WAWA Final Report: ROMULUS 1

I. STATEMENT OF WORK
A. August Bresnaider

Lead software design. Directed instruction set architecture
and finite state machine design. Proved Turing completeness
of architecture. Helped design PCBs and pick parts to use.
Played role in debugging and determining the capabilities of
the hardware through testing. Designed simulator, assembler
and compiler, and wrote code to specify FSM and ALU flash,
as well as Arduino code to flash the chips.

B. Wolfgang Ploch

Lead hardware design. Participated in instruction set archi-
tecture design and high level architecture design. Designed cir-
cuitry, designed PCB, and wrote hardware description sections
for boards 1, 2, 3, 5, and 6. Assisted in circuitry design for
board 4. Soldered components on all 6 boards. Lead case and
control panel design. Assembled entire device. Troubleshot
hardware and implemented hardware solutions during testing.
Designed and provided teletype peripheral and wrote driver
programs for it. Wrote cost and physical constraint sections
of the final report.

C. Will Rimicci

Participated in instruction set architecture design and high
level architecture design. Designed circuitry, designed PCB,
and wrote hardware description section for board 4. Wrote
code to generate control signals FSM flash data. Rigorously
tested machine code simulator and assembler. Wrote several
test programs to be run on simulator and computer. Trou-
bleshot hardware and helped design hardware solutions during
testing. Recorded tests for debugging purposes. Designed
circuitry, designed PCB, and soldered general input/output
peripheral. Wrote background, societal impact, intellectual
property, full system test, and final results sections of the final
report. Helped keep team focused on deliverables when due
over the course of the semester.

D. Austin Chappell

Assisted in the creation of ISA, software tools, and testing
processes. Wrote the comprehensive test program for the
whole project. Ensured timely and quality completion of
project deliverables. Wrote standards, timeline, insights, and
compiled references in this report. Helped keep team focused
on deliverables when due over the course of the semester.

II. TABLE OF CONTENTS
CONTENTS

I Statement of Work 1

II

I

v

VI

I-A
I-B Wolfgang Ploch
I-C
I-D Austin Chappell

Table of Contents

Background

August Bresnaider

Will Rimicei

Project Description - Specifications

IV-A
IV-Al
IV-A2
IV-A3
IV-A4
IV-AS
IV-B

Finite State Machine

Instruction Set Architecture

Overview
Move Instructions (Opcodes
0-3).
Bitwise Instructions (Op-
codes 4-7)

Arithmetic / Logical Instruc-
tions (Opcodes 8-B)
Control Flow Instructions
(Opcodes C-F)

Project Description - Software

V-A

Assembler ("romASM”)

Project Description - Hardware

VI-A Board 1
VI-Al
VI-A2
VI-A3
VI-A4
VI-AS
Board 2
VI-B1
VI-B2
VI-B3
VI-B4
VI-B5
VI-B6
VI-B7

VI-B

VI-C Board 3
VI-C1

VI-C2

VI-C3
VI-C4
VI-C5

Overview
LED Displays

Register Design
Addressing the Registers
Modifications

Overview
Clock Signals

Pause Handling
Reset Timing
Timing Signals and Counters
Interrupt Handling Correction
Finite State Machine Flash

Chip Lookup Table
Overview
Memory Address Register
(MAR)
Address Decoding
Mapped 10 Port
Mapped 10 Port Control Sig-
nal Logic

—

UG NG TG R I R N NG T |

o]

12
12
12
13

15
17
17

17
17
17

VI-C6 Memory SRAM and Sup-
porting Circuitry
VI-D Board4
VI-DI Arithmetic and Logic Unit
(ALU)
VI-D2 Instruction Register (IR)
VI-D3 Compare Logic
VI-D4 7-Segment Hex Displays
VI.E Board5
VI-E1l Overview
VI-E2 Program Counter
VI-E3 Stack Pointer Counter
VI-E4 Program Counter and Stack
Pointer Counter LED Displays
VI-E5 Dip-switches for Interrupt
Jump Location
VI-E6 Instruction SRAM
VI-E7 Stack SRAM
VI-E8 Interrupt Handling
VI-F Board 6
VI-F1 Overview
VI-F2 Power Regulation Design . .
VI-F3 Over Current and Over Volt-
age Protection

VII Test Plan

VIII Physical Constraints
VIII-A Design and Manufacturing Constraints .
VIII-B Tools Used in the Project
VIII-B1 Visual Studio 2022
VIII-B2 Digital
VII-B3 Multisim
VIII-B4 ANTLR
VIII-BS Arduino IDE and Arduino
Mega
VIII-B6 Notepad
VIII-B7 Physical Tools
VIII-C Cost Constraints
VIII-D Producing a Production Version

IX Societal Impact

X External Standards

XI Intellectual Property Issues
XII Timeline

XIIT Costs

XIV Final Result

XV Engineering Insight

XVI Future Work

References

24
25
25
26
26
26
27

27

28

36
36
36
36
36
36
36

36
36
36
36
36

36

37

37

37

38

38

38

39

39

XVII Appendix

39

Abstract—Our project revolves around the design and fab-
rication of a 16-bit CPU and supporting memory using Flash
memory, 74XX series logic chips, and passive components. Aimed
to be a educational device for students to learn computer
architecture, digital logic, machine code, and electronics, the
Romulus I is equipped with LEDs on the internal registers, 7-
segment displays, debugging tools, and multiple clock speeds.
The scope of this project also includes a compiled language and
an assembler providing increasing layers of abstraction, allowing
for either a top-down or bottom-up approach to teaching about
computing systems and organization.

III. BACKGROUND

We chose this project for a number of reasons. First, we
were inspired by our experiences in other classes like Com-
puter Systems and Organization and Digital Logic Design.
After using the Digital open-source logic simulator [1] and
the ToyISA simulator [2], both of which are virtual tools,
we felt that we could create a physical, hands-on teaching
tool that would help students understand computers in a new
way. Second, we wanted to see if we could use what we had
learned in those classes through lectures and homeworks to
make something new. Finally, we just thought it would be a
fun and interesting challenge.

Throughout this project, we used many techniques we
learned in our classes. The general structure of the computer,
having a control signals FSM, an ALU, a program counter,
and memory, was material from Digital Logic Design. In
that class, we created a programmable computer with those
blocks in Digital [1] (though most of the designs of the blocks
themselves were different from the approach we were taught
in that class). The design of the instruction set architecture and
assembly were from Computer Systems and Organization 1.
The knowledge on how to create an assembler and compiler
were from Computer Systems and Organization 2. Finally, the
knowledge on how to create a PCB layout, order parts, and
solder circuits were from the ECE Fundamentals series.

Though this project was based on and inspired by a number
of past works, it is a new and distinct product. As mentioned
above, we took inspiration from the virtual tools we used in
our classes, like Digital [1] and ToyISA [2]. While these are
fantastic tools for learning, they are only virtual programs,
and do not provide a physical, interactable model from which
to learn. Another similar past work is Ben Eater’s 8-bit
breadboard computer [3]. In his video series, Ben Eater creates
a full-functional, programmable 8-bit computer on a set of
breadboards using only simple logic gates. It has a clock,
registers, ALU, RAM, program counter, and control logic.
While this project is similar to our own, it is built on a set
of breadboards, meaning the circuits are not as permanent as
ours made from soldered PCBs, and it is much less versatile
than ours: it is only eight bits and there are only two general
purpose registers, compared to our 16 bits and 16 general
purpose registers. Our work is different from any projects
before it.

IV. PROJECT DESCRIPTION - SPECIFICATIONS
A. Instruction Set Architecture

1) Overview: The instruction set architecture (or ISA, for
short) acts as a specification that defines the operations the
CPU is capable of, as well as their binary representations. By
giving an operation a mapping, we include it in the capabilities
of the CPU. Designing an ISA is a balancing act: If an ISA
is too simple, common operations can become arduous (i.e.,
not including A & B requires the programmer to do (A|B)
any time a bitwise AND is needed), or in the worst case, the
CPU may not be Turing complete. On the contrary, if the ISA
is overly complicated, it may require an overly complicated
hardware implementation. To avoid the negative effects of
these two poles, our ISA should be as follows:

o Turing complete

If our ISA is not Turing-complete, there is a strict and provable
upper bound on the computational power of our hardware,
which means our CPU will not be able to compute any given
algorithm.

o Logically comprehensive

While the bare minimum number of operations needed to make
a Turing-complete ISA is remarkably small (by our count, it
is roughly 5 or 6), it’s to include more instructions for ease
of use purposes, much like the bitwise AND example above,
to avoid frustration and code repetition on the programmer’s
part.

o Easy to code / represent in hexadecimal

As one of the revisions to ToyISA that we aim to implement,
the bitcode should be intuitive and require minimal bit-fiddling
on the programmer’s part. ToyISA had 8-bit instructions, with
the most significant 4 bits representing opcode, the next 2
representing rA (parameter 1), and the least significant 2
representing rB (parameter 2) or an optional set of selector
bits for unary operations. When programming using bitcode,
it is often a hassle having to compute the lower hexadecimal
digit when changing rA or 1B, so our ISA should split each
16-bit value into groups of 4 or 8§ wherever possible to avoid
this.

« Able to be utilized in higher-level abstraction

The ISA should be fully functional when programming using
bitcode, but there should also be instructions geared towards
higher-level concepts. For example, while a stack pointer and
instructions incrementing and decrementing the stack is not
strictly required, it gives way to creating a call stack and
allowing for the writing of functions, loops, and recursion:
features only truly available in romASM and / or Hawk.
The ISA we designed for Romulus I in order to solve these
problems to the best of our ability is given by Table I.

As referenced in the table, we settled on using 16 in-
structions, which allows our opcode to fit within the most
significant 4 bits of the instruction. Bits 8-11 generally act
as placeholder for R 4, the first parameter in many operations.
From there, bits 4-7 are reserved for R p, the second parameter
for many operations, and finally, bits 0-3 are usually reserved

for Ry, the register in which to store the result. Each group
of 4 instructions are similar to each other, and so the next
4 sections will discuss the "Move”, “Bitwise”, ’Arithmetic /
Logical”, and ”Control Flow” instruction groups.

2) Move Instructions (Opcodes 0-3): The first 4 opcodes
deal with moving values into and between registers, as well
as interacting with memory. Opcode O deals with register-
register moves, which we intentionally mapped as opcode 0,
so that the bitcode 0000 refers to moving Ry — Ry, or
essentially a NOP instruction. Thus, if the instruction RAM is
initialized to all O’s, it will default to NOP instructions, instead
of a random arithmetic or control flow operation. Instruction 1
moves an immediate value into a register, this being our only I-
type instruction (as opposed to the 15 R-type instructions), in
which the opcode and registers are in the first 16-bit value,
and the second 16-bit value specifies the immediate value
to load. We originally wanted to restrict the size of each
instruction to 16 bits, and limit the size of immediates to 12
bits, but after discussion regarding the simplicity of multi-
address instructions within our control signals logic, as well
as the fact that 12-bit immediates would limit our addressing
space to 4096 addresses, we decided to go forward with a true
immediate-type instruction. This instruction is the only way to
load immediate values, a decision we made to keep the total
number of instructions within 16 to fit into a 4-bit opcode.
The next two instructions (2 and 3) involve interfacing with
memory, or more specifically, our data RAM. If we were to
simulate a Turing machine, these instructions would be akin
to reading and writing from the tape.

3) Bitwise Instructions (Opcodes 4-7): The next four in-
structions represent the four most commonly used bitwise
logical operations in programming. While NAND is expres-
sively complete (meaning, every logic gate can be derived
from repeated applications of NAND), the NAND is not often
used in programming, and operations like OR and XOR would
require lots of register moves and instructions if only NAND
were available. By selecting AND, OR, NOT and XOR, we
only leave out NAND, XNOR and NOR, all three of which
are fairly uncommon, and can be computed with a maximum
of two operations (and no register shifting) if needed.

4) Arithmetic / Logical Instructions (Opcodes 8-B): When
designing our ISA, we knew that we would be using parallel
flash memory to implement our ALU. While this provides its
benefits, namely the smaller ALU footprint and the ability to
reconfigure, the drawback of this is that, due to the small
number of address pins in parallel flash, each bit of an
arithmetic operation may only rely on the opcode, the bit
above it, and the bit below it. This works for an operation
like addition or subtraction, where the operation happens in
a rippling fashion (that is, carry and borrow bits are always
adjacent to the bit in question) but this does not work for an
operation like multiplication, where each bit of parameter A
needs bits from parameter B that are not necessarily adjacent.
Thus, we decided for our main arithmetic / logical operations
to be addition, subtraction, logical NOT, and a logical shift
right. Addition and subtraction are obvious choices to include,

and we made a conscious decision to include both even though
subtraction can be represented by an addition and a negation.
This was another decision we made to improve the ease of use
of our ISA. We the implemented logical NOT, which sets the
least significant bit to 1 if the entire value is zero, and zero
if the entire value is non-zero. While this may at first seem
like a non-inline instruction, we planned to implement this
instruction in a rippling fashion, where we begin with the most
significant bit of the parameter, and use borrow-out inputs to
signify if any of the numbers are non-zero. This ripples down
to the least significant bit, which becomes zero if the borrow
out is non-zero, and vice versa. Our last instruction of this
section is a logical shift right, which again takes advantage of
the borrow-out behavior to set subsequent bits. We discussed
implementing an arithmetic right shift (i.e. sign-extending), but
it is our belief that a generic operation that shifts the bits down
is much more useful than one that acts on two’s complement
numbers. In order to abide by the in-lining rule though, it was
necessary to require that right-shift only shifts 1 over. While
we would have liked to implement a logical shift left, we
decided that it would be strictly less valuable than any of the
instructions currently in our ISA. Further, moving all digits
to the left 1 place in binary is equivalent to multiplying that
number by 2, or adding it to itself. Thus, using a little bit of
creative bit-fiddling, the programmer can implement left-shift
using addition if they so please. In fact, in our assembly, there
is a left-shift instruction that takes advantage of this trick,
abstracting this shortcoming away from the user.

5) Control Flow Instructions (Opcodes C-F): Instructions
12 and 13 are meant solely to interact with stack RAM. This
stack can be utilized as a data structure, loading and storing
values from registers, or to load and store values from the
program counter, or in other words, jump program execution
to another location. This is especially useful in higher levels
of abstraction for calling and returning from functions, where
a call can be represented as pushing the value to return to,
and then unconditionally jumping to an arbitrary location, and
a return can be represented as popping the value at the top
of the stack into the program counter (or PC). It should be
worth noting that this is why pushing PC actually pushes PC
+ 2, since a call takes 2 instructions, and the user would want
to return to the next instruction after the call. In order to
differentiate between pushing / popping with the PC or with
registers, instructions 12 and 13 have an Op- bit in bit 7, where
setting it interacts with PC, and resetting it interacts with the
register designated in R 4 or Ry, depending on the instruction.
Instruction 14 handles unconditional jumps, which sets the
value in PC to that of the defined register. This similar format
is followed in instruction 15, where a jump is only initiated
if a predicate is true, as specified by the flags in the lowest
4 bits of the instruction, and the mapping in Table II(note:
X refers to don’t-care bits; their values can be 1 or 0). Most
assembly languages have something akin to jumping based on
an arbitrary predicate (i.e. a ; b), amd while we would have
liked to have a similar instruction, it was unable to make it
within our 16 instructions.

TABLE I

INSTRUCTION SET ARCHITECTURE MAPPING

Opcode (Op) Instruction Registers Bits (MSB ... LSB)
0 (0000) Register to Register RA — Ry Op 4) Ra 4) [X 4) Ry (4)
1 (0001) Immediate to Register 1 — Ry Op 4) Imrrﬁd(iél)te o) Ry &)
2 (0010) Register to Memory Ras — Mpgp Op@) | Ra (4 Rp (4) X (4)
3(0011) Memory to Register Mpa — Ry Op@ | Ra (4 X (4) Ry (4)
4 (0100) Bitwise OR Rs —— Rp — Ry Op@ | Ra (4 Rp (4) Ry (4)
5 (0101) Bitwise NOT ~Ras — Ry Op@ | Ra (4 X (4) Ry 4)
6 (0110) Bitwise AND R4 && Rp — Ry Op@ | Ra (4 Rp (4) Ry (4)
7 (0111) Bitwise XOR R4 "Rp — Ry Op@ | Ra (4 Rp (4) Ry (4)
8 (1000) Add Rao + Rp — Ry Op@ | Ra (4 Rp (4) Ry (4)
9 (1001) Subtract Rs - Rp — Ry Op@ | Ra (4 Rp (4) Ry (4)
A (1010) Logical NOT IRy — Ry Op@ | Ra (4 X (4) Ry 4)
B (1011) Logical Shift Right Ras >>1 — Ry Op @) | Ra (4) X (4) Ry (4)
C (1100) Push (R4 or PC+2) — Top stack | Op (4) | Ra (4) | Op2 (1) X (7)
D (1101) Pop Top stack — (Ry or PC) Op (4) X 4) Op2 (1) | X(3) [Ry (4)
E (1110) Unconditional Jump Ray — PC Op@4) | Ra4) X (8)
F (1111) Conditional Jump If (Rg 7?7 0):R4 — PC Op@4) | Ra (4) Rp (4) [Flags (4)

TABLE I
CONDITIONAL JUMP FLAGS

Flags Comparison

0000 N/A (Instruction functions as a NOP)
0001 Rp ==

001X Rp =0

01XX Rp <0

1XXX Rp >0

B. Finite State Machine

We implemented the control signals finite state machine as
a flash chip lookup table because we though it would be easier
and take up less board space than making it out of logic chips.
We needed three flash chips because we have 24 FSM outputs,
and each chip only had 8 data output bits.

