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Abstract

Stock trades now take place at unprecedented speeds. Aided by trading algorithms,

market professionals can now buy and sell securities within milliseconds. These algo-

rithms are capable of absorbing and then reacting to vast quantities of information,

such as price movement, literally in the time it takes to blink an eye. Given this high

speed, most trading algorithms do not take outside information, and in particular

market news, into account. That is, trading algorithms are designed only to absorb

endogenous data and thus tend to be deterministic. Furthermore, when provided with

a constant or predictable type of information, these algorithms will always perform

the same action.

To develop a model for incorporating variant trading algorithms, this study pro-

posed to recover a subset of automated trading strategies derived from trade-level

data. To determine the feasibility of this approach, we examined trading strategies

used by participants during the Fall 2009 University of Virginia McIntire School of

Commerce Hedge Fund Tournament. We determined that by using a variation of

recursive partitioning it was in fact possible to recover trading strategies employed

during the course of the tournament. This conclusion suggests that further research

is warranted and provides justification for expanding the study to include trading

strategies derived from real data.
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Chapter 1

Introduction

Financial markets are complex environments comprised of many interrelated factors,

including, perhaps most importantly, many different traders. Although these traders

may share the goal of increasing capital, they often have–at least in the short term–

partially independent objectives. Furthermore, even when traders seek to achieve the

same objectives, they often accomplish them in drastically different ways. Nonethe-

less, these traders are interacting with one another, since the the timing, volume,

and price of each individual trade ultimately affect the broader market environment.

These interactions of independent traders create the emergent properties known as

stylized facts [1]. There are three such emergent properties: (1) no auto correla-

tion of price returns, (2) auto correlation of absolute price change, and (3) aggregate

normality of price returns over long time frames [2, 3, 4].

The need is for a viable, comprehensive model that will take into account the

interactions of traders by reproducing these stylized facts. Such a model will help

academic theorists, industry professionals, and regulators better understand financial

markets. A comprehensive model will allow for identification of systemic risk, while

also providing a test bed for regulatory reforms [2, 5]. There have been, in fact, many
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Chapter 1. Introduction 2

different models that have reproduced these stylized facts; however, these models

have been confined to academic applications because industry and government agen-

cies have not found them reliable. This resistance has largely been due to the fact

that available models have not sought to explain individual behaviors, such as the

strategies employed by technical traders [2, 6, 7, 8, 3]. Instead, finance models have

focused on mimicking actions by fitting a probability distribution. Trading strategies

are not captured through this method–which means, for example, that regulators

cannot determine how a new regulation will affect an individual trader.

There are several reasons that financial models have been designed to follow prob-

ability distributions. First, in the past academics did not have access to traders

identities; all orders and trades were anonymous. This policy was in place as a means

of safeguarding privacy; it also prevented other traders (as well as academic theorists)

from reverse engineering any individual strategies. Moreover, up until recently orders

have traditionally been placed by people. People are not perfectly rational [9, 10, 11].

Therefore, it is hard to recover an individual traders strategy with any degree of ac-

curacy, because any such strategy will necessarily reflect human idiosyncracy and, in

some instances, error. Additionally, there is no guarantee that a person will use the

same strategy in all market conditions [12, 13, 14].

This thesis examines the question of whether it is possible to determine a decision

space relating to an individual trading strategy, such that there is a one-to-one rela-

tionship between a state and an action. Two key new factors have made determining a

decision space plausible. First, the Commodity and Futures Trading Commission has

changed its regulations so that identifying information regarding orders and trades is

now accessible to academic researchers. Additionally, algorithmic traders now account
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for 70% of the trades in equity markets and 35% in commodity markets. Algorithmic

traders are computers that trade autonomously [15, 16]. For the purposes of this

study, it is assumed that autonomous algorithms follow deterministic decision rules.

In other words, the algorithm will perform the same action given that the algorithm

finds itself in the same state. These two new factors increase the possibility of recov-

ering strategies used by a majority of market participants. To date, however, very

little research has been done in this area: this study aims to address that need by

exploring methods for reverse engineering trading strategies.

As a case study, this thesis will examine algorithmic trading data from the McIntire

School of Business Hedge Fund Tournament. The paper will provide a proof of

concept by determining the decision space of the winning team and reproducing it

in an out-of-sample test. The McIntire Hedge Fund Tournament is designed to teach

students about electronic trading platforms and portfolio management. Each team is

given a basket of stocks and options, which must be held for the full duration of the

tournament. Teams are also provided cash, which they use to hedge their positions.

The team that most closely follows a 1% annualized return over the entire tournament

wins.

The McIntire School trading tournament is an ideal test case because all algo-

rithms entered are deterministic in nature. Additionally, teams are limited to trading

a relatively low number of securities, the objectives of the teams are clear, and all

trades are captured with team identifiers. The challenge, however, is that teams may

use a variety of approaches to reach their objectives, complicating the task of recov-

ering individual team strategies. This thesis, then, is a feasibility study on whether

it is possible to identify a single trading strategy in an environment where there are
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a plethora of ways to reach the same objective.

The following two sections will provide a literature review of static and dynamic

trading and return replication techniques, respectively. The paper will then review

the machine-learning technique known as inverse reinforcement learning (IRL). IRL

was the first technique used by this researcher. However, limitations in IRL led the

researcher to use Recursive Partitioning. The methodology of recursive partitioning

is examined in Section 5. An empirical test and results section follows. In the results

section, both the testing procedure and results are presented. A more detailed ex-

planation of the hedge tournament can also be found in this section. The paper then

concludes with final thoughts.



Chapter 2

Trading and Return Replication: Static

Method

Hedge fund cloning is a research topic that focuses on mimicking returns seen by

hedge funds. The seminal paper on this subject was written by William Sharpe in

1992. Sharpe examined open-end mutual funds offered by Vanguard between 1985

and 1989. An open-end mutual fund is comprised of securities purchased with money

contributed by many investors. Mutual funds have a manager or managers who buy

and sell securities for the entire fund. These managers are mandated to meet or

exceed returns of asset classes [17]. An asset class is a grouping of the same type of

securities, such as corporate bonds. Below are the 12 asset classes Sharpe used in his

study:

1. Treasury Bills – Salomon Brothers’ 90-day Tresury bill index;

2. Intermediate-term Government Bonds - Lehman Brothers Intermediate-term

Government Bond Index

3. Long-term Government Bonds - Lehman Brothers Long-term Government Bond

5



Chapter 2. Trading and Return Replication: Static Method 6

Index

4. Corporate Bonds - Lehman Brothers Corporate Bond Index

5. Mortgage-Related Securities Lehman Brothers Mortgage-Backed Securities In-

dex

6. Large-Capitalization Value Stocks - Sharpe/BARRA Value Stock Index

7. Large-Capitalization Growth Stocks - Sharpe/BARRA Growth Stock Index

8. Medium-Capitalization Stocks - Sharpe/BARRA Medium Capitalization Stock

Index

9. Small-Capitalization Stock - Sharpe/BARRA Small Capitalization Stock Index

10. Non-U.S. Bonds - Salomon Brothers Non-U.S. Government Bond Index

11. European Stocks - FTA Euro-Pacific Ex Japan Index

12. Japanese Stocks - DTA Japan Index

Sharpes hypothesis was that a mutual fund’s return can largely be explained

by the average return of the asset classes to which the fund is exposed, and that

therefore the returns of mutual funds should depend more on their relative exposure

to a particular asset class and less on the specific securities they hold. To test this

hypothesis, Sharpe examined monthly returns of mutual funds and attempted to find

linear combinations of asset classes that best explained these returns. Below is the

linear regression equation Sharpe used:

Ri = [b1Fi1 + b2Fi2 + · · ·+ bnFin] + εi,
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where Ri represents the return estimated by the model for a specified month, F repre-

sents the return provided by each asset class during specified month, and b represents

the relative weight placed on each asset class. In other words, F1,1 represents the

return on investment seen by treasury bills in the first month of the data set, and

b1 is the relative exposure a particular mutual fund has to treasury bills. Using the

aforementioned equation, we can generate an estimate of the mutual fund’s return

for the first month in the data set (R1). Note that
n∑
j=1

bij = 1, for all i [17]. The term

εi represents the amount of return that is unexplained by this model. To determine

how effective the model is at explaining the behavior of a particular mutual fund over

several months, a coefficient of determination is calculated as

R2 = 1− V ar(εi)

V ar(Ri)
.

