




Abstract

Credit scores are the primary vehicle for assessing the risk of loan applicants. Scores are

mapped to the likelihood of an applicant defaulting or becoming seriously delinquent on

the loan within a pre-determined period. The default probabilities are used to determine

the profitability and the capital requirement for each borrower. Scorecards are built

on historical data that are aggregated across many years and hence, possibly across

many economic cycles. However, there is evidence in literature that default rates should

be considered conditional on current and future economic conditions. This research

focusses on improving decision making in retail credit through consideration of future

economic conditions. The fundamental issue that we address is that the performance of

a acquisition decision policy may be dependent on prevailing economic conditions during

the loan period, and yet the policy must be specified and implemented before the loan

period and hence before the economic environment is known with certainty.

We addressed this research opportunity in four ways. Firstly, we develop methods

for incorporating forecasts of future economic conditions into acquisition decisions for

scored retail credit and loan portfolios. We suppose that a portfolio manager is faced

with two possible future economic scenarios, each characterized by a known probability

of occurrence and by known performance functions that give expected profit and volume.

We show that, despite the uncertainty of performance induced by economic conditions,

every efficient policy consists of a single cutoff score, provided the expected profit and

volume performance curves in each scenario are concave.
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Secondly, we prove that misestimating regulatory capital requirements in either di-

rection results in a negative impact on profit. A source of misestimation is due to errors

in forecasts of future economic scenarios, resulting in differences between the reserve

amount and the amount required under the realized economic condition. Thirdly, we

develop methods for incorporating forecasts of future economic conditions into acquisi-

tion decisions for a portfolio manager faced with capital constraints and costs.

Finally, we give consideration to decisions by borrowers faced with a sequence of

credit offers. From the definition of adverse selection in static lending models, we show

that homogenous borrowers take-up offers at different instances of time when faced with

a sequence of loan offers. We postulate that bounded rationality and diverse decision

heuristics used by consumers drive the decisions they make about credit offers. Under

that postulate, we show how observation of early decisions in a sequence can be infor-

mative about later decisions and can, when coupled with a type of adverse selection,

also inform credit risk during the period of account performance.
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Chapter 1

Introduction

1.1 Background

In many nations, risk scores are the primary vehicle for assessing the risk of applicants

for consumer or retail credit. Risk scores are produced using scorecards, which are

statistically-constructed models that map behavioral or financial data on an applicant,

such as payment history on other loans or home ownership, to a real-valued output. An

applicant’s score can be interpreted as an assessment, relative to others in the population,

of the likelihood that he or she will default or become seriously delinquent on the loan.

The core decision problem in portfolio acquisition is to set core cutoffs for one or more

scorecards to define a policy for accepting or rejecting individual accounts. Cutoffs are

chosen to achieve an acceptable tradeoff between conflicting business objectives, such as

maximizing profit, maximizing market share, and minimizing risk.

Typically, the scores are mapped to default rates independent of the prevailing eco-

nomic condition during account performance. However, there is evidence that default

rates should be considered conditional on current and future economic conditions [13, 48].

An opportunity for improved decision making in retail credit can be found in consider-
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Kanshukan Rajaratnam Chapter 1 Introduction 2

ation of future economic conditions on loan acquisition decisions. Suppose a portfolio

manager has access to scorecard performance in each of the multiple possible future

economic conditions and forecasts on the occurrence of future economic scenarios. We

consider methods to incorporate such conditional scorecard performance and forecast

information in credit lending decisions by the portfolio manager.

In analyzing a portfolio manager’s decision, we propose a simplified system of models

to capture the interrelationships between a consumer bank’s business decisions with re-

spect to consumer credit portfolios, its capital requirements, and the borrowers’ decision

to take-up a credit offer. The framework of our system is illustrated in Figure 1.1. In our

simplified system, there are four major stake holders; the portfolio manager represent-

ing the bank, the consumer, the regulator, and the share holders. A consumer bank’s

acquisition model drives the portfolio creation process that creates a consumer credit

portfolio. An important aspect of the acquisition model is the decision whether a bank

will offer credit to an applicant and the offer rate. When an offer is made, each con-

sumer in the offer population makes a decision whether to take-up the offer or not. The

loan portfolio, consisting of accounts opened by those borrowers accepting credit offers,

in turn drives the bank’s objective through the bank model. The bank model governs

objectives of owning such a portfolio, such as maximizing economic profits, maximizing

market share, and minimizing risk. Furthermore, the characteristics of the portfolio and

the risk models such as the capital adequacy models determine the capital requirement
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Figure 1.1: Interaction of stake holder decisions in a consumer lending system.

(equity)1 needed to cover the unexpected losses. The regulatory capital model is set

by the regulators in order to govern capital allocation in banks. The bank behavior

model describes how a bank operates in terms of risk tolerance and how it raises equity

capital from the share holders. The capital requirement, the bank behavior model and

potential borrowers’ decisions in turn affect loan acquisition decisions. The bank will

alter its acquisition policies commensurate with the amount of equity capital that it can

raise based on its behavior model.

In this dissertation, we incorporate forecasts of economic conditions into a portfolio

manager’s decision models with consideration given to decisions by consumers and to

regulatory models. For example, suppose a portfolio manager is faced with multiple pos-

sible future economic scenarios, each characterized by a known probability of occurrence

1For banks, capital refers specifically to equity whereas to non-depository firms, capital includes all

funding sources, i.e. debt, equity and quasi-equity. Capital requirement refers to equity requirement.
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and by known performance functions that give expected profit and volume. Suppose

account performance is dependent on the prevailing economic scenario. In making an

offer decision, portfolio managers face a trade-off maximizing profit and market share

while minimizing risk. Decision making in consumer lending can be improved when

considering future economic conditions in acquisition decisions.

A related problem in consumer lending is the amount of unencumbered capital to

retain for regulatory capital purposes. While it is the regulator’s intention to perfectly

model the credit risk to the bank, there are many potential sources of error that may

result in a misestimation of true capital requirements. Sources of error include lack

of model fidelity, errors in forecasts of inputs into the regulatory models, parameter

misestimation, failure to incorporate bank specific inputs, and non-stationarity of con-

sumer behavior. Basel I set the capital requirement at 8 percent of risk assets, while the

standard approach of Basel II sets it at 6 percent of risk assets. Neither of these require-

ments is tailored to the risk profile of the bank’s portfolio. The IRB approach of Basel

II, however, takes a bank-specific view of the capital requirement. Figure 1.2 shows the

capital requirement per unit of loan for different levels of portfolio risk, assuming loss

given default of one and homogeneous scores for the population.

The IRB approach of Basel II is generally recognized as being an improvement over

Basel I’s one-size-fits-all approach of 8 percent of risk assets, but for the moment let us

go beyond that and assume that IRB of Basel II is actually a perfectly accurate repre-

sentation of true capital requirements. From Figure 1.2, we observe that for portfolios
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Figure 1.2: Capital requirement per unit of loan under different regulatory functions

with loss given default of one.

with a probability of default below 0.037 or above 0.89, the capital requirements are

higher for Basel I than for Basel II IRB. One would conclude that Basel I overestimates

the true capital requirement for this range of portfolio probabilities of default. In con-

trast, capital requirements for Basel II IRB are higher than those of Basel I for portfolio

probabilities of default between 0.037 and 0.89. One would conclude that Basel I un-

derestimates the true capital requirement in these cases. Based on these observations,

we propose to study the impact on profit due to misestimation of regulatory capital.

Suppose misestimating regulatory capital results in negative profit impact. Since

default probabilities, which are input into the Basel formula, are conditional on future

economic scenarios, it follows that an opportunity for improved decision making in con-
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sumer lending can be found in consideration of future economic conditions on regulatory

capital decisions.

A further improvement in credit decisions is giving consideration to borrowers’ de-

cision in take-up or rejecting a credit offer. Oliver and Thaker [28] show there is a

relationship between take-up rates and default rates. This indicates, consumers’ deci-

sion to take-up credit offers during acquisition period may be informative on default

rates under future economic conditions. Hence, there may be opportunity for improved

decision making by considering consumer decision to take-up or reject a credit offer.

1.2 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we review the literature on

portfolio manager’s credit scoring decisions, regulatory models and borrowers’ decision

heuristics when considering a credit offer. This is followed by an introduction to basic

notation for credit scoring and decision making, along with concepts for the evaluation

of the business worth of a portfolio of credit accounts in Chapter 3.

In Chapter 4, we develop methods for incorporating forecasts of future economic

conditions into acquisition decisions for scored retail credit and loan portfolios. We

suppose that a portfolio manager is faced with two possible future economic scenarios,

each characterized by a known probability of occurrence and by known performance

functions that give expected profit and volume. We suppose further that he must choose
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in advance the scoring strategy and score cutoffs to optimize performance. Our goal is

to map every efficient decision for a portfolio manager maximizing expected profit and

market share.

In Chapter 5, we theoretically examine the performance implications of misestimating

the regulatory capital requirement for a portfolio manager in a stylized consumer bank.

Our aim is to show the impact on profits due to misestimation of regulatory capital

requirements.

In Chapter 6, we extend the decision problem studied in Chapter 4 by incorporating

the cost of regulatory capital in to the business metrics. We assume a portfolio manager

operates under capital constraints when making portfolio acquisition decisions. Given

Basel II capital requirement and the negative impact on economic profit of misestimat-

ing the regulatory capital as shown in Chapter 5, the risk-neutral portfolio manager

must choose both a cutoff score and its associated level of capitalization at acquisition

stage, i.e., prior to account performance. We construct the set of efficient operating

points in the market-share and profit space for a portfolio manager operating under the

assumption account performance is independent of the prevailing economic condition.

We extend this to develop methods in constructing the efficient frontier for a portfolio

manager operating under the assumption of multiple future economics scenarios.

Chapter 7, we give consideration to the impact on acquisition decision due to borrow-

ers’ take-up decisions. From the definition of adverse selection in static lending models,

we show that homogenous borrowers take-up offers at different instances of time when
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faced with a sequence of loan offers. We postulate that bounded rationality and di-

verse decision heuristics used by consumers drive the decisions they make about credit

offers. Under that postulate, we show how observation of early decisions in a sequence

can be informative about later decisions and can, when coupled with a type of adverse

selection, also inform credit risk during the period of account performance (regardless of

future economic conditions). We show through two examples how lenders may use such

information in setting their offer rates.

Conclusions and implications for future work are drawn in Chapter 8.



Chapter 2

Literature Review

In this chapter, we review the literature on credit scoring, Basel requirements, and

consumers’ decisions in a credit lending setting.

2.1 Credit Scoring Decisions

The decision problem of setting cutoff scores has been extensively studied in the litera-

ture. Early work has its focus on cutoff policies for a single objective, typically maximiz-

ing expected profit, under the assumption that the decision maker has access to only one

scorecard (see, e.g., Capon [8], Hoadley and Oliver [20], Lewis [22], Thomas et al. [41]).

More recently, Oliver and Wells have extended the treatment of cutoff policy decision

making to include notions of efficiency associated with competing business objectives,

with particular focus on the tradeoffs between expected profit, market share, and risk

[30]. The theory of cutoff policies for multiple scorecards has developed in parallel. Zhu,

Beling, and Overstreet have considered scenarios in which the decision maker has access

to a training dataset that contains, for each individual in the training population, a

performance outcome and scores from each scorecard [49, 50]. Multiple scorecards may

be combined or fused into a single model in such cases, and if the combination is accom-

9
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plished using the Bayesian method in Zhu et al. [49] the resulting scorecard dominates

the originals in statistical and business performance.

There are many potential situations in which multiple risk scorecards may be avail-

able to the decision maker and yet there is no training data set that would allow the

combination of the collection in the sense of Zhu et al. [49, 50]. In such situations, Beling,

Covaliu, and Oliver prescribe a method for choosing a scorecard and an efficient cutoff

under the assumption that only one of the available scorecards may be employed [4].

Scott et al. [37] suggest constructing the convex hull of the Receiver Operating Charac-

teristic (ROC) curves of a collection of scorecards, a method which can be interpreted

as randomizing over the choice of model. Cutoff policies for multiple scorecards may be

increasingly relevant to decision makers, as the flat maximum effect suggests that there

is little performance difference between the various types of statistical models that can

be used to assess applicant risk, given the roughly the same data as input [31]. The clear

corollary to this observation is that competitive advantage is more likely to be found

by exploiting untapped sources of predictive data than it is to be found by refining the

algorithms and statistical methodologies that are used on today’s data. The trend will

be toward the construction of scorecards that incorporate novel characteristics that do

not correspond to data elements that have been in long-term and broad collection, and

the use of these new models in conjunction with legacy scorecards [12].

A recent line of research has been to forecast the influences of economic conditions

on the performance of loan portfolios. There is considerable evidence that default rates
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should be considered conditional on current and future economic conditions [13, 48].

Most lenders have structured the account acquisition process to allow for easy adap-

tation of decision policies to account for changing estimates of the priori quality of

applicant pools [22, 30, 40]. In conjunction with a host of market factors, prevailing

economic conditions also influence the revenues and losses to be expected from an indi-

vidual credit account. It is especially important to account for economic variability in

revenue and loss streams in models of the long-term evolution of customer behavior and

profitability, such as the Markov models proposed by Thomas et al. [42]. The statis-

tical performance of scorecards in rank ordering applicants by risk also may vary with

economic conditions, and suggestions have appeared in the literature that it might be de-

sirable to develop a suite of scorecards, each tailored to a particular economic condition

[1, 40]. Numerous proposals have been made for incorporating economic information

into the design of scorecards and other risk prediction models. Zandi [48], for instance,

has developed a model in which a score based on economic indicators conditioned on

geographic area and employment type is added onto the normal credit score. Bellotti

and Crook take a survival analysis approach to melding macroeconomic variables with

traditional behavioral and application variables [5].

A related opportunity for improved decision making in retail credit can be found in

consideration of future economic conditions on loan acquisition decisions. We consider

methods for incorporating forecasts of future economic conditions into acquisition deci-

sions for scored retail credit and loan portfolios. Suppose scorecards are built specifically
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for each possible future economic conditions. However, the decision maker is required to

set an accept/reject policy prior to account performance and hence, the prevailing eco-

nomic condition during account performance is known. We assume the decision maker

knows the performance to expect from each scorecard in terms of profit and volume

given the realization of any particular economic scenario. We also assume that the de-

cision maker has prior beliefs about the occurrence of each economic scenario that can

be quantified as probabilities for the purposes of computing expected value.

In addition to the accept/reject policy, the decision maker is required to retain cap-

ital to cover unexpected losses. Since account performance is dependent on prevailing

economic condition, unexpected loss is dependent on the prevailing economic scenario

during account performance. In the next section, we review Basel capital requirements.

2.2 Basel Capital Requirements

In 1974, The Bank of International Settlements (BIS) established the Basel Committee

on Banking Supervision to formulate broad standards, guidelines, and best practices

to the international community. Capital adequacy became a major focus. In 1988, the

committee took a major step by classifying the riskiness of different types of credit and of

imposing minimum amounts of capital against such risks. The Accord, known as Basel

I, was appealingly simple and imposed for the first time a capital requirement targeted

to a standard of capital to weighted risk assets of eight percent. This crude attempt
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to create a level field for banks had unintended consequences, causing distortions and

irrational lending which actually heightened systemic risk. This led to the Second Basel

Accord, or Basel II, initiated in 1998 and now at long last in the early stages of its

implementation. Basel II attempts to assure risk sensitive capital allocation in addition

to the segregation and quantification of operational and credit risk. This regulation rests

on the three integrated pillars: minimum capital requirements, a supervisory review

process and market discipline.

The core issue of establishing a minimum capital requirement requires the measure-

ment of credit risk and the modeling of unexpected loss. Modeling unexpected loss is

done by estimation of portfolio loss distributions, and for this purpose a cottage industry

with several well developed commercial risk models has evolved. The underlying model

in Basel II is based on the one factor value risk model developed from Merton’s theory

[24, 46]. With a theoretical foundation based in financial economics, this approach is

used for all types of credit exposure, including retail or consumer credit. In contrast,

consumer banking theory has evolved over the past three decades from the theory of

statistics and the perspective of raw empiricism inherent in consumer credit scoring,

an approach that has proven effective in modeling large diversified portfolios of small

consumer loans [41].

Despite the topic’s societal importance and progress in bank research since 1988, the

year of the first Basel Accord, a lack of consensus on the optimal design of bank capital

regulation still exists [35]. Indeed, enforcing minimum standards enhances bank stability
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but also serves as a potential source of incremental costs [35]. Along similar lines,

VanHoose’s review of the literature [45] concludes that the intellectual underpinnings

for the proposed Basel II system are not particularly strong and emphasizes “the need

for further research efforts modeling diverse financial institutions”. We trust that our

work here will add to that context.

Berger’s early empirical analysis of the relationship between bank capital and relative

profitability presents a mixed picture of hypothetical relationships between bank capital

and profits which run counter to theoretical expectations [6]. In contrast, VanHoose finds

widespread agreement in the theoretical academic literature that constraining capital

standards will likely lead to a reduction in total lending and accompanying increases in

market loan rates with “substitution away from lending to holding alternative assets”

[45]. There is also agreement in “a longer term increase in capital ratios which may or

may not be accompanied by a rise in capital ratios with less agreement on the direction

of total lending” [45]. How risk based capital regulation “influences choices banks make

on the margin is central to whether risk-based capital regulation makes banks and the

banking system safer” [45]. After all, capital cushions can evaporate rapidly if banks

choose to make riskier asset choices or fail to exert their resources in evaluating adverse

selection and moral hazard risks [45].

Diamond and Rajan’s theoretical treatment of bank capital stresses that “optimal

bank capital structure trades off the effects on liquidity creation, costs of bank distress,

and the ability to force borrower repayment.” [15]. They emphasis that diversification
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and risk management are substitutes for bank capital. Without a theory of the effects of

bank capital, it has not been possible to analyze the trade-offs between bank responses

to uncertainty [15].

Clearly, Basel II’s evolution from a well established financial economic theory has led

to regulatory capital requirements that are risk based and far closer to real economic risk

than that the one-size-fits-all standard model of Basel I. Yet, it too is far from flawless

(see, e.g., Gup [18]). The Basel II risk model does not consider the external environment

such as interest rate changes nor portfolio size, and suffers on a micro basis the regulatory

risk that arises from capital requirement misestimation, i.e., the difference between the

retain capital amount and the required amount after accounts have defaulted. Sources

of misestimation include conceptual errors in the underlying model, errors in parameter

estimation, political influence on the choice of parameter values, and overrides [32]. An

important parameter input to the risk-based Basel II advanced approach is the forecasted

probability of default for each borrower. An error in forecasting default probabilities

results in capital requirement misestimation. Given multiple possible future economic

conditions, a portfolio manager’s aim is to be adequately capitalized for the realized

economic condition. In such a case, the portfolio manager faces a trade-off between the

cost of regulatory capital and the risk of portfolio default.

In the next section, we review the literature on borrowers’ decision making heuristics

and adverse selection. We postulate that inference about the decision heuristics used by

consumers when accepting or rejecting a loan offer at acquisition stage may provide a
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new source of information for lenders about performance at a latter period regardless of

the prevailing economic condition.

2.3 Borrowers’ Decisions

In setting loan prices (or loan interest rates), loan portfolio managers face a trade-off

between response and risk. Consumers prefer lower loan rates and hence lower loan

rates results in higher take-up of the products, but lower profits for each account. Loan

pricing is further complicated by the phenomenon of adverse selection in which the

default rates of individuals who accept a loan offer may be higher than that of those

who decline the offer, all other factors being equal [33]. Adverse selection is thought

to be the result of information asymmetry. Credit bureau reports and public records,

which lenders use as input for credit risk and response models, may not reflect the

circumstances and immediate financial needs of the borrower. Additionally, there may

be subtle relationships between price elasticity and adverse selection [28].