A flowchart of the FSM is in figure 1.

Every instruction starts with a fetch step: Einstr activates,
which allows the instruction in the instruction memory at the
address of the current program counter onto the bus, and Cir
activates, which takes the value off of the bus and puts it into
the instruction register.

For opcode 0, register-to-register assignment, we first take
the value from the chosen read register (Erx) and temporarily
store it in the ALU (Cp0). We then take it from the ALU
without operating on it (Ealu), then store it in the chosen
write register (Crx, sell). Crx opens the register file, and
sell chooses which part of the instruction is being used as
the address. Finally, we increment the PC to go to the next
instruction (pcinc), and we reset the sub-instruction counter
(setsub) to reset the FSM and start the next instruction.

For opcode 1, immediate-to-register assignment, after fetch-
ing, we just increment the PC (pcinc) and read the next value
in instruction memory (Einstr) into the chosen register (Crx,
sell). Then, we increment the PC (pcinc) and reset the sub-
counter (setsub), same as before.

For opcode 2, register-to-memory assignment (storing), we
first take the memory address from the register file (Erx, sel0)

and put it into the memory address register (Cmar). With the
address set, we take the data from the desired register (Erx)
and put it into memory (Cdata). Finally, we increment the PC
and reset the subcounter (pcinc, setsub).

Opcode 3, memory-to-register assignment (loading), is sim-
ilar to opcode 2. We take the memory address from the register
file (Erx) and put it into the MAR (Cmar). Then, we take the
data from memory (Edata) and put it into the correct register
(Crx, sell). Last, we pcinc ans setsub as usual.

Opcodes 4 through B (11), the ALU opcodes, operate nearly
identically. First, we load the data in the desired register (Erx)
into the ALU’s first parameter register (Cp0). If the operation
being performed is binary, that is, it operates on two operands,
then the second value is taken from its register (Erx, sel0) and
put into the ALU’s second parameter register (Cpl). (This
step is skipped for unary operations, like both NOTs and
shift right.) The ALU does the proper calculation according
to the opcode, and the result is taken (Ealu) and placed into
the desired output register (Crx, sell). Finally, we pcinc and
setsub.

Opcode C (12), push, has two different cases: pushing a
register value, and pushing the PC. Pushing a register is similar
to register-to-memory assignment: We take the data from the
desired register (Erx) and put it into the stack at the address
given by the stack pointer (Cstack). We then increment the
stack pointer (Csp++) and finish the instruction with a pcinc
and a setsub.

To push the PC to the stack, we actually push PC+2. This
is because the only reason you would be pushing the PC to
the stack is to call a function, and there needs to be room
after pushing to jump to the function with a jump instruction
before continuing the program. To do this, first we fetch, then
we increment PC twice to make it PC+2 (pcinc x2). We then
take the value from the PC (Epc) and write it to the stack
(Cstack). We then decrement the PC twice to return it to its
original state (pcdec x2), then we add one to the stack pointer
(csp++) and pcinc, setsub as usual.

Fig. 1. A flowchart of the control signals FSM

Opcode D (13), pop, is similar to push in that it has two
versions: popping to a register and popping to the PC. Popping
to a register is like memory-to-register assignment: First we
decrement the stack pointer (csp—), then we take what’s in the
stack (Estack) and move it to the desired register (Crx, sell),
then pcinc and setsub.

To pop to the PC, we first decrement the stack pointer (csp—
), same as before, but after taking it from the stack (Estack),
instead of putting it into a register, we just put it in the PC
(Cpc). We then skip the pcinc step, since we just updated the
PC by putting a new value in it instead, and setsub as normal.

Opcode E (14), unconditional jump, is very straight forward.
After fetching, we take the value from the desired register
(Erx) and put it into the PC (Cpc). We again do not increment
the PC, and instead just skip straight to setsub.

Finally, opcode F (15) is a conditional jump. We first take
the value we are comparing to from the register and put it
onto the bus (Erx, sel0). The data bus is connected directly to
the compare logic, which makes the comparison immediately
and stores the result in a D-latch (Ccmp), using the last four
bits of the instruction as flags to determine which comparison,
==0, !=0, ;/0, or ;0, to make. Then, if the comparison is true,
the FSM jumps like it would in opcode 14 by moving the
value from the register (Erx) to the PC (Cpc), the setting the
subcounter (setsub) as before. If the comparison is false, the

FSM simply performs the usual pcinc and setsub.

Finally, the FSM can also handle interrupts from the periph-
eral slots and the reset button. If an interrupt is received from a
peripheral slot, instead of fetching, the computer immediately
takes the PC (Epc) and puts it onto the stack (Cstack) to be
jumped to once the interrupt service routine is finished, then
increments the stack pointer (csp++). It then takes the interrupt
function location from the dip switches (Edip) and puts it into
the PC (Cpc). Since the PC was updated manually, there is no
need to pcinc, but the FSM does setsub as always.

If the reset button is pushed, the FSM stops all the other
devices from putting anything onto the bus. Because the bus
lines each have a pulldown resistor (i.e., a resistor on them
connected to ground), the value of the bus is 0x0000 by
default, when nothing is being actively put on it. Then, the
FSM activates the write enable on every register and counter,
which takes the value 0x0000 on the bus and stores it in all of
them, resetting them. It does not, however, reset the instruction
RAM, which means that you can run the program again
without having to reupload it, and it also leaves the stack and
data RAM alone (though because they are volatile memory,
they are undefined when the computer starts up anyway).

V. PROJECT DESCRIPTION - SOFTWARE
A. Assembler ("romASM”)

The assembler, which I will refer to as romASM is designed
to act as a direct mapping to the bitcode, while also allowing
for the implementation of higher level concepts like functions
and loops that are arduous to implement with bitcode alone.
This also allows us to fix up some of the shortcomings of
our ISA. For example, as previously mentioned, there is no
instruction for a left shift, whereas using the addition trick,
the assembler has a built in instruction for it. Lastly, in any
scenario where instructions have flags or bits specifying other
nuances (push and pop have Ops, conditional jump has flags),
those were split into different assembly instructions. Following
this, the capabilities of romASM are specified in full in Table
1.

VI. PROJECT DESCRIPTION - HARDWARE

The hardware was designed using 74XX series logic chips
for the most part. The general AND, NAND, OR, NOT, and
XOR gate IC data sheets can be found in references [4], [5],
[6], [7], and [8]. These chips contain 4 logic gates (6 for the
NOT gate chip) in a single chip and are powered with 5 volts.
The more specialized chips are discussed later in their sections.

A. Board 1

1) Overview: Board 1 contains the register file and support-
ing circuitry The register file was chosen to have 16 registers
because in order to address 16 registers, four bits are needed.
Using 4 bits to select the register allows three registers to
be chosen and the four-bit opcode to be specified all in one
16-bit instruction. Each register stores 16 bits. Each bit of
each register was designed to be indicated with an LED. The
SN74HC573 8-bit register [9] was chosen to store the contents
of each register. Because each are 16-bit, two 74HCS573s are
needed per register. Unfortunately, the tri-state buffer built into
the 74HC573 was not able to be used as we needed access to
the data even when it is not active. The OE# of all the buffers
were grounded so the output always reflected the data. The
full Schematic of the register file board can be seen in Figure
2. It is referred to as board 1 in other sections.

2) LED Displays: The LEDs sourced were tested with
various resistor values. A pleasant brightness was found with
820 € resistors. One LED draws 4.2 mA in this arrangement.
This means the board could draw up to 1.075 amps from just
the LEDs if OXFFFF is stored in all the registers. To save space
on the board, instead of using one discrete resistor for each
LED, 8-resistor resistor arrays were sourced. These are SIP-9
components that have 8 resistors with one common pin. The
anodes of each LED connect to the output of the register and
the cathodes are grouped into 8s and connected to the resistor
array, 2 resistor arrays per register. The common pin of each
resistor array is connected to ground through a 2N3904 with
a 1 K resistor on the base. The other ends of the resistors
are all connected to a common point. The transistor allows all
the LEDs to be turned off with a single signal. This will be
useful when running the computer at the highest speed.

3) Register Design: The outputs of the registers are con-
nected to a 74HC541 buffer IC [10]. It is an 8-bit device so
two of them are needed per register. The OE# are controlled
by the decoder. All outputs of these buffers are connected by
bit and then feed into two more 74HC541s to act as the final
output enable. The schematic of a single register can be seen
below in Figure 3.

4) Addressing the Registers: Two 74LS154s [?] were used
to make the decoder. One is connected to the 4-bit address and
its outputs connect directly to the OE# on the buffer pairs. The
outputs of the 74LS154 and OE# inputs on the 74HC541 are
both active low. The enable pins of the decoder are connected
to ground to constantly enable the decoder. This way, one
of the registers is constantly on the internal bus. The final
buffer mentioned above connects the selected one to the bus
using the OE# inputs on the board. The other decoder is used
to write to the registers. The two WE# s connect to its two
enable pins. Each output passes through a NAND gate whose
other input is wired to MWE# . Pulling MWE# low causes all
the registers to be written simultaneously. This is used during
an asynchronous reset. Its address pins are also connected to
the 4-bit address input. Each chip on the circuit has a 1 nF
capacitor across its power pins to decouple the IC. The boards
inputs are OE1# , OE2# , WE1# , WE2# , 4-bit address, LED
CTRL. It has a 16-bit IO connection for the data bus. A trace
width calculator was used to design the widths of the traces
on the PCB to ensure they could supply the proper power. A
simplified schematic of the control circuitry can be seen below
in Figure 4.

5) Modifications: The PCB needed two modifications to
work properly after its design and order. The first modification
was the addition of the second OE# input to the board. The
overall low-level architecture was not solidified before the
PCB was ordered and it was not yet known that a second OE#
would be needed. It was created by adding a daughter board
on the PCB with a single 74HC32. The second modification
was adding parallel RC networks on each of the four-bit
address inputs for addressing the register. Transient issues
were observed when multiple registers started to write at the
same time due to errant pulses on these lines. The Parallel
RC networks suppressed these and stopped the transient volt-
ages. The resistor and capacitor values are 1 M2 and 1 nF
respectively. One of these networks can be seen in Figure 5.

B. Board 2

1) Overview: The purpose of the FSM Clock and Reset
Board (Board 2) is to generate the clock signals, the logic
to switch between them, the reset signal, the control signals
for the registers and other items on the other boards, and
the timing signals used by the RAM chips. The control
signals for the rest of the boards are generated using the
outputs of flash memory chips, the SST39SFO10A [11] to be
exact. The reason that this design approach was taken was
to allow for the finite state machine that runs the computer
to be customizable. This proved to be a smart choice, as the
finite state machine logic stored in these chips was rewritten

TABLE III

ROMASM SPECIFICATION

Instruction Registers Format
Register to Register Ras — Ry MOV rA rY
Label to Register LABEL — Ry MOV LABEL rY
Immediate to Register imm — Ry MOV imm rY
Register to Memory R4 — M[RgB] STR 1B rA
Memory to Register M[RA] — Ry LDA rA rY
Bitwise OR Rs — Rp — Ry OR rA B rY
Bitwise NOT ~Ra — Ry INV rA rY
Bitwise AND Rjs & Rg — Ry AND rA B rY
Bitwise XOR Rz "Rp — Ry XOR rA 1B rY
Add RA + RB — Ry ADD rA 1B rY
Subtract Ras-Rp — Ry SUB rA 1B rY
Logical NOT 'Ry — Ry NOT rA rY
Logical Shift Right R4 >>1 — Ry SHR rA rY
Logical Shift Left Rj <<l — Ry SHL rA rY
Push R4 — Top stack PUSH rA
PC+2 — Top stack
Call Ra — PC CALL rA
Pop Top stack — Ry POP rY
Return Top stack — PC RET
Unconditional Jump Ry — PC JMP rA
Jump If Equal If (Rg ==0): Ry — PC JEZ rA 1B
Jump If Not Equal If (Rg !=0): R4 — PC JNZ rA 1B
Jump If Greater If (Rg >0): Ry — PC JGZ rA B
Jump If Less Than If (Rp <0): Ry — PC JLZ rA B

e

Fig. 2. Full Schematic of Register File Board

multiple times to compensate for problems discovered during
troubleshooting. The full circuit can be seen below in Figure
6. It is important to note that this circuit was made using
discrete gates rather than full chips. This was done to make
the schematic more intelligible. The schematic used to create
the PCB looks different but represents the same circuit. 1 nF
bypass capacitors are placed on the power rails of every chip

2) Clock Signals: The board creates five different clock
signals that can be selected using the rotary switch mounted
on the control panel. The speed options are 4 MHz, 400 Hz,

8 Hz, manually increment one full instruction, and manually
increment one sub-instruction. The 4 MHz and 400 Hz clock
signals were generated using a single SN74S124 oscillator
chip [12]. It contains 2 independent oscillators. The chip
requires a voltage present at the FC pin, a current through
the RNG pin and a capacitance across the two CX pins.
Unfortunately, the datasheet graphs for the voltage, current
and capacitance values did not match up completely with
the oscillation frequency. Different values were used until the
desired frequencies were obtained. The oscillator circuit can

=4]

ik gy |:

iz
4800-101-621LF N304
000000000 | | Epem—s

GRD

i

4

REGISTER LATCH

v
o

VarcsTa +3VC'

LEDZ
LED3
LEDA

H

o

REGISTER BUFFER
Uz 7aHcs VEDL GND

LEDS
o

LED
=

LEDT

ERTRTRT

1[:. 1l -0 |
OE1 VCC H
g AL OE2 1
7 2 R i
E 3 na v3 e %
= = 25 v [13
5 4 Aug 5 L 4
d A7 g L3 5
z < e w7 42 i 5
a ABcup e -
2, fee e 5
— ~ U4 45
E2 GRD 4HC573 +JV Z2, GND FROM OE= DECODER[>———1GND Hiicses —Jl—\'r?gn GND 3 -
— i —bol | il P . 1) | =2
= | Voo H L _Ube1 vec o
£ 2 1012 dar omfz—| &
3 20H= A2 Yip= § Wi
30 [A3 Ve i3 9 E
49 & A4 V3 =
3Q |3 = &5 Va5 11
6Q f2 Aae y5 [12
e 7Q p3 Har v [L3 I3
x 8g[12 a8 v7ps 14
w9cnp LE L rHenp ve I3
- el el =l ol =l =0 =181
(=] o (=] (=] (=] o (=] -
GRD AT ST Q‘ﬂ i Nl SR SR
ik g2
Qo
FROM_WE3_DECODER[»— L N304
FEHSIEEEED -4
GND
JP1 4609X-101-831LF

Fig. 3. Simplified Schematic of a

be seen below in Figure 7.

The 8 Hz oscillator was created using an NES555 timer chip
[13]. It was wired in a generic astable mode with the addition
of a 1N4148 diode to bypass the second resistor. The purpose
of this diode is to make the capacitor charge through one of
the resistors and discard through the other. Setting the values
of both resistors to the same value creates an oscillator with
a perfect 50% duty cycle. This signal is more pleasing to the
eye of the user. With this modification, the equation for the
oscillating frequency becomes

1

Jose = T334k

10 K resistors a 10 uF capacitor were chosen which yield
an oscillation frequency of 7.46 Hz. The schematic for this
oscillator can be seen below in Figure 8.

The oscillator sections for the two manually increment
models were a little more complicated to design as they
required their own finite state machine. The sub-FSM and sub-
sub-FSM counter needed to be used in this FSM. They will
be described in more detail later. The sub-sub-FSM counter is
a two-bit counter used to time the operations that happen in a
sub instruction. The sub-FSM counter is a four-bit counter that
is directly driven by the sub-sub-FSM counter. It is used to
keep track of the current sub instruction. In order to increment

Single Register in the Register File

through a sub-instruction, the FSM needs to start oscillating
when a button is pressed and stop oscillating when the sub-
sub-counter is 0b00. In order to increment though a full
instruction, the FSM needs to start oscillating when the button
is pressed and stop when both the sub-counter and sub-sub
counter are 0b0000 and 0b0O respectively. Instead of designing
two FSMs for each of these options, a single one was designed
with an input that is high when either the sub-sub counter
is 0b00 and increment one sub instruction is selected on the
rotary switch or both the sub-sub counter and the sub counter
are 0b00 and 0b0000 respectively. The logic for this part can
be seen below in Figure 9. “POSO0” is the position on the
rotary encoder that corresponds to manually increment one
sub instruction, it is active low.