The closer to 1 the R2 is, the better the model represents the data seen. Sharpes

article shows results ranging from 92%-97%. In other words, Sharpes model was able

to explain the returns of individual mutual funds by determining the relative weight

of each asset class within each fund–that is, how much capital the fund invested in

each asset class. The mutual funds Sharpe examined implemented a buy–and–hold

strategy and were limited to little or no leverage. Given these parameters, Sharpes

study clearly illustrates that the differences in the returns of mutual funds can be

explained by the different weights each fund places on individual asset classes. This

is easily demonstrated in Sharpes regression analysis [17]. However, other investment

vehicles such as hedge funds are not bound by these restrictions [18]: hedge funds

are able to carry leverage and can use a more dynamic trading strategy. As a result,

Sharpes regression analysis does not work for these institutions [17].
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In 1997, William Fung and David Hsieh revised Sharpes regression technique so

that it was better suited for more dynamic trading strategies [18]. Fung and Hsieh

took into account three critical additional factors: asset class (F), trading strategy,

and leverage (w). Asset class, as in Sharpes paper, was defined as a grouping of the

same type of securities. Trading strategy factored in whether the manager was long

or short on the asset. Leverage refered to the quantity of the asset held. Leverage can

be thought of as the weight placed on an asset, as in Sharpes paper. The one major

difference, however, is that in Fung and Hsiehs model leverage was not constrained

to sum to one but could range from - infinity to + infinity. Fung and Hsiehs model

is as follows [18]:

Rt =
N∑
k=1

WktFkt + εt.

The advantage of this model is that it is more sensitive to trading techniques. It

allows for w = −1, in the event of a hedge fund is shorting one contract, or w = 2,

in the event that the hedge fund is long on two contracts. As in Sharpes study, this

model was run over several months and a regression analysis was applied, resulting in a

median coefficient of a determinant of 25%. The results are significantly lower than in

Sharpes mutual fund analysis. Fung and Hsieh concluded that the dynamic strategies

employed by hedge funds lower the ability of linear models to explain monthly returns

[18]. Hedge funds change their portfolio allocation several times in a month, which is

obscured in monthly returns.

Through the use of principal components, Fung and Hsieh discovered five general

classes of hedge fund trading styles:

1. Systems/Opportunistic - technical driven traders, who also make bets on market

events
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2. Global/Macro - traders who only participate in the most liquid markets in the

world (i.e., currencies and government bonds)

3. Value - traders who buy securities that are perceived to undervalued

4. Systems/Trend Following - technical driven traders, who tend to follow overall

trend of the market

5. Distressed - traders who invest in companies near or recently emerging from

bankruptcy

Fung and Hsieh attributed only 43% of the monthly return variances to these

five trading styles [18]. However, even though these trading styles explain only a

segment of the monthly return variances, they do suggest several key conclusions.

For example, hedge funds that specialize in buying securities of companies that are

undervalued are very sensitive to changes in the U.S. equity market.

In 1997, Brown and Goetzmann [19] classified Morningstar mutual funds into

trading styles based on monthly returns. Unlike Fung and Hsiehs classifications,

however, Brown and Goetzmanns study did not assume a linear model. As Fung

and Hsieh illustrated, a linear models predictive power degrades if the mutual fund

has a dynamic strategy. To better model dynamic strategies, Brown and Goetzmann

allowed the weights on asset classes to vary through time. Their model is illustrated

below:

Ri = [bt1Ft1 + bt2Fi2 + · · ·+ bTnFin] + b0 + εi.

Brown and Goetzmann used a regression model identical to Sharpes model except

bi1 is allowed to change through time. If we assume the asset classes are the same as

the Sharpe model, bi1 represents the fund’s exposure to treasury bills during the first
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month in the data set. Additionally, b0 is a constant that is specific to each strategy.

To estimate bin and to classify the mutual funds into groups, the following procedure

was run:

1. Specify the number of trading style classes (K)

2. Specify the time period of classification (T)

3. Specify the number of trading funds (N)

4. for all combinations N funds divded into K classes complete the followng calcu-

lation:

R̄′t =
N∑
i=1

Rit

var(Rit − R̄t)
sumN

i=1var(Rit − R̄t)

5. Select combination that provides:

min
K∑
j=1

T∑
t=1

N∑
i=1

(Rti − R̄′tj)2

for all funds (i) in class (j)

6. Run regression one each class treating individual months as independent data

sets, estimate bTn for each.

Brown and Goetzmann were able to derive trading styles and state meaningful

interpretations of the results. For example, a trading classed named “Global Timing”

dynamically increases and decreases its exposure to the U.S. market [19]. However,

Brown and Goetzmanns method did not improve upon Fung and Hsiehs principal

component method, explaining only 37% of the monthly return variation.

Using different hedge fund data, Brian Liang performed the same regression model

that Fung and Hsieh developed. Langs findings were consistent with Fung and Hsiehs
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results. However, he interpretedB0, also known as the intercept term, as the managers

contribution to the returns [20]. Liang found that the intercept term contributes

between –5% and 1% for each asset group. In other words, hedge fund managers on

average provide only a marginal improvement, if any, over asset class returns.

In 2007, Hasanhodzic and Lo developed a regression model similar to Fung and

Hsiehs model. The only significant difference is that Hasanhodzic and Lo limited their

regression model to five asset classes, each of which had exchange traded fund (ETF)

counterparts. The goal of this analysis was to provide linear combinations of ETFs

that the average investor could use to gain returns similar to those of hedge funds.

Additionally, Hasanhodzic and Lo claimed this approach would prevent the overfitting

seen in Fung and Hsiehs principal component/regression approach. Overfitting occurs

when a model excels in a training phase but performs poorly in out of sample test.

The five ETF classes used in this regression model are as follows [21]:

1. US Dollar Index

2. BOND: Lehman Corporate AA Intermediate Bond Index

3. CREDIT: Lehman BAA Corporate Bond Index

4. S&P 500 index

5. Goldman Sachs Commodity Index

Using a 24-month rolling window to avoid a look-ahead bias, Hasanhodzic and Lo

illustrated that they were able to develop a linear combination ETF strategy that had

higher returns than the market. However, the linear clones did not perform as well as

the hedge fund counterparts [21]. This conclusion again reinforces Fung and Hsiehs
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finding that the dynamics of hedge fund strategies are obscured by the aggregation

of data into monthly returns.

