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Abstract

Infectious diseases, such as seasonal influenza, Zika, Ebola, and the ongoing COVID-19,
can be spread, directly or indirectly, from one person to another leading to an outbreak,
an epidemic, or a pandemic. Infectious diseases place a heavy social and economic
burden on our society. Producing timely, well-informed, and reliable spatiotemporal
forecasts of the epidemic dynamics can help inform policymakers on how to provision
limited healthcare resources, develop effective interventions, rapidly control outbreaks,
and ensure the safety of the general public.

Traditional approaches are mainly based on theory-based mechanistic models (e.g.,
an agent-based SEIR model) and statistical time series models (e.g., autoregressive
models). Recent advances in deep learning have significantly improved the state
of the art in computer vision, natural language processing, and many other fields.
Although deep learning-based predictive models have gained increased prominence in
epidemic forecasting, they are far from being well explored. One challenge is the lack
of sufficient good-quality training data, particularly during new emerging epidemics.
Another challenge is that existing models are seldom designed to consider both spatial
and temporal correlations dynamically for capturing disease spread dynamics. A
further challenge is that such models rarely consider epidemiological context as prior.
Models in the aforementioned cases are prone to be overfitting and are unlikely
to provide explanatory power for the underlying phenomena due to the black box
nature. Given the challenges, my research focuses on deep learning-based methods
that incorporate spatiotemporal features and theory-based mechanistic models for a
better understanding of disease spreading and improving forecasting accuracy and
explainability. The aims are 1) improving epidemic forecasting accuracy by proposing
graph neural network-based frameworks that consider temporal and spatial signals
using a novel large scale mobility dataset, 2) improving explainability and accuracy
of deep learning-based forecasting models by combining deep learning models with
theory-based mechanistic models to incorporate epidemiological context.

First, we proposed a mobility informed graph neural network-based framework to
capture cross-location co-evolving disease dynamics for better spatiotemporal epidemic
forecasting. The proposed frameworks leverage priors from domain knowledge and
mobility data. The priors are employed to instruct the model learning with the aim to
allow for easier interpretation of the model and forecasting results. We incorporated
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large-scale aggregated spatiotemporal mobility data into graph neural networks. The
proposed model provides a natural representation of disease and human mobility
dynamics to develop spatially explicit forecasts thus leading to better forecasting
accuracy.

Second, we proposed TDEFSI that works towards enhancing deep learning models
with theory-based mechanistic models with the aim of providing accurate forecasts
and gaining a mechanistic understanding from a learned model. TDEFSI combines
deep learning models and mechanistic models in a sequential learning process. In
TDEFSI, mechanistic models are used to generate context-specific synthetic training
data and then deep neural networks are trained with that synthetic data. Accurate high
geographical resolution forecasting was achieved by using high-performance computing
simulations. Furthermore, the explainable power of the proposed framework was
explored by what-if scenario analysis.

Third, we further proposed CausalGNN that uses a causal module to mutually
provide and embed causal features to get epidemiological context. CausalGNN adopts
a joint learning process that learns a latent space to combine the spatiotemporal and
causal embeddings using graph-based non-linear transformations. The learned model
employs a causal mechanistic model to provide epidemiological context thus leading
to better forecasting accuracy and better understanding of the underlying phenomena.
In addition, the learned model can generate meaningful disease model parameters
leading to explainable forecasts.
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Chapter 1

Introduction

In this chapter, which is based on Wang et al. (2021a), we will present an overview of
epidemic forecasting in Section 1.1, which includes introducing infectious disease and
disease spreading dynamics in Section 1.1.1, discussing epidemic forecasting and its
problems, challenges, and evaluation methods in 1.1.2, and providing a brief overview
of theory-based mechanistic methods, statistical time series methods, and deep learning
methods for epidemic forecasting in 1.1.3. A more specific discussion of related works
will be made in each separate chapter.

1.1 An Overview of Epidemic Forecasting

1.1.1 Infectious Disease and Its Spread Dynamics
Human infectious diseases are caused by pathogenic microorganisms, such as bacteria,
viruses, parasites, or fungi; and can spread directly or indirectly, from one person
to another. An infectious disease spread can lead to an outbreak, an epidemic, or a
pandemic. While most of the chapter will be focused on diseases that can be spread
directly through human contact, similar methods can be developed for environment-
or vector-mediated spread.

An outbreak can be defined as a sudden emergence of a localized cluster of disease
occurrences in a sub-population. While it usually starts in a small community or a
geographical area, it may lead to case exportation to other regions or countries. It may
last for a few days to weeks, or even for multiple months. Some outbreaks could be
seasonal such as those caused by environmental or vector abundance-based risk factors
(e.g., Lyme disease). Others could be caused by exposures to zoonotic reservoirs (e.g.,
Ebola) or due to incidence in under vaccinated clusters (e.g., Measles). If not quickly
controlled, an outbreak can become an epidemic causing significant health burden.

An epidemic occurs when an infectious disease spreads rapidly to many people
within a community, population, or region. While they share several characteristics of
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an outbreak, the spatial, temporal, and social scales are usually larger in magnitude.
For example, in 2003, the severe acute respiratory syndrome (SARS) epidemic spread
to about 8000 confirmed cases and led to nearly 800 deaths. Likewise, the Ebola
epidemic ravaged West Africa between 2014 and 2016, with 28,600 reported cases and
11,325 deaths.