As a result of information asymmetry, portfolio managers may view a group of con-

sumers as homogenous, but private information held by the consumers differentiate

their risk profiles. Portfolio managers do not have access to such private information. It

would then seem obvious that reducing the information asymmetry between borrowers

and lenders will result in more targeted marketing of credit products with appropriate

rates. Typically, public information used by portfolio managers are those that are input
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into scorecards, i.e., financial, demographic and other personal information. Given flat

maximum effect [31], new data sources or new variables need to be found in order to

improve scorecard performance.

Consumer make decisions on taking up an offer prior to the period of account per-

formance. We postulate that inference about the decision heuristics used by consumers

when accepting or rejecting a loan offer at acquisition stage may provide a new source of

information for lenders about performance at a latter period. Humans use heuristics to

make decisions, which are simple rules, but often lead to decision errors. Kahneman and

Tversky were among the first to establish cognitive basis for errors arising from decision

heuristics (see Tversky and Kahneman [43] and Tversky and Kahneman [44]). Limited

cognitive ability and incomplete information are some of the reasons for errors in deci-

sion making by human subjects. Many experiments have been conducted to reveal the

decision heuristics used by human subjects in various classes of decision problems (see

Winkler and Murphy [47] for more).

One particular class of decision problems is the sequential decision problem in which

agents are required to make a sequence of binary decisions. Sequential decision problems

are of particular interest to consumer lending because consumers are often faced with a

sequence of loan offers for which they make take/no take decisions. Suppose inference

about decision heuristics could provide added information on borrower take/no-take

behavior, then such information may reduce the information asymmetry between lenders

and borrowers. Hence, it is possible observation of early decisions in a sequence can be
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informative about later decisions and can, when coupled with a type of adverse selection,

also inform credit risk.



Chapter 3

Notation, Assumptions, and Basic Models

In this chapter, we introduce basic notation for credit scoring and decision making, along

with concepts for the evaluation of the business worth of a portfolio of credit accounts

and formula to determine regulatory capital.

3.1 Credit Scores

As part of the decision processes involved in assembling a consumer credit portfolio from

a population of potential customers seeking credit, applicants are scored on a statistical

scorecard built on historical data. The inputs of the scorecards are a vector of behavioral

information for each customer, which we denote by x̄, while the outcome of the scorecard

is a real-valued risk score s(x̄). The output score of each applicant is used to predict the

customer’s performance, over a given period, in repaying money borrowed on the credit

account. Let Z denote the random variable account performance. A common notion in

theory and practice is to consider two mutually exclusive and exhaustive performance

outcomes, G and B. The event G is associated with a good customer and implies that

the customer does not default or become seriously delinquent during the performance

period, whereas the event B is associated with a bad customer and implies the converse.

19
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We use p(G|x̄) and p(B|x̄) to denote the posterior conditional probabilities of the

outcomes G and B, respectively, for a customer with behavioral data x̄. Further we make

the common assumption that each risk score s(x̄) computed using the data x̄ has the

property that p(G|s(x̄)) = p(G|x̄) and p(B|s(x̄)) = 1 − p(G|x̄), which implies that risk

assessment can be done using only scores, and that once these are computed there is no

need to reference the underlying behavioral data. Consequently, we suppress references

to x̄ in what follows, writing s for the score of an individual rather than s(x̄). We denote

the random variable score by S. See Bellotti and Crook [5], Hand and Henley [19] for

more details on credit scoring.

In reference to a population of applicants, we use pG and pB to denote our prior

belief that an applicant is good or bad, respectively. Let f(s|G) and f(s|B) denote the

likelihood of score s given the performance outcomes G and B, respectively. Then the

posterior probability that an individual with score s is good or bad is, respectively,

p(G|s) = f(s|G)pG/f(s)

p(B|s) = f(s|B)pB/f(s),

where f(s) is the density function of score for the population of applicants. We use F

to denote the cumulative score distribution; that is, F (s) =
∫ s

−∞
f(u)du.
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Figure 3.1: ROC curves for two scorecards, S and T.

3.1.1 ROC Curves

A common statistical performance measure is the Receiver Operating Characteristic

(ROC) curve, which is a plot of the cumulative score distribution of the bad applicants

rejected F (s|B) versus the cumulative score distribution of the good applicants rejected

F (s|G).

There are two ROC curves of theoretical interest. The ROC curve of a non-discriminating

predictor is the line segment connecting the origin (0, 0) to the point (1, 1). Conversely,

the ROC curve of a perfect scorecard or predictor is piecewise linear with two segments,

one connecting (0, 0) to (0, 1), where all bad population is perfectly identified, and one

connecting (0, 1) and (1, 1), corresponding to the good population. Credit scores are gen-

erally constructed so that risk decreases as score increases. An important consequence of

this property is that the ROC curve for a scorecard is always concave in theory, though
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in practice it may not be because of data noise.

The concept of dominance is important in the context of multiple ROC curves, which

we consider in later chapters. Scorecard S is said to dominate scorecard T, if the ROC

curve of S is everywhere on or above that of scorecard T. Figure 3.1 illustrates the

relationship between the ROC curves of scorecards S and T in a case where S dominates

T.

3.2 Business Objectives, Acquisition Models and EPV Curves

In practice, a portfolio manager would set a cutoff score to enable the realization of a

bank’s objectives, such as maximizing profit, maximizing volume, or minimizing default

losses. The portfolio’s manager’s primary objective is to maximize expected profit. We

define profit in terms of a simplified model of bank operations similar to that proposed

by Oliver and Thomas [29]. For each unit of loan given out to the applicants, the

bank earns 1 + rL from each good account where rL is the return on loans. It recovers

C(1 − fD) from each bad account, where fD is the fractional loss given default and C

is the exposure at default. We make the simplifying assumption that C = 1, which

ensures that the amount recovered from a bad account with a unit loan, C(1 − fD), is

less than than the loan amount. In order to extend a unit of credit, the bank needs to

fund the loan volume including both good and bad accounts. We assume loan volume

is funded entirely with debt at an interest rate of rB, with rB < rL. Following Oliver
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and Wells [30], the portfolio manager can maximize the expected operating income from

a fixed population of applicant by including in the portfolio every applicant who has a

nonnegative expected operating income (revenue less loss), that is a score s satisfying

EZ [I(s)] = (1 + rL)p(G|s) + (1− fD)p(B|s)− (1 + rB) ≥ 0.

Since p(G|s) = 1− p(B|s), it follows that,

EZ [I(s)] = (rL − rB)p(G|s)− (fD + rB)p(B|s) ≥ 0.

The concavity nature of ROC curves for scorecards implies that the manager can

achieve this by setting a cutoff score and adopting the policy that all credit applicants

who score above the cutoff are accepted and all who score below the cutoff are rejected.

Let V (s) denote the fraction of the applicant population that is accepted given a

cutoff score s. Following language in Oliver and Wells [30], we term this quantity the

portfolio volume realized with the cutoff s. The expected volume is ES[V (s)] = 1−F (s).

Since each good account provides a revenue of rL − rB, and that the lender incurs a loss

of fD + rB on every bad account. The expected portfolio operating income is then,

ES[IN(s)] =

∫ ∞

s

[(rL − rB)p(G|u)− (fD + rB)p(B|u)] f(u)du

=

∫ ∞

s

(rL − rB)pGf(u|G)du−

∫ ∞

s

(fD + rB)pBf(u|B)du

= (rL − rB)pG[1− F (s|G)]− (fD + rB)pB[1− F (s|B)].

We assume operating expenses are fixed and, hence, have no effect on the derivation

of optimal policies. Thus, we exclude them from our model. Due to the regulatory
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requirements, the bank covers unexpected losses by raising equity capital, which is de-

termined using the formula for capital requirement ki. There is an opportunity cost

of equity rQ or the return on equity required by the shareholders. Given a one period

model, the expected economic profit for an account is calculated by taking the operating

income less the economic cost of equity rQki(s), i.e.

EZ [P (s, ki(s))] = EZ [I(s)]− rQki(s). (3.1)

We assume EZ [P (−∞, ki(s))] < 0 and EZ [P (∞, ki(s))] > 0.

The expected profit for a portfolio is,

ES[EZ [P (s,Qi(s
′))]] =

∫ ∞

s

[(1 + rL)p(G|u) + (1− fD)p(B|u)− (1 + rB)] f(u)du− rQQi(s
′)

= ES[IN(s)]− rQQi(s
′), (3.2)

where

Qi(s
′) =

∫ ∞

s′
ki(u)f(u)du, (3.3)

For notational convenience, we express ES[P (s,Qi(s
′))] ≡ ES[EZ [P (s,Qi(s

′))]].

We define the following notation with superscript s for portfolio metrics when a

portfolio manager does not apply a cutoff score policy but instead accepts scores in the

set ω ⊆ S and applies capitalization function ki(s). Let

ES[EZ [P
s(ω,Qs

i (ω))]] =

∫

s∈ω

EZ [P (s, ki(s))]f(s)ds

be the expected profit, where

Qs
i (ω) =

∫

s∈ω

ki(u)f(u)du. (3.4)
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For notational convenience, we express ES[P
s(ω,Qs

i (ω))] ≡ ES[EZ [P
s(ω,Qs

i (ω))]]. The

corresponding expected portfolio volume is ES[V
s(ω)] =

∫

s∈ω
f(s)ds. We refer to ω and

ωc = {s|s 6∈ ω} as the accept set and the non-accept set, respectively.

Oliver and Wells [30] consider cutoff policies in the context of the competing business

objectives of maximizing volume (which is a surrogate for market share), minimizing loss,

and maximizing profit, with zero capital requirement, i.e., ki(s) = 0 ∀s. The fact that

tradeoffs exist between the business objectives makes it important for decision makers

to operate on the efficient frontier, which is the maximal set of operating points that

are not dominated by other operating points.

Suppose we restrict attention to the metrics of expected profit and expected vol-

ume, with ki(s) = 0 ∀s. Of special importance are plots of expected profit ver-

sus expected volume parameterized by score cutoff. We term the collection of points

(ES[P (s, 0)], ES[V (s)]) for all s an Expected-Profit-Volume (EPV) curve. An EPV

point with cutoff score s is efficient if there exist no other cutoff ŝ with ES[P (ŝ, 0)] =

ES[P (s, 0)] and ES[V (ŝ)] > ES[V (s)]. Figure 3.2 shows an example EPV curve. The

points on the curve to the right of point A form the efficient frontier. It should be noted

that if the ROC curve for a scorecard is concave then the EPV curve for that scorecard

must also be concave.

For Qi(s) 6= 0, a portfolio manager may follow the regulatory capital requirements in

setting the amount of capital to retain. In the next section, we introduce the regulatory

capital formula.
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Figure 3.2: ES[P ]-ES[V ] plot depicting the Efficient Frontier with ki(s) = 0 ∀s.

3.3 Regulatory capital requirement

Currently, capital requirement is based on the Basel II Accord. Capital requirements

may be calculated in one of two ways. The standard approach requires banks to hold 6%

of risk assets. The capital requirement using the Internal Rating Based (IRB) method is

determined using a formula specified by the Basel II Accord. The capital amount under

this method covers unexpected losses at a confidence level of 99.9%. Unlike the standard

approach, the capital requirement calculated in the advanced approach of the IRB is risk

depended (see Figure 3.3). Using the advanced approach, the capital requirement for a

unit loan to a customer with score s is

kB(p(B|s)) = fD

[

Φ

(
√

1

1− ρ
Φ−1(p(B|s)) +

√

ρ

1− ρ
Φ−1(0.999)

)]

− fDp(B|s), (3.5)
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where ρ is a correlation coefficient specific to loan portfolio type (see Basel Committee

on Banking Supervision [3]), and Φ() is the cumulative density function for the standard

normal distribution. The first term on the right-hand side of Equation 3.6 is the capital

required to cover total losses at a confidence level of 99.9%. The second term is equal

to the expected loss and is subtracted from forecasts of total losses at 99.9% confidence

level since expected losses are expected to be priced for from the beginning [32]. See

Perli and Nayda [32], Schönbucher [36] for the derivation of the regulatory requirement

formulae.

Scores are constructed such that probability of default, p(B|s) and score, s have a

one-to-one relationship. It follows that the capital requirement function can be expressed

as a function of score,

kR(s) = fD

[

Φ

(
√

1

1− ρ
Φ−1(p(B|s)) +

√

ρ

1− ρ
Φ−1(0.999)

)

− p(B|s)

]

. (3.6)

The correlation coefficient for “qualifying revolving products” is 0.04 [3]. This results

in the shape of the plot observed in Figure 3.3.

The capital requirement curve kR(s) is concave with respect to probability of default,

p(B|s) for mortgages and qualifying revolving portfolios [7]. However for “other retail

portfolios”, the capital requirement curve is concave everywhere, except for a region of

local convexity that exists approximately between p(B|s) ∈ (4.903%, 15.184%) [7]. The

capital requirement monotonically increases with respect to probability of default in the

regional of convexity. These properties are important when discussing profit dominance
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Figure 3.3: Regulatory capital requirement per unit of ‘qualified revolving’ loan under

the Basel II Accord.

in Chapter 6.



Chapter 4

Scoring Decisions in the Context of Economic Uncertainty

4.1 Introduction

In this chapter, we develop methods for incorporating forecasts of future economic con-

ditions into acquisition decisions for scored retail credit and loan portfolios. Our focus

is the impact of future economic conditions on scoring decisions and hence following

Oliver and Wells [30], we set economic capital requirement to zero. The fundamental

issue that we address is that the performance of a cutoff policy may be dependent on

prevailing economic conditions during the loan period, and yet the policy must be speci-

fied and implemented before the loan period and hence before the economic environment

is known with certainty. Our focus is on decision making rather than predictive model-

ing. We assume that the scorecards available to the decision maker are fixed, and thus

the decision of interest is how to define a policy that maps the available scores for an

applicant into an accept or reject decision. In our framework, the decision maker knows

the performance to expect from each scorecard in terms of profit and volume given the

realization of any particular economic scenario. We also assume that the decision maker

has prior beliefs about the occurrence of each economic scenario that can be quantified

29
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as probabilities for the purposes of computing expected value.

The remainder of the chapter is organized as follows. In Section 4.2, we study the

decision faced by a portfolio manager who is cognizant that the future will bring one

of two possible economic scenarios, each of which is characterized by a probability of

occurrence and by performance functions that give expected profit and volume for each

cutoff score. We show that, despite the uncertainty of performance induced by economic

conditions, any efficient policy consists of a single cutoff, provided the expected profit and

volume performance curves in each scenario are concave. If these curves are not concave,

efficient operating points can be characterized as cutoffs on a redefined score. In Section

4.3, we study cases where two scorecards are available to the portfolio manager. We show

that it may be advantageous to randomly choose the scorecard to be employed, and we

provide methods for selecting efficient operating points under randomization. It should

be noted that our randomization scheme differs from that proposed in Scott et al. [37] in

that our method cannot be readily interpreted as an action on ROC curves. Discussion

in Section 4.3 is limited to cases with two scorecards and two economic scenarios, but

our approach and results generalize to more scorecards and more economic scenarios.

Finally, in Section 4.4, we summarize our findings.
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4.2 Single Scorecard in Multiple Economic Scenarios

In this section we consider the case of a portfolio manager who is facing the task of

deciding which applicants to accept into the portfolio, given a single scorecard and a

model for future economic conditions and the impact of these conditions on the business

performance metrics associated with the portfolio. The primary aim of the portfolio

manager is to adopt an acquisition policy that is efficient in the sense that it achieves

maximum expected volume for a given expected profit. Our goal is to understand the

structure that is shared by every efficient acquisition policy.

Let us label by S the scorecard that is available to the manager. Each applicant has

an associated score produced by S that we model as a random variable S. (Note that

the scorecard is denoted using roman type, while the associated score random variable

is denoted in italics). The portfolio manager is cognisant that the future will bring

one of two possible economic scenarios, and this scenario will prevail during the period

of performance for the loans in the portfolio. We model the uncertainty of economic

conditions using a binary random variableK, interpreting K = 0 as being the realization

of one economic scenario and K = 1 as being the realization of the other. Assume the

portfolio manager has a prior belief about the probability of each scenario being realized,

and define γ = p(K = 0) (hence 1− γ = p(K = 1)).

In a multiple economic scenario case, we assume the portfolio manager has access to

an EPV curve for each scenario that gives the performance (i.e., profit and volume) of
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the accepted population in expectation, conditional on the scenario. We call each such

curve a conditional EPV curve. Since the decision to accept or reject applicants must

be made prior to the realization of an economic scenario, the portfolio manager would

base the acquisition decision on an EPV curve that is unconditional on the economic

scenario. In this chapter, for notational convenience we write ES[P (s)] ≡ ES[P (s, 0)].

Let ES[P (s)|K] and ES[V (s)|K] be the expected profit and expected volume conditioned

on economic scenario K. It follows that

ES[P (s)] = γES[P (s)|K = 0] + (1− γ)ES[P (s)|K = 1]

and,

ES[V (s)] = γES[V (s)|K = 0] + (1− γ)ES[V (s)|K = 1].

The cutoff score decision is made prior to the economic scenario occurring and for any

given score s, the volume remains constant for all scenarios; i.e., ES[V (s)|K = 0] =

ES[V (s)|K = 1]. Since 0 ≤ γ ≤ 1, it follows that

ES[V (s)] = ES[V (s)|K = 0] = ES[V (s)|K = 1].

The unconditional EPV curve is then the collection of points (ES[P (s)], ES[V (s)]). Fig-

ure 4.1 provides examples of conditional EPV curves for two economic scenarios and the

corresponding unconditional EPV curve.

The unconditional EPV curve is concave if the EPV curve for each scenario is concave.

Concavity of the unconditional EPV curve, in turn, ensures that the portfolio manager
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Figure 4.1: E[P ]− E[V ] curve.

can achieve an efficient operating point by following a single score cutoff policy, which

is common practice in industry (cf. Oliver and Wells [30]).

It may be that the scorecard was designed to predict the probability of an applicant

defaulting in a given economic scenario. In that case, the EPV curve for that economic

scenario would be concave. The EPV curve for the alternate scenario, however, might

not be concave, which in turn might result in the unconditional EPV curve also not

being concave. The difficulty with a non-concave EPV curve is that the the portfolio

manager might not be able to achieve an efficient operating point by following a single

score cutoff policy. In such a case, however, a new random variable S ′, may be defined
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such that the EPV curve constructed using this score is concave. We define the new

score in terms of the gradient of the EPV curve. In particular, if S = s then we set

S ′ = s′(s), where

s′(s) =
∂ES [P (s)]

∂ES [V (s)]
.

The expected profit for a cutoff score s′ is

ES′[P (s′)] =

∫ ∞

−∞

PN(s, s′)ds

such that

PN(s, s′) =







∂ES [P (s)]
∂s

if ∂ES [P (s)]
∂ES [V (s)]

≥ s′

0 otherwise.
(4.1)

The expected volume for a cutoff score s′ is

ES′[V (s′)] =

∫ ∞

−∞

V N(s, s′)ds,

where

V N(s, s′) =







∂ES [V (s)]
∂s

if ∂ES [P (s)]
∂ES [V (s)]

≥ s′

0 otherwise.
(4.2)

Note that as s′ decreases to zero both expected profit and expected volume increase,

with ES′[P (s′)] reaching a maximum at s′ = 0. As s′ decreases below zero expected

volume increases but expected profit decreases. In follows that the only efficient cutoffs

are non-positive values of s′.

Following Oliver and Wells [30], a single score cutoff decision may be made using the

new score.
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Now let us consider a different structure to the decision problem. Assume the port-

folio manager can randomly assign each individual in the applicant population to one

of two sub-populations, say sub-populations C and D. Every individual is scored on the

same scorecard, but the portfolio manager has the ability to set differing cutoff scores

for each sub-population. Note this decision structure would allow the portfolio manager

to implement a policy in which the acquisition decision is optimized for one economic

scenario on sub-population C and for the other scenario on sub-population D.

