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Abstract

Our modern understanding of the forces of nature as described by quantum field the-

ories is fundamentally based on symmetries and their associated conservation laws.

Quantum anomalies occur when a symmetry of a classical field theory is violated

upon quantization. Gravitational anomalies of one-loop quantum effective actions

arise after coupling classical field theories to external background geometry and in-

tegrating out all dynamical matter fields in the partition function. A gravitational

Weyl anomaly of a relativistic field theory is the statement that the quantum effective

action is not invariant under local rescaling of the background geometry.

In this work, we study Weyl anomalies in non-relativistic Lifshitz field theories

in (1+1) and (2+1) dimensions. Lifshitz field theories introduce a degree of scaling

anisotropy between space and time measured by the dynamical scaling exponent z.

In 1+1 dimensions, we analyze and study the physical and mathematical nature of

a particular z = 1 and z = 2 Lifshitz Weyl anomaly. We then use the Fujikawa

method to derive the z = 1 Lifshitz Weyl anomaly from a two-dimensional massless

chiral field theory. We also derive the (1+1)-dimensional z = 2 Lifshitz Weyl anomaly

from a (2+1)-dimensional non-relativistic Chern-Simons action on a manifold with a

boundary. We evaluate the z = 1 Lifshitz Weyl anomaly on the Möbius strip and

relate it to a topological invariant that counts the parity of its number of half-twists.

In 2+1 dimensions, we extend a background metric optimization procedure for

Euclidean path integrals, first introduced for a two-dimensional conformal field theory,

to a z = 2 anisotropically scale-invariant (2 + 1)-dimensional Lifshitz field theory

of a free massless scalar field. We find optimal geometries for static and dynamic

correlation functions. For the static correlation functions, the optimal background

metric is equivalent to an AdS metric on a Poincare patch, while for dynamical

correlation functions, we find a Lifshitz-like metric.
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Chapter 1

Introduction

1.1 Overview of Anomalies

Our modern understanding of the forces of nature as described by quantum field

theories is fundamentally based on symmetries and their associated conservation laws

[1]. Quantum anomalies occur when a symmetry of a classical field theory is violated

upon quantization. As it later turned out, quantum anomalies are often associated

with a deeper understanding of the physics of the underlying field theory.

To be a bit more specific in what an anomaly actually means, consider a quantum

theory with a symmetry group G which leaves the classical action invariant [2]. A

quantum theory is called anomalous if it breaks G. Hence, anomalies are symmetries

of classical theories which are quantum mechanically violated. Depending on the na-

ture of the symmetry group G, anomalies can be classified into: discrete or continuous

and global or gauge anomalies. If G is a global symmetry, then anomalies in G do not

represent an inconsistency of the full theory and may even have interesting physical

consequences. The most important example of this type is the axial anomaly, the



2

non-conservation of the axial current which, as it is famously known, is important for

understanding the decay rate of the neutral pion π0 → γγ.

Another fundamental pillar that has shaped our understanding of modern field

theory is the principle of gauge symmetry, or more accurately, gauge redundancy [1].

Contrary to global symmetries, gauge symmetries are essential in guaranteeing the

overall consistency of the field theory. It is therefore not surprising that anomalies of

local gauge symmetries, i.e. those where the gauge transformation parameter depends

on spacetime, do indeed render the theory inconsistent. Given an anomaly of a

quantum field theory, the most natural question is to ask how does one properly deal

with it? Is it always possible or even desirable to cancel the anomaly? For example,

the presence of the top quark was initially predicted on the basis of allowing for CP

violation in the quark sector of the field theory after it was discovered in kaons a

decade earlier. This is an example where the presence of anomalies eventually led to

a deeper understanding of the underlying physics.

The study of anomalies span a wide range of areas in field theory and string

theory [1–3]. In phenomenology, the calculation of the decay rate for neutral pions in

the Standard Model of particle physics is a prime example. Examples of more formal

areas include the study of dualities in supersymmetric gauge theories [4], the analysis

of black hole thermodynamics and more recently entanglement entropy in anti–de

sitter space/conformal field theory (AdS/CFT) correspondence [5].

Quite generally, the understanding of the physics of anomalies and what they

actually reveal has passed through multiple phases [1,6]. The first phase started with

the discovery of the well-known ABJ or singlet axial anomaly in four dimensions by

calculating, using purely perturbative methods, the triangle Feynman diagram, which

gives the 1-loop quantum effective action. As we mentioned earlier, an anomaly is

associated with a non-conserved current of the quantum effective action. In the axial
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anomaly, the axial current is broken

A = ∂µj5
µ =

e2

16π2
εµναβFµνFαβ (1.1)

which when extended to non-abelian fields Fµν = F a
µνT

a gives the singlet anomaly

A =
e2

16π2
εµναβtrFµνFαβ (1.2)

where tr is the trace over the Lie algebra index a in T a. It is the regularization

of the divergent triangle diagram that actually breaks the axial current and thus

induces the anomaly. However, the second phase of understanding the underlying

physics of anomalies revealed that considering them a mere perturbation effect lacked

a deeper grasp of what they actually mean. This second phase uncovered an exciting

connection to the fields of differential geometry, (co)homology theory and topology.

For example, the singlet anomaly in (1.2) was cast in the form of analytical index of a

Dirac operator that satisfies some algebraic properties. The index is simply a number

that counts the difference in the chirality or the handedness of the zero modes of the

Dirac operator

index D̂+ =
1

2π

∫
A(x) =

∫
dxα(x)

∑
n

ϕ̃†n(x)γ5ϕ̃n(x) = n+ − n− (1.3)

where the ϕ̃n are the eigenfunctions of the D̂+ and α(x) is the local chiral transfor-

mation parameter. Using the celebrated Atiyah-Singer (AS) index theorem [7–10]

(see also chapter 11 in [1]), the analytical index was found to be equivalent to a topo-

logical index that assigned the anomaly a characteristic or cohomology class, i.e. a

certain topological invariant. Running with the example of a singlet anomaly in four

dimensions,

index D̂+ = − 1

8π2

∫
tr FF (1.4)
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Please note that the AS index theorem simply connects geometry with topology.

Intuitively, it tells us that the integral of a local geometric invariant on the right hand

side, in this case the square of the field strength tensor or curvature, is associated

with a global topological property, the Chern number. In the context of the theory

of gravity and curved spacetime, the famous Gauss-Bonnet theorem is a special case

of the AS index theorem.

The end of the second phase culminated with the work of Fujikawa [11–14] who

discovered another connection between anomalies and path integral measures of gauge

theories. More specifically, given the following path integral functional of the gauge

field Aµ

Z[Aµ] = e−W [Aµ] =

∫
(Dψ)(Dψ)eS[Aµ] (1.5)

where the classical action of a massles fermion in the background of Aµ is given by

Sψ =

∫
d2x ψ iγµ(∂µ + Aµ)ψ (1.6)

The classical action is invariant under the following chiral transformation

ψ′(x) = eiα(x)γ5ψ(x), ψ′(x) = ψ′(x)eiα(x)γ5 . (1.7)

After quantization, the path integral or quantum effective action Z[Aµ] = e−W [Aµ]

break the classical chiral symmetry. Fujikawa was able to show that the underlying

reason for this is the transformation of the path integral measure

(Dψ)(Dψ)→ (Dψ)(Dψ)J [α] (1.8)
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where J [α] is the Jacobian of the transformation given by

J [α] = exp

(
−2i

∫
d2xα(x)

∑
n

ϕ̃†n(x)γ5ϕ̃n(x)

)
(1.9)

The regularized sum in the exponential is exactly the chiral anomaly

2
∑
n

ϕ†n(x)γ5ϕn(x) =
e2

16π2
εµναβFµνFαβ . (1.10)

Fujikawa’s method is a simple yet very powerful computational method and has been

extended to calculate other types of anomalies such as the gravitational ones.

The third phase of our modern understanding of anomalies started in the eighties

with the work of Stora, Wess and Zumino who were able to use a variety of purely

mathematical methods to derive anomalies in quantum field theories (see chapters 8,

9 and 10 in [1]). Of special importance to us in our work is the Wess-Zumino (WS)

consistency conditions [15]. These conditions are relations that must be satisfied by

the anomalous currents (or effective actions), the solution of which classify the space

of all possible terms that can arise from the variation of the quantum effective action

under a specific gauge transformation into two classes: (1) relevant or nontrivial

anomalies and (2) irrelevant or trivial anomalies. Terms in the first class are called

cocycles and represent the actual physical anomalies of the quantum field theory, in

the sense that they cannot be removed by adding a counterterm, a local functional,

with appropriate coefficients, to the classical action whose variation exactly cancels

the anomaly. Irrelevant anomalies on the other hand, can be removed by adding such

terms to the classical action, hence the name trivial.

To be more concrete, following the notations in [16], let us assume that we are

given a theory with the classical symmetries:

δχαS({F}, {φ}) = 0, (1.11)
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where χα are the gauge transformation parameters, {F} a set of background fields,

{φ} the set of dynamical fields in the theory, and S the classical action. In the

cohmological description of the WZ consistency conditions, the gauge transformation

parameter is replaced by a Grassmannian BRST-like ghost, and its action on the

fields is defined such that it becomes nilpotent

(δσ)2 = 0. (1.12)

The WZ consistency conditions are then simply given by

δσAσ = 0, (1.13)

where σ is now the Grassmannian BRST ghost. There are two kinds of solutions to

the WS conditions: (1) trivial solutions which take the following form

Aσ = δσG({F}), (1.14)

where G({F}) is a local functional of the background fields (of zero ghost number).

These solutions are called exact or coboundary terms and (2) non-trivial solutions (or

1-cocycles) which also closed under δσ but may or may not be exact. The problem

of finding the physical or relevant anomalies now becomes the problem of finding the

space of δσ-closed terms (or 1-cocycles) with ghost number 1, modulo the space of

δχ-exact terms (or coboundaries). Those terms then define cohomology classes that

belong to a cohomology group.

Solving the WZ consistency conditions can be compared to the more familiar

counterpart in de-Rham cohomology which deals with differential forms. If M is a

n-dimensional smooth differential manifold and the set of differential forms of degree

k are denoted by Ωk(M), then the exterior derivative is a map d : Ωk(M) 7→ Ωk+1(M)
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is the counterpart of δσ in the WZ condition. The kernel of d is

Zk = ker(d : Ωk(M) 7→ Ωk+1(M)) ⊂ Ωk , (1.15)

are coycles of degree k or k-cocycles and they are the counterpart of (1.13). Similarly,

the image of d are elements of

Bk = im(d : Ωk−1(M) 7→ Ωk(M)) ⊂ Ωk , (1.16)

are k-coboundaries or k-exact forms and they correspond to (1.14). Then, space of

k-forms closed under d that are not k-exact is the quotient of Hk = Zk/Bk defines the

k-th cohomology group whose elements (physical anomalies) are cohomology classes.

This is one way of seeing how physical anomalies can potentially have a topological

characterization and are thus related to topological invariants.

Since we will need it later in this section, we end our formal tour of anomalies by

briefly defining the term descent equations, which although purely mathematical in

nature, their contents carry a simple physical meaning [1,3]. Descent equations simply

link together the relevant anomalies in different dimensions by a chain of equations

(actually polynomials) that start from a symmetric gauge-invariant polynomial in F

dimensions descending to lower dimensions. Running with our singlet anomaly exam-

ple, by using the descent equations (sometimes called the Stora-Zumino equations),

it was surprising to find the singlet anomaly in (1.2) is linked to the non-Abelian

anomaly in four dimensions via a Chern-Simons term in three dimensions [1]. De-

scent equations can either be non-trivial or trivial. Non-trivial simply means that the

anomaly term in lower dimensions are linked to another in higher dimensions, which

has a topological character. Trivial descent equations on the other hand, do not link

the chain terms in different dimensions. In the following section, we will see how the
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WZ consistency conditions and descent equations have been used to cohomologically

classify Weyl anomalies.

1.2 Weyl Anomalies

Gravitational anomalies of one-loop quantum effective actions arise after coupling

classical field theories to external background geometry (or gravity) and integrating

out all dynamical matter fields in the partition function. In other words, only matter

fields are quantized while the gravitational field itself is left classical. Since the quan-

tum energy-momentum tensor, by definition, encodes the response of effective actions

to infinitesimal variations in the underlying background metric, they are the central

objects in studying gravitational anomalies. There are three types of gravitational

anomalies. Lorentz anomalies break the symmetry of local Lorentz transformations

and is signaled by the presence of an antisymmetric energy-momentum tensor. The

Einstein or diffeomorphism anomaly break the classical diffeomorphism invariance of

the underlying field theory and its presence is detected by the fact that the energy-

momentum tensor is not covariantly conserved. Lorentz and diffeomorphism anoma-

lies indicate that the underlying quantum field theory cannot be consistently coupled

to frame or metric gravity.

A gravitational conformal (or Weyl anomaly) is the statement that the quantum

effective action is not invariant under local rescaling of the background metric that

couples to the dynamical fields in the action. The trace of the expectation value of the

energy-momentum tensor is the canonical test of whether the theory is Weyl anoma-

lous or not. If the trace is non-zero, the quantum theory suffers a conformal anomaly.

For example, let the classical action of a matter field ψ coupled to background fixed

metric gµν be given by S[g, φ]. Then partition function of the background metric Z[g]
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is given by

Z[g] =

∫
[dψ]g e

−S[g,φ] = e−W [g] (1.17)

where W [g] is the quantum effective action. The variation of W [g] under an infinites-

imal local Weyl transformation gµν → (1 + σ(x))gµν gives

δWσ W [g] = −1

2

∫
d2x
√
g σ(x)

〈
T µµ (x)

〉
(1.18)

where

〈T µν〉 =
2
√
g

δW [g]

δgµν(x)

(1.19)

The cohomological formulation of the algebraic structure of relativistic conformal

anomalies [17–21] classified the Weyl anomalies in even dimensions into one of two

main classes [19]:

1. Type-A anomaly, given by the integrated Euler density of the manifold, the

Euler class,

2. Type-B anomalies consisting of the integral of the Weyl transformation factor

times Weyl-invariant scalar densities.

In this classification, type-A anomalies appear in a scale-independent effective action

where the integrated anomalies vanish and are therefore related to a topological in-

variant. Type-B anomalies, on the other hand, appear in a scale-dependent action

and hence, are not associated to topological invariants [16].

While the authors of [19] emphasized the scale dependence of the effective action,

the author of [21] classified the Weyl anomalies using descent-equations. In his clas-

sification, he found that all type-B anomalies satisfy a trivial descent of equations,

i.e. they are Weyl-invariant densities satisfying δσ
(√

gφ
)

= 0 1. and therefore, do not

1φ is a scalar formed from contractions of the Levi-Civita tensor, the Riemann tensor and its
covariant derivatives [16]
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Figure 1.1. Types of Weyl Cocycles. For relativistic CFTs, there are no Weyl
anomalies in odd dimensions. In even dimensions, Weyl anomalies can either be
Type-A or Type-B. Note that, for non-relativistic CFTs, Weyl anomalies can be
found in odd dimensions as we will show in Chapter 5.

have a topological character. He also found that type-A anomalies have non-trivial

descent and that the unique anomaly in this class is the Euler density. Fig. 1.1 shows

a flowchart of the types of Weyl cocycles.

Another type of classification of anomalies within the framework of the cohomol-

ogy of a total operator, i.e. an operator that represents the variation with respect

to the transformation parameters of all symmetries of an underlying theory. Let the

total operator representing the three gauge symmetries of the theory be given by

δ ≡ δDξ + δLα + δWσ . (1.20)

where D denotes diffeomorphism, L Lorentz and W Weyl transformations. Accord-

ing to the classification theory by Bonora [18], the nontrivial terms, i.e. nontrivial

cocycles (or anomalies), in the cohomology of the total operator are classified into

two categories:
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1. terms in the relative cohomology with respect to one of the symmetries – terms

which are closed but not exact under only one of the symmetries, when consid-

ering only the space of terms invariant under all the rest. Intuitively speaking,

if we are, for example, interested in calculating Weyl anomalies of a specific the-

ory with a given set of symmetries, then the set of all possible Weyl-anomalous

terms must obey the rest of the symmetries, i.e. Lorentz and diffeomorphisms,

of the underlying theory.

2. terms in the cohomology of one of the operators, which admit a partner in the

cocycle space of another, such that their sum is a cocycle of the total operator.

Terms in the second class are interesting since although they appear as anomalies

of some symmetry as a result of anomalies in another symmetry. They are partners

of some other type of anomaly in the theory. We will see in the next section that

all terms in the relative cohomology of the Lifshitz Weyl operator belong to the first

class. [16]. However, the z = 1 Lifshitz Weyl anomaly was found to be the Weyl

partner of the Lorentz anomaly in the conformal cohomology. In other words, it is in

the cocycle space of the Lorentz operator that admits a partner in the cocycle space

of the Weyl operator. Concretely, in a 2d massless chiral CFT coupled to background

gravity, the anomalous trace of the energy-momentum tensor is given by [1, 22,23]

〈
T µµ
〉

= R− 2εab∇µω
µ
ab︸ ︷︷ ︸

Weyl partner

. (1.21)

where ωµab is the component of the spin connection 1-form ωab. Whereas the Ricci

scalar R is the usual conformal anomaly, the second term (the Weyl partner) only

appears as a consequence of the Lorentz anomaly (a Lorentz cocycle), i.e. is a partner

of the Lorentz anomaly. In simple words, the term εab∇µω
µ
ab only appears in a chiral

CFT which is known to break local Lorentz invariance. We will dwell further into

this relationship and explore more of its properties in this thesis in Chapters 2 and 3.
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There is another interesting yet subtle aspect of the relationship between the Weyl

and Lorentz (or diffeomorphism) anomaly. On the one hand, the subtlety manifests

itself in subtracting (or adding) a local counterterm (Bardeen-Zumino term) to the

effective action and the effect this term may have on removing one anomaly and

adding another [24] [17]. Equivalently, the subtlety shows up in the arbitrariness

of the regularization method used in calculating the anomaly. It was in fact shown

in [17] that subtracting a local counterterm from the classical action is equivalent

to changing the regularization scheme. In two dimensions, in particular, the Weyl

anomaly can be removed by a local counterterm at the expense of a diffeomorphism

anomaly and vice versa. With a class of regularizations depending on a continuous

parameter α, it was shown that for α = 0, diffeomorphism invariance is preserved

while a Weyl anomaly appears

δW(α=0) ∝
∫
d2x
√
g σ(x)R, δD(α=0) = 0 , (1.22)

while for α = 1/2, Weyl symmetry is preserved at the expense of breaking diffeomor-

phism invariance

δW(α=1/2) = 0, δD(α=0) ∝
∫
d2x
√
g ∂ρξ

ρ (−R + gµνDµΓν) (1.23)

where ξρ is the diffeomorphism transformation parameter.

1.2.1 Non-relativistic Weyl anomalies

Recently, there has been a considerable level of activity in studying Weyl anomalies

in non-relativistic field theories such as Galilean, Schrödinger and Lifshitz field the-

ories [16, 25–32]. Non-relativistic field theories do not place space and time on an

equal footing and thus introduce a degree of anisotropy between them. In particular,

Lifshitz field theories in D spatial dimensions, are invariant under global anisotropic
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non-relativistic scaling of their temporal t and spatial coordinates xi

t→ λzt, xi → λxi (1.24)

where z is known as dynamical scaling exponent and i = 1 . . . D is the spatial in-

dex. The dynamical scaling exponent measures the degree of anisotropy between

time and space. The symmetry group of a Lifshitz field theory consists of four gener-

ators: H,P i, Lij,D where H is the generator of time translations, P i the generator of

spatial translations, Lij the generator of rotations and D is the generator of scaling

transformations with dynamical scaling exponent z that sends t→ λzt and xi → λxi

(see section 2 in [33]).

Lifshitz scaling symmetry has naturally appeared in a wide variety of theoretical

and experimental setups. In particular, the scaling symmetry with z = 2 has emerged

near conformal quantum critical points [34] in (2+1)-dimensions, [35–37], with z = 2

scaling. More recently, Lifshitz-type scaling has been potentially linked to an emer-

gent symmetry of the continuum limit of gapless quantum spin chains [38]. Lifshitz

field theories have applications in high-energy physics [39], hydrodynamics [40–42].

Contrary to relativistic field theories which are locally symmetric under fully co-

variant diffeomorphism transformations, Lifshitz field theories are locally symmetric

under foliation-preserving diffeomorphisms (FPD) defined by

t→ t̃(t), xi → x̃i(xi, t) . (1.25)

In FPD-invariant theories, the spacetime is naturally foliated into equal-time slices

or hypersurfaces or leaves where xi= const.. On a manifold equipped with by a

Riemannian spacetime metric gµν [43] [16], a foliation is characterized by a smooth

timelike 1-form nµ normal to the foliation leaves. In Section 2, we will provide a

more formal definition of foliated manifolds. Lifshitz field theories are also invariant
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under local anisotropic Weyl scaling transformations characterized by a dynamical

scaling exponent z ≥ 1 as opposed to relativistic conformal symmetry in conformal

field theories (CFTs) [44].

Building on the work of [20, 21], in their cohomological classification of Lifshitz

anomalies, the authors in [16], found that all Lifshitz Weyl anomalies are type-B and

thus belong to the same cohomology class of a trivial descent cocycle. Specifically, if

A is a Lifshitz Weyl anomaly, then it satisfies the following equation

A = H + F (1.26)

where H is some trivial descent cocycle and F is a trivial descent coboundary.

Another very important aspect of studying quantum anomalies in field theories is

the type of background geometry to which they can couple. For example, relativistic

field theories couple to Lorentzian geometries while on the other hand, non-relativistic

field theories typically involves coupling to non-relativistic geometries, for example,

the Newton-Cartan (NC) or Schrödinger spacetimes. Newton-Cartan theory is a

re-formulation and generalization of Newtonian gravity first introduced by Cartan

in [45] [46] and Friedrichs [47] and later developed by many others. See [48] for a

more comprehensive list. The NC theory places the Newtonian theory of gravity

on geometrical grounds in an attempt to mimic the the geometrical formulation of

the Einstein’s general theory of relativity. However, it wasn’t until the appearance

of torsion in the NC geometry that the interest in NC spacetimes has started to

significantly grow with several promising applications in high-energy and condensed-

matter systems. NC geometry with torsion, or torsional NC geometry (TNC) has

recently been the focus of intense study. TNC geometry has appeared in different

physical setups and applications, for example, in boundary effective actions of non-

relativistic holographic theories [49–54] and in effective field theories of quantum Hall
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states [55, 56], in Weyl-invariant field theories coupled to flat NC spacetime were

constructed in [51, 54]. We will formally define the TNC geometry and its different

types of in Section 2.1.

Recently, Weyl anomalies of Lifshitz field theories coupled to NC geometry with

temporal torsion have been calculated in several spacetime dimensions and for mul-

tiple values of the scaling exponent z by solving the WZ consistency condition [16].

It was found in [16] that while the conformal anomalies of (1+1)-dimensional rela-

tivistic conformal field theories are type-A, those of Lifshitz field theories belong to

type-B. Specifically, in 1+1 dimensions, which is the main focus of this dissertation,

and for any value of z, only one trivial descent anomaly i.e. a trivial descent cocyle

modulo a coboundary term, was found in the parity-odd, mixed-derivative sector of

the Lifshitz cohomology of the relative Weyl operator [16]. The rest of the cocycles

were shown to be trivial descent coboundaries and thus, can be removed by local

counterterms. It was also found that the (1+1)-dimensional Weyl anomaly breaks

time-reversal invariance. More importantly, in [16], it was shown that the z = 1

(1+1)-dimensional Lifshitz Weyl anomaly is actually the Weyl partner of the Lorentz

anomaly in (1+1)-dimensional CFT.

The goal of Chapter 2 is to analyze and investigate the physical as well as the

mathematical nature of the (1+1)-dimensional Lifshitz Weyl anomaly within a non-

relativistic framework. More specifically, we will see how non-relativistic field the-

ories coupled to background Newton-Cartan (NC) geometry with temporal torsion

can generate Weyl anomalies. We will use the Arnowitt, Deser and Misner (ADM)

parametrization [57] in our study to discuss the geometric nature of the (1+1)-

dimensional Lifshitz Weyl anomaly, true for z ≥ 1.

In addition, we dedicate special attention to understanding the z = 1 (1+1)-

dimensional Lifshitz Weyl anomaly and how it relates to the Lorentz anomaly in

two-dimensional CFTs. In the Appendix to Chapter 2, we will unveil the underlying
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connection between these anomalies within the framework of the geometry of foliated

manifolds [58]. We will attempt to place the connection on firm mathematical grounds

using the language of fiber bundles. In particular, we will clearly show that the proper

mathematical characterization of the Lifshitz Weyl anomaly described in Section 2.3

is directly related to the geometry and topology of flat line bundles.

Thus far, the z = 1 Lifshitz Weyl has been found formally using a cohomological

approach. It would be interesting, however to derive it from a specific field theory.

This is the goal of Chapter 3. In Section 3.1, we will use the Fujikawa method

to derive the anomaly from a 2d massless chiral field theory. We will explain why

chirality is an essential requirement to get the correct expression of the 2d z = 1

Lifshitz Weyl anomaly. Owing to the true nature of z = 1 Weyl anomaly as the Weyl

partner of the Lorentz anomaly, we will expand the Dirac operator in the Jacobian

of the path integral measure in a chiral spinor basis [12] [59] in order to obtain the

correct expression of the z = 1 Weyl anomaly.

In Appendix 3.A, we present an attempt to derive the respective Lifshitz Weyl

anomaly from the simplest z = 1 FPD-invariant action of a massless scalar field

using heat kernel expansion [60]. Up to first order in perturbation theory, we do

not find the relevant Weyl anomaly. Concretely, the final expression of the anomaly

that we obtain consists only of irrelevant or coboundary terms, i.e. terms that can

be removed by adding local counterterms to the quantum effective action. Although

we did not do to second-order perturbation theory in our heat kernel expansion, we

do not expect it would change the parity symmetry x → −x but this remains to be

checked nevertheless.
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1.3 Non-relativistic gauge-gravity duality

Gauge/gravity duality [61,62] is a conjectured relationship between a relativistic field

theory in flat spacetime and a gravity theory in one higher spatial dimension. The

best understood example is the anti de-Sitter/conformal field theory (AdS/CFT)

correspondence relating string theory in an anti de-Sitter (a negatively curved space-

time) background to conformal field theories in one less spatial dimension [63, 64].

