
Ultra-Low-Power Inter-Integrated Circuit Implementation
for Fabric-Based Self-Powered Systems

A

Thesis

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In partial fulfillment

of the requirements for the degree

Master of Science

by

Zhenghong Chen

April 2023

Abstract

With the advance of various energy harvesting and storage devices, self-powered wearable systems

have gained significant interest in the past few years. In addition, the growing focus on fibers with

digital devices is driving the potential for fabrics with digital systems for health monitoring and

human-machine interfaces. While such digital-enable fabric systems consist of various distributed

digital devices, a low-power serial communication component is in high demand. The standard

Serial Peripheral Interface (SPI) commonly used in device connection is unsuitable for communi-

cation in fiber because the bit width of the slave select signal (SS) increases with the number of

networked devices.

To address this research gap, we propose using Inter-Integrated Circuit (I2C) for communication

in fiber and presenting the SPI-I2C Protocol Converter chip for data transfer from the SPI to the

I2C bus. Our research involves designing and implementing a low-power I2C module with tunable

frequency, data width, and output voltage. The I2C module on the chip can work at 0.4 V supply

voltage with only 2.6 nW static power. In addition, we designed the I2C controller on the chip that

can adaptively adjust the drive capability to balance power consumption and reliability when more

devices are connected. Finally, we integrate the I2C module into the System-on-Chip (SoC) using

the ARM Advanced Peripheral Bus (APB) to complete the digital-enabled fabric system.

ii

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Benton H. Calhoun, for his

invaluable advice, unwavering support, and endless patience throughout my master’s degree.

I also want to extend my heartfelt appreciation to my friends and collaborators, Xinjian Liu and

Suprio Bhattacharya, who provided critical assistance in digital circuit design, tape-out processes,

and chip testing. Their expertise, dedication, and hard work were essential in bringing this project

to fruition.

I want to thank Yimin Gao from the University of Virginia High-Performance Low-Power Lab for

his advice throughout designing the digital circuit and optimizing the SoC. Thank you, Yimin, for

your support and contribution to this work.

I wish to thank my committee members, Prof. Todd A. DeLong and Prof. Steven M. Bowers, for

their help and support throughout my master’s degree.

Finally, I thank my parents for their selfless love and care. With their help, I have a better living

and learning environment, as well as more opportunities for growth.

iii

Contents

Abstract ii

Acknowledgments iii

1 Introduction 2

1.1 Related Work . 3

1.1.1 I2C Protocol Based Multi-Device System 3

1.1.2 SPI to I2C Protocol Conversion . 3

1.2 Motivation . 4

1.2.1 Fabric-Based Self-Powered System . 4

1.2.2 Communication for Ultra-Low-Power System 5

1.3 Thesis statement . 6

2 Background Theory 7

2.1 Communication in Integrated Circuits . 7

2.2 Serial Communication Protocols . 8

2.2.1 Serial Peripheral Interface (SPI) . 8

iv

2.2.2 Inter-Integrated Circuit (I2C) . 10

3 Design Process of I2C 12

3.1 I2C Components Specification . 13

3.1.1 I2C Master and Slave Architecture . 13

3.1.2 I2C module Port List . 14

3.1.3 I2C Integrated Architecture . 16

3.1.4 Open-Drain Structure for Bidirectional Communication 17

3.1.5 SDA and SCL . 19

3.1.6 Master and Slave Finite state machine . 20

3.1.7 I2C Data Register . 24

3.2 Simulation and Result . 24

4 Design and Implementation of SPI-I2C Protocol Converter chip 28

4.1 RTL to GDSII flow for I2C Module . 29

4.2 I2C Additional Circuit Design . 31

4.3 Cadence Spactre Simulation . 32

4.4 Schematic and Layout of Chip . 34

5 Chip Test Results and Analysis 36

5.1 Build Testing Board . 36

5.2 I2C Basic Function Test . 37

5.3 Power Consumption Measurement and Modeling 40

v

5.3.1 Static Power . 40

5.3.2 Active Power . 41

5.4 System Topology Test . 43

6 Integrate the I2C Module into the SoC 46

6.1 SoC Architecture . 46

6.2 Connect I2C module with APB bus . 47

6.2.1 Update Address Map . 47

6.2.2 Build APB to I2C Logic . 48

6.3 Modelsim Simulation . 50

6.3.1 Structure of SoC and Testbench . 50

6.3.2 Design I2C operation program . 52

6.3.3 Simulation Result . 53

7 Conclusions and Future Directions 56

7.1 I2C Protocol Module . 56

7.1.1 Optimize Open-Drain Circuit . 56

7.1.2 Design I2C Slave without Clock . 57

7.1.3 Reliability and Efficiency . 57

7.2 System on Chip . 58

A Verilog Code of I2C 59

B SPI-I2C Protocol Converter Chip Test Environment 60

vi

Glossary 61

Bibliography 67

vii

Chapter 1

Introduction

In recent years, there has been a significant surge in interest in developing self-powered systems for

various applications, including wireless sensors [1] [2] and Internet of Things (IoT) devices [3] [4].

These systems utilize energy harvesting techniques, such as solar, thermal, or kinetic energy har-

vesting, to generate energy from the environment and sustain their operation without needing bat-

teries or external power sources. Self-powered systems [5] offer numerous advantages, including

reduced maintenance costs, improved reliability, and increased flexibility in terms of where and

how they can be used. To achieve self-powered, wearable electronics have integrated energy har-

vesters such as photovoltaic cells, piezoelectric generators [6] [7], and enzymatic or microbial

biofuel cells [8] to balance energy consumption. These wearable systems [9] can eliminate the

need for frequent recharges and wired power transmission, allowing for uninterrupted use and an

improved user experience.

Current wearable devices [10] [11] are limited in their ability to collect physiological data due

to their relatively rigid structure, unacceptable size, and limited contact area with the body. In

contrast, traditional clothing fabrics offer a promising opportunity in power harvesting and phys-

iological variables analysis since they already come into contact with large surface areas of the

human body. Fibers, the basic building blocks of fabrics, offer a natural candidate for enabling

sensory, memory, and other digital functions. Existing technologies have enabled digital com-

2

Chapter 1. Introduction 3

ponents into flexible polymer fiber bundles, allowing access to the collection of devices inside the

fiber through connection ports at the end of the fiber [12] [13]. This presents an opportunity to real-

ize digital systems integration into clothing, providing a solution for the comfortable and senseless

self-powered wearable system.

The Fabric-Based Distributed System aims to address the challenges posed by in-fiber digital de-

vices size limited, which dimensions can not exceed 0.6mm. In this distributed system, the tra-

ditional structure is divided into smaller subsystems that can be distributed throughout a garment.

Each subsystem can work independently, allowing for greater flexibility and customization. Be-

sides the need to design each chip, the challenge is finding ways to interconnect these subsystems

and chips in a reliable and efficient manner. We hope to find a suitable solution by exploring Serial

Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C) communication protocols to achieve

interconnection while minimizing power consumption.

1.1 Related Work

1.1.1 I2C Protocol Based Multi-Device System

This custom home automation system [14] with eight devices interconnected via the I2C protocol is

programmable and modular. The I2C protocol has the characteristics of simple structure and high

compatibility in building a multi-device system. This user provides a technical basis for customiz-

ing devices in the system. The novelty of the subject lies in the combination of communication

protocols and software tools to obtain reconfigurable, open-source, custom-made applications.

1.1.2 SPI to I2C Protocol Conversion

SPI to I2C Protocol Conversion Unit [15] proposes a novel scheme to convert SPI to I2C by con-

necting the output of the SPI slave to the input of the I2C master and using FIFOs to build the

Chapter 1. Introduction 4

protocol conversion unit. This solution solves the problem of SPI and I2C being out of sync and

operating at different frequencies, enabling the interconnection of these two protocol systems in

low-power embedded systems. Although the proposed design has been successfully implemented

on Field Programmable Gate Array (FPGA), it only supports one-way conversion from SPI to I2C.

Nonetheless, the approach presented in this paper provides a promising basis for future work on

bidirectional protocol translation.

1.2 Motivation

1.2.1 Fabric-Based Self-Powered System

The Self-Powered Fabric-Based System is a densely integrated digital system comprising inter-

connected functional components distributed throughout various positions on clothing. To enhance

clothing comfort, integrated circuits must be divided into multiple ultra-low-power microchips that

form distributed subsystems, enabling each subsystem to function independently. Moreover, the

system’s power consumption must be maintained within the nanowatts (nW) range, as limited by

the size of the battery and energy harvester.

In the previous design, the SPI protocol was utilized as a communication tool for components due

to its low power consumption and high efficiency, making it possible to achieve internal communi-

cation within the subsystem. However, regarding global communication, SPI is not ideal for several

reasons. Each subsystem may act as a master, and SPI only supports single-master systems when

interconnected. This limitation makes SPI unsuitable for global communication, where multiple

subsystems need to communicate with each other. In addition, as the number of networked devices

increases, the bit width of the SPI slave select signal (SS) also increases. This limitation makes

SPI unsuitable for communication in fiber because the fiber only allows for limited transmission

lines, which limits the number of devices that can be connected.

Chapter 1. Introduction 5

Figure 1.1: Fabric-Based Self-Powered System

1.2.2 Communication for Ultra-Low-Power System

Sensors play a critical role in human-computer interaction and are indispensable to such systems.