The finite state machine was then developed using the one
zero signal. The finite state machine is a mealy machine
because it uses both current and stored values to determine
the next output state. It has one output. The output stays low
if the button is not pressed. Once the button is pressed, the
output will toggle until the zero input is high, signaling that it
has either reached the end of the instruction or sub instruction.
An artifact of this FSM is that if the button is held down, the
computer will increase forever until the button is released, it
will then finish the instruction that it is on. The frequency that

BU S EST - T Lul-.h—-,n

INTERMAL QUTPUT

[T ——
Lyl s b ety Y CEF

ADDRESS INPUT
TO BOARD

A
B
C
D

WE# DECODER QE= DECODER
5V Y
Yisis 3 L8, GND Yiisisa 3 £l, GND
v |22 e FL
volL vo |4
¥1 ¥1
¥2 :g: ¥2 :§:
VE] = yals
P = Lal, VHC
FFa VB % B Y& % ——_JoE=
c ¥7 c VT TO REGISTER
L 20| XN 20 EN
WE# INPUTS {5) © Y30 BUFFER OE# INPUT
TO BOARD vio vieHs
¥11 ¥11
WEInBjon yiz| 14 o1 yi2[is
WEZ# OE2 Y13 % OEZ Vi3 %
¥ia ¥ia
AOVES fﬁun ¥15 GND V15
MAND D
e
TOLEON 1npuT BUFFER
Ve enp REGISTER
o LATCH
0
1
3
3
4
5
&
5
£
w
g 5
@
-
g
9 =
10
11
12
13
+ 14
13
Gh
OE£ INPUTS D1134567 89MIINGAE
TO BOARD DATA BUS INTERFACE
OE14 ON THE BOARD
QE2=
Fig. 4. Simplified Register Control Circuitry Schematic
D Do i fRinisEsaERInaEAnaR this oscillation occurs at is 4 Hz. This was chosen so there is
enough to see everything that is happening as this is mostly a
RS I?‘;’,F feature for debugging. Another artifact is that the button needs
L L to be held down for at most a 4th of a second so the FSM

can see it and begin its cycle. The last artifact is that the finite
state machine will trigger if the sub counters are not zero even
if it is not on the manual setting. For instance, if the computer
is run at a different speed, paused, and switched to manual, it

Fig. 5. RC Network Used to Filter Address Lines

1 T T T

RO SATICH BOSITICNS: OTES,
& P suR P L THIS QUPFTUT CONNECTS TO ALL FLASHWES O THE REGISTERS
1 B INSTR 2 GENERAL WE S OUTIIT THAT CONKECTS 103 W€ () RIGISTERS
3 GENERAL OES 7 Foz

ek
e 4o 47
1 P SR

L O£ OUTRUT AND CES 08 Ran
LS FOR THE FULL S08D CRREAATCN AL G O 1 RMIRNC X0 M LA

S TR CORMECTIONS:

Boas

ALY
INCEEAINT

Fig. 6. Full Finite State Machine, Clock and Reset Board Schematic

5V
R23
k
+5V TBD
i
R22 GND
2k
1T +5V
GND

= 1RNG 2RNG 3
_’_T‘— 1cx1 20X2

C15 ——C16 1cx2 20x1

30PF | 5pF 1EN# 2EN#

v 2Y

4 MHz 0SCGND GND

FULL SPEED

Fig. 7. 4 MHz and 400 Hz Oscillators

will automatically start incrementing if the sub counter were
not at zero at the time the computer is paused.

To make the finite state machine, a 74HC74 Dual D-Latch
[14] was used to store the state and logic was used to realize
the transfer table. A 4 Hz oscillator was designed using an
NES5S5 [13] and the same equation used to design the 8 Hz

8 Hz
SV T

——

GND
+5V

+5V

R25
10k u1s
NE555

TRE VCC+
RES

8
4
Zipis OUTE—— JsHz

5
CON
2i1R1 GNDL

Fig. 8. 8 Hz Oscillator Schematic

oscillator. This circuit can be seen in Figure 10. “POS0”
and “POS1” are the two positions on the rotary encoder that
correspond to the two manual modes. The logic designed using
them flashes the LED indicator on the control panel when
clocking through manually.

1
Sub Sub Counter

Fig. 9. Zero Determination Logic Schematic

To switch between all of the clock signals, a 5-position
rotary switch is used. The common pin is grounded which each
of the position pins are pulled to 5 volts using a 1 k€ resistor.
To generate the signals used to select the different clocks, a
sophisticated SR latch circuit was designed. Physical switches
often introduce “bouncing” in a circuit. The metal contact
vibrates at the instant it is closing causing an undesired, short
series of pulses upon a transition. To prevent this, the circuit
was designed to latch the positions the instant that they are
reached. The basic principle is that the desired position on the
rotary switch sets its corresponding latch, this latch is then
reset by the positions on either side of it. For instance, the latch
for position 2 is set by position 2 and reset by either position
1 or 3. Positions on the edges require one reset (When at
position 0, it can only possibly turn to position 1 from there).
The positions 0 and 1 both correspond to the manual increment
modes. Since both connect the same clock source to the clock
input, they are combined and treated as one position as far as
this debouncing circuit is concerned. The SR latches used in
this circuit and the rest of the board are made from 2 NAND
gates in an arrangement shown in Figure 11. The main output
(Q) is active high (Q#) is active low and the reset and set
inputs are active low as well.

These were used to make the rotary switch selection circuit.
The outputs of the position latches than feed into AND gates.
The other input of the AND gates are connected to the
corresponding clock. These are all ORed together to create
a single clock output. This portion of the circuit can be seen
below in Figure 12.

3) Pause Handling: This “main clock” signal created in the
circuit above is connected to the input of a D latch. This D
latch is used to pause and un-pause the computer by latching
the clock when the pause button is pressed. The pause and
un-pause buttons are located on the control panel. There is
an indictor for pause on the control panel and the circuit
board. To make it easy to keep the computer in its reset
state upon startup, reset automatically pauses the computer.
Pressing pause sets the pause SR latch while pressing un-
pause, resets the latch. These SR latches are again designed
using the NAND gate SR latch in Figure 6. The Q of the Pause
SR latch is then connected to the LE input of the D latch. The
“Conditioned Clock” is the final clock signal that will be used
to drive the counter ICs. This portion of the circuit can be
seen below in Figure 13.

4) Reset Timing: The computer resets itself when it is
turned on and when the user presses the reset button on the
control panel. To create this reset signal when the computer

is powered on, an RC network is used to create an active
low signal. The capacitor voltage starts at 0 volts and charges
through the resistor until it reaches the high input level of the
logic gate. With a resistor value of 10 k{2 and 10 uF, this
reset signal takes 120 milliseconds to reach the high threshold
level of the logic gate family used. This pulse is then ANDed
with an active low button press to create a combined signal.
This active low reset signal “RESET# ” then connects to a
few latches on this board. It can be seen in Figures 5 and
8. This “RESET# ” is used to trigger two NES555 timers
[13] in monostable mode. The first one is the “WE DELAY”
which creates a one second pulse and the second is the “FSM
DELAY” which creates a two second pulse. The reason these
two timing signals are needed comes down to the latches used
in all of the registers. They level triggered, not edge triggered.
This means that the data that is latched into them needs to be
held at the inputs after the latch enable input is deactivated.
The data bus is pulled to ground using 4.7 k) resistors on
board 4. The FSM DELAY timer is an input to the FSM
flashes. When this input is high, the all of the output and
write enables of all of the registers are deactivated, meaning
that nothing is on the bus. The resistors pull the bus to ground.
The output of WE DELAY is inverted, then wired off the board
to the master writes on all registers in the computer. The delay
for the FSM is longer than the delay used to latch the registers
to ensure they all latch 0x0000 properly during a reset. The
reset and timing circuitry can be seen in Figure 14.

5) Timing Signals and Counters: The sub counter and the
sub-sub counter described in previous sections are generated
using two 4-bit binary counter ICs, the 74LS193 [15]. This
IC has a borrow and carry outputs that makes it easy to string
them together and create counters higher than 4 bits. The
carry output is connected to increment of the next chip and
the borrow output is connected to its decrement. This is how
the two 74L.S193s were connected in the circuit. When the
increment or decrement inputs on the chip are being used, the
other one needs to be pulled to Vcc. Because this counter is
only incrementing, the decrement input is permanently tied
to 5 volts. The counter has an active high clear, both are
connected to the FSM DELAY. The counter IC also offers 4
inputs for each bit. There is an active low load input as well.
When this load input is pulled low, the data on these inputs
is latched to the outputs. All of the data inputs on both chips
are pulled high to 5 volts. The load input is connected to one
of the FSM outputs, called SETSUB. The lowest order 2 bits
of this 8 bit counter are the sub-sub counter, the next 4 bits
are the sub-counter. The highest order 2 bits are unused. Since
not all instructions use the same amount of sub instructions,
there is a sub instruction called SETSUB. As a side note,
this output is inverted and wired to an output on the board, an
active high version is needed by board 5 to deal with hardware
interrupts. When it is activated, it loads Ob111111 to the
combined counter. This jumps the counter to the end, causing
the next clock pulse to take it to 0b000000, and therefore, the
next instruction. This is a way of terminating the instruction
after all of the sub instructions are done instead of having to

AND

: 12 AND
POSOIL > 12 1 12
POs1[>—L34 n
| L
S T ——<_JRESET# 5 2=
L b - ok
+3V —, C32 Wy
GND +V TBD e
r n ==
R32 =V i LS
0k U20 15V 1 +5V
NES55 SV w2
T4HCT4D MANUALLY
(N D 4 INCREMENT
{5 i &b
02 a3 | Lois out]2 dice * 2pfi2 R eMENT R385V
4148 220k 15D a2cpfid = 1k
CON 310 26p
2 E il]
TRI GND H1gs 20
L+ GND 2Q£[- =
30 GMND ManualClock
10 uF 1?5'1,: -._E - .
:I: " GRD GND 11
GND X ot Zero[>—33
GND GRD A o
C(12 4
Fig. 10. Manual Increment Finite State Machine Circuit
NAND shorter than the maximum clock frequency of the computer,
Set 1 5 but it still needs to be accounted for. This timing issue is
the reason behind the two-bit sub-sub clock. This creates four
different slots that be used to create this timing sequence. The
= NAND timing sequence can be seen below in Figure 15.
Q# WE is write enable, OE is output enable, and CE is chip
chetM

Fig. 11. SR Latch Circuit Using NAND Gates

wait for the counter to count past the unused sub-instruction
slots.

Each of the 6 bits are connected to LED indicators on the
board. These indicators (along with the main clock indicator)
have their cathodes tied to the collector of a 2N3904 transistor.
The base of this transistor is then controlled by the main LED
control switch on the control panel. This connects to all of the
other cathode transistors controlling all of the other LEDs on
the other boards.

Special timing routines need to be used when writing
and reading information to the selected SRAM chips, the
AS6C1008s [16]. Their wiring is exploring in more detail
when discussing their circuits, but the timing will be described
here. The AS6C1008 does not have separate input and output
signals, instead, IO pins that switch. The chip requires the
WE# pin be pulled low and a period of time elapse before the
CE# input be pulled low and data be present at the pins. Since
the IO pins of the chip are connected directly to the data bus,
this means the data cannot be present on the bus until a time
after the WE# input is pulled low. The period of time is much

enable. This timing sequence works for the write and output
enable inputs of the registers as well. The reason that they are
labeled with a 2 after the name is due to the way the FSM
selected the register of SRAM to use. Every device has two
WE# inputs and two OE# inputs. Both inputs must be low for
the desired operation to take place. The first ones (OE1# and
WEI1#) are connected to signals from the FSM flash chips.
This is way the FSM selects the devices needed for the sub-
instruction. The second set of inputs (OE2# and WE2#) are
controlled by the timing sequence seen in Figure 10. This
allows the timing sequence to control the devices selected by
the FSM. Each of the SRAM chips has two extra inputs (CE1#
and CE2#). CE1# is created on the board by ANDing its OE1#
and WEI1# . This reduces the number of outputs needed from
the FSM flash chips. This allows the chip to be enabled if it
is being written to or read from. Logic was used to generate
these timing signals from the two bits of the sub-sub counter.
The counter circuit and timing signal generating circuit can be
seen below in Figure 16.

6) Interrupt Handling Correction: The interrupt signal
generated on board 5 was initially a direct input to one of
the addresses of the flash chips. This caused errors when an
interrupt was triggered half way through an instruction. The
solution was to latch the state of the interrupt input at the
beginning of an instruction and use a control signal from the

POS 0BA

CLOCK SELECT
ROTARY SWITCH

PALISE

i

]

Main_Clock

Fig. 12.

Rotary Switch De-bounce and Clock Selection Circuitry

12

——(_JRESET#

AND

15

ut
13

R

PAUSE

Q#

OR

12

13

HAND

CLOCK D LATCH

Q

Fig. 13. Clock Pause Handling Circuit

“"'.-J LED22
PAUSE
INDICATOR

GND

GI

J2
EXT RESET LED

—]
L5V +5V
Js
WE DELAY WRITE RESET
R28="R27 =5V [+
uiT o
k>0 Hile. 2
& [vre voc+ o2
RE= |, Nano s g
Iy Sk
DIS OUT
Lz Al
. CON -2 =
TRI GND RS
i c24 820 =
+ = 100 nF
——=c5 E
“T100uF ND %
GND
_ L
GND GND
3V
FSM DELAY 2
R30 BV =
U1 =
2% nESss 53 i 5
& ltre wecs |8 RESET [N =
RES | S e
w
DS OUT Rg W
820 =
CoN 2
TRI ~ GND <
Cc2a7 o
+ 100 nF
—=C26 GRD] -
100 uF + GND
GND
GND

Fig. 14. Reset Timing Circuitry

Sub-Sub Counter 0b00 0b01 0b10 Ob11
WE2# High Low Low High
CE2# High High Low Low
OE2# High High Low Low

Fig. 15. Sub-Sub Counter Control Signals Timing Diagram

FSM to reset it at the end of the interrupt path. To accomplish
this, a 74HC74 D latch [14] was used. Its data bit is connected
to the incoming interrupt signal, its Q pin is connected to the
address bit of the flash. The clock pin is connected to logic
that triggers it when the sub-counter is 0b0000. The reset pin
is connected to INTRES, an active low signal created during
the troubleshooting process that is used to control timing
associated with the interrupt handling. This circuit can be seen
below in Figure 17.

7) Finite State Machine Flash Chip Lookup Table: The
finite state machines outputs are data locations store across
three flash chips. These chips are the SST39SFO010As [11].
They have 17 address inputs (A0-A16), and 8 outputs (DQO-
DQ7). They are programmed externally using a microcon-
troller and inserted into the circuit using 32 PDIP sockets.
This way, their WE, CE, OE can be wired to constant voltage
sources to make the chip always output data, making it act as

simple combinational logic. Only 12 address inputs are used,
the unused five (A12-A16) are wired to ground. The 12 used
addresses of the flash chips are all wired together so each chip
gets the same address. Each of the outputs of the three chips
(24 of them total) is assigned a specific control signal that are
sent to other parts of the computer. The programming of the
flash chips and the flow of the FSM is explored further in its
section. A summary of the inputs to the FSM flash chips can
be seen in Table IV.

