cumulative phase advance errors, it cannot identify
discontinuities, meaning there is no �ag for degeneracies, such as represented
by the blue stars. When these measured trajectories are so close together, they
may be viewed as one point by the CS tool. This problem would easily be
identi�ed if knowledge of the phase advance were used.

Figure 3.3: Courant-Snyder Degeneracy
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Chapter 4

A New Tool: rayTrace

Previously, the current methods used to characterize and tune the CEBAF
machine were described, and their strengths and weaknesses were addressed.
With the weaknesses these procedures have, a new tool is necessary as the
facility prepares to double its current energy, as the errors that are acceptable
now will no longer be. A more robust tool is needed.

CEBAF needs a method that is minimally invasive to its nuclear physics
program. Users require as much beam time as possible to gather data, so mini-
mizing time lost during characterization and tuning is a key requirement. Ad-
ditionally, a method is required that can either address the cumulative phase
advance errors, or provide a way that they can be ignored without detriment.
Furthermore, the new method must be able to characterize the beam locally,
but it must also provide global, long-range knowledge of the machine if desired.
This means that optical information must be provided in speci�c places, as well
as in a distributed manner.

In this chapter, I present the new, developing method that we refer to as
rayTrace. rayTrace is not related to any other program or software that is
available publicly.

4.1 What is rayTrace?

rayTrace is essentially a real-world simulation, using the CEBAF accelerator to
model itself. Considering each plane separately, and assuming minimal cross-
plane coupling, we use two correctors to steer the beam centroid in a measured,
iterative manner, painting the boundary of a design phase ellipse at a down-
stream launchpoint chosen at a beam position monitor (BPM). Each iterative
kick represents one of a family of rays that make up this phase ellipse bound-
ary, and the family of rays together simulates the boundary of a beam in the
machine: a �synthetic� beam if you will.

Simultaneously at every downstream BPM from the launchpoint, the posi-
tion is measured for each kick. This position information, along with knowledge
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of the distance between elements and local, short-range transport optics, allows
for the calculation of the Twiss parameters for this beam.

Adjusting two correctors simultaneously allows us to use arbitrary linear
combinations of the corrector pair, giving us denser phase space access. We
are able to change both the x and x′ values simultaneously, each new two-
corrector kick giving a new point along the perimeter of the phase ellipse. This
is repeated until we have the desired number of data points along the ellipse.
Once we complete one turn around the ellipse, we repeat this procedure one or
more times in order to check for beam drift during the procedure, which would
appear as an unclosed ellipse in the data. This provides many data points along
the boundary of our �synthetic� beam, and helps to better de�ne the beam's
parameters.

4.2 How rayTrace Works

4.2.1 Data Acquisition

The Accelerator and High Level Applications (AHLA) group at Je�erson Lab
provided a useful and �exible graphical user interface (GUI) prototype for the
data collection process. This GUI is currently only intended for expert-only
use, as it provides many settings and options that a general user would not use.
Default values for the settings described below are from the model.

Figure 4.1 is a screenshot of the GUI. When using this interface, the user
will �rst choose the desired plane and then a launchpoint. The GUI then selects
two default correctors to use for simultaneously kicking the beam. These two
correctors are generally the �rst two immediately upstream, but the user can
re-select any desired one. Once this is done, α and β are automatically loaded
from the model. They can be overridden as well. The user will next choose
an orbit size that corresponds to a desired emittance. The orbit size must be
large enough to avoid noise, but small enough for the beam to remain in the
beampipe. The user will then select how many turns, or times around the phase
ellipse they desire, as well as how many data points on the ellipse to include.

Once all of these values are chosen, the user starts data acquisition. The
program will �rst check to see if a system all-save has been performed recently,
pausing to allow the user to perform one at that time if need be. All-saves are
used at CEBAF so that we have knowledge of the conditions of the machine at
the time of the test, and also provide a backup if something happens and the
machine must be restored to a previous setup.

Next, the program will condition the corrector magnets by varying their
values through the full range of settings that will be used for the procedure.
This is done for two reasons. It provides a quick check that the chosen orbit
size is not too large and that the beam will remain in the pipe. Additionally,
preconditioning the iron core magnets reduces hysteretic asymmetries in the
steering. They will maintain a level of reproducibility as the values of the
corrector settings (BDL) are varied in both positive and negative directions.
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Figure 4.1: The rayTrace GUI

Once the magnets are conditioned, the two correctors are then kicked simul-
taneously as described before, and data is collected at every BPM downstream.
As a failsafe and a time-saving feature for the analysis, data collection is auto-
matically paused in the absence of beam.

4.2.2 Model Twiss Parameter Acquisition

At a time in close proximity to data acquisition, the model Twiss parameters
must be acquired. Using a Perl script, I utilized the AHLA group's elegant
toolkit to quickly grab the necessary values from the model and format it into
Twiss tables, taking into account unit conversions.

Both the design model values and the values for the current setup (GOLD
model) are acquired during this process.

4.2.3 Analysis of Data: fitphase

Yves Roblin's program, fitphase, is used in the analysis process. �tphase uses
an algorithm that was originally designed for identifying ellipses in image data,
but is also capable of utilizing raw statistical data. Iterating through each BPM,
this program �ts the model over a short range to determine the x′ values. The
user can choose the number of BPMs to use in this determination.

Once x and x′ are known, this trajectory data is used to compute ε, α, and β
at each BPM. This is then used to create plots containing the data points at the
BPM, the ellipse �tted to these data points, and the design model phase ellipse at
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Figure 4.2: Overlaid Trajectories for 3 Pass CEBAF Machine

this location. This provides a fast, visual representation at each BPM and allows
for quick assessment of the level of mismatch. Aberrations in the optics can also
be seen in observing the overall shape made by the data points. Additionally,
plots showing the variation of α and β along the transverse direction are created.
This is useful in understanding the global optical properties of the machine.

Although �tphase requires knowledge of the short range model to deter-
mine x′, the data gathered still provides much information that can be found
independently of the model.

For example, Figure 4.2 shows a plot of the overlaid trajectories found during
the rayTrace procedure on a three-pass beam. Kicks were provided in the x
plane. This plot provides a model-independent approximation of β, assuming

that the emittance is known, as β ≈ (xmax−xmin)2

ε . Also, the amount of cross-
plane coupling can be easily observed when looking at the plot for the y plane.
This small amount of coupling is due to slightly rolled correctors. Since this is
raw data, BPM noise is also included in this plot. Furthermore, it appears that
some BPMs are reading the opposite plane, as indicated by the two large spikes
in the Y -plane.

4.2.4 Tuning the Machine

To summarize, after running this procedure and analyzing the data, one will
have data everywhere. The transverse angles are determined from the known
local optics model. The Twiss parameters are generated for every point in the
machine. One can discriminate between distributed and point errors and choose
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Figure 4.3: Injection Conditions in ARC 1

how to address the mismatch: globally or locally.
The �synthetic� beam is a surrogate for the real beam, acting as an exact

linear model in the zero current limit. The emittance is magni�ed from the real
beam, but the α and β are the same. It also allows one to measure the phase
advance of the machine, as data is collected in an orbit-by-orbit manner, giving
the same kind of information one would gather from a numerical simulation.

4.3 rayTrace in Action: An Example of Use

Even early in the development, the rayTrace procedure proved useful several
times in tuning the CEBAF machine. This section will discuss one example of
its use.

In October of 2009, Hall A was experiencing high background count rates
at its Compton polarimeter. The cause of this problem was unknown, and
troubleshooting cost many man hours. The main problem that people were
running into was the lack of adequate diagnostic tools in this region. Multiple
quadrupole scans were run, but these results often showed asymmetric emit-
tances. This left the operations crew with an iterative, guess-and-check method
for tuning. Eventually, we were allowed to run rayTrace in the Hall A beamline
to see if we could �nd any causes for the high background rate.

In order to gain both global, distributed information, as well as local infor-
mation, we injected our synthetic beam at the beginning of ARC 1. Injecting
so far upstream allowed us to see the progression of the synthetic beam through
the machine so that we can check for any local problems that could contribute
to distributed errors.

Choosing an emittance of ε = 5× 10−6 cm-rad, and using the design α and
β, we provided 64 kicks at the two upstream correctors from the launchpoint,
covering 2 turns around the phase ellipse (32 kicks/turn).

Looking at Figure 4.3, one can see the launch conditions in both the X and
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(a) (b)

Figure 4.4: Y-Plane Aberration in Compton

Y planes. The injected orbit ellipse closely follows the design values. In these
plots, the green ellipse represents the model phase ellipse, the blue points are
the positions measured by the BPM at this point, and the red ellipse is �tted to
these data points. α and β are listed at the top of each plot as {/Symbol a} and
{/Symbol b}, respectively. One can also readily see what orbit size corresponds
to the chosen emittance in each plane by looking at the abscissa, where it is
over 2 mm for the horizontal plane, and approximately 0.75 mm in the vertical.
The injected beam here is well-matched to the design orbit.

Hall A was receiving three-pass beam during this test. From the launchpoint,
the beam travels 2.5 times around the accelerator, which translates to over 3
km. We were able to track the beam's behavior over this distance, and found
that by the time it reaches the Hall A line, it is mismatched from the design
values. We also see that the emittances as measured damped approximately the
same for the two planes from the launchpoint. This symmetric damping made
the quadrupole scan data with asymmetric X and Y emittances appear suspect.

Once we reach the region of the Compton chicane, the apparent beam be-
havior becomes inconsistent with the large beamline clearances expected in the
region. We began to see a strange aberration starting at BPM IPM1P02A
(shown in Figure 4.4a), which is located at the beginning of the Compton chi-
cane region. Initially, it was believed that the beam had drifted during the test,
but further inspection led us to believe this was not the case. Downstream, the
behavior grew worse (Figure 4.4b).

Recalling that beam had tripped o� several times during the test, we looked
at the beam loss archive and found a clue. At the times corresponding to
vertical kicks, we experienced partial beam loss. This was due to the beam
meeting with an aperture limitation, which we localized to the beginning of the
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Compton chicane. The unexpected behavior was due to either the beam being
de�ected, or the BPMs being unreliable due to the low current.