Let E[P (α, sC, sD)] and E[V (α, sC, sD)] be the expected profit and expected volume

where α is the probability that any individual is assigned to subpopulation C and sJ is

the cutoff score for subpopulation J , where J ∈ {C, D}. Then, the expected profit is

E[P (α, sC, sD)] = αE[P (sC)] + (1− α)E[P (sD)],

where, E[P (sJ )] = γE[P (sJ )|K = 0] + (1 − γ)E[P (sJ )|K = 1] for J ∈ {C,D}. The

expected volume is

E[V (α, sC, sD)] = αE[V (sC)] + (1− α)E[V (sD)].

Suppose the portfolio manager desires to maximize expected profit while creating

an expected portfolio size of desired volume V0. The portfolio manager’s optimization

problem can be written as

maxα,sC ,sD αE[P (sC)] + (1− α)E[P (sD)]

s.t. αE[V (sC)] + (1− α)E[V (sD)] = V0

0 ≤ α ≤ 1

(4.3)
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We defined a score sM such that E[V (sM)] = V0. Since the unconditional EPV curve

is concave,

E[V (sM)] ≥ αE[P (sC)] + (1− α)E[P (sD)] ∀sC, sD.

For a desired volume V0, the maximum expected profit is achieved when sM = sC = sD.

This implies that, to be efficient, the portfolio manager should use a single cutoff score

policy for the entire population.

We summarize the portfolio manager’s action as follows. Suppose the portfolio man-

ager wishes to maximize expected profit with a constraint ensuring a lower bound on

expected volume of V0. That is, the portfolio manager wishes to solve the constrained

optimization problem

maxs E[P (s)]

s.t. 1− F (s) ≥ V0.
(4.4)

Let s∗ denote the cutoff score that solves maxsE[P (s)], the unconstrained problem

of maximizing expected profit. If V0 ≤ E[V (s∗)] then s∗ is also the solution to the

manager’s problem. If V0 ≥ E[V (s∗)], however, the manager should use F−1(1− V0) as

the cutoff score.

We have shown that, despite the uncertainty of performance induced by economic

conditions, every efficient policy consists of a single cutoff, provided the expected profit

and volume performance curves in each scenario are concave. If these curves are not

concave, efficient operating points can be characterized as a single cutoff on a redefined

score.
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4.3 Multiple Scorecards in Multiple Economic Scenarios

The focus of Section 4.2 is portfolio decisions in which the portfolio manager has access

to one scorecard. Here we extend consideration, making the assumption that the decision

maker has access to two scorecards, S and T, and that the performance of the population

is a function of which of two possible economic scenarios is realized in the future. The

discussion in Section 4.2 shows that there is no loss of generality in assuming that each

scorecard is described only by an EPV curve that is concave and unconditional with

respect to economic scenario. In particular, then, we assume the manager has the curves

(ES[P (s)], ES(V (s)]) and (ET [P (t)], ET (V (t)]). It should be noted that the approach

and results generalist easily to more scorecards and more economic scenarios.

Of chief interest are cases where neither of the two EPV curves is dominant, and we

restrict the discussion accordingly. We further assume that the manager lacks access to

a database consisting of performance outcomes and scores for both scorecards, implying

that the scorecards may not be fused in the sense of Zhu et al. [49, 50]. Beling, Covaliu,

and Oliver prescribe a method for choosing a scorecard and an efficient cutoff under the

assumption that only one of the available scorecards may be employed [4]. Figure 4.2

illustrates a case in which neither of the EPV curves is dominant. Under the assumption

in Beling et al. [4] that only one scorecard is used, the efficient frontier in EPV space is

the union of segments of the EPV curves of the scorecards. In Figure 4.2, the efficient

frontier consists of the union of the portion of the curve for scorecard T between points
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Figure 4.2: E[P ]-E[V ] Multiple scorecards with no dominant scorecards with discontin-

uous efficient frontier.

A and B (non-inclusive) and the portion of the curve for scorecard S to the right of the

point C. Note that this frontier includes a discontinues jump in expected volume. Below

we propose two methods for making use of both scorecards in a manner not considered

in Beling et al. [4]. The efficient frontiers corresponding to these methods dominate

those in Beling et al. [4], and include points that are not on the EPV curve of either of

the scorecards.

4.3.1 Fixed Allocation of Applicants

In the case where neither scorecard dominates in expected performance across economic

scenarios, we propose that the manager consider making use of both scorecards through
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Figure 4.3: The maximum achievable expected profit in the fixed allocation strategy is

at point F .

a randomization scheme. In this scheme, an applicant is scored on scorecard T with

probability q and scorecard S with probability (1 − q). This is akin to tossing, for each

applicant, a coin that lands heads with probability q. If the coin lands heads, then

scorecard T is applied, and otherwise scorecard S is applied. In expectation, then, a

fraction q of the population is allocated to scorecard T and a fraction (1−q) is allocated

to S. We call this the fixed allocation case. The only controls that are available for

choosing an operating point are the score cutoffs s, to be applied to applicants scored

on scorecard S, and t to be applied to applicants scored on scorecard T.

In Figure 4.3, the maximum expected profit that can be achieved in this case is the

point F on the chord AC.
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Given cutoff scores s and t, the expected total profit and volume are

E[P (s, t)] = qET [P (t)] + (1− q)ES[P (s)] (4.5)

E[V (s, t)] = qET [V (t)] + (1− q)ES[V (s)], (4.6)

where ES[P (s)] and ET [P (t)] are the expected profit for scorecards S and T at cutoff

score s and t, respectively, and ES[V(s)] and ET [V (t)] are the expected volume for S

and T at cutoff score s and t, respectively. Let s∗ and t∗ denote the profit maximizing

cutoff scores for the individual scorecards; that is, s∗ = argmaxsES[P (s)] and t∗ =

argmaxtET [P (t)]. The maximum expected total profit is then

E[P (s∗, t∗)] = qET [P (t
∗)] + (1− q)ES[P (s

∗)]

and the expected volume at maximum expected total profit is total profit is E[V (s∗, t∗)].

If the portfolio manager wishes to operate at a higher expected volume than the

profit maximizing volume, the cutoff scores s and t should be decreased in a manner

that yields the smallest decrease in expected profit for the desired increase in expected

volume. The way to achieve a marginally higher volume efficiently is to decrease the

cutoff of the scorecard that has the shallower EPV curve at the current operating point.

Repeated application of this notion, starting at the maximum profit point, defines a

constructive method for tracing out the efficient frontier for the fixed allocation case.

The efficient frontier is illustrated in Figure 4.4.
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Figure 4.4: The efficient frontier for a fixed allocation strategy.

4.3.2 Variable Allocation of Applicants

In fixed allocation, the probability q that the coin comes up heads is fixed and outside

the control of the decision maker. Suppose instead that the decision maker has the

ability to set q. Consider the convex hull of the EPV curves for the two scorecards,

which is constructed by drawing the unique line segment that is tangent to both curves,

as illustrated in Figure 4.5.

The efficient frontier in Figure 4.5 consists of the union of the segment AHJ with all

points on the EPV curve for S that are to the right of J. If the decision maker wishes

to operate on the curve segment AH, then scorecard T would be used exclusively by

setting q = 1. Likewise, if the decision maker wishes to operate the right of point J,

then scorecard S would be used exclusively by setting q = 0. If, however, the decision



Kanshukan Rajaratnam Chapter 4 Scoring Decisions 42

Figure 4.5: Construction of the convex hull.

maker wishes to operate at a point I between H and J, as illustrated in Figure 4.5, then

this can be achieved by a randomization strategy in which q = IJ/HJ, the ratio of the

lengths of the line segments in the figure, and in which the cutoffs for scorecards S and

T are chosen to correspond with the points J and H, respectively.

The efficient frontier of the variable allocation strategy dominates the efficient frontier

of the fixed allocation strategy, as illustrated in Figure 4.6.

Figure 4.7 illustrates another case in which neither of two EPV curves is dominant.

The efficient frontier consists of curve AB and all points on the EPV curve of scorecard S

to the right and below point B. We illustrated our method for variable allocation on the

curves with a discontinuous efficient frontier(Figure 4.2) but our findings are applicable

to the curves such as in Figure 4.7.
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Figure 4.6: Dominance of variable allocation strategy over fixed allocation strategy.

4.3.3 Implementation of Randomization Strategies

Here we consider two methods of implementing the variable allocation strategy. In

the first method, the decision maker chooses the scorecard to apply to each applicant

randomly with a pre-determined probability q based on the desired operating point. One

might imagine the decision maker tossing a biased coin to determine which scorecard

to use on each client, and hence we call this implementation method the multiple-toss

strategy. It is possible under the multiple toss strategy that two customers with identical

credit scores receive differing decision outcomes, one customer being accepted into the

portfolio and the other being rejected. Such disparity in acquisition decisions may not

be palatable from a business perspective, and so we are motivated to consider a second

method that has the property that applicants with identical scores are treated identically.
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Figure 4.7: E[P ]-E[V ] Multiple scorecards with no dominant scorecards with continuous

efficient frontier.

This second method, which we call the one-toss strategy, is inherently simpler in

implementation. The decision maker randomly chooses a scorecard to apply to the entire

applicant pool. This strategy takes its name from the fact that it can be implemented

with a single toss of a biased coin. Consider again Figure 4.5. The decision maker may

elect to choose q and appropriate score cutoffs so as to achieve the point I in expected

profit and expected volume, but once the coin has been tossed it will be either point H

or point J that is actually expected. The expected profit for the one-toss strategy is,

E[P ] = qE[P |T ] + (1− q)E[P |S].

In the multiple-toss strategy, by contrast, any of the continuum of operating points

between H and J may be expected after the conclusion of the coin tossing. We proceed
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to determine the expected profit for the multiple-toss strategy. Let M be the random

variable that describes the number of individuals that are scored on scorecard T, where

M ∈ (0, n). Suppose m individuals are scored on scorecard T, then

E[P |M = m] =
m

n
E[P |T ] +

n−m

n
E[P |S].

The probability of the event that m individuals are scored on scorecard T is

p(M = m) =





n

m



 qm(1− q)(n−m).

It follows that

E[P ] =
n

∑

m=0

E[P |M = m]p(M = m)

=
n

∑

m=0

[(
m

n
E[P |T ] +

n−m

n
E[P |S])(





n

m



 qm(1− q)(n−m))]

=
1

n
E[P |T ]

n
∑

m=0

(m)(





n

m



 qm(1− q)(n−m))

+E[P |S]
n

∑

m=0

(





n

m



 qm(1− q)(n−m))

−
1

n
E[P |S]

n
∑

m=0

(m)(





n

m



 qm(1− q)(n−m)).

From the binomial distribution we know that

n
∑

m=0





n

m



 qm(1− q)(n−m) = 1,

which is the sum of all probabilities in the binomial distribution and

n
∑

m=0

(m)





n

m



 qm(1− q)(n−m) = nq,



Kanshukan Rajaratnam Chapter 4 Scoring Decisions 46

which is the expected value in a binomial distribution. Therefore, we have

E[P ] =
1

n
E[P |T ]nq + E[P |S]−

1

n
E[P |S]nq (4.7)

= qE[P |T ] + (1− q)E[P |S]. (4.8)

We note that the expressions E[P ] are equivalent for both strategies.

4.4 Summary

This chapter extends the line of research in the creation of efficient consumer credit port-

folios. Clearly, consumer credit portfolio managers consider future economic conditions

within this context. Here, we specify the case of explicit probabilistic economic scenar-

ios and the related performance of scorecards. In case of a single scorecard, we reach

the rather intuitive conclusion that all efficient portfolio acquisition decisions consist of

cutoff policies, though a score transformation may be involved. In the case of multiple

scorecards, we show that randomized strategies yield efficient frontiers that dominate

deterministic strategies. We further show that randomization can be implemented in a

fashion that causes all applicants with same score to receive the same accept or reject

decision.



Chapter 5

Estimation Error in Regulatory Capital Requirements

5.1 Introduction

In this chapter, we stylistically model the impact of capital regulatory misestimation

on a consumer banks economic profit assuming that consumer banks risk management

abilities are significantly better than their regulatory counterparts. We refer to our banks

ability to determine economic capital requirements more accurately than its regulatory

counterpart as omniscience. This is not meant to suggest visionary powers but simply

the ability of our consumer banks risk managers to assess and process more complete and

accurate information into economic capital with greater accuracy than the regulatory

community. Clearly, this is within the spirit of the Second Basel Accord and its evolution.

Let us emphasize that our intent here is not to provide yet another simulated test of

Basel II but to formally set forth the theory underlying the value impact to banks of

regulatory misestimation of capital requirements. Convenient to this limited theoretical

objective, historic minimal regulatory capital requirements include a rather broad set

of changes from one size fits all in Basel I to the individualized risk management bank

inputs in advanced versions of Basel II. Within the stylized context of our models, we

47
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examine the obvious and historical likely case of regulatory capital overestimation. We

then turn to its historically less likely counterpart, the case of underestimation.

In Section 5.2, we describe our stylized bank’s behavior and controls available to the

bank. In Section 5.3, we model the impact of misestimating capital requirements on

consumer bank profitability. Here, we create two stylized cases of overestimating and

underestimating the regulatory capital requirements under an assumption of constant

cost of capital. We then extend this analysis to cover the variable cost of equity case.

Following this, in Section 5.4, we illustrate the model with a numerical example of a

credit card portfolio. In the last section, we draw conclusions and provide suggestions

for further research.

5.2 Bank Behavior Model and Controls

In Chapter 1, we proposed a simplified system of models to capture the interrelationships

between a consumer bank’s business decisions with respect to consumer credit portfolios

and its capital requirements (see Figure 1.1). In Chapter 3, we introduced a single cutoff

score policy, which is an input to determine the economic profitability of a consumer

loan portfolio. Economic profitability is, in turn, influenced by the risk model that

determines the equity capital requirement and also influences the acquisition model.

The bank behavior model is a set of rules that governs the behavior of our bank. We

assume the bank operates under the single objective of maximizing expected economic
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profit. In addition, the bank always follows regulatory requirements, and so maintains

a capital reserve that is no less than the regulatory capital requirement. The equity

capital raised will then affect the acquisition decision as illustrated in Figure 1.1. Given

an applicant population, the acquisition model produces a cutoff score that determines

which of the applicants are granted credit. The cutoff score is determined to maximize

expected economic profit; that is, the cutoff solves the problem maxsES[P (s,QR(s))],

where

ES[P (s,QR(s))] = (rL − rB)pG(1− F (S|G))− (fD + rB)pB(1− F (S|B))− rQQR(s).(5.1)

Later we consider situations in which the bank is not able raise the equity capital required

to operate at maximum expected economic profit. In such cases, the cutoff is determined

as the solution of a constrained optimization problem.

We assume that the bank follows a strict risk management policy. In particular, the

bank maintains equity sufficient to cover unexpected losses at a fixed or predetermined

level (such the 99.9% coverage that is the target of Basel II). Our fundamental premise

is that the regulatory requirements may be misestimated, however, with the level of

error expressed relative to a notion of the true capital requirement. We define the true

capital requirement to be the level of equity capital that covers the unexpected loss

at the fixed confidence level adopted by the bank (e.g., 99.9%). Let kT (s) denote the

true capital requirement per unit loan as a function of score and QT (s̄) denote the total

portfolio capital requirement given a score cutoff s̄. Then QT (s̄) =
∫∞

s̄
kT (s)f(s)ds. We

make the assumption that the bank is omniscient in the sense that it learns the true
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capital requirement a short while after the start of the loan period. For example, such

an assumption is justified in mortgage portfolios where early delinquencies and early

Loss Given Defaults will provide for an improved forecasts of future defaults and the

loss time series for the portfolio respectively. We have chosen to model the impact of

misestimation in this method rather than compare the impact of misestimation on two

banks, one with true capital regulatory formula and the other with the misestimated

formula. In a two bank model, the impact of underestimation is not immediate and

may result in the bank with the underestimated formula having higher profits due to

lower total cost of economic capital. This bank with the underestimated formula will

operate under higher risk of bankruptcy. We have instead chosen to model the impact

of misestimation on profits under similar capitalization. Below we discuss the limited

control options available to the bank in pursuing its risk management and economic

profit maximizing strategy in the event that it discovers that the true capital level is

different from the regulatory capital level.

5.2.1 Controls available to the bank

We envision that after setting a cutoff and thereby determining the ultimate composition

of the portfolio of loans, the bank engages in the process of of raising the corresponding

equity. Our assumption is that the bank bases this raise on the regulatory capital

requirement, which represents the best estimate of the true capital requirement prior

to the start of the loan period. After a short period of operation and observation, the
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bank determines the true capital requirement, which could be higher or lower than the

regulatory requirement. We assume that the bank does not have the option to engage

in a second equity raise or acquire new accounts at this point. In contrast, the bank

does have the option to decrease its loan portfolio (and thereby reduce risk) by selling

off accounts. We assume this is a zero profit transaction.

5.3 Implications of Misestimation

In this section we show that misestimation in either direction reduces the ability of the

bank to maximize profits. Much of the interest in this theoretical exercise involves the

bank’s use of credit scoring technology and optimal economic profit levels with that

input. For simplicity, we first assume a constant opportunity cost for equity in proving

our proposition that misestimation results in economic profit and, hence, relative value

declines for shareholders. We then extend these results by considering a cost structure

for equity that is based on Modigliani and Miller’s classical theoretical proof that capital

structure or the mix of debt and equity has no impact on firm value [11, 26, 27, 25].

5.3.1 Impact of overestimation

When acquiring the loan portfolio, the portfolio manager will initially maximize the

expected economic profit based on the regulatory capital requirement function kR(s).

The bank also raises equity capital commensurate with the profit maximizing cutoff
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score. After a brief period upon acquiring the portfolio, the portfolio manager realizes

the true capital requirement function kT (s), where kT (s) < kR(s), ∀s. The higher

regulatory requirement results in higher equity capital, i.e. kT (s) < kR(s), ∀s results in

QT (s̄) < QR(s̄), ∀s̄.

In order to determine the impact of overestimation of regulatory capital requirement,

we need to establish the relationship between capital requirements, profit maximizing

cutoff scores and maximum profit. Suppose k1(s) and k2(s) are two capital requirement

functions and s∗1 and s∗2 be the cutoff scores that maximize expected profit when using

k1(s) and k2(s), respectively.

Proposition 5.1. If k1(s) < k2(s)∀s, then s
∗
1 ≤ s∗2 and ES[P (s

∗
2, Q2(s

∗
2))] < ES[P (s

∗
1, Q1(s

∗
1))].

Proof. Since s∗1 is the optimal cutoff score when k1(s) is the capital requirement function,

ES[P (s
∗
2, Q1(s

∗
2))] ≤ ES[P (s

∗
1, Q1(s

∗
1))]. (5.2)

Since k1(s) < k2(s), it follows that ES[P (s
∗
2, Q2(s

∗
2))] < ES[P (s

∗
2, Q1(s

∗
2))]. It follows that

ES[P (s
∗
2, Q2(s

∗
2))] < ES[P (s

∗
1, Q1(s

∗
1))]. Since s

∗
2 is the optimal cutoff score when k2(s) is

the capital requirement function, ES[P (s
∗
1, Q2(s

∗
1))] ≤ ES[P (s

∗
2, Q2(s

∗
2))]. It follows that

ES[IN(s
∗
1)]− rQQ2(s

∗
1) ≤ ES[IN(s

∗
2)]− rQQ2(s

∗
2). We can rewrite this inequality as

ES[IN(s
∗
1)]−rQQ2(s

∗
1)+rQQ1(s

∗
1)−rQQ1(s

∗
1) ≤ ES[IN(s

∗
2)]−rQQ2(s

∗
2)+rQQ1(s

∗
2)−rQQ1(s

∗
2),

which is equivalent to

ES[P (s
∗
1, Q1(s

∗
1))]− rQQ3(s

∗
1) ≤ ES[P (s

∗
2, Q1(s

∗
2))]− rQQ3(s

∗
2),
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where Q3(s) = Q2(s)−Q1(s) =
∫∞

s
[k2(u)− k1(u)]du. Using expression (5.2), it follows

that Q3(s
∗
2) ≤ Q3(s

∗
1). Since, k2(s)− k1(s) > 0, ∀s, it follows thats s∗1 ≤ s∗2.