The AdS/CFT duality is a strong-weak duality in the sense that when the fields

of the quantum field theory side are strongly interacting, those in the gravity the-

ory are weakly interacting and thus more mathematically tractable. This feature

of the duality has been used to study a wide variety of problems ranging from

high-temperature quantum chromodynamics and hydrodynamics [65] to condensed-

matter systems. Holographic superconductors [66], cold atoms [67], and non-Fermi

liquids [68] are prominent examples to name a few. Figure 1.2 shows a simple depic-

tion of the AdS/CFT correspondence. In the interest of being a bit more concrete, the

gauge/gravity duality can be stated in simple mathematical terms as a relationship

between the quantum effective action functional W [φ] on the field theory side, the

boundary, and the bulk on-shell gravitational action with specific asymptotic bound-

ary conditions

W [φ(0)] = −Sgravon−shell[φ
(0)]. (1.27)

Non-relativistic geometries such as Lifshitz and Schrödinger spacetimes have been

realized holographically using relativistic and non-relativstic (NR) theories of gravity.

Denoting the extra holographic dimension by r, the Lifshitz geometry [69] can be

expressed as [69]

ds2 = −dt
2

r2z
+
dr2

r2
+
dxidxi
r2

(1.28)
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Figure 1.2. The AdS/CFT correspondence relates weakly couples gravity theories in
an anti de-Sitter background to conformal field theories in one less spatial dimension.

The Lifshitz geometry has been first obtained as a solution to an Einstein gravity

theory coupled to a massive vector field [70]. Lifshitz geometries also arise as solu-

tions to higher derivative gravity theories [71]. Lifshitz black hole solutions to higher

derivative theories in various dimensions were given in [72–77]. The Schrödinger

geometry

ds2 = −dt
2

r2z
+

2dtdξ + dr2 + dxidxi
r2

where ξ is an additional null direction resulting from the light cone reduction of a

Lorentz-invariant theory in one higher dimension, also arises as a solution to models

of Einstein gravity coupled to massive vector fields [67, 78].

On the front of non-relativistic quantum gravity, Horava-Lifshitz (HL) theories

of gravity have been introduced as a power-counting renormalizable non-relativistic

gravitational theories with anisotropic scaling symmetry [79,80]. The central idea be-

hind Horava-Lifshitz gravity theories is that by introducing terms with higher spatial

derivatives, the ultraviolet (UV) behavior of the graviton propagator is improved and

the theory eventually becomes power-counting renormalizable. When the number of

spatial dimensions equals the dynamical scaling exponent z, Weyl-invariant actions
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can be found. HL actions break the principle of general covariance by foliating space-

time with space-like surfaces and introducing extra geometric data that affect the

number and dynamics of degrees of freedom in the theory. As a result, not only do

they describe the dynamics of the helicity-2 modes of the spatial metric but also an

extra helicity-0 scalar mode. Since this foliation mode is an excitation of the global

time, it is usually called a scalar khronon [81]. The Lifshitz geometry has been real-

ized as solution to a four-dimensional non-projectable HL gravity [82] using the work

of [83] which defines the the notion of anisotropic conformal infinity.

Analogous to boundary relativistic field theories which naturally couple to back-

ground Lorentzian geometry, non-relativistic field theories couple to background non-

relativistic geometries such the NC spacetimes [51]. The connection between dynami-

cal NC geometry, with and without torsion, to HL gravity theories was demonstrated

in [52]. More specifically, it was shown that dynamical NC geometries without tor-

sion give rise to the so-called projectable HL gravity while those with twistless torsion

(TTNC) i.e. those that obey the Frobenius condition and do not allow torsion on the

spatial slices, give rise to the non-projectable version of HL gravity. Projectable HL

gravity theories are those where the time component of the spacetime metric depends

only on time whereas the non-projectable version emerges when it is a function of

both space and time, i.e. N(x, t). Weyl-invariant theories of HL gravity can only be

non-projectable [84, 85].

Gauging, i.e. making local, a symmetry algebra is closely related to spacetime ge-

ometry. For example, gauging the Poincare algebra with some constraints, naturally

gives rise to Riemannian geometry that couples to relativistic field theories [86] [also

see appendix A in [52]]. In non-relativistic systems, it was shown in [87] and [88]

that gauging the Bargmann and Schrodinger algebras, both non-relativistic symme-

try algebra, leads to NC geometries without and with torsion respectively. More

specifically, as noted in [52], adding torsion to the NC geometry amounts to making
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Figure 1.3. The coupling of boundary field theories to background geometries in AdS
and non-AdS holography. While relativistic field theories couple to Lorentzian geome-
tries, non-relativistic ones couple to non-relativistic geometries such as the Newton-
Cartan.

it locally scale-invariant by gauging the Schrodinger algebra. Therefore, it stands to

reason that the 1+1 Lifshitz anomaly is directly linked to the torsion vector of the

NC geometry, which as shown in [52], maps directly to the torsion or acceleration

vector aµ in HL gravity theories.

By gauging the non-relativistic Bargmann and centrally-extended Schrodinger

symmetry algebras, the authors in [89] constructed a (2+1)-dimensional non-

relativistic Bargmann-invariant and Schrödinger-invariant Chern-Simons (NRSCS)

actions, respectively. While the former was found to give projectable HL theory

of gravity, the latter, was found to be equivalent to z = 2 conformal i.e Weyl-

invariant non-projectable HL gravity. Chern-Simons CS actions are known to be

gauge-invariant up to total derivative terms. On manifolds with boundaries, these

total derivative terms can generate anomalies of boundary quantum effective actions.

For example, in the context of AdS/CFT, under an infinitesimal diffeomorphism or

Lorentz transformation, the boundary term of the gravitational CS (gCS) action

added to a three-dimensional on-shell gravitational action generates a diffeomor-
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phism or Lorentz anomaly, respectively, of a two-dimensional boundary CFT effective

action [90].

In Chapter 4, we will derive the (1+1)-dimensional z = 2 Lifshitz Weyl anomaly

from the NRSCS action. More specifically, by placing the NRSCS action on a man-

ifold with a boundary, we will show that under a Weyl transformation, the NRSCS

action changes by a total derivative term that precisely matches the boundary Weyl

anomaly of a z = 2 Lifshitz effective action coupled to background TTNC geome-

try. We will show that the (1+1)-dimensional z = 2 Lifshitz Weyl anomaly can be

derived holographically from a specific term in the three-dimensional NRSCS action

constructed from the gauge fields of the Weyl and special conformal symmetry gener-

ators of the Schrodinger algebra. We call this term the torsional CS (tCS) term. We

will show that the tCS term added to a three-dimensional Weyl-invariant HL gravity

action plays a role similar to what the gCS term plays when the latter is added to a

three-dimensional diffeomorphism-invariant action.

In Appendix 4.A, we will show that the differential form a ∧ da is closed and

independent of the choices of the foliation and torsion 1-forms nµ and aµ. Hence, it

defines a cohomology class, known as Godbillon-Vey class GV (F) in the third real

de-Rham cohomology group H3(M ;R).

1.4 Emergent Geometry and Path Integral

Optimization for a Lifshitz Action

An important quest of many body physics is the search for efficient variational charac-

terizations of correlated quantum systems. (for a review see, e.g., [91]). A class of ten-

sor network states, particularly geared towards the description of scale-invariant sys-

tems, are called the multi-scale entanglement renormalization ansatz (MERA) [92,93].

MERA is used to represent approximate ground states of 1D quantum spin chains at
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criticality described by 2D conformal field theory (CFT) [94]. The scale-invariance

of the MERA network turned out to also play a special role in connecting it to holo-

graphic duals in the sense of the AdS/CFT correspondence [95]. Here, the bulk of a

MERA network can be understood as a discrete realization of 3D anti-de Sitter space

(AdS3), identifying the extra holographic direction with the renormalization group

(RG) flow in the MERA [95].

Motivated by the procedure of tensor network renormalization in [96], where the

path integral is first discretized into a lattice and then mapped into a tensor network

which turns out to be a MERA, Caputa et. al, in a recent series of works [97, 98],

took a step further in studying this relationship from the viewpoint of optimizing

Euclidean path integrals that represent the ground state wave functional of two-

dimensional CFT. Starting with flat Euclidean metric with a UV cutoff, they argued

that their optimization procedure amounts to minimizing the Jacobian of the scale

transformation for the path integral measure. In the conformally flat gauge, this

translates to solving the equation of motion of the Liouville effective action from

which they find that the AdS3 metric a Poincare patch H2 naturally emerges. This

new approach is very appealing, as it suggests a concrete procedure connecting the

AdS/CFT correspondence with numerical approaches to many body systems, such as

the MERA tensor network [92,93,95,99].

In Chapter 5, we extend the idea in [97, 98] to a non-relativistic field theory,

specifically to a z = 2 anisotropically scale-invariant (2 + 1)-dimensional Lifshitz field

theory of a free massless scalar field and show that the procedure can be successfully

applied in systems of interest beyond a CFT. We show how natural geometries arise

from the path integral optimization procedure. Our results are illustrated in Fig. 5.2.

Concretely, we show the following:

1. Extend the background metric optimization procedure for Euclidean path inte-

grals of two-dimensional conformal field theories, first introduced in [97,98], to
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Figure 5.2. The two geometries emerging for the quantum Lifhsitz model. (a) An
AdS3-like geometry arises when considering equal time correlation functions and (b)
A Lifshitz metric that is optimal for computing correlation functions with a temporal
component.

a z = 2 anisotropically scale-invariant (2 + 1)-dimensional Lifshitz field theory

of a free massless scalar field.

2. Find optimal geometries for static and dynamic correlation functions. For the

static correlation functions, the optimal background metric is equivalent to an

AdS metric on a Poincare patch while for dynamical correlation functions, we

find the Lifshitz geometry.

1.5 The z = 1z = 1z = 1 Lifshitz Weyl Anomaly a

Topological Invariant

The Gauss-Bonnet theorem relates the integral of the Ricci scalar R over a smooth

compact closed manifold to the Euler characteristic χ of the underlying manifold.

Surprisingly, the Gauss-Bonnet theorem links the integral of a local geometric quan-
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tity, R, to a global topological invariant χ. Intuitively, The Euler characteristic, or

the Euler class, is a topological invariant that keeps track or counts of the number of

n-dimensional of holes of an n-dimensional orientable manifold, those manifolds with

orientable tangent spaces.

It is well known that spinor fields do not transform covariantly under the diffeo-

morphim group [1]. Hence, in a theory where fermions are coupled to background

gravity, the orthonormal tangent frame coordinates or vielbeins are used for this pur-

pose. The coupling is achieved using Cartan’s formalism [100]. To set up the notation,

we introduce vielbeins eaµ as

gµν = δabe
a
µe
b
ν , (1.29)

where δab is the flat Euclidean spacetime metric. The inverse vielbeins Ea
µ is then

defined as gµν = δabEa
µEb

ν , and satisfy Ea
µebµ = δba. The components of the spin

connection 1-form ωabµ are then given by [1]

ωabµ = eaν∇µEb
ν = eaν

(
∂µEb

ν + ΓνµλEb
λ
)
. (1.30)

In two spacetime dimensions, the Ricci scalar R is given by the curvature of the spin

connection ω

R = dω , (1.31)

while the curvature U of the dual spin connection ?ω is given by

U = d ? ω , (1.32)

where ? is the Hodge dual operator. While the scalar curvature R of R can be

expressed in terms of the spin connection ω̃µ = εµαω
α as

R = 2∇µ(ω̃µ) , (1.33)
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the scalar curvature U of U can be expressed in terms of its dual as

U = 2∇µ(ωµ) (1.34)

Two spacetime dimensions are special in that both the spin connection and its dual

are 1-forms. It was then noted in [101], if the χ =
∫
R is a topological invariant on

smooth, compact and closed manifold, then λ =
∫
U is also a topological invariant.

However, it was argued in [101] that λ =
∫
U = 0 since it is always possible to

choose a coordinate frame where the connection has zero divergence. We observe

that these coordinates implicitly assume that ?ω is a connection over an orientable

bundle, in which case, it can be trivialized. It was also noted in [101] that while the

structure group related to ω is SO(2, R), that related to ?ω is reduced to the group

of multiplication by positive real numbers R+ = {R+ − {0} , ×} implying that the

fiber bundle associated to ?ω is a line bundle that can be made trivial.

More importantly, the authors of [102], two years earlier, were able to obtain the U

scalar curvature as the chiral anomaly, Weyl anomaly as well as the Lorentz anomaly

of a fermionic action constructed from a generalized Dirac operator for which they

computed an analytic index. More specifically, they showed that

index D̂gen =
g

4π

∫
U e d2x , (1.35)

where D̂gen is the generalized Dirac operator given by

D̂gen = iσµ (∇µ + igωµσ3) , (1.36)

and ∇µ = ∂µ + ωµσ3, e =
√

det g and σ3 is the Pauli matrix. By the Atiyah–Singer

(AS) index theorem, the analytic index equals a topological index that describes a

purely topological characteristic of the fiber bundle considered in the theory. An im-
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portant consequence of the AS index theorem is the fact that the topological invariant

can be expressed as an integral over certain characteristic classes which represent the

invariant. In cohomology theory, these characteristic classes are represented by coho-

mology classes as elements of a cohomology group with coefficients in some field F ,

typically the field of integers Z. For example, χ is given by an integral over the Euler

class e(E) of an oriented, real vector bundle E → M . On compact 2-manifolds, the

Euler class e(E) is an element of the second integral cohomology group H2(M ; Z).

The Euler class exists as an obstruction, as with most cohomology classes measuring

how twisted the vector bundle is [103], [104], and [105].

A special form of the index theorem is the famous Gauss-Bonnet theorem. On a

2-dimensional compact manifold with a boundary, the Gauss-Bonnet theorem relates

the integral of the Ricci scalar R representing the Gaussian curvature, and the integral

of the extrinsic curvature or the geodesic curvature, to the Euler characteristic of the

underlying manifold 2

χ =
1

4π

(∫
M

Re d2x+

∫
∂M

2K
√
h dτ

)
, (1.37)

where K is the trace of the extrinsic curvature tensor defined in terms of the spatial

metric on the boundary in (2.14) and τ is an arbitrary parameter of the boundary

∂M . It is well known that K can be expressed as the covariant divergence of the unit

normal to the boundary n̂ as K = ∇µn̂
µ. In appendix A of [106], it was shown that

in the flat conformal gauge, χ can be written solely in terms the boundary integral

of the topological part of K

χ =
1

4π

∫
∂M

2K
√
h dτ =

1

2π

∫
∂M

∂µn̂
µ . (1.38)

2Here M is taken to be diffeomorphic to a subset of R2.
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On a circle with unit normal n̂µ = (cos θ, sin θ), we have ∂µn̂
µ = n̂µn̂µ = 1 which

implies that

χ =
1

2π

∫ 2π

0

dθ = 1 , (1.39)

and therefore the Euler characteristic of M , χ(M) = 1−NH where NH is the number

of holes. Hence, on a flat disc with a boundary unit circle, the Euler characteristic

χ = 1 and so, indeed, the disc has zero holes.

Owing to the similarities outlined above between R and U , the authors in [102]

used the boundary term of the action in (1.40), first derived in [107] to show that

the topological invariant λ on a compact 2-manifold with a boundary is given by the

following integral

λ =
1

4π

(∫
M

U e d2x− 2

∫
∂M

[
eµa εab∇µn

b − εµν∇µnν
]√

h dτ

)
, (1.40)

The boundary term in (1.40) has first been derived within the framework of Einstein-

Cartan theory [108] in the first-order formalism. Looking into λ in (1.40), we observe

that (1) λ, as opposed to χ, involves the use of the Levi-Civita antisymmetric symbol

εab and (2) detects the twist in the unit tangent rather than the normal vector.

Analogous to (1.38), the authors [102] used the conformal-Lorentz gauge

eaµ = eσ
(
δaµ cos(θ) + εaµ sin(θ)

)
(1.41)

to express λ as the boundary integral of the divergence of a unit tangent vector

tu = εµνn
ν (omitting the hat on t̂ and n̂) for a flat metric.

λ =

∫
∂M

dτ ∂µ t
µ . (1.42)

Although the authors on [102] gave sufficient evidence that λ is a topological invariant,

they did not characterize it.
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Chapter 6 is a first attempt to study, analyze, and give λ the topological interpre-

tation that was missing in [102] and [101]. More specifically, we show that in a specific

flat limit on a Möbius strip, λ is indeed a topological invariant and does not vanish

as argued in [101] by Myers. Geometrically speaking, the Möbius strip is the simplest

two-dimensional non-orientable manifold that has an intrinsic parity. Topologically

speaking, it is a nontrivial real line bundle.

We will illustrate that the difference between R and U is, in principle, the differ-

ence between intrinsic and extrinsic geometry. More specifically, we will show that

deformation retracting the Möbius surface by way of taking the flat limit, i.e. the limit

in which the thickness of the Möbius surface goes to zero, of its Ricci scalar simply

gives the intrinsic curvature of the core circle of the Möbius strip with no knowledge

of the extrinsic curvature induced by its embedding in R3. On the other hand, defor-

mation retracting the Möbius surface by taking the flat limit of the dual curvature

scalar gives the normal curvature of the Möbius boundary with no knowledge of the

intrinsic curvature of the Möbius core circle. Specifically, we show that

� the z = 1 Lifshitz Weyl anomaly is the scalar curvature of U ,

� and in the flat limit, λ is a topological invariant that detects the parity of the

number of twists of the Möbius surface embedded in R3.
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Chapter 2

Analysis of the Lifshitz Weyl

Anomaly in (1+1) Dimensions

The key results of this chapter are

1. The Weyl anomaly is directly related to the presence of torsion in the NC

geometry

2. The Weyl symmetry is restored by canceling the time dependence of the torsion

and restricting it to the foliation leaves.

3. The geometry and topology of the Weyl anomaly pertains to flat line bundles

or equivalently, of codimension-1 transverse foliations.

The bulk of ideas and calculations in this chapter appears in [109].

The goal of Chapter 2 is to analyze and investigate the physical as well as mathemat-

ical nature of the (1+1)-dimensional Lifshitz Weyl anomaly within a non-relativistic

framework. More specifically, we will see how non-relativistic field theories coupled to

background Newton-Cartan (NC) geometry with temporal torsion can generate Weyl

anomalies. We will use the Arnowitt, Deser and Misner (ADM) parametrization [57]
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in our study to discuss the geometric nature of the (1+1)-dimensional Lifshitz Weyl

anomaly, true for z ≥ 1.

In Section 2.1, we review the basic geometric constructs of the Newton-Cartan

geometry with torsion emphasizing the role played by the Frobenius condition in

such a context. In Section 2.2, we also briefly review the ADM parametrization

of the spacetime before we begin our study of the (1+1)-dimensional Lifshitz Weyl

anomaly in Section 2.3. In 2.3, we will present two pictures of the Lifshitz Weyl

anomaly in (1+1) dimensions each revealing a different aspect.

Section 2.4 illustrates that by restricting the lapse function to be only spatially

dependent, the local Weyl symmetry of the effective action is restored. We will show

that this amounts to solving a simple equation of motion for a stationary chiral boson,

one solution of which gives the Rindler metric.

In Section 2.5, we dedicate special attention to understanding the z = 1 (1+1)-

dimensional Lifshitz Weyl anomaly and how it actually relates to the Lorentz anomaly

in two-dimensional CFTs. We explain the interesting connection presented in [16] that

shows that the z = 1 (1+1) Lifshitz Weyl anomaly is in fact the Weyl partner of the

Lorentz anomaly in 2d CFTs.

In the Appendix to this chapter, we use the language of fiber bundles to provide

that the proper mathematical characterization of the Lifshitz Weyl anomaly described

in Section 2.3. In Appendix 2.A, we will first provide a very brief introduction to the

mathematics of foliated manifolds and the associated geometrical and topological

structures. More specifically, we will discuss the different types of flat line bundles

associated with a foliated manifold and more importantly, using this framework, why

it becomes natural to understand that the Lifshitz Weyl anomaly in (1+1) dimensions

is the Weyl partner of the Lorentz anomaly. In Appendix 2.B, we then move on to

describe the different types of transverse foliations and how they naturally map to

NC geometry with and without torsion. We then discuss flat line bundles and how
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they are related to codimension-1 foliations in Appendix 2.C. We finally, comment

on how non-orientable manifolds, flat line bundles, torsion and transverse structures

are all related to one another.

2.1 The Newton-Cartan (NC) Geometry

The Newton-Cartan geometry, as opposed to Riemannian geometry in relativstic

theories, is what couples naturally to non-relativistic field theories. Anomalies in

non-relativistic quantum field theories coupled to NC geometry are prime examples of

how the geometrical objects of the NC geometry become manifest. In non-relativistic

field theories, the time direction plays a major role and spacetime is naturally foliated

into equal-time slices or surfaces of simultaneity. Assuming the existence of a smooth

scalar field globally defined on the spacetime manifold M , a foliated manifold (M,F)

with a foliation F is defined by a smooth non-vanishing foliation 1-form tµ that is

normal to the tangent space of the foliation. More concretely, the tangent space

to the foliation is defined by the kernel of tµ i.e. those vector fields which satisfy

tµX
µ = 0. If the foliated manifold is equipped with a metric gµν , then instead we use

nµ = tµ/
√
|gβγtβtγ| as the foliation 1-form. A more formal definition of a foliation

will be given in Appendix 2.A.

More formally, the basic geometrical structure on a D = (d+1)-dimensional NC

manifold M consists of an everywhere smooth temporal metric nµnν , a degenerate

symmetric spatial component hµν with signature (0,+, . . . ,+) i.e. corank-1 tensor [56]

and a notion of a covariant derivative ∇ all satisfying the following constraints

hµνnµ = 0, nµn
ν = −1, ∇µnν = ∇µh

νλ = 0 . (2.1)
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The covariant derivative is defined with this connection

− Γλµν = nλ∂µnν +
1

2
hλρ (∂µhνρ + ∂νhµρ − ∂ρhµν) . (2.2)

While the 1-form nµ provides a notion of a clock, its inverse nµ denotes the direction of

time often called the velocity field. Using the NC geometrical objects defined above,

one can construct a non-degenerate symmetric rank-2 tensor gµν with a Lorentzian

signature (-1,1,. . . 1) that has a temporal component nµnν as well as a spatial compo-

nent hµν , i.e. gµν = hµν−nµnν . For a more formal and thorough definition of the NC

spacetime, see for example [110]. Following [52], there are three different constraints

on the foliation 1-form nµ that each give a different type of NC geometry:

(i) Torsionless NC geometry: dn = 0 where the connection Γλ[µν] = 0

(ii) Twistless Torsion Newton-Cartan (TTNC) or temporal torsion geometry

nλΓ
λ

[µν] = ∂µnν − ∂νnµ = aµnν − aνnµ , (2.3)

where the acceleration or torsion vector aµ is a foliation-tangent vector defined

as the Lie derivative of the foliation 1-form along nµ

aµ = Lnnµ = nν∇νnµ , (2.4)

The covariant derivative in (2.4) can be expressed in terms of the Lie derivative

using

∇µn
ν = Kν

µ − aνnµ, hρµ∇ρn
ν = Kν

µ

where Kµν is the extrinsic curvature tensor. The TTNC constraint in (2.3) is an

expression of the solution of the Frobenius condition, an integrability condition

that states a 1-form defines a codimension-1 foliation if and only if it satisfies
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the following constraint:

n ∧ dn = 0 . (2.5)

Imposing the Frobenius condition means that it is always possible to find a

coordinate system in which the spacetime manifold is foliated into equal-time

hypersurfaces or foliation leavs Σt to which the time-like 1-form nµ is normal.

The Frobenius condition makes the TTNC spacetime causal in the sense that

if it does not hold, then each point p ∈ M , has a neighborhood within which

all points are spacelike separated. It is also important to mention that TTNC

spacetimes, while being causal, still lack the notion of an absolute time mea-

sured by all observes along their worldlines. The difference between the total

coordinate time measured by two observers starting at different points on Σt1

and traveling to another time slice Σt2 along their respective wordlines measures

the temporal torsion dn = a ∧ n [56]. This point is key to understanding the

physical as well the geometrical meaning of the Weyl anomaly.

(iii) Torsional NC or TNC geometry where nµ is not constrained and has therefore

arbitrary torsion.

We will later see how the (1+1)-dimensional Lifshitz Weyl anomaly is directly related

to the TTNC geometry.

2.2 The ADM Parametrization

In the ADM decomposition, one chooses coordinates (t, xi) such that the leaves of the

foliation are given by constant-time slices t = const and xi for the coordinates in each

leaf. The ADM metric assumes a frame, the unitary or synchronous gauge where the

time of the spatial foliation hypersurfaces coincides with coordinate time t such that

the spacetime metric has a well-defined notion of global time. In this gauge, the ADM
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metric describes the TTNC geometry where the Frobenius condition given in (2.5) is

automatically satisfied. In these preferred coordinates, the metric gµν = hµν − nµnν

takes the form 1

gµν =

gtt gti

gjt gii

 =

−N2 +N iNi Ni

Nj hij

 , (2.6)

while the components of the inverse metric are given by

gµν =

gtt gti

gjt gii

 =

− 1
N2

N i

N2

Nj

N2 hij − N iNj

N2

 , (2.7)

where hij is the induced spatial metric on the foliation leaves, N i is the shift vector

and N(x, t) is the lapse function. Intuitively, the lapse function is the ratio between

the coordinate time t labeling a given time-slice Σt and proper time measured by an

observer. It governs the temporal propagation of points on one time slice to another.

In these coordinates, N(x, t) is given by

N(x, t) =
(
~∇t · ~∇t

)−1/2

(2.8)

The covariant volume element in these coordinates is given by:

√
−g d(D+1)x = N

√
h dt dDx. (2.9)

The timelike vector fields normal to the foliation are given by

nµ = N(−1, 0) ,

nµ =
1

N
(1,−N i) .

(2.10)

1For details on how the ADM metric is obtained from the fundamental NC objects in the process
of gauging the Bargmann algebra, see section 8 in [52].
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In D spatial dimensions, the Lie derivative of a foliation-tangent tensor Xijk..., i.e.

one that satisfies nµXµβγ = 0 along nµ splits into a time derivative normal to the

foliation and spatial derivatives inside the foliation leaves and is given by

LnXijk... =
1

N
∂tXijk... −

1

N
L(D)
~N
Xijk... , (2.11)

where L(D)
~N

is the Lie derivative inside the foliation leaf.