TABLE IV
INPUTS TO THE FSM FLASH CHIPS

Signal Polarity Flash Chip Address
Sub Clock Bit 0 Active High A0
Sub Clock Bit 1 Active High Al
Sub Clock Bit 2 Active High A2
Sub Clock Bit 3 Active High A3
Opcode Bit 0 Active High Ad
Opcode Bit 1 Active High AS
Opcode Bit 2 Active High Ab
Opcode Bit 3 Active High A7
Interrupt Active High A8
Op2.0 Active High A9
Jump Active High Al10
Reset Active High All

+5 ‘V'E' C7 “Ei'

=V s GND
n SNT4LS193NE4
4 ShATeg Sub-Sub Counter
UP BO#
EN o co= —CJo
1
Lo dn Qh
SETSUB[> Tl E % Sub-Counter
FSM _DELAY RESET[> 2o Qo L(:JU
'
16 i 1
Conditioned_Clock[—>— vee GND'ﬂ;_ Eﬁ—j E D
i SR % N S S it S e Y 2
%% R W ' R ggl W e 4l
ad ag
5 SRT SRIBSRIASRIE op < R3I1SR29
e gl W g (0 R 3 g 11
W S
wn
+SVT czgl TBD - N - -
I " o3
oV um GND e
nl SNT4 S193NE4
LOADE
g DOWN GND
=2 3UP Bo::ji R24
CLR coz 1k
A qald
2 L
+
i0 E % ﬁ;: H2 2V
21D fojs] WS, LED CTRL
18 fvee GND-ﬁr
GND
Fig. 16. Sub Counter, Sub-Sub Counter, and Control Signal Timing Circuit

Sub-Counter

c9
+5Y 10nF -
I" — ¢ JINTRES
+5V GND BV ——< JINT_FROM_BOARD 5

U&a3
TAHCTAD c8 l_

d'ma# Ves 1; 100 nF GND
1D 2RD# (- NOT

3 12

1CP 20 {12 L
15D# 2CP 10 *
1Q 2sD#
10#¢ 20P————<JINT_TO_FLASH
GND 20# [

Fig. 17. Interrupt Latching Circuit

The four bits of the opcode come from the instruction
register on board 4. The signal “Op2.0” is described in more
detail in the section describing the instruction set architecture.
Jump comes from board 4 as well and is described in the
section on board 4. These are the 12 signals that the FSM

needs in order to determine what its outputs should be. The
outputs of the FSM flash chips are summarized below in Table
V.

The signals outlined in Table V, not already mentioned in
this section are explored in the section corresponding to their

TABLE V
FSM FLASH CHIP OUTPUTS

Signal Polarity Destination Board Flash IC Pin

PC OE1# Active Low 5 U2 DQ4

PC WEIl# Active Low 5 U2 DQ2
DIP OEl# Active Low 5 U2 DQ3
CSP++ Active Low 5 U3 DQ7
CSP- Active Low 5 U3 DQ6
PC++ Active Low 5 U3 DQO

PC- Active Low 5 U3 DQ5
INSTR OEl1# Active Low 5 U3 DQI
STACK OEl# Active Low 5 U3 DQ2
STACK WEI1# Active Low 5 U3 DQ4
MAR WEI1# Active Low 3 U2 DQ7
MEM RAM OEl1# Active Low 3 U2 DQO
MEM RAM WEI# Active Low 3 U2 DQ6
REG FILE OEl# Active Low 1 U2 DQ5
CCMP Active Low 4 U4 DQ3
INTRES Active Low 2.4 U3 DQ3
REG File WE1# Active Low 1 U2 DQI1
IR WE1# Active Low 4 U4 DQ7

PO WE1# Active Low 4 U4 DQO

Pl WEI# Active Low 4 U4 DQ6

IR MUX BIT 0 Active High 4 U4 DQ4
IR MUX BIT 1 Active High 4 U4 DQI1
ALU OE1# Active Low 4 U4 DQ5
SETSUB Active Low 2 U4 DQ2

board. These outputs connect directly to header pins on the
edge of the board for ease of wiring to other boards.

C. Board 3

1) Overview: The memory and mapped IO board contains
the memory SRAM, the mapped IO slots, and the memory
address register (MAR). It is referred to as board 3 in other
design sections. It uses the same SRAM chips as board 5 (the
AS6C1008s) [16]. The IO ports have 16 inputs and 16 outputs
each. They are addressed as the last four memory addresses;
0xFFFC, 0xFFFD, OxFFFE, and OxFFFF. The full schematic
of this board can be seen in Figure 18.

2) Memory Address Register (MAR): The MAR stores the
memory address used by the RAM to find the correct value.
It is identical in operation to the registers on board 1. Its
inputs connect directly to the bus and its outputs connect
directly to the address inputs of the SRAM chips. Since it
is always outputting to the memory RAM, it does not have
OE1# and OE2# signals. It’s circuitry can be seen in Figure
19. In addition to what is seen in Figure 2, it has a MWE#
which writes the register regardless of WE1# or WE2# .

3) Address Decoding: The circuit needs to be able to be
able to detect if the addresses being written to or read from
are in the SRAM or in the memory mapped IO slots (last 4
addresses). This is accomplished using combinational logic.
Since the last 4 addresses correspond to the lowest order
14 addresses being 1, (Ob11111111111111xx), if they are
all 1 then the address has to be in the memory mapped 10
section. Two signals are created, SELECT RAM and SELECT
MAPPED IO. These signals are both active low. The logic
used to create these signals can be seen below in Figure 20.
The schematic shows stand 2-input AND gates for simpicity

but 4-input AND gates were used in the real schematic and
the PCB, the 74LS21 [17].

4) Mapped 10 Port: The four mapped IO ports are iden-
tical. They resemble the other registers used in the computer,
the difference being they have an IO port instead of LEDs.
The output of the two 74HC573s [9] connect directly to
the IO port and function as outputs. The inputs of the two
74HCS541s [10] are pulled to ground through 4.7 kS) resistor
arrays. This ensures that the pins do not float when a device
is not plugged into them, These function as the inputs to the
computer. “Writing” to this memory address causes the value
to appear on the 16 output pins while “reading” from this
address stores the value of the 16 input pins. Because of this,
information “stored” in this address cannot be read from it.
Each of the 2x20 pin connectors is wired to the input and
output bits. Each connector also has a power and ground pin
as well as an interrupt pin. This pin is pulled to ground through
a 1 kX resistor. The four interrupts from the four 1O slots are
ORed together and this creates the INT IN signal used by
board 5. The schematic of the OXFFFF IO slot can be seen
below in Figure 21, the other three are identical.

5) Mapped 10 Port Control Signal Logic: Logic is required
to control the different write enables and read enables of the
different mapped 10O slots. Coming into the board, there are
five signals which match the convent seen elsewhere in the
computer: MEM WEI1# , MEM WE2# , MEM OE1# , MEM
OE2# , and FSM CE# . When the MAR holds an address value
that belongs to one of the 10 slots, logic further decodes that
and the input signals to determine which mapped IO port is
being selected and whether to write to it or read from it. This
portion of the circuit can be seen in Figure 22. The MWE#
input is used to write all of the IO ports at once during a reset.

OUTPUT 3

Fig. 18. Full Schematic of the Memory and Mapped 10 Board

6) Memory SRAM and Supporting Circuitry: The SRAM
chips chosen are the AS6C1008s [16]. They are 128k chips
with 17 address pins. Two are used as each only stores one byte
(8 bits). Because the computer is only capable of addressing
16 bits, the highest order bit on each chip (A16) is grounded.
The IO pins of the chips are connected to the corresponding
bits on the data bus. The address bits of the two chips are
connected to each other (i.e. chip 1 AO connected to chip 2
AO etc.). These pairs are then attached directly to the MAR.
The same timing procedure with WE, OE, and CE described
in the description of board 2 is used here. On top of the regular
timing logic, some needed to be designed to block the signals
from the SRAM when the memory mapped 1O ports are being

used. The SRAM chips and their supporting circuitry can be
seen in Figure 23.

D. Board 4

1) Arithmetic and Logic Unit (ALU): The ALU is the part
of the computer that does all of the arithmetic and logic
operations (hence the name “arithmetic and logic unit”). It
handles bitwise AND, NOT, OR, and XOR, as well as logical
NOT, logical shift right, addition, and subtraction. When one
or two parameters are loaded into the ‘“Parameter 0” and
“Parameter 17 registers at the bottom of the board and the
opcode is sent to the ALU, it immediately calculates the
correct answer and, when its output is enabled, places it onto
the data bus. The schematic for the ALU in Figure 24.

1 2 3 I 4 5
P18
4609X-101-821LF
)
|§ S |
“T T Tk R
a1
A INzE04 s
U3t L5028 LIPS o W e LS LS NS uze svcos -
rrosrs Vi OND VX EVKE AL AL AL AL AL Ap eV 6N GND
- o . = o o = = = o o . o .
i i St
L J20 g2 Ha2 vl CREM A0
2 30 30 a3 w2 MEN
H 3 Jsp agfS Jna w38 ;::\IE_\I'_-\J +—<_JLED CTRL | |
4 =50 5Q i3 2 A5 heqir p ‘{%F:\\i
5 8D B A6 %5 3
6:§——3| 7D 78 3 8.7 wefi2 | MEN]
7 28D agfs = a8 v [k)): MEM A6
] GND LE GND vB MENCAT
2 s] 1
o - =
= R = UZE 3V
it GND YHcsrs +3V %21 GND MAR GRD Yifcs. Y £28 GND
= P
Bl & . ~Hoe vee Ee—{—p DEL vee %I—{ [B
3] AT MEM A8
10 4% % : v2 [e
11 2 4p 4G W3 MEM_ALD
==l a5 o
8D &0 V5 1
£ 3 3
e r i B
| >—| GND LE L_‘ GND v8 MEMALS A
U1
OR Gate i r2
MAR._WEL#| 4 N Q2
N 2N3004
- MAR_WE# + -
GRD
JP1S4B09X-101-821LE
TITLE
MAR REV: 1.0
B Company: WAWA Sheet: 1/1
Date: 2024-10-30 Drawn By: Wolfgang Ploch
T 7 3 I 3 5
Fig. 19. Memory Address Register (MAR) Circuitry
T 7 3 I 3 I 5

REV: 1.0

Company: WAWA
Date:

Shest:
2024-10-30 Drawn By: Wolfgang Ploch
[5

1/1

| ES

Fig. 20. Logic Used to Create SELECT Outputs

We decided to make the ALU out of flash chips
(SST39SF010A) [11] instead of with logic gates because it
takes up less physical space on the printed circuit board. It
works like a lookup table, with the address bits as the inputs
and the data bits as the outputs. We had to use three chips
because we needed enough address (input) bits for two 16-bit
parameters and a 4-bit opcode, and since each SST39SFO10A
chip only has 17 address bits, we needed three chips to have
enough. Table VI shows which pins are used for what values

on each chip.

2) Instruction Register (IR): The instruction register stores,
in bitcode, the current instruction being executed by the
computer. Many things are taken from the instruction: the
four most significant bits of the instruction (bits 15-12) are
the opcode, bit 7 is the sub-opcode used for push and pop,
and the four least significant bits (bits 3-0) are used as flags
to determine which comparison to make in the jump-compare
instruction. Additionally, bits 11-8, 7-4, and 3-0 are used as
addresses to the register file to determine which registers to

JE11
4609X-AP1-4T2LF

OXFFFF

i By

— GND -
INPUT 4 ___taesn 3V EZL GND
1[* 1)
TE1 v Hl-
1040 a1 oeafl l
10471 2 a2 vips 0
10472 = A3 V2ig %]
1043 Aaz vas 2 2
10474 245 Wi 3
10475 fae vsid + g
1047 <47 Ve 3 i a
10477 s v7E E O
%%% GND» Y8 7
104 T0 = 26 457
104711 GND $3cser ™V ¢22 GND
1Bt —L%er veo B
104714 a1 oez i
104715 Hdaz vifd 3
A3 V2iE 9 4
A2z vapt 10 2
Sas vaps 11
5| A& Y33 12 '41
Sa7 ved TER=
5 48 V7 % 4 O
E‘GND VB is
GND
1
e e | oo
JP1HE08K-AP 14T2LF
Yiicsra ™3V 20 GRD P10
C—— 10 PORT 4
—4%e vec ’%—l——{ 0 -
0 = 1D 1952 30 Ci
1 320 2gpE % of
2 b agfe 5 o
3 240 4Qps 50 ol
1 S50 sgp2 1% O3
b] 5 6D 6053 30 Opx
6 570 TG 5o ole
7 15 80 8q 5T 50 0
o GND LE 52 G5
o o2l
o -4 1% 953
x uz3 - o
= GND Yficsrs +3VSI2 GND %g :
=< - 20]
a ~Uoe vec —L{Hl o o
8 410 1gp2 l %0 ol
3 Ja0 2Q[E 2 % SV
i 3 3o ot :
E=: 1 —
1 Hsp sgf2 ° ik GND
i 460 EQfE
iE—E u %
J
»—110 Gnp LE[L CND
= {__|INT_O=FFFF
GAD OUTPUT 4
TITLE:
(=FFFF_WE MAR REV: 1.0
Company: WAWA Sheet: 1/1

Date:

2024-10-30

)

Drawn By: Wolfgang Ploch
5

Fig. 21. Sample Memory Mapped 10 Port

TABLE VI

PIN TO VALUE MAPPING FOR THE ALU. GND MEANS THE PIN IS CONNECTED TO GROUND, NC MEANS THE PIN IS NOT CONNECTED.

Ul: Most significant U2: Middle U3: Least significant
Pins | Value Pins | Value Pins | Value
Al6-A13 Opcode Al16-A13 Opcode Al16-A13 Opcode
A12-A7 PO[15:10] A12-A9 P0[9:6] Al12-A7 PO[5:0]
A6-Al P1[15:10] A8-A5 P1[9:6] A6-Al P1[5:0]
A0 Carry in A4-A2 N/A (GND) A0 Borrow in
Al Borrow in
A0 Carry in
DQ7-DQ2 result[15:10] DQ7-DQ4 result[9:6] DQ7-DQ2 result[5:0]
DQ1 N/A (NC) DQ3-DQ2 N/A (NC) DQ1 N/A (NC)
DQO Borrow out DQI1 Borrow out DQO Carry out
DQO Carry out

1 I Z I 3 I) I
NAND
MEM_ADDE_AI[>-—el2 1 12 NAND 12 NAND
o OR o
MEM_WE14 5 “ o 13 | s 1 5 1
MEM WE2 3 5 2
) " 4 CR A
" 5 2 NAND NAND
MEM_OE | = BN ADDR o[> 22 NAND 12 : 12 :
SELECT MAPPED JO[>—— e '3 1 X L
MEM_MWE2[_>—
4 OR. 4 DR
NAND
} ! 13 0xFFFC_WE=
] OR 4 OR
NAND
) o ||| 5] ,
y 4 ' 0xFFFD_WE#
] OR 4 oR
B NAND B
' ! 12 0=FFFE_WE=
Z OR. 4 OR
NAND
5 2 J0xFFFF_OE# :D 2 12 S
12 0=FFFF_WE=
| TITLE: L
MAPPED 10 CONTROL LOGIC REV: 1.0
Company: WAWA Sheet: 1/1
Date: 2024-10-30 Drawn By: Wolfgang Ploch
1 | 2 | 3 | 4 I

Fig. 22. Mapped IO Port Control Signal Logic

read and write from. Because these signals and values are so
important, the IR always outputs its stored value, that is, its
output enable is always active. The opcode, sub-opcode, and
flags go directly to the control signals board as inputs to the
finite state machine. The three groupings of four bits used for
register addressing go through a multiplexer to the register
file. The control signals outputs “sell” and “sel0” are used
to determine which portion of the value stored in the IR is
used for the register file address: both low sends the first set
of four bits, 11-8 (labeled as “Ra” in the instruction set), sel0
high sends the second set, 7-4 (labeled as “Rb”), and sell high
sends the third set, 3-0 (labeled as “Ry”’). Both selO and sell
being high should never occur with our current control signals
design, but should this happen erroneously, or should the FSM
be changed to allow this to occur, the value 0 will be sent as
the address. This multiplexer allows the correct register to be
read or written to at the proper time.

3) Compare Logic: The compare logic uses the value on
the bus as well as the flags from the IR to tell the control
signals FSM whether or not to jump from a jump-compare
instruction. It can do four different comparisons: bus == 0,
bus != 0, bus ; 0, and bus ; 0. It computes all four at once,
then selects which result (1 for true, O for false) to store in
the D-latch at the end using the flags. Then the signal from
the D-latch goes straight to the FSM. A simplified schematic
for the compare logic is in Figure 26.

4) 7-Segment Hex Displays: The two sets of 7-segment
displays on the board show what is in the instruction register
and on the data bus. In a similar way to the ALU, they use
flash chips (SST39SF020A) [18] as lookup tables, this time
to convert the binary value on the data bus or in the IR to
the signals corresponding to the correct segments on each
display. The circuit also has a high-speed clock, a counter,
and a decoder to quickly cycle between the four digits. Only
one digit is on at a time, which lets us save on power and
flash chips (since we only have to send data to one digit at a
time as well, meaning we need fewer output pins), but because
the clock cycles between them so quickly, it is impossible for
your eyes to see the flickering, and it appears as though all
four are on at once. The schematic for the two displays is in
figure 2?.

E. Board 5

1) Overview: This board will be referred to as board 5. It
houses the stack and instruction RAM, the program counter
(PC), the stack pointer counter (CSP), the dip switches used
to set the interrupt handler location, the 40-pin programmer
interface, and interrupt handling logic. It receives it control
signals from board 2. The entire schematic can be seen in
Figure 27.

2) Program Counter: The PC is a 16-bit value that needs
to be able to be incremented, decremented, and loaded to. It
stores the current address of the instruction RAM. The ideal

cs
Ui 1nF GND
ASBC1008 >_| |_|||.