Proposition 5.1 demonstrates that with higher capital requirements k2(s) > k1(s), the

profit maximizing cutoff score is higher s∗2 ≥ s∗1 and optimal profit is lower ES[P (s
∗
2, Q2(s

∗
2))] <

ES[P (s
∗
1, Q1(s

∗
1))].

Suppose the regulatory formula is kR(s) and the true capital requirement formula

is kT (s) with kT (s) < kR(s), ∀s. Hence the capital requirement is overestimated by

the regulation. When using regulatory capital requirement, the optimal cutoff score

is s∗R = argmaxsES[P (s,QR(s))]. When using the true capital requirement function,

the true optimal cutoff score is s∗T = argmaxsES[P (s,QT (s))]. Since kT (s) < kR(s),

we know by Proposition 5.1 that s∗T ≤ s∗R. Note that the profit maximizing cutoff

score under the true requirement is lower than the cutoff score under the regulatory

requirement and that both the regulatory capital reserve amount and true capital reserve

amount are met. Hence, the portfolio manager takes no action. Therefore, the profit

drag, ∆ES [P ], is,

∆ES[P ] = ES[P (s
∗
T , QT (s

∗
T ))]−ES[P (s

∗
R, QR(s

∗
R))]. (5.3)

Since kR(s) > kT (s), it follows from Proposition 5.1 thatES[P (s
∗
T , QT (s

∗
T ))] > ES[P (s

∗
R, QR(s

∗
R))],

and hence ∆ES[P ] > 0. Note that there are two factors underlying the profit drag. The

first is the income change due to different cutoff scores, and the second is due to the dif-

ference in the economic cost of equity. In some cases, when s∗T and s∗R are approximately
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equal, the difference in the loan portfolios between the two requirements is de minimis.

In this situation, the impact on net income is much less than that of the economic cost

of equity (∆ES[IN ] << rQ∆Q), and the drag on the expected profit (∆ES[P ]) is mainly

due to the change in the capital requirement:

∆ES [P ] ≈ rQ

∫ ∞

s̄

(kR(s)− kT (s)) f(s)ds, (5.4)

where s̄ = s∗T or s̄ = s∗R.

Figure 5.1 shows the relationship between expected profit and cutoff scores. Figure

5.1 also illustrates the relationship between the capital requirement and cutoff score. The

capital requirement function is a monotonic decreasing function with respect to cutoff

score. When acquiring the portfolio, the portfolio manager will regard the regulatory

capital as the true equity capital and will operate on point R with an expected profit

of ES[P (sR, QR(sR))] and a capital reserve of QR(sR). After a short period, the true

requirement will be realised but the portfolio manager will not be able to decrease the

cutoff score to take advantage of the true capital requirement as the bank always operates

at the regulator’s level. When the regulatory capital is overestimated, the expected profit

using regulatory capital will be lower than the true level, and the cutoff score will be

higher. This results in profit drag.
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Figure 5.1: Impact on expected economic profit due to overestimation of capital require-

ment.

Impact of overestimation with limited equity capital

In the above analysis, we assumed there was unlimited equity capital available at the

time of decision. In this section, we analyze the special case where there is a constraint

on how much the investors are willing to provide. We assume the portfolio manager and

the investors know both the true capital requirement as well as the higher regulatory

needs. The portfolio manager will like to fulfill both the true capital needs as well as

the regulatory needs. However, the investors are only willing to provide the true capital

needs of the bank. Hence, the portfolio manager is limited by the capital provided by the

investors. At the point of acquisition, the optimization problem is that of determining the

cutoff score in order to maximize expected profit using the regulatory capital requirement
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function,

max ES[P (s̄, QR(s̄))] (5.5)

s.t. QR(s̄) ≤ Qs (5.6)

where Qs is the maximum equity capital that the shareholders will provide.

If Qs ≥ QR(s
∗
R), then the portfolio manager will apply the cutoff score s∗R to the

population and keep a capital reserve of QR(s
∗
R). This would result in a profit drag of

∆ES[P ] = ES[P (s
∗
T , QT (s

∗
T ))]−ES [P (s

∗
R, QR(s

∗
R))]. Since the regulatory capital require-

ment is overestimated, we know from Proposition 5.1 that ∆ES[P ] > 0.

If Qs < QR(s
∗
R), the portfolio manager will apply a cutoff score, sA, such that

QR(sA) = Qs. This results in a profit drag of ∆ES[P ] = ES[P (s
∗
T , QT (s

∗
T ))]−ES [P (sA, QR(sA))].

Since the regulatory capital requirement function kR(s) is greater than the true re-

quirement function kT (s), we know from Proposition 5.1 that ES[P (s
∗
T , QT (s

∗
T ))] >

ES[P (s
∗
R, QR(s

∗
R))]. Since s

∗
R is the profit maximizing cutoff score under regulatory capi-

tal requirement, ES[P (s
∗
R, QR(s

∗
R))] ≥ ES[P (sA, QR(sA))]. Therefore, ES[P (s

∗
T , QT (s

∗
T ))] >

ES[P (sA, QR(sA))]. This implies that ∆ES[P ] > 0.

In Figure 5.2, we illustrate the special case where the shareholders are only willing

to provide equity capital commensurate with the profit maximizing cutoff score under

the true capital requirement, i.e. Qs = QT (s
∗
T ). At the time of acquiring the portfolio,

the portfolio manager wishes to maximize profit under his best knowledge of capital

requirement. At this point, the regulatory capital requirement is considered to be true
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Figure 5.2: Impact on expected economic profit due to overestimation of capital require-

ment under limited capital.

capital requirement. The portfolio manager will then wish to operate at point R but

due to the the equity capital constraint is forced to operate on point A with cutoff score

sA. This results in a profit drag of ∆ES[P ] = ES[P (s
∗
T , QT (s

∗
T ))]−ES[P (sA, QR(sA))].

5.3.2 Impact of underestimation

We now turn to what most bank practitioners might regard as the highly unlikely case

of regulatory requirement underestimation, but what we have demonstrated in Figure

1.2 to be a highly relevant case under Basel II.

Suppose that the regulatory function is kR(s) and the true capital requirement func-

tion is kT (s), with kR(s) < kT (s), i.e. the capital requirement is underestimated by
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the regulation. Initially the portfolio manager will maximize profit using the regulatory

capital requirement function. The cutoff score using the regulatory capital requirement

is s∗R = argmaxsES[P (s,QR(s))] and the capital requirement is QR(s
∗
R). Under the true

capital requirement formula, the optimal cutoff score is s∗T = argmaxsES[P (s,QT (s))].

Note that by Proposition 5.1 s∗T ≥ s∗R. The corresponding true capital requirement is

QT (s
∗
T ).

After creating the portfolio using the cutoff score of s∗R, the bank discovers that the

true capital requirement function should be kT (s) with kT (s) > kR(s), ∀s. Consider the

bank’s options assuming first that the bank can raise incremental equity capital instan-

taneously and at a negligible cost. It can then operate at its true capital requirement

and maximize profit. This results in a negligible profit drag, i.e. ∆ES [P ] ≈ 0. Assuming

the costless and readily available incremental equity, regulators could rest easy having

underestimated the regulatory capital requirements. This is a trivial and unlikely case.

Given that this is not likely, we turn to the more interesting case of the portfolio manager

shrinking portfolio to fit the capital reserve to the true capital requirement.

In this case, the bank will shrink its loan portfolio with an objective to maximize the

expected profit under the true capital requirement. The equity required is constrained

by the equity capital raised earlier under the regulatory capital requirement. The port-

folio manager will reduce the portfolio size in a manner such that the economic capital

at hand will be sufficient for the smaller portfolio based on the true capital require-

ment and this is achieved by selling a portion of the portfolio. The accounts sold are
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chosen randomly from the portfolio. The expected profit for the smaller portfolio is

ES[P (s
∗
R, QT (s

∗
R))] (QR(s

∗
R)/QT (s

∗
R)).

ES[IN (s
∗
R)]− rQQT (s

∗
R) ≤ ES[P (s

∗
T , QT (s

∗
T ))], (5.7)

since s∗T is profit maximizing cutoff score under the true capital requirement. It follows

that,

(ES[IN(s
∗
R)]− rQQT (s

∗
R)) [QR(s

∗
R)/QT (s

∗
R)] < ES[P (s

∗
T , QT (s

∗
T ))], (5.8)

since QR(s
∗
R) < QT (s

∗
R). Hence, ∆P > 0.

It should be noted that the results hold true even in the conservative case of the

portfolio manager selling off the least profitable accounts. In such a case, the profit drag

would be smaller.

As shown in Figure 5.3, the portfolio manager initially operates at point R believing

that the regulatory capital requirement is the true capital requirement. After operating

for a brief period, the portfolio manager determines that point T with cutoff score s∗T

is the optimal operating point under the true capital requirement. However, under the

cutoff score s∗R, the true capital requirement is QT (S
∗
R) indicated by point A. So the

portfolio manager will reduce the size of the portfolio by QR(S
∗
R)/QT (S

∗
R), which results

in a profit of ES[P (s
∗
R, QT (s

∗
R))] (QR(s

∗
R)/QT (s

∗
R)).
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Figure 5.3: Impact on expected economic profit due to underestimation of capital re-

quirement.

5.3.3 Impact of Modigliani-Miller Theorem

Up to this point, we have assumed a fixed cost of equity. We now extend our proof of

profit drag to account for Modigliani-Miller theorem, which assumes a more conservative

assumption for the opportunity cost of equity. We adapt our work to the neo-classical

economic assumptions of Franco Modigliani and Merton Miller’s work on capital struc-

ture. They stated the following Modigliani and Miller [26]:

1. Proposition I - The market value of a company is not affected by the capital

structure of the company.

2. Proposition II - The cost of equity is a linear function of the company’s debt to
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equity ratio.

This leads to the weighted average cost of capital rA required to fund both the equity

and debt as follows,

rA =
D(s1)

Qi(s2) +D(s1)
rB +

Qi(s2)

Qi(s2) +D(s1)
rQ(D(s1), Qi(s2)), (5.9)

where D(s1) = 1 − F (s1) is the amount loaned to the customers which is equal to the

debt of our stylized bank and Qi(s2) is the equity requirement using the formula ki(s)

and score s2. Note, we purposefully denote the score that determines the equity capital

differently than the score that determine the debt. This implies that the if s1 6= s2, the

equity held by the bank is not equal to the equity required for the debt level under the

capital requirement function ki(s). By Proposition 5.1, rA is not affected by any change

in the capital structure (i.e. D(s1)
Qi(s2)

). The cost of equity, rQ(D(s1), Qi(s2)), is determined

by both the debt and the equity of the bank. Hence, the cost of equity is

rQ(D(s1), Q(s2)) = rA +
D(s1)

Qi(s2)
(rA − rB) (5.10)

It should be noted that the Modigliani and Miller framework is based on rigid assump-

tions that capital markets are perfect and incomplete. In addition, a critical assumption

is that there is no risk of default and the default costs are zero.

Overestimation case

Proposition 5.1 holds true under Modigliani-Miller theorem, i.e. k1(s) < k2(s)∀s, then

s∗1 ≤ s∗2 and ES[P (s
∗
2, Q2(s

∗
2))] < ES[P (s

∗
1, Q1(s

∗
1))], where ki(s) denotes a capital
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requirement function, s∗i denotes the profit maximizing cutoff score using capital re-

quirement function ki(s) and ES[P (s
∗
i, Qi(s

∗
i ))] denotes the expected economic profit

with cutoff score s∗i and capital equity of Qi(s
∗
i ) which was determined using the capital

requirement function ki(s).

Suppose s∗T and s∗R are the profit maximizing cutoff score under true and regulatory

requirement functions. Since, the regulatory requirement is overestimated, by Proposi-

tion 5.1 s∗T ≤ s∗R. The portfolio manager will initially apply cutoff score s∗R believing

the regulatory capital requirement is at the true level. However, the portfolio manager

realizes the true requirement function a short period after acquiring the portfolio. Since

s∗T ≤ s∗R and equity at hand covers the regulatory required equity, the portfolio manager

takes no action. This results in a profit drag of

∆ES[P ] = ES[P (s
∗
T , QT (s

∗
T ))]−ES[P (s

∗
R, QR(s

∗
R))]. (5.11)

Hence by Proposition 5.1 ∆ES [P ] > 0.

Underestimation case

As in the constant cost of equity scenario, upon realising the true requirement level the

portfolio manager may adjust the portfolio volume with the constraint that the capital

reserve required for the adjusted portfolio is equal to the capital reserve raised earlier

under the regulatory capital requirement. The portfolio size is reduced by selling off
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accounts chosen randomly. The expected profit is then,

(ES[IN(s
∗
R)]− rQ(D(s), QT (s

∗
R))QT (S

∗
R)) (QR(S

∗
R)/QT (S

∗
R))

. This results in a profit drag of

∆ES [P ] = ES[P (s
∗
T , QT (s

∗
T ))]− ES[P (s

∗
R, QT (s

∗
R))] (QR(S

∗
R)/QT (S

∗
R)) . (5.12)

ES[P (s
∗
R, QT (s

∗
R))] ≤ ES[P (s

∗
T , QT (s

∗
T ))] since s

∗
T is the profit maximizing cutoff score

under the true capital requirement. Since QR(S
∗
R) < QT (S

∗
R), ∆ES[P ] > 0. Note, the

debt to equity ratio under the true capital requirement and cutoff score s∗R equals the

debt to equity ratio for the portfolio after the volume adjustment.

5.4 Numerical Example

Suppose the regulatory capital requirement function is kR(s) and the true capital re-

quirement function is represented as kT (s) such that kT (s) = αkR(s), where α ∈ (0,∞).

If α ∈ (0, 1), then kT (s) = αkR(s) < kR(s) and the regulatory requirement is overesti-

mated. Whereas, if α ∈ (1,∞), then kT (s) = αkR(s) > kR(s) and the regulatory re-

quirement is underestimated. Though simple and analytically convenient, this multiplier

model can be used to characterise many realistic misestimation scenarios. Assume, for

example, the regulatory requirement follows the Basel II IRB approach. This approach

to estimating the capital reserve required for the unexpected loss uses a parameter value

ρ that is a correlation coefficient. Using Brazilian consumer credit data, De Andrade and
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Figure 5.4: Basel II Accord capital requirement misestimation.

Thomas [14] determine the correlation coefficient for the Basel category of “other retail

exposures” to be 2.28%, whereas Basel II stipulates it to be 3%. For the Basel category

of “qualifying revolving credit exposures”, the correlation is set to be 4%. However,

some industry experts believe that the best empirical estimate should be 2%. Figure

5.4 shows the Basel II stipulated capital requirement at various levels of probability of

default for correlation coefficient (ρ) values of 2% and 4%. The figure illustrates that

with ρ = 2%, the equity capital requirement is approximately 70% of the equity capital

requirement with ρ = 4%. This misestimation example represents an overestimation

case with α = 0.70.

While ρ is one reason why the regulatory formula could be misestimated, there are

other reasons for misestimation of regulatory capital, such as misestimation of loss given

default and hence, the motivation to keep misestimation general. Another example for

the occurrence of misestimation of capital requirements is due monotonic population
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drift. Monotonic population drift will result in misestimation of probability of default.

However, misestimation of probability of default may result in one subpopulation of

account in the portfolio having underestimated its true capital requirements while an-

other having overestimated its true capital requirement. We restrict ourselves to the

case where the whole portfolio is misestimated on one direction.

We now numerically illustrate the impact of misestimation using the following exam-

ple for a qualifying revolving retail credit (i.e. credit card) portfolio considered in Oliver

and Wells [30], Oliver and Thomas [29]. Using a constant opportunity cost of equity

and the other parameters in Table 5.1, we first consider the profit drag that would arise

if Basel II’s standard 6% minimum regulatory capital were misestimated as Basel I’s

8% and its related U.S. level of 10%. Figure 5.5 illustrates the historic misestimation

assuming the Basel II standard approach is true.

Table 5.1: Parameter values for numerical experiments.

Parameter pB pG ρ f(s|G) f(s|B) fD C rL rB rQ

Value 0.088 0.912 0.04 N( s−3.985
1.815

, 1) N( s−0.691
1.815

, 1) 0.5 1 0.1 0.05 0.20

For these historic regulatory benchmarks the alpha factors are 0.75 and 0.60, respec-

tively. Assuming a true equity level of 6%, the profit drag as a percentage of maximum
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Figure 5.5: Profit Drag due to overestimation of historical regulatory requirements.

economic profit is 14.1% for α = 0.75 and 27.8% for α = 0.60. Figure 5.5 shows profit

drag as a percentage of maximum economic profit as a function of α. For our data set,

then, Basel II’s standard capital requirements appear to represent a significant reduction

in potential economic profit drag on consumer banks assuming its lower standard capital

requirement is closer to true economic capital than its predecessors.

Now let us consider a numerical illustration of misestimation potential imbedded in

the Basel II IRB approach. Most observers would agree that this is the most sophisti-

cated regulatory approach to capital requirements to date. Again, we use the parameters

in Table 5.1, a constant opportunity cost of equity, and illustrate a range of misestima-

tion levels as in Figure 5.6 below. In Figure 5.6, we illustrate the impact of profit drag

due to misestimation of the regulatory formula as well as the misestimation of the cor-

relation coefficient ρ, where ρT and ρR are the true and regulatory specified correlation
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Figure 5.6: Profit drag on expected profit assuming Basel II IRB as regulatory require-

ment with constant cost of equity.

coefficient respectively. For the case of α = 0.70, there is a profit drag of 3.4% of max-

imum expected profit realizable under the true capital requirement function. It should

be noted that 3.4% represents a lower bound in the sense that including operating costs

for our stylized bank would only raise the percentage.

To complete our comparison for the case, we present in Figure 5.7 the profit drag

as a fraction of the capital reserve determined at the maximum profit under the true

capital requirement. At α = 0.70, the profit drag as a percent of the capital reserve is

8.4% under the case where the regulatory function is misestimated.

The numerical results presented thus far are based on a constant opportunity cost of

equity of 20%. As considered earlier, a variable of cost of equity model can be obtained

within the spirit of Modigliani and Miller’s seminal work [11, 26, 27, 25]. Under variable
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cost of equity, the profit drag as a percent of maximum profits and as a percent of

capital reserve is 2.5 % and 3.4%, respectively, for α = 0.70. Thus even under the

most restricted assumptions – a more enlightened regulatory regime and an opportunity

cost of equity linearly rising with the debt to equity ratio – we find positive profit drag

associated with regulatory misestimation. This is in accord with our theoretical results.

5.5 Summary

The bank we study maintains two invariants. First, it always follows regulatory require-

ments by maintaining at least as much equity as prescribed by the regulations. Second,

irrespective of regulation it maintains a constant risk of portfolio default; that is, the

bank constrains operations relative to available equity so as to bound the probability that
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unexpected losses exceed equity. When regulation differs from true capital requirements,

our bank may adjust the size or volume of its portfolio to maintain both invariants. Our

results show that, regardless of direction, misestimation of capital requirements creates

a drag on economic profit or, equivalently, a dead-weight loss of shareholder value.

A portfolio manager is required to set aside unencumbered capital for regulatory

purposes at acquisition stage and hence, before the economic condition during account

performance is revealed. Given there is a cost to mistestimating regulatory capital, a

portfolio manager has opportunity to improve decision making by incorporating forecasts

of future economic conditions at acquisition stage. In the next chapter, we incorporate

forecasts of future economic conditions into the portfolio creation decision.



Chapter 6

Scoring Decisions with Regulatory Constraints

6.1 Introduction

In Chapter 4, we considered the case of a portfolio who is required to make accept/reject

decision given forecasts and scorecard performance for multiple future economic scenar-

ios. In Chapter 5, we showed there is a negative profit impact on a portfolio manager

misestimating the regulatory capital requirement. In this chapter, we incorporate cost

of regulatory capital into a portfolio manager’s decision. We consider the case of a risk-

neutral decision maker whose primary decision is the accept/reject decision for each loan

application. In addition, the portfolio manager retains capital in order to be compliant

with regulatory capital requirements, and is constrained by the amount of unencumbered

capital that may be used for regulatory purposes. The portfolio manager has access to

a single scorecard to forecast credit risk of borrowers. In the first instance, we assume

credit risk is independent of the prevailing economic condition during account perfor-

mance and show methods to construct the EPV efficient frontier. This is followed by the

case of a portfolio manager with access to scorecard performance data conditional on

prevailing economic conditions and forecasts of each possible economic condition during

70
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account performance period. We show methods to construct the EPV efficient frontier

for this multiple economic scenario case.