The torsion or acceleration vector is the spatial gradient of the lapse function. In

1+1 dimensions, the x-component of the acceleration vector is given by

ax =
∂xN

N
, 2 (2.12)

and the temporal component is at = Nxax. In 1+1 dimensions, with a non-zero shift

vector Nx, the ADM metric is given by 3

ds2 = −N2 dt2 +Nx dxdt+ hxx dx
2 . (2.13)

In 1+1 dimensions, the extrinsic curvature tensor is simply given by

Kxx =
1

2N
(∂thxx) . (2.14)

2To see this, start from (2.4), use that nµ = −N∇µt and follow the explicit calculation in eq.
(3.17) of [43]

aα = nµ∇µnα = −nµ∇µ(N∇αt) = −nµ∇µN∇αt−Nnµ ∇µ∇αt︸ ︷︷ ︸
=∇α∇µt

=
1

N
nαn

µ∇µN +Nnµ∇α
(
− 1

N
nµ

)
=

1

N
nαn

µ∇µN +
1

N
∇αN nµnµ︸ ︷︷ ︸

=−1

−nµ∇αnµ︸ ︷︷ ︸
=0

=
1

N
(∇αN + nαn

µ∇µN) =
1

N
hµα∇µN

=
1

N
∂αN

3By working in the ADM preferred coordinates, the shift vector Nx can always be removed by
an FPD transformation.
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In 1+1 spacetime dimensions with a zero shift vector, the spacetime metric has only

two degrees of freedom: the lapse function N(x, t) and the spatial metric hij. The

spatial metric hij is a rank-0 tensor, i.e. a function hxx(x, t).

2.3 The 1+1 Weyl Anomaly And Anomalous

Ward Identity

In this section, we attempt to illustrate the geometric nature of the 1+1-dimensional

Lifshitz Weyl anomaly and how it is closely related to the NC geometry with tem-

poral torsion. To that effect, we use the ADM coordinates to define some basic

TTNC objects required to understand the geometric nature of the 1+1 Weyl anomaly.

As mentioned in the introduction, dynamical TTNC gives rises to non-projectable

Horava-Lifshitz theory of gravity. Since this approach is useful for our purposes in

this section, we use some of the notations and definitions in [54] and [52]. 4

The antisymmetric part of the torsion tensor Γλµν , is expressed as

Γλ[µν] = nλ∂[µnν] = nλa[µnν] = nλRµν(H) , (2.15)

where Rµν(H)5 is the curvature 2-form of nν defined as the gauge field of the generator

of time translation symmetry, i.e. the Hamiltonian (H)

R(H) = (∂µnν − ∂νnµ) dxµ ∧ dxν . (2.16)

4We would like to point out that that adding torsion to the NC geometry by gauging the Barga-
mann algebra is different from adding torsion by gauging the Schrödinger algebra. In the former, the
torsion is explicitly given by the antisymmetric part of the affine connection which is the curvature
of the gauge connection (field) corresponding the generator of time translation symmetry i.e. the
Hamiltonian we will see below. By gauging the Schrödinger algebra, torsion is added to the algebra
as a constraint equation. It is this way of adding torsion that we will use in Chapter 4. Also, we
note that torsion in two dimensions is always given by the trace of the components of the affine
connection.

5Note that Rµν(H) does not mean R is a function of H.
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In 1+1 spacetime dimensions, imposing the Frobenius condition and using the ADM

gauge, the only non-vanishing component of the torsion 2-form Γ as defined by equa-

tion (2.27) in [52] is given by

Γ =
1

2
Γt[xt] dx ∧ dt = nt(axnt − atnx) dx ∧ dt (2.17)

= ax dx ∧ dt

=
∂xN(x, t)

N(x, t)
dx ∧ dt ,

Equivalently,

R(H) =
1

2
ntΓ

t
[xt] dx ∧ dt (2.18)

= (axnt − atnx) dt ∧ dx

= (axnt) dx ∧ dt

= ∂xN dx ∧ dt

= Rxt(H) dx ∧ dt .

Now we can see that in torsionless NC geometry, dn is a closed 1-form, i.e. dn = 0 that

corresponds to Rµν(H) = 0 in (2.16). This, in turn, translates to zero curvature in

the gauge field i.e. a flat connection, corresponding to the time translation symmetry

generated by the Hamiltonian. On the other hand, the TTNC case corresponds to a

non-zero Rµν(H) or dn 6= 0. The Frobenius condition then tells us that this curvature

is given by the torsion tensor aµ: ∂[µnν] = a[µnν]. Lifshitz field theories with classical

Weyl invariance couple to TTNC geometry and the Weyl anomaly will be directly

related to this torsion or acceleration vector field.

To derive the anomalous Ward identity, we start with a classical action S[φ,N, hij]

with matter fields φ coupled to background TTNC geometry. Throughout this chap-

ter, we set the shift vector N i to zero which can always be done by an FPD transfor-



38

mation. S[φ,N, hij] is assumed to be invariant under infinitesimal anisotropic local

Weyl transformation with scaling exponent z

δN = zσN, hij = 2σhij , (2.19)

where σ(x, t) is the infinitesimal Weyl transformation parameter. Quantum mechan-

ically, however, the UV regularization of the partition function Z = e−W [N,hij ] breaks

the local Weyl invariance of the quantum effective action W [N, hij] resulting in a

Weyl anomaly. More concretely, the presence of a Weyl anomaly in the effective

action necessarily means that the variation δσW is non-zero

δσW =

∫
N
√
h dt dx σA , (2.20)

where A is the non-relativistic counterpart of 〈T µµ〉 in a relativistic CFT and is given

by the expectation value of the time-projected and spatially-projected components of

the trace of the energy-momentum tensor

A = z
〈
T tt
〉

+ 〈T xx 〉 6= 0 . (2.21)

where 〈T tt 〉 = 〈T µν〉nµnν and 〈T xx 〉 = 〈T µν〉hµν and using the temporal metric nµnν

and the spatial metric hµν defined in (2.1). It is important to note that although [16]

in their cohomological classification of Lifshitz Weyl anomalies does not explicitly

say that the background geometry to which they couple the Lifshitz theory is a

TTNC spacetime, it actually implicitly is. In the cohomological classification of Weyl

anomalies in FPD-invariant Lifshitz field theories in all spacetime dimensions, the

foliation 1-form nµ satisfies the Frobenius condition which is the key defining property

of TTNC geometry. Section 2.4 of [27] contains more information on the relationship

between the notations and conventions used in [16] and standard NC geometry.



39

We now move to demonstrate the geometric and physical nature of the Lifshitz

Weyl anomaly after rewriting it in terms of the ADM coordinates defined above. We

emphasize that the discussion in this section is valid for all values of z. We will

present two different yet related pictures. While the first picture emphasizes the

fundamental role of nµ and nµ in the TTNC geometry, the second one defines aµ as a

fundamental foliation 1-form and emphasizes the geometrical picture of the Lifshitz

Weyl anomaly. The latter picture will be useful in Chapter 4 when the anomaly is

derived from the (2+1)-dimensional NRSCS action.

2.3.1 The vielbein picture

We start from the expression of the (1+1)-dimensional Weyl anomaly as given in [16]

and rewrite it terms of the ADM gauge in (2.10) and (2.11). The Weyl anomaly

is given by the variation of the one-loop effective action of the (1+1)-dimensional

Lifshitz effective action W [g] with respect to the Weyl parameter σ

δσW =

∫ √
−g σ ε̃µ Lnaµ (2.22)

=

∫ √
−g σ nxεxt Lnat + ntε

tx Lnax

=

∫ √
−g σ nt Lnax ,

where ε̃µ = nαε
αµ is the foliation-projected Levi-Civita tensor, εtx = 1, at = Nxax = 0,

(since Nx = 0) and σ(x, t) is the Weyl transformation parameter. Using the definition

of the Lie derivative in (2.11), the Weyl anomaly is given by

δσW = −
∫
dtdx N2

√
hσLnax (2.23)

= −
∫
dtdx N

√
hσ

(
∂ax
∂t

)
.
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In terms of the lapse function N(x, t), using (2.18) and (2.17), it takes the following

form

δσW = −
∫
dtdx N

√
hσ

(
1

N
∂t∂xN −

1

N2
∂tN∂xN

)
= −

∫
dtdx N

√
hσ

(
1

N
∂tRxt(H)− 1

N
∂tNax

)
= −

∫
dtdx
√
hσ (∂tRxt(H)− (∂tN)ax) . (2.24)

Expressing ε̃µ Lnaµ in (2.22) in terms of local tangent frame coordinates and using

differential forms will better reveal its geometric nature. Using that the vielbeins

for the temporal and spatial components of the NC metric gµν = hµν − nµnν can be

expressed as

nµν = nµnν , hµν = eµ
AδABeν

B , (2.25)

the foliation 1-form in terms of ADM ccoordinates (2.13) can be expressed as

n = Ndt . (2.26)

We now use Cartan’s formula LXdω = dLXω, which relates the Lie derivative

along a vector field X of a k-form dω to the exterior derivative of the (k − 1)-form

LX ω. Acting with the Lie derivative on dn along nµ, we get

Ln (dn) = dLn n = dLn (N dt) (2.27)

= d(
1

N
∂tN −Nx∂xN)dt

= (∂tax)dt ∧ dx ,

where we used the definition of the Lie derivative in (2.11) and (2.12) and chose Nx

to be zero. Using (2.21), the expectation value of the energy-momentum tensor is
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therefore given by

z
〈
T tt
〉

+ 〈T xx 〉 = ∂tax = ∂t

(
Rxt(H)

N(x, t)

)
= ∂t

∂xN

N
. (2.28)

From equations (2.27) and (2.28), we can see that the 1+1 Lifshitz Weyl anomaly, in

the 1-form picture, is naturally given by the time derivative of the spatially-dependent

lapse function N(x, t) or equivalently the time derivative of ax, which is the solution of

the Frobenius condition (2.18). This makes explicit the relationship between TTNC

geometry, the Frobenius condition and the role they both play in the generating the

1+1 Lifshitz Weyl anomaly.

2.3.2 The 1-form Picture

In this 1-form picture, the torsion is expressed as a 1-form

a = aµdx
µ = at dt+ ax dx . (2.29)

The curvature 2-form Wµν of the torsion 1-form aµ is then given by

W ≡ da =

(
∂at
∂x
− ∂ax

∂t

)
dx ∧ dt . (2.30)

Using at = Nxax, da can be expressed as:

da =

(
∂ax
∂t
−Nx∂ax

∂x

)
dt ∧ dx . (2.31)

Setting at = 0 or equivalently, Nx = 0, we get

da =

(
∂ax
∂t

)
dt ∧ dx . (2.32)
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which illustrates that the 1+1 Lifshitz Weyl anomaly can be directly interpreted as

the curvature of the torsion 1-form aµ. In this picture, we can thus clearly see that

the anomalous gravitational degree of freedom is a direct consequence of the time and

spatial dependence of the lapse function N(x, t).

2.4 Anomaly Cancellation of the z = 1 Lifshitz

Weyl Anomaly

In this section, we show that by restricting the lapse function N(x, t) to one time

slice or foliation leaf by making it only x-dependent, the local Weyl symmetry of the

effective action is restored. We will show that this amounts to solving an equation of

motion for a stationary chiral mode which has one particular solution that gives the

Rindler metric.

To restore the local Weyl symmetry of the induced effective action, the Weyl

anomaly must be canceled. Insisting on the Weyl invariance of the quantum effective

action W [eaµ], amounts to satisfying the equation of motion in (2.23) or (2.24). With

a zero shift vector Nx = 0, and the lapse function parameterized as N(x, t) = eψ(x,t),

the equation of motion is given by

∂t∂x logN = ∂t∂xψ(x, t) = 0 . (2.33)

Since, physically, the Weyl anomaly represents a time-dependent acceleration, or a

non-uniform gravitational field where energy is not conserved, restoring local Weyl

invariance in the effective action is tantamount to having observers with proper ac-

celeration in flat spacetime or having a uniform gravitational field where energy is

conserved. This necessarily means getting rid of the time dependence of the lapse

function N(x, t). Mathematically speaking, restoring the local Weyl symmetry re-
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quires making aµ a closed 1-form, i.e. a flat connection da = 0 with zero curvature

Wµν = 0.

The equation of motion in (2.33) has a general solution given by

ψ(x, t) = ψ1(x) + ψ2(t) , (2.34)

or equivalently, N(x, t) = N1(x)N2(t). Imposing the boundary condition ψ2(t) = 0

or N2(t) = 1 necessarily eliminates this spurious degree of freedom thus making

(2.33) automatically satisfied. As a result, the Weyl anomaly is canceled and hence

ax becomes a conserved charge of the Weyl gauge symmetry. A spatially-dependent

lapse function N(x) gives a family of arbitrary time-independent solutions each of

which lives on a hypersurface of constant time t. Choosing N(x) to be linear is a

particularly interesting choice of coordinates, since with this choice and hxx = 1, the

background spacetime metric in ADM coordinates becomes

ds2 = −(αx)2 dt2 + dx2 . (2.35)

which is the Rindler metric of a hyperbolically accelerated reference frame with co-

ordinates (x, t) with rapidity η = αt. If we label the flat Minkowski spacetime co-

ordinates by (X,T ) and choose Rindler observer with constant proper acceleration

α = 1 and proper time τ equal to coordinate time t, then (X,T ) are related to Rindler

coordinates by the following transformations

T = x sinh(t), X = x cosh(t) . (2.36)

These linear transformations preserve the hyperbolae X2 − T 2 = N2(x) = x2 which

describe the worldlines of a family of Rindler observers at rest for fixed x. These

transformations can be represented by elements of the one-parameter group of Lorentz
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boosts SO+(1, 1) with boost parameter η = αt. An element of the indefinite special

orthogonal group SO+(1, 1) is represented by a 2× 2 real matrix

M(η) =

cosh(η) sinh(η)

sinh(η) cosh(η)

 . (2.37)

In light-cone coordinates, U = X + T, V = X − T , M(η) is diagonalized

M(η) =

eη 0

0 e−η

 , (2.38)

such that area U ∗ V = X2 − T 2 of the hyperbola is preserved. Therefore, the group

SO+(1, 1), in addition to being the group of Lorentz boosts in 1+1 dimensions is also

the group of scale (actually squeeze) transformations that preserve the area U ∗ V of

the hyperbolic worldline of a Rindler observer at a fixed x = x0.

If we define a frame fields e0 and e1 as

e0 = x dt, e1 = dx , (2.39)

which in terms of the dual basis vector field, is given by

nt =
1

x
∂t, nx = ∂x , (2.40)

then the unit timelike vector nµ defines integral curves consisting of the world lines

of a family of Rindler observers each at fixed x = x0. For each such observer, nt is

a Killing vector of the Rindler metric. Since the Lie derivative of the torsion vector

aµ along nµ after canceling the Weyl anomaly is now Ln aµ = 0, aµ is conserved and

nµ satisfies the Frobenius condition n ∧ dn = 0. It is interesting to note that the
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vorticity-free condition of the worldlines of Rindler observers i.e. the vanishing of

the rotation tensor in the Raychaudhuri equation, is the twistless torsion condition

in equation (6.8) of [52].

2.5 The z = 1z = 1z = 1 Lifshitz Weyl Anomaly as the Weyl

Partner of the Lorentz Anomaly

The authors in [16] revealed that the z = 1 (1+1)-dimensional Lifshitz Weyl anomaly

is the Weyl partner of the Lorentz anomaly in 1+1 CFT as we explained in Section

1.2. Here, we elaborate on this interesting connection and see how it works. The

starting point here is a CFT with a local Lorentz anomaly. The idea is to shift the

Lorentz anomaly of a given 1 + 1-dimensional CFT to a foliation dependence, i.e. to

a dependence on nµ and then rewrite the anomalous CFT quantum effective action

in terms of nµ. Concretely, let WCFT be an effective action of a Lorentz-anomalous

CFT. Then, the 1+1 Lifshitz effective action WLif can be defined in terms of WCFT

as follows

WLif[e
a
µ, t

a] ≡ WCFT[−eaµna, eaµña] = WCFT[−nµ, ñµ], 6 (2.41)

where nν and ña ≡ εabnb are arbitrary foliation vectors aligned with the frame fields

eaµ which are defined for a relativistic spacetime as

gµνeaµe
b
ν = ηab (2.42)

ηabe
a
µe
b
ν = gµν , (2.43)

6Note that since, classically, the CFT is locally Lorentz-invariant, WLif is equivalent to WCFT

modulo a local term.
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where ηab is the flat metric in the two-dimensional tangent frame basis. The compo-

nent of the Lorentz spin connection 1-form ωab, in terms of eaµ, is defined as

ωµ
a
b = −ebν∇µe

a
ν . (2.44)

In a 1+1 CFT with local Lorentz anomaly 7, for example, in a chiral CFT,
〈
T µµ
〉

has

an extra term in addition to the Ricci scalar R [1]. This extra term is essentially

how the Lorentz anomaly manifests itself in
〈
T µµ
〉

taken as the variation of WLif[e
a
µ]

with respect to the viebein 1-forms eaµ. This additional term is the divergence of the

Lorentz (spin) connection 1-form ωµab defined in (2.44)

〈
T µµ
〉

CFT
= −2εab∇µω

µ
ab . (2.45)

After identifying local tangent frame i.e. the vielbeins with the foliation 1-forms

e0
µ ≡ nµ, e1

µ ≡ ñµ , (2.46)

the authors in [16], were able to demonstrate that
〈
T µµ
〉

CFT
is indeed the Weyl partner

of the Lorentz anomaly up to the coboundary terms (aρK + ∇̃ρK)

〈
T µµ
〉

CFT
= − 2εab∇µω

µ
ab

= −2∇µ

(
εabeaν∇µeb

ν
)

= 4ε̃ρ(Ln aρ + aρK + ∇̃ρK) ,

(2.47)

where ∇̃µ = hµ
′
µ ∇µ′K is the foliation-projected covariant derivative of a foliation-

tangent tensor and K is the trace of Kµν ( [16]). Thus, we see that the anomalous

7A diffeomorphism anomaly in 1+1 CFT can be shifted to a local frame anomaly by a local
counterterm [1,111].
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local frame rotations of WCFT[eaµ] is exchanged for anomalous Weyl transformations

of the foliation in WCFT[−nµ, ñµ].

For a system of left-handed nL and right-handed nR chiral fermions, the effective

action W [eaµ] has a real part R[eaµ] and an imaginary part I[eaµ] given by [112]

W [eaµ] = (nR + nL)R[eaµ] + (nR − nL) i I[eaµ] , (2.48)

The CFT Lorentz anomaly would then be given by

〈
T µµ
〉

CFT
=

1

192π2
(nR + nL) R + i (nR − nL) εab∇µω

µ
ab . (2.49)

The above equation clearly shows that while the Ricci scalar R will not vanish if

nR = nL, the z = 1 Lifshitz Weyl anomaly, εab∇µω
µ
ab, will disappear if nR = nL

which makes clear the fact that the z = 1 Lifshitz Weyl anomaly is fundamentally

induced by the presence of chirality in the theory. In two dimensions, chiral matter

coupled to external gravity induces a diffeomorphism or local Lorentz anomaly. Thus,

in this sense, the Lifshitz Weyl anomaly is indeed the Weyl partner of the Lorentz

anomaly. It is important to mention that the z = 1 Lifshitz Weyl anomaly has been

derived in [22] from a massless chiral fermion action using the BRST cohomological

approach. The anomaly appeared in the imaginary part of the quantum effective

action as we explained above.

2.6 Discussion and Outlook

In this chapter, we presented an in-depth study of the (1+1)-dimensional Lifhsitz

Weyl anomaly within the framework of Newton-Cartan geometry with torsion. We

presented two different pictures of the anomaly paying special attention to the z = 1
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anomaly which as we explained, turns out to be the Weyl partner of the local Lorentz

anomaly in a (1+1) conformal field theory.

In Chapter 3, we will use the Fujikawa method to derive the z = 1 Weyl anomaly

from a two-dimensional massless chiral fermion action. In Chapter 4, we will derive

the Lifshitz Weyl anomaly from a specific term, called the torsion Chern-Simons

(tCS) term, in a non-relativistic Schrödinger Chern-Simons action. In addition we

will show that the differential form a ∧ da is closed and independent of the choices

of the foliation 1-form nµ and aµ. Hence it defines a cohomology class, known as

Godbillon-Vey class GV (F) in the third real de Rham cohomology group H3(M ;R).
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Appendix

The reader can skip the discussion in this Appendix since it is not required to follow

through with the rest of the material in this dissertation.

In this appendix, we discuss the following three points:

1. Illustrate that the proper mathematical characterization of the Lifshitz Weyl

anomaly described in Section 2.3 is directly related to the geometry and topology

of foliated 2-manifolds and flat line bundles,

2. show that the torsionless NC geometry and NC geometry with temporal torsion

correspond to different types of transverse foliations,

3. and finally, show that non-orientable manifolds, flat line bundles, torsion and

transverse structures are all related to one another.

One key purpose is to demonstrate to the reader, in preparation for Chapter 6,

that the Möbius strip is the simplest most natural manifold on which the integral

of the z = 1 Lifshitz Weyl anomaly does not vanish and thus gives a topological

invariant. A second purpose is to serve as background for Chapter 4 when we show

that a ∧ da is known in the mathematical literature as the Godbillon-Vey foliation

invariant.

Here is a summery of the results of this section. Table 2.1 shows which line sub-

bundles the different geometrical constructs of the NC geometry belong to. Table 2.2

summarizes how different types of transverse foliation with different diffeomorphism
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groups of foliation leaves correspond to different types of the NC geometry. Figure

2.1 depicts the mutual relationship between Z2 torsion in flat line bundles and their

non-orientability, on one hand, and between a transverse (G,M)-structure on a foli-

ation and flat line bundles on the other hand. Thus, we conclude that the Möbius

strip is the topological manifold over which the z = 1 Lifshitz Weyl anomaly does

not vanish. This will discussed in more detail in Chapter 6.

Geometrical Construct (1-form) Line Subbundle
tµ ∈ Γ(N) Normal Subundle N
nµ ∈ Ω1(M) of T ∗M Conormal subbundle N∗ or T ∗M with a metric on M
aµ ∈ Ω1(M) of T ∗M Conormal subbundle N∗ or T ∗M with a metric on M

Table 2.1: The line subbundles associated with a foliation F . The NC geometry
constructs tµ, nµ, and aµ naturally belong to these line subbundles.

Group G Differential Forms NC Geometry
Euclidean Translations of R dω = 0 Torsionless NC
Affine Translations of R dω = θ ∧ ω, dθ = 0 TTNC geometry
PSL(2, R) projective transformations dω = θ ∧ ω, dθ = ω ∧ η, dη = η ∧ θ PSL(2, R) geometry

Table 2.2: Different types of transverse foliation with different diffeomorphism groups
of foliation leaves correspond to different types of the NC geometry
.

In Appendix 2.A, we will first provide a very brief introduction to the concept

of foliated manifolds and the associated geometrical and topological structures. This

will allow us to then place the discussion of the Lifshitz Weyl anomaly in the pre-

vious sections on a firm mathematical ground. More specifically, we will discuss the

different types of flat line bundles associated with a foliated manifold and more im-

portantly, using this framework, why it becomes natural to understand that Lifshitz

Weyl anomaly in (1+1) dimensions is the Weyl partner of the Lorentz anomaly. In

Appendix 2.B, we then move on to describe the different types of transverse folia-

tions and how they naturally map to NC geometry with and without torsion. We

then discuss flat line bundles and how they are related to codimension-1 foliations in

Appendix 2.C.
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Figure 2.3. This figure depicts the mutual relationship between Z2 torsion in flat line
bundles and their non-orientability, on one hand, and between a transverse (G,M)-
structure on a foliation and flat line bundles on the other hand.

We note that due to the fact that this section is mathematically-oriented, we

will not prove any theorem or conjecture that we use in our discussion below but

will instead provide enough references for the interested reader. We will, in partic-

ular, assume some familiarity with the notions of fiber bundles, principal bundles

and (co)homology classes. In the following subsections, we specialize to a codimen-

sion1 foliation although the definitions can be easily generalized to a codimension-1

foliation. Mathematical definitions will clearly be marked as definitions.

2.A The geometry of foliated manifolds

Definition 1: A fiber bundle is a structure (E, M, π, F ), where E, M , and F are

topological spaces and π : E → M is a continuous map (surjective) satisfying a

local triviality condition. The space M is called the base space of the bundle, E the

total space, and F the fiber. The map π is called the projection map (or bundle

submersion). The triviality condition is understood as follows. Every point x ∈ B

has an open neighborhood or cover Uα such that the bundle has an open covering
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{Uα}(α∈A), diffeomorphisms ϕα : π−1(Uα) → Uα × F , and transition functions gαβ :

Uα ∩ Uβ → Diff(F ) such that ϕα = gαβ ◦ ϕβ.

As a concrete and practical example of how fiber bundles are used to formally

describe anomalies especially in two spacetime dimensions, we closely follow the pre-

sentation in [113].

The tangent bundle is an example of a fiber bundle with an associated principle

bundle with structure group (or gauge group) G = SO(2, R). At each point on a

2-manifold M equipped with a metric gµν , one can always write the metric using the

vielbeins as eµ
a

gµν = eµ
aeν

bδab , (2.50)

where a, b = {1, 2} are tangent (or Lorentz) frame indices. The vielbeins eµ
a are

not uniquely defined by (2.50) since the metric is invariant under a local Lorentz (or

frame) transformation with an element Λa
b ∈ SO(2, R)

eaµ → (Λ−1)ab(x)ebµ , (2.51)

eaµ are the components of a Lie-valued 1-form which therefore, in order to ensure

covariance under local Lorentz transformations, require us to introduce a spin con-

nection ωµ with components ωabµ = −ωbaµ transforming in the adjoint representation

of SO(2)

ωµ → Λ−1(x)ωµΛ(x) + Λ−1(x) ∂µ(x) (2.52)

Now assume the manifold M is covered by open subsets Uα and transitions functions

gαβ between those charts. Depending on whether the manifold is topologically trivial

or not, it might not be possible in general to define eaµ globally on the manifold. How-

ever, locally on a chart Uα, it is always possible to find one eaµ(α). At intersections,

Uα ∩ Uβ, we can use either the vielbein e(α) or e(β). The two are equivalent provided
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they are related by Λ(αβ)

e(α)(x) = Λ(αβ)(x) e(β)(x) , (2.53)

and similarly for the spin connection

ωµ = Λ−1
(αβ)(x)ω(β)Λ(αβ)(x) + Λ−1

(αβ)(x) ∂ Λ(αβ)(x)(x) . (2.54)

In this example, Λ(αβ) are the transition functions of the principal SO(2)-bundle

and they encode the non-triviality of the manifold. By definition, a manifold is

topologically nontrivial if it does not admit a unique globally defined vielbein eaµ

such that one cannot choose Λ(αβ) = 1 at any intersection Uα ∩ Uβ. A manifold is,

therefore, topologically trivial if Λ(αβ) = 1 at any intersection is admitted [113].

When the principle bundle admits a flat connection such that F = dA = 0, then

it is flat. However, this does not necessarily mean that the bundle is topologically

trivial since, as we discussed above, the non-triviality of the fiber bundle is detected

or measured by the transition functions gαβ of the bundle that act on the overlap

of the open subsets covering the base manifold M . The Aharonov-Bohm effect is a

famous example of a nontrivial flat principle bundle.

