
Securing A Moral Distress Reporting and Analysis System With A Role-Based Access

Control Approach

A Technical Report Submitted to the Computer Science Department

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia, Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Computer

Science, School of Engineering

Neha Krishnakumar

Spring 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Main Advisor Kevin Sullivan, Department of Computer Science

Secondary Advisor Angela Orebaugh, Department of Computer Science



Abstract

The University of Virginia's Computer Science Department, in conjunction with the

University of Virginia School of Nursing, developed a system called the Moral Distress (MoD)

system, designed to report, document, and remedy moral distress among healthcare providers. As

a result, this system features sensitive data and needs proper security. This security comes in the

form of the current state of development, integrating security and design through experimental

concept-based software engineering, and also comes in the form of access control design and

implementation. Access control measures were iteratively developed using role-based access

control (RBAC). Along the way, these measures were tested, and the results were documented in

this report. Finally, the system is evaluated through a series of ongoing studies.

Problem

The central problem with the associated software system is that the system has critical

data and thus needs to be secured. Multifarious methods can be involved in securing a

software-based system. Some methods involved in securing a software-based system, through a

technical approach, are using password policy, cipher suites, and secure network protocols.

These methods will be outlined in this section, followed by what cloud security has to offer to

remedy these problems. Finally, a portion of this section will be devoted to addressing the

problems associated with cloud security, and specifically access control - of which the solution

will form the basis of this report.

Password Policy

The most common model of executing authentication is through a username and

password [1]. Password policy can range from involving specific characters and length of a

password, or can involve the duration of a password before it is changed and other factors

1



associated with not just its creation [1]. Policy creation is subjective, but formalized standards

have been developed for password policy, such as that developed by Shay et. al from Purdue

University [1]. This standard involves four stages - creation, memorization and storage, updating,

and deletion, and Shay et. al incorporates formal logic to make assertions related to password

management. Their work also featured an experiment that assessed the assertions mentioned

earlier in creating strong passwords, and the results proved successful but variable based on the

input.

Besides the use of formally verified standards for password policy, there also exists

industrially viable standards. The National Institute of Standards and Technology (NIST) dictates

that passwords must be at least eight characters long and that businesses creating random

passwords must make them at least six characters long and can make these entirely composed of

numbers [2]. Additionally, verifiers, or the information security apparatus designed to handle

passwords, must not give hints to unauthenticated users and must compare passwords against

commonly used passwords, repetitive character passwords, and other memorized secrets that are

deemed unworthy because of weakness as a secret. Thus, in the realm of research and industry,

there exists methods to develop password policy, and thus secure a system.

Cipher Suites

Cipher suites are a group of methods that secure a network connection through the Secure

Sockets Layer (SSL) / Transport Layer Security (TLS) [3]. Each cipher suite comprises four

different types of algorithms: the key exchange algorithm, the authentication algorithm, the bulk

encryption algorithm, and the Message Authentication Code (MAC) algorithm. Each algorithm

will be described through an example in each subsequent section.

2



Key exchange algorithm: One example of a key exchange algorithm is the Diffie Hellman key

exchange algorithm. Diffie and Hellman, along with earlier work by Merkle, made advancements

in public key cryptosystems and key exchange systems, and the key exchange or key distribution

system proposed by Diffie and Hellman involved using independently chosen random numbers

as secrets [4]. These users would place their secrets in shared files with their name and address

and then would use a formula involving logarithms and modular division to exchange secrets.

Ultimately, while the algorithm is simple to develop, it is difficult to decipher due to the

difficulty in computing the logarithm of the modular division of the selected prime number, q.

The Diffie-Hellman algorithm, disregarding the mathematics, can be simply understood through

the mixed-paint example, shown below in Fig. 1 [5].

Fig. 1: Mixed Paint Example Illustrating Diffie-Hellman Key-Exchange Algorithm

Authentication algorithm: One example of an authentication algorithm is the

Rivest-Shamir-Adelman algorithm (RSA). This algorithm allows for the fact that if the

encryption key is revealed, the corresponding decryption key will not be revealed [3]. RSA is

3



based on the difficulty of factoring n, or the product of two large primes p and q, and is simple to

implement, with a guide provided in the original paper by Rivest, Shamir, and Adelman.

Bulk encryption algorithm → One example of a bulk encryption algorithm is the Advanced

Encryption Standard (AES).