Achieving low-power or self-powered systems requires using sensors with the lowest supply volt-

age available. While several sensors are available on the Texas Instruments website, only a few op-

tions meet the controlled supply voltage requirements of the envisioned system, which is between

0.6-1.8V. While these sensors may not be suitable for the Self-Powered Fabric-Based System due

to more integrated design requirements for the system, they are highly relevant when building a

low-power embedded system where voltage and power consumption are top priorities. In general,

sensors with I2C protocol have lower supply voltage requirements than other sensors.

Our current System on Chip (SoC) only supports SPI components, which means that a conversion

structure from SPI to I2C needs to be designed or an I2C module needs to be incorporated into the

SoC to achieve the desired functionality.

Chapter 1. Introduction 6

Table 1.1: Sensors

Classification Product Interface Supply Voltage (min) (V)

Temperature Sensors TMP114 [16] I2C, SMBus 1.08

TMP126 [17] SPI 1.26

TMP144 [18] UART 1.4

Humidity Sensors HDC3022 [19] I2C 1.62

Ambient light sensors OPT3005 [20] I2C 1.6

1.3 Thesis statement

1. Design the customizable I2C module with tunable frequency, data width, and output voltage.

Power consumption measurement and analysis assess the viability of embedding the module

in a ultra-low-power system.

2. Extend the function and efficiency of the distributed system through implementation of SPI-

I2C Protocol Converter chip.

3. Optimize the System-on-Chip (SoC) performance with integrate an I2C module.

Chapter 2

Background Theory

This chapter will provide an overview of communication techniques used in integrated circuits,

including using buses for communication, the underlying theory of interconnects, and introducing

bus protocols such as I2C and SPI.

2.1 Communication in Integrated Circuits

Due to the modular structure of distributed systems, integrated circuit (IC) modules with distinct

functions are packaged separately in the chip, requiring communication as an essential aspect.

Communication within ICs can be achieved through serial or parallel transfers, which can be syn-

chronous or asynchronous.

Serial communication involves transmitting data bits sequentially, one after the other. In contrast,

parallel communication uses multiple transmission lines to transmit each bit simultaneously, re-

sulting in high throughput but increased power consumption and area costs due to the need for

more wires. Synchronous communication utilizes a dedicated clock signal to synchronize trans-

fers between components, with the clock signal indicating when the receiver should sample the

data on the line. On the other hand, asynchronous communication uses a handshake protocol to

7

Chapter 2. Background Theory 8

synchronize transfers without relying on a separate clock signal line. However, this approach can

result in higher overhead, as many transmitted bits are utilized only for control purposes.

A bus is a set of wires that permits signals to be transmitted between one or more integrated cir-

cuits. In such communication, the device that initiates communication is referred to as the Master,

and the device that responds to the communication request is known as the Slave. Moreover, the

bridge connects different buses while a decoder selects the appropriate slave for receiving data.

Later in the thesis, we will discuss interfaces like ARM Advanced Microcontroller Bus Architec-

ture (AMBA), Advanced eXtensible Interface 4 (AXI4), and Advanced Peripheral Bus (APB) that

utilize these concepts in signal transmission.

2.2 Serial Communication Protocols

Serial Communication Protocols suit low-power embedded systems with simple structures and

high transmission efficiency. In most cases, SPI is selected because it has the advantages of high

transmission frequency, simple module structure, and low power consumption compared with I2C.

In contrast, the advantages of I2C are high reliability, fewer transmission lines, and support for

multiple masters. This thesis presents the design and implementation of the SPI-I2C protocol

converter chip. The following section provides an introduction to the SPI and I2C communication

protocols and compares their respective characteristics.

2.2.1 Serial Peripheral Interface (SPI)

Serial Peripheral Interface (SPI) [21] [22] [23] is a synchronous serial full-duplex data transmission

communication method introduced by Motorola. It is generally considered that the SPI protocol

is a three-wire synchronous bus, but to connect multiple slave devices, each slave device needs to

be equipped with a Chip Select signal (CS/SS). As the number of components connected to the

system increases, the SPI master has to be designed with more chip-select signal lines to maintain

Chapter 2. Background Theory 9

Figure 2.1: SPI Structure

Figure 2.2: SPI Timing Diagram

control over all slaves in the system.

Table 2.1: I2C Lines List

Classification Signal Provider Definition

SCLK Master Serial Clock

MOSI Master Master Out Slave In

MISO Slave Master In Slave Out

CS/SS Master Chip Select, Slave Select

To initiate a read/write operation in SPI, the master device first lowers the active SS line corre-

sponding to the target slave and then sends clock pulses on the Serial Clock (SCLK). Depending

on the mode selected, the output signal may be toggled by either the rising or falling edge of the

clock pulse, while the input signal is sampled on the opposite edge. To perform a write operation,

the master device transmits data on Master-Out-Slave-In (MOSI), while a read operation involves

sampling Master-In-Slave-Out (MISO). Notably, SPI offers four different modes, each defining the

operation at which specific edge and stable level value of the clock signal.

The SPI protocol offers a simple communication process that separates input and output data trans-

mission for the master and slave. This separation eliminates the need for additional slave address

Chapter 2. Background Theory 10

checks during communication since each slave has a separate chip select line. However, as the

number of devices increases, more chip-select signal lines are required, which can lead to increase

area and power consumption. In addition, the SPI protocol only supports one Master in the system,

which impedes establishing crossover between multiple chips.

2.2.2 Inter-Integrated Circuit (I2C)

I2C or I2C [24] [25] is a simple bidirectional two-wire bus protocol standard developed by Philips,

now NXP Semiconductors. I2C uses two signal lines, Serial Data (SDA) and Serial Clock (SCL),

and does not rely on a physical chip selection signal or arbitration logic circuit. Instead, each

I2C device has a unique seven-bit address for protocol handshake. I2C supports multiple master

devices, and the protocol specification designates the initiating device as the master, while the all

other devices on the bus are designated slaves.

Table 2.2: I2C Lines List

Name Signal Provider Definition

SDA Master, Slave Serial Data

SCL Master Serial Clock

The I2C communication process consists of several steps. First, the master device sends a START

signal, followed by a 7-bit device address and a bit for describing read or write operation. Upon

receiving the data, the slave devices compare the address with their chip address to determine

whether it is the intended recipient. If the comparison fails, the device waits until a STOP signal

is received. In contrast, a successful comparison prompts the device to send an acknowledgment

signal (ACK) back to the master. After receiving the ACK, the master can start transmitting or

receiving data in 8-bit frames, with each frame followed by a one-bit response signal. Specifically,

the master sends data, and the slave responds during write operations, while the reverse is true

during read operations. When the transmission is complete, the master sends a STOP signal to

release the bus, allowing other devices to access it, and all devices return to their initial state.

Chapter 2. Background Theory 11

Figure 2.3: I2C Structure

Figure 2.4: I2C Timing diagram

Both the SCL and SDA lines in I2C communication are open-drain and do not actively drive the

bus high, ensuring that signal conflicts do not occur on the bus. When a device pulls the line

to the ground, it transmits logic 0, and when it releases the line, the line returns to an idle state,

transmitting logic 1. The following chapter will provide more detailed information on the specific

structure and operation of I2C.

Compared to the standard SPI protocol, which requires at least four signal lines and additional

logic for multi-master structures, the I2C protocol requires only two. Even when using multiple

slave devices, the number of signals needed remains low. Although the I2C protocol has a limited

7-bit address space, running out of 128 available addresses is rare. One significant advantage

of the I2C protocol is the lightweight architecture Open-Drain implements multi-master device

arbitration and routing. Moreover, read and write timing is relatively fixed and uniform, and the

device driver is straightforward to write. Considering all these factors, we have decided to replace

the SPI protocol with the I2C protocol in our current SoC design.

Chapter 3

Design Process of I2C

This chapter presents the complete design process for the I2C module. First, we formulated the

design specifications by analyzing the I2C protocol articles [26] [27] [28] [29]. Next, we used

Verilog to complete the Register Transfer Level (RTL) design for the I2C master and slave compo-

nents. Then, we integrated these components and controlled them using an enable signal, resulting

in higher integration and port savings. Additionally, we will conduct RTL simulation and analysis

of the two design stages using Modelsim [30].

Figure 3.1: Flowchart of the Design Process

12

Chapter 3. Design Process of Inter-Integrated Circuit 13

3.1 I2C Components Specification

To discuss the design details of I2C, this section will cover several aspects. Firstly, the port planning

for the I2C master and slave will be discussed. Next, the state machine for both read and write

operations will be presented. Finally, the complete architecture block diagram will be introduced.

3.1.1 I2C Master and Slave Architecture

The planning architecture for the I2C master and slave modules is illustrated in the Fig.3.2, showing

the input and output signals on either side of the block. The input signals include control signals,

data input, SDA and SCL input signals, while the output signals consist of operating status display,

data output, and SDA, SCL output control signals.

Figure 3.2: I2C Master and Slave Architecture

The open-drain structure used for bidirectional communication is implemented through analog

circuit design, which is not included in the digital design RTL. However, this behavior can be

Chapter 3. Design Process of Inter-Integrated Circuit 14

described using simple state statements in the testbench but cannot be achieved through synthesis.

3.1.2 I2C module Port List

Since there are many repeated control signals in the port list in this chapter, the total ports are

divided into five categories, Global, Master Logic, Slave Logic, Data path, SDA, and SCL. The

I2C port distribution described in this chapter is only used in this design.