The data collection process took under �fteen minutes and gave 64 data
points per plane at every BPM downstream from girder 1A01. After the anal-
ysis, two major problems were discovered. The �rst is that the beam entered
the Hall A beamline mismatched from the model optics. The beam was then
rematched using the normal protocols. The second is that there was partial
beam loss somewhere in the Compton chicane region due to the beam being
too near an aperture limitation in the vertical direction. The initial �x for this
problem was to steer the beam away from the aperture limitation. Later, the
hardware in the region was realigned and the synchrotron radiation in this re-
gion was ba�ed. Additionally, analysis showed that the procedure accounted
for the appropriate amount of acceleration damping. The quad scans that had
shown signi�cant asymmetric emittances were found to be inaccurate, and the
data that had been the most reasonable was then down-selected by the users so
that corrections could be made with the most accurate data.
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Part II

Noise Reduction and

Uncertainty Analysis
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Chapter 5

Singular Value Decomposition

Analysis

This chapter will discuss the analysis of rayTrace data using Singular Value
Decomposition (SVD). The primary goal of performing SVD analysis on the
data is to reduce the noise contribution in an e�ort to clean up the BPM signals.
A secondary goal is to identify BPMs which have a signi�cantly higher noise
contribution, or are otherwise behaving in an unexpected or improper manner.

5.1 Least Squares and Singular Value Decompo-
sition

One of the most powerful tools in our data analysis process is singular value
decomposition (SVD), which is a variation on the traditional methods of least
squares analysis. This section will discuss some of the basic concepts of both
least squares analysis and SVD.

5.1.1 Least Squares

In a system where the number of descriptive equations outnumbers the number
of unknowns in the equations, the system is said to be overdetermined. The
term �least squares� derives from the minimization of the sum of all the squares
of the errors when the equations are solved. In other words,

S =

n∑
i=1

r2
i (5.1)

would be a minimum in the optimum solution when �tting data. Here, the data
set would consist of n data points, xi would be the independent variable, yi
would be the dependent (observed) variable, and ri is the residual. A residual is
de�ned as the di�erence between the measured value of the dependent variable,
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and the value predicted by a given model, f(x, β). In the model, there are m
adjustable parameters contained in the vector β. So, the residual is simply

ri = yi − f(xi, β). (5.2)

The way to �nd the minimum of S in Equation 5.1 is to set its gradient equal
to zero. Because there are m changeable parameters, there must be a matching
number of gradient equations.

∂S

∂βj
= 2

∑
i

ri
∂ri
∂βj

= 0, j = 1, ...,m (5.3)

There are two types of least squares analysis: linear and non-linear. A
linear least squares (LLSQ) model function will consist of a linear combination
of parameters, such as f = Xi1β1 + Xi2β2 + .... A non-linear least squares
(NLLSQ) model function will have the model function appear in non-linear
functions, such as f = eβx. Another way to think of this is that if ∂f

∂βj
is either

constant or depends only on the independent variables, the model is linear.
Otherwise, the model is non-linear, and to �nd a solution one must choose
initial values for the parameters, and the process is usually iterative in nature,
terminating once a speci�c criterion of convergence is satis�ed. Additionally,
LLSQ has a unique solution, given the direct methods of �nding the solutions.
NLLSQ may have multiple solutions, as there may be multiple local minima.

5.1.2 Singular Value Decomposition [1, 23, 28]

The purpose of Singular Value Decomposition (SVD) is to reduce a set of data
containing both correlated and uncorrelated values to a set of data which con-
tains signi�cantly fewer uncorrelated values while maintaining the majority of
the variability present in the original set of data. In order to use SVD, one must
be aware that the data must contain anomalies, and it should be detrended
so that only the absolute changes in values are shown. Without detrending,
contributions which are uncorrelated to the dominant singular values will be
magni�ed. Detrending can be accomplished by subtracting the average value of
a data set from each data point.

The most basic de�nition of Singular Value Decomposition is that it is a
factorization of a matrix. It is de�ned mathematically by

M = UΣV ∗ (5.4)

whereM is a m×n matrix, U in a m×m unitary matrix, Σ is a m×n diagonal
matrix containing non-negative real numbers for the diagonal terms, and V ∗, or
the conjugate transpose of V (sometimes written as V † or V T , depending on the
real or imaginary nature of the data), is an n× n unitary matrix. Additionally,
the diagonal values in Σ are the singular values of M . The left singular vectors
of the M matrix are the m columns of the U matrix, and are the eigenvectors
of MM∗. The n columns of the V matrix are the right singular vectors, and
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Figure 5.1: SVD Flow Chart

they are the eigenvectors of M∗M . Taking the square roots of the non-zero
eigenvalues of MM∗ or M∗M gives the singular values in Σ.

Each of the matrices in Equation 5.4 act to decompose the matrix M into
three simple transformations. For example, in Figure 5.1, M represents the real
shearing matrix in 2D of a unit circle. When applied to the circle, the result
is an ellipse. This same outcome can be accomplished in a series of steps. The
�rst step is applying

V ∗ =

[
V ∗11 V ∗12

V ∗21 V ∗22

]
,

which rotates the circle clockwise. This step can further be broken down by
column in V ∗, as the �rst column shears the circle horizontally, and then the
second column shears the ellipse vertically. The end result is a rotated unit
circle.

Next,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
is applied, which provides scaling along the coordinate axes. Here, Σ12 and Σ21

are both zero. The �rst column elongates the circle in the horizontal direction,
and the second column adjusts the height. This results in an upright ellipse,
where the semi-major (σ1) and semi-minor (σ2) axes correspond to the singular
values along the diagonal of Σ.

Finally, a second rotation is provided by the matrix

U =

[
U11 U12

U21 U22

]
.

Here, the �rst column will shear/rotate the ellipse horizontally, and the second
column will do so vertically. The end result will be a rotated ellipse. The end
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result of all three steps will be equivalent to the transformation accomplished
by matrix M .

In order to �nd the SVD of a matrix A, several steps must be taken. I will
describe these steps presently, the �rst of which is computing the singular values
of A. First (I will change to the XT nomenclature), the transpose of A is found,
AT . A and AT are then multiplied together. AAT would be a left multiplication,
and the resulting matrix would be the left matrix. ATA would be a right
multiplication, and the resulting matrix would be a right matrix. For each of
these matrices, one would �nd the eigenvalues by setting det[ATA−λI] = 0 and
solving for λ. Once found, place them in descending order in an absolute sense.
Taking the square root of these eigenvalues gives the singular values, which are
then placed along the diagonal of the Σ matrix, with all o�-diagonal terms equal
to zero.

If A is a rectangular, m× n matrix, then the only useful singular values are
those that correspond to the smaller value of m or n. For example, if m > n,
one can think of the SVD as mapping n-space onto m-space, with any of the
singular values that correspond to columns greater than n are unnecessary. In
short, if:

• m = n, all of the singular values will be positive.

• m < n, Σ will be a m×n diagonal matrix with all of the column elements
greater than m equaling zero.

• m > n, Σ will be a n × n diagonal matrix, giving more equations than
unknowns. In this case, the solution to the SVD will be a least squares
solution.

The next step in �nding the SVD of matrix A is to compute the right eigenvec-
tors, which will be found from the right matrix, ATA. Having already found
the eigenvalues and placed them in descending order, one can simply go through
each of them and �nd the corresponding eigenvector. Simply plug the values
into the equation (ATA − λI) ~X = 0, where λ is the eigenvalue, and ~X is the
eigenvector. Solving each equation for the the vector terms with respect to
each other, and normalizing by dividing each term by the length (L =

√∑
i x

2
i )

gives the eigenvector corresponding to that eigenvalue. One would repeat this
for each eigenvalue in descending order. Paying careful attention to the order
in which these are found so that the matrices are organized in a simpler way,

37



the eigenvectors are then placed into the columns of the V matrix. So, if

~X1 =

 x1,1

x1,2

x1,3

 ,
~X2 =

 x2,1

x2,2

x2,3

 , and
~X3 =

 x3,1

x3,2

x3,3

 , then
V =

 x1,1 x2,1 x3,1

x1,2 x2,2 x3,2

x1,3 x2,3 x3,3

 .
One would then take the transpose of this matrix for use in the SVD.

This process could be repeated for the left eigenvectors, substituting AAT for
ATA and doing the math accordingly, placing the eigenvectors into the columns
of matrix U . This can be useful in �nding high-order, term-term co-occurrence
patterns. However, this process can be time consuming and computationally
time consuming. There exists a shortcut to �nd the left eigenvectors. Starting
with the de�nition of SVD, and the fact that Σ and V are already known, one
can show that:

A = UΣV T (5.5)

AV = UΣV TV = UΣ

AV Σ−1 = UΣΣ−1 = UI

U = AV Σ−1. (5.6)

Now one has all of the required pieces in order to perform SVD on the matrix,
A. By substituting the above steps into the original SVD equation, Equation
5.5, one �nds that the values on the right side of the equation will nearly equal
those on the left.

Additionally, one can perform a reduced SVD, which will still give an ap-
proximation of the original matrix, but will truncate the matrices in such a
manner that noisy dimensions will be reduced and the e�ects of the largest k
singular values can be exposed. To do this, simply keep the �rst k columns of
U , the �rst k rows of V T , and the �rst k singular values.

In summary, the steps required for calculating the SVD of a matrix A are
as follows:

1. Find AT , ATA, and AAT .

2. Find the eigenvalues of ATA and AAT and sort them in descending order
in the absolute sense. Take the square roots of these to �nd the singular
values.
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3. Make a diagonal matrix, Σ, with the singular values along the diagonal.
Find the inverse of this matrix, Σ−1.

4. Use the eigenvalues from Step 2 to compute the eigenvectors for ATA.
Place these values along the columns of V , taking care to keep them in
order. Compute V T .

5. Either repeat Step 4 for AAT , or use the shortcut equation, Equation 5.6,
to �nd U .

6. If a reduced SVD is desired, truncate the matrices appropriately to reduce
noise.

5.2 SVD Noise Reduction [18, 23, 28, 29]

As described in the dissertation of C.X. Wang [23], SVD is a powerful tool for
noise-reduction of data. Applying some of the principles described in this work,
I performed noise-reduction analysis on the raw BPM data acquired through
the rayTrace procedure, as described in 4.2.1.