Figure 2.2. The definition of a foliation.
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Next we define a codimension-1 foliation and its associated vector bundles and

then use and use it to mathematically characterize the z = 1 Lifshitz Weyl anomaly.

Definition 2: A codimension-1 foliation [58], [114] of a d-dimensional smooth

manifold M is a decomposition of M into a union of disjoint connected subsets

{Lα}(α∈A), called the leaves of the foliation F , with the following property: Ev-

ery point in M has a neighborhood U and a system of local coordinate maps that act

by submersions8 ϕα : Uα → R, such that for each overlap Uα ∩ Uβ, there is a local

diffeomorphism gαβ
9 of R such that

ϕα = gαβ ◦ ϕβ (2.55)

A local characterization of a foliation F is usually given by the Frobenius theorem:

a codimension-1 foliation is described by a codimension-1 integrable subbundle TF

of the tangent bundle of M , TM , is locally described by a non-vanishing 1-form ϕ

such that

dϕ = θ ∧ ϕ.

We say that dϕ defines the foliation F . Using the language of fiber bundles, associated

to any foliated manifold (M,F) of codimension-1 is a real rank-1 vector bundle N =

TM/TF called the normal bundle. More specifically, a transverse codimension-1

foliated manifold (M,F) amounts to the existence of a nonvanishing section of the

top degree line bundle Λ1N∗ of the conormal bundle N∗ over M . Any identification

of N∗ with a subbundle of T ∗M , obtained say by equipping M with a Riemannian

metric, identifies such a section with a nonvanishing differential form ϕ ∈ Ω1(M) such

that

ϕ(X) = 0 (2.56)

8Note that a fiber bundle is a simple case of a foliation where the submersions ϕα are maps into
the same fiber. Please also note that this definition of a foliation is implicitly making use of the
notion of a foliated atlas.

9This is not to be confused with the metric gµν on M .



55

for X contained in the space Γ(TF) of vector fields tangent to the foliation.

In simple words, a codimension-1 foliation is a partition of a space M into disjoint

connected subsets (leaves) which locally look like copies of Rk, (lines if M is two-

dimensional), stacked on top of each other [58], [115], [114] as shown in Fig. 2.2. A

natural way to think of a leaf is as an immersed submanifold.

Given a codimension-1 foliation of a 2-dimensional manifold M , we have three

different line subbundles :

I. The foliation tangent line bundle TF .

II. The normal bundle overM , N = TM/TF , which when a metric g onM is given,

is defined by the condition g(X, Y ) = 0 for all X ∈ Γ(TF) and Y ∈ Γ(N), the

space of sections of normal vector fields.

III. The conormal line bundle N∗, which when a metric g on M is given, is identified

with the cotangent line bundle T ∗F .

In light of the above, we can now give the foliation 1-forms tµ and nµ both defined

in Section 2.1, a more mathematically-precise definition. While nµ is a section in the

normal line bundle i.e. ∇t ∈ Γ(N), nµ naturally belongs in the space Ω1(M) of the

cotangent line bundle T ∗F . In the 1-form picture of Section 2.3.2, we can see that

the torsion 1-form aµ ∈ Ω1(M). In Section 2.3.1 and in [16] however, aµ is defined as

a foliation tangent vector field which means that it naturally sits in TF rather than

T ∗F .

Given this structure of a codimension-1 foliation, the most important observation

is that we are dealing with the geometry and topology of real line bundles. Since the

torsion 1-form aµ ∈ Ω1(M) is closed when constrained to a foliation leaf, which is a

line in this case, it is a flat connection on the conormal bundle with zero curvature,

i.e. da = 0. This clearly illustrates that the topology of real flat line bundles or

of closed 1-forms is what we want to study in order to be able to characterize the
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topological character of the Lifshitz Weyl anomaly. Indeed, flat line bundles turn out

to intimately related to foliating two-dimensional manifolds, i.e. to codimension-1

foliations in many ways. We will carry out this characterization in Chapter 6.2.

With the above background, we now explain the underlying mechanism followed

by [16] in Section 2.5 to show that z = 1 Lifshitz Weyl anomaly is the Weyl partner

of the Lorentz anomaly of conformal effective actions. Suppose we are given an

effective action of a conformal field theory defined on a 2-manifold M . In addition,

assume the theory, after quantization, breaks local Lorentz symmetry. Since the local

Lorentz symmetry group is SO(2), this means the principle G-bundle, associated to

the tangent bundle over M , has a structure group (or gauge group) G = SO(2). An

effective action which breaks local Lorentz symmetry thus essentially means that the

orthonormal frames, eaµ can no longer be defined SO(2)-valued sections. In other

words, they are not an irreducible represnetation of the SO(2) group. Instead, the

eaµ orthonormal tangent frame decomposes into two separate rank-1 vector fields e0
µ

and e1
µ, which become sections of two different line bundles with a reduced structure

group R∗ = R− {0}.

In terms of foliation geometry, identifying e0
µ with the foliation 1-form nµ means

it becomes a section in the conormal line bundle N∗ or in Ω1(M) of T ∗M , if M is

equipped with a Riemannain metric, while identifying e1
µ with its dual ñµ makes

it a section in the tangent line bundle TF . Both line bundles are defined over 1-

dimensional integral submanifolds, i.e. leaves of the foliation. The torsion 1-form

aµ ∈ Ω1(M) is a flat connection if restricted to a foliation leaf and the conormal line

bundle is therefore flat. This is the underlying mathematical reason of why Lifshitz

Weyl anomaly of a theory defined on a foliated two-dimensional manifold can be

understood as the Weyl partner of the Lorentz anomaly in a two-dimensional theory.

If we can find a foliation of the bundle where aµ cannot be defined globally, then both
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the tangent and conormal line bundles will be topologically non-trivial and we can

thus give the Lifshitz Weyl anomaly a topological characterization.

A natural question therefore is: how does one classify or characterize flat line

bundles? How does one distinguish trivial bundles or from nontrivial ones? We will

partly answer this question below in Sections 2.B and 2.C To answer this question,

we need to first define the notion of a transverse structure on a foliaiton. We do that

in the next subsection.

2.B Transverse structures on a foliation

We will now briefly explain what it means to define a transverse (G,X)-structure on

a foliation following Goldman and Brooks [116]. We will see that different transverse

foliation structures provide the proper mathematical characterization of the three

different types of NC geometry presented in Section 2.1. Transverse (G,X)-structures

are closely related to the topic of foliated fiber bundles which we discuss in the

next subsection and which will ultimately need in Chapter 6 to describe a new two-

dimensional topological invariant.

Definition If X is a k-dimensional manifold, and G a group of diffeomorphisms

of X, we say that F has a transverse (G,X)-structure if the ϕ’s can be taken to be

submersions onto X, and if the transition functions gαβ’s are taken to lie in G.

For our case of interest, X is 1-dimensional manifold and hence G is the group of

diffeomorphisms of R, Diff(R). Since every foliation is locally a submersion ϕα : Uα →

X, we have a codimension-1 foliation of M with leaves defined by ϕ−1
α and where now

gαβ ∈ Diff(R). Let us consider the case when G is a Lie group. According to [115],

Table 2.3, shows the types of transverse structures for a codimension-1 foliation, their

description in terms of differential forms and the corresponding type of NC geometry

they characterize. In Table 2.3, ω is a global 1-form that defines the foliation F .
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Group G Differential Forms NC Geometry
Euclidean Translations of R dω = 0 Torsionless NC
Affine Translations of R dω = θ ∧ ω, dθ = 0 TTNC geometry
PSL(2, R) projective transformations dω = θ ∧ ω, dθ = ω ∧ η, dη = η ∧ θ PSL(2, R) geometry

Table 2.3: Different types of transverse foliation with different diffeomorphism groups
of foliation leaves correspond to different types of the NC geometry
.

It is the clear that ω is identified with the foliation 1-form n and θ is identified

the torsion 1-form a in Section 2.3.2 . Notice that when G = PSL(2, R), which is

the group of projective transformations of the real projective line RP 1, two things

happen: (1) dθ is not closed which is the statement the the Lifshitz Weyl anomaly

is non-vanishing and thus not restricted to a foliation leaf and (2) a non-zero 3-form

θ ∧ dθ 6= 0 exists in three dimensions.

In Chapter 4, we will in fact see that θ ∧ dθ is indeed a Chern-Simons (CS) term

in a centrally-extended Schrödinger-invariant CS theory of gravity that translates

within the SL(2, R) group. The differential form θ ∧ dθ is closed and independent of

the choices of ω and θ. Hence, it defines a cohomology class, known as Godbillon-Vey

class GV (F) in the third real de-Rham cohomology group H3(M ;R). We will have

a lot more to say about the Godbillon-Vey class GV (F) in chapter 4 when we derive

the Lifhsitz Weyl anomaly from a Chern-Simons action.

The other important comment we would like to make is that, as we can see from

the table above, when G is the group of affine translations, dθ = 0, i.e. closed and

therefore, although this type of transverse foliation admits the presence of torsion,

it restricts it to a leaf. But this is exactly what happens when the Weyl invariance

is restored by making the lapse function only x-dependent. Hence, we conclude

that restoring Weyl invariance of the Lifshitz theory or rather canceling the anomaly

necessarily means changing the type of transverse structures of the foliation from

transversely projective to transversely affine.
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2.C Flat line bundles and transverse foliations

In this section, we show how flat line bundles are closely related to transverse (G,M)-

structures of a codimension-1 foliation.

Definition 3: A flat real line bundle [117] over a manifold M is a local sys-

tem of one-dimensional R-vector spaces which is determined by the monodromy ho-

morphsism

MonE : π1(M,x) = R∗ , (2.57)

where π1 is the fundamental group of the manifold M , R∗ = R − {0} is the group

of real numbers under multiplication. This means that the structure group (or the

gauge group) of the bundle is R∗. If Fx is the fiber F over the base point x, then the

monodromy action defines the Fx as vector space of π1(M,x). The fundamental group

[104] of a manifold M is the group of the equivalence classes of loops under homotopy.

It contains information about the holes contained in the manifold. Since R∗ is an

Abelian group, the fundamental group can be identified with the first homology group

of the manifold H1(M) [118].

Any real flat bundle, trivial or nontrivial, determines a cohomology class w1(E) ∈

H1(M ;Z2), the first Stiefel-Whitney class of the bundle E [117]. The important thing

is the class w1(E) itself can be defined in terms of the monodromy representation

MonE : π1(M,x) = R∗ as follows

w1(E) : π1(M,x)→ Z2 = {1,−1} , [γ] 7→ sign (Mon([γ])) . (2.58)

In other words, the class w1(E) assigns an equivalence class of loops in M to an

element of Z2. In this way, the structure group of the bundle has been reduced to Z2,

which tells us that there are two equivalence classes of loops in the bundle that the

class w1(E) records. The first Stiefel-Whitney w1(E) determines the orientability of
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the underlying manifold M . The canonical example of an unorientable manifold is

the Möbius strip which, topologically, is a nontrivial line bundle described by w1(E).

What about w1(E) for a trivial real line bundle? Trivial flat line bundles E have

the first Stiefel-Whitney class w1(E) = 0 and they are in one-to-one correspondence

with the first real, not integral, cohomology group H1(M ; R). This is the case, for

example, of the cylinder which topologically is diffeomorphic to the product space

S1 ×R.

Figure 2.3. This figure depicts the mutual relationship between Z2 torsion in flat line
bundles and their non-orientability, on one hand, and between a transverse (G,M)-
structure on a foliation and flat line bundles on the other hand.

The connection of flat line bundles to transverse (G,M)-structures of a

codimension-1 foliations has been known for more than forty years [119]. Any

flat G-bundle over M is uniquely determined by the same monodromy (or holonomy)

homomorphism for the flat line bundle in (2.57). This essentially means that the

holonomy of a connection on a flat bundle E is equivalent to the holonomy of a

transverse foliation of that of a leaf. For more details and proof of this relationship,

please see [119]. The holonomy of a foliated manifold is a very important concept.

Intuitively, it tells us how the leaves collectively behave together to give the foliation.



61

Thus, not only does it contain information about the fundamental groups of the

leaves (which may vary from leaf to another) but about the foliation itself [120].

On the other hand, the relationship between torsion and non-orientable mani-

folds can be explained by the Chern-Weil theory. The Chern-Weil theory [105] says

that the Chern classes of a flat bundle over a manifold are often non-trivial in in-

tegral cohomology, and hence can be used to distinguish between flat vector bun-

dles [121]. Concretely, the Chern-Weil theory says that the integral Chern classes of

a flat bundle over a compact manifold are all torsion [121]. In particular, over a non-

orientable 2-manifold, there are only two isomorphism types of flat vector bundles

in each dimension: (1) the trivial bundle and (2) the non-trivial bundle, contain-

ing torsion, told apart by their first Chern class in the second cohomology group

c1(E) ∈ H2(M ;Z) = Z2. Figure 2.3 illustrate the mutual relationship between the Z2

torsion in flat line bundles, their non-orientability on one hand and between trans-

verse (G,M)-structure on a foliation and line bundles with a flat connection on the

other hand.
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Chapter 3

The Lifshitz Weyl Anomaly From a

Chiral Field Theory

The key result of this chapter is:

1. Use the Fujikawa method to derive the z = 1 (1+1) Lifshitz Weyl anomaly from

a massless chiral fermion action.

The z = 1 Lifshitz Weyl has been found formally using a cohomological approach.

It would be interesting to derive it from a specific field theory. This is the goal of

Chapter 3. In this chapter, we derive the z = 1 Lifshitz Weyl anomaly from a 2d

massless chiral field theory. We will see why a why chirality is an essential requirement

to get the correct expression of the 2d z = 1 Lifshitz Weyl anomaly. We will uncover

the true nature of the (1+1)d the z = 1 Lifshitz Weyl anomaly as the Weyl partner of

the pure Lorentz anomaly of a 2d quantum effective action as first pointed out in [16].

More specifically, in 3.1, we will use the Fujikawa method to derive the anomaly. By

virtue of the true nature of z = 1 Weyl anomaly discussed in Section 2.5, we will

expand the Dirac operator in the Jacobian of the path integral measure in a chiral



63

spinor basis [12] [59] in order to obtain the correct expression of the z = 1 Weyl

anomaly. We will end this chapter by making a few comments.

In Appendix 3.A, we present an attempt to derive the respective Lifshitz Weyl

anomaly from the simplest z = 1 FPD-invariant action of a massless scalar field

using heat kernel expansion [60]. Up to first order in perturbation theory, we do

not find the relevant Weyl anomaly. Concretely, the final expression of the anomaly

that we obtain consists only of irrelevant or coboundary terms, i.e. terms that can

be removed by adding local counterterms to the quantum effective action. Although

we did not go to second-order perturbation theory in our heat kernel expansion, we

do not expect it would change the parity symmetry x → −x but this remains to be

checked nevertheless. The failure to obtain the induced z = 1 Lifshitz Weyl anomaly

reaffirms the fact this anomaly is only present in a quantum theory with chiral matter

coupled to gravity which is known to suffer from a local Lorentz anomaly.

3.1 The Anomaly From a 2d Massless Weyl

Fermion Action

In this section we use the Fujikawa method [11–14, 59] to derive the z = 1 Lifshitz

Weyl anomaly from a 2d massles chiral fermion action. In the next two subsections, we

set the notations and conventions used throughout this chapter and briefly review the

two necessary ingredients that go into the computation of the Lifshitz Weyl anomaly

which is actually carried in out in Section 3.1.3. In this section, we closely follow the

notations in Appendix A and B of [122].

In Euclidean space, the time coordinate t is Wick-rotated t → it along with

γ0 → iγ0 such that (γµ)† = γµ for all spacetime indices. The γ5 matrix is expressed

in four dimensions

γ5 = −γ0γ1γ2γ3, (3.1)
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and it anti-commutes with the Dirac matrices,

{γ5, γ
µ} = 0 and (γ5)† = γ5. (3.2)

In 2d Euclidean space, the γ matrices are given by

γ0 = iγ4, γ5 = −γ4γ1 (3.3)

while in Minkowski space, they become Pauli σ-matrices

γ0 = σ2, γ1 = iσ1, γ5 = σ3 (3.4)

3.1.1 The spin connection

It is well known that spinor fields do not transform covariantly under the diffeomor-

phim group [1]. Hence, in a theory where fermions are coupled to background gravity,

the orthonormal tangent frame coordinates or vielbeins are used for this purpose. The

coupling is achieved using Cartan’s formalism [100]. To set up the notation, we in-

troduce vielbeins eaµ as

gµν = δabe
a
µe
b
ν , (3.5)

where δab is the flat Euclidean spacetime metric. The inverse vielbeins Ea
µ is then

defined as gµν = δabEa
µEb

ν , and satisfy Ea
µebµ = δba. The components of the spin

connection 1-form ωabµ are then given by [1]

ωabµ = eaν∇µEb
ν = eaν

(
∂µEb

ν + ΓνµλEb
λ
)
. (3.6)
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Using the inverse vielbeins, the γ-matrices are used to define the coupling of the

Dirac operator to the background vilebeins

γµ = γaEa
µ , {γa, γb} = 2δab . (3.7)

The γ-matrices are expressed in terms of their tangent frame counterparts γa and the

spinor covariant derivative

Dµ = ∂µ +
1

8
[γa, γb]ωµ

ab . (3.8)

We then have the following important commutation relation between covariant deriva-

tives

[Dµ, Dν ] =
1

8
[γa, γb]R

ab
µν (3.9)

.

Using (3.8) and (3.9), we then have the following relation for the Dirac operator

(iγµDµ)2 = −DµD
µ − 1

32
[γa, γb] [γc, γd] R

abcd , (3.10)

which after contracting with γaγbγcγd and using the the identity Rabcd+Racdb+Radbc =

0, we get the well-known Lichnerowicz formula for the square of the Dirac operator

written expressed only in terms of the Ricci scalar [122,123]

(iγµDµ)2 = −DµD
µ +

1

4
R . (3.11)

3.1.2 The geodesic interval

The second ingredient that we need in ordet to carry out the computation in Section

3.1.3 is the geodesic interval [124], which is defined as one half the square of the
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distance along the geodesic between any two points x and x′ 1.

σ(x, x′) =
1

2

(∫ x′

x

ds

)2

. (3.12)

The geodesic interval is basically a symmetric function σ(x, x′) of x and x′ that

satisfies the following differential equation

σ(x, x′) =
1

2
(∇µσ)(∇µσ) =

1

2
(∇′µσ)(∇′µσ) (3.13)

with these boundary conditions

σ(x, x) = 0 , lim
x→x′
∇µσ(x, x′) = 0 = lim

x→x′
∇′µσ(x, x′) . (3.14)

In the coincidence limit x→ x′, σ(x, x′) obeys the relation

lim
x→x′
∇µ∇νσ(x, x′) = − lim

x→x′
∇µ∇′νσ(x, x′) = gµν . (3.15)

and thus, the geodesic interval is considered a curved space generalization of its flat

space counterpart σ(x, x′) = (x − x′)2/2. More importantly, σ(x, x′) can be used to

define the delta function on a general Riemannian manifold as follows

1
√
g
δ(x− x′) =

1
√
g

∫
d2k

(2π)2
eikµ∇

µσ(x,x′) . (3.16)

The so-called Synge–DeWitt tensors are defined by coincidence limit x → x′ of

successive covariant derivatives of the geodesic interval, ∇µ∇ν · · · ∇κσ(x, x′). The

lowest-rank Synge–DeWitt tensors are expressed as

[σ] = 0 , [∇µσ] = 0 , [∇µ∇νσ] = gµν . (3.17)

1We closely follow the notation and definitions in Appendix B.2 of [122]
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where [∇µ∇ν · · · ∇κσ] = limx→x′ ∇µ∇ν · · · ∇κσ(x, x′).

3.1.3 Steps of the Derivation

The theory of massless chiral fermions coupled to backgound gravity in 1 + 1 space–

time dimensions can be written as

Sψ =

∫
d2x e ψ iγµDµP−ψ (3.18)

where e =
√
|g|, P− = 1

2
(1−γ5) is the chirality operator, the conjugate field is defined

by ψ = ψ†γ0 and the Dirac operator Dµ is used here as defined in (3.8).

Under local Lorentz transformations with infinitesimal parameter αab , the vielbein

and spinors transform as follows

δLα e
a
µ = −αab ebµ, δLα ψ = −1

2
αabσ

abψ, ψ =
1

2
αabψσ

ab , (3.19)

where σab = 1
4
[γa, γb], the action Sψ changes as

δLα Sψ =

∫
d2x e T µa δ

L
αe

a
µ = −

∫
d2x e T µa α

a
be
b
µ , (3.20)

which implies that a Lorentz-invariant action Sψ dictates a symmetric energy-

momentum tensor

δLα Sψ = 0⇐⇒ T ab = T ba (3.21)

Similarly, the action Sψ is invariant under Weyl transformation of the vielbein

and spinor fields which scale finitely as follows

eaµ
′(x) = eσ(x)eaµ(x), ψ′(x) = e−σ(x)ψ(x), ψ′(x) = e−σ(x)ψ′(x). (3.22)
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Then, under a Weyl transformation with infinitesimal parameter σ(x), they transform

as follows

δWσ e
a
µ = σ eaµ, δWσ ψ = −2σψ, δWσ ψ = −2σψ , (3.23)

the action Sψ changes as

δWσ Sψ =

∫
d2x e T µa δ

W
σ e

a
µ = −

∫
d2x e σ T µµ , (3.24)

which implies that a Weyl-invariant action Sψ dictates a traceless energy-momentum

tensor

δWσ Sψ = 0⇐⇒ T µµ = 0. (3.25)

We now proceed to quantize the classical action Sψ by computing the path integral

only over the fermions. The path integral is defined as

Z =

∫
(Dψ)(Dψ)e−Sψ (3.26)

As pointed out in Section 3.A, it is the path integral measure that carries all the

information about the coupling to a background metric, in this case, a vielbein. The

measure will be expressed as an infinite sum which, to be mathematically well-defined,

must be properly regularized. By properly here, I mean one has to choose the correct

regularization scheme that (1) only breaks the symmetry (or symmetries) for which

the anomaly is calculated while respecting the remaining gauge symmetries of the

path integral such that the correct anomaly and, more importantly, all anomalies are

obtained. Said differently, the Weyl anomaly and in fact, all anomalies, result from

the fact that the regularization methods break the symmetries of the classical action.

In this section, we use the Fujikawa Gaussian regulariztion method to compute

〈T µµ〉. The trick here however, is that despite the fact that this z = 1 Lifshitz anomaly

appears in 〈T µµ〉, as pointed out earlier in Section 2.5, is a direct consequence of the
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presence of chirality in the action as opposed to the conformal anomaly generated

from a non-chiral classical action. Therefore, in order to produce the correct anomaly,

we will have to use the regularization method used in calculating the local Lorentz

anomaly in [59]. More concretely, we will expand the Dirac operator in the chiral

basis in the same way the local Lorentz anomaly is calculated. The presence of the

γ5 matrix in the unregulated sum in the Jacobian of the path integral measure turns

out to play a very important role in obtaining the z = 1 Weyl anomaly.

The following derivation closely resembles that of the gravitational contribution

to the axial anomaly in four dimensions given in [122]. Following [12] [59], we first

define the spinors ψ̃(x) ≡
√
eψ(x) and ψ̃(x) ≡

√
eψ(x) and consider them as the

fundamental fields. We then expand the Hermitian Dirac operator iγµD̃µ in terms of

a complete set of eigen-functions ϕ̃n

(iγµD̃µ)ϕ̃n(x) = λnϕ̃n(x) , (3.27)

which are normalized as

∫
d2x ϕ̃†n(x)ϕ̃m(x) = δnm . (3.28)

The path integral measure is then formally expressed in terms of elements an and bn

of the Grassmann algebra as

(Dψ̃)(Dψ̃) =
∏
n

an
∏
m

bm , (3.29)

after which a general spinor is expanded into a chiral eigen-basis as

ψ̃(x) =
∑
n

anP−ϕ̃n(x), ψ̃(x) =
∑
n

ϕ̃†n(x)bnP+ , (3.30)
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where P± = 1
2
(1± γ5). Under an infinitesimal Weyl transformation (3.23), the coeffi-

cients ãn and b̃n transform as ãn →
∑

mCnmãm and b̃n →
∑

mCnmb̃m, where

Cnm = δnm + i

∫
d2x σ(x)

∑
n

ϕ̃†n(x)γ5ϕ̃n(x) . (3.31)

As a result, the path integral measure picks up a Jacobian factor and transforms as

(Dψ̃)(Dψ̃)→ exp (J [σ]) (3.32)

where

J [σ] = exp

(
−2i

∫
d2x σ(x)

∑
n

ϕ̃†n(x)γ5ϕ̃n(x)

)
. (3.33)

Since the sum in the exponential is not well defined, the primitive or rather unregu-

lated trace of the energy-momentum density therefore reads

〈T µµ(x)〉 = 2
∑
n

ϕ†n(x)γ5ϕn(x) . (3.34)

To regularize this infinite sum, Fujikawa used a Gaussian cut-off [11,12,125]

A(x) = lim
M→∞

∑
n

ϕ†n(x)γ5 e
−(iγµDµ/M)2ϕn(x)

= lim
M→∞

lim
x→x′

tr

∫
d2k

(2π)2
γ5 e

−(iγµDµ/M)2eikµ∇
µσ(x,x′) (3.35)

where in the last line, we switched to momentum basis in curved space and used

geodesic interval defined in (3.13). The trace tr is taken over the Dirac matrices. The

order of limits in the above equation is important. First note that the derivatives of

the Dirac operator are taken with respect to x (and not x′). It is also important that

the action of the operator on exp(ikµ∇µσ(x, x′)) is evaluated before the coincidence

limit x→ x′ is taken. Using Lichnerowicz’s formula defined in (3.11), we then obtain
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the following expression for A(x) [122]

lim
M→∞

lim
x→x′

tr

∫
d2k

(2π)2
eikµ∇

µσ(x,x′) γ5 exp
[ 1

M2

(
(Dµ + i∆µ)(Dµ + i∆µ)− 1

4
R

)]
= lim

M→∞
M2 tr

∫
d2k

(2π)2
e−kµk

µ

γ5 exp

(
1

M2
DµD

µ +
2i

M
kµD

µ − 1

4M2
R

)
. (3.36)

Acting with the operator (iγµDµ)2 in (3.35), replaces Dµ with its counterpart in

curved space Dµ + i∆µ, where ∆µ(x, x′) = kν∇µ∇νσ(x, x′), gives the first line in

(3.36). Then, taking the limit x → x′ replaces ∆µ(x, x′) by kµ using the relation in

(3.15) which gives the second line in (3.36). Note that kµ has also been rescaled to

Mkµ.