The most relevant work to this chapter are the following: Oliver and Wells (2001);

Beling, Covaliu and Oliver (2005) as well as Chapters 4 and 5 from this dissertation.

Efficient frontier and profit maximization calculation as illustrated by Oliver and Wells

(2001); Beling, Covaliu and Oliver (2005); and the decision model in Chapter 4 do not

consider economic or regulatory capital in the decision making process. In Chapter 5, we

included cost of regulatory capital in the decision making process, where the impact of

misestimation of the regulatory requirement amounts is analyzed. However in Chapter

5, we assumed the portfolio manager’s objective is to maximize profit. In contrast, this

chapter deals with the trade-offs between multiple objectives faced by the portfolio man-

ager, including the case of a manager operating under capital constraints. This chapter

provides the theoretical framework for constructing the efficient frontier when capital

costs and constraints are considered in the decision making process. This chapter’s main

contributions are the following: (1) this work includes the cost of regulatory capital in

the profitability model and incorporates capital constraints in the decision making pro-

cess; (2) this work establishes a disjoint accept population is possible when regulatory

capital is considered in the decision making process; and (3) this work establishes the

unexpected result of creating different heterogeneous portfolios with different portfolio

risk profile that have exactly the same portfolio regulatory requirement.

We organize the chapter in the following manner; In Section 6.2, we introduce the set
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of rules that govern the bank’s behavior. In Section 6.3, we consider the decision faced by

a portfolio manager who must make both a capital and accept/reject decision in creating

the consumer loan portfolio. This section is restricted to a single economic scenario.

We study the cases of a manager with or without capital constraints, and construct

the efficient frontier for both cases. In Section 6.4, we show through an example the

problem of a decision maker operating under capital constraints. Finally, in Section 6.5,

we summarize and discuss our findings. The proofs for the propositions developed in

this chapter are found in the chapter appendix.

6.2 Bank behavior policies and controls

The bank behavior policies is the set of rules that govern the bank’s behavior. The

bank is required to fund the consumer loans. These are funded through debt such as

from commercial banks. In addition, the bank raises equity capital to act as reserves for

regulatory purposes. We assume the bank always complies with the regulatory require-

ment, and hence maintains capital reserve, k(s) no less than the amount stipulated by

regulation for each account, i.e, k(s) ≥ kR(s) ∀s. The bank has certain controls available

to it. The portfolio manager decides the set of scores to accept and the complementary

set of scores to reject. In addition, the portfolio manager sets the capitalization level,

k(s), under the constraint k(s) ≥ kR(s) for all accepted score s.

We assume the expected loss is priced for in the expected revenue, i.e., fDp(B|s) ≤
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rL(s)p(G|s). It follows that rL(s) ≥ fDp(B|s)/p(G|s). For model tractability, we assume

the loan rate is set such that the expected operating income, EZ [I(s)] is monotonically

decreasing and linear with respect to p(B|s) with δEZ [I(s)]/δp(B|s) ≤ −rQfD. For the

case of constant loan rate, i.e., rL ≡ rL(s) and no cost of capital included in the profit

function, e.g., rQ = 0, Equation 3.1 reduces to the profit function defined by Oliver and

Wells [30].

The capital requirement formulae is derived for a portfolio consisting of accounts

with the same probability of default (see Perli and Nayda [32]). Due to the law of large

numbers, as the portfolio size tends to infinity, the average portfolio default rate will

equal to the account probability of default [32]. For a portfolio consisting of multiple risk

segments, we follow Botha and van Vuuren [7] when determining the regulatory capital

requirement. The capital requirement for each constituent loan of a portfolio is calcu-

lated and then aggregated to determine the capital requirements for the total portfolio

[7]. It follows the portfolio regulatory capital requirement is Qs
R(ω) =

∫

s∈ω
kR(s)f(s)ds,

where applicants with scores in the set ω are granted credit.

6.3 Single Economic Scenario

In this section, we consider the case of a portfolio manager who is faced with the task

of creating a portfolio under the assumption account performance is independent of the

prevailing economic conditions, i.e., single economic scenario. The portfolio manager has
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access to a scorecard in order to forecast the default risk of applicants, an opportunity

to raise capital, and models to evaluate business metrics associated with the bank’s

objectives. The portfolio manager sets both the accept/reject score decision and the

capital amount when determining the operating point on the EPV space. We construct

the efficient frontier in the expected profit-expect volume (EPV) space.

The portfolio manager sets capitalization function, k(s) with the constraint k(s) ≥

kR(s) ∀s. Since rQ ≥ 0 and k(s) ≥ kR(s), it follows from Equation (3.1) that EZ [P (s, k(s))] ≤

EZ [P (s, kR(s))] for any function k(s) used to calculate capital requirements. Therefore,

the portfolio profit ES[P
s(ω,Qs(ω))] ≤ ES[P

s(ω,Qs
R(ω))]. Since ES[V

s(ω)] is indepen-

dent of the capitalization function k(s), it follows that the portfolio manager always

applies the regulatory formula kR(s). Hence, the problem simplifies to determining the

score accept set ω.

An operating point may be constructed by multiple accept sets, i.e., different accept

sets that result in the same expected portfolio profit and expected portfolio volume.

However, we are only interested in finding at least one accept set for each feasible

operating point on the efficient frontier. For ease of analysis, we define ω as a union

of separated score intervals on the score domain s ∈ (−∞,∞). Two sets are separated

sets if each is disjoint from the other’s closure. Proposition 6.1 provides the basis for a

simplifying view of accept sets.

Proposition 6.1. For each feasible operating point, there exists an accept set such that

each of the separated subsets are of non-zero measure.
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On the basis of Proposition 6.1, we assume all accept sets are constructed as a union

of separated score intervals each with non-zero measure. Similarly, all non-accept sets

are a union of separated score intervals each with non-zero measure.

In this section, we construct the efficient frontier for two cases: the case where there

is no capital constraint, and the case of capital constraint.

6.3.1 No capital constraint

In order to construct the efficient frontier, we show the expected profit of an account

for a customer is monotonically increasing in s. We use this monotonic property to

construct the efficient frontier.

From Equation (3.6), let the total loss (both expected and unexpected loss),

kU(s) = Φ

(
√

1

1− ρ
Φ−1(p(B|s)) +

√

ρ

1− ρ
Φ−1(0.999)

)

.

Therefore, kR(s) = fD [kU(s)− p(B|s)]. Rearranging the terms in the expected profit

Equation (3.1),

EZ [P (s, kR(s))] = EZ [I(s)] + fDrQp(B|s)− rQfDkU(s). (6.1)

The left terms on the right hand side, EZ [I(s)]+fDrQp(B|s) increases with respect to s.

Since default risk, p(B|s), decreases with respect to score, it follows that kU(s), and hence

the third term in Equation (6.1) is strictly decreasing in s. Therefore EZ [P (s, kR(s))] is

monotonically increasing with respect to s.
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Suppose a portfolio manager wishes to maximise portfolio profit while achieving an

expected volume of V0, i.e., determine the accept set ω that solves max{ω|ES [V s(ω)]=V0}ES[P
s(ω,Qs

R(ω))].

We show through Proposition 6.2 this may be achieved by applying a single cutoff score

sa, and accepting all scores s ≥ sa while declining scores in the range s < sa. This is

called a single-cutoff score strategy.

Proposition 6.2. Suppose ω0 solves max{ω|ES [V s(ω)]=V0}ES[P
s(ω,Qs

R(ω))]. There exists

a score sa such that ES[P
s(ω0, Q

s
R(ω))] = ES[P

s({s|s ≥ sa}, Q
s
R(ω))] and ES[V

s(ω0)] =

ES[V
s({s|s ≥ sa})].

By Proposition 6.2, a single-cutoff score strategy results in a dominating operating

point for a given expected volume. For ease of notation, we refer to the expected portfolio

profit with cutoff score sa and regulatory formula kR(s) as ES[P (sa, Q
s
R(sa))] where

ES[P (sa, Q
s
R(sa))] = ES[P

s({s|s ≥ sa}, Q
s
R({s|s ≥ sa}))]. Note, we drop the subscript

s when indicating portfolio metric under a single-cutoff score strategy. Similarly, the

portfolio volume ES[V (sa)] = ES[V
s({s|s ≥ sa})] and the portfolio regulatory amount

QR(sa) = Qs
R({s|s ≥ sa}).

Since EZ [P (s, kR(s))] is monotonically increasing with respect to s, maximum profit

is achieved by accepting all scores with non-negative expected account profit, i.e., EZ [P (s, kR(s))] ≥

0. It follows that the profit maximizing cutoff score s∗ is the score that solves EZ [P (s
∗, kR(s))] =

0.
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The slope of the EPV curve,

∂ES [P (s,QR(s))]

∂ES [V (s)]
= −EZ [P (s, kR(s))].

Since EZ [P (s, kR(s))] is monotonically increasing in s, the slope of the EPV curve is

strictly concave. Therefore, the efficient frontier consists of all operating points con-

structed by applying cutoff scores in the set {sa : sa ≤ s∗}.

6.3.2 Constrained capital decision

Thus far, we assumed the portfolio manager has the opportunity to raise unlimited

capital. Under such a case, we showed an efficient operating point is attained through

a single-cutoff score policy. Suppose instead, the portfolio manager is restricted by the

amount of capital that may be raised. The portfolio manager must decide both the

set of scores to accept and the amount of capital to retain for capitalization purposes

under a capital constrained case. We motivate this constrained capital study through

the following example. Suppose the portfolio manager’s goal is to maximise portfolio

volume, regardless of expected profit. In such a case, this volume maximizing point on

the efficient frontier is achieved by accepting those applicants with scores requiring the

least amount of regulatory capital, i.e., at the extreme ends of the score domain (see

figure 3.3). Clearly, this volume maximizing point on the the efficient frontier can not

be constructed with a single-cutoff score policy as in Section 6.3.1. In this section, we

determine those policies that result in an efficient portfolio.
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Suppose Ω(K) is the set of accept sets that result in operating points on the EPV

curve for the constrained problem, where K is the maximum capital that may be raised.

We assume the maximum allowable capital amount to beK < QR(−∞) else the problem

is that of the unconstrained case (see Section 6.3.1). Suppose sK is the cutoff score that

solves QR(sK) = K and the set Ω0(K) = {[sc,∞)|sc ≥ sK}. Since Ω0(K) is the set

of accept sets forming the unconstrained EPV curve with QR(sc) ≤ K, it follows that

Ω0(K) ⊆ Ω(K). The problem simplifies to determining the operating points for the

set Ω1(K) = Ω(K) \ Ω0(K). Since QR(s) > QR(sK) for all s < sK , it follows that no

operating points formed by a single cutoff-score strategy is an element of the set Ω1(K).

Suppose the bank follows the simplified approach of Basel II. In such a scenario, the

capital requirement is constant 6 percent of risk assets. We may express Equation (3.1)

as,

EZ [P (s, kR(s))] = EZ [I(s)]− rQkR(s)

= EZ [I(s)]− rQ [6%] .

Since EZ [I(s)] is a linear decreasing function of p(B|s), it follows that the expected

profit EZ [P (s, kR(s))] is a linear decreasing function of p(B|s). The EPV curve may

then be constructed as in Section 6.3.1 with s ∈ [sK ,∞), where sK solves QR(sK) = K

and Ω1(K) = ∅.

Suppose instead the bank follows the advanced approach of Basel II. In order to

construct the EPV curve, we establish the definition of profit-dominance.
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Definition. We say an accept-set ω1 is a profit-dominated set if there exists a set ω2 such

that ES[P
s(ω2, Q

s
R(ω))] > ES[P

s(ω1, Q
s
R(ω))], ES[V

s(ω2)] = ES[V
s(ω1)], and Q

s
R(ω2) ≤

Qs
R(ω1). We denote the profit dominance of ω1 by ω2 as ω2≻

pω1 or ω1≺
pω2. In such a

case, we also say the operating point formed by ω1 is a profit-dominated operating point.

We note that no operating point on the EPV curve is a profit-dominated operating

point. The following result relates profit dominance of individual sets to supersets.

Proposition 6.3. Suppose there exist sets ω1, ω2 and ω3 such that ω1∩ω2 = ∅, ω1∩ω3 =

∅, and set ω2≻
pω3. Then, {ω1 ∪ ω2}≻

p{ω1 ∪ ω3}.

The capital requirement curve kB (p(B|s)) is concave with respect to probability of

default, p(B|s) for all three consumer asset classes, except for a region of local convex-

ity for “other retail portfolios” [7]. In order to establish the characteristics of profit-

dominated operating points, we define it over multiple steps. Firstly, we use the concave

property of the capital requirement curve to show that all profit-dominated operating

points must be a result of accept sets at the either end of the risk spectrum within

the concave region (see Proposition 6.4). This result implies all profit-dominated op-

erating points for mortgages and qualifying revolving portfolios are formed through a

single cutoff-score or double cutoff-score strategy. In the region of local convexity for

“other retail portfolios”, the expected account profit (EZ [P (s, k(s))]) and the regula-

tory requirement (kR(s)) are monotonically increasing and decreasing with respect to

respect to score s respectively. We use these properties in Proposition 6.5 to show profit-
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dominated operating points for “other retail portfolios” are also formed through a single

cutoff-score or double cutoff-score strategy.

Proposition 6.4. Suppose the capitalization function, kB (p(B|s)), is concave with re-

spect to p(B|s) in the score range ω = [s1, s2]. Suppose there exists an accept set

ω1 ⊂ ω with ω1 6= {[s1, s3] ∪ [s4, s2]} for some s1 ≤ s3 < s4 ≤ s2. There exists a

set ω2 = {[s1, s3] ∪ [s4, s2]} for some s1 ≤ s3 < s4 ≤ s2 such that ω2≻
pω1.

Now, we characterize the accept set in the region of convexity for “other retail port-

folios”.

Proposition 6.5. Suppose the capitalization function, kB (p(B|s)), is increasing with

respect to p(B|s) in the score range [s1, s2]. Suppose set ω1 ⊂ [s1, s2] but ω1 6= [s1, s3]

for some s1 < s3 < s2. There exists a set ω2 = [s1, s3] for some s1 < s3 < s2 such that

ω2≻
pω1.

Let Γ1 = {(−∞, si] ∪ [sj,∞)|si < sj}. By Propositions 6.3, 6.4 and 6.5, all elements

not in Γ1 are profit-dominated operating points. Therefore, Ω1(K) ⊆ Γ1. Suppose score

s∗ solves maxs kR(s). For each score si ∈ (−∞, s∗), there exists a corresponding score

s′i such that kR(si) = kR(s
′
i) with s

′
i ∈ (s∗,∞). We use this property in Proposition 6.6

further characterizes efficient accept sets.

Proposition 6.6. Suppose score s∗ solves maxs kR(s). For each score si ∈ (−∞, s∗),

there exists a corresponding score s′i such that kR(si) = kR(s
′
i) with s′i ∈ (s∗,∞). Any

accept set ω1 ⊆ [s1, s2] with either exclusively f(si) ≤ f(s′i) ∀si ∈ [s1, s2] or exclusively
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f(si) > f(s′i) ∀si ∈ [s1, s2] is a profit dominated set.

By Propositions 6.3 and 6.6, all elements of Γ1 = {(−∞, si] ∪ [sj ,∞)|si < sj} with

kR(si) > kR(sj) are profit-dominated operating points. It follows that Ω1(K) ⊆ Γ2,

where Γ2 = {(−∞, si]∪ [sj ,∞)|si < sj, kR(si) ≤ kR(sj)}. We show through Proposition

6.7 that any element in Γ2 that is not binding in capital requirement is not an element

of Ω1(K).

Proposition 6.7. Suppose ω1 ∈ Γ2 with Qs
R(ω1) < K, where K is the maximum avail-

able unencumbered capital, then ω1 /∈ Ω1(K).

Let Γ3 = {(−∞, si] ∪ [sj ,∞)|si < sj, kR(si) ≤ kR(sj), Q
s
R((−∞, si] ∪ [sj ,∞)) = K}.

It follows from Propositions 6.7, Ω1(K) ⊆ Γ3. We show through Proposition 6.8 that

no two operating points in Γ3 result in the same expected volume. It follows that no

elements of Γ3 profit-dominate another element of Γ3.

Proposition 6.8. Suppose ω1, ω2 ∈ Γ3 then ES[V
s(ω1)] 6= ES[V

s(ω2)].

It follows from Proposition 6.8, all elements in Γ3 result in different expected volume.

Therefore, no elements of Γ3 profit-dominate another element of Γ3. Therefore, Γ3 ⊆

Ω1(K). Since Ω1(K) ⊆ Γ3, it follows that Γ3 = Ω1(K). Therefore, the operating points

formed by elements of Γ3 ∪ Ω0(K) is the EPV curve.

Proposition 6.9. The EPV curve is concave.

By Proposition 6.9 and assuming ES[P (−∞, QR(−∞))] < 0, it follows that the
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operating points formed by the elements of Ω1 in the EPV curve decreases in expected

profit as expected volume increases. Hence, all elements of Ω1(K) are part of the efficient

frontier.

To summarize, the EPV curve under the capital constraint case is constructed as

follows. Let K be the maximum capital that may be raised, where K ≤ QR(−∞) and

let sK be the cutoff score that solves QR(sK) = K. We construct the set of operating

points constructed through a single-cutoff score strategy for all cutoff-scores si ≥ sK .

Then, we extend the EPV curve by successively increasing the score si and accepting

scores with the least expected profit in a manner that capital constraint is binding.

The maximum volume point is the one constructed by the set ω = (−∞, sj] ∪ [si,∞),

where Qs
R(ω) = K, kR(sj) = kR(si) and sj < si. Suppose s

∗ is the unconstrained profit

maximizing score. If s∗ ≤ sK , the efficient frontier consists of all operating points formed

by Ω1(K). If s∗ > sK , the efficient frontier consists of all operating points formed by

Ω1(K) ∪ [sK , s
∗].

Figure 6.1 illustrates an example of the efficient frontier for the constrained problem.

6.4 Multiple Economic Scenario

In the previous section, we constructed the efficient frontier for a single economic sce-

nario. In this section, we assume account performance is dependent on the prevailing

economic condition during account performance. We consider the case of a portfolio
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Figure 6.1: The efficient frontier for the constraint problem.

manager whose acquisition and capitalization decision is made with consideration to

each of the possible economic condition. The portfolio manager has access to forecasts

of probability of realization for each economic condition. The portfolio manager must

set the accept/reject policy and the level of capitalization prior to account performance.

We assume accept/reject decisions are made such that the portfolio manager is always

compliant with regulatory requirements. We restrict our study to the case of two eco-

nomic scenarios but the methodology may be extended to more scenarios. The goal of

this section is to show methods to construct the efficient frontier for a portfolio manager

operating under the case of multiple economic scenarios.
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To keep this analysis simple, we model this as a process with two time steps. At time

t = 0, the portfolio manager has access to unencumbered capital KT . At this time, the

portfolio manager also has access to forecasts on the probability of realization for the two

economic scenarios and the expected performance of accounts under each scenario. The

portfolio manager sets aside capital amount K ≤ KT and invests the rest KT −K in a

one-off investment opportunity with return rQ. The capital amount K that is set aside is

then used as regulatory capital for the loan portfolio. At time t = 1, one of two economic

scenarios is realized and the portfolio manager sets the accept/reject decision to create

a portfolio. At this time, the portfolio manager is cognizant of the prevailing economic

scenario and the available unencumbered capital, and the accept/reject decision is set

in a manner that results in an efficient portfolio. At time t = 1, the capital amount

is no longer a decision variable as in Section 6.3.2. However, the regulatory capital

requirement for the portfolio is a constraint and may not exceed K, i.e., Qs
R(ω) ≤ K,

where ω is the accept set.