5.2.1 Raw rayTrace Data

When rayTrace is performed, position information at every BPM in CEBAF is
recorded simultaneously. As the procedure varies two correctors simultaneously
(�kicking� them iteratively every few seconds) to trace the boundary of a phase
ellipse, the BPM system reports position data at every location several times
per kick, which is recorded. This data is formatted in such a manner that
every BPM has its own column of position data. Each row of data contains
the reported position of the beam at each BPM location at a speci�c time.
Figure 5.2 shows the format of the collected data. Additionally, when no beam
is present in the machine, this is also reported in the data, and must be removed
during the analysis process.

With the data formatted in this manner, there are two bases that can be
used to describe it: a spatial (or position) basis corresponding to the columns
of BPMs, which are ordered according to longitudinal position in the machine,
and a temporal basis corresponding to the rows of time-dependent measured
positions. When analyzing a segment of CEBAF, such as a single linac, only
the BPMs found within this segment are included. This generally results in a
m× n matrix where m > n, i.e. a tall, thin matrix.

In looking at a plot of the raw BPM data from the X-plane of the �rst arc
(Figure 5.3), it can be seen that some data pre-processing must be performed.
Each signal on this plot is a di�erent BPM, represented by the various colors.
Any signals which appear nearly �at in this plot may, but do not necessarily,
represent a BPM that has its wires switched in such a manner that the X and
Y planes are interchanged. These columns of data must be swapped (and the
problem reported to the Operations group). Most importantly though, the data
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Figure 5.2: Format of Collected BPM Data

must be detrended so that correlated contributions due to BPM o�sets are not
included in the analysis. This is done by subtracting the average value of each
column of data from the each data point in that column.

This data pre-processing is done in MATLAB. To do this, you �rst load the
data �le you plan to analyze: load datafile.dat. You then �nd the size of
the data matrix: [n,p]=size(datafile);. Next you compute the mean of each
column: mu=mean(datafile);. Next, you create a matrix of the mean values
by repeating this last step for the number of rows: MeanMat=repmat(mu,n,1);.
Finally, you subtract the column mean from each element, yielding a detrended
data matrix: T=datafile-MeanMat;.

In order to select only the data for the segment to be analyzed, MATLAB
scripts are used to �nd and order the correct BPM columns. For example, the
script to select ARC1 BPMs is:

% 1S Spreader region. There are two columns which returns

% NAN, so delete those.

T(:,234:235)=[];

ARC1Beg=T(:,232:249);

ARC1BegX=ARC1Beg(:,1:2:18);

ARC1BegY=ARC1Beg(:,2:2:18);

%1E Extraction Region.

ARC1EXT=T(:,134:139);

ARC1EXTx=T(:,134:2:139);

ARC1EXTy=T(:,135:2:139);

% 1A Region
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ARC1Prop=T(:,48:101);

ARC1PropX=T(:,48:2:101);

ARC1PropY=T(:,49:2:101);

% 1R Recombiner Region

ARC1Rec=T(:,214:231);

ARC1RecX=T(:,214:2:231);

ARC1RecY=T(:,215:2:231);

% Horizontally Concatenate them in the right order:

ARC1=horzcat(ARC1Beg,ARC1EXT,ARC1Prop,ARC1Rec);

ARC1x=horzcat(ARC1BegX,ARC1EXTx,ARC1PropX,ARC1RecX);

ARC1y=horzcat(ARC1BegY,ARC1EXTy,ARC1PropY,ARC1RecY);

This script selects the columns that correspond to BPMs in the spreader, ex-
traction, arc, and recombiner regions of CEBAF's Arc 1, and creates matrices
for the whole Arc, as well as each plane separately. So, after creating the de-
trended T data matrix, the script takes T and speci�es which columns to use for
analysis.

The detrended and pre-processed data will look like Figure 5.4. The average
value of each signal is now zero (to within machine precision).

5.2.2 SVD Procedure

Once the data has been properly detrended and preprocessed, SVD is performed
using MATLAB's built-in function. For example, to perform SVD on the X-plane
of Arc 1: [U,S,V]=svd(ARC1x);. Here, U is the temporal basis matrix, V is
the spatial basis matrix, and S is the diagonal matrix containing the singular
values ordered by magnitude.

Plotting the singular values (diagonal values of the S matrix) gives one a
visual guide for cutting noise terms. The largest singular values correspond to
the bases which have the most dominant correlated contributions to the total
signal. Figure 5.5 is a plot of the singular values for the horizontal plane of Arc 1
without detrending the data. Notice the two dominant singular values near the
top of the plot. When looking at Figure 5.6, which is a plot of the singular values
for the same region and orientation with detrended data, the second of these
large singular values is no longer present. With the detrended data, correlations
related to BPM o�sets and measurement biases are removed, thus reducing the
degrees of freedom. The detrended data has one very dominant singular value,
as well as at least one smaller which may or may not contribute in a signi�cant
way. In order to quantify the signi�cance of the smaller singular values, one
must �rst look at the corresponding spatial and temporal basis vectors.

Looking �rst at the temporal basis vectors, the �rst 16 of which are plotted
in Figure 5.7, one sees that those corresponding to the two largest singular
values vary sinusoidally over time, which is expected due to the nature of this
procedure. The third and fourth vectors appear to be noise contributions, but
further investigation is required.
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Figure 5.5: Singular Values for Non-Detrended Data: Arc1, X-Plane, X-Kick.
Axes are Singular Value (0-180) vs. Singular Value Index (0-50)

Figure 5.6: Singular Values for Detrended Data: Arc 1, X-Plane, X-Kick. Axes
are Singular Value (0-180) vs. Singular Value Index (0-50)
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Looking next at the spatial basis vectors, plotted in Figure 5.8, it can be seen
that the �rst two follow a pattern with some level of periodicity, but that the
third and fourth vectors are large spikes at single locations. Since these vectors
are normalized, and the spikes for the vectors corresponding to the third and
fourth singular values near unity, this means that nearly all of the contribution
from this vector comes from a single BPM. Looking back at Figure 5.7, it appears
that these BPMs are reading noise. To be sure, a Fast Fourier Transform (FFT)
was performed on the temporal basis vector. Figure 5.9 shows plots of the
spatial and temporal basis vectors corresponding to the largest four singular
values, as well as periodograms (from the FFT of the temporal basis vectors).
The FFT analysis shows that the contributions of the third and fourth temporal
basis vectors are, indeed, noise, and that only the vectors corresponding to the
largest two singular values contribute signi�cantly to the correlated responses in
the data. All those vectors corresponding to smaller singular values are either
due to noise, or do not signi�cantly contribute to the correlated responses and
can be cut.

To cut the singular values that correspond to noise and other uncorrelated
signal contributions, one simply sets these values to zero. This is done very
simply in MATLAB with the command S(S<x)=0;, where x is the value of the
lowest singular value that you wish to keep. After cutting the singular values,
one can then reconstruct the original data without the noise and uncorrelated
terms by reversing the process; CleanData=U*S*V';. Here, U and V are the
original eigenvector matrices, and S is a truncated diagonal matrix, containing
only the most dominant singular values, which occupy the �rst few elements of
this matrix. All other terms are zero. This creates a data matrix of the same size
as the original, but �ltered by enforcing the correlations among BPMs associated
with the retained eigenvectors. Figures 5.10 and 5.11 show the before-and-after
noise reduction for all of the BPMs in Arc 1 for the X-plane.

To further demonstrate the ability of this method to reduce the noise in the
system, one can view the before-and-after signals of the noisiest BPM in Arc 1
in Figure 5.12. The blue signal is the detrended, raw signal for IPM1A23. The
red signal is the noise-reduced signal for the same BPM. Notice that there is a
�ducial point where the beam centroid is deliberately steered back to the zero
location prior to the second cycle of the data collection. This method of noise
reduction preserves this point.
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Part III

Resolution Test
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Chapter 6

Resolution Test

In order to demonstrate the utility and power of this technique, as well as test
its accuracy, I performed a resolution test. The goal of this test was to both
localize and resolve a known change in the optics in the machine. Additionally,
this test acts as an example of tuning the machine using the rayTrace procedure.
One of the most simple ways to create a known change in the linear optics is
to vary a single quadrupole by an amount that is large enough to be detected
through system noise, but small enough not to destroy integrity of the beam.

6.1 Background of Resolution Test

As described in Section 2.1.2, changing the strength of a single quadrupole will
signi�cantly alter the optics of a particle beam. In an open-ended machine, this
will alter the downstream behavior of the beam. This change in behavior can be
quanti�ed by calculating the Twiss parameters of the beam through the region
of the change and comparing them before and after the change is made, as well
as to the model optics.

Recalling that the trajectory of a beam in one plane can be described by[
u(z)
u′(z)

]
=

[
Cu(z) Su(z)
C ′u(z) S′u(z)

] [
u0

u′0

]
, (6.1)

where C and S are cosine and sine functions as previously described, and u is a
generalized coordinate. In the thin-lens approximation (focal length, f , is much
larger than length of magnet, l), matrix element M21 can generally be regarded
as the one that describes the strength of the focusing in the transformation. In a
pure drift, this term would equal zero, while in a quadrupole it is proportional to
the inverse of the focal length, − 1

f , where
1
f is positive for a focusing quadrupole

and negative for a defocusing quadrupole.
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In terms of the Twiss parameters, this equation can be described by

[
u(z)
u′(z)

]
=

 √
β
β0

(cos(ψ) + α0sin(ψ))
√
ββ0sin(ψ)

α0−α√
ββ0

cos(ψ)− 1+αα0√
ββ0

sin(ψ)
√

β0

β (cos(ψ)− αsin(ψ))

[ u0

u′0

]
.

(6.2)
This shows the relationship between the Twiss parameters and the focusing

system (recalling that γ ≡ 1+α2

β ). If the focusing strength of a quadrupole is
varied, the matrix above will re�ect this change. Alternatively, a variation of
β measured downstream from a quadrupole change can be used to resolve the
magnitude of the change in focal strength.

The rayTrace procedure can readily identify local optics changes; this reso-
lution test serves to demonstrate this ability. It also will test the procedure's
ability to resolve the magnitude of the change in quadrupole focusing strength.
By �tting transfer matrices to the region of the change both before and after
the changes, and comparing the resultant matrices to the expected value, the
level of accuracy for this procedure can be determined.