A pandemic is an epidemic that spreads over multiple countries or continents and
could last multiple years. For instance, the influenza (flu) pandemic of 1918-1919
killed between 20 and 40 million people. While more devastating pandemics have
been recorded (e.g., Bubonic Plague in the 14th century), the 1918 pandemic remains
the most severe in recent history. The 2009 H1N1 influenza was a more recent global
pandemic that led to an estimated 151K to 575K deaths worldwide during the first
year the virus circulated. Since the 2009 H1N1 pandemic, the H1N1 flu virus along
with other types has circulated seasonally in the U.S. causing significant illnesses,
hospitalizations, and deaths. As of this writing, the ongoing COVID-19 pandemic is
the most acute public health emergency since the 1918 influenza pandemic. As of
April 2021, it has accounted for nearly 140 million reported cases and resulted in at
least 3 million deaths worldwide1.

While these distinctions help in characterizing the scale, they also reflect the difficult
in obtaining data and the various factors involved in the dynamics. For instance, the
control measures may vary between these scales, and hence such adaptations might
make the task of forecasting more challenging. For the purposes of this thesis, we
will mainly focus on epidemics, although the techniques outlined herein can be used
interchangeably in many different scenarios.

The dynamics of an epidemic are usually characterized by: 1) when and where
it started, 2) the scope and pervasiveness, 3) the duration of spread, and 4) overall
severity (how it impacts individuals, communities, countries, and the whole society).
For example, the 2014-2016 West Africa Ebola epidemic was the largest Ebola outbreak
in history since the virus was first discovered in 1976. The World Health Organization
(WHO) reported cases of Ebola Virus Disease (EVD) in the forested rural region of
southeastern Guinea on March 23, 2014. It spread between countries, starting in
Guinea then moving across land borders to Sierra Leone and Liberia. The average
EVD case fatality rate was around 50% and has varied from 25% to 90% in past
outbreaks2. In Guinea, Liberia, and Sierra Leone, the Ebola epidemic resulted in
devastating effects on the healthcare workforce, the provision of healthcare services,
children, and the national economy3.

Numerous factors affect the disease spreading dynamics of an epidemic. Human
factors such as activity (mobility, daily activities, mixing patterns) and demographics
(age, gender, social status, economic status, etc.) are crucial because they determine

1Source: https://covid19.who.int/
2Source: https://www.who.int/health-topics/ebola/#tab=tab_1
3Source: https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html

https://www.who.int/health-topics/ebola/%23tab=tab_1
https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html
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how the disease transmits in a community. Environmental factors such as sanitation
facilities, water supply, food, and climate account for an estimated 24% of the global
disease burden and 23% of all deaths (by WHO), which includes epidemics and sporadic
outbreaks. Public health interventions are the most effective way to control the disease
spread. These interventions, both pharmaceutical (prophylactics, antivirals, vaccines)
and non-pharmaceutical (stay-at-home orders, mask wearing, social distancing, safe
burials) could be targeted at altering the spread dynamics. For example, during the
ongoing COVID-19 pandemic, the virus is thought to spread mainly through close
contact from person to person. Older adults and people of any age who have certain
underlying medical conditions might be at higher risk for severe illness from COVID-194.
Certain jobs such as healthcare providers, school teachers, and supermarket workers
are at higher risk of getting infected. The governments across the world had to rely on
behavioral interventions (such as social distancing, wearing face masks in public, hand
washing, monitoring and self-isolation for people exposed or symptomatic, etc.) at
the beginning phase of the pandemic. With the development of multiple high efficacy
vaccines that are authorized for emergency use, current measures include a combination
of NPIs and vaccinations to drive down case rates, along with test/trace/isolation-based
infection control.

1.1.2 Epidemic Forecasting
Infectious diseases have placed a heavy social and economic burden on our society.
Producing timely, well-informed, and reliable spatiotemporal forecasts of the epidemic
dynamics can help inform policymakers on how to provision limited healthcare re-
sources, develop effective interventions, rapidly control outbreaks, and ensure the
safety of the general public. In this section, we will first show an example of epidemic
forecasting. Then we introduce the reference data used for forecasting, followed by a
description of spatial and temporal epidemic forecasting. Next, we discuss the chal-
lenges of epidemic forecasting. Finally, we briefly introduce the epidemic forecasting
metrics for evaluation.

Flu Forecasting - An Example of Epidemic Forecasting
A general idea of epidemic forecasting is to use observed data sources as the reference
data to make spatial and temporal forecasts of an epidemiological target. For instance,
take the “Predict the Influenza Season Challenge” – a flu forecasting project hosted
by the Centers for Disease Control and Prevention (CDC) as an example. CDC’s
efforts with seasonal influenza forecasting began in 2013 with a competition that
encouraged outside academic and private industry researchers to forecast the timing,

4Source: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.

html

https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.html
https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.html
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peak, and intensity of the flu season, along with its short-term trajectory. The CDC
provides data, relevant public health forecasting targets, and forecast accuracy metrics
evaluated against actual flu activity. Each forecasting team submits their forecasts
based on a variety of methods and data sources each week. The CDC has provided
the Outpatient Illness Surveillance5 report weekly at US national and HHS region6

level since 1997 and at the state level since 2010 in FluView7. The historical records
collected information on health care providers and patient visits for influenza-like illness
(ILI). The CDC surveillance data is one type of reference data used to make forecasts,
while researchers have used other datasets such as Google Flu Trends (GFT), Google
Trends, twitter data, weather data to improve forecast accuracy. The epidemiological
targets being forecast included season onset, peak week, peak intensity, and short-term
activity. These target definitions rely on the percent of visits to health-care providers
that are for ILI, also called ILI intensity. For instance: season onset is defined as the
first week when ILI intensity is at or above baseline and remains there for at least
two more weeks; peak week denotes the week when ILI intensity is the highest for the
whole season; peak intensity is the highest value of ILI intensity during the season;
short-term ILI activity means ILI intensity of one, two, three, and four weeks ahead
of the date that they are available in FluView8.