Merrill Lynch (Merrill Lynch Factor Index) and Goldman Sachs (Absolute Return

Tracker Index) have both created indices that are supposed to mimic hedge fund

returns. In 2010, Meyfredi et al., spurred on by these hedge fund replication indices,

applied Kalman filtering to their own hedge fund replication. Kalman filtering uses a

regression equation similar to Brown and Goetzmanns. The significant difference is

that Kalman filtering requires at each time step, Bt (weight placed on the asset class)

is estimate from Bt−1 using a transition matrix. Therefore, not only does B have

to be estimated the transition matrix A also has to be estimated. In the equation

developed by Meyfredi et al., n and ε are normally distributed error terms with mean

equal to 0 [22]:

Bt = ABt−1 + nt

Rt = B′tF + εt.

Kalman Filter model gives the best R2 value ranging from [62%, 80%] when the

nonlinear models are applied to the same 24-month rolling window employed by

Hasanhodzic and Lo. This indicates that the Kalman filter is capable of recovering a

larger amount of the dynamic hedge fund trading strategy. However, when applied to

out-of-sample data, the Kalman filter provided an average annualized excess return

of 0.04, which is significantly lower than the returns of the original hedge funds [22].

Excess returns are returns that exceed a market benchmark, such as the S&P 500.

This indicates either that the Kalman filter overfit the data or that hedge funds do

not carry out the same strategy from month to month.
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As the preceding review suggests, for the past two decades, academics, individuals,

and institutions have tried to reverse engineer successful strategies. By mimicking

these strategies, investors can achieve similar returns without incurring the upfront

cost of research. Recently, subscription services have begun to offer investors the

opportunity to pay for the privilege of automatically having their accounts mimic

successful traders. This has allowed subscribers to see all of the trades associated

with a profitable trading strategy. The proposed methodology in this thesis can be

applied to the subscription service data with the hopes of better understanding real-

world trading strategies. The next section will discuss some of these techniques in

greater detail.



Chapter 3

Trading and Retrun Replication:

Dynamics Methods

Long-term securities, such as stocks, can be used to replicate complex instruments.

The original example is when the purchase of a stock through riskless borrowing is

used to replicate the payoff curve of an option on said stock. If volatility is known,

the Black-Scholes formula can be used to exactly replicate an option.

An option gives the holder the right but not the obligation to buy (call option)

or sell (put option) a stock at a specified price (K). The duplication of an option

price is a simple form of trading strategy replication. To replicate the strategy, the

Black-Scholes formula is used to calculate Delta (∆). Delta measures the option price

change when the underlying stock increases by one dollar. The formula for delta is

given below:

d1 =
ln( S

K
) + (r − δ + .5σ2)t

σ
√
t

,

∆Call = e−δTN(d1),

14
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∆Put = e−δTN(d1)− 1.

Using the current price of the stock (S), volatility of the stock (σ), the dividends

the stock pays (δ), the strike price of the option (K), and the time till the option

expires (t) a relationship between the option price movement and the stock price

movement can be established. The function N(x) is the cumulative standard normal

distribution function; it gives the probability that a number randomly drawn from

a standard normal distribution falls below x [23]. If ∆ and σ are assumed to be

constant, it becomes trivial to calculate the payoff curve of an option:

Buy ∆ amount of stocks,

Borrow Ke−rtN(d1 − σ
√
t) amount of cash.

The problem with the Black-Scholes approach is that ∆ changes as the stock price

changes. Therefore, delta must be recalculated at every time step, and a dynamic

strategy of buying and selling the stock must be used to replicate the option. Dynamic

replication of options is a branch of research that seeks to determine the optimal way

of replicating an option payoff curve. When simplifying assumptions–such as σ is

constant and the market is always open–are removed, the problem becomes nontrivial.

In fact, perfect replications are impossible in real-world markets [24].

Assume you are given an option with a payoff curve of F(PT , ZT ), where PT is

the price of the underlying asset at time T and ZT is a vector of state variable which

dictate the value off the option at time T. The value of the option does not correlate

perfectly to PT , thus making the stated dynamic strategy no longer optimal. For

specific examples where the aforementioned correlation is not exact, see Bertismas

et al. The objective of dynamic replication is to find a combination of stock shares

and borrowed cash to minE[VT − F (PT , ZT )]2. In other words, the objective is to
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minimize the square difference between the portfolio value (VT ) and the option value

at time T. Therefore, a measure of how close the options payoff curve is replicated is

the squared error, as shown in the following equation:

ε =
√
MinθTE[(VT − F (PT , ZT ))2].

Bertismas et al. impose the constraint that the portfolio be self-financed. Aside

from the initial capital necessary to establish the first position, all changes in cash

(B) being borrowed and stocks (θ)being held must be financed by the buying and

selling of stocks. The equation below illustrates the constraint:

Pti+1
(θti1 − θti) +Bti+1

−Bti = 0,

Which implies:

Vti+1
− Vti = θti1 (Pti+1

− Pti).

Assuming that the expected return divided by variance for any period is bounded,

there exists an optimal replication strategy that gives the lowest possible ε [24]. Dy-

namic programing is used to work backward from the terminal payoff states, thereby

identifying the optimal strategy. Kat and Palaro extend this process to replicating a

fund of funds [25]. A fund of funds is a hedge fund that is made up of smaller hedge

funds. Kat and Palaro attempt to recover the risk profile of observed hedge funds

(i.e., the Sharpe ratio profile). Kat and Palaro use a single asset that can be traded

to replicate hedge fund returns. Using their replication strategy, Kat and Palaro were

able to get within 10% of the observed hedge fund returns [25].

The problem with Kat and Palaros methodology is that it assumes that a single
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asset can be used to replicate a hedge funds risk profile. This single asset, however,

may not be identifiable; even if it is, it may not be adequate to mimic the hedge

fund as a whole. In many cases, individuals and organizations employing Kat and

Palaros methodology end up basing their results on a series of actions, such as multiple

trades, that taken together represent a strategy–rather than on the movement of a

single asset.

Expanding on dynamic programming a company named Adaptrade Software claims

to able to replicate strategies by using past trades. This software examines past trades

and their outcomes, such as profits/losses occurring from a trade. Using a genetic

algorithm, the software combines technical trading rules (i.e., moving average, rel-

ative strength index, etc.) to generate a strategy that mimics the observed trades

and outcomes. In its brochure the company claims that its clone strategy generated

profits that were 3% lower than the observed strategy. It is important to note that

Adaptrade does not claim the observed strategy follows the same rules as the clone

strategy. In other words, Adaptrade has not claimed to have found a trading strategy

decision space. Additionally, it has not published any out-of-sample testing. However,

the fact that a commercial company has created reverse-engineered trading software

suggests that there is a desire for a methodology to reverse engineer trading deci-

sions. The following section will examine a machine-learning technique called inverse

reinforcement learning, which has been applied to trading strategy classification.
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Inverse Reinforcement Learning

The following several paragraphs are used with permission, given by Peter Beling [26].