Table 3.1: I2C module Shared Port List

Classification Port Input/Output Function

Global Setup enable Input Master/Slave mode Switch

clk Input System Clock

reset Input Reset signal

clk div Input Clock Divider

open drain Input Open Drain Switch

data size Input Transmission data length

done Output Finish Status Signal

busy Output Work Status Signal

Data Path data in Input Data Input

data out Output Data Output

SDA and SCL sda in Input Serial Data Input

sda out Output Serial Data Output

sda oen Output Serial Data Output Enable

scl in Input Serial clock Input

scl out Output Serial clock Output

scl oen Output Serial clock Output Enable

The setting of the Enable signal does not entirely shut down the entire system but selects between

Chapter 3. Design Process of Inter-Integrated Circuit 15

master and slave. By integrating the I2C master and slave components, controlled by the enable

signal, we avoid any confusion that may arise from their simultaneous operation. When the enable

signal is high, the master component works, and the slave is disabled. Conversely, when the enable

signal is low, the slave is in the standby state.

The I2C design is designed to provide flexibility in data length, allowing the switching between 1-

byte and 2-byte transmission modes by simply adjusting the input data size. Reviewing the actual

usage of the I2C protocol in the I2C-based sensor purchased from Texas Instruments Incorporated

shows that most data length in each communication is 2 Bytes. There also are some products

whose data length in each communication is 1 Byte. Therefore, our design supports both data

lengths to ensure communication with a wide range of I2C-based sensors.

The input clock serves as the primary operating frequency for the I2C module, while the clock

divider is responsible for reducing the SCL output frequency. Modelsim and Cadence Spectre

simulations show that a clock divider of at least 2 is required for stable operation. To ensure added

stability and reliability, we have set the clock divider to 10 by default for all Modelsim and Cadence

Spectre simulations and actual chip testing.

The several status ports are essential for checking the working status of the I2C interface and facil-

itating the debugging of I2C components. The Status port is particularly useful for monitoring the

status of the I2C master, while the Done and Busy ports ensure that I2C transactions are completed.

Additionally, these ports are reserved for the convenience of supervising the I2C reservation and

preparing for the SoC interrupt system design.

The I2C master initiates the write or read operation when the write en or read en signal is high.

If the slave does not support adjusting the data length, the write mode signal allows multiple I2C

write operations to be performed continuously. When the write mode signal is high, the master’s

state machine skips the stop state and proceeds directly to the next write operation. This design is

intended to enhance data transmission efficiency, particularly when transmitting large amounts of

data.

The output register slave reg addr is specifically designed to store the address provided by the

Chapter 3. Design Process of Inter-Integrated Circuit 16

Table 3.2: I2C module Independent Port List

Classification Port Input/Output Function

Master Logic chip addr Input Target Chip Address

reg addr Input Target Register Address

write en Input Write Operation Start Signal

write mode Input Write Operation Mode Switch

read en Input Read Operation Start Signal

status Output Master State Machine Status

Slave Logic chip id Input Self Chip Address

slave reg addr Output Slave Register address

slave write en Output Slave write enable

master. Upon receipt of the slave write en signal, the slave will then store the incoming data at the

address stored in slave reg addr.

3.1.3 I2C Integrated Architecture

Once the RTL designs of both the master and slave are complete, we merge them together to

facilitate the synthesis and placement process described in the next chapter. However, this merging

process can pose challenges due to the different port designs of the master and slave. To address

this issue, we have created a complete structure diagram of the I2C system, as shown in Fig.3.3,

which includes the master and slave components mentioned previously but also the data register

for controlling signals. The shared ports are integrated, while the independent ports are placed

separately. The enable signal in the output ports controls the multiplexer to determine whether the

output comes from the master or slave. The control signal is the input signal of the system, and

the Enable signal can control the work of the master or slave, so the influence of the input signal

on closing the device can be ignored. But for Data, the input and output registers of Master are

shared by 16-Bit and Slave. In addition, Slave additionally designed a set of 16-Bit registers to

Chapter 3. Design Process of Inter-Integrated Circuit 17

temporarily place the transmitted data stored in different addresses.

Figure 3.3: I2C Architecture

3.1.4 Open-Drain Structure for Bidirectional Communication

Open drain, consisting of a pull-up resistor and a pull-down transistor, is the transmission structure

that supports multi-input coexistence and enables the interconnection of multiple devices on a

single data line with the bidirectional data flow. When the output signal is high, the transistor can

pull the line to low, which is usually grounded. Conversely, when the output signal is low, the pull-

up resistor pulls the bus to a high voltage. As no device can output a high voltage on the line, the

bus can never encounter the problem of communication signal collision. This enables the master

and slave devises to communicate simultaneously on the same data line (SDA).

Fig.3.4 (a) depicts the Open-Drain structure. According to the I2C protocol specification, this

Chapter 3. Design Process of Inter-Integrated Circuit 18

Figure 3.4: Open-Drain Structure

design has two input signals: ”output” (OUT) and ”output enable” (OEN). In the design and sim-

ulation presented in this article, the output is always 0, which means that the drain is grounded

by default in the Open-Drain structure. Figures (b) and (c) illustrate the states of the Open-Drain

circuit when the ”output enable” signal is 0 and 1. We use conditional statements in the testbench

during the ModelSim simulation to describe the Open-Drain design since it does not include an

analog circuit structure, as shown in Fig.3.5.

Figure 3.5: Open-Drain Verilog Code

Chapter 3. Design Process of Inter-Integrated Circuit 19

3.1.5 SDA and SCL

In the I2C protocol standard, Serial Data Bus (SDA) and Serial Clock Bus (SCL) are the only two

data lines for data exchange, and there are some important rules to be aware of when using them

for data transmission.

During data transmission, I2C supports the use of different frequencies. Having sound transfer

requirements in place is critical to ensuring data is correct. During data transmission, when SCL

is high (1), the voltage on SDA is fixed, and the receiver will read the value on SDA. When SCL is

low (0), SDA changes to the value stored in the transmitter’s shift register, as illustrated in Fig.3.6.

Figure 3.6: Data Transmission

Another important rule in the I2C protocol is that the falling edge of SDA is used as the beginning

of communication. Therefore, in our design, we ensure that SDA is pulled down from high (1) to

low (0) when SCL is high (1) since SDA is high when the system is idle, as shown in Fig.3.7. At

the same time, the change when SCL is high is used to distinguish it from the data transmission

process. In a complex system containing multiple I2Cs, the start signal (falling edge of SDA)

wakes up all I2C slaves, which then checks whether their chip ID matches the address received

from SDA. If there is no match, the slave returns to the idle state. Otherwise, it sends a response

signal.

Chapter 3. Design Process of Inter-Integrated Circuit 20

Figure 3.7: Start and Stop Signal

3.1.6 Master and Slave Finite state machine

Compared to SPI, the Finite State Machine (FSM) structure of I2C is more complex due to its single

data line(SDA), and the clock line (SCL) being generated only by the master to signal operation

completion.

When the I2C master performs read and write operations, it behaves differently. As shown in the

flowchart in Fig.3.8, a write operation involves four frames transfer. Including a 7-bit target chip

address and a 1-bit write operation signal, an 8-bit target register address, and two 8-bit data. On

the other hand, a read operation requires five frames to complete. First, the master sends the 7-bit

target chip address and 1-bit write operation signal, followed by the 8-bit target register address.

After receiving the response from the slave, the master restarts and sends a 7-bit target chip address

and a 1-bit read operation signal, and the slave then sends two 8-bit data.

The operation details of the slave become clear from the operation process of the master. Notably,

the master’s start is controlled by two enable signals, read en and write en, while the slave’s start

is triggered by the falling edge of the SDA data line, which is high when idle. Each exchange of

information on the SDA data line is 9 bits, with the first 8 bits being messages and the last 1 bit

being a response (ACK).

To better explain the operation of I2C, we explain it from the signal changes on the SDA data bus.

We don’t need to focus on the signal on SCL that the master provides, as some details will be

mentioned later.

Chapter 3. Design Process of Inter-Integrated Circuit 21

Figure 3.8: Flowchart of I2C Master Operation

Chapter 3. Design Process of Inter-Integrated Circuit 22

Figure 3.9: Flowchart of I2C Slave Operation

Chapter 3. Design Process of Inter-Integrated Circuit 23

Figure 3.10: SDA Active When Write Operation

Fig.3.10 illustrates the activity of the SDA during a write operation. When the Start signal is sent,

the master uses the SDA to send the target chip address and ’write’ signal. If the slave chip does

not respond, the master chip continues to send the chip address. When the slave chip receives the

address from SDA that matches its chip id, it sends an acknowledge signal (low voltage, 0). The

master then sends the target register address and the data, and the slave sends a 1 bit ACK signal

when it receives each piece of data.

Figure 3.11: SDA Active When Write Operation

The process of I2C’s read operation is significantly different from that of the write operation, as

shown in Fig.3.11. The articles about the I2C protocol and some product manuals of sensors with

I2C components clearly define I2C’s read operation. The master sends the target chip address and

’write’ signal, followed by the target register address. The master then enters the start read state,

shown in the SDA as the start signal is resent, and the SDA changes from a high to a low when the

Chapter 3. Design Process of Inter-Integrated Circuit 24

SCL is high voltage. Later in the process, the slave will send data twice, and the master sends an

ACK signal when the first completion is completed, then sends a NACK signal (high voltage, 1)

when the second completion is completed. In the I2C read operation, the master will only send a

NACK signal after receiving the last byte of data when more information is transmitted.

3.1.7 I2C Data Register

To ensure efficient data transfer in I2C communication, it is essential to have a register file specif-

ically designed for this purpose. Attempting to grab data from memory during each run can be

impractical since it may take multiple clock cycles, which can slow down the process. Addition-

ally, the I2C slave cannot pause and wait for the arrival of data, further highlighting the importance

of having a register file. Equipping the register file for I2C allows the data to be readily available

for transfer, reducing delays and improving overall system performance.