Next, we expand the exponent in (3.36) in power series of 1/M . As a result, only

terms up to order 1/M2 will survive in the limit M →∞. In addition, terms in the

expansion with less than two Pauli matrices will vanish using their trace identities.

Hence, it is clear that the Ricci scalar term in the exponential will not contribute

since it contains no Pauli matrices and the non-vanishing contribution to the trace

will therefore come from the DµD
µ term [122].

In two Minkowski as well as Euclidean spacetime dimensions, the Dirac-γ matrices

become Pauli matrices and in particular the γ5 matrix is σ3 for the former and iγ4γ1.

After dropping all lower order terms, with zero trace, and all higher order terms,

which vanish in the limit M →∞, we get the following expression [122]

A(x) = tr

∫
d2k

(2π)2
e−kµk

µ

σ3

(
1

2
(D2)− 2kµkνD

µDν

)
. (3.37)

The integrals over k can be carried out by using a unit vector k̂µ kµ = kk̂µ with

kµk
µ = k2. Using the following identity [122]

∫
d2k

(2π)2
e−k

2

k2 k̂ak̂b =
1

2
δab

2π

(2π)2

∫ ∞
0

dk k3e−k
2

=
1

16π
δab (3.38)
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and the definition of the Dirac operator in (3.8), we finally get

A(x) =
1

16π
tr (σ3DµD

µ) I (3.39)

=
1

16π
trσ3

(
∂µ +

1

4
σ3 ωµ

)(
∂µ +

1

4
σ3 ω

µ

)
I

=
1

32π
(∂µ ω

µ + ωµ ∂
µ) I

=
1

32π
(∂µ ω

µ)

=
1

32π

(
εab∂µ ω

µ
ab

)
where we used the trace identity of Pauli matrices tr (σασβ) = 2δαβ and the fact that

in the definition of the Dirac operator [γa, γb] becomes [σ1, σ2] = 2σ3. The identity

operator I inserted above has been always implicit when the operator (iγµDµ)2 acted

on eikµ∇
µσ(x,x′) in (3.36) and it is the reason why the term ωµ ∂

µ simply vanishes. Thus,

we are left finally with the exact same expression that in Section 2.5, we learned is in

fact the z = 1 Lifshitz Weyl anomaly.

3.2 Discussion and Outlook

In this chapter, we attempted to derive the z = 1 Lifshitz Weyl anomaly from two

different 2d field theories. In Section 3.A, we used the heat kernel method to derive

the Lifshitz Weyl anomaly from the simplest z = 1 action of an FPD-invariant action

of a massless scalar field coupled to background non-relativistic gravity. As we have

seen, this action actually failed to produce the relevant anomaly in the sense that the

final expression of the trace of the diagonal matrix element consisted only of irrelevant

or coboundary terms, i.e. terms that can be removed by adding local counterterms.

In Section 3.1.3, we used the Fujikawa method to derive the z = 1 2d Lifshitz

Weyl anomaly from the action of a chiral massless fermion coupled to relativistic

gravity. We showed that only by expanding the spinors in a chiral basis, we were to



73

obtain the correct expression of the Weyl anomaly. This, in turn, confirmed the fact

that the z = 1 Lifshitz anomaly is indeed the Weyl partner of the Lorentz anomaly

of (1+1)-dimensional conformal field theory.

It is important to mention however that this z = 1 Weyl anomaly
(
εab∂µ ω

µ
ab

)
is a

consistent anomaly, i.e. obeys the WZ consistency conditions described in Section 1.2

not a covariant anomaly, i.e. the anomalous current, here the 〈T µµ 〉 = 1
16π

(∂µ ω
01µ),

is not gauge covariant. This is of course obvious since 〈T µµ 〉 depends explicitly on the

spin connection. In addition, since this z = 1 Lifshitz Weyl anomaly, one should not

expect it to be covariant in a theory that breaks relativistic invariance to start with.

It is well know that by adding a local Bardeen-Zumino polynomial Pµµ to 〈T µµ 〉, one

get obtain a covariant anomaly from a consistent one [1, 23].

Finally, we would like to make an interesting observation. Consider the 2d Dirac

theory of a free massless theory

Sψ =

∫
d2x e ψ iγµDµψ . (3.40)

Suppose we want to calculate the chiral anomaly of this action. The classical action

in (3.40) is invariant under the following chiral transformations

ψ → eiα(x)γ5ψ , ψ → ψeiα(x)γ5 . (3.41)

If we follow the exact same procedure of quantizing this classical action using the

Fujikawa method with Gaussian regulator, we get the same exact Jacobian factor in

(3.33). Carrying out the same steps in Section 3.1.3, we obtain an expression for the

2d chiral anomaly that is exactly the same as that of the Lifshitz Weyl anomaly in

(3.39).

Recently, a surprising development in computing trace anomalies of 4d field theo-

ries did occur. It was shown in [126] that the imaginary part of the quantum effective



74

action of a chiral field theory contains the parity-odd Pontryagin term which meant

that the anomalous trace is given by

〈
T µµ
〉

= −β1C
2 − β2E4 − α2R− β4P4 (3.42)

where C2 is the square of the Weyl tensor, E4 is the Euler density and P4 is the

parity-odd Pontrayagin term. Here β4 is a purely imaginary coefficient β4 = i
48π2 . On

dimensional grounds, the P4 is a possible term but it has been strongly believed that

this term does vanish in actual calculations [127]. As emphasized in [127], the relation

between parity-odd terms and anomalies in four spacetime dimensions in relation to

diffeomorphism anomalies has long been been known [128]. The surprise here is the

appearance of this term in the trace anomaly.

The appearance of the parity-odd Pontryagin term in the trace anomaly and its

relationship to diffeomorphism anomalies bears a striking similarity to our discussion

of Weyl partners in two spacetime dimensions. The z = 1 Lifshitz Weyl anomaly is

parity odd and appears, as discussed in Section 2.4, with an imaginary coefficient in

the 2d effective action

〈
T µµ
〉

=
1

192π
(nR + nL) R + i (nR − nL) εab∇µω

µ
ab . (3.43)

This begs the question of whether one can explain this surprising appearance of the

Pontrayagin term in the 4d trace anomaly using the rationale of a Weyl partner of

the diffeomorphism anomaly.
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Appendix

3.A An FPD-invariant Free Massless Scalar Field

In this Appendix, we present an attempt to derive the respective Lifshitz Weyl

anomaly from the simplest z = 1 FPD-invariant action of a massless scalar field

using heat kernel expansion [60].

Consider the following FPD-invariant action of a free massless scalar field

∫
dx dt

√
ggµν (∂µφ) (∂νφ) +

√
ggtt (∂tφ) 2 (3.44)

We can, using an FPD transformation, (5.5) t → t̃(t), xi → x̃i(xi, t), get to a

coordinate system where the metric gµν is diagonal, and some first derivatives are set

to zero. In particular, assume an FPD transformation at a given point p where

g̃tt =

(
∂t̃

∂t

)2

gtt (3.45)

g̃xt =

(
∂x̃

∂x

)(
∂t̃

∂x

)
gxx +

(
∂x̃

∂t

)(
∂t̃

∂x

)
gtx +

(
∂x̃

∂x

)(
∂t̃

∂t

)
gxt +

(
∂x̃

∂t

)(
∂t̃

∂t

)
gtt

=

(
∂x̃

∂x

)(
∂t̃

∂t

)
gxt +

(
∂x̃

∂t

)(
∂t̃

∂t

)
gtt .
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where in the last step, we use that
(
∂t̃
∂x

)
= 0 to kill the first two terms. Given the

above transformation, we can now solve for

g̃xt = 0 =⇒ 0 =

(
∂x̃

∂x

)(
∂t̃

∂t

)
gxt +

(
∂x̃

∂t

)(
∂t̃

∂t

)
gtt (3.46)

=

(
∂t̃

∂t

){(
∂x̃

∂x

)
gxt +

(
∂x̃

∂t

)
gtt

}
=⇒

(
∂x̃

∂t

)
= −g

xt

gtt

(
∂x̃

∂x

)
.

Using the transformation in (3.46), we now have a diagonal form for gµν , which

amounts to taking the shift vector N i = 0. From now on, consider following action

SFPD =

∫
dx dt

√
g
(
gxx (∂xφ) (∂1φ) + gtt (∂tφ) 2

)
. (3.47)

The classical action SFPD[g, ϕ] is invariant under infinitesimal local Weyl transfor-

mation of the background metric with parameter σ(x): gµν → (1 + σ(x))gµν , the

variation in the classical action SFPD[g, ϕ] is:

δWσ SFPD[g, φ] = −1

2

∫
d2xT µν δgµν = −1

2

∫
d2x σ(x)T µµ , (3.48)

where

T µν =
2
√
g

δS[g, φ]

δgµν(x)
. (3.49)

This invariance of S[g, φ] under local Weyl transformation implies that classically

T µµ = 0 . (3.50)

However, the situation is different when we try to quantize the action SFPD[g, ϕ]

which we do by computing the path integral Z[g] only over the scalar field φ

ZFPD[g] =

∫
[dφ]g e

−S[g,φ] = e−WFPD[g] , (3.51)
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where WFPD[g] is the FPD-invariant quantum effective action, the variation of which

under a local Weyl transformation gives after replacing gµν → (1 + σ(x))gµν is given

by

δWσ WFPD[g] = −1

2

∫
d2x
√
g σ(x) 〈T µµ(x)〉 , (3.52)

where the expectation value of the trace of the energy-momentum tensor is defined

as

〈T µν〉 =
2
√
g

δW [g]

δgµν(x)
, (3.53)

and therefore the a non-zero 〈T µν〉 gives the Weyl or trace anomaly.

3.A.1 Steps of the calculation

In what follows, we follow the steps in Appendix 5A and 5B of [44] to calculate the

Weyl anomaly starting from the SFPD classical action in (3.44). The computation of

the Weyl anomaly eventually comes down to calculating the following trace

δW =
1

2
Tr
(
σ e−ε∆FPD

)
= −1

2

∫
dx dt δσ(x, t) 〈x, t|eε∆FPD |x, t〉 (3.54)

where the operator

∆FPD =
1
√
g
∂x
√
ggxx∂x +

1
√
g
∂t
√
ggtt∂t (3.55)

is the FPD counterpart of the fully covariant Laplace-Beltrami operator 1√
g
∂µ
√
ggµν∂ν

which is used to covariantly couple a free scalar field to a relativistic background

metric. Here ε is an infinitesimal proper time parameter that we take to zero at the

end of the calculation. However, before we get to the actual steps of the calculating

this trace in Section 3.A.2, we will first make some necessary definitions and expand

∆FPD to second order which we do below.
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Let us write, in the vicinity of a point p, the metric in coordinates where

gtt = 1, ∂tg
tt = 0, ∂2

t g
tt = 0 (3.56)

gxx = 1, ∂xg
xx = 0, ∂2

xg
xx = 0, gxt = 0

We then perturbatively expand gtt and gxx in δx and δt taking gxt=0, again the in

the vicinity of a point p as follows

gtt = 1 + Apδx+
1

2
(∂xA)p δx

2 +
1

2
(∂tA)p δxδt (3.57)

gxx = 1 +Bpδt+
1

2
(∂tB)p δt

2 +
1

2
(∂xB)p δxδt

where

A = ∂xg
tt (3.58)

B = ∂tg
xx

Now let ∆t be the time component of ∆FPD

∆t ≡
1
√
g
∂t
√
ggtt∂t = gtt∂2

t +
(
∂tg

tt
)
∂t + gtt

(
1
√
g
∂t
√
g

)
∂t (3.59)

= gtt∂2
t +

(
∂tg

tt
)
∂t − gtt

(
1

2
∂t log

(
gttgxx

))
∂t

= gtt∂2
t +

1

2

(
∂tg

tt
)
∂t −

1

2

gtt

gxx
(∂tg

xx) ∂t .

The spatial part of ∆FPD, ∆s, is similarly defined by replacing gtt with gxx and ∂t

with ∂x in ∆t . In terms of A and B, ∂tg
tt and ∂tg

xx read

∂tg
tt =

1

2
(∂tA)p δx; ∂xg

xx1

2
(∂xB)p δt (3.60)

∂tg
xx = B + (∂tB)p δt+

1

2
(∂tB)p δx .
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Expanding gtt

gxx
(∂tg

xx) and ∂t to second order, ∆t gives

∆t =

(
∂2
t −

B

2
∂t

)
+ C1∂t + C2∂

2
t , (3.61)

where the coefficients C1 and C2 are given by

C1(x, t) =

(
−
A (∂xB)p

4
−
B (∂xA)p

4

)
δx2 (3.62)

+

(
AB2

2
−
B (∂tA)p

4
−
A (∂tB)p

2
+
B (∂xB)p

2

)
δtδx

+

(
−AB

2
+

(∂tA)p
4
−

(∂xB)p
4

)
δx

+

(
B2

2
−

(∂tB)p
2

)
δt+

(
−B

3

2
+

3B (∂tB)p
4

)
δt2

C2(x, t) = Aδx+
1

2
(∂tA)p δtδx+

1

2
(∂xA)p δx

2 .

3.A.2 The trace of the heat kernel

With the expansion of ∆FPD in (3.61), we now evaluate the trace in (3.54) using the

heat kernel expansion. Concretely, we want to evaluate ε → 0 limit of 3.54 which is

dominated by the short distance behavior of the heat kernel trace 〈x, t| eε∆FPD |x, t〉.

The heat kernel expansion to first order in ε is given by

Gε (t0, x0; t, x) = G0 (t0, x0; t, x; ε) +∫ ε

0

ds

∫ ∞
−∞

dx dt

∫ ε

0

ds Gε−s (t0, x0; t, x)

(
C1(x, t)

∂

∂t
+ C2(x, t)

∂2

∂t2

)
× Gs (t, x; t0, x0) ,

(3.63)
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where G0 (t0, x0; t, x; ε) is the free propagator. G0 (t0, x0; t, x; ε) can be computed by

carrying out the following Gaussian integral in momentum or k-space

G0 (t0, x0; t, x; ε) =

∫ ∞
−∞

dk eεk
2−i B

2
ε k ei k(t−t0) (3.64)

=
πe−

(Bε+2(t0−t))
2

16ε e−
(Aε+2(x0−x))

2

16ε

2πε
.

We note that

Gε (t0, x0; t0, x0) =
πe−

(Bε)2

16ε e−
(Aε)2

16ε

2πε
(3.65)

∼ π

2πε
e
−ε
16 (B2+A2) ∼ 1

2ε
− 1

32

(
B2 + A2

)
.

Using the transnational invariance of Gε (t0, x0; t, x), one can take x0 = t0 = 0. Then,

Gε (t0, x0; t, x) can be simplified to

Gε (0, 0; t, x) =
e−

(Bε+2t)2

16ε e−
(Aε+2x)2

16ε

4πε
(3.66)

We now proceed to evaluate the next term in the expansion (3.63) which is given by

the following integral

∫ ε

0

ds ε

∫ ∞
−∞

dx dt

∫ ε

0

ds Gε−ε (0, 0; t, x)

(
C1(x, t)

∂

∂t
+ C2(x, t)

∂2

∂t2

)
× Gε (t, x; 0, 0) +

(
A↔ B,

∂

∂t
−→ ∂

∂x

)
,

where s represents the proper time integration variable and ε = εs. There are three

integrals that must be evaluated in (3.67): The x, t, and s integrals. We first carry out

the x and t integrals before we expand to first order in ε to the obtain the following



81

non-vanishing terms,

(
(A2 −B2 +B − A− A2(s− 1) + A(−1 + s)) (s− 1)

8π

)
(3.67)

Integrating (3.67) over s

∫ s=1

s=0

ds

(
(A2 −B2 +B − A− A2(s− 1) + A(−1 + s)) (s− 1)

8π

)
, (3.68)

gives after simplification and interchanging A with B

− 1

12

(
2A2 + 2B2 +B + A

)
π . (3.69)

Expanding the zeroth order correction (3.64) to first order in ε gives

1

4πε
+
−A2 −B2

64π
+
−A2 −B2 +B + A

24π
, (3.70)

Adding everything together in (3.69) and (3.70) then gives the final expression

〈x, t|eε∆FPD |x, t〉 =
1

4πε
− 11A2

192π
− 11B2

192π
+

B

24π
+

A

24π
(3.71)

=
1

4πε
− 11

192π

((
∂xg

tt
)

2 + (∂tg
xx) 2

)
+

1

24π

(
∂2
t g

xx + ∂2
xg

tt
)

=
1

4πε
− 11

192π

[(
∂xN

−2
)2

+ (∂t h
xx)2

]
+

1

24π

(
∂2
t h

xx + ∂2
xN

−2
)

where in the last step we used the ADM metric in (2.13) to substitute for A and

B. We can directly see that 〈x, t|eε∆FPD |x, t〉 contains only two spatial and two time

derivatives of the matrix elements. As explicitly presented in [16], these terms are

coboundary terms that can be removed by adding local counterterms to the effective

action, and therefore, we conclude that an FPD-invariant theory of a free massless

scalar in two spacetime dimensions does not generate the Lifshitz Weyl anomaly.
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As also explained in Section 7.1 of [16], these terms are actually directly related to

the decomposition of the Ricci scalar in ADM coordinates. However, since the Ricci

scalar is a coboundary in the Lifshitz cohomology, as opposed to being a cocycle in

the conformal cohomology, it can removed by adding local counterterms.

As we mentioned at the beginning of this Appendix, this heat kernel calculation is

limited to first-order perturbation theory. Going to second order in perturbation the-

ory remains to be checked although we do not expect it to break the parity symmetry

required to generate the correct z = 1 Weyl anomaly.
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Chapter 4

The Lifshitz Weyl Anomaly From

A Non-relativistic NRSCS Action

The key result of this chapter is:

1. Derive the z = 2 Lifshitz Weyl anomaly from a 2+1-dimensional (3D) non-

relativistic Schrödinger-invariant Chern-Simons action (NRSCS) on a manifold

with a boundary.

The bulk of ideas and calculations in this chapter appears in [109].

In this chapter, we derive the z = 2 Lifshitz Weyl anomaly from a 2+1-dimensional

(3d) non-relativistic Schrödinger-invariant Chern-Simons action (NRSCS) on a man-

ifold with a boundary. The boundary theory is a z = 2 Lifshitz theory coupled to

TTNC geometry. This 3d NRSCS action was recently constructed by gauging the

centrally-extended Schrodinger algebra which made dynamical the TTNC geometry.

In the metric formalism, it was then shown that the NRSCS action is indeed equivalent

to a three-dimensional non-projectable z = 2 conformal or Weyl-invariant HL theory

of gravity which is the counterpart of relativistic conformal gravity [89]. As we will

discuss below, this NRSCS action contains two terms which do not contribute to the
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solution of the bulk equation of motion. In this section, we place the 3d NRSCS action

on a manifold with boundary and show that one of these two terms, the tCS term,

does in fact induce the z = 2 (1+1)-dimensional Lifshitz Weyl anomaly in (2.22). In

fact, the authors in [89] wondered if one of these two terms would correspond to a

boundary Weyl anomaly. Let us emphasize again that the (1+1)-dimensional Lifshitz

Weyl anomaly we are discussing in this paper is universal i.e. true for all values of

z. Therefore, throughout the discussion in this section, the relevant dual boundary

theory is a z = 2 Lifshitz theory with a background TTNC geometry.

In addition to being an anomaly of a Lifshitz gravitational effective action, the

1+1 Lifshitz Weyl anomaly is also parity-odd and time-reversal symmetry breaking.

This strongly suggests that we should be looking for a bulk 2+1-dimensional Chern-

Simons gravity action that, on-shell, and asymptotically, has the same symmetries

of a 1+1 Lifshitz effective action living on the boundary. To reproduce the Weyl

anomaly of the boundary Lifshitz effective action, we require that the bulk gravity

action be conformal or more precisely, Weyl-invariant under anisotropic local Weyl

transformations only in the bulk. The solution of this bulk gravity action must also

be a Lifshitz metric in 2+1 spacetime dimensions.

One last requirement is the bulk gravity action must be one that contains temporal

torsion terms since, as we discussed in Section 2, the (1+1)-dimensional Lifshitz

Weyl is generated by coupling the Lifshitz classical action to a background metric

with temporal torsion. Thus, a candidate 3d gravity action that satisfies all of these

requirements is that of a (2+1)-dimensional Weyl-invariant CS non-projectable (NP)

HL gravity action.

The layout of this chapter is as follows. In Section 4.1, we review some background

material for this section. After briefly reviewing the Schrödinger group and algebra,

we discuss also review how gauging the Poincare algebra naturally produces the ge-

ometric constructs of Riemannian geometry. This should serve as background for
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Sections 4.2 and 4.3. The key properties of the NRSCS action are reviewed in Section

4.2. In preparation for the derivation of the tCS term in Section 4.3, we very quickly

review how the Lorentz anomaly has been derived holographically from a relativistic

gravitational CS action in [90]. In Section 4.3, we derive the z = 2 Lifshitz Weyl

anomaly from the NRSCS action. In Section 4.4, we will discuss several other aspects

related to the derivation in 4.3, in particular, its relation to the Abelian Laughlin

state in the quantum Hall effect (QHE) and whether the derivation represents a new

type of anomaly inflow associated with the Lifshitz Weyl anomaly. Other aspects of

the NRSCS action will also be discussed.

In Appendix 4.A, we study some of the mathematical aspects of the tCS term

where we will show that the tCS term corresponds to a foliation invariant known as

the Godbillon-Vey GV (F).

4.1 Background

One of the most well-studied non-relativistic symmetry groups is the Schrödinger

group. The Schrödinger group Sch(D) in D spatial dimensions is defined by the

following spacetime transformations [129]

t→ t′ =
at+ b

ct+ d
, r→ r′ =

Dr + vt+ a

ct+ d
; ab− cd = 1 , (4.1)

where v and a are the velocity and acceleration vectors respectively while D is scale

factor. In [130,131], it was shown that the Schrödinger group Sch(D) is the symmetry

group of the Schrödinger equation. The group Sch(D) acts projectively on the space

of solutions φ(t, r) of the Schrödinger equation [129].

Let us now consider the non-relativistic Schrödinger algebra of the Schrödinger

group in D = 2 spatial dimensions. It contains the Galilean algebra as a subalgebra
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which has following non-zero commutation relations of the group generators

[Jab , Pc] = δacPb − δbcPa , [Jab , Gc] = δacGb − δbcGa , [H ,Ga] = Pa (4.2)

where in (2+1) dimensions a = 1, 2, Jab are the angular momentum generators, Pa

the generators of momentum, Ga the generators of Galilean transformations and H

is generator of time translations. The Bargmann algebra is another well-studied non-

relativistic algebra which is basically the Galilean algebra plus a central extension:

[J , Pa] = εabPb , [J ,Ga] = εabGb , [H ,Ga] = Pa, [Pa , Gb] = Nδab (4.3)

The extended Schrödinger algebra is a combination of the Bargmann and SL(2, R)

algebras with central extensions. It has the following non-zero commutations rela-

tions:

[W ,H] = −2H , [H ,K] = W , [W ,K] = 2K

[H , Y ] = −Z , [H ,S] = −2Y , [K ,Y ] = S ,

[K ,Z] = 2Y , [W ,S] = 2S , [W ,Z] = −2Z , (4.4)

where W is the generator of scale (Weyl) transformations, K is the generator of spe-

cial conformal transformations, and Y, Z, S are central extensions of the Schrödinger

algebra.

The Schrödinger group has been introduced in [130, 131] as the non-relativistic

analogue of the conformal group in D dimensions. Schrödinger symmetry has been

used in a wide variety of applications [132], [129], for example, non-relativistic field

theory [133–136], gauge-gravity duality [67,137], higher-spin theories [138], hydrody-

namics [139–141] or dynamical scaling [132,142] and many others.
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Gauging a symmetry algebra i.e. by associating a gauge field with each symmetry

generator of the algebra, one can obtain a specific geometry described in terms of co-

variant derivatives, curvature tensors along with consistency conditions. For example,

gauging the Poincare algebra gives the familiar Riemannaian geometry from which

relativistic theories gravity are constructed [86]. Thus, there is a strong relationship

between a symmetry algebra, geometry and gravity theories. This relationship is

clearest in three dimensions where a (2+1)-dimensional CS theory becomes equiva-

lent to an Einstein theory of gravity.

Let us demonstrate how the gauging procedure works for the Poincare algebra.

We closely follow the example in [86] for this purpose. Take A = AaµTadx
µ to be a

connection 1-form of group G on a 3-manifold M , i.e A is the vector potential of a

gauge theory with gauge group G and let the generators of its Lie algebra G be Ta.

The Chern-Simons action for A is then given by

SCS[A] =
k

4π

∫
M

Tr

[
A ∧ dA+

2

3
A ∧ A ∧ A

]
(4.5)

where k is the CS level and Tr is the non-degenerate invariant bilinear form on the

Lie algebra G. The Euler-Lagrange equation of motion of (4.5) is given by

F [A] = dA+ A ∧ A = 0 , (4.6)

Hence, A is a flat connection. However, being flat, does not necessarily mean that the

principal bundle over which A is defined is topologically trivial. The Aharonov-Bohm

effect is a prime example of a such a nontrivial flat connection.

Now let G be the Poincare group SO+(2, 1) and Ja be the generator of Lorentz

transformations, P a the generator of translations with the following commutation
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relations

[
Ja, J b

]
= εabcJc[

Ja, P b
]

= εabcPc[
P a, P b

]
= 0. (4.7)

If we define the group’s invariant bilinear form via

Tr(JaP b) = ηab (4.8)

Tr(JaJ b) = Tr(P aP b) = 0 (4.9)

and write the connection one form as

A = eaPa + ωaJa (4.10)

then up to boundary terms, the Chern-Simons action (4.5) is the same as the Einstein-

Hilbert action (4.11) with zero cosmological constant Λ = 0 and k = 1
4GN

S =
1

8πG

∫ [
ea ∧ (dωa +

1

2
εabcω

b ∧ ωc) +
Λ

6
εabce

a ∧ eb ∧ ec
]
. (4.11)

4.2 Key Properties of the NRSCS Action

In a similar fashion, gauging the extended Schördinger non-relativistic algebra, i.e. by

letting the gauge field A take its value in the centrally-extended Schrödinger algebra

and can thus be expanded as a linear combination of the generators of the algebra [89]

A = Hτ + Pae
a +Gaω

a + Jω +Nm+Wa+Kf

+Sζ + Y α + Zβ , (4.12)
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where H, Pa, Ga, J , N , W , K are the generators of time translations (the Hamilto-

nian), momentum translation, Galilean boosts, rotations, central charge, Weyl trans-

formations and special conformal transformations, respectively.1 The three central

extensions of the Schrodinger group are S, Y and Z respectively. Using the metric

on this non semi-simple Lie algebra, the NRSCS action as given in [89] is

SNRSCS[A] =

∫
M

Tr

[
A ∧ dA+

2

3
A ∧ A ∧ A

]
=

∫
M

Tr c1LNRSCS+c2 [a ∧ da− τ ∧ df + 2a ∧ τ ∧ f ] + 2c3ω ∧ dω(4.13)

=

∫
M

Tr c1LNRSCS + c2 LtCS + 2c3ω ∧ dω . (4.14)

For c2 = c3 = 0, SNRSCS[A] is equivalent to a bulk 3d action of non-projectable con-

formal HL gravity. In SNRSCS[A], the Chern-Simons level k
4π

has been omitted. The

arbitrary constants ci are defined in terms of the symmetric bilinear form invariant

under the Schrodinger algebra, i.e. B(Vi, Vj) = ci and Vi is a generator of the algebra.