23

I
MEMORY ADDRESS REGISTER
[

MEM_WE1[>
MEM_WE22[>

25 fpsq

ALD

(=] et
TSP

2
2 o
2

=
o
DATA BUS

24 | pe=

MEM_OEI2 —e—2 of
MEM_OEZ# =

FEM_CE2[> -

uz
ASEC1008

23

ALD

SELECT_MEMORY_RAM[>

L35 Ip11

CJis

>
o
I

DATA BLS
=]

18
D4 12
Sqeit g 13
Dgs 2t 11

24 | pe=

<Ju

MEMORY RAM REV: 1.0

Company: WAWA Sheet: 1/1

Date: 2024-10-30 Drawn By: Wolfgang Ploch
I 5 I

Fig. 23. Memory RAM and Supporting Circuitry

chip to allow for this operation is the 74LS193 counter IC
[15]. A more detailed description of its operation can be found
in the counter section of the description of board 2. Four of
them are connected using the borrow and carry outputs to
create a 16-bit counter that can be incremented, decremented
and loaded to. The four data inputs on each chip are wired
to their respective line on the data bus. The clear inputs of
all the 74L.S193 are wired to an active high version of the
WE DELAY reset signal from board 2. The outputs of all the
counters are wired to the inputs of two 74HC541 8-bit buffers
[10]. These serve to buffer the outputs of the counter chips
so that they do not need to drive the input addresses of the

SRAM chips and the LEDs directly. Because the SRAM chips
used to store the instructions need the value of PC constantly,
these two buffers are constantly enabled. In addition, there are
two more 74HC541s whose inputs connect to the buffered PC
and whose outputs connect directly to the data bus. This is
to allow the value of PC to be placed on the data bus. When
pulling increment low to increment the counter, the decrement
input needs to be held high and vice versa. Because of this, the
PC++ and PC—control signals are treated as active low WE
inputs. The control signals associated with the PC are PC++,
PC-, PC OE, and PC WE. These signals conform to the stand
outlined in the timing section of the board 2 description. Each

Data Bus

°
Y N (= r Ly < O]
OPCODE
3
: =
0 +_;I>_V
T {_JEaluz
= U3 +5V
ssrasl‘js‘Fow:S“_ 55139L5QF010:3“- £S130570104 i
wi{nc vop}-32+4 weiinc vool 224 »nc vopiEd
Als WEz{2L als wE=f22 F|as WEH
3 1a15 Nci L31a15 Ncﬁ ﬁ%
41a12 a14f23Y 2la12 Arap2E Y S|al2 AN
A7 A13pe8 1] A7 Al3LE A 13055
vk I o 4 5=
e o e o i
21a3 os:-;g S1a3 oEt-% = Ag %Lm =
A2 AlD) L1015 1o Ao
ey o [P a7 ceel22 Al Ces
A0 DQ7| 21p0 DQ7| 00 D‘é(
2o DQs 21Dqo0 DQsf2d 2459 B
»4DpQ1 DQS! DQ1 DQS 21DQ2 D
5lpg2 DpQajL8 ¥23lpg2 pgaHE Vss D03
12 lvss DQ3 12 lyss DQ3JAEY
<3
[<
TED
TED TBD
B |
—]
G GND G
w I i = g k=
LY <t O (T2 A —
] o I I o |
Parameter 0 Parameter 1

Fig. 24. ALU schematic. A table of connections is provided below, as this schematic is difficult to read.

o [O] fiagss
o IOl fags2
o 3] fiagst

IO] ftagso

I p— Bus ==

|

EE— bus 1= 0

Jemp

bus < 0)
- L/

Data Bus |§| —- _'D
bus > 0)
|/

Fig. 25. A simplified schematic for the compare logic. The left side does the comparison, and the right side handles priority: flag3 has priority over flag2,
which has priority over 1, which has priority over 0. The D-latch is not pictured.

Instruction Register

Data Bus

LED Control

Digit Decoder

Fig. 26. The schematic for the hex displays. The circuitry at the bottom handles the digit cycling.

of these signals have to inputs (PC OEl# , PC OE2# , etc).
The only one that is slightly different is the PC WE2# |, it
is different from all of the other WE2# as it is only high
when the sub-sub counter is Ob10, not ObO1 and Ob10. This
is because the 74LS193s [15] had a weird output state when
they were being written to and nothing was on the bus. The
PC and supporting circuitry can be seen in Figure 28.

3) Stack Pointer Counter: The stack pointer counter is used
to store the current address of where the stack is pointing to.
Its output connects to the address of the stack SRAM chips and
nothing else. There is no need to jump to a specific location
inside the stack, so the CSP only needs to be able to decrement
and increment. Because of these requirements, it is exactly the
same as the PC except it does not have the second set of buffers
that connects it to the bus, and it does not have a WE input.
The CSP and associated circuitry can be seen in Figure 29.

4) Program Counter and Stack Pointer Counter LED Dis-
plays: The 16 bits of the PC and 16 bits of the CSP are
displayed by LEDs on the PCB arranged in the same way as
the registers on board 1. The LEDs are grouped into 8s, each
group connecting to an 8-820 2 resistor array. The common
pin of this array is connected to ground through a 2N3904
NPN transistor to turn on and off the LEDs. All of these are
linked to the main LED control switch on the control panel.
This portion of the circuit can be seen in Figure 30.

5) Dip-switches for Interrupt Jump Location: The com-
puter used the address stored in a set of dip-switches to
determine where to jump to when an interrupt occurs. This
is accomplished by connecting on side of the dip-switches to
5 volts and pulling the other side of each one down with a 4.7
kS (two 8-resistor arrays were used for 16 dip-switches). The
outputs of the switches are buffered by two 74HC541s [10].

Fig. 27. Full Schematic of the Stack and Instruction RAM Board (Board 5)

Their OE connect to DIP OE1# and DIP OE2# . The outputs
of the buffers connect to the bus. This circuit can be seen in
Figure 31.

6) Instruction SRAM: The SRAM chips used for the in-
struction and stack RAM in the computer are the AS6C1008s
[16]. The timing signals they require are discussed in the
section on board 2. The computer technically does not need
to have write access to the instruction RAM, the program is
written by an external programmer and the computer simply
reads it during operation. Write inputs to the instruction were
added and the mistake was not realized until the PCB was
designed. This was not a fatal error as these inputs were simply
pulled high and not used. They still appear in the schematic.
Two AS6C1008s had to be used as each only has 8 bits
of storage per location. The IO pins on both chips connect
directly to the data bus. 16 bits allows for the addressing of
64k memory. Only 32k and 128k versions of the chip were
able to be found. The 128k version was selected and MSB
of the address for both are connected to a switch on the
control panel. This allows the user to store two programs in the
computer at once and switch between them with the program
switch. The PC does not connect directly to the address pins of
the SRAM. It connects through a 1:2, 16-bit multiplexer that
switches between the PC and pins of the 2x20 female header

on the board. This multiplexer is made using four 74HC541
buffers [10] and some logic gates. There is a bit wired to the
connector that changes control of the address pins between
the PC and the programmer. The 2x20 female header also has
16 pins connected to the data bus. When the programmer is
plugged in and it sets the WRITE PROGRAM bit high, it has
control of the address pins of the SRAM as well as its WE and
CE inputs. It then sequentially writes instructions by putting
the instructions on the bus and incrementing the address bits.
There are protections against conflicts where two devices are
fighting for control of the bus. The WRITE PROGRAM input
will only allow the programmer access if the PC is 0x0000
and the sub-sub-counter is 0b00. This ensures that there is
nothing on the bus. The circuitry behind of this can be seen
in Figure 32.

7) Stack SRAM: The stack SRAM uses two of the
AS6C1008 chips [16] in the same arrangement as the instruc-
tion SRAM. Its circuitry is less complicated due to the fact
that the CSP is the only thing connected to the address pins
of the SRAM. The only supporting circuitry the stack SRAM
needs are the logic gates to handle the multiple output and
write enables and the logic to generate the local chip enable
signal. The stack SRAM circuitry can be seen in Figure 33.

PCOEL>
POOE2S -

[oR
. -1 Bl
PC-1 - =1
oR
oy [oz
‘.vq-?-C]?:SE.‘m:‘;?-‘s_:-ﬂ-‘.‘-:—n 2 - S}
LZl=
L v] .
inF % c11
i fi,n
=V Lod
HOTALE P Lo
TH) foTasR
Do . s I
e e hooun]
[=1.] AR Y e T T) -
» 4 CR CARRY 5
g mu b 2 151, SR T i
i b =rE o % o v [g
3 ns & 4 £ a0 | i BRETRE AN | W
Data Bus L g b G i ' 1 A3 2 RETr-A]
3 J cc GND) M oW e 5
-‘ — AS ¥ z
Data Bus] S : E
L=, = o | E
o ve INSTRAT |
- " =
T 5
@D B T8 ap L
|l ~Abes vee g 5
;[
=017 LD = PL?
e HOT4LS 1500 -5y T A3 =
M r HOTES TP AL m
1 il y
3 - RRCAY e 5 '"'b.-.n ? &
Tinn cameyid = m‘":it‘ o
al,” ol e %
=e 8 s o4 "2 + o
p = QT i B 8 3
:%—w & E e g o

T
et 111 [sl -
Cata Bus = Date Bus —a]vee GND
c10
‘t |w Y L.
i D &

Fig. 28. Program Counter and Associated Circuitry

8) Interrupt Handling: The creation of the initial interrupt
signal occurs on board 3. The interrupt inputs from the four
IO slots are ORed together, this is the INT IN signal on
board 5. The interrupt switch on the control panel disrupts
this connection from board 3 to board 5 to enable or disable
interrupts. To handle the interrupt correctly, the circuit needs
to latch the incoming pulse long enough for board 2 to detect
it. It also has to save the current value of CSP and disable
any further interrupts until CSP returns to the value saved.
Basically, it needs to disable interrupts from occurring until
the current interrupt has been dealt with. The program will
exit the function is pushed into the stack and it will return to
its value before the interrupt was triggered. The SR latch that
holds the initial triggering of the interrupt is called the primary
interrupt latch. This primary latch will reset when the FSM
sees the interrupt. The primary latch triggers a secondary latch
that stays latched until the computer is done dealing with the
interrupt function. This second latch blocks the first latch from
triggering again. To determine when the CSP has returned to
the starting value, two 74HC573s [9] are used. When there is
not interrupt, they pass the CSP from the inputs to the outputs.
The secondary latch latches the value of CSP on the inputs
when an interrupt is triggered. This stored value is compared
to the current value of CSP using logic and when there is

a match, this resets the secondary latch. There is a delay in
this comparison being able to reset the secondary latch as it
would constantly reset itself before the computer jumps to the
interrupt location. This is accomplished with logic before the
reset input of the SR latch. The primary and secondary SR
latches are also reset by the main computer reset signal. The
SR latches used in this circuit are composed of NAND gates.
The description of board 2 dives into these in more detail.
This portion of the circuit can be seen in Figure 34.

The comparison of the stack and the saved stack location
is done using XOR and OR gates. The SAME signal is
blocked from reseting the secondary latch until the primary
latch has been reset and the SETSUB signal is high. Once
the SETSUB signal is high and the primary latch has been
reset, the computer has already advanced PC to the interrupt
function and incremented CSP.

FE. Board 6

1) Overview: The entire Romulus I computer is powered by
5 volts. The maximum current draw is around 4 amps. A large
linear power supply with protection was designed to power the
computer. The power supply PCB was designed to be able to
handle 8 amps as a precaution. The entire Schematic of the

CEP++2

=V ez .
1nF RID =V o
I " 3 1: oo
i <) i i
HOTALS19IP s
=517 HOTALS 150P
1N LJ— LD
GORRON f=e Ao]
CARRY =i i, Bosrow Shi
1 Y
g-;‘l 15, anla trjﬁcsu-ﬁ\'?ﬂ oD
B e Ef =l
o S 2 v x| 3
GND—ﬁ—b G.\'D‘— 1 C PR] ShcEAll 2
@D VT GND M vipe TACE AL (]
+5V —t-8 A5 Y4 STACH A3 "
o AG Y5 STACK_Ad4 [=]
D A7 Y& S;{C_ﬁ 35
AB Y7 STACKAS i
GND VB | o
- - o
GND fihcsa Y $% D 5
of o [-%
I 4% vechii——) H
4A 082 = =
v] A2 ¥i STACK AL W
+ HOT4LS133P + wr '& :% %,A-;{i? rr
I =i : TACE Al
N LML A5 va sacal] B
- v o LD AS Y5 STACE AL =]
G4UP BORROW b + WM . A7 Y& STACE Al C
LiclR CARRY| = n.mwﬁ AB Y7 STACE A
m . an ARY GiD YA FACE-Al] B
] E: 8"'1 — Q- %
181c fara I Iy 0B 2 D
-3 oo s :EE SE % &D
LS Jvee GND)| o
F R (T ' GND
-+ =V cw -
D inF GND N &D 5oy
[o GND

Fig. 29. CSP and Associated Circuitry

Power Supply Board can be seen in Figure 35. This board will
be referred to as board 6 in other sections.

2) Power Regulation Design: A 24 VAC transformer with
a current capacity of 4 amps was sourced and selected to step
down the mains 120 VAC to a level that could be rectified.
This transformer is center tapped with two 24 VAC windings.
This means that two diodes can be used to rectify instead of
a full-bridge rectifier. The diode used were the 6A05 which
can handle a current flow of 6 amps. The rectified voltage is
then smoothed out with 10000 uF of capacitance. A small 4.7
kS bleeder resistor was added to dissipate the capacitors in an
absence of load. The rectified, unregulated voltage is referred
to as “VCC” in the schematic. A simplified schematic of this
section can be seen in Figure 36.

The rectified VCC is then used to create three different
supplies, a 5 volt rail used to power the SR latch (SUB 5V+), a
12 volt rail used to power the op amp and comparator (+12V)
and the main 5 volt rail used to power the computer (+5V).
To create SUB 5V+, a 7805 linear voltage regulator was used
to drop VCC down to 5 volts. This rail is not anticipated to
have a large current draw but a small heat sink is attached to
the regulator anyway for added protection. A 0.1 uF ceramic
capacitor and a 10 uF electrolytic capacitor were connected to

the input and output rails respectively. These protect against
AC voltage present on the lines. The +12V supply is identical
except for the replacement of the 7805 with a 7812. The main
+5V supply had to be designed slightly differently because the
7805 can only supply a maximum current of 1 amp. To solve
this problem, high-power 5 €2 resistor is placed between VCC
and the input pin of the register. A 2N5684 (50 Amp PNP
transistor) is then connected as follows: emitter to VCC, base
to junction of 5 €2 resistor and voltage regulator and collector
to output of voltage regulator. The circuit behaves like this,
under low current draw, there is a low voltage drop across the
resistor and the regulator provides most of the current. When a
large current is drawn, the voltage across the resistor increases,
pulling the base voltage of the 2N5684 lower causing it to
conduct and supply the needed current to the output. These
three supplies can be seen in Figure 37.

3) Over Current and Over Voltage Protection: Over voltage
and over current protection are implemented to protect the
computer. The over-voltage projection disconnections the +5V
rail from the output if the +5V rail exceeds 6.2 volts. To do
this, an LM339 [19] compares the +5V rail to a 6.2 reference
voltage created with a 6.2 volt Zener diode and a 4.7 kS)
resistor connection in series on the +12V rail. The comparator

CSP DISPLAY PC DISPLAY
STACK_AD - INSTR_AD S
ACK_ 7 oS NSTR_/ 7= 2o
. JP12 . JP16
SEACK-A1 4609X-101-821LF DSTR_AIS:?L 4609X-101-521LF
STACK A2 - —bgo INSTR_A2 i —0
ERNi D—_ﬁl__ao BEAE LEDS; _;38
LEDS, o
STACK_A3 D—H,ido INSTR_A3 o
LED3 —20 LEDS,
STACK_A4 D—gg_ ﬁ INSTR_A4 531:
LED o LE 4
i /o
STACK_AS o INSTR_AS D—I# o
LED3 a4 LE
" o
STACK_A6 e INSTR_A6
- [LED32, R2S 1ITL LED6 %
ACK_A7 INSTR_A7 [O—Pp——
GND
LED LEDS,
/i o
STACK_AS D—g— -~ INSTR_AS D——)L— r—
STACK A9 LEGe 4509X-101-821LF MY e 4609X-101-821LF
= LE —0 = LEDS —o
' I;;]
STACK_AIDS-:% o KSIR'AIUW 203«0
LED4, jg LEDS
Y o
STACK_All [N& 50 INSTR_All D_’hﬁ
% LED! gj
STACK_A12 S INSTR_A12 D—lﬁi —‘030
=) LED4d% %0
STACK_A13 + INSTR_AI3 H
LED4
’.‘
STACK Al4 a0 INSTR_Al4 D—‘—Agt—‘— s
STACK_A1S INSTR_A1S[(o——Pp—
GND GND

LED_CTRL[>

Fig. 30. PC and CSP LED Display Circuitry

pulls in the output low if the over-voltage condition is reached.
To detect an over-current condition, three 0.1 () resistors were
connected in parallel and then in series with the +5V rail
and the output to the computer. As current is draw from the
supply, a small voltage drop is created across these resistors.
This drop is then amplified with a differential amplifier with
a gain of 6.8. This differential amplifier is designed using the
LM358 dual op amp chip [20]. This signal is then put through
an RC low pass filter with a cutoff frequency of 3.39 Hz
to remove noise amplified from the supply line. This signal
is then compared to a reference voltage set using a 10 k)
potentiometer mounted to the board. The output of the LM339
is pulled low if the over-current condition is met. The outputs
of the LM339 are open collector meaning that they require a
pull up resistor but also that they can be connected together to
create an active low OR. This is done with the over-current and
over-voltage to produce one active low output that indicates
a fault has been reached. This combined output is pulled to
+5V with a 4.7 kS resistor. This sets an SR latch built using
NAND gates. The latch is reset by an RC network when the
power supply is turned on. An LED turns on when a fault is
detected and a relay is turned on with a 2N3904 to connect
+5V to the output when no fault is detected. This way, if a
fault is detected, the power supply has to be turned off and
back on again to reset itself. The schematic of the protection
circuitry described can be seen in Figure 38.