Given the limited number of registers available in the SPI-I2C Protocol Converter chip, to test

the I2C read and write function at the specified position on the SPI-I2C Protocol Converter chip’s

register, we have incorporated four 16-bit registers in the current design.

Figure 3.12: I2C Data Register

3.2 Simulation and Result

Due to the unique nature of the I2C module, it can be challenging to simulate and test the master

and slave components separately. This is because both read and write operations require the trans-

mission and reception of data on SDA by both the master and slave. Moreover, if the ACK signal

Chapter 3. Design Process of Inter-Integrated Circuit 25

is not received in a timely manner, the system may crash or terminate. To perform the simulation,

we use the I2C module depicted in Fig.3.3 and connect the SDA and SCL of the two I2Cs using

the wiring illustrated in Fig.3.2. In this setup, the first I2C is configured as the master (enable = 1),

and the second I2C is set as the slave (enable = 0).

The I2C write operation involves two times write processes and is depicted in Fig.3.13. In this

simulation, I2C 1 is set up as the master, operating at 100KHz, while I2C 2 is configured as the

slave, working at 25KHz. The clk div value is set to 100, resulting in an SCL frequency of 1KHz.

It’s worth noting that the master and slave can operate at different frequencies. Still, the SCL

frequency must be smaller than the input frequency of the I2C. During the chip test, the I2C op-

erating frequency is usually at least three times that of the SCL. We increased the clk div value

from 10 to 100 to meet the requirements in this simulation. At begin of the simulation, we as-

sign the target chip address (chip addr) of the master and the chip address (chip id) of the slave to

0001111 (0F). We then assign the target register address (reg addr) of the two operations to 00 and

01, respectively, verifying that the I2C slave can write to different registers. In the first operation,

I2C 1 sends the target register address 00 and 2-byte data ‘A1A1’ to I2C 2. According to the ad-

dress in slave reg addr, the data in data out is stored in the corresponding register (data out0) using

the register pointer logic. Similarly, the second operation stores the data ’B2B2’ in the register

data out1.

Figure 3.13: I2C Write Simulation

The changes in the Serial Data (SDA) and Serial Clock (SCL) lines during an I2C write simulation

are presented in Fig. 3.14. As shown in Fig. 3.10, the I2C write operation consists of four segments,

each with 9 bits. In this example, the master sends the chip address 0F, register address 00, and data

Chapter 3. Design Process of Inter-Integrated Circuit 26

A1A1 to the slave. During transmission, when SCL is high, the value of SDA remains unchanged,

and when SCL is low, the value of SDA changes. Sometimes, the value of SDA may change

multiple times due to the control of SDA changing, which is approved because of the low voltage

on SCL. Additionally, the start signal occurs when SDA changes from high to low while SCL is

high, and the stop signal occurs when SDA changes from low to high while SCL is high.

Figure 3.14: SDA and SCL in I2C Write Simulation

Fig. 3.15 illustrates two I2C read operations. In the first operation, the data from the data in0

register of I2C 2 is read and displayed in the data out register of I2C 1. In the second operation,

the data from the data in1 register of I2C 2 is accessed. The simulation confirms that I2C can read

values from any register.

Figure 3.15: I2C Read Simulation

Fig. 3.16 presents the changes in the Serial Data (SDA) and Serial Clock (SCL) lines during the

first read operation. Similar to Fig. 3.11, the SDA and SCL processes depicted in Fig. 3.16

are divided into five parts, each comprising 9 bits. However, unlike the write operation, the read

operation includes two starts, indicated by two rising edges of SDA. Additionally, the master will

send a NACK signal in the last response before the operation is completed.

In addition, we also simulated the scenario where the data length is limited to 1 byte. As previously

Chapter 3. Design Process of Inter-Integrated Circuit 27

Figure 3.16: SDA and SCL in I2C read Simulation

mentioned, I2C supports both 1-byte and 2-byte transmission modes. And while most sensors on

the Texas Instruments website use the 2-byte protocol, some only support the 1-byte I2C protocol.

Fig. 3.17 shows that the read operation comprises three parts, whereas the write operation consists

of four parts. As we did not establish a separate testbench and I2C register the device for the 1-

byte transfer mode, the data is stored in the lower 8 bits of the 16-bit data register. In the process

depicted in Fig. 3.17, both the read and write operations use 8-bit data ’A1’.

Figure 3.17: I2C write and read Simulation with 1-Byte Operation

Chapter 4

Design and Implementation of SPI-I2C

Protocol Converter chip

Upon completing the simulation of the I2C module, our next objective was to test the actual perfor-

mance of I2C by designing a chip with the SPI to I2C protocol. The SPI-I2C protocol converter chip

includes an optimized SPI module and I2C module with adjustable output voltage. The SPI-I2C

protocol converter has significant potential applications, not only because it facilitates protocol

conversion from SPI to I2C for connecting a microcontroller with an SPI interface and a sensor

with only an I2C interface but also because it enables better interconnection between two SoCs,

which can be challenging to approach in SPI application scenarios.

This chapter will detail the process of implament the I2C module, from RTL design to generating

the GDSII file and final chip layout. Emulation is performed at various stages to ensure the proper

functioning of the I2C component. During the RTL stage, we use Modelsim simulation to verify

the functionality of the Verilog file. After completing the synthesis and automated place and route,

we use Cadence Specter simulation to verify the functionality of the device described by the netlist

structure and ensure the success of the synthesis process. Moreover, we stitch the components

together in Virtuoso to generate the complete chip.

28

Chapter 4. Design and Implementation of SPI-I2C Protocol Converter chip 29

4.1 RTL to GDSII flow for I2C Module

According to the process in Fig.4.1, the schematic and layout of the I2C module are generated

through Synthesis and Automated Place and Route (APR).

Figure 4.1: RTL to GDSII Flow

Synopsys Design Constraint (SDC) [31] is a standard format for constraining the design, supported

by almost all Synthesis tools. Generally, timing, power, and area constraints of design are provided

through the SDC file; this file has an extension .sdc.

Figure 4.2: SDC Code

In the I2C module, there’s only one system clock CLK, but we also create a ”virtual clock” that’s

asynchronous to ”CLK.” By defining two clocks as asynchronous, Genus [32] and Innovus [33]

will ignore and not clock any paths from one domain to another. We create a virtual asynchronous

Chapter 4. Design and Implementation of SPI-I2C Protocol Converter chip 30

clock to associate the input signal ports that contain the I2C block because they’re asynchronous to

CLK. If we skip this step, Genus/Innovus will waste resources optimizing timing paths for other

registers in the input port designs. We don’t need to specify any parameters for the virtual clock

because it doesn’t exist in the design, and it’s asynchronous to the clock that does exist. We will

determine the clock frequency during Synthesis and need to consider the trade-offs of the design.

Adding input delay can lengthen the input-to-output and input-to-register data paths, so we set

the input delay to 0 for all inputs. Finally, we specify a significant load on the output so that

Genus/Innovus will enlarge the cell driving the output.

During Synthesis, we sweep the frequency from 10MHz to 100MHz to get the best results, as

shown in Fig.4.3. When the frequency exceeds 30MHz, the generated area begins to increase,

and when the frequency exceeds 50MHz, the frequency rises rapidly. We’ll synthesize this design

at 20 MHz since the application doesn’t require the module to operate at a very high frequency.

Moreover, the oscillator we provide for the I2C module works below 100KHz. After Synthesis, we

use Innovus software for automated place and route, where we need to focus on Floor Planning and

IO Placement. Floor Planning defines the module’s area, while IO Placement specifies the input

and output port information, which provides the component layout for placement and arrangement

in the final stage.

Figure 4.3: Frequency Sweep

Chapter 4. Design and Implementation of SPI-I2C Protocol Converter chip 31

After completing Synthesis and APR, Genus and Innovus automatically generate GDSII files and

Verilog codes. We import these files into Cadence Virtuoso, where we can access the layout,

schematic diagram, and symbols of the I2C module.

4.2 I2C Additional Circuit Design

In addition to using the I2C module described by Verilog, we also need to add some circuits to

ensure the regular operation of I2C. When doing Modelsim simulation, we use some logic circuits

instead of the Open-Drain structure. Now the Open-Drain structure will be drawn separately to

meet the requirements of the I2C protocol standard.

As shown in Fig.4.4, we designed an Open-Drain structure consisting of five pull-up resistors and

two NMOS by calculating the transmission line’s rising and falling edge times. In addition to the

maximum size of the resistor, other components are controlled by a separate logic stored in the

SPI register, which allows us to explore the impact of different pull-up capabilities on the SDA

signal in the test. We have designed multiple sets of pull-up and pull-down structures for different

connection situations. In addition, we explored the power consumption and performance of the

I2C module through different structures.

Figure 4.4: Open-Drain Structure

At the same time, to improve the compatibility between the I2C module and commercial devices,

we added a levell shifter to the circuit to control the voltage on the SDA line because the I2C

Chapter 4. Design and Implementation of SPI-I2C Protocol Converter chip 32

module works at 0.6V but almost Texas Instruments temperature Sensors work at the lowest is

1.02V. The level shifter can be adjusted to operate safely within the range of 0.6V-1.2V. Fig.4.5

shows the structure of the level shifter.

Figure 4.5: Level Shifter

4.3 Cadence Spactre Simulation

After importing the I2C module into Cadence, perform the Spectre simulation to ensure the proper

functioning of each component is crucial in completing the final design. The block diagram during

simulation is shown in Fig. 4.6, which includes two complete I2C modules.