For example, B(W,W ) = 2c2. A key observation is that aµ is the gauge field of

the dilatation symmetry. The curvature of the torsion gauge connection is given by

R(W ) = da− 2df where fµ is the gauge field associated with the generator of special

conformal transformations K. (In this section K is not the trace of the extrinsic

curvature). Therefore, one should expect that a boundary Weyl anomaly would be

generated by the tCS term in the action.

As we pointed out before in Section 2.1, we emphasize again here that the role of

adding torsion is to make the gauge connection dilatation-covariant. In other words,

the role of the gauge field of dilatations (or scaling transformations) is to introduce

torsion in the NC geometry. There are two ways to add torsion to the NC geomtry.

The first is by gauging the Bargmann algebra which we followed in Section 2.1, where

1The generator of scale or dilatation transformation in [89] is denoted by D which we reserve in
thesis to denote the number of spatial dimensions.
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torsion results directly from imposing the R(H) = 0 constraint. The second way

of adding torsion to the NC geomtry is by gauging the conformal non-relativistic

Schrödinger algebra which gives the (NRSCS) action.

With c2 = c3 = 0, the NRSCS action (4.2), satisfies a bulk equation of motion

F = dA+A∧A = 0 that gives a z = 2 Lifshitz metric ds2 = −dt2

r4
+dr2

r2
+dx2

r2
. Therefore,

the bulk theory represented by the NRSCS action is Weyl-invariant. However, the

tCS term whose coefficient is c2, transforms under the SL(2,R) subgroup of the

Schrodinger algebra and as discussed in [89] cannot be removed by a field redefinition

and therefore, as noted there, it may lead to a Weyl anomaly at the boundary. The

sole contribution of the tCS term when added to an on-shell bulk HL theory of gravity

is to induce a Weyl anomaly of a Weyl-anomalous dual boundary theory. This is

because, as discussed above, it does not contribute to the solution of the bulk z = 2

HL gravity theory.

Before we get into the derivation of the boundary Lifhsitz Weyl anomaly, we very

briefly highlight the key steps of deriving, holographically, the Lorentz (or diffeomor-

phism) anomaly of a 2d boundary CFT from the gravitational CS (gCS) term added

to a Lorentz-invariant 3d bulk gravity theory [90]. In terms of the spin connection ω,

the gCS action defined in terms of the CS 3-form Ω3(ω) is given by

SgCS(ω) =

∫
M

Ω3(ω) =

∫
M
Tr(ωdω +

2

3
ω3) (4.15)

Under a local Lorentz transformation with parameter αab , δ
L
α ω

a
bµ = ∂µα

a
b + ωaµcα

c
b −

αacω
c
bµ, the gCS action changes by a boundary term [90]

δSgCS =

∫
∂M

Tr(αdω) (4.16)

In a holographic context, this means that while the bulk 3d gravity theory is Lorentz-

invariant, the boundary effective action is not. The Lorentz anomaly of the boundary
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theory W [eaµ] is given by

δαW [eaµ] = −
∫
∂M

d2x eαabTab (4.17)

If we compare the bulk variation of the gCS action to the anomalous variation of the

boundary conformal effective action, we then get

δαW [eaµ] =
cL − cR

96π

∫
∂M

Tr(αdω) (4.18)

where the cL and cR are left and right central charges of the chiral effective active on

the boundary. For more details, please see Sections 3 and 4 in [90].

4.3 The Lifshitz Weyl Anomaly from the tCS

Term

Denote the (2+1) on-shell HL gravity action by SHL. Using the developed machinery

of non-relativistic holography [85, 143], which started when Lifshitz and Schrodinger

spacetime solutions to relativistic actions of gravity were found [67, 69, 70, 137], the

variation of the on-shell HL action at low energies and to leading order in the metric

can be expressed in terms of the TTNC geometry on the boundary

δSHL =

∫
d3x
√
g(0)T ijg

(0)
ij , (4.19)

where d3x ≡ dtdxdr and
√
g(0) = N (0)

√
h(0) is the metric in terms of the bound-

ary lapse and shift vectors and T ijgij is identified with the trace of the expecta-

tion value of the boundary theory effective action W [N (0), h
(0)
ij ] coupled to a met-
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ric that is anisotropically conformal to N (0)h
(0)
ij . 2 If the action SHL is Weyl-

invariant as for example the one constructed in [89], then δSHL = 0 under the

variations δN = zσN (0) and h
(0)
ij = 2σh

(0)
ij . However, if we were to trust the ma-

chinery of non-relativistic holography especially for HL gravity and asymptotically

Lifshitz spacetimes, we have to be able to deal with a Weyl-anomalous boundary

theory and assume a non Weyl-invariant bulk theory of gravity with a non-vanishing

T ijg
(0)
ij = z 〈T tt 〉+〈T xx 〉. Adding the tCS term to the on-shell gravity action SHL is our

way out. As we show below, under a Weyl transformation, the tCS term is invariant

up to a boundary term. If we assume the coefficient of the tCS term matches that

of the boundary Weyl anomaly, then the latter cancels with the variation of the bulk

on-shell action. More concretely, the variation of the on-shell bulk gravity action

S = SHL +StCS under a Weyl transformation with parameter σ(x, t) should be given

by

δσS = δσStCS = c2

∫
∂M

Tr[δa da] . (4.20)

Let us see how we do that. We set c3 = 0 in the NRSCS action and start by integrating

out the connection β in the NRSCS action. The corresponding equation of motion

is df = −2b ∧ f . Substituting this solution into the tCS term, we see that −τ ∧ df

cancels with 2b ∧ τ ∧ f such that the tCS term can be written as

LtCS[a] = 2c2 (a ∧ da) . (4.21)

In terms of differential forms, a variation of the torsion field a in StCS[a] gives

δStCS[a] = c2

(∫
M

Tr[δa ∧R(W )] +

∫
∂M

Tr[δa da]

)
, (4.22)

2To properly define an asymptotically Lifshitz spacetime, we assume the notion of anisotropic
conformal infinity of the D+1-dimensional Lifshitz geometry at r → 0 where there is an asymptotic
codimension-one foliation [85].
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where R(W ) is the curvature of the gauge connection of dilatations W . In components

with coordinates (t, x, r), the StCS[a] action reads

StCS[a] = c2

∫
d3x εµνρaµ∂νaρ . (4.23)

The variation of the tCS action is then given by

δStCS[a] = c2

∫
d3x εµνρ [δaµ∂νaρ + aµ∂νδaρ]

= c2

∫
d3x εµνρ [δaµRνρ(W ) + ∂µ(aνδaρ)] . (4.24)

Rνρ(W ) = 0 is the equation of motion that minimizes the tCS action. The last term

must be set to zero on the boundary r = 0. One choice is

(at −Nxax)
∣∣∣
r=0

= 0, N r = 0 , (4.25)

since by definition, at = Nxax +N rar. The other sets only at to zero

at = Nxax = 0 . (4.26)

The choice in (4.25) is however more general. Under infinitesimal local Weyl trans-

formation with parameter σ(x, t), the gauge connection aµ transforms as

δσa = dσ , (4.27)

and the tCS action varies by a the total derivative term

δσStCS[a] = c2

∫
∂M

Tr(σda) (4.28)
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In components, this becomes

aµ → aµ + ∂µσ

and

StCS → StCS + c2

∫
r=0

dxdt σ(∂tax − ∂xat) ,

which has precisely the same form of the (1+1)-dimensional Weyl anomaly in (2.23)

and (2.30) of the Lifshitz boundary theory. Thus, the bulk remains Weyl-invariant

while the boundary theory does not. We can then conclude that the tCS term added

to a 3d Weyl-invariant HL gravity action plays a role similar to what the gCS term

plays when added to a 3D diffeomorphism-invariant action. This is the main result

of this paper. However, it is important to observe that without knowing the exact

value of the coefficient c2 and matching it with that of the anomaly computed in an

example Lifshitz field theory, for example, using heat kernel methods, it would be

difficult to claim the derivation is exact.

It stands to reason that we should be able to find the a∧da term in the parity-odd

sector of the cohomology of the relative Weyl operator in 2+1 dimensions. Indeed,

such a term can be found in [16]. The term is given by

ε̃αβaαLn aβ = ε̃xraxLn ar + ε̃rxarLn ax

= ax∂tar − ar∂tax , (4.29)

where we have used that Ln ar = 1
N

(∂tar −N rLNr ar), ε̃
αβ = nγε

γαβ and at = 0. Now

let us show that a ∧ da can be expressed as (4.29). Let us start by expanding the

a∧ da in coordinate bases as a = aµ dx
µ = ax dx+ ar dr+ at dt. The a∧ da term can



95

be expanded as follows

a ∧ da = εijkai∂jak

= at (∂xar − ∂rax) dtdxdr − ax (∂tar − ∂rat) dxdrdt

+ ar (∂tax − ∂xat) drdxdt ,

where di dj dk ≡ di ∧ dj ∧ dk. The exterior derivative da is given by

a ∧ da = εxrax∂tar

= ax∂tay − ar∂tax (4.30)

which matches the one given in [16].

4.4 Discussion and Outlook

4.4.1 Anomaly Cancellation by Anomaly Inflow

It is well known that the Floreannini-Jackiw (FJ) action [144] describes massless

chiral self-dual edge bosons for the Abelian Laughlin fractional quantum Hall (FQH)

state [37,145,146]. In fact, it is the Wess-Zumino-Witten (WZW) low-energy boundary

CS action for the Laughlin state. The FJ action is given by

SFJ =

∫
dt dx ∂tφ∂xφ− vx(∂xφ)2 , (4.31)

with equation of motion

∂t∂xφ− vx∂2
xφ = ∂tρ(x, t)− vx∂xρ(x, t) = 0 , (4.32)
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where ρ(x, t) ≡ ∂xφ(x, t) is the chiral boson density expressed as spatial derivative of

the gauge degree of freedom φ(x). This equation has solutions of the form φ(x+ vt)

which describes a chiral wave propagating with constant velocity vx. Replacing φ(x, t)

with N(x, t), ρ(x, t) with Rxt(x, t) and vx with a constant Nx, the FJ action becomes

SFJ =

∫
dt dx ∂tN∂xN −Nx(∂xN)2 , (4.33)

with an equation of motion

∂tRxt(H)−Nx∂xRxt(H) = 0 . (4.34)

We observe that while the first term of (4.34) is the 1+1 Lifshitz Weyl anomaly, a

trivial descent cocycle in the parity-odd, mixed-derivative sector of the cohomology

of the Lifshitz Weyl operator, the second term ∂xRxt(H) is a coboundary term that

belongs to the parity-even two-spatial derivatives sector. It is interesting to note, as

pointed out in [147], that in the FJ action, it is as if the chiral boson is propagating

in curved spacetime with background metric Nx.

Note that in deriving the boundary CS action in (4.31) from the tCS action (4.21),

one usually works in Galilean-boosted coordinates where the temporal component of

the gauge field at is set to zero (see equations 6.7-6.9 in [146]. By doing so, one also

sets the velocity of the chiral boson Nx to zero and hence the chiral boson ρ(x, t) is

stationary, i.e. with equation of motion ∂tρ(x, t) = 0. Analogously, in the process of

making the TTNC geometry dynamical, there is complete freedom in deciding the

value of at = Nxax + N rar which fixes the special conformal transformation in the

SL(2, R) subalgebra of the Schrodinger algebra [88]. Choosing Nx = N r = 0 directly

produces the Lifshitz Weyl anomaly in (2.23). On the other hand, setting only N r = 0

with a constant Nx amounts to a boundary condition where at = Nxax which then

adds the coboundary term (∂xN)2 to (4.34) and gives the FJ action in (4.31). We
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would like to further understand the relationship, if any, between the Weyl anomaly

of the the z = 1 Lifshitz theory and the FJ action in the context of the FQHE.

In light of the previous discussion and deriving the 1+1 Lifshitz Weyl anomaly

from the tCS action, one is naturally led to wonder if the Weyl anomaly is actually

somehow related to chiral edge states of a FQH theory. We discuss this possibility

here. According to the classification in [148, 149], four distinct CS terms can appear

in the low-energy effective action of the QH state for a microscopic theory with the

following symmetries: (1) U(1) gauge transformations, (2) general covariance, and

(3) local SO(2) rotations. Written in terms of differential forms, the four CS terms

are

SCS =
ν

4π

∫
M
A ∧ dA+ 2sA ∧ dω + s2ω ∧ dω +

c

96π

∫
M

Γ ∧ Γ ∧ Γ , (4.35)

where Γµν ≡ Γµνρdx
ρ. The first term is the U(1) electromagnetic Hall conductance

term, while the second and third are known as the Wen-Zee terms, and the last is the

gravitational Chern-Simons (gCS). On a manifold M with a boundary, the four CS

terms appearing in SCS defined above are no longer gauge-invariant because boundary

terms spoil gauge-invariance. According to [149], there are then two possibilities for

each CS term: (1) it represents a relevant anomaly of the low-energy effective action

that cannot be canceled by adding local boundary terms, or (2) it is a trivial anomaly

which can be canceled by adding local boundary terms. The electromagnetic Hall

conductance and relativistic gCS terms are of the first kind. The electromagnetic

pure CS term can be made invariant by adding a boundary term to cancel the bulk

anomaly

δσSedge = −δσSbulk = −k
∫
∂M

d2x σ εαβ∂αAβ , (4.36)

where σ is the gauge transformation parameter. This is an example of anomaly

inflow [2] where there is an influx of charge into the boundary where they are absorbed



98

by the anomalous gapless edge modes and as a result, the anomaly of the boundary

theory gets canceled by the total derivative term of a CS action. The Lifshitz Weyl

is precisely of that nature

δσWedge = −δσStCS = −k
∫
∂M

√
h N σ dtdx

(
εij ∂iaj

)
.

Since the (1+1) Lifshitz Weyl anomaly, as we discussed in Section 2.3 is non-trivial,

in the sense that it cannot be canceled by a local boundary term, then according the

classification in [149], it belongs to the first class. Thus, if the microscopic theory of

the Abelian QH state, in addition to having the three symmetries in (4.35), is also

symmetric under anisotropic local Weyl transformations such that Wedge + StCS is

Weyl-invariant, could the boundary tCS term a∧da represent a new kind of torsional

anomaly inflow where torsional (or gravitational) degrees of freedom flow into the

Weyl-anomalous boundary Lifshitz effective action? If so, what universal quantity,

if any, does the coefficient of the tCS action represent? More importantly, is there

physical scale-invariant FQH system? Does the NRSCS action contain the two WZ

terms in? (4.35) We leave these questions for future work.

Another related topic where anomaly cancellation by anomaly inflow is relevant

is the thermal Hall effect. In [150], it was shown that the thermal Hall current

does not vanish in equilibrium and hence, Luttinger’s idea of coupling the system

to a uniform gravitational field such that the gravitational potential gradient exactly

balances out the energy flux induced by a thermal gradient cannot be used and thus

the thermal Hall conductance can not be determined by its gravitational counterpart

as it was argued before in [151]. In other words, it was argued in [150] that a uniform

gravitational field can not induce a bulk thermal current and thermal energy must

therefore be carried entirely by the (1 + 1)-dimensional edge modes. The relationship

to we discussed in Section (2.4) is to observe that as a result of canceling the Weyl
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anomaly and restoring Weyl invariance, the system is in equilibrium. In fact, if we

choose the lapse function N = eψ = x such that ax = ∂xψ = 1
x

and the Luttinger

potential Φ(x) = ψ(x) = log(x), then

N(x)∂xax = −∂xΦ(x) , (4.37)

1

T

∂T

∂x
= −∂Φ

∂x
. (4.38)

if we identify the lapse function with inverse temperature and the torsion with the

temperature gradient

N(x) = β(x) =
1

T (x)
= x, ax = T (x) =

1

x
. (4.39)

More relevant to the work in this paper is the work in [152] where a non-relativistic

analogue of part of the work in [150] was introduced. The authors in [152] coupled

a (2+1)-dimensional non-relativistic field theory to a NC geometry with torsion.3

However, since TTNC geometry only couples to the energy density, they turned on

the spatial components of the timelike vector field nµ and nµ to couple to the energy

current.4 They proceeded then to construct the most general partition function with

time-independent, local space and time translations and gauge symmetries. Using the

Euclidean path integral to calculate the partition function, the authors in [152] derived

an expression for the thermal current. However, they did not discuss the possibility

of Weyl-anomalous effective actions in the context of their work as was done in [150]

where it was shown how the gravitational anomaly of the boundary-induced effective

action can be canceled by the inflow of the spatial and temporal components of the

bulk energy-momentum tensor computed from the three-dimensional gCS term (4.35).

3Note that in [152], the torsion tensor is the curvature in the Hamiltonian Rxt(H) = ∂xψe
ψ

4As noted in [55], turning on the spatial components of the 1-form nν does not violate the
Frobenius condition.
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Similarly, understanding the nature of this inflow requires calculating the operator

conjugate to aµ in the bulk which we leave for future work.

Anomaly inflow has also been used to cancel the gravitational anomaly of a chiral

field theory and obtain the Hawking radiation as was first discussed in [153]. The

relationship between Weyl anomalies and the thermal flux of the Hawking radiation

as also studied in [154]. Using anomaly inflow, the authors in [153] found that the

influx required to cancel the gravitational anomaly at the horizon is proportional to

T 2 with T = κ
2pi

which is blackbody radiation with the Hawking temperature. This

is interesting since, if we assume the field theory near the black hole horizon is the

action in (6.3), then according to the discussion in Section 2.4, canceling the Lorentz

anomaly of this theory (which we recall can always be traded for a diffeomorphism

anomaly by a local counterterm), is equivalent to canceling the Weyl anomaly in a

z = 1 (1+1) Lifshitz theory.
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Appendix

4.A The Godbillon-Vey Cohomology Class

In this Appendix, we quickly review some of the mathematical aspects of the tCS term

where we will show that the tCS term corresponds to a foliation invariant known as

the Godbillon-Vey GV (F). The reader can skip the discussion in this Appendix since

it is not required to follow through with the rest of the material in this dissertation.

As we have seen in the discussion above, the tCS term a ∧ da is a Chern-Simons

(CS) term in a centrally-extended Schrödinger-invariant CS theory that translates

within the SL(2, R) group. As with any CS term, there are associated topological

considerations. In this section, we study some of these topological aspects of the tCS

term. In fact, it turns out that the tCS term is famously known in the mathematics

literature as the Godbillon-Vey invariant GV (F). We now define and summarize its

basic topological as well geometrical aspects.

Given a transverse protective RP 1 foliation, it was observed by Godbillon and

Vey [155] that the form a ∧ da is closed and independent of the choices of 1-forms

n and a and therefore it is a foliation-invariant. As such, it defines a cohomology

class, known as Godbillon-Vey class GV (F) in the third real de Rham cohomology

group H3(M ;R). Many aspects of the GV (F) invariant has been extensively studied

throughout the last four decades [156]. In this section, we will only focus on those

aspects of GV (F) that relate to the Lifshitz Weyl anomaly and the tCS action.
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The original construction of the GV (F) invariant is illuminating. It works as

follows [156]: consider F a codimension-1 foliation on a three-dimensional manifold

M defined by the equation n = 0. The foliation 1-form n ∈ Ω1(M) is then integrable.

Therefore one has dn = a ∧ n for some a ∈ Ω1(M) and da ∧ n = 0 (since a ∧ dn = 0

by d2n = 0 ) so there exists f ∈ Ω1(M) such that da = n ∧ f . Let w = a ∧ da;

it satisfies dw = da ∧ da = n ∧ f ∧ n ∧ f = 0, and therefore it is closed. This was

the original observation of Godbillon-Vey that led them to define their famous GV

invariant of the foliation. Thus, we see that since the cohomology class of the tCS

form a∧ da does not depend on the choice of the foliation 1-form n, it is an invariant

of the foliation itself. As such, it defines a cohomology class, known as Godbillon-Vey

class GV (F) in the third real de Rham cohomology group H3(M ;R).

Finally, we comment briefly on the geometrical and topological characteristic of

the GV (F) invariant as presented by Goldman and Brooks in [116]. On a three-

dimensional manifold M , the GV (F) is actually a topological volume that measures

the complexity of representing the fundamental class of M by singular simplices. If

the manifold M is hyperbolic, with a transversely protective foliation (see Section

2.B) defined by a monodromy homomorphism π1(M) → (PSL(2,R)), (monodromy

homomorphism was defined in Section 2.C), then theGV (F) invariant gives the actual

volume of M . For more details, please see [116].

It is interesting to note that when M is equipped with a metric, a ∧ da has been

expressed solely in terms of classical geometric invariants of a family of normal curves

and immersed subamnaifolds, namely, the second fundamental form, curvature and

torsion of the normal curves [157].



103

Chapter 5

Emergent Geometry and Path

Integral Optimization for a Lifshitz

Action

The key results of this chapter are:

1. Extend the background metric optimization procedure for Euclidean path inte-

grals of two-dimensional conformal field theories, first introduced in [97,98], to

a z = 2 anisotropically scale-invariant (2 + 1)-dimensional Lifshitz field theory

of a free massless scalar field.

2. Find optimal geometries for static and dynamic correlation functions. For the

static correlation functions, the optimal background metric is equivalent to an

AdS metric on a Poincare patch while for dynamical correlation functions, we

find the Lifshitz geometry.

The entire content of this chapter appears in [158].

An important quest of many body physics is the search for efficient variational

characterizations of correlated quantum systems. (for a review see, e.g., [91]). A class
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of tensor network states, particularly geared towards the description of scale-invariant

systems, are called the multi-scale entanglement renormalization ansatz (MERA) [92,

93]. MERA is used to represent approximate ground states of 1D quantum spin

chains at criticality described by 2D conformal field theory (CFT) [94]. The scale-

invariance of the MERA network turned out to also play a special role in connecting it

to holographic duals in the sense of the AdS/CFT correspondence [95]. Here, the bulk

of a MERA network can be understood as a discrete realization of 3D anti-de Sitter

space (AdS3), identifying the extra holographic direction with the renormalization

group (RG) flow in the MERA [95].

Motivated by the procedure of tensor network renormalization in [96], where the

path integral is first discretized into a lattice and then mapped into a tensor network

which turns out to be a MERA, Caputa et. al, in a recent series of works [97, 98],

took a step further in studying this relationship from the viewpoint of optimizing

Euclidean path integrals that represent the ground state wave functional of two-

dimensional CFT. Starting with flat Euclidean metric with a UV cutoff, they argued

that their optimization procedure amounts to minimizing the Jacobian of the scale

transformation for the path integral measure. In the conformally flat gauge, this

translates to solving the equation of motion of the Liouville effective action from

which they find that the AdS3 metric a Poincare patch H2 naturally emerges. This

new approach is very appealing, as it suggests a concrete procedure connecting the

AdS/CFT correspondence with numerical approaches to many body systems, such as

the MERA tensor network [92,93,95,99].

In Chapter 5, we extend the idea in [97, 98] to a non-relativistic field theory,

specifically to a z = 2 anisotropically scale-invariant (2 + 1)-dimensional Lifshitz field

theory of a free massless scalar field and show that the procedure can be successfully

applied in systems of interest beyond a CFT. We show how natural geometries arise
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Figure 5.1. The two geometries emerging for the quantum Lifhsitz model. (a) An
AdS3-like geometry arises when considering equal time correlation functions and (b)
A Lifshitz metric that is optimal for computing correlation functions with a temporal
component.

from the path integral optimization procedure. Our results are illustrated in Fig. 5.1.

Concretely, we show the following results:

1. Extend the background metric optimization procedure for Euclidean path inte-

grals of two-dimensional conformal field theories, first introduced in [97,98], to

a z = 2 anisotropically scale-invariant (2 + 1)-dimensional Lifshitz field theory

of a free massless scalar field.

2. Find optimal geometries for static and dynamic correlation functions. For the

static correlation functions, the optimal background metric is equivalent to an

AdS metric on a Poincare patch while for dynamical correlation functions, we

find the Lifshitz geometry.

The layout of this chapter is as follows. In Section 5.1, we describe some back-

ground of the quantum Lifshitz model and anisotropic Weyl transformation. In Sec-

tion 5.2, we outline the main steps of the approach used to obtain the optimal ge-
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ometries. In Section 5.2.1, we explain the optimal geometry for the case of static

two-point functions and in Section 5.2.2, for the case of dynamic two-point functions.

In Section 5.3, we discuss how this work can potentially be extended and ask some

questions pertaining to the approach itself. In Appendix 5.A, we show some details

of the calculations.

5.1 Background

The quantum Lifshitz model is a canonical example of a (2+1)-dimensional Lifshitz

field theory [35]. This model describes a free massless scalar field with dynamical

scaling exponent z = 2 and represents an important example of a conformal quantum

critical point. Different aspects of this theory have been studied and analyzed in

[35,36,159].For example, it emerges as the scaling limit of the square lattice quantum

dimer model [36]. Of particular interest to us in this paper, is the Weyl anomaly of

this model which has first been computed holographically in [85] and by Baggio et

al in [25] using heat kernel expansion and the holographic renormalization methods

in [160]. In [16] [29], Lifshitz Weyl anomalies have been computed cohomologically

in different dimensions and for different values of the dynamical scaling exponent z.

In [161], the heat kernel expansion has been generalized to calculate effective actions

and Weyl anomalies for Lifshitz field theories.

The quantum Lifshitz Hamiltonian [35] of a z = 2 theory of a massless scalar field

φ(t, x) in 2 + 1 dimensions is given by

H =

∫
d2x {πφ2 + (∆sφ)2} . (5.1)
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The two geometries emerging for the quantum Lifhsitz model. (a) An AdS3-like geom-
etry arises when considering equal time correlation functions and (b) A Lifshitz metric
that is optimal for computing correlation functions with a temporal component.