6.2 Experimental Description and Setup

For this test, I not only wanted to detect an optics change in the machine;
I wanted to localize the change and resolve its magnitude. After tune-mode
beam was established (10 µA, 2 Pass beam), a launchpoint at the beginning of
ARC1 was selected (IPM1S05), and two upstream correctors were automatically
selected by the rayTrace program. An emittance of 8.00 × 10−6 cm-rad was
desired. For the X-plane, this corresponds to an orbit size of 1.314 mm at 1S05.
It was decided that 32 points along the launchpoint phase ellipse would allow
for adequate resolution, and two turns around the ellipse were taken (for a total
of 64 points per plane) to be sure that the beam did not drift during the test
and that hysteretic concerns were properly accounted for. All energy and orbit
locks were disabled in the relevant areas.

While this process took place, I also ran a Perl script that interacts with
the elegant-based model decks to provide a Twiss table of the model optics
that can be used to calculate the angular components of the data.

After setting up the machine, a baseline test was run where no aspect of the
machine was changed. Once data for both planes was acquired, the setting of
a quadrupole toward the end of ARC1 (MQB1R01) was changed +20% (from
2994.540 G-cm to 3593.448 G-cm), and rayTrace was run again. After this, the
same quadrupole was changed to -20% of the original value (down to 2395.632
G-cm), and �nally it was set back to the original setting so that a second
baseline reading could be acquired. All of these tests ran properly, although
there was beam loss during the positive quadrupole change test. The North
Recombiner region temporarily lost beam, although it was unrelated to the
optics change. There were also several RF trips during the test, but these are a
normal occurrence during running and data acquisition is automatically paused
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until beam is restored.

6.3 Analysis of Resolution Test Data

6.3.1 Initial Analysis

The initial analysis of the data from this test was performed without any noise-
reduction techniques. Raw data was analyzed directly using the techniques
that had been used in previous tests. The data and model information was
gathered as described in Section 6.2. This data is automatically formatted in
such a manner that each column represents a single BPM, and each row is a
measurement. An example of a plot of the raw data for each BPM in Arc 1
(X-Plane) can be seen in Figure 5.3.

This data and model information is then fed into the fitphase program, as
described in Section 4.2.3. From this, phase ellipse plots and data on the Twiss
parameters are produced, and qualitative checks are performed to make sure
that the data obtained from the test is adequate.

Figure 6.1: β Through ARC1 and LINAC2: Comparing Data and Model
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Figure 6.2: Emittance (ε) Through ARC1 and LINAC2: Full Scale

Figure 6.3: Emittance (ε) Through ARC1 and LINAC2: Zoomed In

Looking at the initial data, one can see that the overall trend of β (Figure
6.1) and behavior of the emittance (Figures 6.2 and 6.3) acts properly, albeit
with higher levels of noise. The β peaks in the data generally align with the
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peaks in the model, especially in the linac, where the level of noise is less. The
emittance appears to remain relatively constant in the arc, where there is no
acceleration, with the exception of some excessively noisy BPMs (indices 28
and 29). Once the emittance enters the linac, it decreases as expected due to
acceleration damping. This is encouraging, in that even through the noise of
the system, the measurements indicate an overall behavior which is expected.

In looking at this data, it is clear that, most noticeably in the arc, system
noise degrades the accuracy of our Twiss parameter measurement. As an ex-
ample of the phase ellipse created for a single BPM, Figure 6.4 shows that this
noise is present both in the measurement of the position and the calculation of
the angle found from the position data and the model optics. This dilutes the
accuracy of the phase ellipse that is �t to this data, and therefore the calculation
of the Twiss parameters.

Figure 6.4: Phase Ellipse From Raw Data

In order to improve the accuracy of the Twiss parameter calculations, the
noise and errors in the raw data must be reduced. I performed this reduction
using singular value decomposition (SVD).
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6.3.2 Noise-reduced Analysis

6.3.2.1 Comparing Raw and Noise-Reduced Data

Once the initial analysis was performed, I then detrended the data and reduced
the noise, as described in Section 5.2. An example of the detrended, raw data
can be seen in Figure 5.4, and the noise-reduced BPM data can be seen in Figure
5.11.

Comparing �rst the values of β for the raw data and the noise-reduced data
(see Figure 6.5), it can be seen that in areas with increased noise such as the
center region of ARC1, the SVD analysis has altered the values of β, while in
areas with less noise such as LINAC2, the values are much closer to the original
values.

Figure 6.5: Comparison of Raw and Noise-Reduced β From Baseline Data

A more-telling manner in which to see the improvement of the Twiss param-
eter measurements is to compare the emittance as calculated from the raw and
noise-reduced data. Figures 6.6 and 6.7 show the level of improvement of the
baseline data. Notice that extremely large spikes in the arc have been reduced
greatly, and that the overall trend of the emittance can more readily be observed
as constant in this region. Furthermore, the proper acceleration damping in the
linac is maintained.
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Figure 6.6: Comparison of Raw and Noise-Reduced ε From Baseline Data: Full
Scale

Figure 6.7: Comparison of Raw and Noise-Reduced ε From Baseline Data:
Zoomed In
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It is important to note that there are two points in the arc that have low
levels of noise where the emittance seems to drop signi�cantly below the rest of
the values. The �rst of these points, located near index 10, can be attributed
to the use of switched electrode electronics (SEE) BPMs rather than 4-channel
BPMs located throughout the rest of the arc. These BPMs report di�erently
than the 4-channel BPMs, and thus the values will be di�erent. For more on
the di�erences of these BPMs, please see Section 1.3. The second of these dips,
located after index 40, is due to the location of the BPMs in the recombiner
chicane. At this point, the beamline undergoes a rapid change in direction,
and it is believed that these BPMs may be reporting incorrect values due to
misalignments.

One further comparison should show the degree to which these signals are
cleaned up through this procedure. In Figure 6.8, one can see the before and
after images of the same phase ellipse plot for a BPM near the beginning of
ARC1. Notice that the center has been moved to the zero point, and that the
scale has changed between the two plots. Listed at the top of each plot is the
BPM name (IPM1S07), the value for α, and the value for β. In this speci�c case,
the value of β has remained nearly the same, but the value for α has changed
signi�cantly from 0.069 to 0.203 after the reduction process. Because emittance
is proportional to the area of the phase ellipse (A = πε), and emittance can be
de�ned in terms of the Twiss parameters as

ε = γx2 + 2αxx′ + βx′2,

it is clear that a signi�cant change in α will change the value of the emittance,
which is why in the plots comparing the raw and reduced emittances (Figures
6.6 and 6.7), the emittance values improved. I used this improved data set to
analyze the resolution test.

Figure 6.8: Comparison of BPM Phase Ellipse Before and After Noise Reduction
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6.3.3 Localizing A Known Optics Change

In order to meet the goals of this experiment, one must be sure that each of
the four runs acquired usable data. One way to check for this is to compare
the two baseline measurements that were taken prior to and after varying the
quadrupole settings, called Baseline 1 and Baseline 2, respectively. Figure 6.9
shows the comparison of the derived emittance, ε, for the two baseline tests.
From this, it is apparent the the general trends are the same, and that the
emittances for each agree well in areas of low noise. It is important to note
that the arc region contained several points of higher-noise BPMs (index 23, 28,
and 29), which will in�uence the calculation of the Twiss parameters nearby.
Therefore, with several noisy BPMs in the arc, there will be more noise present
in the overall region than simply at those BPMs.

Figure 6.9: Comparison of Baseline ε

Looking at a comparison of the baseline β, values, it can be seen that there is
almost a perfect match throughout the arc and the linac. The exception to this
match is, again, found in the areas of higher noise. Figure 6.10 shows the plot
of the baseline values of β through ARC1 and LINAC2. The fact that these two
signals overlay through this section of the machine means that this procedure
is very reproducible in its results. The two baseline tests took place with two
quadrupole changes in between, separated by approximately 45 minutes.
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Figure 6.10: Comparison of Baseline β

Meeting the �rst goal of the resolution test, the localization of an optics
change, is accomplished by overlaying the plots of the calculated β values for
all four tests. One can clearly see in Figure 6.11 that the values of β for all four
tests overlay through ARC1, matching nearly perfectly with the exception of the
higher-noise regions. Looking at Figure 6.12, it is clear that the overall trend of
the emittance remains nearly the same for all four tests, which is expected.

Looking at Figure 6.11, or for a more detailed plot, Figure 6.13, one can see
that at index 39, all four points overlay. At index 40, however, two points overlay
(the baseline measurements), and the other two points are distinctly separated.
This separation maintains itself through the rest of the linac. This means that
something in the optics has changed between indices 39 and 40. This is also
where the quadrupole that we varied, MQB1R01, is located. Furthermore, the
values of β for the positive and negative quadrupole changes vary as expected
with respect to the baseline values, with the positive change on one side of
the baseline and the negative change on the other side. This demonstrates the
procedure's ability to localize an optical change, meeting one of the goals of this
test.
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Figure 6.11: Overlaid β Through ARC1 and LINAC2

Figure 6.12: Overlaid ε Through ARC1 and LINAC2
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Figure 6.13: Overlaid β At End of ARC1 Through LINAC2

6.3.4 Resolving the Quadrupole Change

The second goal of this resolution test is to investigate this procedure's ability
to �nd the magnitude of a known change in a quadrupole. The procedure has
been successful in �nding the location of the optics change that was the result
of varying a quadrupole by a known amount. Looking at Figure 6.13, it can
be seen qualitatively that the focusing has been changed at this location. This
second goal aims to quantify the magnitude of this change.

6.3.4.1 Mathematical Review

In order to describe how the value of the quadrupole strength was determined, a
brief mathematical background will be revisited. For simplicity of description,
the following mathematical explanation will use the thin lens approximation.
However, the �tting routine used to do the real analysis did not use this approx-
imation, and took into account the dimensions and strengths of every element
in the relevant area.

In order to �nd the strength of a given quadrupole from the data gathered
and calculated by the rayTrace procedure, knowledge of the local machine and
model optics must also be known. To reduce the amount of unknown contribu-
tions to the signal, using as short a section of beamline as possible is best, as
there are less components that can contribute to the optics. Already having po-
sition data at each of the two BPMs surrounding the quadrupole, as well as the
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angular information as calculated by the procedure, calculating the quadrupole
strength can be accomplished by extracting it from the relevant transfer matrix
component through a least squares �t.