The Federal Information Process Standard Publications (FIPS) 197 developed the standard of

AES based on the Rijndael cipher, which is a cipher that translates secrets to cipher text, or text

that is intended to be difficult to decipher [6]. AES is a symmetric block cipher, meaning that

aspects of the message to become ciphertext are shifted based on certain permutations associated

with a key. [6]. Below, in Fig. 2, is an illustration of how AES works [7].

Fig. 2: AES with Operations Included for Encryption and Decryption

MAC Algorithm → One example of a MAC algorithm is the Secure Hashing Algorithm- 512

(SHA-512). SHA-512 is part of the SHA-3 family and is specified by NIST in FIPS 180-4 [8].

Specified in the Secure Hash Standard (SHS), the SHA-3 family involves a set of algorithms that

produce a message digest, a condensed representation given a message, which can be used to

4



verify the integrity of a message - or whether a message has been modified or not. Hashing

algorithms like these can be used to verify a MAC and is thus a MAC algorithm.

Secure Network Protocols

There exists a wide variety of secure network protocols, and if used, can enhance the

security of a system. Below, in Table I, is a list of some secure network protocols that are

commonly used in industry and research along with information about each protocol [9]. Table

II, below Table I, contains a list of some insecure network protocols and information about each

protocol.

Port Application Layer Protocol Transport Layer Protocol

443 Hypertext Transfer Protocol
Secure Sockets (HTTPS)

TCP

53 Domain Name Server/Service
(DNS)

UDP and TCP

25 Simple Mail Transfer
Protocol (SMTP)

TCP

22 Secure Shell Protocol (SSH) TCP

135-139 and 445 Remote Procedure Call
(RPC)

TCP and UDP

500 Internet Security Association
and Key Management
Protocol (ISAKMP), Secure
Internet Protocol (IPSec),
virtual private networks
(VPNs)

UDP

Table I: Secure Network Protocols

5



Port Application Layer Protocol Transport Layer Protocol

80 Hyper Text Transfer Protocol
(HTTP)

TCP

20 and 21 File Transfer Protocol (FTP) TCP

23 Telnet TCP

Table II: Insecure Network Protocols

Cloud Security Remedies and Issues

Because this system lies in the cloud, many of these factors can be easily dealt with. Any

system developed on Amazon Web Services (AWS), specifically a system using AWS services

like Amazon Cognito, will have access to an immediate password policy through user pools,

which will be elaborated on later in this report. This system is no exception. Additionally, this

system already utilizes cipher suites in its configuration, specifically TLS-AES-GCM-SHA-256.

For proof, see Fig. 2 below, which is a Wireshark network protocol analysis that identifies the

cipher suite involved in the system.

Fig. 2: Wireshark Network Protocol Analysis with Cipher Suite

Finally, secure networking protocols are used by AWS, avoiding insecure protocols such as

Telnet, for remote login, and File Transfer Protocol (FTP), for transferring files [9].

However, because this system lies in the cloud, there are a whole host of new security

issues that must be addressed. According to the Organization of Web Application Security

Professionals (OWASP), some of the most common issues include public data storage buckets,

unencrypted or poorly encrypted secrets, API keys, and passwords, and vulnerable third-party

6



resource usage [10]. In the OWASP Cloud Native Application Security Top 10, these examples

are grouped into ten categories. One category this report will seek to remedy for the case study

system, is authentication and authorization, specifically those associated with Identity and

Access Management (IAM) in AWS.

Domain

Moral Distress Background

The domain of this project involves an ethical phenomenon known as moral distress. Felt

by many healthcare providers throughout the United States, moral distress involves a feeling that

arises when one is faced with the inability to make a decision they feel is morally correct [11]. It

involves initial and reactive distress, whereby initial distress happens in real-time, and reactive

distress occurs after the fact, and may result in a feeling of moral inadequacy [11]. There is a

clear need to identify and remedy this sense of inadequacy, which may cause those in the

healthcare profession to leave their jobs, though this is different than stress, burnout, or fatigue

[11].

Identifying and Remedying Moral Distress

Many research-validated measures to identify and remedy moral distress among

healthcare providers have been created, such as the Moral Distress Thermometer (MDT) by

Wocial and Weaver [12], and the Moral Distress Consultancy Service (MDCS) by Hamric and

Epstein [13]. These measures may be quantitative, like the MDT, or qualitative, like the MDCS.