The Euclidean action of the field φ(t, x) coupled to a background metric gij is given

by

S =

∫
d2xdtN

√
h
(
N−2 (∂tφ) 2 + λ (∆sφ) 2

)
, (5.2)

where ∆s is the spatial Laplace-Beltrami operator

∆s =
1√
h
∂ih

ij
√
h∂j , (5.3)

and hij is the spatial component of the background metric 2.

ds2 = N2dt2 + hijdxidxj . (5.4)

2In terms of the ADM metric commonly used in the literature, gtt = 1
N2
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where N is called the lapse function. The action in (5.2) is invariant under the

following foliation-preserving diffeomorphism transformations

t 7→ t̃(t), xi 7→ x̃i(~x) (5.5)

and anistoropic Weyl scaling transformations

N → ezσN ; hij → e2σhij , i, j 6= t . (5.6)

Starting with the action 5.2 and the background metric in (5.4), the authors in [25]

used the heat kernel expansion to the calculate the Weyl anomaly which can expressed

as

δW =

∫
dt d2xN

√
h δσA (5.7)

=

∫
dt d2xN

√
h δσ

1

128π

(
KijKij −

1

2
Tr(K)2

)

where Kij = 1
2N
∂thij and Tr(K) = hijkij. In their calculation, they also found a total

derivative term that they showed can be removed by a local counterterm.

As stated before, in [98], such a starting point led, via path integral optimization,

to an AdS metric. The path integral optimization suggested in [98] looks for the

extremal measure over all choices of the gauge σ, due to the Weyl anomaly in the

model. Here we use the same structure, though with the anisotropic Weyl scaling

appropriate.

5.2 Outline of the Optimization Approach

Here we ask the following question: what is the optimal geometry associated with

a path integral computation of correlation functions in the quantum Lifshitz model?
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In contrast to the CFT case, due to the non-relativistic nature of the model, equal

time correlation functions and dynamical correlation functions should be treated dif-

ferently. Indeed, we find two separate geometries associated with the optimal cal-

culation, described in Fig. 5.2. For equal-time correlation functions, we consider

Weyl transformation which are translationally invariant in space, but not in time,

Fig. 5.2(a), covered by case (1) below.

Consider dynamical correlation functions on the other hand. To find the optimized

geometry to describe two point functions, such as, say, 〈φ(t, r)φ(t, r′)〉, we can choose

the spatial axis r − r′ to be in the y direction, due to spatial rotational invariance

of the model. We concentrate therefore on the computation of the description of the

state in the t, y plane, and thus choose a Weyl scaling which is homogeneous in t, y,

but can depend on the third coordinate x, Fig. 5.2(b) as explained in case (2) below.

We point out however one difference between our setup and the setup in [98]. Here,

We do not start from the quantum effective action and then derive the equation of

motion as they do but rather directly compute the variation in the Lifshitz effective

action due to an infinitesimal transformation of the Weyl transformation parameter

σ which now encodes all the information about the metric. A general framework for

computing one loop effective action for Lifshitz theory via heat kernel coefficients has

been presented in several places, see e.g. [161, 162]. In our case, our starting point is

a flat metric, deformed by a Weyl scaling. We compute the variation of the effective

action explicitly utilizing the particular structure of our metric and finally obtain

differential equations for the scaling factor σ. Concretely, we compute the variation

of the one loop effective action under σ → σ + δσ. In this case,

δW [σ] =
1

2

∫
drrrδσ(rrr) 〈rrr| eερD |rrr〉 , (5.8)
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where rrr = (xxx, t), ρ(rrr) = 1√
g(rrr)

and D = − 1
N
√
h
∂τN

−1
√
h∂τ + 1

N
∆sN∆s [25]. In our

system we fix our gauge so that N = e2σ, hij = λNδij. In this case we have:

D =
(
−∂2

t + λ2
(
∂2
x + ∂2

y

)
2
)
. (5.9)

We note that upon varying σ we have δD = δσ. The ε → 0 behavior of (5.8) is

dominated by the short distance behavior of the heat kernel 〈rrr| eερD |rrr〉.

Now, as promised, we specialize to cases where, σ depends either on the time

coordinate t alone, or on one of the spacial coordinates, say x. Denoting ρ = e−4σ,

we expand ρ close to a given point rrr0 ,

ρ (δrrr + rrr0) = ρ0 + δρ, (5.10)

where ρ0 = ρ(rrr0) = 1√
g(rrr)
|rrr=rrr0 .

To obtain the variation we carry out a second order perturbation calculation of

the heat kernel, using :

e−ε(ρ0+δρ)D = e−ε̃D − 1
ρ0

∫ ε̃
0
e−(ε̃−s) DδρD e−s Dds + (5.11)

1
ρ20

∫ ε̃
0

ds
∫ s

0
ds1e

−(ε̃−s) DδρD e−(s−s1) DδρD e−s1D + . . .

where ε̃ = ρ0ε. We assume that the operator D is diagonal in momentum, and that

δρ depends on a single coordinate such as x or t and has an expansion:

δρ = Σm=1cm(x− x0)m (5.12)

In [162], the gravitational quantum effective action for a d-dimensional Lifshitz scalar

field theory has been calculated using the heat kernel expansion in momentum space.

It is important to note, however, that the curved spacetime Lifshitz operator used
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in [162] is slightly different than the one we use in this paper. We note that the terms

above correspond to the heat kernel coefficients b0, b2, b4 in the expansion:

〈rrr|e−εδρD|rrr〉 =
∞∑
n=0

bn(ρD)ε(n−d−z)/2z (5.13)

specializing to d = z = 2. Note that b1, b3 = 0 as anticiated e.g. in [161].

5.2.1 Optimal geometry: static correlation functions

Explicitly evaluating the heat kernel through second order perturbation series in δρ,

we find that the leading (in ε) contributions to δW up to two derivatives in the case

of σ = σ(t) are given as

δW =
1

2

∫
dtd2xδσ

(
e4σ

16πελ
− 1

24πλ

d2σ

dt2

)
(5.14)

Following [98], we search for a profile ρ(t) to minimize the effective action by solving

for δW = 0. Eq. (5.14) implies that the optimal σ(t) obeys the Liouville equation:

e4σ

ε
− 2

3

d2σ

dt2 = 0 (5.15)

Much as in [98], The solution is given by the standard substitution of the form

σ(t) = −1
2

log µt, where µ =
√

3
ε

we find the optimal metric is given by

ds2 =
1

µ2t2
dt2 +

λ

µt
(dx2 + dy 2) , (5.16)

This surprising result suggests that indeed a some type of a hierarchical tensor network

would still be the optimal discrete spacetime configuration even if the field theory we

started with is only anistropically scale invariant. It is possible to uniformize the
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geometry by using a coordinate u = 2
√
t, the optimal metric can also be written as

ds2 =
4

3u2

(
du2 +

√
3(dx2 + dy2)

)
, (5.17)

which is the AdS3 metric of a Poincare patch. Thus, a proper MERA-like descrip-

tion is possible for this non-uniformally rescaled Lifshitz theory. Another possibility,

hinted by recent work on exact holographic tensor networks [163], is that a non-

unitary MERA-like structure can be chosen that features a scale-invariant tensor

network for a non-CFT model.

5.2.2 Optimal geometry: dynamic correlation functions

We now turn to address the optimization in the ”lateral” direction. Explicitly eval-

uating the heat kernel through second order perturbation series in δρ, we find that

leading contributions to δW in ε, read

δW =
1

2

∫
dtd2xδσ

(
e4σ

16π ελ
−
e2σ(

(
dσ
dx

)2
+ d2σ

dx2 )

12π3/2
√
ε

)
. (5.18)

The equation of motion for the case of 5.18 is given by

e4σ

16π ελ
−
e2σ(

(
dσ
dx

)2
+ d2σ

dx2 )

12π3/2
√
ε

= 0 (5.19)

To solve this equation, we define: Y (x) ≡ eσ(x), and note that (5.19) can be

written as:

Y ” = CY 3 ; C =
3π1/2

4λ
√
ε

(5.20)

This nonlinear equation is equivalent to the system Y ′ = Z ; Z ′ = CY 3, which allows

us to find an integral of motion by solving for dZ
dY

= CY 3

Z
, from which we obtain the
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integral of motion:

1

2
Z2 = C log(Y ) + α =⇒ α =

1

2
Y ′2 − C log(Y ) (5.21)

We can solve this equation, getting:

Y =

√
2(√

Cx+ α
) , (5.22)

resulting in the metric, written in terms of Y our metric is

ds2 = Y 4dt2 + λY 2(dx2 + dy2) (5.23)

and the leading behavior of the metric at large x is thus:

ds2 ≈ 4
dt2

C2x4
+ 4λ

dx2 + dy2

Cx2
(5.24)

We emphasize, that as opposed to the usual notion of holographic Lifshitz geom-

etry for this model, where the boundary is (2+1)-dimensional, here we deform one of

the original dimensions of the (2+1) spacetime and use it as our holographic direction.

5.3 Discussion and Outlook

The equal-time and dynamical two-point correlation functions for the quantum Lif-

shitz model that we consider in this work have been studied in [35] and more recently

in [164] where they have been compared with the holographic two-point function. The

authors find that the correlation functions match quite well with the scaling obtained

from a holographic calculation with a Lifshitz geometry, thereby strengthening our

expectation that a tensor network description of the system will inherent the features

of a Lifshitz geometry.
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We also find it quite striking that a semi-classical description of correlation func-

tions is obtained for the system, although there is no manifest small parameter like

~ or a strong/weak coupling duality to drive us into a semi-classical regime in our

original setup. Finally, we remark that although we obtained here an optimal geom-

etry for a specific z = 2 (2+1)-dimensional field theory, it is natural to expect that

the procedure described here would still work for more general field theories in higher

dimensions with arbitrary values of z.

An interesting extension of this approach is to see whether it would work for

interacting field theories. The premise so far in [98] and our work too is that field

theories are free. Generalizing this work to interacting field theories would be exciting

yet very challenging.
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Appendix

5.A Some details of the calculation

To obtain our equations we carry out a second order perturbation calculation of the

heat kernel, using :

e−ε(ρ0+δρ)D = e−ε̃D − 1

ρ0

∫ ε̃

0

e−(ε̃−s) DδρD e−s Dds

+
1

ρ2
0

∫ ε̃

0

ds

∫ s

0

ds1e
−(ε̃−s) DδρD e−(s−s1) DδρD e−s1D + . . .

(5.25)

where ε̃ = ρ0ε. For convenience, set r0 = 0 throughout the calculation, and reinstate

its value in the end. We assume that the operator D is diagonal in momentum, and

that δρ depends on a single coordinate x, and has an expansion:

δρ = Σm=1cmx
m (5.26)

Taking q to be the momentum in the x direction and K to be the momentum vector

in all other directions, the zeroth order contribution to the heat kenrel reads:

A0 = 〈0|e−ε̃D|0〉 =
1

(2π)d+1

∫
ddKdq e−ε̃D(K,q) ; (5.27)
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The contribution from the first order term in (5.25) is

A1 = − 1
ρ0
〈0|
∫ ε̃

0
e−(ε̃−s) DδρD e−s D|0〉ds (5.28)

= − 1
ρ0

2π
(2π)d+2

∫ ε̃
0

ds
∫
ddKdq

(
Σcm

(
i d
dq

)
me−(ε̃−s) D(K,q)

)
D(K, q) e−s D(K,q)

which can also be expressed in the form:

A1 = − 1

ρ0

1

(2π)d+1

∫ ε̃

0

ds

∫
ddKdqe−ε̃D(K,q)D(K, q)

× {Σm=1i
mΣm

h=1(−1)hcmBh,m ((ε̃− s)D′ (K, q1) , (ε̃− s)D” (K, q1) , ...)}

where Bh,m are Bell polynomials. In the case we are interested in, due to the time

reversal/space inversion symmetry the first non zero contribution comes from c2 =

1
2
∂x

2δρ:

A1 ≈
1

ρ0

c2

(2π)d+1

∫
ddKdqe−ε̃ D(K,q)

(
−1

2
D”(K, q)ε̃2 +

1

3
(D′(K, q))2ε̃3

)
(5.29)

The second order contribution is given by

A2 =
1

ρ2
0

〈0|
∫ ε̃

0

ds

∫ s

0

ds1e
−(ε̃−s)DδρD e−(s−s1)DδρD e−s1D|0〉

=
1

ρ2
0

Σn,mcncm
(2π)d+1

∫ ε̃

0

ds

∫
ddK dq

((
i
d

dq

)m
e−(ε̃−s) D(K,q)

)
D(K, q) e−(s−s1)D(K,q)

×
((
−i d
dq

)n
D(K, q) e−s1D(K,q)

)
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Chapter 6

The z = 1z = 1z = 1 Lifshitz Weyl Anomaly

as a Topological Invariant

The key result of this chapter is:

1. The integral of the z = 1 Lifshitz Weyl anomaly, in a specific flat limit, is

a topological invariant that detects the parity of the number of twists in the

Möbius surface when embedded in R3.

In this chapter, we make a first attempt to study and analyze a topological invari-

ant in two dimensions that has first been suggested thirty years ago in [102] and [101].

The goal to is attempt to give this new invariant the topological sense missing in [102]

as well as [101]. We will show that on a two-dimensional non-orientable manifold with

boundary, i.e. Möbius strip, in a certain flat limit, to be defined later in this section,

the integral of the invariant does not vanish.

In Section 6.1, we summarize the key points made in [102] and [101] pertaining

to the relationship between the scalar invariants of the Lorentz connection and its

Hodge dual. We show how they both appear as the Lorentz and conformal anomaly

of a two-dimensional local theory in which the veilbeins are dynamical variables. We
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will then demonstrate how the z = 1 Lifshitz Weyl anomaly is related to this scalar

curvature of the dual Lorentz connection. We also contrast the main features of the

Ricci scalar and this new scalar curvature.

In Section 6.2, we show that in a specific flat limit, λ is a non-vanishing topological

invariant on the Möbius manifold, the simplest non-orientable 2-manifold with a

boundary. In Section 6.2.1, we evaluate the λ invariant and demonstrate why the

Möbius line bundle is the space that makes λ a non-vanishing topological invariant.

We demonstrate that λ in this flat limit, is a topological invariant that detects the

parity of the number of twists in the Möbius surface as embedded in R3. In Section

6.3, we discuss various topological, cohomological and geometric aspects of the λ

invariant and speculate that λ gives the torsion coefficient of the Möbius surface.

In Appendix 6.A, we briefly discuss, using certain aspects of integral homology and

cohomology theory, how the Möbius flat line bundle contains torsion, and how the

latter can be used to detect non-orientable manifolds. This is naturally a continuation

of our discussion in Appendix 2.A.

6.1 The Curvature of the Dual Connection

The role of torsion in relativistic gravity is described within the Einstein-Cartan for-

mulation. The vielbeins eaν and spin connection ωab form a description of gravity

equivalent to the metrical one only when, in addition to the local Lorentz symmetry,

they are also subject to a constraint. In addition to curvature, there is the geomet-

rical notion of torsion which describes the internal twist of the 2d manifold. In the

Einstein–Cartan formulation, it is associated to the Lorentz torsion two–form [48,165]

T a = dea + εab ω ∧ eb . (6.1)
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The standard connection used in Einstein’s theory of gravity is torsion–free, i.e. T a =

0. It is this constraint equation together with the connection metricity, that uniquely

determines the spin connection ωab in terms of the vielbein

ω = (∗dea) ea (6.2)

In [102], Obukhov and Solodukhin constructed a local quadratic action of two-

dimensional gravity out of the frame fields eaµ

W [eaµ] =
1

4

∫
d2x eCa

µνC
µν
a (6.3)

=
1

4

∫
d2x e (∂µe

a
ν − ∂νeaµ) (∂µea

ν − ∂νeaµ) ,

where Ca
µν is the non-holonomic tensor, regraded as the field strengths of the vielbein

fields eaµ and e = det eaµ. According to [102], under a local conformal transformation

δeaµ = σeaµ with infinitesimal Weyl parameter σ, the action suffers a conformal

anomaly R while under a local Lorentz transformation δeaµ = αabe
b
µ with infinitesimal

Lorentz parameter χεab, it suffers a Lorentz anomaly U .

Two dimensions are special in the sense that the spin connection ω and its hodge

dual ?ω are both 1-forms. Let the curvature of the spin connection ω be defined by

R = dω , (6.4)

and the curvature U of the dual spin connection ?ω is defined by

U = d ? ω , (6.5)
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where ? is the Hodge dual operator. Then, the scalar curvature R of R can be

expressed in terms of the spin connection as

R = 2∇ (eaµCa
µν) = ∇µ(ω̃µ) , (6.6)

while that of U can be expressed as

U = 2∇µ

(
eaµεabC

bµν
)

= ∇µ(ωµ) (6.7)

It was then noted in [101], if the χ =
∫
R is a topological invariant on smooth,

compact and closed manifold, then λ =
∫
U is also a topological invariant. However, it

was argued in [101] that λ =
∫
U = 0 since it is always possible to choose a coordinate

frame where the connection has zero divergence. We observe that these coordinates

implicitly assume that ?ω is a connection over an orientable bundle, in which case, it

can be trivialized. It was also noted in [101] that while the structure group related to

ω is SO(2, R), that related to ?ω is reduced to the group of multiplication by positive

real numbers R+ = {R+ − {0} , ×} implying that the fiber bundle associated to ?ω

is a line bundle that can be made trivial. Therefore, to properly understand the

topological underpinnings of λ =
∫
U , one needs to also understand the topology of

line bundles or more concretely of flat line bundles which we discussed in Appendix

2.A of Chapter 2.

More importantly, the authors in [102] were able to obtain the U scalar as the chiral

anomaly, Weyl anomaly as well as the Lorentz anomaly of a fermionic action using

a generalized Dirac operator with a non-vanishing analytic index. More specifically,

they showed that

index D̂gen =
g

4π

∫
U e d2x , (6.8)
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where D̂gen is the generalized Dirac operator given by

D̂gen = iσµ (∇µ + igωµσ3) , (6.9)

and ∇µ = ∂µ + ωµσ3. It is well known that the analytic index of a positive semi-

definite elliptic partial differential operator Ô acting on sections of vector bundles

i.e. over compact manifolds, is a homotopy invariant that accounts for the difference

between the left-handed and right-handed zero modes. It is the difference between

the dimension of the kernel and co-kernel of Ô.

By the Atiyah–Singer (AS) index theorem [7–10], the analytic index equals a

topological index which describes a purely topological characteristic of the fiber bundle

considered in the theory. [See for example chapter 5 in [1]]. An important consequence

of the AS index theorem is the fact that the topological invariant can be expressed

as an integral over certain characteristic classes which represent the invariant. In

cohomological algebra, these characteristic classes are represented by cohomology

classes as elements of a cohomology group with coefficients in some field F , typically

integers Z. For example, χ is given by an integral over the Euler class e(E) of an

oriented, real vector bundle E → M . On compact 2-manifolds, the Euler class e(E)

is an element of the second integral cohomology group H2(M ; Z). The Euler class

exists as an obstruction, as with most cohomology classes measuring how twisted the

vector bundle is. For more information about the Euler class in cohomology, please

see [103], [104], and [105].

A special form of the index theorem is the famous Gauss-Bonnet theorem. On 2-

dimensional manifold compact manifold with a boundary, the Gauss-Bonnet theorem

relates the integral of the Ricci scalar R representing the Gaussian curvature, and the

integral of the extrinsic curvature or the second fundamental form representing the
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geodesic curvature, to the Euler characteristic as follows 1

χ =
1

4π

(∫
M

Re d2x+

∫
∂M

2K
√
h dτ

)
, (6.10)

where K is the trace of the extrinsic curvature tensor defined in terms of the spatial

metric on the boundary in (2.14) and τ is an arbitrary parameter of the ∂M . It is

well known that K can be expressed as the covariant divergence of the unit normal

to the boundary n̂ as K = ∇µn̂
µ. In Appendix A of [106], it was shown that in the

flat conformal gauge, χ can be written solely in terms the boundary integral of the

topological part of K as follows

χ =
1

4π

∫
∂M

2K
√
h dτ =

1

2π

∫
∂M

∂µn̂
µ . (6.11)

On a circle with unit normal n̂µ = (cos θ, sin θ), we have ∂µn̂
µ = n̂µn̂µ = 1 which

implies that

χ =
1

2π

∫ 2π

0

dθ = 1 , (6.12)

and therefore the Euler characteristic of M , χ(M) = 1−NH where NH is the number

of holes. Hence, on a flat disc with a boundary unit circle, the Euler characteristic

χ = 1 and so, indeed, the disc has zero holes. In terms of the Gauss-Bonnet theorem,

the trace of the second fundamental form measures the geodesic curvature κg of a

1d boundary curve γ(v) on a 2d surface embedded in R3. The geodesic curvature

measures the magnitude of the surface-tangential component of the acceleration vec-

tor [166,167]. This projection onto the tangent plane extracts the intrinsic curvature

of γ(v) as it moves on the 2d surface regardless of how it bends in the normal direction

of R3, i.e. regardless of its extrinsic curvature in R3.

1Here M is taken to be diffeomorphic to a subset of R2.
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Connection Structure Group Fiber Bundle Boundary Term
Ricci Scalar (R) dω SO(2, R) Tangent frame ∂µn̂

µ

Lorentz Scalar (U) d ? ω R Orthonormal frame ∂µt̂
µ

Table 6.1: Comparison between the Ricci and Lorentz Scalars

Owing to the similarities outlined above between R and U , the authors in [102]

used the boundary term of the action in (6.3), first derived in [107], to show that

the topological invariant λ on a compact 2-manifold with a boundary is given by the

following integral

λ =
1

4π

(∫
M

U e d2x− 2

∫
∂M

[
eµa εab∇µn

b − εµν∇µnν
]√

h dτ

)
, (6.13)

where for simplicity I dropped the hat on n̂. The boundary term in (6.13) has been

derived for the action in (6.3) within the framework of Einstein-Cartan theory [107]

in the first-order formalism .

By using the conformal-Lorentz gauge (1.41), λ was expressed as the boundary

integral of the divergence of a unit tangent vector tu = εµνn
ν (omitting the hat on t̂

and n̂) for a flat metric.

λ =

∫
∂M

dτ ∂µ t
µ . (6.14)

Table 6.1 compares the key features of the R and U invariants.

Chapter 6 represents a first attempt to study, analyze, and give λ the topological

interpretation that was missing in [102] and [101]. More specifically, we show that

in the flat limit on a Möbius strip, λ is indeed a topological invariant and does not

vanish as argued in [101] by Myers.

How is the (1+1)-dimensional Lifshitz Weyl anomaly related to U = ∇µω
µ? In

terms of ADM coordinates, if the Lorentz connection 1-form is expressed in terms of

ax and K as

ω = axdt+Kxxdx , (6.15)
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then, its dual which is also a 1-form, is defined as

? ω = axdx−Kxxdt . (6.16)

The curvature d ? ω is then

d ? ω = (∂tax + (∂xK − axK)) dt ∧ dx . (6.17)

The first term in (6.17) is the z = 1 Lifshitz Weyl anomaly as we demonstrated in

(2.47) while the last two terms are the Lifshitz coboundary terms found in [16]. Thus,

the scalar curvature U of d ? ω can be written as

U ≡
〈
T µµ
〉

= 2∇µ(ωµ) = 2∇µ

(
εabe

a
νC

bµν
)
. (6.18)

By comparing this equation with (2.47), we directly see that the U scalar is indeed

the Weyl partner of the local Lorentz anomaly, which, in turn is the z = 1 Lifshitz

Weyl anomaly.

6.2 Topological Characterization Of the Anomaly

In this section, we show that, similar to χ, λ, in a specific flat limit, is a non-vanishing

topological invariant on a Möbius strip, the simplest non-orientable 2-manifold with

a boundary. As a 2d topological manifold, the Möbius strip is a non-trivial flat line

bundle over the circle S1 with a Z2 structure group.

The Möbius bundle is described by the first Stiefel-Whitney (SW) cohomology

class that detects the obstruction to defining an orientable manifold [118]. The first

SW class detects the orientability of a real line bundle E → M , i.e, w1(E) = 0

if and only if E is orientable. The Möbius strip is a non-orientable line bundle
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π : E → S1 and thus w1(E) ∈ H1(S1,Z2), the first cohomology group with Z2

coefficients. Generally speaking, a manifold M is orientable if its tangent bundle is

orientable and thus w1(TM) = 0.

As a parametric surface, the Möbius strip has an embedding in three-dimensional

Euclidean space R3. The unit normal to the surface reverses orientation after a 2π

rotation and is thus discontinuous. It is this discontinuity or rather ambiguity in

the unit normal that renders Möbius surface unorientable and thus captures the non-

triviality of the Möbius line bundle. Without this additional cycle, the Möbius strip is

the just a trivial line bundle S1×R that describes the cylinder as a product manifold.

Next, we evaluate the λ invariant on the Möbius band.

6.2.1 Evaluating the λ invariant

6.2.1.1 Problem setup

The Möbius strip is, topologically speaking, defined as a rectangle with its top and

bottom sides identified as shown in Fig. 6.1. As a 2d surface, the Möbius surface can

be embedded in three-dimensional Euclidean space with coordinates X(t, v)

x(t, v) =
(
R− t sin

v

2

)
cos(v) (6.19)

y(t, v) =
(
R− t sin

v

2

)
sin(v)

z(t, v) = t cos
v

2
,

where 0 ≤ v < 2π and −W ≤ t ≤ W . This embedding describes a straight line

segment with width 2W which as it rotates about the z-axis with angle v also rotates

counterclockwise about its center at half speed v
2

and thus it returns with a reversed

orientation to its starting point. Note that we assume that the half-width W < R

to ensure that the resulting surface has no self-intersections. This Möbius strip has

a core circle with radius R which lies in the xy-plane. Contrast this to the cylinder,



126

which is described only by a line that rotates around the z-axis in a circle with

coordinates (cos (v), sin (v)). The cylinder is thus topologically homeomorphic to

the trivial product space S1 × R. Fig. 6.2 shows a Möbius band with the above

parametrization.

Figure 6.1. Topologically, the Möbius strip is a rectangle with its top and bottom
sides identified

We now identify the boundary curve γ to this surface shown in 6.3. The boundary

curve of the strip can be described by taking t = W in the surface parametrization

Figure 6.2. The Möbius band embedded in R3
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Figure 6.3. The Möbius Boundary

(6.19) with 0 ≤ v ≤ 4π as follows

x(t, v) =
(
R−W sin

v

2

)
cos(v) (6.20)

y(t, v) =
(
R−W sin

v

2

)
sin(v)

z(t, v) = W cos
v

2
.