Imitation learning is a subfield of machine learning in which the objective is to learn to

mimic an agent’s behavior solely through observation of the agent’s actions. Technical

approaches to imitation learning generally fall into two broad categories. Behavioral

cloning approaches attempt to predict actions directly from an observed feature vector

that describes the environment. In inverse reinforcement learning (IRL), by contrast,

training examples take the form of trajectories through the feature space defined

in terms of an underlying model of decision task and environment as a control or

sequential optimization problem. IRL algorithms, which are set in the context of

a sequential optimization framework known as a Markov decision process (MDP),

attempt to discover the objective or reward function for the underlying sequential

decision problem solely on the basis of observing the decision makers’ solution to that

problem. This approach is appealing in imitation learning because knowledge of the

reward function offer the promise that behavior can be predicted in domains unseen

during training.

18
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A finite-state, infinite horizon Markov decision process (MDP) is defined as a

tuple M = (S,A,P , γ, r), where S = {s1, s2, · · · , sn} is a set of n states; A =

{a1, a2, · · · , am} is a set of m actions; P = {Pa}ma=1 is a set of state transition prob-

abilities; γ is a discount factor; and r is a n-dimensional vector such that rs is the

reward experienced on reaching state s. For any a ∈ A and Pa is a n×n matrix, each

row of which, denoted as Pas, is the transition probabilities upon taking action a in

state s.

Consider a decision maker that chooses actions according to a policy π : S → A

that maps states to actions. Define the value function at state s with respect to policy

π to be V π(s) = E[
∑∞

t=0 γ
trst |π], where the expectation is over the distribution of

the state sequence {s0, s1, . . . } given policy π, where superscripts index time. A

decision maker who aims to maximize expected reward will, at every state s, choose

the action that maximizes V π(s). Similarly, define the Q-factor for state s and action

a under policy π, Qπ(s, a), to be the expected return from state s, taking action a and

thereafter following policy π. Given a policy π, ∀s ∈ S, a ∈ A, V π(s) and Qπ(s, a)

satisfy V π(s) = rs + γ
∑

s′ Pπ(s)s(s
′)V π(s′) and Qπ(s, a) = rs + γ

∑
s′ Pas(s

′)V π(s′).

The well-known Bellman optimality conditions state that π is optimal if and only if,

∀s ∈ S, we have π(s) ∈ arg maxa∈AQ
π(s, a) [27].

Given an MDP M = (S,A,P , γ, r), let us define the inverse Markov decision

process (IMDP) MI = (S,A,P , γ,O). The process MI includes the states, actions,

and dynamics of M , but lacks a specification of the reward vector, r. By way of

compensation, MI includes a set of observations O that consists of state-action pairs

generated through the observation of a decision maker. We can define the inverse re-

inforcement learning (IRL) problem associated with MI = (S,A,P , γ,O) to be that
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of finding a reward vector r such that the observations O could have come from an

optimal policy for M = (S,A,P , γ, r). The IRL problem is, in general, highly under-

specified, which has led researchers to consider various models for restricting the set

of reward vectors under consideration. Ng and Russel [13], in a seminal consideration

of IMDPs and associated IRL problems, observed that, by the optimality equations,

the only reward vectors consistent with an optimal policy π are those that satisfy

the set of inequalities (Pπ − Pa)(In − γPπ)−1r ≥ 0, ∀a ∈ A, where Pπ is the transi-

tion probability matrix relating to observed policy π and Pa denotes the transition

probability matrix for other actions. Note that the trivial solution r = 0 satisfies

these constraints, which highlights the underspecified nature of the problem and the

need for reward selection mechanisms. Ng and Russel [13] advance the idea choosing

the reward function to maximize the difference between the optimal and suboptimal

policies, which can be done using a linear programming formulation. In the sections

that follow, we propose the idea of selecting reward on the basis of MAP estimation

in a Bayesian framework.

A principal motivation for considering IRL problems is the idea of apprenticeship

learning, in which observations of state-action pairs are used to learn the policies

followed by experts for the purpose of mimicking or cloning behavior. By its nature,

apprenticeship learning can lead to problems in situations where it is not possible

or desirable to observe all state-action pairs–that is, in situations where some state–

action pairs are not applicable to the decision makers policy. In recent approaches to

apprenticeship learning, partial policy observation is dealt with by searching mixed

solutions in a space of learned policies with the goal that the accumulative feature

expectation is near that of the expert [12, 28]. In such approaches, the reward func-



Chapter 4. Inverse Reinforcement Learning 21

tion is approximated by a linear combination of features, which in turn allows for

linear approximation of value functions with consequent simplification of the learning

problem. In such methods, algorithm performance is strongly influenced by the mod-

elers choice of features. Another algorithm for IRL is policy matching in which the

loss function penalizing deviations from an experts policy is minimized by tuning the

parameters of reward functions [29]. Other approaches to IRL include game–theoretic

methods [28] and algorithms derived from linearly solvable stochastic optimal control

[30].

IRL has been applied to a number of problems, most related to the problem of

learning from demonstrations. Apprenticeship-learning algorithms based on IRL–

which leverage expert demonstrations to efficiently learn controls for tasks being

demonstrated by an expert–have been applied to automatic control of helicopter flight

[31] and modeling of driver route preferences [32].

Steve Yang et al. applied IRL to the problem of classifying simulated trading

strategies. They addressed the following question: given N number of trading strate-

gies, is it possible to cluster these strategies in a single reward space? The trading

strategies they examined placed orders into an electronic limit order book [14]. An

order specifies three things:

1. Side - whether it is a buy or sell order

2. Quantity - how many contracts or shares are desired

3. Price - the price the order is willing to trade at. This can be an actual price or

the designation that the order is willing to transact at any price

Orders that do not have a corresponding order to transact with at the specified
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price are called limit orders. Limit orders are placed into a queue until a corresponding

order is found. In Yang et al. traders can perform the following actions:
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Action Description

PBH - place buy order higher than the 3rd best bid price

PBL - place buy order lower than the 3rd best bid price

PSH - place sell order higher than the 3rd best ask price

PSL - place sell order lower than the 3rd best ask price

CBH - cancel buy order higher than the 3rd best bid price

CBL - cancel buy order lower than the 3rd best bid price

CSH - cancel buy order higher than the 3rd best ask price

CSL - cancel sell order lower than the 3rd best ask price

TBH - trade buy order higher than the 3rd best bid price

TBL - trade buy order lower than the 3rd best bid price

TSH - trade sell order higher than the 3rd best ask price

TSL - trade sell order lower than the 3rd best ask price

Table 4.1: Yang’s IRL Actions

Each trader may perform different actions depending on what state he or she is in.

However, the underlying assumption of IRL is that traders will most likely choose the

action in each state that leads to the highest possible reward. Therefore, by defining

a function that describes the reward for each state it becomes possible to identify the

optimal solution. Yang et al. defined a state space based on order imbalance and on

the inventory position of the trader. The state space features are as follows:

TIM - volume imbalance at the best bid/ask [-1,0,1].

NIM - volume imbalance at the 3rd best bids/ask [-1,0,1].

POS - inventory of the trader [-1,0,1].

Each state has only three possible values, giving 27 potential states [14]. A –1
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means the sell side has more limit orders than the buy side; in the case of inventory,

it means that the trader is short a large amount of shares. A 0 means there is very

little imbalance and the trader owns very little shares. Positive 1 is the reverse of

the –1 state. Given a set of actions by a trader, a reward function can be generated

that maximizes the difference in reward between the observed policy and any other

potential policy.