The schematic during simulation is shown in Fig. 4.7. The blue part represents the voltage supplies

of the I2C and pull-up resistor, which correspond to the I2C module and the Open-Drain circuit.

Two I2C clock signals, enable signals, and reset signals are also included. The red part shows two

I2C modules, and we added a buffer circuit before the SDA and SCL input ports. The green parts

are two-level shifter circuits analyzed in detail in the previous section. The Open Drain circuit

is marked in yellow, and this part provides the control for the Open-Drain circuit and determines

the details of the pull-up and pull-down circuits. The black part represents two buses containing

devices that simulate the PCB ports and the transmission line impedance. Finally, both read and

write operations are shown, Fig. 4.8 and Fig. 4.9, and each part is consistent with the simulation

results. Cadence simulation is an indispensable step in the design process. In the simulation, we

consider the influence of various factors on the circuit, as described in the schematic. Through this

Chapter 4. Design and Implementation of SPI-I2C Protocol Converter chip 33

Figure 4.6: I2C Simulation

Figure 4.7: Schematic

simulation, we can estimate the actual operating conditions of the I2C module.

As described in the I2C module state machine chapter and the Modelsim simulation results section,

we analyzed the simulation results at this stage. In the write operation, the signal on the SDA

transmission line is divided into four frames for analysis, and each frame is 9 bits. In Fig. 4.8, each

frame signal is analyzed, which contains the target chip’s address, the target register’s address, and

two bytes of data.

Figure 4.8: I2C write Simulation

Similarly, in the I2C write function test, the signal on the SDA line is divided into five frames. In

Chapter 4. Design and Implementation of SPI-I2C Protocol Converter chip 34

addition, when the second frame ends, the master resends the start signal by sending the falling

edge of the SDA line.

Figure 4.9: I2C read Simulation

4.4 Schematic and Layout of Chip

After completing the simulation of the I2C module, we integrated the SPI and I2C parts to create

the SPI-I2C protocol converter chip, illustrated in Fig.4.12. Along with the SPI slave and I2C

modules, the chip includes an output voltage control module that allows selecting between 0.6V,

1.2V, and 1.8V and a temperature sensor for testing purposes. The SPI bidirectional components,

which occupy a large area, are not directly related to the SPI-I2C protocol converter and will not

be discussed in detail in this article.

Figure 4.10: Chip Block Diagram

Chapter 4. Design and Implementation of SPI-I2C Protocol Converter chip 35

Figure 4.11: SPI Register Table

Figure 4.12: Schematic Figure 4.13: Layout

Once SPI and I2C are connected, we create a table to map the SPI register functions Fig.4.11 to the

control port and registers of I2C. This allows us to use SPI to control I2C. Although this simulation

involves too many components that can not be run, tests in the next chapter confirm that it works

correctly.

The layout of the SPI and I2C parts is marked in red in Fig.4.13. In the next chapter, we will

test this part to ensure the proper functioning of controlling the I2C through SPI. We will utilize

a low-power oscillator to clock the I2C. Besides, the red boxes with an ’X’ in the figure denote

the capacitors in the TSMC library and do not imply any component errors or disabled features.

Finally, we have completed the SPI-I2C Protocol Converter chip design, and the next chapter will

start chip testing.

Chapter 5

Chip Test Results and Analysis

This chapter will comprise a series of tests conducted to assess the functionality of the SPI-I2C

protocol converter chip, including function check, static power consumption measurement, dy-

namic power consumption estimation, and analysis. Additionally, the chapter will explore the

implementation of a topology that utilizes three chips.

5.1 Build Testing Board

After successfully designing the PCB using PADS software, we soldered the necessary compo-

nents onto the board. This included filter capacitors and linear and low-dropout (LDO) regulators,

essential to ensuring a reliable power supply. ITWOC and PULLUP supply power to the I2C

module and Open-Drain pull-up resistors.

ESD Board and ESD I/O are crucial components for protecting electronic devices from damage

due to high voltage. With each successive generation of IC development, achieving smaller form

factors and thus smaller process nodes, these devices exhibit an increased vulnerability to dam-

age or latch-up from electrostatic discharge (ESD) threats. Our ESD protection can ensure that

the voltage exceeds the ESD Board and ESD I/O interface is grounded to protect the chip from

36

Chapter 5. Chip Test Results and Analysis 37

Figure 5.1: Testing Board

breakdown by excessive voltage. During testing, 1.2V is applied to ESD components, meaning

any voltage exceeding this threshold in the power supply circuit will trigger automatic discharge

through the ESD mechanism. This prevents the chip from being broken down and ensures optimal

performance.

5.2 I2C Basic Function Test

The block diagram used during the test is depicted in Fig.5.2. As previously stated, the I2C test

must be conducted on two chips since the Master and Slave cannot function independently and

work together on one chip. The specifics of controlling SPI and I2C using C code are illustrated

in the left part of Fig.5.2. As two chips are utilized in the test, two SPI Master components are

implemented on the SoC. The C code is compiled into machine code (.hex) by the compiler and

subsequently uploaded to the SRAM in the SoC via the testbench. During runtime, the RISC core

transmits relevant instructions to the SPI through the AXI4 and APB protocols in the SoC. Fig.5.3

displays a test code that effectively drives the SPI.

This code demonstrates how to use C code to control I2C. The SPI1 write function writes values to

the specified SPI register. The I2C control information is described in the SPI register table created

during the Chip top design and connected to I2C in the previous chapter. I2C can be configured and

Chapter 5. Chip Test Results and Analysis 38

Figure 5.2: Block Diagram of Test

started by modifying the corresponding position’s value. At the end of the configuration process,

the read en and write en signals must finally be given. This is because the Pattern Generator Logic

Analyzer (PGLA) has a slow transfer rate, and it’s important to avoid starting the system before

the configuration is completed.

Figure 5.3: C Code for I2C Master Setup and Run

The most time-consuming aspect of gate-level simulation for digital circuits is generating input

waveforms or stimuli. One efficient approach is to run the simulation initially as an RTL simulation

and then export all the input waveforms to a .csv file. After a successful SoC simulation, we can

use the testbench code to export the data of the specific segment we want to simulate. The Pattern

Generator Logic Analyzer (PGLA) is a specialized tool for generating pulse signals. We use it

to describe the data in the .csv file and generate accurate electrical signals. The PGLA is then

connected to the test circuit board, enabling us to simulate communication between the SPI Master

Chapter 5. Chip Test Results and Analysis 39

and the SPI slave on the chip and modify the value in the SPI register. Then we use an oscilloscope

to observe the signals on the SDA and SCL lines to ensure the I2C is working correctly.

Figure 5.4: Write Process

The write operation results are shown in Fig.5.4. Once the I2C operation is completed, we can

query the value of the corresponding register through SPI to verify that the I2C operation was

performed correctly. We first set the address of our I2C master to 01 and the address of the slave

to 00. By comparing the C code, we want the master to change the register with a slave address

of 01 to B2B2. Since the register with address 00 and the register with address 01 is placed in a

32-bit SPI register, and address 00 refers to the upper 16 bits in the SPI register, we can verify the

test’s success. Like the previous simulation results, the operation is divided into four segments of

9 bytes each. At the same time, the information transmitted is B2B2, and the transmitted address

is 01, which is consistent with the previous observation of the register through SPI.

The reading test was conducted twice, displayed in Fig.5.5, with the master successfully reading

Chapter 5. Chip Test Results and Analysis 40

the information on the two registers of the slave chip. To confirm the test’s success, we cross-

checked the C code, the register information read by SPI, and the oscilloscope’s reading of the

SDA line.

Figure 5.5: Read Process

In this part of the test, we checked the I2C ability to read and write to the specified register. The

regular operation of the I2C module is verified by reading the value in the I2C register through SPI

and comparing it with the expected value.

5.3 Power Consumption Measurement and Modeling

5.3.1 Static Power

We first tested the static power consumption of SPI and I2C. At the same time, based on the

simulation results, we drew a comparison chart of SPI and I2C from 0.4V to 1.2V, by simulation

Chapter 5. Chip Test Results and Analysis 41

and test. We found that the SPI-I2C protocol converter can operate at a minimum of 0.4V, which

is lower than expected. When we tested the static operating voltage of I2C, we discovered that it

only consumes 2.49nW at 0.4V and 4.19nW at 0.6V, but as much as 40.9nW at 1.2V. The figure

shows that static power consumption increases exponentially as the supply voltage increases. We

chose I2C as the communication protocol because its static power consumption is lower than SPI’s.

However, we found that our simulation and test results had errors between 0.4V and 1.2V, likely

due to the mutual influence of multiple power supply ports on the chip. The significant error

occurred when SPI operated at 1.2V, at about 9.2%.

Figure 5.6: Dynamic power

5.3.2 Active Power

Our investigation revealed that the power consumption during the operation of the I2C component

is primarily due to the loss resulting from the short circuit of the pull-up resistor in the Open-Drain

design. In the previous chapter, we discussed the design of the pull-up resistor, which involved

creating various resistance values and developing a backup solution for the pull-down MOS de-

sign. Fig.5.7 illustrates that using only one pull-down MOS is insufficient to handle the pull-down

capability of the circuit, resulting in abnormal operation of the I2C module. Furthermore, as the

Chapter 5. Chip Test Results and Analysis 42

resistance value of the pull-up resistor decreases, the waveforms on SDA and SCL become more

standardized, but the power consumption increases. Ultimately, we selected the scheme indicated

by the red arrow and tested its working power consumption.