VII. TEST PLAN

While our test plan was perhaps not as rigorous as it could
have (or should have) been, it worked for our purposes. First,
we tested the register file board (board 1) on its own.

Wires were soldered to the data bus and the control signals
of the register. A circuit was built on a breadboard using two
74HC541 buffers [10] and 16 LEDs. The circuit allowed us to
simulate a bus to connect the bus of the register file to. The
control signals were then used to write 16-bit values to various
registers and read them using the LEDs on the breadboard. It
was confirmed that values could be written to and read from
the register file.

The power supply was tested next. The board was wired
to the external parts (the transformer, power resistor, ECG121
transistor etc.) and mounted on the case. The power wiring
to the wall outlet was also completed. The transistor was
originally soldering to the wrong pins creating an output
voltage of 7 volts. This triggered the over voltage protection
correctly and cut off the supply. This was not intended but
ended up being a good way of testing the over-voltage protect.
Once that problem was solved, the output showed a nice, clean
5 volts. The output was then shorted with a piece of wire to
test the over-current protection. The supply shut off correctly
which indicated that this feature was functional.

Board 2 was then tested. It was wired to power and the
switches and indicators on the control panel. The oscillators

]
LA
=

U248 oxs
1 7aHcs41+3V 25 GND
DIP_LSB v veckd i b DATA BUS
16| gy 1 a1 Oz '
L1l |ty B 422 vip 0
14 —am 3 A3 v2 (AL |
13 | = -2 Ad Y3 2
}% —mm g ;AS Y4 }3 3
T8 el i A5 Y5H3 ;«
p— A7 Y6
N fs— . Y y7 i 6
GND Y8 7
EE?MSE 27 +5V
= ; GND 7iticsa1 ™ $21 GND
15] e |2 DE1 vCC @T——H———b
14 o 2 [| a1 oE2fH
= | A2 Yl 17 8
i-;i == E l A3 i 9
Pl [I l Ad Y3 T 10
19 el | AS Y4 1
= | a6 yspd 12
a7 ve i 13
AS Y7 % 14
GND Y8 15
— GND
——<__|DIP QEl=
mo‘i:“o%%"b%’i mo%%%%’l DIP OE2%
JPs JP7 H10 1
4609M-101-472LF 4609M-101-472LF BiF OE#
- 1
GND GIND 2
J13
DIP OE2
—{1]

Fig. 31. Dipswitch Circuit Used to Set Interrupt Jump Location

were tested as well as the rotary switch circuit and the timing
signals the board created. There was initially a problem with
the rotary switch position connections due to an error in laying
out the silkscreen but this was solved. There was also an issue
with the FSM CE signal created due to it using the wrong bit of
the sub sub counter. This was solved by cutting the trace and
using a jumper wire. The finite state machine used to drive
the manually increment modes was also tested and worked
correctly.

After this, we decided it would be easiest to just put the
computer together and troubleshoot each board as issues came
up. The primary reason for this decision was that, if we wanted
to test any other board individually, we would have to have
used the Arduino Mega to simulate a data bus, something that
we felt was unnecessary. We felt safe with this course of action
because we were very confident in our designs, as we had
checked them all several times between several people, and
because each board was fairly independent, so if something
went wrong on one, it would be easy to pinpoint where the
issue was. These assumptions turned out to be true.

Our overall approach was to write small test programs of
only a few instructions to test each opcode individually. We
first tested to make sure we could write programs successfully.
We ran into two issues here. The first was that this display
for the instruction register had been wired incorrectly, so it

was not displaying the value that had been stored. This we
fixed in software by changing the data on the flash chips for
the 7-segment displays. The second was that bits 4 and 5 of
the instruction were always being set to 1. After some more
testing, we found that this was an issue with the Arduino Mega
we were using to write to instruction memory. We turned off
serial communication to the laptop on the Mega (since that
uses pins 4 and 5), which fixed the issue.

After those tests were completed, we moved on to test-
ing individual instructions. We first tested register-to-register
movement and immediate-to-register movement. We had to
fix a small software issue where the PC was not incrementing
twice during the load immediate instruction, but it otherwise
went smoothly.

We then checked all of the ALU operations: bitwise AND,
NOT, OR, and XOR, logical shift right and logical not, add,
and subtract. The only issues with these were (1) a faulty latch
on one of the parameter registers, and (2) a software fault in
the ALU flash chip data, both of which were simple fixes: we
replaced the latch and spent some time debugging the incorrect
ALU.

At this point, we also tested register-to-memory movement,
and memory-to-register movement, both of which worked just
fine. During our testing, however, we uncovered a wiring issue
with the program counter (since this was the first time we

ure
__ Taresn BV GND

=V
uit
PROGRAM SELECTOR SWITCH d
i
PROGSELECL >———

e vee
f-=1
: v
3w
3
6 Vs e A
7 v
i e I
ﬁ ND v =
D Um0 SV INSTRUCTION RAM oV ca GND
GND__ 7éhgsss T 712 GND w2 TnF GND
b RSbc1008 i
[o— —
OE2 10122 poi[H g
i % 1230010 g7l 7 1
251
e a1 A
A h1s
8 7 ~
f ND VB
GRD -
0
L 43 GxD & m
210 I Pilcsarss Ve
DATA BUS PROGRANMER INTERFACE “st—j— omm—) [sw =}
! it | ; 2
3 3 Pt g
3 T 3 — a
4 i e
c 5 5 oi2 5 g:HE 4 g
& B 6 I H
; i o : ’
5 Ba L s el
D Um
I ey e u i
g ES : - =
- L afber wee
Vg 255 oil | ;
L i 315 2 &0 U
=i GBE_ 23
—He g 0 62 o
R Réscion)
POSITIVE TRUE INPUTS FROM PRO f ;o ol — | s
WRITE_PROGRAM| - Q2| 10
-~ = & L 231210 og7fa g 15
o| NEGATICE TRUE INPUTS FROM PROGRAMMER) 0 Al f GND 9 Gxp L2 ass & 0
INSTR RAM WES[- [| | | +5 i A1g
INSTR_RAM_CEA[—> o 8
1
i Sra GD GND 5
HV 1k 1k i = w
H o Vec 22+ =] H
1 . " 3 a
INSTR_OB2| AND 4 S
FSM_CE e e
TNSTR_WEI#| 2
e 5 E|
INSTR_WE2#| 1
<Ju

NoT F

Register File (Simplified) Schematic REV: 1.0

[Company: wAWA [sheet: 1/1
|Dote: 2024-1030_Drawn &y Wolfgana Ploch
I 5

Fig. 32.

wrote a program longer than 16 instructions, and the issue
was on bits 4-7) that we fixed with a few extra wires.

The last four operations we had to test were push, pop,
unconditional jump, and conditional jump. There were once
again two issues here. The first problem was that we had
forgotten to put a latch on the output of the compare logic,
so we added a daughter board with a few chips to create a
latch matching the others on the board, with three write-enable
signals: one active-low master write NANDed with two ORed
active-low write signals, one from the control signals FSM
and one from the sub-sub-clock (used for timing signals to
prevent race conditions). The second problem was an FSM
design issue: on the “push PC” instruction, we should ave
been pushing PC+2, not the PC+1 that we were pushing. This
was easily fixed in software by changing the data on the FSM
flash chip.

Finally, we tested the peripheral slots. We created a little
makeshift input/output peripheral to test each slot. These tests
revealed many small issues, most of which were not recorded
because we were iterating so fast. After several hours of

Instruction SRAM, Programmer Interface, and Associated Circuitry

debugging, designing, testing, and iterating, we were able to
get the peripheral slots working.

Our very last step was to run a comprehensive test program.
It tested every instruction and stored a value in the last register
to indicate which instructions had worked and which hadn’t.
We had run the program throughout the testing process on
several occasions, but up until this point, it had not worked
properly. After fixing all of the bugs, however, the test program
worked perfectly on every clock speed setting.

The remainder of the figures from this section are below.

STACK ADDR

INSTRUCTION RAM
u72
ASEC1008

e T
i
5

ALD
Al

OE=

i1

D1

15

T

<o

Ui
ASEC1008

1nF

ALD

—=A11

i1

=V ¢33 oND

—

DATA BUS

g | 12
13
14

<Ju

DATA BUS

Register File (Simplified) Schematic

REV:

1.0

Company: WAWA

Sheet:

1/1

Date: 2024-10-30

3

Drawn By: Wolfgang Ploch
I

Fig. 33. Stack SRAM and Associated Circuitry

w7
STACK_ag[-2 xor OR Gate
13) 4

ra

R uzs
STACK Al A2 XRS5 OF Gate s
13) 4
SECONDARY LATCH STACK_as[12 x?? OR Gate [
13 4
5 nann g 2 u2e
2 STACK A3 M2 XOR 5 OF Gate
1 =) 11 a
L H
STACK_ad[>12) xon O cae
AND STACK ADDR Hifesrs VS en = & ’ 2
12 " R uz7
11| 13 p . %T—“——“l- STACK_AS[12 HOR_3 OF Ga
Q STACK_ A0 D 19 13 4
R NanD STACK Al ey 2Q g 5
STACKZA2 D 3G[E 12 %0R uz0 s
STACKTA3| 24D 4Qhs STACK_As[> 11 OF Gate B
STACK A4 1 1 N
STACK™AS) 5 50 6Q 175 I 2
STACK A6 g 7alE 12) U3t
STACE_AT| 5 80 QLT STACK AT » 11 OR Gae
lcup LE 3) 4
= 2
4 JINT_OUT = o ’
PF:MAR"’ LATEH D e VR e STACK As[2 x;’? . z
12 NAND T
2 Q e e B = = N o H
. STACK_AS| 5 1D 1o 17 XOR__S uzs
VTN STACK A9 3 gfE STACK 9[> 0% DR Gate uzz
STACE_A10| 3D 3qQ 13 4 NOT
e s 3 D
= 5D uz22
STACK Al3| Je0 &G STACK_Al0 2 xon OF Gate >
STACK Al4 370 79 13 4
INT_RES[> STACEAIS| et ’ N
*= R
RESET#[> sTack AN i L. N
c®D 13) 4
Ri 2
R STACK AL 2 0r . 3 ,
13) 4
- 2
= uz2s
GRD STACK A1 12 XOR3 , OF Gate
SETSUB[>) 4 H
==ACTIVE HIGH** V&R0 o , 2
STACK_Al[>12 x0R O Gae
13) 4
2
2o s))
STACK_ALS[>) o
13
D
TITLE:
INTERRUPT HANDLING REV: 1.0
|Cumpany: WAWA Sheet: 1/1 |
[Date: 2024-10-30 Drawn By: Wolfgang Ploch
1 I Z I 3 4 S I 6 I

Fig. 34. Interrupt Handling Circuitry

VCC

CUSTCM FOOTPRINT vee » SUB_S5V+
7E05(T0-220)

o VEC
BADS cusTom FooTRRINTVEC

TRANS_IN_ I >——
o2 A é

s 1 c2
TRANS N 20 & Iannuu 5000u

CUSTOM FOOTPRINT

TRANS_IN_COM| GRD GhD SV 45V
C8 ¢ SUB_3V+
SUB_SV+ +12V SUB_5V+ R
L—||——'| .

R18
5

CUSTOM FOOTPRINT —L¢qz
D.Au

c14 ¢i5
vee e v o o - = 1000u 10004
Tétaro-220) +2V Clkzan T 47k 47k v SUB SV
ﬂbuwz ouT/3 IR0
ouT/1 ouT/4 ! e GRD GND
e, ge : e
S - :
o7 —a S “INfa RO T L4 28: ResET
GRND GND I 1 +IN/2 -IN/3 L = El : 5V
l?l?m: GRD Hus Im" ,l: &> CUSTOM FOOTPRINT
X 8.2V = GRD
= 553 . GND
GND_ W GND RG Ri2
t12 +12V us 0.1 0.1
RELAY-2G50 &
U8.2
I LM358 =| L1V i 1
= TRIP FAULT IND. 1LLED1 LR T\{)
. a1 - (T IMAIN_OUTPUT
10k 3 CURRENT TRIP AD) i T CUSTOM FOOTRRINT
— ... GhD Hizaoe
2R
—licm
0
I TITLE:
oD Romulus I - Power Supply REvV: 1.0
Company: WAWA Sheet: 1/1
Date: 2024-10-1%9 Drawn By: Wolfgang Ploch
1 I 2 |] | 4 | 3 |

Fig. 35. Full Schematic of Power Supply Board

120 VAC 24 VAC
#ansform r E‘ADE Ve
Live[> 2 E' - MM ?] | T
2
Gm“ndD_‘ g E. BADS SéiHte R1
Neutral[> 5 1 ~ 5000u | 5000u 47k
i [iR i il
= = GND GND -
GND GND GND
Fig. 36. Transformer and Rectifier Portion of Power Supply Schematic
\tele . +12V vVCC . SUB 5V+
T812(TO-220) 7805(TO-220)
——2L 1IN OUT |2 Liin' outp2
GND GND + ca
——(h o === 5¥| A ': ‘ jﬂ]u
0.1u 0.1u
. GND b 28 GND T
GND GND GND
VCC
VCC
R16
5
111N
——C12
] 0.1u
GND

Fig. 37. Voltage Regulator Portion of the Power Supply Schematic

U4.1
LM330 =

6 >

TRIP FAULT INDICATOR

R14

Fig. 38. Protection Circuitry Portion of Power Supply Schematic

u1o
RELAY-2G5Q

2]
FR107

EKi

12
0.

Q1
2N3804

{_IMAIN_+5V_OUTPUT

VIII. PHYSICAL CONSTRAINTS
A. Design and Manufacturing Constraints

Because the project is intended for the educational market,
there were not many physical restraints placed on the project.
Size was not important as this is not meant to be a pocket
sized device. It just needs to be small enough for one person
to reasonably carry it which it is. There were also no restraints
on power consumption. This device did not need to be low
power as it is not portable and does not need a battery. There
were no CPU limitations as we designed the CPU ourselves so
we could do whatever we needed. For instance, we chose for
the stack RAM to be separate from the data RAM. This gives
the advantage of having 64k stack locations and the user not
being able over-right the stack by accident. This is usually
not a commercially available feature in CPUs but we could
implement it because we designed the CPU itself.

One limitation was PCB size. We ordered our PCBs from
JLCPCB and their maximum size they will manufacture is
15x19 inches. Our 6 PCBs exceed that in total combined area,
necessitating the circuit to be split among multiple PCBs

Part availability did constrain the project slightly. There
are a lot of 74XX series chips that would have suited our
circuits well that have unfortunately been discontinued. These
parts are simply obsolete today. We were only able to use
the 74LS154 decoder [21] because a group member had some
in his possession, they have been discontinued on all major
electronic part websites. Another part that was hard to find
was 64k SRAM chips, only 32k and 128k chips could be
found. This was used as a positive with the instruction RAM.
The extra memory space was leveraged to allow the computer
to store two programs simultaneously.

The time frame also constrained the project. While the
computer itself functions perfectly as intended, we ran out
of time to explore the peripherals we wanted to. For instance,
there was no time to design a driver for the 64x64 RGB LED
matrix intended to be used. The computer can function well
with the Ploch Teletype peripheral, it acts as a terminal.

B. Tools Used in the Project

1) Visual Studio 2022: Visual Studio 2022 was used to
write the C++ programs associated with the computer. The
simulator, assembler, and compiler were written in C++ using
VS. Programs to generate the hex files needed to program the
flash chips for the hexidecimal displays, finite state machine,
and arithmetic and logic unit were also written in C++ using
VS.