Recalling that the matrix for a driftspace can be written as

Md =


1 L 0 0
0 1 0 0
0 0 1 L
0 0 0 1

 , (6.3)

and that a thin lens quadrupole can be written as

Mq =


1 0 0 0
− 1
Fx

1 0 0

0 0 1 0
0 0 − 1

Fy
1

 , (6.4)

where L is the length of the driftspace, and Fx and Fy = −Fx ≡ −F are the
focusing terms for the X and Y planes of the quadrupole, respectively, one
can multiply these matrices together to �nd the total transfer matrix of the
quadrupole-drift system:

MdMq =


1 L 0 0
0 1 0 0
0 0 1 L
0 0 0 1




1 0 0 0
− 1
F 1 0 0

0 0 1 0
0 0 1

F 1

 ,

=


1− L

F L 0 0
− 1
F 1 0 0

0 0 1 + L
F L

0 0 1
F 1

 = M. (6.5)

This transfer matrix can then be used to �nd the trajectory of the particle beam
as 

x2

x′2
y2

y′2

 =


1− L

F L 0 0
− 1
F 1 0 0

0 0 1 + L
F L

0 0 1
F 1



x1

x′1
y1

y′1

 . (6.6)

Instead of using this equation to �nd the trajectories at the second (downstream)
point, one can use knowledge of the trajectories at both the upstream and
downstream points to �nd the terms of the transfer matrix. If there is knowledge
of some of the terms of the transfer matrix, such as the length of the drift, then
one can �nd the other terms. This is how the focusing term was found.

For the quadrupole that was changed, MQB1R01, the trajectory informa-
tion for the upstream (IPM1R01) and downstream (IPM1R02) BPMs was used
in combination with knowledge of the drift length (and quadrupole length) to
calculate the focusing term of the transfer matrix. After reducing the noise of
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the BPM data using SVD (see Chapter 5 and Section 6.3.2), the angular infor-
mation was calculated with fitphase, as described in Section 4.2.3. Because
this angular information depends upon the accuracy of the model, it was de-
cided that it was only necessary to use this information at the upstream BPM.
This is possible because the linear optics at CEBAF are uncoupled, and only
one angular term per plane is necessary to �nd the focusing term. This can be
seen in looking at the equation for the X plane:

M11x1 +M12x
′
1 +M13y1 +M14y

′
1 = x2,

(1− L

Fx
)x1 + Lx′1 + 0 + 0 = x2,

(1− L

Fx
)x1 + Lx′1 = x2. (6.7)

Similarly for the Y plane:

(1− L

Fy
)y1 + Ly′1 = y2. (6.8)

One can then solve Equations 6.7 and 6.8 for the focusing terms.
To do this for all of the data points at both BPMs, and to take into ac-

count the thickness of the lens and other components of the beamline between
IPM1R01 and IPM1R02, a Mad-X �tting routine was written that using the
same principles just described.

6.3.4.2 Fitting With Mad-X

Equations 6.7 and 6.8 can be rewritten by putting all of the terms on one side
of the equation. In general coordinates, this looks like

u2 −Miiu1 −Mklu
′
1 = 0, (6.9)

where u is either x or y, Mkl is M12 for the x plane or M34 for the y plane,
and Mii is M11 for the x plane and M33 for the y plane. Since the values of
u1 and u2 are known from the BPM readings (and the noise has been reduced
using SVD), u′1 has been calculated from the smoothed data by fitphase, and
L is known from the model, the only unknown term is Mii, which contains the
quadrupole focusing term. For focusing in the X-plane, one de�nes k = 1

Bρ
∂By

∂x

and recalls that in a quadrupole, ∂Bx

∂y = −∂By

∂x . Then Mii for a lens of length l
may be written as

M11 = cos(
√
kl)−

√
kL sin(

√
kl), (6.10)

M33 = cosh(
√
kl) +

√
kL sinh(

√
kl). (6.11)

Here Bρ is the magnetic rigidity of a central reference orbit and depends upon
the momentum of the particle beam and is constant when the momentum is
constant in the magnet. Thus, the only unknown term in Equation 6.9 is the
quadrupole strength.
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To �nd this quadrupole strength, a �tting routine was written in Mad-X

which varied the strength of the quadrupole in order to satisfy

N∑
m=1

(um2 −Miiu
m
1 −Mklu

′m
1 )2 = 0 (6.12)

for each plane, where m is the total number of data points. Since u2 is a mea-
sured value, andMiiu1+Mklu

′
1 is a value that is calculated by the �tting routine

and must equal u2, then satisfying Equation 6.12 is analogous to minimizing a
χ2. It is important to note, however, that because the values used for u in this
process have already been smoothed using singular value decomposition, this is
not a statistical χ2 minimization. Instead, the χ2 in this instance represents a
function to be minimized. Furthermore, recalling that

χ2 =
∑ 1

σ2

(xf − xcalc)2

(N − 1)
, (6.13)

one can solve for σ, which would give an estimate (in units of distance from
beam pipe center) of the error for the system of BPMs used in the calculation:

σ =

√
χ2
∑ (xf − xcalc)2

N − 1
. (6.14)

In the Mad-X script, which is shown in Appendix B.1.2, the input �les in-
clude x, x′, y, and y′ data for both of the BPMs used for the �tting; in this
case IPM1R01 and IPM1R02. Although included in the input �le, the angular
information is not used for the second BPM. A lattice �le, complete with beam-
line components, their lengths, and any e�ects they may have on the optics, is
also an input. The script uses this lattice �le to de�ne the parameters of the
beamline between the two BPMs, including the quadrupole that was changed
for this test, MQB1R01. The momentum, which is constant through the Arc
sections of the accelerator, is de�ned for this section of beamline as pc = 0.61
GeV, which then de�nes Bρ, as Bρ = pc

0.2998 [6]. Mad-X then calculates the Twiss
parameters and transfer matrix between the BPMs.

The script then loops through each data point and calculates (u2−Miiu1−
Mklu

′
1)2 for each plane, as well as for both planes together. Each iteration is

then added together, giving
∑

(u2−Miiu1−Mklu
′
1)2. Looking at Equation 6.9,

one can see that this sum must equal zero. The Mad-X routine will minimize
this function, reaching a value close to zero:

N∑
m=1

(um2 −Miiu
m
1 −Mklu

′m
1 )2 =

N∑
m=1

∆2
m. (6.15)

Equation 6.12 is set as a constraint in the �tting routine. All other terms
are constants. The script will then vary only the strength of the MQB1R01
quadrupole in order to meet the conditions de�ned by the lattice and Equation
6.15. Once the conditions are met, the quadrupole strength is recorded, then
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Table 6.1: Summary of Results

converted to gauss. In order to perform this minimization and �ndMii, one can
take the derivative of Equation 6.12 with respect to Mii:

N∑
m=1

(um2 −Miiu
m
1 −Mklu

′m
1 )um1 ≡ 0,

−Mii

N∑
m=1

(um1 )2 = Mkl

N∑
m=1

u′m1 u1 −
N∑
m=1

um1 u
m
2 ,

Mii =
1∑N

1 (um1 )2

[
N∑
m=1

um1 u
m
2 −Mkl

N∑
m=1

u′m1 um1

]
. (6.16)

The �nal value of Equation 6.15 should be close to zero. Dividing this value
by the number of data points and taking the square root should give a value for
σ:

σ =

√∑N
1 ∆2

m

N − 1
. (6.17)

Converted to units of micrometers, this value roughly estimates the resolution
error of the BPM system in this section that remains after SVD analysis for
each of the four test runs.

In order for this test to be successful, the values of the quadrupole calcu-
lated through this �tting routine must show a change in the quadrupole setting
that is close to the 20% change that was entered into the control system. The
results of this test are summarized in the table in Table 6.1. The calculated
quadrupole value in this table is that calculated for both planes simultaneously.
The archived quadrupole value is that reported by the archive system for the
time of the test. σ is calculated for each of the four test runs. It is clear from
looking at this table that the 20% quadrupole change in both the positive and
negative directions is very nearly resolved, with all values being less than 1%
away from the expected value of ±20% for the Positive and Negative test run
and 0% for the Baseline 2 test run.
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6.3.5 Uncertainty Analysis

An accelerator system is a complex arrangement of components that contribute
to the noise and uncertainty of any measurement that is taken. In addition
to errors and noise in the components themselves, external factors such as vi-
brations, temperature, and electrical �uctuations will increase the contribution
of uncertainty to any measurement. In order to quantify the uncertainty that
may remain in the �nal results of this test, the same procedure was performed
on several quadrupoles which, according to the archive, remained at a constant
setting throughout the four test runs. These quadrupoles share common traits
with MQB1R01; all are in the Arc 1 region of the accelerator, and all are the
only quadrupole between the adjacent BPMs. All of these quadrupoles are lo-
cated upstream of MQB1R01, which means that the BPM readings for all four
test runs should be the same.

The results of this uncertainty analysis is shown in Table 6.2. Each row
in this table contains the data for each of the �ve quadrupoles that were held
constant for this analysis. The four columns labeled with the di�erent test runs
(Baseline 1, Positive, Negative, and Baseline 2) show the value of the quadrupole
setting in gauss as calculated by the Mad-X routine from the data. The column
labeled �Average� is the average quadrupole strength from the four test runs
for each quadrupole. The �Archived Value,� also in gauss, is the value that
the quadrupole was set at according to the machine archive. The �Avg. %
Di� of Arch.� is the percent di�erence between the average quadrupole setting
and the archived quadrupole setting. The �Spread� is the range of values of
the quadrupole strength calculated from the four test runs. The �Spread % of
Arch.� and �Spread % of Avg.� columns are a measure of the size of the spread
compared to the archived and average values of the quadrupoles, respectively.
Finally, the �Avg. Sigma� column is the average value of the calculated σ for
each of the quadrupoles, measured in micrometers.

Looking at the average value of the quadrupole setting compared to the
archived value, one can see that the calculated values are near the archived value,
with the largest deviation occurring at 1A38. One cannot expect to calculate a
value that is exactly the same as the value projected from the archive, as there
are unknown levels of error in the archived value as well as the calculated value.
This comparison is mostly performed to make sure the values that are being
calculated are in the right neighborhood.