Yang et al. generated these reward functions for simulated trading strategies

running in an artificial market. The reward function characterized how much an

expert valued entering a specific state. The goal was to determine if high-frequency

traders could be distinguished from market makers and opportunistic traders. Using

a linear discriminant analysis, Yang et al. demonstrated that it is possible to obtain

a 95% classification accuracy between high frequency traders and the market maker

and opportunistic traders [14]. However, when market makers were compared to

oportunistic traders, the accuracy fell to 70%.

A followup study presented by Yang et al. in [33]. suggests that a Gaussian-

based IRL provides better classification results than those modeled in their earlier

study. When asked to identify trader A versus trader B, the linear IRL achieved

60%, where Gaussian received an accuracy of 96.5%. However, although Yang et

al. illustrate that IRL is useful in classify trading strategies, they were unable to

return policies that mimic actual trading strategies. IRL works under the assumption

that the state space is already known. In the case of Yang et al., a state space is

hypothesized and the observed actions are mapped to that state. However, this leads

to the problem of different actions occurring in the same state (i.e., Yangs assumption

of nondeterministic trading strategies). Algorithms follow a deterministic strategy (Ai
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is always chosen in Si ); the only way this occurs is if the strategy is nonstationary

(changes over time) or the state space does not represent the algorithms decision

space. In other words, the decision space takes other varaibles into account which are

not in the state space description. Given the short time window in which the present

study is performed, we will hypothesize that the state space does not represent the

decision space.
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Apprenticeship Learning

Recovering a trading strategy has many elements of a classical apprenticeship learning

problem. A trading strategy is a set of decision rules that lead to the selection of a

security, as well as, a decision to buy or sell the security and the amount of shares

that will be traded. The apprentice is given a set of discrete time events to learn from.

All security prices and market history are available to the observer. Additionally, the

financial position of the trader is known (i.e., inventory, cash, profit, losses, etc.). The

apprenticeship problem is to predict trader actions in future time periods.

To examine this problem, I used data from the McIntire Hedge Fund Tournament.

The goal of the tournament is for participants to hedge a portfolio of illiquid assets by

buying an offsetting combination of stocks and options. The winner of the tournament

is the team that comes the closest to making a 1% annualized return with their

combined illiquid and liquid portfolio. In essence, the objective of the tournament

is for teams to limit the variance of their portfolios. I chose to recover the winning

team’s trading strategy because they employed an algorithm that did not make any

erroneous trades, such as selling a stock when none existed in inventory.

26
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The winning team used a delta hedging strategy. This trading strategy involved

making two decisions when hedging the portfolio. The algorithm first needed to

choose which security to trade, and then had to determine the desired end-of-day

delta exposure. The desired delta exposure determines the direction (i.e., taking a

long versus a short position) as well as the volume (i.e., how many shares) are traded.

Each decision is treated as an independent problem. The algorithm decisions are

treed as two independent problems because this approach lowers the complexity of

recovering the decision space. Instead of simultaneously solving for two independent

variables this methodology allows for solving for one variable at a time. The following

section will explain the methods used to determine which security the algorithm would

choose to trade.

5.1 Determining Which Security to Trade

The trading algorithm has a set of options that are available to trade. The options

have different expiration prices and therefore different monetary valuations. For this

section we make the simplifying assumption that at the end of day the portfolio has a

delta exposure of 0. In other words, every trade that is taken leads to a delta exposure

of 0. We hypothesize that the observed algorithm is attempting to complete this task.

Based on this hypothesis, we assume that the recovered algorithm will accomplish the

goal of maintaining a delta neutral portfolio. The first machine-learning technique

that was applied to the data was IRL.
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5.1.1 Inverse Reinforcement Learning - Issues

IRL was applied to the tournament data because of the success that was seen in

Yang et. al [33]. However, the results in our application of this methodology were

very poor. It is interesting to examine why these results failed, when Yang et. al.

experienced such positive results. A natural reward function is the difference in delta

exposure of the illiquid and liquid portfolios. However, the assumption of a 0 end–of–

day delta exposure creates a unique formulation. Experts will take an action where

their expected reward is 0. This is starkly different from the traditional IRL problem,

where experts are assumed to maximize their expected rewards. Additionally, there

are multiple actions (i.e., multiple options) that can be taken to lower overall delta

exposure to 0. Thus, the naive state space IRL is not applicable to this problem.

IRL algorithms are designed to solve sequential decision problems, in essence

trading off short-term rewards for long-term benefits. However, this assumes that a

transition matrix is known to the apprentice; in other words, the trading algorithm

would be able to predict future price movements. It is unlikely that the students in

the tournament were able to develop an accurate forecasting model. Furthermore,

the point of the contest was to hedge against unknown future states–that is, to design

an algorithm that would maintain a predictable return regardless of the future state

of the market. Therefore, assuming that each day teams were presented with a new

problem, they needed to determine–for that day–the best way to limit their portfolio

exposure. In other words, in the tournament, every day is treated as an independent

problem, not a sequential decision problem. Therefore, IRL is not a viable tool for

recovering trading strategies in the tournament. Instead, then, we determined that a

supervised learning approach is a preferable approach for recovering the strategy the
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winning team used to acquire a given option.

5.1.2 The Need for Action Features

The trading algorithm selects an option to trade, but all actions (trades), under

the aforementioned assumptions, lead to a delta exposure of 0. It is our hypothesis

that the trading algorithm has larger-level objectives that it is trying to meet, such as

maximizing delta change per dollar. Therefore, to accurately reverse engineer trading

strategies it becomes necessary to discover action features that facilitate these higher-

level objectives. For example, option A may be worth $1.00, while option B may be

worth $0.50. Although both options can be used to delta hedge a portfolio, an

algorithm that attempts to maximize delta change per dollar may select option B

over option A because option B has a higher delta-to-dollar ratio. This difference

could lead the algorithm to use option B when hedging the portfolio.

It is important to mention that this is starkly different from traditional MDPs,

upon which IRL and other supervised learning techniques are based. In an MDP

model, decisions are made based on the likelihood of arriving at future states. It is

conceivable that the information provided in action features could be represented in

a large state space containing all possible option prices and cash levels. Additionally,

given a large enough number of observations it is possible that patterns could be dis-

cerned from the trajectory through the previously mentioned state space. However,

the large state space and relatively small number of observations in the training set

(approximately 45 trading days) led us to use a state space representation employing

action features. Supervised learning traditionally assumes that actions are chosen

based on their probability of transitioning to a desired state. However, due to the



Chapter 5. Apprenticeship Learning 30

aforementioned reasons, we assumed that the actions were chosen based on a com-

parison to other actions. Features are given to each potential trade. Action features

are indicator variables (1, 0) that describe potential actions. If a subset of indicator

variables are found to be always on or off in actions that are chosen, and the reverse

is the case for actions that are not chosen, then we conclude that these features are

used to select which security to trade. The following features were applied to the

tournament data:

1. Security is an option

2. Security expires in May

3. Security is already own

4. Lowest price option

5. Lowest absolute value trade

6. Largest delta/price ratio

7. Largest short

8. Sign switch

For a detailed explanation of the features for both the action space and the state

space, see the appendix. The results of this method will be presented and explained

in the empirical results section. However, I will note that certain features, such as (1)

“Security is an option” and (2) “Security expires in May,” were found in all selected

actions. In other words, the team’s strategy was to hedge using only options that

expired in May.
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5.1.3 Supervised Learning Techniques - Recursive Partition-

ing

An open source version of classification and regression trees, was used to determine

the trading algorithm. A superset of all possible actions (trades) A was made for

each trading day. A trade is marked positive if the algorithm implemented the trade

on that day; otherwise it was marked as negative. Additionally, each action had

a set of features (Fai) that described the action, and each trading day had a set

of features (Fsj) that described the current market conditions. Our objective in

employing recursive partitioning was to use the set of features to predict which trades

would be marked as positive and which would be marked as negative.