Researchers need to provide weekly forecasts at national, HHS region, and state
level. These are provided in a probabilistic format, thus allowing uncertainty quantifi-
cation. In recent times, there have been concerted efforts to build trained ensembles of
these multiple methods to provide better forecasts. This effort has led to multi-team,
multi-year collaborations (Reich et al., 2019) and has become increasingly prominent
in public health communication and decision-making during influenza seasons. Each
week during the influenza season, the CDC now displays the forecasts received through
the Epidemic Prediction Initiative (EPI)9. Chakraborty et al. (2018) presented a set
of considerations for flu forecasters to take into account prior to applying forecasting
algorithms.

Reference Data
Reference data is extremely important in epidemic forecasting because it provides
meaningful information about the disease spreading dynamics. In general, one could
use various derived metrics, but the most common reference data is the traditional
surveillance data which capture some measure of disease incidence for a given region

5Source: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
6The 10 Regional Offices that directly serve state and local organizations are hosted by the Office

of Intergovernmental and External Affairs. HHS denotes U.S. Department of Human and Health
Services.

7
https://www.cdc.gov/flu/weekly/fluviewinteractive.htm

8
https://www.cdc.gov/flu/weekly/flusight/how-flu-forecasting.htm

9
https://predict.cdc.gov/

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://www.cdc.gov/flu/weekly/fluviewinteractive.htm
https://www.cdc.gov/flu/weekly/flusight/how-flu-forecasting.htm
https://predict.cdc.gov/
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over a particular time period. Some examples include cases, hospitalizations, and
deaths on a daily resolution at the county level for COVID-19. Usually such data is
generated by regularly collecting reports from local public health laboratories and
health care providers and then aggregating the collected information to form spatial
and temporal data streams. The surveillance data is simply another indicator of total
disease burden and could have various lead or lag time with respect to policy goals
and actions. For a well observed disease, it is usually stable and reliable and is thus
used as the main reference data. However, it is delayed due to the surveillance and
reporting process, and may not be at a high resolution.

Another important reference data is the mobility data. Infectious diseases transmit
directly or indirectly from person to person via contact networks. A contact network is
formed when individuals come in geographic proximity to each other for a reasonable
time duration. Human mobility behavior determines the formation of a contact
network thus is crucial for modeling disease spreading dynamics especially for models
based on social contact networks, which will be introduced in Section 2.4. For example,
at an aggregate level, a region’s COVID-19 dynamics can potentially be affected by
regions where frequent travel occurs between them. Human mobility can be modeled
or estimated using mathematical models such as the gravity model10, or real world
collected data, such as aggregate mobile phone data, air traffic data, commute data,
etc.

Finally, social media data is often used as auxiliary information when making
forecasts. Social media data is the collected information from social networks that
show how users share, view, or engage with the epidemiological information, including
behaviors such as searching, tweeting, or engaging in participatory surveillance (i.e.,
filling out surveys). There are many types of social data, such as tweets from Twitter
and posts on Facebook. These data can be updated daily at finer geographic resolution
but are not representative of the overall population. Furthermore, it requires large
scale data collection and curation efforts.

Other reference data pertaining to environment and policy are also used for
epidemic forecasting since they can provide reference information on any of the factors
discussed in Section 1.1.1.

Temporal and Spatial Forecasting
Temporal forecasting. In the first two decades of the 21st century, multiple public
health emergencies have occurred globally, highlighting the need to understand real-
time epidemic science. During these emergencies, diseases cause rapid spread within
a community and invade new regions in the span of just a few weeks to months,
leaving a critical window of opportunity during which real-time warning is crucial.

10Wikipedia: A gravity model provides an estimate of the volume of flows of, for example, goods,
services, or people between two or more locations. This could be the movement of people between
cities or the volume of trade between countries.
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Real-time forecasting is a type of forecasting that occurs concurrently to an event,
such as an epidemic, using the most recent data available. Note that this does not
mean forecasting only into the future, since in some cases, like seasonal influenza, the
latest data available might be lagged by 1-2 weeks, thus requiring forecasting to the
present (aka nowcast or even of the past (aka hindcast).

Retrospective forecasting is conducted by sequentially removing the data in the
latest time from the full data set with the aim of evaluating and improving a model’s
forecasting performance retrospectively. Further, for an ongoing epidemic, the methods
are often refined in real-time, and hence it is valuable to evaluate them across past
data to check their out-of-sample performance.

The forecasting target as discussed above, could be short-term or long-term. While
one could make forecasts of any incidence metric (say, number of K-12 outbreaks
that will occur in the next 3 months), it is often useful to look at the aggregate
epidemic trajectory (time series of number of cases, for example) and forecast its
short-term trend and long-term characteristics. Given the process of data collection
and surveillance lag, accurate statistics for epidemic warning systems are often delayed
by some time, making long-term forecasting imperative without sacrificing on forecast
performance.

There is no clear definition on what is considered short-term and long-term
forecasting. Short-term forecasting typically refers to forecasting anywhere from one
to six weeks ahead while long-term forecasting is usually used to predict the long term
objectives such as time of peak, peak intensity, total number of deaths, etc.

With respect to the temporal forecasting, I’d like to introduce a commonly used
definition lead time or horizon. Lead time or horizon in epidemic forecasting domain
is the latency between the forecast of the epidemic dynamics (i.e., current time point)
and its actual presentation (i.e., future time point). For example, if we are currently
at time point t when making forecasts of an epidemiological target at time point t+ h,
then h is the horizon value.