The MDT and MDCS are embedded into the Moral Distress software-based system that has been

developed as part of this project.

Software Engineering and Computer Security Context

7



The Moral Distress system was built based on a software engineering paradigm known as

concept-based software engineering. Developed by Daniel Jackson at MIT, this paradigm

features a concept or a unit of functionality with a specific purpose [14]. These concepts “have

no visible form”, and exist as part of design and to be implemented in a software-based system

[14]. The purpose of a concept is exceedingly important, as misinterpretations of the key concept

of a piece of software can lead to disastrous results. For example, a misunderstanding of the use

of the trash concept in Dropbox can lead one to delete files that are essential for another team

member in a team project [14]. As concepts are also abstract and can thus have multiple

implementations, Jackson outlines that developers need to design concepts to be simple and

design a user interface that makes sense for each concept [14].

The MoD system utilized a concept-based design and implementation by including four

concepts. These concepts are as follows: survey, which includes the reasons for feeling moral

distress, thermometer, which includes the earlier described MDT, resiliency resources, which

help after a moral distress reading has been submitted, and the auth concept, which is a modular

authentication and authorization implementation.

The Auth Concept: Authentication and Authorization

Authentication, which refers to ensuring that principles can be identified, and

authorization, which involves access and resource control, ensures that a system is secure by

design [14]. Jackson stated that a system that is secure by design focuses more on working fully

despite security holes since it is impossible to close all of them [14].

The authentication and authorization implementation for the MoD system is based on the

use of Amazon Cognito, a service as a part of Amazon Web Services (AWS). Amazon Cognito

divides the organization of authentication and authorization into user pools and identity pools

8



[15]. User pools, primarily used for authentication, return access tokens and ID tokens which can

later be exchanged for AWS credentials by the identity pool [15]. Fig. 3, below, illustrates the

relationship between user pools and identity pools [15].

Fig. 3: The Relationship Between the User Pool and Identity Pool in Amazon Cognito

These AWS credentials give non-users guest access, based on implementation, and give

users authenticated access. Users are authenticated through a trust policy, while a permissions

policy grants access to AWS resources, among other purposes [15]. Some AWS resources that

the MoD application accesses include S3 buckets, of which S3 is a service that stores encrypted

data, API Gateway, which allows for REST API operations, and ExecuteAPI which allows one

to invoke their API.

Role-Based Access Control Approach

According to Sandhu and Samaranti, access control can be defined as “constrain[ing]

what a user can do directly, as well as what programs executing on behalf of the users are

allowed to do” [16]. Access control, thus, exists to keep malicious actors outside of the system.

Multiple types of access control can be utilized to improve security, both inside and outside of

9



Amazon Web Services. This report will consider the role-based access control approach, which

has been implemented to secure the MoD application.

Role-Based Access Control (RBAC) was achieved through Amazon Cognito, as

delineated in the Software Engineering Context section. An iterative approach was used in

developing the RBAC approach, starting with one IAM role, and then progressing to creating

two roles with different permissions policies, and then multiple roles that apply to not just the

system administrators and MDCS team.

The first IAM role that was created was the role of the system administrator, or sysadmin

as it was called. The sysadmin specifically had four permissions to write data to S3 buckets, one

permission to list the objects of an S3 bucket, and one permission to read data from an S3 bucket.

For the starter policy, I allowed permissions for all S3 buckets, denoted by the asterisk.

The second IAM role that was created was the role of the Moral Distress Consultancy

Service, or modconsultservice, as it was called. The modconsultservice role did not have

permission to read, write, or list data from S3 buckets. Both IAM roles had the permission to

invoke the API, as part of the service ExecuteAPI.

Iteration One: Proof-of-Concept with Two Users

Having two roles was a proof-of-concept approach, to test that one role could have more

permissions than the other. Proving that one role had more permissions than the other involved

some development/debugging work, to find the ID and access tokens, and then using these in the

AWS CloudShell, which is a command line interface for AWS, to use commands provided in the

documentation to determine whether or not the users had permissions. For this test, I created the

user ayy_ayy and the user bee_bee, along with two email accounts for the users so that they

could become verified users and receive the necessary permissions for testing.

10



In testing the access control permissions, I solely used the auth concept. Below, in Fig. 4,

is the graphical representation of the auth concept will full functionality.