Let economic scenario be a random variable U . We denote the conditional probability

of default for an account with score s under economic scenario u by p(B|s, u). Similarly,

the conditional probability of good is p(G|s, u). It follows that the expected portfolio

operating income with accept set ωu under economic scenario u ∈ U is

ES[P
s(ωu, 0)|U = u] =

∫

s∈ωu

[(1 + rL(s))p(G|s, u) + (1− fD)p(B|s, u)− (1 + rB)] f(s)ds

=

∫

s∈ωu

[ES[P
s(s, 0)|U = u]] f(s)ds.
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The accept/reject decision is made such that Qs
u(ωu) ≤ K, where Qs

u(ωu) is the

regulatory capital requirement with accept set ωu under economic scenario u. Since

the decision to retain capital amount K was made at time t = 0 and the accept/reject

decision is at time t = 1, this may result in excess capital, K − Qs
u(ωu). However, the

total cost of capital inclusive of the excess amount is rQK. Therefore, the expected profit

of a portfolio with accept set ωu under economic scenario u ∈ U is ES[P
s(ωu, 0)|U =

u]− rQK.

The expected volume

ES[V
s(ωu)] =

∫

s∈ωu

f(s)ds.

The EPV curve under economic scenario u with a capital amount, K is constructed

as in Section 6.3.2. The portfolio manager may now set the accept/reject decision on

the efficient frontier.

Suppose at time t = 1, economic scenario U = 1 is realized. The portfolio manager

creates a portfolio with accept set ω1, where Q
s
1(ω1) ≤ K. Similarly, had economic

scenario U = 2 been realized, a portfolio is created with acceptance set ω2, where

Qs
2(ω2) ≤ K. The unconditional expected profit at time t = 0 is determined by three

variables, i.e., an accept set for each economic scenario (ω1 and ω2) and the retained

capital amount (K). For notational convenience, we define EU [P
s(ω1, ω2, K)] as the



Kanshukan Rajaratnam Chapter 6 Scoring Decisions with Regulatory Constraints 86

unconditional expected profit at time t = 0. Hence,

EU [P
s(ω1, ω2, K)] = q (ES[P

s(ω1, 0)|U = 1]− rQK) + (1− q) (ES[P
s(ω2, 0)|U = 2]− rQK)

= qES[P
s(ω1, 0)|U = 1] + (1− q)ES[P

s(ω2, 0)|U = 2]− rQK,

where q (and (1−q)) is the forecasted probability for the realization of economic scenario

U = 1 (and U = 2). Similarly, the unconditional expected volume at time t = 0 is,

EU [V
s(ω1, ω2)] = qES[V

s(ω1)] + (1− q)ES[V
s(ω2)]. (6.2)

Our goal in this section is to determine the maximal set of operating points that are

not dominated by other operating points at time t = 0 (i.e., on the unconditional EPV

space), for a portfolio manager with access to unencumbered capital KT . The feasible

region may be approximated by simulating operating points on the unconditional EPV

space. For each operating point on the EPV space, accept sets ω1 and ω2 are simulated

such that Qs
u(ωu) ≤ KT ∀u ∈ {1, 2}. The unconditional expected profit is,

EU [P
s(ω1, ω2, K)] = qES[P

s(ω1, 0)|U = 1] + (1− q)ES[P
s(ω2, 0)|U = 2]− rQmax[Qs

1(ω1), Q
s
2(ω2)],

where max[Qs
1(ω1), Q

s
2(ω2)] ≤ KT is the retained capital amount at time t = 0. The

respective unconditional portfolio volume is determined using Equation 6.2.

This is then repeated multiple times to simulate for the feasible region and hence,

the efficient frontier may be approximated. We show through Proposition 6.10 below,

if at least one of the accept set ωu is a dominated operating point on the EPV space

conditioned on the respective economic scenario, then the resulting operating point at
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time t = 0 will be dominated on the unconditional EPV space, and hence could be

eliminated from the simulation approximating the efficient frontier.

Proposition 6.10. Let Γu(K) be the set of accept sets resulting in efficient operating

points under economic scenario u and available capital K at t = 1. Suppose the portfolio

manager retains capital amount of K at time t = 0. Without loss of generality, suppose

ω1 ∈ Γ1(K), and suppose ω2 is a feasible operating point with Qs
2(ω2) ≤ K but ω2 /∈

Γ2(K), then the resulting operating point with ω1, ω2 and K at time t = 0 is a dominated

operating point in the unconditional EPV space.

By Proposition 6.10, all efficient operating points on the unconditional EPV space is

constructed by efficient accept sets on the conditional EPV space. These efficient accepts

sets are determined as in Section 6.3.2. As a result of Proposition 6.10, the efficiency of

a simulation to approximate the unconditional efficient frontier is increased.

6.5 Summary

We extend the literature in creating efficient consumer loan portfolios. Oliver and Wells

[30] constructed the efficient frontier in the expected profit-loss space and the expected

profit-volume space, for a decision maker creating a consumer loan portfolio. In Chap-

ter 4, we extended the literature to include economic forecasts when constructing the

efficient frontier. In both these work, the decision maker was required to determine

the accept/reject score set. In this chapter, the decision maker is required to set the
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accept/reject decision incorporating regulatory capital reserves in the decision making

process.

In Section 6.3, we consider the case of a single economic scenario and construct the

efficient frontier for two cases; one without capital constraint, and the other with capital

constraint. We showed that under the capital constraint scenario, a purely single-cutoff

score strategy is no longer applicable. The efficient frontier is constructed through a

combination of single-cutoff score and double-cutoff score strategies. A portfolio manager

operating under the advanced approach of Basel II and wanting to increase expected

volume beyond the maximum volume achievable with a single cutoff-score strategy, is

required to accept customers at the riskiest end of the score spectrum. There are two

contributing reasons for the disjoint accept set in a capital constraint environment: the

concave property of regulatory formulae and the monotonic decreasing, non-concave

relationship between expected account profit and score. We showed disjoint accept sets

result in binding capital constraint. Hence, every disjoint accept set resulting in an

efficient operating point on the EPV space require equal regulatory capital requirement.

When the EPV curve is plotted parameterized by disjoint accept sets described in this

chapter, an increase in expected volume does not result in higher capital requirement

despite the increase in average default risk in the portfolio.

In Section 6.4, we considered the case of multiple economic scenarios. We specified

the process to simulate for the efficient frontier in the case of a portfolio manager who

is faced with a capital retention decision prior to the accept/reject decision. We showed
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the efficient frontier may be constructed by restricting the simulation space to efficient

accept sets on the conditional EPV space.

In this chapter, we considered a once-off investment decision by the portfolio man-

ager. An important extension of this work is to consider multiple successive investment

decisions.

Appendix

Proposition 6.1. For each feasible operating point, there exists an accept set such that

each of the separated subsets are of non-zero measure.

Proof. Suppose an operating point is constructed by accepting scores in the set ω1 =

{s|s ∈ (∪M
i=1αi) ∪ (∪N

j=1βj)}, where αi’s are score intervals with zero measure, βj ’s are

score intervals with non-zero measure, and αi’s and βj ’s are separated subsets. Let

ω0 = {s|s ∈ (∪M
i=1αi)} and ω1 = {s|s ∈ (∪N

j=1βj)}. Since ES[P
s(ω0, Q

s
R(s))] = 0,

ES[V
s(ω0)] = 0 and Qs

R(ω0) = 0, it follows that ES[P
s(ω,Qs

R(ω))] = ES[P(ω1, Q
s
R(ω))],

ES[V
s(ω)] = ES[V

s(ω1)] and Q
s
R(ω) = Qs

R(ω1).

Proposition 6.2. Suppose ω0 solves max{ω|ES [V s(ω)]=V0}ES[P
s(ω,Qs

R(ω))]. There exists

a score sa such that ES[P
s(ω0, Q

s
R(ω))] = ES[P

s({s|s ≥ sa}, Q
s
R({s|s ≥ sa}))] and

ES[V
s(ω0)] = ES[V

s({s|s ≥ sa})].

Proof. Let ωa = {s|s ≥ sa} with ES[V
s(ωa)] = V0. Since ω0 solves max{ω,ES [V s(ω)]=V0}ES[P

s(ω,Qs
R(ω))],
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it follows that ES[P
s(ω0 \ ωa, Q

s
R(ω0 \ ωa))] ≥ ES[P

s(ωa \ ω0, Q
s
R(ωa \ ω0))]. Since

EZ [P (s, kr(s))] is strictly increasing in s, it follows that ES[P
s(ωa \ ω0, Q

s
R(ωa \ ω0))] ≥

ES[P
s(ω0 \ωa, Q

s
R(ω0 \ωa))]. Therefore, ES[P

s(ω0, Q
s
R(ω0))] = ES[P

s(ωa, Q
s
R(ωa))].

Proposition 6.3. Suppose there exist sets ω1, ω2 and ω3 such that ω1∩ω2 = ∅, ω1∩ω3 =

∅, and set ω2≻
pω3. Then, {ω1 ∪ ω2}≻

p{ω1 ∪ ω3}.

Proof. Since ω2≻
pω3, it follows thatES[P

s(ω2, Q
s
R(ω2))] > ES[P

s(ω3, Q
s
R(ω3))], ES[V

s(ω2)] =

ES[V
s(ω3)], andQ

s
R(ω2) ≤ Qs

R(ω3). Therefore, ES[P
s(ω1∪ω2, Q

s
R(ω1∪ω2))] > ES[P

s(ω1∪

ω3, Q
s
R(ω1∪ω3))], ES[V

s(ω1∪ω2)] = ES[V
s(ω1∪ω3)], andQ

s
R(ω1∪ω2) ≤ Qs

R(ω1∪ω3).

Proposition 6.4. Suppose the capitalization function, kB (p(B|s)), is concave with re-

spect to p(B|s) in the score range ω = [s1, s2]. Suppose there exists an accept set

ω1 ⊂ ω with ω1 6= {[s1, s3] ∪ [s4, s2]} for some s1 ≤ s3 < s4 ≤ s2. There exists a

set ω2 = {[s1, s3] ∪ [s4, s2]} for some s1 ≤ s3 < s4 ≤ s2 such that ω2≻
pω1.

Proof. For any s, let r(s) = p(B|s). Since S is a random variable with density f(s) and

there exists a bijective relationship between s and p(B|s), we can view R = r(S) as a

random variable with density g(r(s)). Note, g(r(s)) = f(s). For notational convenience,

we refer to r(s) ≡ r ∈ R. Let ri = p(B|si). Therefore, kB(r) is concave with respect to

r in the range [r2, r1]. We define set γ1 = {r(s)|s ∈ ω1}. Let V0 =
∫

ω1

f(s)ds. It follows

that
∫

γ1

g(r)dr = V0.

There exists scores r5, r6 ∈ (r2, r1) such that
∫

[r2,r5]
g(r)dr =

∫

[r6,r1]
g(r)dr = V0.
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For each score ri ∈ [r2, r5], there exists a unique score r′i with r6 < r′i < r1, such that

∫

[r2,ri]∪[r′i,r1]
g(r)dr = V0. Let γ(r) ≡ {[r2, r] ∪ [r′, r1]} and ER[V

s(γ(r))] =
∫

γ(r)
g(u)du

Let J(r, w(r)) =
∫

{γ(r)|ER[V s(γ(r))]=V0}
w(u)g(u)du for any continuous function w(r).

We define a linear function of r, h(r) = m1r +m0 such that h(r) ≥ 0 for r ∈ [0, 1],

where m1 < 0 is the slope and m0 = h(0). We use Weierstrass definition to show that

J(ri, h(r)) is continuous with respect to ri ∈ [r2, r5] (see [2]).

|J(r, h(r))− J(a, h(r))| =

∣

∣

∣

∣

∫

γ(r)

h(u)g(u)du−

∫

γ(a)

h(u)g(u)du

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

[r,a]

h(u)g(u)du−

∫

[r′,a′]

h(u)g(u)du

∣

∣

∣

∣

.

Let L = max{r} g(r). Since,
∫

γ(r)
g(u)du =

∫

γ(a)
g(u)du = V0, and h(r) ≥ 0 is a de-

creasing function of r ∈ [r2, r1], it follows that
∣

∣

∣

∫

[r,a]
h(u)g(u)du

∣

∣

∣
>

∣

∣

∣

∫

[r′,a′]
h(u)g(u)du

∣

∣

∣
>

0. Therefore,

|J(r, h(r))− J(a, h(r))| <

∣

∣

∣

∣

∫

[r,a]

h(u)g(u)du

∣

∣

∣

∣

<

∣

∣

∣

∣

∫

[r,a]

m0Ldu

∣

∣

∣

∣

= m0L |r − a| .

Fix ǫ > 0. Let |r−a| < δ and let δ < ǫ
m0L

. It follows that |J(r, h(r))−J(a, h(r))| < ǫ.

Therefore, J(r, h(r)) is a continuous function of r ∈ [r2, r5].

Since J(r, h(r)) is a continuous function of r ∈ [r2, r5], there exists a score r7 ∈

[r2, r5] such that J(r7, h(r)) =
∫

γ1

h(u)g(u)du. Since, h(r) is a linear function of r and

∫

γ(r7)
g(u)du =

∫

γ1

g(u)du = V0, it follows that
∫

γ(r7)
ug(u)du =

∫

γ1

ug(u)du. Therefore,
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J(r7, h(r)) =
∫

γ1

h(u)g(u)du for any linear function h(r) > 0 with r ∈ [0, 1] and m1 ∈

(−∞,∞).

Since {γ1 \ γ(r7)} ⊆ (r7, r
′
7), we construct a linear function h(r) such that it in-

tersects kB(r) at two points in the region r ∈ (r7, r
′
7) with

∫

{γ1\γ(r7)}
h(u)g(u)du =

∫

{γ
1
\γ(r7)}

kB(u)g(u)du. Since
∫

{γ(r7)\γ1
}
h(u)g(u)du =

∫

{γ
1
\γ(r7)}

h(u)g(u)du, it follows

that
∫

{γ(r7)\γ1}
h(u)g(u)du =

∫

{γ1\γ(r7)}
kB(u)g(u)du. However, since h(r) intersects kB(r)

at two points in the region r ∈ (r7, r
′
7), it follows that h(r) > kB(r) for r ∈ γ(r7).

Hence,
∫

{γ(r7)\γ1}
kB(u)g(u)du <

∫

{γ(r7)\γ1}
h(u)g(u)du. Therefore,

∫

γ(r7)
kB(u)g(u)du <

∫

γ1

kB(u)g(u)du.

Let s3 be such that p(B|s3) = r′7. Let ω2 = {s|r(s) ∈ γ(r7)} = [s1, s3]∪ [s7, s2]. From

Equation (3.1), EZ [P (s, kr(s))] = (rL(s) − cD) − (rL(s) + fD)r(s)− rQkB (r(s)). Since

(rL(s)−cD)−(rL(s)+fD)r(s) is a linear function of r(s), it follows thatES[P
s(ω2, Q

s
R(ω1))] >

ES[P
s(ω1, Q

s
R(omega1))]. Therefore, set ω2≻

pω1.

Proposition 6.5. Suppose the capitalization function, kB (p(B|s)), is increasing with

respect to p(B|s) in the score range [s1, s2]. Suppose set ω1 ⊂ [s1, s2] but ω1 6= [s1, s3]

for some s1 < s3 < s2. There exists a set ω2 = [s1, s3] for some s1 < s3 < s2 such that

ω2≻
pω1.

Proof. Since kB (p(B|s)) is increasing with respect to p(B|s) in the score range [s1, s2], it

follows from Equation (3.1), the expected profit EZ [P (s, kr(s))] is decreasing in the same

range. There exists a score s3 such that ω2 = [s1, s3] with ES[V
s(ω2)] = ES[V

s(ω1)], and
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ES[P
s(ω2, Q

s
R(ω2))] > ES[P

s(ω1, Q
s
R(ω1))]. Since kB (p(B|s)) is increasing with respect

to p(B|s) in the score range [s1, s2], it follows that Q
s
R(ω2) < Qs

R(ω1).

Proposition 6.6. Suppose score s∗ solves maxs kr(s). For each score si ∈ (−∞, s∗),

there exists a corresponding score s′i such that kr(si) = kr(s
′
i) with s′i ∈ (s∗,∞). Any

accept set ω1 ⊆ [s1, s2] with either exclusively f(si) ≤ f(s′i) ∀si ∈ [s1, s2] or exclusively

f(si) > f(s′i) ∀si ∈ [s1, s2] is a profit dominated set.

Proof. Since EZ [P (s, kr(s))] is an increasing function of s and si is defined such that

si < s′i, it follows that EZ [P (si, kr(s))] < EZ [P (s
′
i, kr(s))] ∀si ∈ [s1, s2].

Suppose f(si) ≤ f(s′i) ∀si ∈ [s1, s2]. Since EZ [P (si, kr(s))] < EZ [P (s
′
i, kr(s))], there

exists a set ω2 ⊆ [s′3, s
′
1] for some score s′3 ∈ [s′2, s

′
1] such that ES[P

s(ω2, Q
s
R(ω2))] >

ES[P
s(ω1, Q

s
R(ω1))], ES[V

s(ω2)] = ES[V
s(ω1)], and Q

s
R(ω2) ≤ Qs

R(ω1).

Suppose instead, f(si) > f(s′i) ∀si ∈ [s1, s2]. Since EZ [P (si, kr(s))] < EZ [P (s
′
i, kr(s))],

there exists sets ω2 = [s′2, s
′
1] and ω3 ⊂ [s1, s2] such that ES[P

s(ω2∪ω3, Q
s
R(ω2 ∪ω3))] >

ES[P
s(ω1, Q

s
R(ω1))], ES[V

s(ω2 ∪ ω3)] = ES[V
s(ω1)], and Q

s
R(ω2 ∪ ω3) = Qs

R(ω1).

Therefore, ω1 is a profit dominated set.

Proposition 6.7. Suppose ω1 ∈ Γ2 with Q(ω1) < K, where K is the maximum available

unencumbered capital, then ω1 /∈ Ω1(K).

Proof. Let ω1 = (−∞, s1]∪[s2,∞). Let score s3 be such that Qs
R([s3, s2]) = K−Qs

R(ω1).

Since K < Q(−∞), it follows that s1 < s3. Let score s4 be such that ES(V
s([s4, s1])) =
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ES(V
s([s3, s2])). Since the expected profit is an increasing function of score s, it follows

that EZ [P (si, kr(si))] < EZ [P (sj, kr(sj))] ∀si ∈ [s4, s1] and sj ∈ [s3, s2]. Let ω2 = {s|s ∈

{(−∞, s4] ∪ [s3,∞)}}. It follows that ES[P
s(ω2, Q

s
R(ω2))] > ES[P

s(ω1, Q
s
R(ω1))] and

ES[V
s(ω2)] = ES[V

s(ω1)]. Therefore, ω1 /∈ Ω1(K).

Proposition 6.8. Suppose ω1, ω2 ∈ Γ3 then ES[V
s(ω1)] 6= ES[V

s(ω2)].

Proof. Without loss of generality, suppose ω1 \ ω2 = [s1, s2) and ω2 \ ω1 = (s3, s4] with

s1 < s2 < s3 < s4. Since, ω1, ω2 ∈ Γ3, it follows that Q
s
R(ω1) = Qs

R(ω2) = K. Therefore,

∫

[s1,s2)
kr(s)f(s)ds =

∫

(s3,s4]
kr(s)f(s)ds. However, by Proposition 6.6, kr(si) > kr(sj)

∀si ∈ [s1, s2) and ∀sj ∈ (s3, s4]. Therefore,
∫

[s1,s2)
f(s)ds <

∫

(s3,s4]
f(s)ds. It follows that

ES[V
s(ω1)] 6= ES[V

s(ω2)].

Proposition 6.9. The EPV curve is concave.