Spatial forecasting. It is well established that the aggregate characteristics of
epidemic incidence are being driven by spatial aspects of transmission. Thus, accurate
forecast of the spatial spread of a disease could provide valuable insights into epidemic
control. Spatial epidemic forecasting can be done at multiple geographical resolutions
such as national, state/province, county, and city depending on forecasting models
as well as the resolution of the available data. In this thesis, we adopt terminologies
defined in Wang et al. (2020b) that " flat-resolution forecasting to denote the forecast
of an epidemiological target with the same resolution as the reference data, high-
resolution forecasting to denote the forecast with a higher geographical resolution than
provided in reference data, and coarse-resolution forecasting to denote the forecast
with a coarser geographical resolution than provided in reference data." Purely data-
driven models can make flat-resolution forecasting. A coarse-resolution forecast can
be obtained by (a) aggregating the flat-resolution forecasts into a coarse-resolution
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based on their geographical attributes, or (b) aggregating the reference data to coarse
resolution and running through the same forecasting methods. For theory-based
mathematical models, forecasting can be made at any resolution depending on how
detailed a computational model is, as long as they encode the resolution at which
the forecasts are required. For example, individual level forecasts can be made if an
agent-based model is used in epidemic simulations. Then the individual level incidence
can be aggregated to the case count at any resolution based on the geographical
location of each individual in the simulation.

Challenges of Epidemic Forecasting

Challenges with reference data. For recurring epidemics, such as seasonal in-
fluenza, the surveillance data could be at a coarse resolution and delayed in time.
Other reference data is not as reliable and stable and requires extra data collecting
and refining efforts. During an emerging epidemic, the forecasting problem could be
particularly complicated as the training data 1) is sparse for each region (unlike sea-
sonal flu there is no historical data); 2) noisy due to reporting bias, testing prevalence,
etc.; 3) is a resultant of rapidly co-evolving dynamics of individual behavioral adap-
tations, government policies, and disease spread. Further such reference data could
be retro-updated (referred to in the field as backfill) or change definitions mid-way.
Difficulty obtaining real-time, reliable, and finer resolution information on disease
dynamics have limited the predicting power of existing infectious disease forecasting
techniques which heavily rely on this information.

Challenges with spatial and temporal forecasting. Designing a model that
can capture both spatial and temporal patterns from data is crucial yet challenging.
First, real-time forecasting is challenging for systems that are compute- and data-
intensive due to the need for regular and frequent updates. Thus, a model with less
computational cost is more suited for real-time forecasting systems, as long as it does
not sacrifice much in terms of overall accuracy. Second, a challenge in long-term
epidemic forecasting is that the temporal dependency is hard to capture with short-
term input data. Particularly, limited availability of reference data during emerging
epidemics has resulted in failure to capture long-term patterns from the data. Models
that can capture short- and long-term patterns from limited input data are required for
accurate long-term forecasting. Third, as spatial data becomes available, the influence
from other locations should be explored while making forecasting. However, it is
difficult to investigate data from systems with models that do not represent space in
some way. Models considering cross-location signals can capture spatial patterns from
the data, which can lead to better forecasting performance, but could be impacted by
model mis-specification biases (especially the level of connectivity). Finally, difficulty
in accessing high-resolution data often fail the spatial forecasting at a finer resolution.
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Epidemic Forecasting Evaluations
In statistics, point estimation involves the use of sample data to calculate a single value
(known as a point estimate since it identifies a point in some parameter space) which is
to serve as a "best guess" or "best estimate" of an unknown parameter. In infectious
disease epidemiology, point forecasts are often served as the best guess of an unknown
target. More often, probabilistic forecast is necessary to properly reflect forecasting
uncertainty. It is an estimation of the distribution of an unknown target. For example,
in the CDC FluSight Challenge (see Section 1.1.2), for peak week forecasting, the
point forecast could be the week the peak is most likely to occur during the current
flu season and the probabilistic forecast is the probabilities that the peak will occur
on each week during the season (e.g., 50% peak will occur on week 1; 30% chance on
week 2; 20% chance on week 3).

Evaluation of forecasting performance is crucial for model improvement (Tabataba
et al., 2017a). Popular metrics for evaluating point forecasts in epidemic forecasting
are: (1) Mean Absolute Error (MAE), (2) Mean Squared Error (MSE), (3) Root Mean
Squared Error (RMSE), (4) Mean Absolute Percentage Error (MAPE). Particularly, (5)
Pearson Correlation (PCORR). PCORR is used to measure the model performance on
predicting disease trends. Common scoring rules to evaluate full predictive distributions
in epidemic forecasting are: (1) Logarithmic Score (logS) (Gneiting and Raftery, 2007)
and its variation multibin logS (MBlogS) (Centers for Disease Control and Prevention,
2018), (2) Continuous Ranked Probability Score (CRPS) (Gneiting et al., 2007). The
logS and MBlogS are used for scoring flu forecasting in the FluSight Challenge. In
addition, (3) Interval Score (IS) (Gneiting and Raftery, 2007) and (4) Weighted Interval
Score (WIS) (Gneiting and Raftery, 2007) are designed specifically for forecasts in a
quantile/interval format. The IS has recently been used to evaluate forecasts of Severe
Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) and Ebola (Chowell
et al., 2019) as well as SARS-CoV-2 (COVID-19) (Bracher et al., 2021). WIS has
been recently widely used for COVID-19 forecasting evaluation (Bracher et al., 2021).
Among these metrics, PCORR ranges in [�1,+1] that larger values are better; MAE,
MSE, RMSE, and MAPE range in [0,+1] that smaller values are better; logS and
MBlogS range in [�1,+1] that larger values are better; CRPS, IS, and WIS are
negatively oriented so that smaller values are better.