2) Digital: This software allows uses to drag and drop logic
circuit components and create circuits. These circuits can then
be tested with specific test cases or in an interactive mode.
This software was used to validate parts of the circuits that
were complex and in need of verification before manufacture
(finite state machines, counter, etc.).

3) Multisim: Multisim was used briefly in the design of the
power supply to verify the function of the differential amplifier
and a filter used in the circuit.

4) ANTLR: ANTLR is a toolchain used for generating
abstract syntax trees given a program, and a parser / lexer in
the form of a context-free grammar. This was used extensively
in the creation of romASM.

5) Arduino IDE and Arduino Mega: The Arduino Mega
was used to program the flash chips that contain the encoding
for the hexidecimal displays, the ALU and the FSM. This
micro-controller was chosen as it had the required amount of
digital pins to properly control the flash chips. It was also used
in addition to a custom made shield in order to program the
computer itself. Programs are uploaded to a micro-SD card
and then the serial monitor of the Arduino IDE is used to
transfer those programs to the computer via a 40-pin parallel
cable. The Arduino Mega controls the data bus and address
pins of the SRAM chip directly. This requires 35 digital pins
which is again why the Arduino Mega was chosen for this
task.

6) Notepad: The assembly or machine programs for the
computer are written in a text editor (Notepad in this case).
The machine code is directly uploaded to the computer while
the assembly files are compiled to the bit code using an
executable file and then uploaded to the computer.

7) Physical Tools: Tools used during the construction of
the device included, soldering iron, de-soldering iron, electric
drill, bandsaw, jigsaw, and a Dremel tool.

C. Cost Constraints

Extra funding from the ECE department was received early
in the design process prompting cost not to be an issue. There
was no opulent spending although money wasn’t paid much
attention to. Some factors in the price come from the scaling of
the device. Purchasing boards and components for the project
would be much cheaper as more units are produced in during
a run.

D. Producing a Production Version

To produce a production version, a supplier for the trans-
former used in the power supply as well as the current meter
would need to be found. These parts were found for free to use
for the project. The power supply in general would probably
be changed to a commercial supply due to the cost of the
parts involved and the inefficiency of the current design. A
simpler method would need to be established for connecting
the boards together. the current method involves a lot of labor
and could not be streamlined. The size of the device would
also need to be reduced as it is pretty unwieldy in the current
state.

IX. SOCIETAL IMPACT

Our project could have impacts on a few different areas of
society. The first impact, and the one we mainly intend, is on
the academic field. Our hope is that this project will be used
to teach college students how computers work in an physical,
visual, easy-to-understand way. We hope that this, in turn, will
help create better electrical and computer engineers who make
more effective designs in their fields of work.

It is also possible that is has a small impact on the
environment— if it ever becomes a mass-produced product
(which we do not have plans for at the moment, but will not
rule out), the computer does draw a considerable amount of
current, which consumes more power and, if enough devices
were to be sold, could have an impact on the environment.
We find this outcome incredibly unlikely, however, and while
we have not done any rigorous calculation, we believe that
the environmental impact of a large collection of Romulus
Is would be negligible compared to most major sources of
pollution.

X. EXTERNAL STANDARDS

There are many standards that we needed to comply with
when completing this assignment. One of the standards we
adhered to were the Federal Communication Commission’s
standards for unintentional radiators. Specifically, code 15.101
states that and that ”if a CPU board, power supply, or periph-
eral device will always be marketed with a specific personal
computer, it is not necessary to obtain a separate authorization
for that product provided the specific combination of personal
computer” [22]. This gave us a lot of flexibility when it came
to designing shielding and power circuitry, because our goal
is not to make independent components to market, but rather
to create the CPU as a whole.

Other standards we had to meet were the standards re-
garding safely isolating the power supply [23]. To meet this
standard, all the wall power we get is confined to an electrical
box, and the rest of our circuit is able to be displayed out
in the open, because it falls under the category of “Safety
Extra-Low Voltage” [23], and therefore do not require addi-
tional protection. This related to the Institute of Electrical
and Electronics Engineers’ (IEEE) Recommended Practice
for Powering and Grounding Electronic Equipment [24]. We
addressed this by implementing the over-voltage and over-
current protection circuitry as discussed in the description of
Board 6 above.

Another standard we followed when designing the boards
was Institute of Printed Circuits (IPC) Standard 2221 for
Printed Circuit Boards [25]. This gave us equations and plots
to use to calculate correct trace widths and separations for the
consistent results.

XI. INTELLECTUAL PROPERTY ISSUES

We believe that Romulus I is patentable. We looked at a
few patents potentially similar to our project to get a sense of
what inventions were in the space already.

The first patent we looked at was the Kenbak-1 personal
computer. It was created as a teaching tool, designed to help
students learn how to write simple programs [26]. The patent
has only one independent claim describing the specifications
of the device, and no dependent claims [27].

While this sounds similar to our own product, ours is
significantly different in a number of ways. First, the Kenbak-
1 is not at all transparent— it’s just a box with some buttons
and a few lights. Romulus I has displays and lights for many

different parts, making it more transparent. Our device also
has multiple clock speeds and the manual step option, neither
of which were in the Kenbak-1. It is also generally more
powerful, with a higher maximum clock speed and instructions
per second, more registers, more storage space, and more
operations [26].

The second patent we looked at was the Apple I computer
by Steve Wozniak. This was another, slightly more recent
personal computer with support for a screen and keyboard
[28]. The patent has two independent claims, both of which
focus on the technology used to connect to a video display,
and six dependent claims, which discuss individual parts of
the independent claims [29].

Our product is once again different for many of the same
reasons. Although the Apple 1 is just a PCB with chips on it,
so the user can see the entire circuit laid out, it is not designed
for readability and education, like ours is. It also again lacks
the adjustable clock speed and manual step option [28].

The last patent we looked at was a digital logic simulator
by Yifatch Tzori. There are four independent claims: One that
discusses the overall system, one that focuses on the hardware
with the logic chips in it, one involving specific algorithm
the software uses, and one that describes another, faster-
performing system. The 36 dependent claims again discuss
smaller systems contained within the full product [30].

This product is also significantly different from ours. It
cannot run actual programs, as it is a logic simulator, and
it is not specifically designed for education, like ours is.

XII. TIMELINE

Our original plan for our GANTT chart was generally split
1

into S8, as shown in Figures 39, 40, and 41 in the appendix.

The first % of the project involved much of the theoretical
work: designing the ISA, confirming control signals logic,
testing the feasibility of the design, and creating lower level
schematics for the different modules. Once the ISA has been
specified, we are able to parallelize operations. While some
of us worked on the hardware and schematics, others worked
on a simulator to test programs written for the CPU, as well
as the flash programming. As the core CPU PCB design
reaches its end, we planned to shift gears during the lead time.
The software team would begin work on an assembler and/or
compiler, and the hardware team would work on design of
peripherals. Towards the end of the project, we all planned to
work together on system-wide integration, testing, and tying
up any final loose ends. As a general guide, August and Austin
were given software projects, while Wolfgang and Will were
given hardware projects. We purposefully gave ourselves extra
time at the end, so that we could add additional time when we
inevitably took longer to complete a section than we planned.
The GANTT chart at the end of our project is shown in Figures
42, 43, and 44 in the appendix.

In the beginning, we generally followed the GANTT chart
closely, and did a good job staying on schedule. When we
reached the designs of the PCBs, however, we realized that
we did not allot enough time for all the complicated design

work. Therefore, we extended the time we took in this process,
however, since we decided to split up the boards, we were
able to work on different boards in different processes, so we
never had any dead time on the hardware side waiting for
all the boards to come in. Our test plan had slightly changed
since our original GANTT chart, so the testing process was
more spread out, and then concentrated at the end for system
testing. Another change we made, was the design for the power
circuitry. We originally thought it made the most since to
design it at the end when we knew how much current we
needed, however it made more sense to make it earlier, so we
could test it and use it to power our boards.

XIII. CoSsTS

This project required the use of many different components.
It also utilized parts that are not available anymore and parts
that were received from surplus locations for free. A detailed
spreadsheet of the part, source, quantity, individual cost when
ordering 1, 10, 25, 50, 100, 1000, 2500, 5000, 10000, and
25000 can be found in the Appendix in tables VII, VIII, IX
and X in the Appendix. Parts that have an asterisk (*) were
received for free and the costs are an estimate. Parts that are
marked with a double asterisk (**) are slightly different com-
patible models than the ones used in the project as some parts
were obsolete or could not be located. The "NA” locations in
the tables indicate that pricing data at the quantity was not
necessary for calculations. The dashes ”-” in the part number
are there to format the table correctly and do not actually
appear in the model number. The 6 boards are also included
in the spread sheet. The entry simply called “hardware” refers
to the wood, screws, junction box etc. that were purchased
from Lowes. None of these items could be scaled down with
quantity so they were grouped into one entry for convenience.
The table also includes the necessary components to make the
programmer for the computer, because one would likely need
to be included with every unit. The shield for programming the
flash chips is not included because this would likely be done
in the factory while assembling. The costs in the sheet neglect
the shipping costs of the items. The cost to manufacture one
device (Including shipping) was roughly $ 1000 excluding the
previously mentioned parts received for free. This cost also
includes the cost of five PCBs rather than an individual one as
the minimum order quantity was five. The estimated costs for
manufacturing one unit in a run of 100 and 10,000 neglect the
price of shipping. These values ended up being large due to the
amount of parts that did not need to be purchased in building
the one device. The price for producing one in a run of 100 was
$ 668.41. The price for producing one in a run of 10,000 was
$ 599.12. As expected, the price decreases when the number
of units in a run increases. The price of labor could not be
accounted for in this price which would likely be considerate
compared to the cost of the components. The manufacturing
of the boards would not be able to be streamlined using a pick
and place machine and reflow oven as all of the components
on the boards are through hole devices and those tools only
work for SMD components.

XIV. FINAL RESULT

The computer functions completely as we initially in-
tended. Programs can be uploaded in the bitcode we de-
signed via the programmer device, and they can be run
without errors. All sixteen opcodes work correctly: register-to-
register, immediate-to-register, register-to-memory, memory-
to-register, bitwise AND, NOT, OR, XOR, logical not, logical
shift right, add, subtract, push, pop, unconditional jump, and
conditional jump. All sixteen general purpose registers, the
memory address register, the two ALU parameter registers,
the program counter, and the stack counter all properly display
their values in binary through their LEDs. The data bus and
instruction register properly display their values in hex through
their 7-segment displays [31]. The clock can run at 8§ Hz, 400
Hz, 4 MHz, or it can be stepped one instruction or FSM state at
a time with a button. The program can be paused and resumed
at any time, and the computer can be reset to the beginning
of the program with another button. Finally, each of the four
peripheral slots can send and receive data, and the control
signals can handle an interrupt request from any of the four
slots.

The software also works as intended. The instruction set
architecture is Turing-complete. The simulator accurately pre-
dicts how the physical computer will act and displays the
data and stack RAMs for debugging purposes. The assembler
correctly implements a few extra instructions (logical shift left,
call, and return), labels, and correctly assembles a program
written in our assembly language to our bitcode.

We believe, according to the expectations outlines in our
project proposal, that our project deserves an A. We were able
to perfectly implement the CPU design we proposed, including
an assembler and working memory-mapped I/O peripheral
slots and some working peripherals.

XV. ENGINEERING INSIGHT

There were many new tools that we had to learn to use for
this project. For most of them, at least one team member had
used in it the past, so having them as a resource for learning
was very helpful. Some of these include ANTLR, Digital, and
Arduino just to name a few.

Working on this project really showed how having a clear
plan and outline, as well as good and open communication
with group members is very important to team success. In
projects for previous courses, they are usually small enough
or have enough assistance from the professor, that you do not
necessarily have to create a great plan to get it done, and you
did not even have to have the greatest communication between
group mates. However, for this project, us taking the time
to meet and discuss our plans and thought processes for the
project early in the semester helped get us on the same page
and kept us on track throughout the semester. Since we had
these discussions early on, we generally knew what to expect
and already divided up what we were going to plan on working
on for the project, so we did not end up facing many issues
with teamwork, communication, and morale. This, however, 1

believe proves how important setting a good foundation early
in the project was.

Advice I would pass onto a future capstone student would
first be to choose a project that your group will actually enjoy
working on. You will have a much easier time working on a
project you want to see come to completion rather than one
that is simply an assignment. Secondly, I would get started on
the project early on in the semester. We were able to work
on the bells and whistles of our project, because we started
meeting up early in the semester. A semester is a honestly a
short time to complete an entire capstone project, so make sure
to use all the time you are given. Lastly, as mentioned earlier,
meet with your group early to set expectations and discuss
how each member can best help the team, one another, and
how you plan on completing the project. The sooner everyone
is on the same page, the smoother the process will be.

XVI. FUTURE WORK

In designing, building and testing Romulus, there are of
course things that we wish we did, things we wish we didn’t
do, and tasks that fell through the cracks. In hindsight, we
would definitely rework how we handle interrupts. Currently,
the address of our ISR is specified by a DIP switch on the
board. If future iterations give access to the ISR address
programmatically, for example by binding it to a memory loca-
tion, there would be large benefits in terms of the adaptability
of the assembler. We also have no way to determine which port
triggered an interrupt, and must poll through each to find out
which. It would be more ideal to use another mapped location
to set bits to determine which port triggered the interrupt.
There is also lots of value in designing a compiler that rests
on top of the assembler, and allows the user to abstract away
the concepts of registers, jumps and memory management
altogether, giving a feasible top-down approach to learning
about computer architecture. We designed the syntax and most
of the operations for such a compiler, but were unable to
realize the full program due to time constraints. Lastly, we
think there is lots of value to implementing some form of
graphics, either using an LED matrix of sorts, or creating a
VGA driver peripheral, as this will expand the capabilities of
the computer dramatically.

REFERENCES

[1] H. Neemann, “hneemann/digital,” original-date:
2016-06-28T17:40:16Z. [Online]. Available:
https://github.com/hneemann/Digital

[2] Toy ISA simulator. [Online]. Available: https://researcher111.github.io/
uva-cso1-F23-DG/homework/files/toy-isa-sim.html

[3] B. Eater. Breadboard computer kits. [Online]. Available:
https://eater.net

[4] Texas Instruments, “Quadruple 2-input and gates,” 74HCO08 datasheet,
[Revised Sept. 2021].

[5] ——, “Quadruple 2-input nand gates,” sSNx4HCO0 datasheet, Dec.
1982 [Revised Aug. 2021].

[6] ——, “Quadruple 2-input or gates,” 74HC32 datasheet, [Revised Apr.
2021].

[7] ——, “Hex inverters,” 74HCO04 datasheet, [Revised Apr. 2021].

[8] ——, “Quadruple 2-input xor gates,” 74HC86 datasheet, [Revised Apr.
2021].

[9]
(10]
(11]
[12]

[13]
[14]

[15]
[16]
[17]
(18]
[19]

[20]
(21]

[22]

[23]

[24]

(25]

[26]

[27]

(28]

[29]

[30]

[31]

, “Octal transparent d-type latches with 3-state outputs,”
sNx4HC573A datasheet, Dec. 1982 [Revised Apr. 2022].

, “Octal buffers and line drivers with 3-state outputs,”
sNx4HC541 datasheet, Jan. 1996 [Revised May 2022].

Microchip Technology, “Ic flash 1mbit parallel 32dip,”
sST39SFO10A-70-4C-PHE datasheet, May 2022 [Revised Apr. 2016].
Texas Instruments, “Dual voltage controlled oscillators,” 745124
datasheet, [Revised Apr. 2004].

, “555 timer,” xx555 datasheet, [Revised Sept. 2014].

, “Dual d-type positive-edge-triggered flip-flops with clear and
preset,” sNx4HC74 datasheet, [Revised June 2021].

, “Synchronous 4-bit up/down counters (dual clock with clear),”
741.S193 datasheet, [Revised Mar. 1988].

Alliance Memory Inc., “128k x 8 bit low power cmos sram,”
aS6C1008 datasheet, [Revised Mar. 2000].

Texas Instruments, “Dual 4-input positive-and gates,” 74L.S21
datasheet, [Revised Mar. 1988].

Microchip, “Multi-purpose flash,” sST39SFO10A / SST39SF020A
datasheet, [Revised Apr. 2016].

Texas Instruments, “Comparator,” IM339 datasheet, [Revised Oct.
2023].

, “Dual op amp,” IM358 datasheet, [Revised Mar. 2022].
Fairchild Semiconductor, “4-line to 16-line decoder/demultiplexer,”
741.S154 datasheet, [Revised Mar. 2000].

Radio Frequency Devices. Federal Communications Commission
Title 47, Chapter 1, Subchapter A, Part 15, 2024.