Recursive partitioning results in a binary tree. A binary tree consists of one root

(origin) node that splits the data into two groups based on a specified condition.

The method for building binary trees begins with selecting a single feature that best

splits the data into two groups. (In this context, the term best refers to the split

that maximizes the separation between classes.) The subgroups are then split into

smaller groups, and they in turn are again split into yet smaller groups, in a recursive

process. This continues until each class is completely classified or until a minimum

observation threshold is reached in each node [34]. Below is the equation used to

determine which feature to use as the partition rule:

max[P (L)P (C1) + P (R)P (C2)].

The proportion of observations that is classified to the left branch of the tree is

represented by P (L) and the proportion to the right is represented by P (R). The

proportion of observations on the left branch classified as category 1 is denoted as
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P (C1),while the proportion of observations on the right branch classified as category

2 [34] is denoted as P (C2).

Although traditional recursive partition can provide meaningful insight into the

trading strategies found in the tournament, it cannot correctly classify those strate-

gies. This is because it presents all observations as one large set. However, this was

not how the trading algorithm used by the team arrived at decisions. Each day the

trading algorithm presented its current state and potential actions. The algorithm

selected one action, thereby categorizing all other possible actions as negative. In

theory, the recursive partitioning algorithm should follow the same pattern; in other

words, it should determine a partition or a set of partitions that labels one action

positive and the rest negative for each day. If the partitions are not generated in this

manner, misclassification can occur; specifically, it can result in multiple actions being

labeled positive for a specific day. To safeguard against such a misclassification,we

extended recursive partitioning by grouping the observations by trading day. This

was a significant and indeed an unorthodox step, because tree-style classifications do

not typically include a temporal component.

The modified partitioning split we employed sought to maximize the number of

days correctly classified. We assumed that a day was correctly classified when all

actions in that day were assigned the correct label. As in traditional recursive parti-

tioning, the first partition was generated by selecting a single feature that best split

the data. We continued this process until the data was correctly classified or a mini-

mum threshold was reached. The results section will illustrate that it is necessary for

actions to contain features; it will also demonstrate that the temporal relationship of

the data must be included as a factor when trying to recover a trading strategy.
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5.2 Determining End of Day Delta Exposure

When recovering a trading strategy, there are a few basic functions that must be

determined. First, it is essential to identify what will trigger the strategythat is,

what enables the strategy to become active; then, once the strategy is active, it is

necessary to ascertain which security will be traded. (The preceding sections described

techniques for accomplishing this task.)

The final part of the strategy involves determining whether to buy or sell shares

and how many shares to trade. In this section, the previous assumption that all trades

lead to a delta exposure of 0 is dropped. Instead, the machine-learning technique

known as regression trees is used to predict the delta exposure at the end of the

day. Using the Black-Scholes formula, the desired end-of-day delta exposure, and the

asset being traded, it becomes trivial to determine not only the trade direction (i.e.,

buy or sell) but also the desired quantity to be traded. Therefore, in this section we

will predict desired end-of-day delta exposure as a means of determining both the

direction of a trade and the quantity being traded.

As with recursive partitioning, regression trees first try to classify states into

classes. The apprenticeship learning algorithm is presented as a set of state features

(Fsj). For the purposes of this study, we assume that the option being traded is

known, having been arrived at using the methodology discussed in the previous sec-

tion. Therefore, intrinsic action values such as price of a trade are treated as state

features in the method we examine here. These features represent the current state

at the beginning of the day. Additionally, the learning algorithm is given the depen-

dent variable delta exposure (Dj) at the end of the day. Using the state features, the

learning algorithm is trained to predict the end-of-day delta exposure.
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The mean value of the dependent variables (delta exposure of trades) that are

partitioned into the same class is used as the prediction for that class. The splitting

criteria seek to maximize the between-groups sum of squares [34],as follows:

maxSST − (SSL+ SSR)

Where

SST =
∑

(yi − ȳ).

In the above equation, SSL is the sum of squares for the left node and SSR is the

sum of squares for the right node. The algorithm terminates if it cannot generate a

minimum distance between the sum-of-square error of the children versus the parent

node. Using the mean value of the dependent variable gives one possible prediction

for a potentially large number of observations. Although this makes the regression

trees tractable, it limits their predictive power. Therefore, in this thesis the method of

regression trees was augmented to use stepwise linear regression instead of the mean

value as the final node’s prediction. Stepwise linear regression adds and removes

variables in a standard linear regression model. The goal is to provide a linear model

that has the highest adjusted R2 value. For all potential variables a simple linear

regression model is fitted. The t* statistic is taken for each model to test whether or

not the slope is 0. Below is the equation for the t* statistic:

t∗ =
b1

MSE/
∑

(Xi − X̄)2
.

The X variable with the largest t* value that also has a p-value less than 0.15 is

added into the model [35]. Assuming that the ”delta of the option” had the largest

t* value and had a p-value less than 0.15, then it would be added into the model. In
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the next iteration, all models will contain ”delta of the option,” and all other possible

variables will be added to the model one at a time. A t* statistic is taken of each

one, and the process repeats. If there are two or more variables in the model, the

procedure changes: all variables in the model have their t* statistic taken and p-values

calculated. If a variable has a p-value greater than 0.15, then it is removed from the

model, after which the aforementioned process of adding variables is applied again

[35]. This process continues until no more variables can enter or leave the model.

Stepwise regression allows for a closer prediction of the response variables. However,

it also creates the possibility of overfitting to the data. Overfitting can lead to erratic

behavior of the model during out-of-sample testing. In the next section, both versions

of regression trees will be used and their performance compared to one another.
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Empirical Tests and Results

6.1 McIntire Hedge Tournament

The McIntire Hedge Fund Tournament is held semiannually at the University of Vir-

ginia. The goal of the hedge fund tournament is to hedge a portfolio of illiquid assets

using stocks and options, in such a manner that the portfolio provides a 1% annu-

alized return throughout the tournament. All trading must be done electronically,

which allows for the capture of every trade in the tournament. It is important to

note that teams are assumed to be too small to change the price of the asset they are

trading.

The tournament is held over approximately three hours continuous time period.

Each minute is equivalent to a simulated day, with a bid and ask price being presented

for each asset. Teams possess a basket of stocks and options that they are not allowed

to trade during the tournament. With $16million in cash, teams must take offsetting

positions to limit the volatility of their overall portfolio. Additionally, teams must

try to consistently deliver a 1% annualized return. A measurement known as the

tracking error (TE) is taken every Sunday. The team with the lowest cumulative

36
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tracking error is crowned the winner. Below is the equation for the tracking error:

if Portfolio Value >= Target:

TE = (PV − T )/2.

Else:

TE = (T − PV ).