1.1.3 Methodologies for Epidemic Forecasting
Forecasting the spatial and temporal evolution of infectious disease epidemics has
been an area of active research over the past couple of decades. The existing works
rely on theory-based mechanistic methods and data-driven methods for forecasting.
Note that in this thesis, theory-based mechanistic methods or causal methods refer to
forecasting methods employing epidemic models for simulating disease transmission
processes between individuals. Data-driven methods refer to forecasting methods
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employing statistical and time series-based methodologies without causal mechanism.
In this section, we will briefly introduce these methodologies and some important
related works. Refer to (Reich et al., 2019; Zhang et al., 2013; Nsoesie et al., 2014a;
Chowell et al., 2016; Philemon et al., 2019; Adiga et al., 2020a; Zeroual et al., 2020)
for more related works. A more specific review of related works will be presented in
each chapter.

Theory-based Mechanistic Methods
The theory of epidemic spread is inherently tied to the progression of disease within
an individual, and the processes of transmission between individuals. Historically, in
epidemiology, within host disease progression has been encapsulated into compart-
mental models for embedding into population models. For instance, individuals get
assigned various disease states such as susceptible, infectious, recovered, etc. and
the host-pathogen characteristics are used to define the durations and likelihoods of
various transitions in this finite state machine. These models have various extensions
depending upon the disease being studied (e.g., existence of a latent phase, infec-
tiousness after death) and the interventions being employed (e.g., hospitalization,
treatments, vaccinations). See (Bailey et al., 1975; Kuznetsov and Piccardi, 1994;
Lofgren et al., 2014) for some examples. Finally, to capture the transmission process,
some representation of social/environmental contact is expressed in terms of mixing
assumptions, contact networks, etc.

Forecasting methods employing these models are called mechanistic methods (or
causal methods) because they are based on the causal mechanisms of infectious diseases.
At a fairly high level, the underlying epidemic model can be either a compartmental
model (CM) (Flahault et al., 2006; Lee et al., 2012; Lunelli et al., 2009) or an agent-
based model (ABM) (Parker and Epstein, 2011; Chao et al., 2010; Tabataba et al.,
2017b). In a compartmental model, a population is divided into compartments (e.g., S,
E, I, R) and no distinction is made among individuals within a compartment. Further
the entire population is assumed to be homogeneously mixing, a simplifying assumption,
but reasonable for capturing large-scale dynamics. A differential equation system
characterizes the change of the sizes of each compartment due to disease propagation
and progression. Depending on the underlying assumptions, the rate of contact could
be density-dependent or frequency-dependent (Keeling and Rohani, 2011). This class
of models can further be extended to the class of meta-population models where spatial
connectivity is explicitly accounted for, and the disease compartments are tracked
per spatial region. While these models, inspired from population ecology, are widely
used in understanding human disease dynamics, they suffer from lack of fidelity to
represent essential structures such as households, schools, etc. which may play a role
in disease spread dynamics and control. See (Ball et al., 2015) for an overview of
challenges in using such models for disease dynamics.

In an agent-based model, disease spreads among heterogeneous agents through an
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unstructured network (Eubank et al., 2004). Dynamics with individual behavior change
exhibit significant impact on epidemic and dynamic forecast models (Eksin et al.,
2019), which can be implemented using a high-performance computing model (Bisset
et al., 2009). The individual level details in an agent-based model can be easily
aggregated to obtain epidemic data of any resolution, e.g., number of newly infected
people in a county in a specific week. Such models have been used extensively to study
diseases in significant detail, including Ebola (Venkatramanan et al., 2018), Influenza
(Nsoesie et al., 2013b), and more recently COVID-19 (Hoertel et al., 2020; Talekar
et al., 2020). There are multiple ongoing efforts to understand the relationship between
these different class of models (see (Ajelli et al., 2010), for example). Many forecasting
methods have been developed based on either CM or ABM (Tuite et al., 2010; Shaman
and Karspeck, 2012; Nsoesie et al., 2013a; Yang et al., 2014, 2015a; Zhao et al., 2015a;
Morita et al., 2018). Taking seasonal or pandemic influenza as an example, we list
a few notable exercises that have used either of these approaches for forecasting or
allied tasks. Shaman and Karspeck (2012) developed a framework for initializing
real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique
commonly applied in numerical weather prediction. Tuite et al. (2010) used an SIR CM
to estimate parameters and morbidity in pandemic H1N1. Yang et al. (2014) applied
various filter methods to model and forecast influenza activity using an SIRS CM.
Nsoesie et al. (2013a) proposed a simulation optimization approach based on the SEIR
ABM for epidemic forecasting. Venkatramanan et al. (2021) factored mobility map
into a metapopulation SEIR model to retrospectively forecast influenza in the USA
and Australia. The COVID-19 Scenario Modeling Hub11 convened six modeling teams
(including both CM and ABM methods) in an open call to provide long-term, 6-month
(April–September 2021) COVID-19 projections in the United States (Borchering et al.,
2021). Causal methods are generally computationally expensive as they require the
parameter estimation over a high dimensional space. As a result, the use of such
methods for real-time forecasting is challenging. Furthermore, forecasting performance
depends on the assumed underlying disease models.

Statistical Time Series Methods
Statistical time series methods are data-driven methods that employ statistical and
time series-based methodologies to learn patterns in historical epidemic data and
leverage those patterns for forecasting.