Power supply safety standards, agencies, and marks. [Online].
Available: https://www.cui.com/catalog/resource/
power-supply-safety-standards-agencies-and-marks

R. Holleman, “IEEE recommended practice for powering and
grounding electronic equipment,” pp. 1-408, conference Name: IEEE
Std 1100-1999. [Online]. Available:
https://ieeexplore.ieee.org/document/798784/?arnumber=798784 &tag=1
“IPC-2221a(1).pdf.” [Online]. Available:
https://www-eng.Ibl.gov/~shuman/NEXT/CURRENT_DESIGN/TP/
MATERIALS/IPC-2221A(L).pdf

Kenbak-1 computer. [Online]. Available:
https://www.kenbak.com/kenbak- 1-home

L. D. Amdahl, G. M. Amdahl, H. L. Engel, E. J. Schneberger, and
J. V. Blankenbaker, “Stored logic computer,” patentus 3246 303A.
[Online]. Available: https://patents.google.com/patent/US3246303A/en
Apple i microcomputer. [Online]. Available:
https://americanhistory.si.edu/collections/object/nmah_1692121

S. G. Wozniak, “Microcomputer for use with video display,” patentus
4136 359A. [Online]. Available:
https://patents.google.com/patent/US4136359A/en

Y. Tzori, “Digital logic simulation/emulation system,” patentus

5748 875A. [Online]. Available:
https://patents.google.com/patent/US5748875A/en

Lite-On Electronics, “Display 7seg 0.39” sgl red 10dip,”
ITS-4802BJR-H1 datasheet.

XVII. APPENDIX

TABLE VII
COMPONENT, SOURCE, AND COSTS AT VARIOUS QUANTITIES PART 1

Part Source | Quantity | Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost
per 1 per 10 per 25 per 50 per per per per per per per
(USD) (USD) (USD) (USD) 100 500 1,000 2,500 5,000 10,000 25,000
(USD) (USD) (USD) (USD) (USD) (USD) (USD)
Board JLCPCB 1 27.48 NA NA NA 12.55 NA NA NA NA 10.84 NA
1 PCB
Board JLCPCB 1 8.04 NA NA NA 2.31 NA NA NA NA 1.80 NA
2 PCB
Board JLCPCB 1 8.38 NA NA NA 2.38 NA NA NA NA 1.87 NA
3 PCB
Board JLCPCB 1 11.60 NA NA NA 5.15 NA NA NA NA 4.29 NA
4 PCB
Board JLCPCB 1 10.56 NA NA NA 4.13 NA NA NA NA 3.38 NA
5 PCB
Board JLCPCB 1 2.10 NA NA NA 0.79 NA NA NA NA 0.55 NA
1 PCB
74HCO8 | Mouser 15 0.73 0.63 0.63 0.63 0.482 0.381 0.305 0.276 0.257 0.248 0.238
74HCO0 | Mouser 19 0.60 0.382 0.382 0.382 0.309 0.295 0.263 0.255 0.249 NA 0.248
74HCO04 | Mouser 4 0.73 0.63 0.63 0.63 0.482 0.381 0.305 0.276 0.257 0.248 0.238
74HC32 | Mouser 31 0.65 0.567 0.567 0.567 0.434 0.343 0.274 0.248 0.231 0.223 0.214
74HC86 | Mouser 5 0.97 0.861 0.861 0.861 0.671 0.554 0.504 0.347 0.347 0.347 0.347
74LS21 | Mouser 2 0.86 0.766 0.766 0.766 0.596 0.493 0.389 0.363 0.345 0.332 0.321
74LS193| Mouser 11 1.38 1.24 1.24 1.24 0.964 0.796 0.628 0.586 0.557 0.536 0.536
74HC541 Mouser 62 1.41 1.27 1.27 1.27 0.991 0.819 0.646 0.603 0.603 0.603 0.603
74HC573 Mouser 51 1.05 0.993 0.993 0.993 0.727 0.600 0.474 0.442 0.420 0.404 0.391
AS6C- | Mouser 6 5.11 4.34 4.34 4.34 434 3.99 3.84 3.71 3.70 3.70 3.70
1008
74LS154| Jameco 2 7.95 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25
SST39- | Mouser 6 2.89 2.89 2.79 2.79 2.79 2.69 2.69 2.69 2.69 2.69 2.69
SFO10A
SST39- | Mouser 2 3.36 3.36 3.26 3.26 2.26 3.09 3.09 3.09 3.09 3.09 3.09
SF020A
NE555 | Mouser 5 0.32 0.193 0.193 0.193 0.169 1.62 0.160 0.148 0.148 0.148 0.148
74S124 | Mouser 1 7.66 7.66 6.51 6.48 6.35 6.18 5.33 5.33 5.33 5.33 5.33
74HC74 | Mouser 2 0.96 0.86 0.86 0.86 0.671 0.554 0.437 0.408 0.388 0.373 0.361
LM358 | Mouser 1 0.800 0.481 0.481 0.481 0.481 0.410 0.381 0.381 0.369 0.369 0.369
LM339 | Mouser 1 0.88 0.533 0.533 0.533 0.335 0.251 0.224 0.190 0.190 0.149 0.143
1 nF Digikey 228 0.24 0.139 0.139 0.099 0.086 0.065 0.058 0.051 0.047 0.047 0.047
Capac-
itor
2N3904 | Digikey 52 0.100 0.056 0.056 0.056 0.038 0.029 0.025 0.022 0.020 0.019 0.016
1 kQ Digikey 79 0.160 0.078 0.078 0.051 0.044 0.031 0.027 0.027 0.021 0.019 0.017
Resis-
tor
4.7 kQ | Digikey 14 0.480 0.270 0.218 0.186 0.160 0.114 0.100 0.100 0.075 0.075 0.075
Resis-
tor
Array
820 Q2 | Mouser 42 0.430 0.316 0.254 0.188 0.188 0.118 0.085 0.085 0.085 0.085 0.085
Resis-
tor
Array

Red Digikey 354 0.300 0.167 0.167 0.167 0.102 0.077 0.069 0.063 0.063 0.052 0.052
LEDs

820 2 Digikey 18 0.250 0.128 0.128 0.086 0.074 0.054 0.048 0.048 0.038 0.035 0.035
Resis-

tor
10 £2 Digikey 4 0.100 0.033 0.024 0.014 0.014 0.014 0.014 0.014 0.010 0.009 0.008
Resis-

tor
20 k2 Digikey 3 0.100 0.078 0.054 0.032 0.022 0.013 0.013 0.013 0.011 0.009 0.008
Resis-

tor
2.2 k2 | Digikey 1 0.100 0.079 0.054 0.031 0.022 0.010 0.010 0.010 0.010 0.010 0.010

Resis-
tor

TABLE VIII
COMPONENT, SOURCE, AND COSTS AT VARIOUS QUANTITIES PART 2

Part Source | Quantity | Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost
per 1 per 10 per 25 per 50 per per per per per per per
(USD) (USD) (USD) (USD) 100 500 1,000 2,500 5,000 10,000 25,000
(USD) (USD) (USD) (USD) (USD) (USD) (USD)
100 nF | Digikey 10 0.240 0.136 0.136 0.096 0.084 0.063 0.057 0.050 0.046 0.046 0.046
Capac-
itor
10 uF Digikey 8 0.100 0.100 0.100 0.076 0.067 0.052 0.050 0.050 0.050 0.050 0.050
Capac-
itor
100 uF | Digikey 2 0.310 0.310 0.310 0.267 0.232 0.207 0.181 0.172 0.172 0.172 0.172
Capac-
itor
470 nF | Digikey 1 0.350 0.232 0.232 0.185 0.153 0.119 0.105 0.105 0.105 0.105 0.105
Capac-
itor
30 pF Digikey 1 0.720 0.437 0.437 0.323 0.288 0.228 0.209 0.189 0.177 0.177 0.177
Capac-
itor
5 pF Digikey 1 0.560 0.338 0.338 0.247 0.219 0.171 0.157 0.144 0.134 0.123 0.117
Capac-
itor
IN4148 | Digikey 3 0.100 0.055 0.055 0.055 0.034 0.024 0.021 0.018 0.016 0.014 0.014
15 k2 | Digikey 2 0.100 0.078 0.054 0.32 0.022 0.013 0.013 0.013 0.011 0.009 0.008
Resis-
tor
150 © | Digikey 14 0.100 0.045 0.031 0.020 0.017 0.013 0.013 0.013 0.010 0.008 0.008
Resis-
tor
4.7 kQ | Digikey 3 0.100 0.045 0.033 0.020 0.020 0.020 0.017 0.017 0.011 0.009 0.008
Resis-
tor
6.8 k2 | Digikey 2 0.100 0.078 0.054 0.032 0.022 0.013 0.013 0.011 0.009 0.008
Resis-
tor
6.2V Digikey 1 0.100 0.057 0.057 0.057 0.029 0.026 0.023 0.023 0.022 0.022 0.022
Zener
diode
1000 Digikey 1 0.530 0.327 0.327 0.242 0.215 0.169 0.154 0.193 0.129 0.129 0.113
uF Ca-
pacitor
LM7805| Digikey 2 1.74 1.279 1.279 1.103 1.103 0.970 0.934 0.906 0.876 0.856 0.856
LM7812| Digikey 1 1.74 1.279 1.279 1.103 1.103 0.970 0.934 0.906 0.876 0.856 0.856
6A04- Digikey 2 0.890 0.553 0.553 0.553 0.359 0.275 0.248 0.219 0.201 0.201 0.170
Diode
0.1Q Digikey 3 3.38 2.298 1.905 1.664 1.664 1.419 1.419 1.419 1.419 1.419 1.419
Chas-
sis
Resis-
tor**
5000 Digikey 2 7.690 5.315 5.315 4.354 4.354 3.680 3.495 3.342 3.196 3.196 3.196
uF
Capac-
itor**
10 k€2 | Digikey 1 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050
Poten-
tiome-
ter*
Trans- Generic 1 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000
former
40 Pin | Digikey 6 1.090 1.044 0.918 0.918 0.918 0.666 0.567 0.567 0.567 0.567 0.567
Con-
nector
12V Digikey 1 1.220 1.067 1.012 0.971 0.932 0.848 0.814 0.814 0.741 0.741 0.741
Re-
lay**

COMPONENT, SOURCE, AND COSTS AT VARIOUS QUANTITIES PART 3

TABLE IX

Part Source | Quantity | Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost
per 1 per 10 per 25 per 50 per per per per per per per
(USD) (USD) (USD) (USD) 100 500 1,000 2,500 5,000 10,000 25,000
(USD) (USD) (USD) (USD) (USD) (USD) (USD)
KSA1014{ Digikey 1 1.760 1.760 1.760 0.840 0.750 0.593 0.542 0.499 0.453 0.440 0.440
0YTU**
5Q Digikey 1 5.820 3.497 2.897 2.529 2.221 1.813 1.813 1.813 1.813 1.813 1.813
Chas-
sis
Resis-
tor
1 M | Digikey 4 0.100 0.035 0.028 0.020 0.017 0.013 0.013 0.013 0.010 0.009 0.009
Resis-
tor
7 Seg- | Digikey 8 1.310 0.817 0.817 0.817 0.565 0.466 0.436 0.405 0.405 0.376 0.365
ment
Dis-
play
32 Amazon 8 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344 0.344
PDIP
Socket**
8 Dip Digikey 2 2.960 2.960 2.227 2.089 2.089 1.780 1.665 1.557 1.424 1.328 1.328
Switch
Pack-
age
DC Electr- 1 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95 10.95
Cur- onix
rent Ex-
Gauge**| press
Rotary | Amazon 1 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09
Switch**#
Panel Amazon 4 1 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315
Mount
LED
Hold-
ers
Panel Parts 4 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250
Mount Ex-
Push press
But-
tons**
Panel Parts 3 1.340 1.340 1.340 1.340 1.340 1.340 1.340 1.340 1.340 1.340 1.340
Mount Ex-
Toggle press
Switchest*
Male Amazon 248 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
Header
Pins
Hardwarg Various 1 110.630 | 110.630 | 110.630 | 110.630 | 110.630 | 110.630 | 110.630 | 110.630 | 110.630 | 110.630 | 110.630
Heat West 1 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000
Sink** | Florida
Compo-
nents
PC Star 1 16.990 16.990 16.990 16.990 16.990 16.990 16.990 16.990 16.990 16.990 16.990
Fan** Tech
22 Amazon 2 19.990 19.990 19.990 19.990 19.990 19.990 19.990 19.990 19.990 19.990 19.990
AWG
Wire
Pack
EMI Digikey 1 9.540 7.783 7.783 6.951 6.539 5.854 5.506 5.313 5313 5313 5.313
Fil-
ter®*
Solder | Amazom 2 12.990 12.990 12.990 12.990 12.990 12.990 12.990 12.990 12.990 12.990 12.990
Reel
PCB Amazon 1 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990
Stand-
off
Pack
Arduino | Digikey 1 6.800 6.800 6.800 6.800 6.800 6.800 6.800 6.800 6.800 6.800 6.800
Mega
Shield

TABLE X
COMPONENT, SOURCE, AND COSTS AT VARIOUS QUANTITIES PART 4

Part Source | Quantity | Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost Cost
per 1 per 10 per 25 per 50 per per per per per per per
(USD) (USD) (USD) (USD) 100 500 1,000 2,500 5,000 10,000 25,000
(USD) (USD) (USD) (USD) (USD) (USD) (USD)
Arduino | Amazon 1 22.990 22.990 22.990 22.990 22.990 22.990 22.990 22.990 22.990 22.990 22.990
Mega
Compa-
tible
SD Amazon 1 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000
Card
Break
Out
Board
16 GB | Digikey 1 25.980 23.054 21.982 21.204 20.452 19.498 19.498 19.498 19.498 19.498 19.498
Micro
SD
Card**
USB Amazon 1 9.890 9.890 9.890 9.890 9.890 9.890 9.890 9.890 9.890 9.890 9.890
Type B
Ca-
ble**

Will Rimicci, Austin Chappell, Wolfgang Ploch, August Bresnaider
Project start date: August

ROMULUS-I 7 WM 213 M B[B9 20 2 22 23[24 25

Milestone description Assigned to Progress Start M Y SIM|T| W|T|F|[8/ s M T W

Confirm ALU Ops On Track Bizviz024
Confirm IS& On Track all 32024
Confirm PC Timing On Track All 312024
Confirm Control Signals Logic On Track All 312024
Code Simulator On Track August 91212024

‘Write Test Programs On Track Austin, Will 9isi2024

Generate High Level

Sehematio On Track Wolfgang 9/212024

Creste Low Level Schematic On Track All 9/212024
Design PCBI(s) On Track Austin, Will, \Wolfgang 312024
Order Parts On Track All 1312024
Design EEPROMProgrammer On Track Will, ‘Wolfgang 3iTi2024
Code EEPROM Programmer On Track August, Austin SHoiz024
Synthesize in Verilog On Track August, Wollgang 91912024
Teston FPGA Low Risk August 9512024
Draft Propozal High Risk All aH6t2024

‘Work on Poster High Risk 92012024

g. 39. The first section of our original GANTT chart

Will Rimicci, Austin Chappell, Wolfgang Ploch, August Bresnaider
Project stan date: 2 September

ROMULUS-I 8 9 W 1 R B|W B/ B W B 19 20[2 22232425 26 272829 30 1 oM R BWB B B9 20

Milestone description Assigned to Progress Start S| SIM[T|W|T[F[S|s[M[T|W|T|F[S|[S[M|T|W|T S| SIM|T|W[T[F[S[s[M[T[W[T s|s[M[T[W|T[F[s[S

Determine Language Syntax On Track August, Austin z 3imizoz4
Create ANTLR Grammar On Track August, Austin 74 Snziz024
Create ANTLRAST On Track August, Austin > 813/2024
Create Semantic Analyzer On Track August, Austin z 912512024
Create Code Generator On Track August, Austin 7 10122024
FabPCB On Track Wolfgang 7 312712024
TestPCB On Track August, Austin Z 101402024
Draft Midterm Design Review High Risk Al 7 1012024

Determine Peripherals On Track Al z 1012024

Low Level Peripheral

On Track Al z 101612024
Schematics

Fig. 40. The middle section of our original GANTT chart

Will Rimicci, Austin Chappell, Wolfgang Ploch, August Bresnaider

October

" 5T B

On Track

eripheral

= OnTi i 1011612024
Schematics

Wil, Wolfigang

Al

Fig. 41. The final section of our original GANTT chart

Austin Chappell, Wolfgang Ploch, August Bresn:
rt date: September October

ROMULUS-I

Milestone descrij Assigned to Progress

Fig. 42. The first section of our final GANTT chart

Will Rimicci, Austin Chappell, Wolfgang Ploch, August Bresnaider

November

Ordler Peripk

1 Per

pply

Upply

Fig. 43. The middle section of our final GANTT chart

October December

U R

Progress

Fig. 44. The final section of our final GANTT chart