Proof. Suppose the EPV curve is strictly convex between ES[V
s(ω1)] and ES[V

s(ω2)].

Let ω1 = (−∞, s1] ∪ [s2,∞) and ω2 = (−∞, s3] ∪ [s4,∞). Without the loss of gen-

erality, let s1 < s3 < s2 < s4. The convexity implies there exists a set ω3 ∈ Ω1(K)

such that ES[P
s(ω3, Q

s
R(ω3))] < xES[P

s(ω1, Q
s
R(ω1))] + (1 + x)ES[P

s(ω2, Q
s
R(ω2))] and

ES[V
s(ω3)] = xES [V

s(ω1)] + (1 − x)ES [V
s(ω2)] for some 0 < x < 1. There exists a set

ω4 ⊆ ω1 ∪ ω2 such that ω4≻
pω3. However, by Propositions 6.4, 6.5, and 6.6, it follows

that ω4 ∈ Ω1(K). Since ES[V
s(ω3)] = ES[V

s(ω4)], it follows by Proposition 6.8 that

ω3 ≡ ω4.Therefore, EPV curve cannot be strictly convex in any region.
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Proposition 6.10. Let Γu(K) be the set of accept sets resulting in efficient operating

points under economic scenario u and available capital K at t = 1. Suppose the portfolio

manager retains capital amount of K at time t = 0. Without loss of generality, suppose

ω1 ∈ Γ1(K), and suppose ω2 is a feasible operating point with Qs
2(ω2) ≤ K but ω2 /∈

Γ2(K), then the resulting operating point with ω1, ω2 and K at time t = 0 is a dominated

operating point in the unconditional EPV space.

Proof. Since ω2 /∈ Γ2(K), there exists an accept set ω3 ∈ Γ2(K), such thatES[P2(ω3, 0)] >

ES[P2(ω2, 0)] and ES[V2(ω3)] ≥ ES[V2(ω2)] withQ2(ω3) ≤ K. Therefore, EU [P
s(ω1, ω3, K)] >

EU [P
s(ω1, ω2, K)] and EU [V

s(ω1, ω3)] ≥ EU [V
s(ω1, ω2)]. It follows the resulting operat-

ing point with ω1, ω2 and K is a dominated operating point.



Chapter 7

Consumer Decision Heuristics

7.1 Introduction

In Chapter 4, we considered the case of a portfolio manager with access to multiple

scorecards operating under multiple economic conditions. In Chapter 5, we proved that

misestimating regulatory capital requirements results in a negative profit impact. In the

following chapter, we incorporated cost of regulatory capital into acquisition decisions.

We showed methods to construct the efficient frontier for a portfolio manager operating

under multiple possible future economic scenarios. In this chapter, we turn attention

to the impact of consumer decision in taking up or rejecting credit offers on portfolio

manager’s offer decisions. From the definition of adverse selection in static lending

models, we show that homogenous borrowers take-up offers at different instances of time

when faced with a sequence of loan offers. We postulate that bounded rationality and

diverse decision heuristics used by consumers drive the decisions they make about credit

offers. Under that postulate, we show how observation of early decisions, regardless

of the prevailing economic conditions, in a sequence can be informative about later

decisions and can, when coupled with a type of adverse selection, also inform credit risk.

We show through two examples how lenders may use such information in setting their

96
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offer rates.

The chapter is organized as follows. Section 7.2 extends the definition of adverse

selection from Oliver and Thaker [28] to a sequential offer setting that will serve as the

basis for further study of the borrower’s decision process. Section 7.3 discusses bounded

rationality in human decision making and reviews literature on categorizing agents by

their sequential decision making behavior. Section 7.4 introduces two sequential decision

problems in the consumer lending space. The first decision problem relates to auction

mechanisms for peer-to-peer lending. Lenders cognizant of decision heuristics in the

context of consumer lending may offer a lower bid rate and, hence, win the bidding

process. We derive policy implications for a marketplace desirous of increasing borrowers’

utility through lower interest rates. The second decision problem, set in the context of

direct mail, is that of a lender required to choose when to market offers relative to the

competition. We show how the lender may incorporate information learned about the

decision heuristics of individual consumers. Section 7.5 offers concluding remarks and

suggestions for further research.

7.2 Adverse Selection

In this section, we introduce the mathematical definition of adverse selection. We then

extend notions of adverse selection to timing adverse selection (TAS) and provide mo-

tivation for the study of consumers’ decision making process in the consumer lending
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space.

Suppose a portfolio manager has access to a homogenous population to which a

credit product is marketed. We say a population is homogenous when members of the

population have no observable differences between them. Suppose the portfolio manager

makes an offer of credit with rate r. Once an offer is made, some subset of the population,

the Take population, will accept the offer and open an account. Let T denote the event

that an individual takes up an offer; so T c is the event the individual declines the offer.

We denote the probability of default for a borrower with characteristic vector and offer

rate r as p(B|x̄, r). The conditional probability of default for the Take population is

then written as p(B|T, x̄, r).

Oliver and Thaker [28] define adverse selection as

p(B|T, x̄, r) > p(B|x̄, r). (7.1)

Equation 7.1 states the probability of a member in the Take population defaulting is

higher than the probability of default in the general population, i.e., both the Take and

Non-Take population.

We use the total probability theorem to obtain the Bads among the Non-Takes, i.e.,

p(B|x̄, r) = p(B|T, x̄, r)p(T |x̄, r) + p(B|T c, x̄, r)p(T c|x̄, r). (7.2)

Following Oliver and Thaker [28], Bayes’ Rule can relate the conditional probability of
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Bad of a Take to the conditional probability of Take by a Bad, i.e.,

p(B|T, x̄, r)

p(B|x̄, r)
=
p(T |B, x̄, r)

p(T |x̄, r)
. (7.3)

Since, p(T |x̄, r)+p(T c|x̄, r) = 1, combining Equations 7.1 and 7.2 results in the following

inequality:

p(B|x̄, r) > p(B|T c, x̄, r). (7.4)

Equation 7.4 indicates the Non-Take population have a higher credit quality than the

total population.

In defining Equation 7.4, we assumed the portfolio manager makes a one-time offer

of credit. Suppose instead of a one-time offer strategy, the portfolio manager markets

repeatedly. At each of a finite number of epochs, the manager has the option to market

to individuals who have not previously taken an offer. Below we show that, due to

adverse selection, the credit quality of those not-taking up any prior offers improve after

every marketing instance.

From Equations 7.1 and 7.3, it follows that,

p(B|T1, x̄, r1)

p(B|x̄, r1)
=
p(T1|B, x̄, r1)

p(T1|x̄, r1)
> 1, (7.5)

where Ti is the random variable indicating take-up at the ith offer and ri is the offer-

rate in the ith marketing instance. It follows from Equations 7.4 and 7.5, that the

credit quality of the non-take population after the first marketing instance is higher

than the credit quality of the population prior to the first marketing instance, i.e.,
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p(B|T c
1 , x̄, r1) < p(B|x̄, r1), where T

c
i indicates the event a borrower declines the ith

offer. Suppose the portfolio manager markets a second time to those who did not take

up the offer in the first marketing instance. It follows from Equations 7.1 and 7.3 that,

p(B|T2, T
c
1 , x̄, r̄2)

p(B|T c
1 , x̄, r̄2)

=
p(T2|B, T

c
1 , x̄, r̄2)

p(T2|T c
1 , x̄, r̄2)

> 1, (7.6)

where r̄i is a vector of all past and current offers, i.e., r̄i = {r1, r2, ..., ri}.

Equations 7.4 and 7.6 can both be generalized for the ith marketing instance, i.e.,

p(B|T c
1 , ..., T

c
i−1, x̄, r̄i) > p(B|T c

1 , ..., T
c
i−1, T

c
i , x̄, r̄i) (7.7)

and

p(B|Ti, T
c
1 , ..., T

c
i−1, x̄, r̄i)

p(B|T c
1 , ..., T

c
i−1, x̄, r̄i)

=
p(Ti|B, T

c
1 , ..., T

c
i−1, x̄, r̄i)

p(Ti|T c
1 , ..., T

c
i−1, x̄, r̄i)

> 1. (7.8)

Note that equations 7.7 and 7.8 are extensions of Equations 7.1 and 7.3. Equation 7.7

implies that due to adverse selection, the credit quality of successive non-take population

improves after each marketing instance. This is due to the higher probability of Take

among Bads than the general population at each marketing instance. Furthermore,

Equation 7.8 indicates there is a time component to adverse selection. We call this time

dependent characteristic of adverse selection, timing adverse selection (or TAS). Note,

thus far the vector of offer rates in r̄i has not been specified.

Suppose some members of a marketed population decline all prior offers, it follows

from Equation 7.8,

p(Ti|B, T
c
1 , ..., T

c
i−1, x̄, r̄i) > p(Ti|T

c
1 , ..., T

c
i−1, x̄, r̄i).
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It follows since p(Ti|T
c
1 , ..., T

c
i−1, x̄, r̄i) ≥ 0, the probability of take-up for Bads is strictly

positive and is greater than the probability of take-up among the general population.

In such a scenario where some members of a marketed population decline all prior

offers, there is a positive probability at each marketing instance of a Bad declining all

prior offers and taking up the latest offer, , i.e., p(Ti|B, T
c
1 , ..., T

c
i−1, x̄, r̄i) > 0 for all i.

Observations of real-life subjects faced with sequential decision making problems, have

shown homogenous subjects taking up offers at different instances of a sequence. In the

next section, we take a borrower’s view of receiving a sequence of offers and discuss the

decision heuristic observed in similar sequential decision making problems.

7.3 Bounded Rationality

In Section 7.2, we considered the case of a portfolio manager repeatedly marketing a

credit product to a non-take population. The non-take population is updated after every

offer is made. We showed under Oliver and Thaker’s definition of adverse selection

(see Oliver and Thaker [28]), the credit quality of the non-take population improves

monotonically with marketing instance and that there is a timing aspect to adverse

selection.

Suppose now we take a borrower’s view. A borrower receives a sequence of offers

from a lender. We assume the offer expires before the next offer arrives. As each offer

arrives, the borrower is required to make a decision on whether to take the offer. If
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an offer not taken, the borrower waits for the next offer. When rejecting an offer, the

borrower risks the chance of receiving only lower quality offers in the future. A broad

set of literature indicates that humans do not necessarily make rational decisions when

faced with sequential decision problems, in part because of our bounded ability to take

in information and limited cognitive abilities. Such limitations are known as bounded

rationality. Bounded rationality may explain why homogenous borrowers accept credit

offers at different point of time when faced with a sequence of offers. We provide an

example, in the form of a well-studied problem known as the secretary problem, of how

human subjects make decisions in a sequential decision problem setting.

7.3.1 Decision Heuristics

The secretary problem, also known as the dowry problem, is a well-studied sequential de-

cision problem involving optimal stopping theory. The secretary problem in its simplest

form is as follows [16]. Suppose a manager wishes to fill a secretarial position. There is

only one such position available, for which there are N applicants. The manager is aware

of the number of applicants. We assume the applicants can be rank-ordered from best

to worst candidates without ties. The applicants are then interviewed sequentially and

in a random fashion. Once an applicant is interviewed, the manager is required to make

a decision to hire the applicant or not. If the applicant is hired, no further interviews

takes place. However if the applicant is not hired, the decision maker interviews the

next candidate. Rejected applicants cannot be recalled. The objective of the manager is
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to hire the best possible applicant. After each interview, the manager faces a trade-off,

i.e., the manager could hire the current interviewee and risk the chance that a better

applicant would have arrived later on in the interview process, or not hire the current

interviewee but no higher quality applicant arrives later.

The optimal solution can be described using the idea of a candidate. An applicant is

a candidate if he or she is the best applicant interviewed thus far. The optimal solution

is then for the manager to reject the first h−1 applicants, some integer h ≥ 1, and then

choose the next candidate [16]. Let N denote the number of applicants. For N > 1, the

probability of selecting the best applicant is,

φN(h) =

N
∑

j=h

p(j-th applicant is the best applicant and is selected)

=
N
∑

j=h

(

1

N

)(

h− 1

j − 1

)

=

(

h− 1

N

) N
∑

j=h

1

j − 1
.

The optimal solution is h∗ = argmaxtφN(t). This is easily solved for small values of

N . As N → ∞ , h∗ = N/e [16]. It follows that for large values of N , it is approx-

imately optimal for the manager to interview 36.8% of the applicants and then select

the next applicant better than all previously interviewed applicants. The probability of

successfully choosing the best candidate is approximately 36.8% (see Ferguson et al. [16],

and Gilbert and Mosteller [17] for more). Stewart [39] extended the secretary problem

to one where the number of options is unknown. Under the assumption arrival times

of each option is independent and identically distributed exponential random variable,
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the probability of choosing the best candidate with such a policy is 1/e, which is the

asymptotic optimal probability value for when the length is known [39].

Because of bounded rationality and behavioral biases, humans do not necessarily

make decisions in a rational manner. Experiments in decision making with real-life

subjects have shown diverse decision making heuristics. A field experiment by Seale

and Rapoport [38] is particularly important because it demonstrates that when people

were presented with the secretary problem, they did not generally behave optimally but

rather in fashions that could be explained as mixtures of three decision heuristics, each

with a parameter. The decision making strategies reported by Seale and Rapoport [38]

are:

1. Cutoff rule - Reject the first h− 1 applicants and then hire the next candidate.

2. Successive non-candidate rule - Hire the first candidate who follows h successive

non-candidate applicants since the last candidate.

3. Candidate counting rule - Hire the hth candidate.

Note that of the three decision rules, only the cutoff rule is optimal, and then only if

the correct parameter is chosen. Seale and Rapoport [38] observed that human subjects

seemed to follow a mixture of rules, with mixture weights and parameter values varying

across individuals.

We speculate that multiple decision heuristics are in use by individuals responding
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to sequential credit offers. Such decision heuristics found among borrowers might ex-

plain why timing adverse selection occurs in practice. Furthermore, values for heuristics

parameters might correlate with notions of patience on the part of the borrow, an idea

explored below.

7.3.2 Credit Hunger

In a field experiment with low to moderate income households, Meier and Sprenger

[23] tested whether time preferences can explain credit behavior. They measured time

preferences of individuals through choice experiments. The choice experiment outcomes

were then matched to credit report and tax return data. After controlling for disposable

income and other characteristics, less patient individuals were found to have lower credit

scores and higher default rates. While Meier and Sprenger’s field experiment did not

control for credit score, we posit that even when individuals do not have any observable

differences, impatient consumer behaviors lead to higher default risk. We call this credit

hunger.

If, as we speculate, credit hunger exists in consumer credit populations, there would

be value in recognizing individuals with that characteristic. Methods for learning deci-

sion strategies from the observation of actions could provide such an ability. In the next

section, we introduce recent work in machine learning that addresses related problems.
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7.3.3 Behavior-based Agent Recognition

Suppose there exists a set of decision heuristics, similar to those observed by Seale and

Rapoport [38], governing consumers’ decision making processes. Any lender that could

gain the ability identify the decision heuristics being used by individual borrowers might

then be able to achieve an advantage in lending strategy, relative to competitors without

that ability. Recent work in machine learning has addressed a class of problems called

Behavior-based Agent Recognition (BAR), which center on the recognition of decision

strategies (or the identity of agents) based on observation of decisions made by agents

in sequential problems.

Qiao and Beling [34] address the BAR problem by modeling the decision problem

faced by agents as a Markov decision process (MDP). They use inverse reinforcement

learning (IRL) to the learn the reward vector of the MDP from the observed actions

of the agents. The reward vector is, in turn, used as the feature space for supervised

and unsupervised learning of decision agent identities. On several problems, feature

spaces constructed from rewards learned from IRL outperform those constructed directly

from observed actions [34]. For the secretary problem, Qiao and Beling [34]conduct a

simulation experiment in which a distinct base parameter value was applied to each

heuristics rule from Seale and Rapoport [38]. In addition, random noise was added to

actions of the decision agents. The feature space learned from IRL resulted in clusters

with high-accuracy relative to ground truth. The method did not require inputs on any
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description of the decision heuristics as a basis for recognition.

Suppose historical data of consumers’ accept/reject decisions for a sequence of offers

was available, including related historical account performance. In such a scenario, using

Qiao and Beling’s IRL model-based method, it might be possible to cluster consumers

based on their decision heuristics. In addition, using the historical account performance,

one could relate risk and response behavior to individual decision heuristics as well

as the historical proportion of the borrower population using each decision heuristics.

Furthermore, in identifying decision heuristics of historical population, distribution of

parameter values for each decision heuristics could be estimated. A portfolio manager

with access to such information might then incorporate his knowledge of the borrowers’

decision heuristics in the consumer loan offer strategy.

7.4 Problems involving Timing Adverse Selection

In this section, we introduce two sequential decision problems found in consumer loan

settings. In the first problem, we introduce the lending process in a social lending

platform, where lenders offer loans to borrowers through a bidding process. We model

the offer policies of portfolio managers cognizant of notions of credit hunger and the

resulting impact on the final-rate offered to the borrower. Whereas in the first problem,

lenders were merely cognizant of credit hunger, in the second problem we assume lenders

have access to greater information such as the distribution of decision heuristics and the
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distribution of heuristics parameter values found in a borrower population. The portfolio

manager is required to decide whether to market a credit product to a homogenous

population. We assume each member of the marketable population receives a sequence

of offers until an offer is taken-up by that member. The portfolio manager is required to

decide whether to market in one of the instances of the offer sequence, and is required

to decide on the offer rate if the product is marketed.

7.4.1 Social Lending

Social lending offers an avenue for consumers to borrow money outside of the traditional

banking system, where money is borrowed from lenders wanting to earn higher rates

on their investment than through other accessible investment vehicles. Typically, these

lenders are consumers. An internet marketplace provides the platform to bring together

borrowers and lenders in order to benefit both parties. Such lending practices have

been growing in many markets. In the United States, Peer-to-peer lending crossed

the $1 billion in outstanding loan amount in 20121. In China, regulatory tightening

of bank credit has resulted in the growth of peer-to-peer social lending2. Generally,

potential borrowers register on a social lending site, and list both their details and loan

requirement. Lenders, then compete to provide the loan at a competitive rate. The

marketplace specifies the mechanism from which the rates are set with different rate

1http://techcrunch.com/2012/05/29/peer-to-peer-lending-crosses-1-billion-in-loans-issued/
2http://www.bloomberg.com/news/2012-07-23/china-shadow-bankers-go-online-as-peer-to-peer-

sites-boom.html
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setting mechanisms used by different marketplaces. Until recently, an auction mechanism

for rate setting was used by the largest marketplace in the United States, Prosper.com.

In this section, we model the impact of credit hunger on the offer rates in a social lending

setting with an auction mechanism.

Prosper is the first peer-to-peer lending marketplace in the United States, currently

with over 2 million members and $692 million of funded loans3. Prosper offers unsecured

loans with fixed rates. The loans are fully amortized over the lending periods of 3 or 5

years. Prosper’s current mechanism works as follows. A borrower creates a loan request,

specifying the purpose of loan and the loan amount. A customers specific interest rate

is calculated using Prosper’s internal models and listed for potential lenders to view.

Lenders then compete to provide portions of the loan on first-come basis. This is known

as a posted-price mechanism 4. Prior to December 20, 2010, Prosper followed the auction

model in setting the lending rate. In this mechanism, the borrower lists an amount and a

reserve rate. The reserve rate is the maximum rate, she is willing to take on for the loan.

Lenders then bid on both the loan amount and an offer rate. At the close of the bidding

process, the loan application is considered successful if the total loan amount bid by the

lenders is no less than the requested amount. Only lenders bidding lower offer rates than

the requested reserve rate are considered in determining the total loan amount. This

mechanism is a uniform price mechanism where each winning lender receives the same

3http://www.prosper.com/about/. Data accessed on the 14th of February, 2014.
4http://www.lendacademy.com/prosper-com-ending-their-auction-process-dec-19th/. Accessed on

the 28th of February, 2014.
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rate.

In Prosper’s auction mechanism, the lending process has a two-week bidding period.