Figure 5.7: Current on Pull Up Resister

We conducted a simulation with a duration of 10mS to analyze the power consumption of the

I2C module during a read operation. Our findings indicate that the average power consumption

of the I2C module during this operation is 30.4nW, while the pull-up resistor consumes 195nW.

This suggests that the dynamic power consumption of the I2C module is significantly lower than

the short-circuit power consumption of the pull-up resistor. To estimate the overall power con-

sumption of the I2C module in its working state, we considered both the dynamic and static power

consumption observed in our simulation. Additionally, we tested the power consumption of the I2C

module using the SPI-I2C chip. We conducted the test at different frequencies: once per minute,

twice per minute, and four times per minute. We observed some deviation in the test results, which

can be attributed to the difference between the actual operating frequency of the I2C module and

our estimate. By averaging multiple measurements of the three operating states, we estimated the

overall power consumption of the I2C block operation based on the duty cycle.

The current in Fig.5.7 results from the Cadence simulation. At the same time, the power consump-

Chapter 5. Chip Test Results and Analysis 43

Figure 5.8: Active Power

tion measured in Fig.5.8 is the measurement result of the actual chip. There is a gap between the

two because there is a certain error in the measurement process, and the simplest model is used in

the simulation in order to use the gap between the current and the performance. In an actual chip,

the magnitude of the current cannot be directly measured, so we cannot obtain the magnitude of

the current flowing through the resistor.

5.4 System Topology Test

After completing the basic test of the I2C module, we conduct a systematic topology test on the

SPI-I2C protocol converter chip. Since there are only two SPI masters in the current test platform,

we used some optimized functions during the test. In the SPI-I2C chip, SPI differs from the tradi-

tional design and can pass the MOSI and MISO signals to the next level through the switch, which

means that we can connect the SPI in series and identify the communication target through the

chip ID, which is similar to how the I2C module completes chip ID identification, as Fig.5.9.

Through the connection of the three chips, we can set their SPI module and I2C module in turn

and then read the registers in the chip through the SPI Master to realize the detection of the I2C

Chapter 5. Chip Test Results and Analysis 44

Figure 5.9: 3 Chip I2C Write Test

operation. In Fig.5.10, we did two write operations using the I2C master. The first time, we write

’A1A1’ to slave1, whose chip address is 02, and the target register address is 01. And the second

time, we write ’B2B2’ to slave2, whose chip address is 03, and the target register address is 00. In

the following verification process, since we can only perform operations on the SPI sequentially,

we sequentially read ”A1A1” stored in Chip2 (Slave1) and ”B2B2” stored in Chip3 (Slave2).

Figure 5.10: 3 Chip I2C Write Test

When performing a read operation, we first read the ’B2B2’ stored in Chip2 Register 00 and then

use SPI to read the data from the I2C master for verification. Then read ’C3C3’ in Chip3 Register

Chapter 5. Chip Test Results and Analysis 45

01. The data out of the I2C master is always connected to the last 16 bits of the 32-bit register,

consistent with what we described in the I2C data register.

Figure 5.11: 3 Chip I2C Read Test

Our latest testing round has proven the successful functionality of the I2C module, as we were able

to read from and write to various registers on different chips. This success highlights the I2C’s

ability to interconnect chips effectively within a distributed system, ultimately contributing to its

efficiency. We also plan to test the four-chip interconnection to prove that the protocol conversion

chip can do the job in the mesh network structure. The test results are the same as those shown in

this chapter, and the structure is complex, so it is not shown.

Chapter 6

Integrate the I2C Module into the SoC

Now that the SPI-I2C Protocol Converter Chip testing is complete, the next step is integrating

the I2C block into the System-on-Chip (SoC). The current SoC features multiple SPI masters, a

necessary compromise to facilitate communication with several chips. Adding the I2C protocol

block to the SoC can reduce the number of required SPI protocol blocks, resulting in lower power

consumption.

Integrating I2C into an existing SoC can be challenging, as it requires a thorough understanding

of the system architecture and the internal protocols of the SoC. This chapter will discuss these

aspects in detail and explore the process of adding components to a complete system.

6.1 SoC Architecture

The currently established SOC includes RISC-V Core, Boot ROM, memory management unit,

SRAM, and system interconnects. The core named BottleRocket [34] is a 32-bit, RISC-V microcontroller-

class processor core built as a customized microarchitecture from the Free Chips Project Rocket

core components. The SoC uses two different interconnect protocols, ARM Advanced Micro-

controller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI) [35] [36] and ARM

46

Chapter 6. Integrate the I2C Module into the SoC 47

AMBA Advanced Peripheral Bus (APB) [37]. AMBA AXI4-Lite has a more straightforward in-

terface than the complete AXI4 and is suitable for connecting the microcontroller with boot ROM,

SRAM memory controller, and APB bridge in this project. APB bridge [38]. The APB bridge

connects peripheral components, such as General-Purpose Input/Output (GPIO), SPI, and I2C. By

setting addresses for different components, the CPU can write to the control registers of different

components to achieve the purpose of register control.

Figure 6.1: SoC Architecture

6.2 Connect I2C module with APB bus

6.2.1 Update Address Map

In the address map, all components included, such as the corresponding addresses of SRAM, Boot

ROM, and APB interconnect, are defined first because this part is the essential component require-

ment of SOC, which is prepared for AXI4-Lite interconnect identification. AXI4-Lite interconnect

transfers instructions of different addresses to the corresponding modules. The APB interconnect

works similarly, distributing instructions to additional peripherals.

As shown in Fig.6.2, in the AXI4 interface, the address bits covered by the APB interface and I2C

components present an inclusion relationship. Among the address bits covered by I2C, six sets of

registers are enabled and have corresponding addresses corresponding to them. In addition, there

is a single address for implementing the interrupt mechanism. Because the virtual space allocated

Chapter 6. Integrate the I2C Module into the SoC 48

Figure 6.2: Address Map

to I2C is abundant, it is easy to find and supplement corresponding functions.

Figure 6.3: I2C Control and Data Register Map

Then, I put all the signals related to I2C in the planned address area, as shown in Fig.6.3. Essential

parameters are stored in I2C SETUP to determine the working condition of I2C, and each parameter

is introduced in detail when introducing the I2C port. I2C CONTROL contains the startup and

status signals when I2C is running. Monitoring this register can effectively understand the running

status of I2C. The last two registers are connected to the data input and output of I2C. They store

two pieces of data, each of which is 2 bytes.

6.2.2 Build APB to I2C Logic

The APB I2C file contains all the logic from the APB interface to the I2C control registers. Ac-

cording to the structure in Fig.6.4, the output of the APB slave is matched to the corresponding

control register. At the same time, the internal logic of APB also needs to be modified because

new functions are expanded.

Chapter 6. Integrate the I2C Module into the SoC 49

Figure 6.4: AXI4-Lite to APB to I2C Structure

After the information is delivered to APB, according to the target address stored in APB paddr,

APB int will transmit the APB data to the corresponding APB slave. In APB I2C, the output of

APB slave will store the message in the corresponding register.

In the Digital Top file, put the APB I2C module, we can see that the control signal terminal of the

module and the APB interface are connected through APB int to I2C Bus. On the other hand, the

I/O port is connected to the SOC pad via I2C Pad Bus. In addition, a dedicated interrupt signal port

is provided for I2C to use when it is written into data. I2C interrupt occurs when the slave write en

signal is generated, and its function is to wake up the core to ensure that the written data is stored

in the correct position.

Chapter 6. Integrate the I2C Module into the SoC 50

Figure 6.5: Connection of APB I2C

6.3 Modelsim Simulation

Compared to the simulation of the I2C module, the difficulty of completing the system simulation

in Modelsim is very serious, even if the SoC is complete. Designing the simulation environment

directly in the testbench for system testing is not feasible. Fortunately, this complete system can

run C code, so we can design corresponding code to control SoC and finally achieve the purpose

of controlling I2C.

6.3.1 Structure of SoC and Testbench

A complete set of the simulation process is used to simulate the digital circuit system. According

to the description of the testbench in Fig.6.6, from the C code to the signal generation on the I2C

data line, we successfully put I2C into the system.

To show the process of SOC simulation implementation more clearly, the whole process of real-

izing SOC Modelsim simulation is described with simple C code. First, compile the code ”app.c”

and the address mapping table to save the machine code in hexadecimal. Import the machine code

into SRAM through the statement in Testbench. RISC modifies the registers that control I2C lo-

cated in the APB I2C module by running instructions stored in SRAM. The interface of the AXI4

protocol is complex, directly connected to RISC, and can respond quickly. As shown in Fig.6.4,

Chapter 6. Integrate the I2C Module into the SoC 51

Figure 6.6: SoC-I2C Simulation Flow

Chapter 6. Integrate the I2C Module into the SoC 52

when the target address is a peripheral component, with AXI4 int, the AXI4 slave will pass the

information to the APB master. Similarly, APB int will help the APB slave connect with the cor-

responding address in the APB I2C module, and then the internal logic will store the data in the

register. As described in Fig.6.6, the registers are connected to the input and output of the I2C

module. In short, through the RISC, AXI4, and APB protocols, the I2C is implemented using the

C program.

6.3.2 Design I2C operation program

To run the simulation program, we must write the corresponding C code, similar to the operation

when debugging SPI. Fig.6.8 is the code to complete the write operation for the code written to

drive I2C, and the code for the read operation is similar.

Firstly, the code must be used with the address map because it contains the access address and the

corresponding name. In the main program, the I2C control registers are assigned sequentially, and

the specific functions of the control registers are described in detail in ’Build APB to I2C Logic’.