If we denote X(t, v) = 〈x(t, v), y(t, v), z(t, v)〉, then the tangent plane at each point

x ∈ M ⊂ R3 is TxM is spanned by two orthonormal basis vectors
(
X̂t, X̂v

)
whose

components are given by

X̂t =
{
− sin

(v
2

)
cos(v),− sin

(v
2

)
sin(v), cos

(v
2

)}
(6.21)



128

and X̂v

x′(t, v) =
cos
(
v
2

) (
−4R sin

(
v
2

)
− 3t cos(v) + 2t

)√
4R2 − 2t

(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

(6.22)

y′(t, v) =
4R cos(v) + t

(
sin
(
v
2

)
− 3 sin

(
3v
2

))
2
√

4R2 − 2t
(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

z′(t, v) = −
t sin

(
v
2

)√
4R2 − 2t

(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

where X̂t and X̂v denote derivatives with respect to ∂t and ∂v respectively. Moving

forward, we will drop the hats over Xt and Xv since it will always be assumed we

are working unit vectors throughout this section. The components of the unit normal

N̂(t, v) to the surface or equivalently to the tangent plane, defined by N̂ = Xt ×Xv,

the cross product of Xt and Xv, are



cos
(
v
2

) (
t
(
sin
(
v
2

)
+ sin

(
3v
2

))
− 2R cos(v)

)√
4R2 − 2t

(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

,
sin2(v)

(
t−R csc

(
v
2

))
− t cos(v)√

4R2 − 2t
(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

,

−2R sin
(
v
2

)
+ t(− cos(v)) + t√

4R2 − 2t
(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2


(6.23)

In the
(
X̂t, X̂v, N̂

)
basis, the first fundamental form or equivalently the line element

is given as follows

ds2 = gtt(t, v) dt2 + gvv(t, v) dv2 (6.24)

= E dt2 +G dv2

= ||Xt||2 dt2 + ||Xv||2 dv2

= dt2 +R2 +
3t2

4
− 1

2
t
(

4R sin
(v

2

)
+ t cos(v)

)
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The Christoffel symbols of the second kind can be directly computed from the metric

in (6.24). For a general holonomic coordinate system with basis tangent vectors ei,

the Christoffel symbols are generally defined as

∇µeν = Γρµνeρ. (6.25)

In this coordinate basis, ∇µeν = ∇νeµ and hence Γρµν = Γρνµ. In an arbitrary non-

holonomic basis of tangent vectors denoted by uα, the covariant derivatives may not

necessarily commute and therefore, the Christoffel symbols (or the affine connection)

may contain torsion.

Let us denote the basis vectors Xt as ut = ∂t ≡ ∂1 and Xv as uv = ∂v ≡ ∂2. The

Christoffel symbols can then be explicitly computed in terms if the metric (6.24) as

follows

Γtvv = −∂tgvv
2gtt

= R sin
(v

2

)
+

1

4
t(2 cos(v)− 3) (6.26)

Γvtv =
∂tgvv
2gvv

=
1

t− 4R(R−t sin( v2))
4R sin( v2)+2t cos(v)−3t

Γvvv =
∂vgvv
2gvv

t
(
t sin(v)− 2R cos

(
v
2

))
4R2 − 2t

(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

With this embedding in (6.19) and the metric in (6.24), the second fundamental

form is given explicitly by [166,168]

Ktt dt2 +Kvt dt dv +Kvv dv2 (6.27)
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where the coefficients are calculated as follows

e = Ktt = n̂ · Ẋt = 0 (6.28)

f = Ktv = n̂ ·X′t =
R√

4R2 − 2t
(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

g = Kvv = n̂ ·X′v = cos
(v

2

)(
1 +

t2

4R2 − 2t
(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

)

One way to demonstrate the presence of the torsion in the Möbius band is to see the

behavior of the unit tangent vector Xv as it completes a rotation by 2π. It simply fails

to close. Figure 6.4 shows a plot of Xv as a discrete curve, i.e. as a polygon. This is

consistent with the geometrical notion of torsion which describes the internal twist of

a two-dimensional manifold. In two dimensions, torsion is special in several ways. For

example, it does not preserve tangent vectors in the sense that a vector field does not

maintain the same angle with the tangent vector as it is parallel transported [169].

Figure 6.4. An illustration of the torsion in the Möbius band. The unit tangent
vector Xv does not close after a rotation by 2π.



131

Let X′v be the unit acceleration vector. Then the projection of X′v(t, v) onto the

unit tangent vector Xt(t, v) gives the geodesic curvature κg

κg = X′v · Xt

=
12t (2R2 + t2) cos(v) + 4R sin

(
v
2

)
(4R2 − 6t2 cos(v) + 9t2)− 28R2t− 2t3 cos(2v)− 11t3

2
(
4R2 − 2t

(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

)3/2
,

(6.29)

and its projection of onto the normal N(v, t) gives the normal curvature κn

κn = X′v ·N = cos
(v

2

)( t2

4R2 − 2t
(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

+ 1

)
, (6.30)

such that the curvature κ is given

κ =
√
κ2
g + κ2

n . (6.31)

Fig. 6.5 shows that the curvature of a 1d curve on a 2d surface embedded in R3

decomposes into a linear combination of the geodesic curvature, κg, the component

along the unit surface tangent Xt and the normal curvature, the component along

the unit normal to the surface N.

The normal curvature, κn, as defined above, is given by magnitude of the compo-

nent the unit acceleration vector X′v along the normal to the surface N(v). Thus, κn

detects the curvature of a 1d curve on a 2d surface as seen in the ambient space R3.

In other words, κn depends on the curvature of the 2d surface in R3, and, therefore,

measures the extrinsic curvature of the curve, as opposed to κg which measures its

intrinsic curvature in the 2d surface.
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Figure 6.5. The curvature of a 1d curve on a 2d surface embedded in R3 is a linear
combination of the geodesic curvature, the component along the unit surface tangent
Xt and the normal curvature, the component along the unit normal to the surface N.

6.2.1.2 The Calculation

With the above setup, we can now proceed to carry out the following two calculations

for the Möbius strip: (1) the Euler number χ using Gauss-Bonnet theorem followed

by (2) the λ invariant.. This will illustrate the key difference between the Gaussian

curvature scalar K = R/2 where R the Ricci scalar and the dual or Lorentz scalar

scalar U . We note that the general Gauss-Bonnet theorem can be directly applied

to non-orinetable surfaces [170]. One direct and simple proof of this fact uses the

orientable double cover of the Möbius strip [170]. It is more common to see statements

that the Euler class is only defined for orientable manifolds with orientable tangent

bundles which is of course true given the integral is over a volume form not a volume

density.
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The Gaussian curvature K is given by the following formula [166, 167] (in our

above setup, G = gvv, E = gtt = 1)

K =
1√
G

[
∂v

(√
E

E
Γvtt

)
− ∂t

(√
G

G
Γvtv

)]
(6.32)

= − 1√
G
∂t

(√
G

G
Γvtv

)

= − 1

2
√
G
∂t

(
Gt√
G

)
= − 1

2
√
G
∂2
t

(
G√
G

)
.

The geodesic curvature is given by [171]

κg =
1

2
√
EG

(
−Gtt

′(s) + Evv
′(s)
)
. (6.33)

where s is the arc length parameter. Since ds = ds
dv
dv, then κg ds =

(
−1

2
Gt/
√
G
)
v′(s) ds =(

−1
2
Gt√
G

) dv. The Gaussian curvature has been directly evaluated in [171] as follows

∫
M

K dA =

∫∫
[0,2π]×[−1/2,1/2]

− 1

2
√
G

(
∂2
t

G√
G

)√
Gdt dv (6.34)

= −1

2

∫ 2π

0

∫ 1

−1/2

/2
(
∂2
t

G√
G

)
dt dv (6.35)

= −1

2

∫ 2π

0

(
∂t

G√
G

)∣∣∣
t=1/2

−
(
∂t

G√
G

)∣∣∣
t=−1/2

dv (6.36)

≈ −1.97. (6.37)

where the in last step, Mathematica was used to numerically evaluate the integral.

Evaluating the integral of the geodesic curvature on the top gives [171]

−1

2

∫ 2π

0

∂t
G√
G

∣∣∣
t=1
dt ≈ 4.53,
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and on the bottom boundary gives

−1

2

∫ 2π

0

∂t
G√
G

∣∣∣
t=−1

dt ≈ −2.56,

Therefore, we finally get

∫
M

KdA = −1.97 and

∫
∂M

κg ds = +4.53− 2.56 = +1.97. (6.38)

and hence, as expected, the sum is 2πχ(M) = 0 which confirms the fact that the

Euler number of the Möbius strip is zero [171].

We now calculate the dual curvature scalar, U , for the Möbius strip. The cal-

culation proceeds in parallel to the calculation of the Gaussian curvature. The dual

curvature U can be calculated in two complementary ways depending on whether we

choose t or v coordinates to be the temporal coordinate, or in other words, how we

choose to foliate our Möbius strip. If we take v to be the spatial direction, then the

leaves of the Möbius strip are the spatial circles with the rotating lines pointing in the

temporal t direction. Alternatively, we can choose the spatial leaves of the Möbius

strip to be the rotating lines along t and consider the circles to be moving in the

temporal v direction. Fig. 6.6 illustrates the rotating lines of the Möbius strip. 2

In the former case, we use Γvvv and then U is given explicitly by

U = − 1√
G
∂t

(√
G

G
Γvvv

)
(6.39)

= − 1

2
√
G
∂t

(
Gv√
G

)
= − 1

2
√
G
∂t

(
∂v

G√
G

)
=

t
(
3 (4R2 + t2) sin(v) + 6Rt cos

(
3v
2

)
+ t2(− sin(2v))

)
− 2R (R2 + 3t2) cos

(
v
2

)(
4R2 − 2t

(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

)3/2
.

2Figure adapted from http://webmath2.unito.it/paginepersonali/sergio.console/CurveSuperfici/Notebooks/.
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Figure 6.6. The Möbius boundary is shown in red, the rotating lines in black and
the core circle in blue.

while in the latter case we instead use Γvtv as in the Gaussian curvature case and U is

given explicitly by

U = − 1√
G
∂v

(√
G

G
Γvtv

)
(6.40)

= − 1

2
√
G
∂v

(
Gt√
G

)
= − 1

2
√
G
∂v

(
∂t

G√
G

)
=

t
(
3 (4R2 + t2) sin(v) + 6Rt cos

(
3v
2

)
+ t2(− sin(2v))

)
− 2R (R2 + 3t2) cos

(
v
2

)(
4R2 − 2t

(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

)3/2
.

Since the difference between R = 2K and U becomes strikingly clear in the limit

where the width t of the strip goes to zero, which we define as the flat limit, we

present it here and defer the case of a finite t to Section 6.3. It is well known that the

Möbius strip, although not homeomorphic to the circle, is the deformation retract of

its core circle. Taking the limit t → 0 of R amounts to deformation retracting the

Möbius surface onto the core circle such that G = 1 in metric (6.24). This is why we
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call this deformation retraction process the flat Möbius limit. Taking the radius R of

the circle to be 1, the t→ 0 flat limit of the Gaussian curvature K gives the constant

intrinsic curvature of the core circle

K
∣∣∣
t=0

=
e

G

∣∣∣
t=0

= −1

4
. (6.41)

On the other hand, taking the t→ 0 flat limit of U in (6.40) instead gives

U
∣∣∣
t=0

=
1

4
cos(v/2) . (6.42)

The flat limit clearly illustrates that the difference between K and U is, in principle,

the difference between intrinsic and extrinsic geometry. In other words, deforming the

Möbius surface by way of taking the flat limit of K = 2R simply gives the intrinsic

curvature of the core circle which has no knowledge of the extrinsic curvature induced

by its embedding in R3. On the other hand, deforming the Möbius surface by taking

the same t→ 0 of the dual curvature scalar U extracts the extrinsic curvature of the

Möbius boundary with absolutely no knowledge of the intrinsic curvature of the core

circle. This is another way of saying that U
∣∣∣
t=0

measures the normal curvature along

N(v) which detects how the surface bends in the normal direction N(v). Thus, in a

sense, U
∣∣∣
t=0

measures the deviation from planarity, which is the most basic definition

of torsion in space curves.
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To better understand this t→ 0 of U , we will derive it directly from the (6.40) by

taking the flat limit of Γvtv to t = 0 as follows

U
∣∣∣
t=0

= − 1√
G
∂v

(√
G

G

∂tG

2G

∣∣
t=0

)
(6.43)

= − 1

2
√
G
∂v

(
1√
G

(sin(−v/2))

)
=

1

2
√
G
∂v

(
sin(

v

2
)
)

=
1

4
cos(v/2) ,

where in the last step we used that in the flat limit G = 1. Integrating U
∣∣∣
t=0

gives

∫ π

−π

1

4
cos(v/2) dv = 1 . (6.44)

We now move to demonstrate how in this flat limit, the integral of U detects the

parity of the number of twists of the Möbius band. It is important to note that the

number of twists in the Möbius band is an embedding invariant or more accurately, an

isotopy invariant. An isotopy invariant can be used to classify different embeddings

of the Möbius surface in R3. The twist number is not a topological invariant since

all strips with an even number of half-twists are homeomorphic to [0, 1]× S1, which

is a trivial line bundle. Since, as we explained in Appendix 2.C, the cylinder and

the Möbius strip are two topologically distinct isomorphism classes of the real line

bundles, we can directly conclude that the parity of the number of twists is indeed a

topological invariant.
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The Möbius strip with a number of half-twists w and unit radius has the following

embedding in R3

x(t, v) =
(

1− t cos(
wv

2
)
)

cos(v) (6.45)

y(t, v) =
(

1− t cos(
wv

2
)
)

sin(v)

z(t, v) = t sin(
wv

2
) .

Let w = 2. Calculating the dual curvature Uw=2 using (6.39) gives

Uw=2 =
cos(v) (6t2 + t(t(t(sin(3v)− 7 sin(v))− 6 cos(2v))− 12 sin(v)) + 4)

2
√

2 (3t2 − t(t cos(2v) + 4 sin(v)) + 2)3/2
, (6.46)

which in the flat limit gives

Uw=2
∣∣
t=0

=
cos(v)

2
. (6.47)

Upon integration, it yields

λ =

∫ π

−π
Uw=2

∣∣
t=0

dv =

∫ π

−π

cos(v)

2
dv = 0 . (6.48)

Now, let w = 3. Calculating the dual curvature Uw=3 gives

3
(
8R3 cos

(
3v
2

)
+ t sin(3v)

(
−12R2 + 2t

(
6R sin

(
3v
2

)
+ t cos(3v)

)
− 11t2

))
4
(
4R2 − 2t

(
4R sin

(
3v
2

)
+ t cos(3v)

)
+ 11t2

)3/2
, (6.49)

which in the flat limit gives

Uw=3
∣∣
t=0

=
3

4
cos

(
3v

2

)
, (6.50)
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and upon integration yields

λ =

∫ −π
π

Uw=3
∣∣
t=0

dv =

∫ −π
π

3

4
cos

(
3v

2

)
dv = 1 . (6.51)

Therefore, we see that the integral of U in this flat limit distinguishes between an

even number of twists and an odd number of twists of the Möbius strip and hence it

represents a topological invariant. We discuss and further elaborate on the topological

and geometrical underpinnings of this result in Section 6.3.

6.2.1.3 The flat limit of the dual spin connection

In this section, we work out an explicit example using vielbeins and the dual spin

connection to demonstrate how U
∣∣
t=0

= 1
4

cos(v/4) can be obtained in the flat limit.

Here, we follow the example in Section 12.2.3 of [1]. The frame fields are given by

e1 = −2 cos(v/4) dt, e2 = −2 cos(v/4)−1 dv , (6.52)

with components

e1
t = −2 cos(v/4), e2

v = −2 cos(v/4)−1 . (6.53)

The inverse vielbeins are then

E1 = −1

2
cos(v/4)−1 ∂

∂t
, E2 = −1

2
cos(v/4)

∂

∂v
, (6.54)

with components

Et
1 = −1

2
cos(v/4)−1, Ev

2 = −1

2
cos(v/4) , (6.55)

such that

eat E
t
b + eav E

v
b = δab . (6.56)
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Acting with the exterior derivative

d =
∂

∂t
dt+

∂

∂v
dv ,

we get

de1 =
1

2
sin(v/4) dv ∧ dt, de2 = 0 . (6.57)

Using dt dv(E1, E2) = 1
4
, the coefficients of the spin connection 1-form are given by

ξ1
21 =

1

8
sin(v/4)

and therefore

ω1
21 =

1

8
sin(v/4)

such that the spin connection 1-form is

ω1
21e

1 = −1

4
sin(v/4) cos(v/4)dt ∧ dv (6.58)

and the curvature 2-form dω1
2 is given by

U1
2 = − 1

16

(
cos2(v/4)− sin(v/4)

)
dv dt (6.59)

= − 1

16
cos(v/2)

=
1

4
cos(v/2)e2 e1 ,

where in the last step we used (6.52). Thus, from this example, we see that a black

hole metric is one way of obtaining the flat limit of the dual curvature U .
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6.3 Discussion and Outlook

On topological grounds, we speculate that this invariant counts the dimension of the

Z2 torsion subgroup in the same way that the Euler class e(E) ∈ Hn(M ;Z) of an

orientable tangent bundle counts the number of n-dimensional holes of a compact

n-dimensional manifold M . We note that for orientable tangent bundles (equiv-

alently manifolds), e([M ]) = χ(M), where χ(M) =
∑n

i=0(−1)idim H i(M,Z) =∑n
i=0(−1)i bn(M) where bn(M) is the n-th Betti number of the base manifold M .

For a proof of this statement, see [118]. However, since the rational Betti numbers

bn(M), and hence, the Euler characteristic, do not take into account any torsion in

the homology groups present in non-orientable bundles, another number called the

torsion coefficient, analogous to χ(M) is used to classify manifolds with torsional cy-

cles. We speculate that the λ invariant computes the torsion coefficient of the Möbius

bundle.

In non-orientable manifolds (or bundles), for example, the Möbius surface, there is

a class of cycles that only close after going around twice. This phenomenon is called

torsion in homology theory. To classify these type of cycles that must be followed

around twice before they close, another number, other than the Euler number, known

as the torsion coefficient is used. Hence, torsion, as defined in homology theory, tells

us about the non-orientability of surfaces. As we will further discuss in appendix 6.A,

for surfaces, non-orientability can be detected by the presence of a torsion subgroup

in the first homology group.

It is important to note that unlike χ(M) which classifies different types of holes in

the base manifold M of a vector bundle E
π−→M , λ(E) detects torsion in the bundle

itself. This is an important distinction since it underlies another reason why the Ricci

scalar R is fundamentally different from the dual Lorentz scalar U . In the flat limit,

U captures the extrinsic curvature of the Möbius bundle which principally detects the
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twist in the frame of the Möbius line bundle as seen in R3 rather than the curvature

of its base circle that the Ricci scalar detects. This, in a sense, can be considered the

reason why the Euler characteristic χ(M) does not take into account the torsion in

the Möbius bundle.

We also would like to point out that, in hindsight, this result is not very surprising.

Based on our discussion in Section 2, this result is compatible with the fact that the

z = 1 Weyl anomaly is parity-odd. Therefore, the fact that λ measures the parity of

the number of half-twists is quite natural.

Geometrically speaking, another way to understand the difference between K (or

R) and U is to try to find a statement of
∫
U dA analogous to that of the Gauss-

Bonnet theorem in terms of the curvature of a geodesic triangles. Specifically, for a

geodesic triangle T, the integral
∫
T
K is the deviation of the sum of its turning angles

θi = (π − αi) from π

∫
T

K = 2π −
∑
i

αi −
∫
∂T

κg (6.60)

=
∑
i

(π − αi)− π −
∫
∂T

κg ,

where αi is the interior angle of T. The turning/winding number theorem [166, 168]

states that for a smooth closed curve, the total (signed) curvature is an integer mul-

tiple of 2π. For a Möbius strip, therefore, one can see, given the calculation in (6.34),

that
∑

i(π − α) − π = −
∫
∂T
κg gives an Euler characteristic χ(Möbius) = 0. It is

important to observe that the geodesic triangle T is a closed discrete piecewise curve,

which implies that the discrete turning angle θi at each vertex vi of T is given by an

angle θi such that, in the flat limit,
∑

i θi = 2πn where n ∈ Z [172].

On the contrary, trying to construct a discrete version of the normal curvature

vector defined as the gradient of arc length of the curve, i.e. X′v(v) = κ(v)N(v)

actually fails (see equation 3 in [172]) in a way that violates the turning number
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theorem. This is because the discrete curvature κi at each vertex vi of the closed

discrete curve is 2 sin(v/2) as opposed to a mere angle θi. We therefore speculate that

this may be one way of explaining why the unit tangent vector in Fig. 6.4, which is a

discrete curve, does not close: at each vertex of Xv, the curvature κi is actually given

by 2 sin(θi/2) such that in the limit of large n of an n-gon with turning angle θi = 2π
n

,∑
i = 2n sin(2π

2n
) < 2π. To verify the above argument in the case of the Möbius strip,

one can directly compute the gradient of the arc length in the flat limit as ∂tG
2G

which

indeed gives 2 sin(v/2) exactly. Hence, at least in the case of the Möbius strip, one

can speculate that in the flat limit,
∫
U
∣∣∣
t=0

is given by the integral over a discrete

curve C (we are using θ for the angle since vi denotes a vertex of a a discrete polygon)

∫
C

U =

∫
C

∑
i

2 sin(θi)−
∫
C

κn . (6.61)

In the case of a finite thickness t, one can calculate
∫
M
U dA as follows

∫
M

U dA =

∫∫
[0,2π]×[−1/2,1/2]

1

2
√
G
∂t

(
∂vG√
G

)√
Gdt dv

=
1

2

∫ π

−π

∫ 1/2

−1/2

(
∂t
∂vG√
G

)
dt dv

=
1

2

∫ π

−π

(
∂v

G√
G

)∣∣∣
t=1/2

−
(
∂v

G√
G

)∣∣∣
t=−1/2

dv

≈ −0.96 ,

where again Mathematica was used to numerically compute the last integral. Observe

that
∫
U has an extra minus sign which

∫
K does not have. This extra minus sign

cancels with the minus sign in the definition of K. The reason for this extra minus is

simply because, as we explained at the end of Section 6.39, U is actually the exterior

derivative of the Hodge dual of the spin connection 1-form d ? ω as shown in (6.17).
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We also note that the integral is taken from π to −π rather than from 0 to 2π as in

the case of the Gaussian curvature. Another difference between K and U is while K

does not change sign at 0 and 2π, U actually does.

The dual geodesic curvature, κ̃g, is now given by

κ̃g =
(1

2

Gv√
G

) dv (6.62)

= −
t
(
2R cos

(
v
2

)
− t sin(v)

)
2
√
R2 − 1

2
t
(
4R sin

(
v
2

)
+ t cos(v)

)
+ 3t2

4

.

Evaluating the integral of the dual geodesic curvature on the top boundary gives

1

2

∫ −π
π

Gv√
G

∣∣∣
t=1/2

dv ≈ 0.48

and on the bottom boundary gives

1

2

∫ π

−π

Gv√
G

∣∣∣
t=−1/2

dv ≈ 0.48

such that one finally gets

∫
M

U dv dt+

∫
∂M

κ̃g dv ≈ 0.96 + 0.48 + 0.48 ≈ 1.92 . (6.63)

So we can directly see that the boundary terms actually add up and do not cancel

out as they do in the case of the Gaussian curvature K.

Although we did not give a rigorous proof of the topological invariance of λ, we

gave sufficient evidence that it actually is. A logical next step is to provide a proof that

λ actually counts the torsion coefficient of 2-dimensional non-orientable manifolds. A

useful formula for the Gaussian curvature is Liouville’s equation written in terms of

the isothermal coordinates. It would be nice if an analogous equation can be found

for the dual curvature U .
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Another natural extension of this work is to find a physical application of this

λ invariant in condensed-matter theory especially in regards to the Z2 topological

invariant in the quantum spin Hall Effect [173, 174]. Also, a torsional topological

invariant in four dimensions has been found in [175–177]. It would be very exciting

if a connection between this four-dimensional invariant can be found.

Another very interesting direction is the time reversal anomaly in 2+1d topological

phases [178,179]. Time reversal invariance of a (2+1) quantum field theory is a global

symmetry of the theory. Coupling the QFT to a background gauge field or, in other

words, gauging the time reversal symmetry, is, interestingly enough, equivalent to

placing the theory on a Möbius strip. We have seen that the Lifshitz Weyl anomaly

is parity-odd and breaks time-reversal invariance. In light of our discussion of the

a∧da term in Chapter 4 and how we derived the Lifshitz Weyl anomaly as a boundary

term of the NRSCS action, it would indeed very interesting to find any connection of

the work in this thesis to that in [178].
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Appendix

6.A Torsion class and flat vector bundles

In this Appendix, we briefly discuss, using certain aspects of integral homology and

cohomology theory, how the Möbius flat line bundle contains torsion, and how the

latter can be used to detect non-orientable manifolds. This is a continuation of our

discussion in Appendix 2.A.

In orientable manifolds, it is well known that the Euler number only captures

the free part of the second integral homology group H2(M ;Z). For non-orientable

manifolds, e.g. the Möbius surface, on the other hand, there is a class of cycles that

only close after going around twice. The phenomenon is called torsion. To classify

these types of cycles that must be followed around twice before they close, another

number, other than the Euler number, known as the torsion coefficient is used. Hence,

we see that torsion can tell us about non-orientability in 2-manifolds. Geometrically

speaking, the Euler number only counts handles and holes in surfaces that can be

triangulated. The Möbius surface fails to be triangulated exactly because of the cycle

that only closes after going around twice.

More concretely, a closed n-manifold M is orientable iff Hn(M ;Z) = Z, and non-

orientable iff Hn(M ;Z) = 0. Simply put, Hn−1(M ;Z) is torsion-free if and only if M is

orientable and has torsion subgroup Z2 if M is non-orientable. Thus, for 2-manifolds,

orientability can be identified directly from H1 [121].
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Given these facts about the relationship between homology, torsion and non-

orinetability, let us apply them to the case of a Möbius strip which is described

topologically by a real real line bundle over the circle S1. The Möbius strip is known

to have the following homology groups with integer coefficients [105]

H2(S1,Z) ∼= {0} (6.64)

H1(S1,Z) ∼= Z

H0(S1,Z) ∼= Z.

and with Z2 coeffiecients

H0(S1,Z2) ∼= Z2 (6.65)

H1(S1,Z2) ∼= Z2

H2(S1,Z2) ∼= 0.

Therefore, we directly conclude that the Möbius flat line bundle is non-orientable and

has torsion which implies that the structure group of the bundle i.e. the gauge group

can be reduced to Z2.
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Supérieure, volume 41, pages 1–25, 1924.

[47] Kurt Friedrichs. Eine invariante formulierung des newtonschen gravitations-
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