Fig. 4: Graphical Representation of the Auth Concept

Instead of creating my user through a specific command line interface, or the AWS SDK, I used

the auth concept, with breakpoints inserted to find the accessKey and the secretAccessKey which

I would later use in the AWS Command Line Interface (AWS CLI) to create a profile and test the

permissions policies, specifically testing whether the user ayy_ayy had S3 bucket permissions,

and, more importantly, whether bee_bee did not. Below, in Fig. 5, is a picture of the three lines I

added to the Cognito authentication code, called cognito_authentication_repository.dart, to

obtain the credentials required. Fig. 5 also includes the debugging stack, but not the actual values

associated with the user ayy_ayy, for security purposes. However, as seen in the figure, an

AWSSuccessResult was obtained, meaning that the identity pool was properly configured

through an appropriate trust policy, and that credentials could be obtained.

11



Fig. 5: Debugging Stack and Manipulated Code

After obtaining the credentials for username ayy_ayy, I went to the AWS CLI to

determine if ayy_ayy had permissions for listing all S3 buckets present, through the command

aws s3 ls. Thankfully, the IAM role, with its permissions policy, appeared to work, as ayy_ayy

had this permission, shown below in Fig. 6. Not shown is the Access Key ID, Secret Access Key,

and Session Token, which were all used to authenticate the user through the AWS CLI.

Fig. 6: Results of aws s3 ls, for Testing Username ayy_ayy

Next, I had to test the user bee_bee, to check if the IAM role modconsultservice had a

permissions policy that did not allow access to S3 buckets. I tested this through the same method,

and got the expected result, that the command aws s3 ls would not work, shown below in Fig. 7.

12



Fig. 7: Results of aws s3 ls, for Testing Username bee_bee

With both results working, I could conclude that the proof-of-concept approach worked,

and I would simply need to modify the permissions policies, create more users, and test in the

same manner before evaluating my work in real-time.

Iteration Two: Automation for Multiple Users

The next step would be to automate the entire process through CloudFormation templates

and deploy the system so the nursing studies could continue. This would first require examining

the existing CloudFormation templates, and then refactoring these templates to include the new

roles that were created.

CloudFormation template management and variable parametrization were done through

Sceptre [17]. Sceptre typically involves a combination of configuration files, each paired with a

template [17]. In my configuration and template code, I automated the creation of two different

stacks: dev-nphair-auth-cognito-cognito-pools and

dev-nphair-auth-cognito-identity-pool-roles. As a stack is a collection of resources, these

resources included user and identity pools and configurations for these as part of the

cognito-pools stack, and roles and IdentityPoolRoleAttachments, which are used for mapping

roles to users - the central aspect of my template code. Below, I included part of the core code

driving the mapping of roles to users as part of the IdentityPoolRoleAttachment, in Fig. 8.

13



Fig. 8: IdentityPoolRoleAttachment for RoleMapping

This iteration proved to successfully deploy, before user testing which would be

conducted in May 2024. I deployed this iteration of template code through Sceptre and Visual

Studio Code’s terminal. The stacks dev-nphair-auth-cognito-cognito-pools and

dev-nphair-auth-cognito-identity-pool-roles were successfully created, as shown in Fig. 9 and

Fig. 10.

Fig. 9: Successful Creation of the dev-nphair-auth-cognito-cognito-pools Stack

14



Fig. 10: Successful Creation of the dev-nphair-auth-cognito-identity-pool-roles Stack

With this iteration of the access control template code working, I could proceed to the

evaluation of the system through a user study, which is forthcoming.

Evaluation

This system will be evaluated through a multi-institutional study, occurring during May

2024. This is because the best way to assess the success of a role-based access control

implementation is to test the system through users. All other testing methods before evaluation

are conducted through the local deployments in the approach section.

Related Work

Systems that Report Moral Distress

There has been one software-based system to report moral distress [18]. This was

developed as part of a study by the Computer Science Department at the University of Virginia

as well as the University of Virginia School of Nursing. This application, which involved the

causes of moral distress, an MDT reading, and resiliency resources, formed the basis of the

system I worked on securing. However, this system needed to be developed with the

methodology of concept-based software engineering.

15



Systems that Utilize Concept-Based Software Engineering

Developed by Daniel Jackson and his team, there exist two software-based systems that

use concept-based software engineering. One of these systems is Gitless, a method of version

control that avoids common pitfalls associated with Git, and the other is Deja Vu.