Unlike the SPI-I2C protocol converter chip test, the wait () function does not need to be added

after each assignment. However, it is used at the end of the C code because we need a period of

time when the SoC works stably to observe the operation of the I2C.

Figure 6.7: Loading Program Code

Before loading data into SRAM, the core needs to be halted. Then load the contents of the .hex file

into the SRAM model used by the testbench. There is code in the testbench that loads the contents

Chapter 6. Integrate the I2C Module into the SoC 53

of the .hex file into the register array called image. After the program is finished loading, we need

to set the Program Counter (PC) and resume the core.

Figure 6.8: Write Program Code

6.3.3 Simulation Result

The complete simulation results show that adding the I2C module to the SoC is successful, and the

specific results are shown in Fig.6.9 read process and Fig.6.10 write process. The execution flow of

the C code is shown in Fig.6.6. The simulation results section shows that the C code is loaded into

the SRAM, the data passes through the APB slave to the I2C control register, and the I2C executes

the instruction. Compared with the I2C module simulation, the system simulation includes more

content, such as loading and running the program. The details of the operation of I2C in Modelsim

will not be discussed in depth because it has been analyzed in detail in the previous chapters.

Chapter 6. Integrate the I2C Module into the SoC 54

Figure 6.9: Simulation of SoC-I2C read Operation

By analyzing the two figures, we can infer that the simulation appears to take a considerable

amount of time. Still, most of this time is taken up by the testbench code writing to the SRAM,

as highlighted in the figure. Once the paused core is restarted, the instruction stored in SRAM is

sent through the core, AXI4, and APB. Finally reaches the control register, which triggers the I2C

module. Although the simulation results do not show the signals of the AXI4 interface, the inter-

face is highly complex, and displaying the signals would not be informative. However, assuming

that the AXI4 signals coincide with the APB interface signals is reasonable. We have completed

the basic design of the I2C module, integrated it into the existing SoC, and used C code to control

it. We have made significant progress in this regard and have successfully simulated the system.

However, we have identified a key issue - the lack of an interrupt system in the SoC. Incorporat-

ing an interrupt system will improve read and write efficiency, a critical aspect in building larger

systems.

Although the simulation of SoC-I2C can only be carried out on Modelsim, we have proved that the

I2C integrated into the SoC can normally work in the chip. We aim to optimize the performance

Chapter 6. Integrate the I2C Module into the SoC 55

and power consumption of I2C to realize the work of communication in distributed systems.

Figure 6.10: Simulation of SoC-I2C Write Operation

Chapter 7

Conclusions and Future Directions

Based on Fabric-Based Self-Powered Systems, we hope to solve the interconnection problem be-

tween chips by exploring two synchronous serial communication protocols, SPI and I2C. This

paper proposes the complete process of digital design of the I2C module. It explores the per-

formance and power consumption performance of I2C and SPI protocol modules under ultra-low

power consumption. The SPI-I2C protocol converter chip and optimized SoC proposed in this pa-

per provide the basis for future Self-Powered Fabric-Based Systems. Furthermore, as we designed

and implemented the I2C module, we identified several limitations in the current design. We intend

to address these issues in future iterations to enhance its functionality and performance.

7.1 I2C Protocol Module

7.1.1 Optimize Open-Drain Circuit

Open-drain has been a successful design in facilitating interconnection among multiple devices.

However, the issue of the short-circuit current on the pull-up resistor can cause problems, mainly

when the bus is at a low voltage (0). This significant pain point demands attention in ultra-low

56

Chapter 7. Conclusions and Future Directions 57

power consumption circuits. Balancing the need for pull-up capability with power consumption is

crucial for optimizing the open-drain structure design. We want to find a balance between power

consumption and pull-up capability. In addition, the overall system design should be considered

to optimize the open-drain structure. For instance, reducing the number of interconnected devices

or grouping them into smaller segments can lower the demand for pull-up capability and reduce

power consumption. Another approach is implementing bus arbitration techniques that can reduce

competition for pull-up capability and, in turn, lower power consumption.

7.1.2 Design I2C Slave without Clock

Our testing found that the oscillator consumes significantly more power than the I2C module.

However, it’s worth noting that the Master generates the SCL signal. Therefore, if the slave can

operate at the same frequency as the SCL, it can save energy and reduce the sensor component’s

area that doesn’t depend on the clock. We have conducted experiments to verify that when the

Slave’s operating frequency is approximately equal to that of SCL, we can observe the waveform

on SDA. Unfortunately, the current results have shown that the waveform is unstandard.

7.1.3 Reliability and Efficiency

At this stage, the I2C module has a simple design and can only perform basic functions. In addition,

it lacks an automatic reset capability, which means that if an error occurs during operation, it

requires manual debugging and restarting. To avoid such inconvenience, it’s essential to have

automatic reset functionality, especially in a complete system operation. Therefore, we aim to

improve the I2C module by adding this feature. Additionally, we plan to optimize the code to

enhance the module’s functionality and enable it to perform more tasks efficiently.

Chapter 7. Conclusions and Future Directions 58

7.2 System on Chip

To enhance chip communication efficiency and reduce power consumption, we suggest incorpo-

rating an interrupt signal into the SoC. We have already allocated specific ports in the I2C module

design for this purpose, which can simplify the design process. This will improve chip communi-

cation efficiency while reducing the microcontroller operation required, resulting in lower power

consumption. However, implementing this change will require revising the RSIC-V core struc-

ture and AXI4 agreement, which may be time-consuming. Nevertheless, the benefits of improved

communication efficiency and reduced power consumption make it a worthwhile endeavor.

Additionally, it is crucial to implement direct access to the I2C block to the SRAM. After receiving

the read command, the I2C Slave needs to locate the data of the target memory address through the

AXI4 and APB interfaces with the help of RISC. It is best to design a memory direct access module

to optimize the process to enable direct reading of SRAM. This will reduce energy consumption

and time spent on the operation.

Appendix A

Verilog Code of I2C

https://github.com/Zhenghong-C-LM/i2c module desgin.git

59

Appendix B

SPI-I2C Protocol Converter Chip Test

Environment

60

Glossary

Acronyms and Abbreviations

ADC Analog to Digital Converter

AI Artificial Intelligence

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

CPU Central Processing Unit

DAC Digital to Analog Converter

DDR Double Data Rate

DRAM Dynamic Random-Access Memory

EDA Electronic Design Automation

FPGA Field Programmable Gate Array

FSM Finite-State Machine

GPIO General Purpose Input/Output

HDL Hardware Description Language

IC Integrated Circuit

I2C Inter-Integrated Circuit

I2C Inter-Integrated Circuit

IoT Internet of Things

61

Glossary 62

I/O Input/Output

I/F Interface

ISA Instruction Set Architecture

LSB Least Significant Bit

MHz Mega Hertz

MISO Master In Slave Out

MOSI Master Out Slave In

MSB Most Significant Bit

ML Machine Learning

OS Operating System

PGLA pattern generator logic analyzer

PPAE Power, Performance, Area and Energy

RAM Random-Access Memory

RISC-V Reduced Instruction Set Computer Fifth Generation

ROM Read Only Memory

RTL Register Transfer Level

SCL Serial Clock

SCK Serial Clock

SDA Serial Data

SoC System on Chip

SS System Select

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

UART Universal Asynchronous Receiver-Transmitter

UVA University of Virginia

Bibliography

[1] T. Ajmal, D. Jazani, and B. Allen, “Design of a compact rf energy harvester for wireless

sensor networks,” in IET Conference on Wireless Sensor Systems (WSS 2012), 2012, pp. 1–5.

[2] J. Zhang, R. Wang, Y. Qian, and Q. Wang, “A coverage control algorithm based on prob-

ability model for three-dimensional wireless sensor networks,” in 2012 11th International

Symposium on Distributed Computing and Applications to Business, Engineering Science,

2012, pp. 169–173.

[3] M. P. Kumar and U. Rani. Nelakuditi, “Iot and i2c protocol based m-health medication assis-

tive system for elderly people,” in 2019 IEEE 16th India Council International Conference

(INDICON), 2019, pp. 1–4.

[4] M. I. M. Bakri, A. Zakaria, S. M. M. S. Zakaria, L. M. Kamarudin, A. Y. M. Shakaff, F. S. A.

Saad, M. F. Ibrahim, and M. H. M. Razali, “Plant bio-absorber for ammonia gas absorp-

tion using i2c interface data acquisition system,” in 2014 2nd International Conference on

Electronic Design (ICED), 2014, pp. 488–492.

[5] J. H. Moon, B.-J. Kim, Y. Jang, T. J. Mun, H. Kim, and S. J. Kim, “Self-powered inertial

sensor based on carbon nanotube yarn,” IEEE Transactions on Industrial Electronics, vol. 68,

no. 9, pp. 8904–8910, 2021.

[6] F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, “Flexible triboelectric generator,” Nano Energy,

vol. 1, no. 2, p. 328–334, 2012.

63

Bibliography 64

[7] A. J. Bandodkar, J.-M. You, N.-H. Kim, Y. Gu, R. Kumar, A. M. Mohan, J. Kurniawan,

S. Imani, T. Nakagawa, B. Parish, and et al., “Soft, stretchable, high power density electronic

skin-based biofuel cells for scavenging energy from human sweat,” Energy amp; Environ-

mental Science, vol. 10, no. 7, p. 1581–1589, 2017.

[8] A. Lanata, “Wearable systems for home monitoring healthcare: The photoplethysmography

success pros and cons,” Biosensors, vol. 12, no. 10, p. 861, 2022.