The target (T) in the equation above is the value of the initial portfolio plus a

1% annualized return to date. To minimize tracking errors, teams enter long or short

positions in stocks or options to offset the illiquid position. Five rules limit the ability

of teams to enter positions:

1. Margin account value must not exceed $22 million dollars

2. Must have at least 30% of the margin account value in cash at all times

3. Can not trade a specific asset more than once a day

4. For a trade to be initiated the required amount of cash must be present in the

portfolio

5. Can not trade any asset that has a value of zero dollars

Assets are broken up into families. Twelve asset families make up the tradeable

world for the tournament. These asset families are derived from the following twelve

stocks:

1. Apple

2. AIG
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3. Citigroup

4. Dell

5. Walt Disney

6. General Electric

7. Gold

8. Google

9. The Coca-Cola

10. Microsoft

11. Transocean

12. UBS

A stocks value throughout the tournament is tuned to the historical volatility

and trend of the stock from the previous six months. Through the use of Brownian

motion, a price path is produced that is similar to historical data but that does not

exactly replicate it. Using the Black-Scholes equation, the price for each option is

calculated. There are two sets of options: the first expires in March, and the second

expires in May. Additionally, there are five puts and calls for each security at each

expiration month; the options have varying strike prices. This results in 252 securities

that can be traded during the tournament. However, some securities are placed into

the illiquid portfolio, lowering the number of tradeable securities to 221.

Twelve teams competed in the tournament. However, only three teams were el-

igible to have their strategies recovered. The majority of the teams made a large
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number of errors when trading, resulting in large tracking errors, after which these

teams stopped trading. As a result, there was not enough information to recover

the trading strategies used by these teams. Additionally, some teams traded manu-

ally. Manual trading adds another layer of uncertainty. The assumption in recovering

algorithmic trading strategies is that algorithms presented with the same state infor-

mation will make the same decision every time. Since this study involved a proof of

concept, one team in particular, the winning team, was used to illustrate the results.

6.2 Results Determining Which Stock or Option

Will Be Traded

The majority of the teams used delta hedging to accomplish the goal of variance

reduction. This can be seen by comparing the delta exposure of each team’s strategy

to that of a non-hedged portfolio. To determine which asset would be chosen to trade,

we assumed, for simplicity, that all trades resulted in a delta exposure of 0.

Figure 6.1: Delta Position Comparison
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A variation of recursive partitioning is used on all subsequent results. The major

contribution of this research is that it demonstrates that action-based features are

a necessary component of trading strategy recovery. This research also illustrates

that the temporal component is necessary to recover the decision space of a trading

algorithm. To obtain the following results. Recursive partitioning was run on the

first two months of trading data. Using the resulting partitions, the following two

months of trading data were used as an out-of-sample test. The accuracy measures

below indicate the percentage of possible actions correctly labeled in out-of-sample

testing.



Chapter 6. Empirical Tests and Results 41

AssetSymbol StateFeatures Action+ StateFeatures TemporalRelation

AAPL 100% 99% 99%

AIG 100% 100% 100%

C 100% 84% 100%

DELL 98% 99.5% 100%

DIS 57% 91% 100%

GE 96.9% 96.9% 100%

GOLD 58% 100% 100%

GOOG 57% 100% 100%

KO 100% 100% 100%

MSFT 100% 82% 100%

RIG 94% 81% 100%

UBS 57% 89% 100%

Average 84.8% 93.5% 99.9

Table 6.1: Action Identification Accuracy

As can be seen in the above table, using only state space features results in the

lowest accuracy rate. Although the state space plays a role in the algorithm’s decision

making, it is impossible to generate an accurate replica using the state space alone.

This suggests that the algorithm is comparing possible actions. In other words,

two actions lead to similar states, so the algorithm chooses the cheaper of the two

options. Intuitively, however, we might expect the algorithm to make such a choice,

since machine learning does take into account an action feature space.

Using action features in recursive partitioning greatly improves the strategy re-
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covery. This approach might seem at first to be of limited value, because all the data

gathered from it would appear to be presented in the form of unsorted and, more

importantly, unrelated observations. However, this is not the case; there is in fact

a temporal relationship among the observations. In other words, for any given day,

when one possibility is chosen all other options can no longer be selected. Traditional

recursive partitioning does not take this factor into account: even on days in which

one option is selected, traditional recursive partitioning can select multiple options

to trade.

This misclassification occurs because the partitions are not organized in the cor-

rect hierarchy. For example, if two options are currently held in inventory, traditional

recursive partitioning could select to trade both options. However, this does not ad-

dress the question of which option the algorithm determines to trade first. Therefore,

it is important to partition based on correctly assigning all possible trades a positive

or negative score for each day. In the study, the first recursive partition was used to

determine how many trades would occur in a single day. Days in which two trades

occurred were treated as two separate days: the first day was defined as containing

all possible traded options; the second day contained all options minus the option

that was just traded. The metric for splitting was designed to maximize the number

of days correctly classified. A day was marked as correctly classified only if all trades

were correctly labeled as traded or not traded. Once this was done, the following

classification tree could be developed:

The above classification tree represents the strategy the team used to determine

which options to trade. This strategy takes into account current states, the future

state, and action comparisons. This relatively simple algorithm contained complicated



Chapter 6. Empirical Tests and Results 43

Figure 6.2: Security Selection Strategy

questions: Under what circumstances are days when two options in the same security

are traded compared to days when only one is traded? Additionally, given that two

options are traded, what option is traded first? To the author’s knowledge, this is the

first time a trade-level strategy such as the one outlined above has been recovered.

6.3 Results Determining Delta Exposure

It is important to recall that by determining the desired end-of-day delta exposure

both the direction of a trade and the number of shares traded can be calculated. The

same methodology reviewed in the previous section was used to examine the ability

of regression trees to predict delta exposure. Each security family was treated as

its own independent machine-learning problem. Regression trees were trained on the

first two months of trade data for each security family, and the following two months



Chapter 6. Empirical Tests and Results 44

were used as out-of-sample validation results. Both the mean value prediction and the

stepwise linear regression prediction were calculated for each day. The graph below

shows that using stepwise linear regression can provide a better fit to the training

data. Both variations of the regression tree are presented with the entire two months

of observed data, which are used to create the classification partitions and generate

predictions.

Figure 6.3: Training Set Delta Exposure Comparisons

The regression tree for GE is illustrated below. The first delta exposures given in

the final nodes are the predictions using the mean of the dependent variables. The

second delta exposures given are the predictions using stepwise linear regression.

Regression trees do not examine how an error in a prediction will affect subsequent

decisions. Therefore, we implemented both regression tree outcomes and ran them

over the entire four months. The results from the security family DELL best illustrate

the overall finding.
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Figure 6.4: GE’s Hedging Strategy

The above graph illustrates the observed delta exposure, the delta exposure re-

covered using the normal regression tree method, and the delta exposure recovered

using the regression tree method augmented with stepwise linear regression. The red

line indicates the transition from the training set to the validation set. The stepwise

technique does a better job in matching the observed data in the training set. This

trend continues into the validation set, until the regression technique makes a rapid

and sudden divergence from the observed delta exposure. This occurs because the

values presented to the linear equation are outside the training set values. Thus, the

regression model generates an unexpected result. This is quickly corrected, but it

illustrates an inherent instability in this type of methodology.

The regression tree method that uses the mean of the dependent variables as

its prediction is slower at detecting state changes. This is due to the model using

the average as the prediction of delta exposure. Since a large number of factors

that determine desired delta exposure are intrinsic to the algorithm, such as cash on
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Figure 6.5: DELL’S Full Tournament Delta Exposure Comparison

hand, using the mean as the prediction causes these variables to change at a slower

rate. Therefore, it takes longer for the strategy to recognize the difference in states.