A more important measure is the spread of the values calculated for the four
test runs. A large spread in these values would mean that the reproducibility
of the quadrupole value calculation is poor, while a small spread would mean
greater reproducibility. One would expect the spread to be only a few percent of
the average or archived value, as the stability range of the quadrupole strength is
also of this magnitude. For the �ve quadrupoles that were included in this study,
the spread of the quadrupole values ranged from 30-109 gauss, or approximately
1-5% of the average calculated value. Four out of the �ve quadrupoles had
spreads that were near 1% of the average value.

The σ values estimate the level of uncertainty that remains in the BPM
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system used for each calculation. For each of these calculations, two BPMs
were used; one upstream of the quadrupole and one downstream. The BPMs are
designed to perform within a σ = 50 µm speci�cation range. After smoothing
the data using SVD, this value is expected to decrease by some unknown amount.
One would still expect a σ in the tens of micrometers range, as all noise and
error contributions are not smoothed out in the SVD procedure. For four of the
�ve BPM pairs, 21 µm ≤ σ ≤ 32 µm, which is a reasonable estimation of the
remaining uncertainty of the BPM pair system. For the BPM pair surrounding
MQB1A29, σ ≈ 80 µm, which is higher than the 50 µm speci�cation. This
means that one or both of the BPMs, or some other system which in�uences
the BPMs around this quadrupole have a higher-than-expected uncertainty, even
after the uncorrelated signal contributions have been removed with SVD.

One possible cause of this extra noise is a very small RMS beam size in one
plane at either BPM. Looking at Figure 6.14, one can see that in the X-plane,
the RMS beam size for IPM1A29 (at BPM Index 32 in the �gure) is smaller than
anywhere else in the area. This means that the measurement at IPM1A29 will
have a greater noise contribution. In fact, both quadrupoles that use IPM1A29
in the calculation (MQB1A28 and MQB1A29) have higher σ calculations, which
strengthens the argument that the small beam size in the X-plane at IPM1A29
contributes to the overall uncertainty and a higher value for σ. The e�ect of this
noise from BPM IPM1A29 will be magni�ed when looking at the MQB1A29
quadrupole because of its close proximity to the magnet itself. At CEBAF,
beam position monitors are generally placed just before the quadrupole, with
little to no drift space in between the end of the BPM and the beginning of the
quadrupole, such as in Figure 1.4. IPM1A29 is located on the same girder as
MQB1A29, and its noise level is high compared to its signal due to the small
beam size. A noisy signal entering a quadrupole will lead to a greater number
of possible trajectories through the lens, which can in turn reduce the accuracy
of the �t.

This is re�ected in the value of σ. Looking back at the de�nition of σ,
Equation 6.17, one can see that, given the same number of data points, a larger
value of

∑N
1 ∆2

m will result in a larger σ. This summation will be larger, as the
minimization process will yield a larger number because the �t is not as good.
If the BPMs in system a have less noise in them than the BPMs in system b,
system a will have a larger value for

∑N
1 ∆2

m:

σa =

√∑N
1 ∆2

m,a

N − 1
,

σb =

√∑N
1 ∆2

m,b

N − 1
,

N∑
1

∆2
m,a >

N∑
1

∆2
m,b,

∴ σa > σb. (6.18)
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6.3.6 Interpretations

There were two main goals for this resolution test. The �rst is to localize a
known optics change. The second is to resolve this known optics change. Both
of these goals are important, as the accelerator operations group would need to
be able to perform this sort of task with a characterization tool.

The rayTrace procedure was able to clearly localize the optics change to
an area between the two beam position monitors, IPM1R01 and IPM1R02.
This is where the quadrupole was changed for this experiment. Looking at
Figures 6.11, 6.13, and 6.14, it is clear both from the plots of β and the plots of
the RMS beam size that two Baseline measurements remained overlaid, while
the Positive quadrupole change and Negative quadrupole change measurements
diverged in opposite directions from the Baseline trajectory after IPM1R01 (at
BPM Index 39) and remained separated throughout the South Linac. The
Baseline measurements remained along the same trajectory. These trajectories
all behave as expected, given the nature of the optics change.

Had the Positive and Negative trajectories not remained separated, or had
the Baseline trajectories deviated from each other after this point, one would
have to assume other changes had been made in the optics of the machine, or
that signi�cant errors were present. One can see the e�ects of errors between
BPM Index 20 and 30 in Figures 6.9, 6.10, 6.11, and 6.12. In the plots of
emittance, there are clear di�erences between the two Baseline measurements.
Similarly, in the plots of β, the values should overlay in this region but do not.
This is because of the increased error present in some of the BPMs in this region.

In the region of the quadrupole change however, the BPM noise was com-
parable to that of the rest of Arc 1. This is fortunate, as it allowed for a
straightforward identi�cation of the optics change. Had the change occurred
in an area of higher noise, localization would have likely been possible, though
perhaps not as precise. For example, the change may have been localized to
within a range of a few BPMs instead of between two.

The rayTrace procedure was also able to resolve the magnitudes of the
changes set into the strength of quadrupole MQB1R01. Table 6.1 shows that
for both the 20% Positive and 20% Negative changes in quadrupole strength,
the rayTrace procedure could resolve better than a 19% change in each direc-
tion. Furthermore, the two Baseline values are within 1% of each other, which
demonstrates both the high level of reproducibility in MQB1R01 and the reso-
lution that this procedure is able to achieve. Additionally, the values of σ range
from just over 30 µm to just over 53 µm, and average to 43 µm, which is a very
reasonable level of noise among the BPM pair surrounding the quadrupole.

Looking at Table 6.2, one can see that the spread of the quadrupole values
calculated from four di�erent test runs for �ve di�erent quadrupoles are a small
percent of the average quadrupole value. Four of the �ve quadrupoles had
spreads that were less than 1.5% of the average quadrupole strength. Only one
quadrupole had a spread that was larger, and it was under 5%. These small
spreads con�rm the rayTrace procedure's ability to resolve the strength of a
quadrupole, and also demonstrate the stability of the quadrupoles.
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All of the values for σ are reasonable, most falling between ∼ 20−30 µm, and
one quite a bit higher at ∼ 80 µm. Since the speci�cations for the BPM system
have a value of σ = 50 µm for each BPM, and singular value decomposition is
performed on the data prior to �tting, one would expect σ for a pair of BPMs
to be on the same order as a single BPM. If one or more of the BPMs has a
greater noise contribution, either due to a small signal-to-noise ratio or due to
noise in the electronics itself, this value will increase, as happened for the BPMs
surrounding MQB1A29.

Had the resolution test been performed using MQB1A29 instead of MQB1R01,
there would have been an increased uncertainty in the BPM readings, and this
would result in a higher value for σ. This may have reduced the measurement
resolution of the quadrupole change.

6.3.7 Conclusions of Resolution Test

The resolution test succeeded in meeting its two primary goals. Using the
rayTrace procedure, a known optics change was both localized and resolved.
The change was determined correctly to be between IPM1R01 and IPM1R02.
Since the only component of the beamline between these two beam position
monitors that could cause a change in the optics is quadrupole MQB1R01, the
observed change in linear optics must be due to this quadrupole.

The strength of MQB1R01 was varied in the control room from a Baseline
value by ±20% and then back to its Baseline value. Data was collected according
to the protocols of the rayTrace procedure. The uncorrelated contributions to
the BPM signal, including system noise and other unknown contributions, were
removed using singular value decomposition. This smoothed data was then used
as an input into the fitphase program, where the angular components of the
phase ellipse were calculated. Using this (u, u′) data, the Twiss parameters were
calculated. Overlaying the plots of β for each test run showed that, with the
exception of areas with highly noisy BPMs, β for all four test runs overlaid
throughout Arc 1 until IPM1R01. At this point, the two Baseline test runs
remained overlaid, while the Positive test run and Negative test run diverged
from the Baseline values in opposite directions and remained separate through
the South Linac. This separation occurred at one speci�c point, and so the
optics change must have occurred between IPM1R01 and IPM1R02. This is
exactly where the quadrupole was varied.

Next, the (u, u′) data, along with a lattice �le containing all of the elements
between IPM1R01 and IPM1R02, inclusive, used as inputs to a �tting routine
in the Mad-X program. This program used the input data as a set of constraints
de�ning the beamline in this area. Then the �tting routine varied the strength of
quadrupole MQB1R01 until the constraints were met as well as possible. Once
the constraints were met, the value of the quadrupole was recorded in units
of gauss. The approximate noise of the BPM pair surrounding the quadrupole
was also recorded. These values were recorded for each of the four test runs.
The approximate noise was within a reasonable range for all cases, and the
quadrupole values were close to the value indicated by the machine archive. The
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calculated change of the quadrupole value through the four test runs were very
close to the expected values. The Positive and Negative quadrupole strength
changes were 20% as indicated by the control room settings and archive values.
The calculated values for these were over 19% for both cases. The second
Baseline value was less than 1% di�erent than the original Baseline value.

Uncertainty analysis was performed using �ve quadrupoles which remained
set at a constant value during the four test runs. All �ve of these quadrupoles
are upstream of MQB1R01, so there should exist no di�erence in the trajectories
for the four di�erent test runs. Di�erences were taken of the extreme values of
the four measurements, and this value was compared to the average value of all
four tests. In all cases, the spread of the quadrupole strengths was less than 5%
of the average value for all four test runs, and in fact were under 1.5% for all
but one case. Additionally, all values of σ were within a reasonable range.

This test was successful in both localizing and resolving a known optics
change to within 1% of the value indicated by the machine archive. However,
if this procedure was only able to resolve this change at the 5% level, it would
still be useful for the Operations crew. This is due to the nature of machine
tuning. Once a problem is found with the optics of the machine, the crew will
continue to make corrections to the optics until such a time that it is deemed
insigni�cant. Should they only be able to localize the change in optics to a
region between several BPMs, they will troubleshoot the suspicious area until
the exact cause is found. Once the cause of the problem is located, they will
make corrections as necessary. If this procedure reports that the quadrupole
strength is 15% di�erent than expected, they will make an initial correction of
15%. However, they will not simply trust that the problem is gone and that the
optics are correct. They will investigate further and �nd that the quadrupole
value must be changed some small amount more in order for the optics to behave
as desired.