Gitless, primarily developed by Santiago Perez de Rosso under Daniel Jackson's advice,

was designed to be a new version of Git with concept-based design in mind, handling issues like

staging changes and file path classifications [19]. Deja Vu, also developed by Perez de Rosso

and Daniel Jackson, explored web application development with concept-based software

engineering [20]. In Deja Vu, a large application is built from smaller web applications from a

programming course at MIT [20]. It should be noted that neither Gitless nor Deja Vu were built

in the healthcare domain, or with a specific client in mind where additional testing and

evaluation could be conducted.

16



References

[1] Shay, R., Bhargav-Spantzel, A., & Bertino, E. (2007). Password policy simulation and

analysis. Proceedings of the 2007 ACM Workshop on Digital Identity

Management.

https://doi.org/10.1145/1314403.1314405

[2] NIST Special Publication 800-63B. pages.nist.gov. (n.d.).

https://pages.nist.gov/800-63-3/sp800-63b.html

[3] Villanueva, J. C. (n.d.). An introduction to cipher suites. JSCAPE.

https://www.jscape.com/blog/cipher-suites

[4] Diffie, W., & Hellman, M. E. (n.d.). New Directions in Cryptography.

https://www-ee.stanford.edu/~hellman/publications/24.pdf

[5] Diffie-Hellman Key Exchange. Information Security Stack Exchange. (n.d.).

https://security.stackexchange.com/questions/58658/diffie-hellman-key-exchange

[6] Advanced encryption standard (AES). (n.d.).

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf

[7] Figure 1. the basic AES-128 cryptographic architecture. (n.d.-b).

17



https://www.researchgate.net/figure/The-basic-AES-128-cryptographic-architectu

re_fig1_230853805

[8] NIST FIPS 180-4. (n.d.-c). https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.180-4.pdf

[9] Orebaugh, A., Ramirez, G., & Burke, J. (2007). Wireshark & Ethereal Network Protocol

Analyzer Toolkit. Syngress Pub.

[10] Owasp Cloud-Native Application Security Top 10. OWASP Cloud-Native Application

Security Top 10 | OWASP Foundation. (n.d.).

https://owasp.org/www-project-cloud-native-application-security-top-10/

[11] Rushton, C. H., Caldwell, M., & Kurtz, M. (2016). CE: Moral Distress: A Catalyst in

Building Moral Resilience. The American journal of nursing, 116(7), 40–49.

https://doi.org/10.1097/01.NAJ.0000484933.40476.5b

[12] Wocial, L. D., & Weaver, M. T. (2013). Development and psychometric testing of a new

tool for detecting moral distress: the Moral Distress Thermometer. Journal of

advanced nursing, 69(1), 167–174.

https://doi.org/10.1111/j.1365-2648.2012.06036.x

[13] Hamric, A. B., & Epstein, E. G. (2017). A Health System-wide Moral Distress

Consultation Service: Development and Evaluation. HEC forum : an interdisciplinary

18



journal on hospitals' ethical and legal issues, 29(2), 127–143.

https://doi.org/10.1007/s10730-016-9315-y

[14] Jackson, D. (2023). Essence of software: Why concepts matter for great design.

Princeton University Press.

[15] Common Amazon Cognito scenarios - Amazon Cognito. (n.d.-b).

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-scenarios.htm

l

[16] Sandhu, R. S., & Samarati, P. (1994). Access control: Principle and practice. IEEE

Communications Magazine, 32(9), 40–48. https://doi.org/10.1109/35.312842

[17] About. About - Sceptre 4.4.2 documentation. (n.d.). https://docs.sceptre-project.org/latest/

[18] Amos, V., Phair, N., Sullivan, K., Wocial, L. D., & Epstein, B. (2023). A Novel

Web-Based and Mobile Application to Measure Real-Time Moral Distress:

An Initial Pilot and Feasibility Study. Joint Commission journal on quality

and patient safety, 49(9), 494–501.

https://doi.org/10.1016/j.jcjq.2023.05.005

[19] A conceptual design analysis of Git - Santiago Perez De Rosso. (n.d.-a).

https://spderosso.github.io/ms-thesis.pdf

19



[20] Declarative assembly of web applications from predefined concepts. (n.d.-d).

https://spderosso.github.io/phd-thesis.pdf

20