These methods assume that the observed data is the outcome of a random process
with an unknown probability distribution, typically a parametric distribution. In
addition, the observed data is considered to be a function of explanatory variables
or covariates which enables inference of distribution parameters through a likelihood
function. A popular class of models are the autoregressive models (e.g., AR, ARMA,

11
https://covid19scenariomodelinghub.org/

https://covid19scenariomodelinghub.org/


Chapter 1. Introduction 11

ARIMA) that assume that the observed time series current time step can be expressed
as a linear combination of past samples and error terms. In the context of ILI
forecasting, in addition to the ARIMA terms of the ILI time series, other exogenous
variables such as search trends, social media data, weather data, etc. can be used as
exogenous regressors to enhance nowcast performance.Yang et al. (2015b), Rangarajan
et al. (2019), Kandula et al. (2017), Soebiyanto et al. (2010), and Paul et al. (2014)
assumed a Gaussian distribution on the data when modeling ILI rates and activity
level. AR models for count data are modeled using Poisson (Wang et al., 2015) and
negative binomial distribution (Dugas et al., 2013; Radin et al., 2020) and result in a
class of generalized linear models. Owing to a large number of explanatory variables,
techniques such as LASSO (Tibshirani, 1996), log-likelihood ratio test (Rangarajan
et al., 2019), and block coordinate descent methods (Tseng, 2001) are employed to
select a sparse subset of most relevant variables. In the presence of sufficient seasonal
data, a Bayesian weighted average of trajectories from past seasons to model current
season assuming a mixture of Gaussian models is shown to perform reasonably well in
the case of influenza (Viboud et al., 2003; Brooks et al., 2015) and dengue (Van Panhuis
et al., 2014). Under non-parametric models, method of analogues which attempts to
find the most relevant historical segments of data or nearest neighbors with respect
to the observed data and use a weighted average of the nearest neighbors to produce
forecasts (Viboud et al., 2003). Dirichlet process model was explored to match the
current influenza activity to simulated and historical patterns, identify epidemic
curves different from those observed in the past, and enable forecasts of the expected
epidemic peak time (Nsoesie et al., 2014b). Exponential smoothing is another class of
non-parametric regression models which employ exponentially decaying weights on
historical samples (e.g., Petropoulos and Makridakis (2020)).

Statistical methods rely on the stationarity assumptions of the data. To some
extent, the nonstationarity of time series data addressed through differencing and
retraining over short observation windows but performance of statistical methods is
inversely related to deviation from historically observed distribution. As observed in
the case of COVID-19 forecasting, most statistical methods were employed during
the initial phase of the pandemic to capture exponential growth phase, but with the
pandemic undergoing rapid fluctuations, these methods were not effective in accurate
forecasting.

Deep Learning Methods
Deep neural networks (DNNs) have gained increasing prominence in epidemic fore-
casting due to their ability to learn non-linear relationship between the inputs and
the outputs without prior domain knowledge. Some of the common structure of such
networks include: feedforward neural networks (FNNs), recurrent neural networks
(RNNs), convolutional neural networks (CNNs), and graph neural networks (GNNs).
A feedforward neural network is an artificial neural network wherein connections
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between the nodes do not form a cycle. It was the first and simplest type of artificial
neural network devised (Schmidhuber, 2015). Forecasting prevalence of epidemics
using feedforward neural networks is a widely accepted approach. For example, dengue
forecasting (Wahyunggoro et al., 2013; Aburas et al., 2010), and FNNs were first
applied for influenza forecasting (Xu et al., 2017). Adhikari et al. (2019) proposed
EpiDeep for seasonal ILI forecasting by learning meaningful representations of in-
cidence curves in a continuous feature space. The FNNs, due to their ability to
inherently capture temporal dynamics, have become a natural choice for time series
forecasting. Popular RNN modules are gated recurrent unit (GRU) (Chung et al.,
2014) and long-short term memory (LSTM) (Hochreiter and Schmidhuber, 1997).
Volkova et al. (2017) built an LSTM model for short-term ILI forecasting using CDC
ILI and Twitter data. Venna et al. (2019) proposed an LSTM-based method that
integrated the impacts of climatic factors and geographical proximity. Zhu et al.
(2019) proposed attention-based LSTM model for epidemic forecasting. Chimmula
and Zhang (2020) used LSTM networks to predict COVID-19 transmission. The
CNNs are usually used to deal with image data with regular grid data structure. The
idea is to sum the neighboring node features around a center node, specified by a
filter with parameterized size and learnable weight. CNNs can be used for epidemic
forecasting because multi-variate time series (e.g., spatial regions) of an epidemic can
be treated as an image with regular grid. Wu et al. (2018) constructed CNNRNN-Res
combining RNN and convolutional neural networks to fuse information from different
sources. The GNNs are the generalized version of CNN that can work on data with
non-regular structures like a graph. The basic idea is to generate node embeddings
based on local network neighborhoods through message passing. The neighborhoods
are defined using an adjacency matrix, which can be any type of relationship between
graph nodes. GNNs are famous for their ability to capture cross-spatial effects in
dynamic environments thus leading to an increased prominence in epidemic forecasting.
Deng et al. (2020) designed cola-GNN which was a cross-location attention-based
graph neural network for forecasting ILI. Regarding COVID-19 forecasting, Kapoor
et al. (2020) and Wang et al. (2021b) examined GNNs for COVID-19 daily case
forecasting using mobility data. Wang et al. (2020a) examined a wide range of deep
learning models for forecasting COVID-19 weekly confirmed cases. Ramchandani
et al. (2020) presented DeepCOVIDNet to compute equi-dimensional representations
of multivariate time series.