However, the borrower has the option to either close the bidding process once the total

loan amount bid by the lenders reaches the requested amount level, or wait until the end

of the official bidding period. We note that there is a de-facto signalling process that

occurs when a borrower does not close their position immediately after the requested

loan amount level has been reached. The observation that a borrower has not closed the

position allows for lenders to lower their bid in recognition of possible lower default risk

of the borrower.

The Prosper auction environment provides a natural environment to study timing

adverse selection, particularly credit hunger. We show credit hunger has policy implica-

tions for a social lending marketplace wishing to provide greater benefits to the borrower.

Chen et al. [10] analyzed Prosper’s mechanism as a game of complete information that

fully characterizes the Nash equilibria found in such mechanisms. In contrast, we demon-

strate that the provision of providing the lender with incremental information relating

to credit hunger may result in lower rates for lower risk borrowers.

Notation, bidding process and Nash equilibrium

In this section, we define notation and the basic model required to understand the Nash

equilibrium rates when lenders are cognizant of credit hunger.
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We follow Ceyhan et al. [9] in modeling the bidding process as a three time step

process. Suppose a borrower wants to borrow an amount D and specifies a reserve

interest rate of R. Both D and R are publicly listed on the borrower’s listing at time

t = 0. Each competing lender, Li, specifies the amount she is willing to lend, ai and

her bid rate, bi. Once the total loan amount bid by the lenders with bi ≤ R, exceeds

the requested amount, the borrower has the option to stop the bidding process. We

consider this time t = 1. All winners are announced at this point. If the borrower does

not stop the bidding process, the lending process carries on until time t = 2, which is the

maximum allowable time specified by the marketplace. In our model, we restrict each

lender to bid at most once between time step 0 and 1. Note, time length between t = 0

and t = 1 varies for each lending process. Between time t = 1 and t = 2, any lenders

not in a winning position may lower their rate bid in order gain a winning position. As

each lender bids a lower rate, the latest leading lenders are announced. We assume each

lender, Li has a private rate, ri which is the lowest rate she is willing to bid based on

the characteristics of the borrower. Between time t = 1 and t = 2, lenders may only

lower their bid if each bid increases their utility ui = xi(p − ri), where xi is the loan

amount bid by lender Li and p is the winning rate. In this section, we drop all notions of

a characteristics vector since we talk of one borrower. We assume each lender’s private

rate is a function of the credit risk of the borrower and the lender’s forecast of future

economic conditions. Once a lender is declared a winner any time during the process,

she may not pull out of the bidding process. The goal of each lender is to increase their
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utility. Our goal is to characterize the Nash equilibrium price when lenders are cognizant

of credit hunger.

For completeness, we provide the definition of Nash equilibrium.

Definition. (Nash equilibrium) [10] A bid profile b = (b1, ..., bn) is a Nash equilibrium

if no lender can increase her utility by unilaterally changing her bid, that is keeping the

bids of other lenders fixed.

In the bidding process, the following allocation rules specifies the amount of loan

allocated to each lender.

Definition. (Allocation rules, last winner and first loser) [10]. Given a bid profile

b = (b1, ..., bn), order lenders such that bi ≤ bi+1 for all i. Let k = min{j|
∑j

i=1 ai ≥

D, j = 1, ..., n}. The allocation is defined as xi = ai for i < k, xk = D −
∑k−1

i=1 ai and

xi = 0 for i > k, where xi is the amount borrowed from lender Li. We refer to Lk as the

last winner and Lk+1 as the first loser. Let ∆ be the list of winners when all lenders bid

their true rate. We denote α and α+1 as the index of the last winner and first loser in

∆.

Note that
∑

i xi = D. In Prosper’s mechanism, the lending rate, p = rk when the

last winner Lk does not fully utilize her budget (i.e., xk < ak), and p = rk+1 when the

last winner Lk+1 fully utilizes her budget.

In addition, we require the following definition in order to define the price p in a
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Nash equilibrium.

Definition. (β) [10]. Suppose we order all lenders indexed in a non-decreasing order of

their true interest rates. For each Lj ∈ ∆, let Lβ be the last winner in ∆ when the set

of lenders is restricted to {L1, ..., Lj−1, Lj+1, ..., Ln}, i.e., it is the smallest index k such

that
∑k

i=1,i 6=j ai ≥ D. Define β = maxLj∈∆βj.

Chen et al. [10] provide bounds for the final price p.

Lemma 1. [10] The price p in any Nash equilibrium b satisfies rα+1 ≤ p ≤ rβ. Further-

more, p = rj for some Lj with rα+1 ≤ rj ≤ rβ.

Note that in a Nash equilibrium, there is a finite set of prices which p can hold.

Suppose Nash equilibrium is reached at time t = 1. Assuming no lender may pull

out of a winning bid, a borrower’s winning rate cannot worsen between time t = 1 and

t = 2. Since the winning rate may not worsen, the borrower does not face any trade-off

in terms of the loan-rate. It would seem obvious that a borrower should remain in the

bidding process in the hope of a lower loan-rate. However, credit hungry borrowers

may close the bidding process at t = 1 and the winning rate at t = 1 is the final loan

rate. On the other hand, a borrower who does not close the bidding process provides an

opportunity for the lenders to bid a lower rate.
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Nash equilibrium rates

Suppose some of the participating lenders are cognizant of credit hunger. We assume

such lenders perceive the borrower’s action as a signal of a lower borrower risk profile

and hence, revise their bidding rates.

Now, we consider the case of one participating lender who is cognizant of notions of

credit hunger. Suppose lender Lk is aware of credit hunger and has an initial rate of r0k

at time t = 0. Suppose at time t = 1, the borrower does not close the bidding process.

This signals to the lender Lk that the borrower is less risky than previously thought and

hence, the cognizant lender revises her private rate downwards. Let r1k denote the new

rate at time t = 1 with r1k < r0k. Let r
W
1 and rW2 be the winning rate at time t = 1 and

t = 2 respectively. We consider the following cases:

Suppose r1k < rW1 < r0k. Since rW1 < r0k, the cognizant lender is not in a winning

position at time t = 1. However, she may revise her rate down to rW1 − ǫ for some ǫ > 0

in order to move into a winning position and hence increase her utility. This re-bidding

process dislodges the last winner at time t = 1. If the previously winning lender had

bid her true rate between time t = 0 and t = 1, the process stops and rW2 = rW1 − ǫ.

If the winning lender at time t = 1 had not bid her true rate, then the auction process

continues between those who have not bid their true rate and the cognizant lender,

resulting in lower final rate for the borrower, i.e., rW2 < rW1 .

Suppose rW1 = r0k, then lender Lk is the last winner. She will then lower her bid only
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if it results in greater utility through greater allocation of the loan to her.

Suppose rW1 ≥ r0k. In this scenario, the cognizant lender will not revise her rate as

any revision will have no impact on her utility as the winning rate is set by another

lender.

Suppose instead, rW1 ≤ r1k. Since r1k < r0k, the cognizant lender is in a winning

position at time t = 1, but is not the lender setting the final rate. Any lowering of her

bidding rate will not result in an allocation change. It follows that the winning lenders

at time t = 1 remain the winning lenders at time t = 2.

In the above example, only one lender was cognizant of credit hunger. In such a

case, notions of credit hunger will only affect the final rate if the cognizant lender gains

by lowering her rate and increase her utility in the process. This has policy implications

for marketplaces wanting to benefit borrowers through lower final rates. For example,

such marketplaces can set training policies to increase awareness of credit hunger. If

more lenders are cognizant of credit hunger, those lenders may revise their bidding rates

down for a patient borrower. This will result in greater situations where r1i < rW1 ≤ r0i

and thereby increasing the probability of lowering the final lending rates between time

t = 1 and t = 2.
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7.4.2 Direct Mail Lender’s Decision Problem

In Section 7.4.1, we showed if a lender is cognizant of credit hunger, this may result in a

lower winning loan rate. Suppose instead, lenders had access to greater information such

as access to historical data on credit offer decisions for consumers who were required

to make decisions on a sequence of credit offers as well as their respective account

performance data. The lender may then forecast the distribution of decision heuristics

found in a potential borrower population and incorporate such information in the lending

decisions. In this section, we discuss the impact of such forecasts on a lender’s decision

in a direct mail setting.

Problem definition

We setup the lender’s decision problem as follows. Suppose a lender has access to a

homogenous population and wishes to market credit offers. Since the population is a

homogenous population, we do not include the characteristic vector x̄ in our analysis.

The lender is required to decide whether to market or not to the population on the ith

instance in a sequence of offers. If the lender decides to market on the ith instance

then the lender is required to set the ith offer rate with a single objective of maximizing

expected profit. The lender also has access to a historical database of similar homogenous

consumer population with information on sequence of past offers and the respective

consumers’ decisions on those credit offers. In addition, the lender has access to related
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historical account performance data.

A lender with access to borrowers’ historical offer decision data may apply a BAR

method on the data and categorize borrowers into groups, with each group associated

with a single decision heuristics. Suppose all decision heuristics are ordered in some

manner. Let ψj = ψj(hj) denote decision heuristics j with heuristics parameter hj . In

order to simplify our model, we define a candidate offer. A candidate offer is one that

consumers prefer to rates on past offers. Since consumers prefer lower loan offer rates

to higher rates, candidate offers are lower rates than all past offers’ rates. We assume

under each decision heuristics, only candidate offers are taken up by borrowers. Given

historical data, the portfolio manager is able to estimate in a population, the probability

of a borrower in a population using decision rule j, i.e., p(ψj); and the conditional

probability of a borrower using parameter value hj = k, i.e., p(hj = k|ψj). Similarly,

the portfolio manager may estimate default probability of a borrower conditioned on

decision heuristic ψj , parameter hj, and Take, i.e., p(B|ψj , hj, T ), where the random

variable T indicates the event an account was opened. Note, the default probability is

conditioned on an account being opened rather than the timing of the Take, Ti.

The decision to take up an offer by a member of the population is dependent on

the decision heuristics, the associated parameter, and a history of past and current

offer rates. The decision heuristics and the heuristics parameter drives the cognitive

process, while the sequence of offers determines the offer experience of the decision

maker. In order to estimate the take rates, a sequence of offers must be specified. Let
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r̄i indicate a sequence of i offers with ri the last offer. Hence, the probability of a Take

conditioned on decision heuristics, the associated parameter, and a history of past and

current offer rates may be estimated from the historical database, i.e., p(Ti|ψj , hj, r̄i).

Suppose the last offer ri is not a candidate offer, i.e., ri ≥ mini[r1, r2, ..., ri−1]. Since

all offers accepted by a consumer are candidates, it follows that p(Ti|r̄i, ψi, hi) = 0

∀ψi, hi and ri ≥ mini[r1, r2, ..., ri−1].

Lender’s decision

The lender is required to make a decision on whether to make an ith offer in a sequence

of offers. We assume the lender is only able to market on the ith offer. If the lender

makes an offer, it then is required to set the offer rate. We assume the cost of marketing

to a single borrower is CM . It follows that the expected profit conditional on take is,

E[P |r̄i, Ti, ψj, hj ] = (1 + ri)
[

1− p(B|ψj , hj, Ti)
]

+ (1− fD)
[

p(B|ψj , hj, Ti)
]

− (1 + rB)− CM .

Therefore,

E[P |r̄i, Ti, ψj, hj ] = (ri − rB − CM)
[

1− p(B|ψj , hj, Ti)
]

− (rB + fD + CM)
[

p(B|ψj, hj , Ti)
]

.

Since the cost of marketing to a consumer who does not take-up the offer is CM , it

follows that the expected profit conditioned on a decision heuristics, ψj and parameter
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hj is,

E[P |r̄i, ψj , hj] = E[P |r̄i, Ti, ψi, hi]p(Ti|ψj , hj, r̄i)− CM

[

1− p(Ti|ψj , hj, r̄i)
]

.

It follows that, the expected profit condition on a sequence of offer r̄i is,

E[P |r̄i] = E[P |r̄i, ψi(hi), hi]p(hj = k|ψj)p(ψj),

where p(hj = k|ψj) and p(ψj) are estimated from the historical database. Note, borrow-

ers only take-up candidate offers. Since the lender’s objective is to maximize expected

profit and since all offers that are taken-up are candidate offers, the lender solves the

following maximization problem,

maxri E[P |r̄i]

s.t. ri < mini[r1, r2, ..., ri−1].
(7.9)

Suppose ri = r∗ is the profit maximizing rate, i.e., r∗ = argmaxri [E[P |r̄i]]. The

lender markets in the ith instance if E[P |r̄i−1, r
∗] ≥ 0. By Proposition 7.1, r∗ =

minrj ,j∈[1,i−1][rj ]− ǫ. We may think of ǫ as the marginal improvement in offers.

Proposition 7.1. r∗ = minrj ,j∈[1,i−1][rj ]− ǫ.

Proof. Suppose r′ and r′′ are two possible candidate offers with r′ < r′′. Since E[P |r̄i] in-

creases monotonically with respect to all candidate offers ri, it follows that E[P |r̄i−1, ri =

r′] < E[P |r̄i−1, ri = r′′] for r′ < r′′, i.e., the lender prefers borrowers to accept a product

with a higher offer rate given all else equal. Given borrowers will reject a non-candidate

offer then the portfolio manager will offer a rate ri = mini[r1, r2, ..., ri−1] − ǫ for some

ǫ > 0.
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Note, since borrowers only take-up candidate offers, the rate set by the lender max-

imizing on expected profit is a candidate offer. We did not relate this to the quality of

the candidate offer, i.e., the model presented in this section seems to indicate a lower

candidate offer rates does not attract more customers as would be expected in practice.

The scenario presented here assumes the lender is cognizant of the order in which his

offer lies within a sequence of offers. We assumed all consumers had received the same

past offers prior to the current offer. In practice, when an offer is made, a lower offer

rate attracts a higher take-up rate, i.e., the quality of the candidate offer affects the

response rate. This may be attributed to each borrower receiving multiple offers from

different lenders and hence each borrower is at a different point on sequences of offers.

7.5 Conclusion

This chapter extends the line of research in consumer lending to include the notion of

sequential decision making. We use the definition of adverse selection presented by Oliver

and Thaker [28] to introduce the notion of timing adverse selection. We explain this

phenomenon through bounded rationality resulting in diverse decision heuristics used

by consumers. Along with decision heuristics in consumer lending space, we introduced

the notion of credit hunger. This was followed by introducing a method used to cluster

agents based on their decision heuristics–Behavior-based Agent Recognition. Finally, the

chapter illustrated the impact of credit hunger and decision heuristics on two decision

problems in the consumer lending space.



Chapter 8

Conclusions and Future Work

Given the finding by De Andrade and Silva [13] and Zandi [48] that default rates should

be considered conditional on current and future economic conditions, decision making

in lending can be improved by giving consideration to future economic conditions on

loan acquisition decisions. In addition, since default rates are input into Basel II capital

requirement formula, decision making on regulatory capital can be improved with similar

consideration to future economic scenarios. In this dissertation, we considered four

decisions in the consumer lending space.

In Chapter 4, we studied the scoring decision for a portfolio manager with access to

scorecards specifically built for each possible future economic scenarios. We assumed the

portfolio manager had access to both performance data for each scorecard under each

economic condition as well as the forecast of occurrence of the future economic condition.

Under the assumption that the portfolio manager’s objectives are to maximize expected

profits and market share, we developed methods to construct the set of efficient operating

points on the expected profit-expected market share decision space.

In Chapter 5, we proved that misestimation of regulatory capital requirement results

in a negative impact on profit. The underestimation costs that we describe are entirely

121
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due to our assumption that the bank is constrained in raising equity on short time scales.

The ability to raise costless, incremental capital would serve to offset the dead weight

loss, assuming the bank has the behavioral motivation to operate at an optimal eco-

nomic capital point. In the neo classical world which we consider, shareholder value is

maximized by operating at the true economic capital level. Given a population of omni-

scient and well behaved banks in frictionless capital markets, no regulatory requirement

would be an optimal policy. If capital is constrained, however, even here regulatory mis-

estimation affords societal costs despite what might be seen as benevolent regulations

for capital requirements. Therefore, banks should be somewhat skeptical regarding the

net benefit of even the more enlightened regulatory capital requirements imbedded in

Basel II type regulation. This assumes that they can replicate our ‘omniscient’ consumer

bank’s ability to model true economic capital better than their regulatory counterparts.

Large banks initially expected that the capital relief they would obtain from improved

models and tailored regulatory models would offset the large investment in and mainte-

nance of staff and information technology systems, but have become more doubtful in

this regard over time [21].

In Chapter 6, we showed a portfolio manager constrained by the amount of available

unencumbered capital for regulatory capital purposes, may operate under a double-cutoff

score strategy. The contribution of this chapter to the literature is as follows. Firstly,

this work incorporates capital constraints and cost of regulatory capital. Secondly, the

work establishes conditions under which a single cutoff-score is not an efficient deci-
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sion. Thirdly, this work establishes the unexpected result of portfolios with different

portfolio-risk profiles that have the same portfolio regulatory requirement. Lastly, we

show that for a multiple-economic scenario case, the efficient frontier may be determined

by combinations of operating points on the economic scenario specific efficient frontier.

In Chapter 7, from the definition of adverse selection in static lending models, we

showed that homogenous borrowers take-up offers at different instances of time when

faced with a sequence of loan offers. We showed examples in literature where bounded

rationality and diverse decision heuristics used by consumers drive the decisions they

make in sequential decision problems. Assuming similar consumer behavior when faced

with a sequence of credit offer, we show how observation of early decisions in a sequence

can be informative about later decisions and can, when coupled with a type of adverse

selection, also inform credit risk during the period of account performance. We show

through two examples how lenders may use such information in setting their offer rates.

In summary, we proposed improvement to consumer lending decisions by incorpo-

rating performance information under each possible future economic conditions. We

incorporated into our decision models capital requirement as specified by Bank of In-

ternational Settlement, and notions of bounded rationality and decision heuristics of

potential borrowers.
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8.1 Future Work

Decision models presented in this dissertation are extensions of theoretical models found

in literature. Opportunities for future work lies in empirical demonstration of our models.

For example, given multiple scorecards built for each possible future economic condition,

empirical work is required to determine the benefit of our multiple economic condition

decision model. In Chapter 5, we demonstrated numerically the impact on profit of

misestimating regulatory capital, an opportunity for future research lies in determining

the sensitivity in a system of banks of misestimating regulatory capital to total profit

drag. This provides an indication to regulators on the effort and cost associated with

improving the regulatory capital models.

Chapter 7 provides the greatest opportunity for future research. As with adverse

selection, timing adverse selection is not easy to measure in practice (see Oliver and

Thaker [28] for discussion on measuring adverse selection in practice). However, sequen-

tial decision making experiments in other settings provide evidence that humans employ

diverse decision heuristics, and this in turn suggests the existence of timing adverse selec-

tion. In order to categorize historical borrowers into clusters of decision heuristics, both

take and non-take decision information is required. While offers taken-up by borrowers

are found in credit bureau records, to our knowledge lenders do not share information

on past declined offers. In addition, determining consumer lending decision heuristics

requires an audit of offers, take behavior for all offers, and account performance for
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every offer accepted by a consumer. While we have shown examples of the impact of

timing adverse selection on a lender’s decision, field experiments and further research

is required in order to understand the phenomena described in this chapter. In testing

timing adverse selection and in determining consumers’ decision heuristics, a sequence

of offers need to made and consumers’ decisions recorded. Such a sequence of offers may

be disrupted by other lenders marketing their own products. Joint marketing strategy

is required between competing lenders in order to understand both adverse and timing

adverse selection.

There are two further important extensions to this research. We assumed a portfolio

manager’s objectives are to maximize expected profit and expected market share. An

important extension is the consideration of variance of the objectives due to uncertainty

in future economic conditions. Additionally in this dissertation, we assumed a single

bank model. An important extension is the consideration of multiple-banks in compe-

tition. This is especially pertinent for extension to Chapter 7, where a bank may make

an offer later in the hope of attracting borrowers with lower risk.

We look forward to working on these extensions.
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