This resolution test demonstrates that the rayTrace procedure is capable of
characterizing the beamline. The information gathered through this procedure
can be used by the Operations crew to not only characterize sections of the
beamline, but also for tuning the machine.
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Part IV

Summary and Conclusion
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Chapter 7

Conclusions

7.1 Summary

Characterizing the beamline of an open-ended machine such as CEBAF at Jef-
ferson Lab poses a challenge that does not exist at circular machines. Tools
already exist that can help in this process, but they lack in several key areas.
As CEBAF completes its upgrade to 12 GeV, control of the beam parameters
must be improved, as tolerance for errors that are currently ignored will de-
crease. The rayTrace procedure is an attempt to address the weaknesses of the
current techniques, further supplementing the tools used by Operations to meet
the beam speci�cations of the experimental physics users.

The procedure is as follows:

1. Set up the machine for tune-mode (5−10 µA) beam, ensuring all relevant
orbit and energy locks are o�.

2. Acquire the model Twiss parameters from the Model Server.

3. On the rayTrace GUI, select the desired plane, launchpoint, optical pa-
rameters, number of data points, and number of times around the phase
ellipse.

4. Run the rayTrace data collection program.

5. Using the raw data, use fitphase to calculate the angular information
and Twiss parameters. This information can be used for qualitative char-
acterization, though the level of noise in the BPM system may limit use
for quantitative measurements.

6. Perform singular value decomposition on the detrended raw data in order
to reduce the uncorrelated contributions to the signal. This smoothed
data will then be used for quantitative analysis.

7. Use the smooth data as an input to fitphase. Recalculate the angular
information and Twiss parameters with this data.
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8. Use the results of Step 7 for any analysis.

A resolution test was performed as a demonstration of this procedure's utility.
This resolution tested the procedure's ability to localize and resolve a known
optics change. The optics change was made by varying the strength of a single
quadrupole by ±20% from a Baseline value which was measured both before
and after the quadrupole changes. A quadrupole was chosen near the end of
Arc 1, and the launchpoint for the rayTrace procedure was chosen near the
beginning of the same Arc. Data was collected through Arc 1 and Linac 2
(South Linac). This data was then smoothed using SVD, and analyzed using
fitphase. The location of the optics change was found by overlaying plots of
β for the four di�erent test runs and seeing where the runs corresponding to
the changed optics deviate from the Baseline values. A �tting routine in Mad-X

was used to calculate the values of the quadrupole that was changed. This
routine was able to resolve the changes made to the strength of the quadrupole,
calculating more than a 19% change in both the Positive and Negative tests,
and reproducing the Baseline value within 1%.

This resolution test was successful in meeting its two primary goals of lo-
calizing and resolving a known optics change. Furthermore, it demonstrates
the ability of the rayTrace procedure to be used for characterizing and tun-
ing CEBAF's beamline. This procedure could be used for characterizing other
open-ended beamlines as well.

7.2 Suggestions for Future Work

As the 12 GeV Upgrade concludes, the rayTrace procedure should prove to be
a useful tool for both the commissioning process and general operations during
the 12 GeV era. There are many ways in which this procedure can be improved
and expanded upon. This section will brie�y discuss a few of these.

One very obvious improvement would be to streamline the process so that
information can be used more rapidly. One way to do this would be to automate
much of the process. If the data acquisition procedure fed the data directly into
a program that could detrend it and perform SVD, allowing the user to choose
what cuts are needed, and then feeding this smoothed data into a fitphase-
based program, the turnaround on feedback to the Operations crew would be
much more rapid. This automated procedure should store all data at every step,
and also allow for the manual analysis. In many cases though, an operator could
use the automated system very quickly for troubleshooting the beamline.

An extension of this procedure would be to go beyond linear optics and
investigate rayTrace's use for nonlinear optics, as well as the low levels of cross-
plane coupling that exist in parts of the CEBAF beamline. Although X- and
Y -Plane data is gathered separately for X and Y kicks, respectively, cross-plane
data is acquired for each plane. In general, the cross-plane signal is on the same
order as the BPM noise, but it could be worthwhile to investigate methods to
improve on this.
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Appendix A

Additional Background

Development

A.1 Some Basic Physics

In order to understand the symplectic nature of beam physics, the classical
mechanics formulations will be discussed brie�y in this section. The discus-
sion will begin with the Lagrangian formulation. From there, the Hamiltonian
formulation will be developed.

A.1.1 Lagrangian Formulation

This section will brie�y discuss the Lagrangian formulation of classical mechan-
ics. For a more complete discussion, the reader is urged to consult any text on
classical mechanics, such as Goldstein or Laundau and Lifshitz [10, 14].

To begin this formulation, start with Hamilton's variational principle, which
states that the integral

J =

t1ˆ

t0

Ldt , (A.1)

when taken along a possible path of motion between t0 and t1, is an extremum
when evaluated along the true path. A simpler way of stating this is, out of all
of the possible ways that the system's con�guration could change in the given
time interval, the true motion which occurs will either maximize or minimize
the action of Equation A.1. One could also describe this statement as

δJ = δ

t1ˆ

t0

Ldt = 0 , (A.2)

where in both A.1 and A.2, L ≡ L(qi, q̇i, t) is the Lagrangian of the system.
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Given the constraint δqi = 0 at t0 and t1, equation A.2 evolves as:

δ

t1ˆ

t0

Ldt = 0

=

ˆ ∑
i

∂L

∂qi
δqidt+

ˆ ∑
i

∂L

∂q̇i
δq̇idt

ˆ
∂L

∂q̇i
δq̇idt =

ˆ
∂L

∂q̇i

d

dt
δqidt

=
∂L

∂q̇i

d

dt
δqi|t1t0 −

ˆ
d

dt

∂L

∂q̇i
δqidt

Due to �xed endpoints, the �rst term on the right is zero, so

δ

t1ˆ

t0

Ldt =

ˆ ∑
i

(
∂L

∂qi
− d

dt

∂L

∂q̇i
)δqidt

= 0 .

Assuming that the variations, δqi, are independent, the above statement can
only be true if its coe�cients separately vanish:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (A.3)

Equation A.3 is a representation of the Euler-Lagrange equation.
A simple way to describe the nature of the Euler-Lagrange equations is by

considering the case of a falling mass, m. Setting L = T − V = 1
2mv

2 −mgx,
one can simply solve A.3, getting the solution mv̇ −mg = 0. Furthermore, the
canonical momentum of the system can be de�ned as

Pi =
∂L

∂q̇i
. (A.4)

One important factor in the formulation of the Lagrangian is that it should
be independent of any speci�c frame of reference, and therefore a Lorentz invari-
ant. A simple way to accomplish this is to use 4-vectors to describe the system.
For example, to �nd the Lagrangian for a particle at rest, as observed from a
laboratory system that is moving in relation to the particle, one can start with
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the momentum-energy and di�erential space-time 4-vectors. Here,

(cpx, cpy, cpz, iE) = (0, 0, 0, imc2)

1

c
(dx, dy, dz, icdτ)(cpx, cpy, cpz, iE) = −mc2dτ

dτ =
1

γ
dt

γ =
√

1− β2

β =
v

c

L = −mc2
√

1− β2. (A.5)

For a charged particle in an electromagnetic (EM) �eld, the interaction de-

pends upon the charge, e, the velocity, v, and the �eld, A. Noting that ~A is
the vector potential and φ is the scalar potential, multiplication of the �eld and
velocity 4-vectors yields the Lagrangian as follows:

e(Ax, Ay, Az, iφ)γ(vx, vy, vz, i) = eγ( ~A~v − φ)

L = −mc2
√

1− β2 + e ~A~v − eφ. (A.6)

A.1.2 Hamiltonian Formulation

This section will brie�y develop the Hamiltonian Formulation, basing the dis-
cussion on the previous treatment of the Lagrangian.

Beginning with the Euler-Lagrange equation, A.3, where the Lagrangian
of the system is (from Equation A.6) L = −mc2

√
1− β2 + e ~A~v − eφ, one can

derive the equation for the Lorentz force, which governs the motion of a charged
particle in an EM �eld.

Several relationships must be described before one can simply plug the La-
grangian into the Euler-Lagrange equation. The relativistic terms are described
in the previous section. In addition to these, one must also know that the scalar
and vector potentials are related to the electric and magnetic �elds as:

~E = −∇φ− ∂ ~A

∂t
and

~B = ∇× ~A .

Furthermore, the relativistic kinetic momentum is given by ~p = γm~v. When one
solves the Euler-Lagrange equation for the Lagrangian above, then substitutes
these values and simpli�es, the Lorentz force is found;

d~p

dt
= ~F = e( ~E + ~v × ~B). (A.7)

Since ~p = γm~v and ~P = ∂L
∂q̇i

, one also �nds that ~P = ~p+ e ~A. Using this, the
Hamiltonian for particle motion is given by

H = ~P~v − L = c[(mc)2 + (~P − e ~A)2]
1
2 + eφ, (A.8)
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which gives Hamilton's equations of motion,

q̇i =
∂H

∂Pi
(A.9)

and Ṗi = −∂H
∂qi

. (A.10)

A.2 Symplecticity

In general, the particle beam in an accelerator obeys Hamiltonian dynamics.
One way to check for proper accelerator behavior is to make sure that this
statement holds true. One way to do that is to check that the transfer matrix
of the beam satis�es the symplectic condition, which is a Lie algebraic repre-
sentation of Hamilton's equations of motion. This section will brie�y describe
symplecticity.

When forces are derivable from a potential not involving the velocities, the
Lagrangian of a system can be decomposed into a sum of homogeneous functions
as

L(q, q̇, t) = L0(q, t) + L1(q, q̇, t) + L2(q, q̇t) (A.11)

where L0 is a homogeneous function of the generalized coordinates, L1 is a
homogeneous function of the �rst degree in q̇, and L2 is a homogeneous function
of the second degree in q̇. Even with with velocity-dependent potentials, the
Lagrangian for a charged particle in an electromagnetic �eld (Equation A.6)
satis�es this condition. When the Lagrangian can be decomposed as above, the
Hamiltonian can take the form

H(q, p, t) = q̇ipi − L(q, q̇, t)

= q̇ipi − [L0(qi, t) + L1(qi, t)q̇k + L2(qi, t)q̇kq̇m]. (A.12)

If there is no explicit time dependence in the equations for the generalized
coordinates, then this simpli�es as L2q̇kq̇m = T where T is kinetic energy. It is
further simpli�ed if the forces are derivable from a conservative potential, V, as
L0 = −V . If both of these speci�c conditions are true, then the Hamiltonian is
simply the total energy of the system, H = T + V .