Training deep learning models usually require a large training dataset which is
usually not available particularly for novel and emerging epidemics. Another well-
known limitation of deep learning methods is the lack of interpretability for model
forecasts due to their black box nature. Furthermore, since they are purely data-driven,
they do not explicitly incorporate the underlying causal mechanisms. As a result,
epidemic dynamics affected by behavioral adaptations are usually hard to capture,
even for mechanistic models. However, with additional data becoming available and
the surveillance systems maturing, these models are becoming more promising.
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Ensemble Methods
Ensemble modeling aims to boost the forecasting performance by systematically inte-
grating the predictive accuracy across individual models. It is widely used for epidemic
forecasting. Ren et al. (2016) presented a comprehensive review. Popular ensemble
modeling techniques used in epidemiological domain include bagging (Breiman, 1996),
boosting (Freund et al., 1996), Ensemble Kalman Filter (EnKF) (Burgers et al.,
1998), and Bayesian Model Averaging (BMA) (Hoeting et al., 1999). Ensemble in
deep learning also leverages dropout (Hinton et al., 2012) and snapshot ensemble
(Huang et al., 2017; Wang et al., 2020c) techniques. Thomson et al. (2006) discussed
a system to forecast probabilities of anomalously high and low malaria incidence
with dynamically based, seasonal-timescale, multi-model ensemble forecasts of cli-
mate. Chakraborty et al. (2014) proposed ensemble modeling schemes with different
parametric bootstrapping procedures. Recently, Chowell and Luo (2021) adopted
a simple bootstrap ensemble method to make epidemic forecasting. Adiga et al.
(2021) presented a COVID-19 forecasting pipeline which incorporated probabilistic
forecasts from multiple statistical, machine learning and mechanistic methods through
a Bayesian ensembling scheme, and had been operational for nearly 12 months serving
local, state and federal policymakers in the United States.

Ensemble methods involve designing and implementing various forecasting models
and often require extra computational cost for ensemble model training.

1.2 The Importance of Reliable Deep

Learning-based Epidemic Forecasting Methods

In the previous section, we reviewed the methodologies for epidemic forecasting and
briefly discussed the advantages and disadvantages of these methods. Among these
methods, deep learning-based methods are relatively new emerging research directions
which are far from well explored. Producing reliable spatial and temporal epidemic
forecasting using deep learning models is crucial yet challenging. First, the training
data is sparse, especially during new emerging epidemics; in addition, it’s noisy due
to reporting bias, testing prevalence and so on. Models trained with such data are
prone to be overfitting thus reducing the forecasting accuracy. Second, the disease
spreads over a contact network which depends on human mobility behavior. Thus, a
GNN-based model that considers both spatial and temporal signals is potential to
better capture the disease spread dynamics. Geographical adjacency is one of the
common types of information used in GNNs, however, it fails to reflect the dynamic
nature of human mobility. On the other hand, human mobility data is a promising
way to provide dynamic spatiotemporal correlations. Third, deep learning models
barely consider epidemiological context. As a result, they are prone to be overfitting
and it is therefore difficult to explain the learned model and its forecasts. In the
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epidemiological domain, we are not only interested in generating correct forecasts but
also understanding the causal mechanism behind the forecast. An ideal model should
provide accurate and explainable forecasts.

Accuracy–Policymakers use predictive models to make public health decisions,
and more accurate model outcomes result in better decisions. The cost of errors can
be immense, such as loss of financial resources or life during an epidemic; however,
optimizing model accuracy can mitigate those cost. Recent advances in deep learning
have significantly improved the state of the art in computer vision, natural language
processing, and many other fields. Based on such advances, we are eager to explore
their use and demonstrate their predictive power in epidemic forecasting tasks. We
have discussed in Section 1.1 that the aggregate characteristics of epidemic dynamics
are being driven by both temporal and spatial aspects of transmission. Thus, a model
considering both spatial and temporal signals is potentially better able to capture
the disease spread dynamics. In this thesis, we will explore GNN-based methods
that leverage spatiotemporal signals in the aim of capturing dynamic disease spread
patterns.

Explainability–Unlike theory-based mechanistic methods, deep learning models
are purely data-driven, they do not explicitly incorporate the underlying causal
mechanisms. As a result, epidemic dynamics affected by behavioral adaptations are
usually hard to capture. When training a deep learning model for forecasting tasks, it
is crucial to answer the following questions: If we can learn a model from data, can
that model provide both correct inferences and also an explanation for the underlying
phenomena? In the epidemiological domain, answering these questions is particularly
important for better understanding and controlling of the disease spread. In this thesis,
we will explore reliable spatial and temporal deep learning-based forecasting methods
combining theory-based mechanistic models in the aim of gaining a mechanistic
understanding from a learned model.

1.3 Research Questions and Outline

Given the background and challenges outlined previously, my research focuses on deep
learning-based methods that incorporate spatiotemporal features and theory-based
mechanistic models for a better understanding of disease spreading and improving
forecasting accuracy and explainability. The aims are 1) improving forecasting accuracy
by proposing deep learning models that consider temporal and spatial signals, and
2) improving explainability of deep learning models using theory-based mechanistic
models. We investigate the following questions and answer the questions with novel
methods and techniques.

Q1. How to leverage mobility information to provide spatial and temporal
spreading context for deep learning-based epidemic forecasting?
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The assumption is that spatial and temporal signals can reflect disease spread
dynamics. When modeling infectious diseases mechanistically, it is useful to note that
in the human population the spread is facilitated by social contacts, which are in
turn influenced by the movement of individuals. Researchers have leveraged this fact
and have used information on human mobility to predict and explain the dynamics
of disease spread. Geographical adjacency failed to reflect the dynamic of human
mobility. We proposed GNN-based frameworks to capture cross-location co-evolving
disease dynamics caused by human mobility. The proposed frameworks leverage
domain knowledge and mobility data to instruct the model constructing and learning
with the aim being better able to interpret the model and forecasting results. We
incorporated new large-scale aggregated spatiotemporal mobility data into GNNs.
The mobility informed GNNs account for dynamic spatiotemporal signals leading to a
better understanding of the forecasting results. These contributions will be presented
in Chapter 2.

Q2. How to leverage theory-based mechanistic models to provide epidemi-
ological context for deep learning-based epidemic forecasting?