[9] Y. Su and R. Gururajan, “The determinants for adoption of wearable computer systems in tra-

ditional chinese hospital,” in 2010 Asia-Pacific Conference on Wearable Computing Systems,

2010, pp. 375–378.

[10] “Ieee standard for wearable consumer electronic devices–overview and architecture,” IEEE

Std 360-2022, pp. 1–35, 2022.

[11] V. Gyanchandani, S. N. Masabi, and H. Fu, “A self-powered wearable device using the pho-

tovoltaic effect for human heath monitoring,” in 2021 IEEE 20th International Conference

on Micro and Nanotechnology for Power Generation and Energy Conversion Applications

(PowerMEMS), 2021, pp. 60–63.

[12] G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra, Y. Shaoul, J. Fung, I. Chatziveroglou, P.-W.

Chou, I. Chinn, and et al., “Digital electronics in fibres enable fabric-based machine-learning

inference,” Nature Communications, vol. 12, no. 1, 2021.

[13] F. P. Oikonomou, J. Ribeiro, G. Mantas, J. M. C. Bastos, and J. Rodriguez, “A hyperledger

fabric-based blockchain architecture to secure iot-based health monitoring systems,” in 2021

IEEE International Mediterranean Conference on Communications and Networking (Medit-

Com), 2021, pp. 186–190.

[14] D. Trivedi, A. Khade, K. Jain, and R. Jadhav, “Spi to i2c protocol conversion using ver-

ilog,” in 2018 Fourth International Conference on Computing Communication Control and

Automation (ICCUBEA), 2018, pp. 1–4.

Bibliography 65

[15] L. N. Pintilie, T. Pop, I. C. Gros, and A. Mihai Iuoras, “An i2c and ethernet based open-source

solution for home automation in the iot context,” in 2019 54th International Universities

Power Engineering Conference (UPEC), 2019, pp. 1–4.

[16] “Tmp114.” [Online]. Available: https://www.ti.com/product/TMP114?keyMatch=TMP114&

amp;tisearch=search-everything&usecase=GPN

[17] “Tmp126.” [Online]. Available: https://www.ti.com/product/TMP126?keyMatch=TMP126&

amp;tisearch=search-everything&usecase=GPN

[18] “Tmp144.” [Online]. Available: https://www.ti.com/product/TMP144?keyMatch=TMP144&

amp;tisearch=search-everything&usecase=GPN

[19] “Hdc3022.” [Online]. Available: https://www.ti.com/product/HDC3022?keyMatch=

HDC3022&tisearch=search-everything&usecase=GPN

[20] “Opt3005.” [Online]. Available: https://www.ti.com/product/OPT3005

[21] “serial peripheral interface (spi™) - microchip technology.” [Online]. Available: https:

//ww1.microchip.com/downloads/en/DeviceDoc/70067b.pdf

[22] M. B. Aykenar, G. Soysal, and M. Efe, “Design and implementation of a lightweight spi mas-

ter ip for low cost fpgas,” in 2020 28th Signal Processing and Communications Applications

Conference (SIU), 2020, pp. 1–4.

[23] M. Kuhrmann and J. Müench, “Spi is dead, isn’t it? clear the stage for continuous learning!”

in 2019 IEEE/ACM International Conference on Software and System Processes (ICSSP),

2019, pp. 9–13.

[24] “i2c-bus specification and user manual - nxp community.” [Online]. Avail-

able: https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/nxp-designs/

931/1/UM10204.pdf

https://www.ti.com/product/TMP114?keyMatch=TMP114&tisearch=search-everything&usecase=GPN
https://www.ti.com/product/TMP114?keyMatch=TMP114&tisearch=search-everything&usecase=GPN
https://www.ti.com/product/TMP126?keyMatch=TMP126&tisearch=search-everything&usecase=GPN
https://www.ti.com/product/TMP126?keyMatch=TMP126&tisearch=search-everything&usecase=GPN
https://www.ti.com/product/TMP144?keyMatch=TMP144&tisearch=search-everything&usecase=GPN
https://www.ti.com/product/TMP144?keyMatch=TMP144&tisearch=search-everything&usecase=GPN
https://www.ti.com/product/HDC3022?keyMatch=HDC3022&tisearch=search-everything&usecase=GPN
https://www.ti.com/product/HDC3022?keyMatch=HDC3022&tisearch=search-everything&usecase=GPN
https://www.ti.com/product/OPT3005
https://ww1.microchip.com/downloads/en/DeviceDoc/70067b.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/70067b.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/nxp-designs/931/1/UM10204.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/nxp-designs/931/1/UM10204.pdf

Bibliography 66

[25] S. M. Kalyankar and S. Sawarkar, “Design of multinode reconfigurable multiprocessor net-

work for embedded systems,” in 2017 International Conference on Energy, Communication,

Data Analytics and Soft Computing (ICECDS), 2017, pp. 3239–3243.

[26] P. Bagdalkar and L. Ali, “Interfacing of light sensor with fpga using i2c bus,” in 2020 6th

International Conference on Advanced Computing and Communication Systems (ICACCS),

2020, pp. 843–846.

[27] R. S. S. Kumari and C. Gayathri, “Interfacing of mems motion sensor with fpga using i2c

protocol,” in 2017 International Conference on Innovations in Information, Embedded and

Communication Systems (ICIIECS), 2017, pp. 1–5.

[28] I. Ali, S. H. Cho, D. G. Kim, M. R. U. Rehman, and K.-Y. Lee, “A design of ultra low power

i2c synchronous slave controller with interface voltage level independency in 180 nm cmos

technology,” in 2017 International SoC Design Conference (ISOCC), 2017, pp. 262–263.

[29] L. Bacciarelli, G. Lucia, S. Saponara, L. Fanucci, and M. Forliti, “Design, testing and pro-

totyping of a software programmable i2c/spi ip on amba bus,” in 2006 Ph.D. Research in

Microelectronics and Electronics, 2006, pp. 373–376.

[30] “Modelsim hdl simulator.” [Online]. Available: https://eda.sw.siemens.com/en-US/ic/

modelsim/

[31] D. Goswami, K.-h. Tsai, M. Kassab, T. Kobayashi, J. Rajski, B. Swanson, D. Walters, Y. Sato,

T. Asaka, and T. Aikyo, “At-speed testing with timing exceptions and constraints-case stud-

ies,” in 2006 15th Asian Test Symposium, 2006, pp. 153–162.

[32] “genus synthesis solution.” [Online]. Available: https://www.cadence.com/en US/home/

tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html

[33] “innovus implementation system.” [Online]. Available: https://www.cadence.com/en US/

home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-

implementation-system.html

https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/innovus-implementation-system.html

Bibliography 67

[34] D. S. Dawoud and P. Dawoud, 6 Serial Peripheral Interface (SPI), 2020, pp. 191–244.

[35] R. Chandaluri and U. Nelakuditi, “Design and implementation of axi4-lite interface in zynq

soc,” in 2022 IEEE Delhi Section Conference (DELCON), 2022, pp. 1–4.

[36] C. Duran, D. L. Rueda, G. Castillo, A. Agudelo, C. Rojas, L. Chaparro, H. Hurtado,

J. Romero, W. Ramirez, H. Gomez, J. Ardila, L. Rueda, H. Hernandez, J. Amaya, and E. Roa,

“A 32-bit risc-v axi4-lite bus-based microcontroller with 10-bit sar adc,” in 2016 IEEE 7th

Latin American Symposium on Circuits Systems (LASCAS), 2016, pp. 315–318.

[37] K. Rawat, K. Sahni, and S. Pandey, “Rtl implementation for amba asb apb protocol at system

on chip level,” in 2015 2nd International Conference on Signal Processing and Integrated

Networks (SPIN), 2015, pp. 927–930.

[38] C. Ma, Z. Liu, and X. Ma, “Design and implementation of apb bridge based on amba 4.0,”

in 2011 International Conference on Consumer Electronics, Communications and Networks

(CECNet), 2011, pp. 193–196.

	Abstract
	Acknowledgments
	Introduction
	Related Work
	I2C Protocol Based Multi-Device System
	SPI to I2C Protocol Conversion

	Motivation
	Fabric-Based Self-Powered System
	Communication for Ultra-Low-Power System

	Thesis statement

	Background Theory
	Communication in Integrated Circuits
	Serial Communication Protocols
	Serial Peripheral Interface (SPI)
	Inter-Integrated Circuit (I2C)

	Design Process of I2C
	I2C Components Specification
	I2C Master and Slave Architecture
	I2C module Port List
	I2C Integrated Architecture
	Open-Drain Structure for Bidirectional Communication
	SDA and SCL
	Master and Slave Finite state machine
	I2C Data Register

	Simulation and Result

	Design and Implementation of SPI-I2C Protocol Converter chip
	RTL to GDSII flow for I2C Module
	I2C Additional Circuit Design
	Cadence Spactre Simulation
	Schematic and Layout of Chip

	Chip Test Results and Analysis
	Build Testing Board
	I2C Basic Function Test
	Power Consumption Measurement and Modeling
	Static Power
	Active Power

	System Topology Test

	Integrate the I2C Module into the SoC
	SoC Architecture
	Connect I2C module with APB bus
	Update Address Map
	Build APB to I2C Logic

	Modelsim Simulation
	Structure of SoC and Testbench
	Design I2C operation program
	Simulation Result

	Conclusions and Future Directions
	I2C Protocol Module
	Optimize Open-Drain Circuit
	Design I2C Slave without Clock
	Reliability and Efficiency

	System on Chip

	Verilog Code of I2C
	SPI-I2C Protocol Converter Chip Test Environment
	Glossary
	Bibliography