Taking the case where

L(qi, q̇i, t) = L0(q, t) + q̇iai(q, t) + q̇2
i Ti(q, t),

with ai and Ti both being functions of q and t, the algebra can be further
simpli�ed. Letting the q̇i's form a column matrix, ~̇q, one can rewrite as

L(qi, q̇i, t) = L0(q, t) + ~̇qT~a+
1

2
~̇qT ~T ~̇q

where ~T is a n× n matrix whose elements are general functions of q and t, ~a is
a column matrix whose elements are general functions of q and t, and ~̇qT is the
transpose of ~̇q.
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For demonstrative purposes, taking the speci�c case where qi = {x, y, z} and
~T is diagonal, one �nds that

1

2
~̇qT ~T ~̇q =

1

2

[
ẋ ẏ ż

]  m 0 0
0 m 0
0 0 m

 ẋ
ẏ
ż


=

m

2
(ẋ2 + ẏ2 + ż2),

~̇qT~a =
[
ẋ ẏ ż

]  ax
ay
az


= axẋ+ ay ẏ + az ż

= ~a · ~̇r.

This makes the Hamiltonian

H = ~̇qT (~p− ~a)− 1

2
~̇qT ~T ~̇q − L0,

where ~T is symmetric. With a symmetric ~T , the conjugate momenta is a column
matrix ~p = ~T ~̇q + ~a. From this, one can �nd ~̇q = ~T−1(~p − ~a). The inverse of ~T
exists because kinetic energy has a positive de�nite property. This also de�nes
the transpose of ~̇q, ~̇qT = (~pT − ~aT )~T−1. Plugging into the de�nition of the
Hamiltonian, the functional form becomes

H(q, p, t) =
1

2
(~pT − ~aT )~T−1(~p− ~a)− L0(q, t).

For an accelerator, one must investigate the dynamics of a particle beam in
an electromagnetic �eld. This can be done in the way described above. The
following will look at the simpli�ed case of a single, nonrelativistic particle in an
electromagnetic �eld, where the Lagrangian is a simpli�ed version of Equation
A.6:

L =
1

2
m~v2 − qφ+ q ~A · ~v (A.13)

where the scalar potential, −qφ, is the L0 term of the Lagrangian, and the
vector potential, q ~A · ~v, is the L1 term. Choosing Cartesian coordinates, the
Lagrangian is

L =
m

2
ẋiẋi + qAiẋi − qφ

where the potentials are functions of xi and time. This gives a linear term in
generalized velocities, meaning matrix ~a has elements qAi. The Hamiltonian will
not simply be H = T +V because of this linear term, however, it will still be the
total energy of the system because the potential energy in the electromagnetic
�eld is determined by φ alone. The canonical momenta will be pi = mẋi + qAi.
The Hamiltonian can then be written

H =
1

2m
(pi − qAi)(pi − qAi) + qφ = E.
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Forming pi into a vector, ~p,

H =
1

2m
(~p− q ~A)2 + qφ.

For a system with n degrees of freedom, construct a column matrix ~η with
2n elements, where ηi = qi and ηi+n = pi, where i ≤ n. Next construct a
column matrix ∂H

∂~η which has the elements (∂H∂~η )i = ∂H
∂qi

and (∂H∂~η )i+n = ∂H
∂pi

.

Next, de�ne ~J as a 2n× 2n matrix composed of 4 n×n zero and unit matrices:

~J =

[
~0 ~1
~−1 ~0

]
where

~0 =

[
0 0
0 0

]
and

~1 =

[
1 0
0 1

]
.

The transpose of ~J is equal to its inverse, and its determinant is unity. With
these de�nitions, Hamilton's equations of motion can be written in what is called
symplectic notation:

~η = ~J
∂H

∂~η
. (A.14)

Expanded for a two-coordinate system, this would look like
q̇1

q̇2

ṗ1

ṗ2

 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



−ṗ1

−ṗ2

q̇1

q̇2

 . (A.15)
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Appendix B

Scripts

B.1 Example Lattice File and Mad-X Script

B.1.1 Lattice File

IPM1R01: MONITOR, L=0;

D102: DRIFT, L=0.29965;

MQB1R01: QUADRUPOLE, L=0.15, K1:=1.069580705130907, TILT=0;

D103: DRIFT, L=0.26815;

D130: DRIFT, L=0.70155;

ITV1R01: MONITOR, L=0;

D146: DRIFT, L=4.58065;

IPM1R02: MONITOR, L=0;

ARC1: LINE=(IPM1R01, D102, MQB1R01, D103, D130, ITV1R01, D146, IPM1R02);

B.1.2 Mad-X Script

+++++++++++++++++++++++++++++++++++++++++++

+ MAD-X 5.00.00 +

+ Production Version +

+ Code Modification Date: 28.02.2011 +

+++++++++++++++++++++++++++++++++++++++++++

option, -info;

readtable,file=1r01i.dat; //Initial BPM data

readtable,file=1r02f.dat; //Final BPM data

call,file=arc1_r01r02.lte; //Lattice file

pgevoc=0.6096583; // p/c

brho=pgevoc/0.2998; //B*rho

//Beamline Parameters:

beam,particle=electron,pc=pgevoc;
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use,sequence=ARC1,range=IPM1R01/IPM1R02;

twiss,rmatrix,betx=1,bety=1;

//Transfer Matrix Components

m11:=table(twiss,IPM1R02,re11);

m12:=table(twiss,IPM1R02,re12);

m33:=table(twiss,IPM1R02,re33);

m34:=table(twiss,IPM1R02,re34);

//Macro defining Initial and Final x, x', y, y'.

//Also defines X^2=(Uf-Mii*Ui-Mkl*Ui')^2

//for X-plane, Y-Plane, and X+Y Planes:

chi2_n(xx): macro={

x_i=table(initial,x,xx);

xp_i=table(initial,xp,xx);

y_i=table(initial,y,xx);

yp_i=table(initial,yp,xx);

x_f=table(final,x,xx);

y_f=table(final,y,xx);

chi2_m1_x_n_=(x_f*0.001-m11*x_i*0.001-m12*xp_i)^2;

chi2_m3_y_n_=(y_f*0.001-m33*y_i*0.001-m34*yp_i)^2;

chi2_tot_n_=chi2_m1_x_n_+chi2_m3_y_n_;

};

//Macro sets constraint that X^2=0.

//Also loops through all data points and sums results:

chi2: macro={

use,sequence=ARC1,range=IPM1R01/IPM1R02;

twiss,rmatrix,betx=1,bety=1;

m11=table(twiss,IPM1R02,re11);

m12=table(twiss,IPM1R02,re12);

m33=table(twiss,IPM1R02,re33);

m34=table(twiss,IPM1R02,re34);

chi2_m1_x_=0;

chi2_m3_y_=0;

chi2_tot_=0;

n_=1;

n_max_=table(initial,tablelength);

while(n_<(n_max_+1)){

exec,chi2_n($n_);

chi2_m1_x_=chi2_m1_x_+chi2_m1_x_n_;

chi2_m3_y_=chi2_m3_y_+chi2_m3_y_n_;

chi2_tot_=chi2_tot_+chi2_tot_n_;

n_=n_+1;

};
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};

//Macro that varies quadrupole strength and does fitting are below:

//For the X-Plane:

chi2_fit_x: macro={

match,use_macro;

vary,name=MQB1R01->k1,step=1.0e-6,lower=-4,upper=4;

use_macro,name=chi2;

constraint,expr= chi2_m1_x_=0;

jacobian,tolerance=1.0e-21;

endmatch;

};

//For the Y-Plane:

chi2_fit_y: macro={

match,use_macro;

vary,name=MQB1R01->k1,step=1.0e-6,lower=-4,upper=4;

use_macro,name=chi2;

constraint,expr= chi2_m3_y_=0;

jacobian,tolerance=1.0e-21;

endmatch;

};

//For the X+Y Planes:

chi2_fit_tot: macro={

match,use_macro;

vary,name=MQB1R01->k1,step=1.0e-6,lower=-4,upper=4;

use_macro,name=chi2;

constraint,expr= chi2_tot_=0;

jacobian,tolerance=1.0e-21;

endmatch;

};

//Define starting value for quad strength

//and execute fit for X-Plane:

MQB1R01->k1=0.9686859063;

exec,chi2_fit_x;

//Display the Final Penalty Function, the X^2 value,

//the quad strength in Tesla, and Sigma for the X-Plane:

value,tar,chi2_m1_x_,MQB1R01->k1,sqrt(chi2_m1_x_/(n_max_-1));

//Convert from Tesla to Gauss

qs:=MQB1R01->k1*brho*100; // Gauss/cm

qsl:=qs*MQB1R01->l*100; // Gauss
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//Display quad strength in Tesla and Gauss

value,MQB1R01->k1,qs,qsl;

//Execute fit for Y-Plane

exec,chi2_fit_y;

//Display Final Penalty Function, the X^2 value,

//the quad strength in Tesla, and Sigma for the Y-Plane:

value,tar,chi2_m3_y_,MQB1R01->k1,sqrt(chi2_m3_y_/(n_max_-1));

//Convert from Tesla to Gauss

qs:=MQB1R01->k1*brho*100; // Gauss/cm

qsl:=qs*MQB1R01->l*100; // Gauss

//Display quad strength in Tesla and Gauss

value,MQB1R01->k1,qs,qsl;

//Execute fit for X+Y Planes

exec,chi2_fit_tot;

//Display the Final Penalty Function, the X^2 value,

//the quad strength in Tesla, and Sigma for X+Y Planes:

value,tar,chi2_tot_,MQB1R01->k1,sqrt(chi2_tot_/(2*n_max_-1));

//Convert from Tesla to Gauss

qs:=MQB1R01->k1*brho*100; // Gauss/cm

qsl:=qs*MQB1R01->l*100; // Gauss

//Display quad strength in Tesla and Gauss

value,MQB1R01->k1,qs,qsl;

stop;
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