However, it does not have the sudden and rapid departure from the observed delta

exposure that was seen in the regression model. This means the model is more stable

than the stepwise regression model but not as responsive.

As stated above, the desired delta exposure is estimated so the direction and

quantity of the trade can be predicted. Having this information allows us to examine

how closely we match the observed algorithm. To determine which regression tree

variation is better, the tracking error for the observed data is compared to both

variations. Unlike the observed algorithm that is trying to minimize the tracking

error, our recovered algorithm’s goal is to match the observed algorithm tracking

error. Below is a graph that illustrates how both the normal and stepwise regression

methods compare with the observed algorithm:
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Figure 6.6: Tracking Error Comparison

This graph illustrates that both algorithms perform a better job of minimizing

tracking error. However, the normal mean prediction regression tree does a better

job of matching the observed algorithm. This is again due to the stability of the al-

gorithm. Although it cannot predict the desired end-of-day delta exposure as well as

the regression model, it does not suffer from erratic behavior. A cumulative difference

between the observed algorithm tracking error and both variations of the regression

trees tracking error is calculated and presented in the graph below. The ideal re-

covered algorithm would have a horizontal line at 0, meaning it exactly matched the

tracking error of the observed algorithm. The graph shows that the mean prediction

regression tree performs more accurately than the stepwise variation. This is because

the mean prediction is stable and does not suffer as badly from values in data that

have not been seen before.

The final section will offer a discussion of future work and lessons learned from
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Figure 6.7: Cumulative Tracking Error Difference Between Observed and Recovered

Algorithms

this research.
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Conclusions

The primary goal of this thesis was to prove that it is possible to recover the decision

space of a trading strategy from trade-level data. To accomplish this goal, several

unorthodox techniques had to be used. It was necessary to creating an action feature

space to improve the accuracy of the recovered decision space. Treating actions as

if they have properties made intuitive sense, although this has rarely been done in

practice. And as this study demonstrated, generating an action feature space made

it possible to use recursive partitioning directly in the recovery process.

The use of recursive partitioning illuminated the temporal importance of the data.

Traditionally, machine learning treats observations as unrelated. However, the nature

of the trading algorithm dictated that the temporal relation remain intact. There-

fore, we extended the traditional recursive partitioning to maintain the relationship

between observations. Although in this case the newly observed factor involved time,

the parameters of recursive partitioning can be extended to include any type of rela-

tionship that must be maintained.

Two variations of regression trees were used to determine the desired delta expo-

sure. It was determined that although stepwise regression can be used to augment a
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regression tree’s prediction, it has the tendency to overfit. Specifically, if out-of-sample

data is provided to the recovered algorithm there is a potential for unpredictable be-

havior. Therefore, it is recommended that recovered algorithms be trained using the

standard regression tree model. This model uses the mean of dependent variables

that are categorized in the same node as the prediction for that class. This leads

to a lag in recognizing state transitions. However, it prevents the aforementioned

unexpected behaviors.

The results also illustrate that recursive partitioning and regression trees were

unable to determine the decision space, which in the case of this study involved one

state containing only one action. It was possible, however, to recover the methodology

for determining which security would be traded, which should provide valuable insight

into understanding how the trading algorithm works. However, perfectly determining

the delta exposure was not possible. This could mean three things: First, it could

indicate that the trading algorithm uses information outside the state space that was

defined. Second, the algorithm could have partitions that are nonlinear and thus

would not be found in the linear recursive partition and regression trees used in this

paper. Third, since the delta of any particular option is based on an estimate of the

volatility of the underlying stock, the volatility estimate used in this study could have

differed from that of the trading competition participants.

This type of technique can help regulators better understand modern-day trading

algorithms. Recovering trading algorithms will allow regulatory agencies to enforce

existing policies; in particular, it will enable them to identify cases where traders

have manipulated the market through misuse of algorithms. Furthermore, it will

allow regulators to create artificial environments in which to test regulatory polcies.
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These environments can contain real-world trading algorithms, which will permit

these agencies to conduct in-depth cost-benefit analyses prior to implementing new

regulations. Such an artificial environment would also allow regulators to identify

scenarios in which the market might move in an unexpected way.

Regulators are not the only party that might benefit from this type of technique.

Exchanges could create the same type of artificial environment as described above.

Within this environment, pricing incentives could be explored with the objective of

making the exchange more profitable. Furthermore, the exchange could potentially

sell artificial scenarios to private investors interested in training algorithms, an ar-

rangement that would be mutually beneficial both to the exchange and to private

investors. The more testing a private investor can do prior to launching an algo-

rithm, the less likely the algorithm is to malfunction and cause a larger problem.

Furthermore, by testing the algorithm over a wider range of scenarios, an investor

can more effectively determine and optimize its profitability.

This thesis has illustrated some of the challenges associated with recovering strate-

gies. In the artificial environment of the hedge fund tournament, it was possible to

determine which asset would be traded. However, the study required employing some

unorthodox techniques and extending powerful classification tools. It is concluded

that it is feasible to recover trading strategies from detailed trade-level data.
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Appendix

8.1 State Space and Action Space Features

This section will list all features for both the State Space and Action Space. Addi-

tionally, a description for each feature is provided.

8.1.1 State Space Features - Security Selection Prediction

Below is a list of all the state space features, along with a description.

1. Day - Day of the week.

2. Stock Value - Underlying Stock Value.

3. Current Cash Account - the current cash in the account.

4. Current Margin Value - the amount of Margin open.

5. List of Open Positions - indicator value for each security. The value is 1 if there

is an open position in the security and 0 otherwise.

6. Order of Acquisition - list the orders in which positions were open in securities.
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7. List of shares owned in each security.

8.1.2 Action Space Features - Security Selection Prediction

This section list all the action space features, along with a description. All action

space features are indicator values 1 or 0.

1. Security is an option - action will trade an option.

2. Security expires in May - action will trade an option that expires in May.

3. Security is already own - action will trade a security that has an open position.

4. Lowest price option - action will trade the lowest price (cheapest) option.

5. Lowest absolute value trade - action will result in the lowest absolute value for

a trade. Assuming that all trades reduce delta exposure to zero and transaction

cost is taken into account.

6. Largest delta/price ratio - action will trade option with the highest delta/price

ratio.

7. Largest Short - generates most cash from shorting.

8. Sign Switch - action results in a switch from a long to short position or vice

versa.

8.1.3 State Space Features - Deleta Exposure Prediction

This section list all the state space features used in delta exposure prediction
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1. Security Family Delta Exposure: How much the value of securities currently

held in inventory changes if the underlying stock value increases by $1.

2. Security Family Gamma Exposure: How much the delta of securities currently

held in inventory changes if the underlying stock value increases by $1.

3. Delta of the Option being Traded.

4. Gamma of the Option being Traded.

5. Price of the Option being Traded.

6. Current Cash Account: the current cash in the account.

7. Current Margin Value: the amount of Margin open.

8. Portfolio Value - Target Value : difference between the current portfolio value

and the target value.
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8.2 Delta Exposure Comparison

8.2.1 AAPL

8.2.2 AIG
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8.2.3 C

8.2.4 DELL
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8.2.5 DIS

8.2.6 GE
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8.2.7 GOLD

8.2.8 GOOG
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8.2.9 KO

8.2.10 MSFT
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8.2.11 RIG

8.2.12 UBS
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