Prior works of physics, biology, and epidemiology (Karpatne et al., 2017) have
shown evidence that incorporating domain knowledge into data-driven models can
improve spatiotemporal forecasting algorithms. However, existing deep learning models
barely consider epidemiological context for epidemic forecasting. Such models are
prone to be overfitting leading to failures in long-term forecasting, especially when the
data is noisy and sparse such as COVID-19 surveillance data at the US county level.
Theory-based mechanistic models can capture the diffusion patterns of disease spread
through detailed simulations using various disease models thus can provide meaningful
epidemiological context. We proposed frameworks that combine deep learning models
with theory-based mechanistic models for better spatiotemporal forecasting. We
first proposed the framework TDEFSI that trains a RNN-based model with theory
generated synthetic data. Computing-based simulations were used to generate context
specific training data. The model trained with such data can capture the underlying
causal processes and mathematical theories leading to an ability to make context
specific forecasts and capture the unique properties of a given region. Accurate high
geographical resolution forecasting was also achieved by using this framework. We
further proposed a novel learning framework CausalGNN that jointly learns a latent
space to combine the spatiotemporal and causal embeddings using graph-based non-
linear transformations. The learned model employs a causal mechanistic model to
provide epidemiological context thus leading to better forecasting accuracy and better
understanding of the underlying phenomena. These contributions will be presented in
Chapter 3.
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Chapter 2

Spatial and Temporal Epidemic
Forecasting Using Graph Neural

Networks

Disease dynamics, human mobility, and public policies co-evolve during pandemics
such as COVID-19. Understanding dynamic human mobility changes and spatial
interaction patterns are crucial for understanding and forecasting COVID-19 dynamics.
In this chapter, which is based on Wang et al. (2021b), we will present one of the
early works on the use of GNNs to forecast COVID-19 dynamics. The motivation and
major contributions are introduced in Section 2.1. A brief overview of related work is
presented in Section 2.2, including using mobility data to understand COVID-19 spread,
forecasting COVID-19 dynamics, and spatiotemporal forecasting. In Section 2.3, we
introduce a large-scale mobility dataset which will be used to build graphs as well
as graph node features. In Section 2.4, we formulate the problem and present a
GNN-based epidemic forecasting framework using mobility maps. The experiment
settings and results are shown in Section 2.5. Finally, Section 2.6 concludes the chapter
and discusses directions for future work.

2.1 Motivation

The COVID-19 pandemic is arguably the most acute public health emergency since
the 1918 influenza pandemic. It has already infected over 198 million people and
resulted in 4.2 million deaths across the globe1. The global economy contracted by
3.5 percent in 2020 according to the April 2021 World Economic Outlook Report
published by the IMF, a 7 percent loss relative to the 3.4 percent growth forecast back
in October 20192. The pandemic has affected almost every country in the world and

1Source: https://covid19.who.int/ as of August 2, 2021.
2Source: https://www.brookings.edu/research/social-and-economic-impact-of-covid-19/

https://covid19.who.int/
https://www.brookings.edu/research/social-and-economic-impact-of-covid-19/
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has resulted in an unprecedented response by governments across the world to control
its spread. Pharmaceutical interventions are not generally available at the stage when
we start this work (with the exception of remdesivir under FDA’s expanded access
Rome and Avorn (2020)) and thus, countries have had to rely exclusively on behavioral
interventions that involve some form of social distancing. The rapid spread of the
pandemic has forced countries to institute strict social distancing measures. Each
social distancing policy is characterized by: (i) when and how gradually it started, (ii)
the length of time for which it was enforced, (iii) the scope and pervasiveness, and
(iv) the stringency (total lockdown versus stay-at-home advisories).

The social distancing measures have led to significant change in human mobility that
have in turn affected the disease dynamics. To better understand COVID-19 dynamics
and help to control the disease spread, it is crucial and challenging to (i) evaluate the
level of public response to the US state and county level restrictions and (ii) provide
accurate and timely spatiotemporal forecasting of epidemic dynamics. Using aggregate
mobility data to understand COVID-19 dynamics has recently become popular. There
have been a number of recent studies along these lines, for example, in China using
Baidu data (Chinazzi et al., 2020), in the US using mobility data (Kraemer et al., 2020b;
Adiga et al., 2020c), and at a global scale using airline traffic (Adiga et al., 2020b).
On the other hand, a number of COVID-19 forecasting methods have been proposed
since the initial outbreak early 2020, such as mechanistic methods (Yang et al., 2020;
Anastassopoulou et al., 2020; Kai et al., 2020), and time series methods using statistical
regression models (Ribeiro et al., 2020) or deep learning models (Ramchandani et al.,
2020). However, existing deep learning-based methods barely considered cross-location
effects in long term disease propagation. As GNNs have been successful in many
domains, we investigate their potential applicability to forecast infectious disease
dynamics.

There are several challenges in spatiotemporal epidemic forecasting using GNNs.
First, the temporal dependency is hard to capture with short-term (e.g., less than 5
time points) input data because long-term trends (e.g., seasonal trends) are usually
not reflected in a short-time duration. Second, the disease spreads over a contact
network which depends on human mobility behavior. Geographical adjacency failed
to reflect the dynamic of human mobility. Dynamic spatial effects have not been
exhaustively explored with limited data input. Spatiotemporal effects have been
studies in (Senanayake et al., 2016; Li et al., 2017; Yu et al., 2017; Ning et al., 2018).
However, they usually require adequate data sources to achieve decent performance
in epidemic forecasting. In this work, we focus on GNN-based methods to solve the
above challenges by leveraging a new large-scale aggregated spatiotemporal mobility
data which will be introduced in Section 2.3. The major contributions are:

• We analyze the joint effects of social-distancing guidelines and mobility patterns
at the US state levels using an integrated map of mobility flows (MF ), COVID-19
Surveillance data, and data on social distancing guidelines;
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• We design a dynamic mobility informed GNN that considers both temporal
dynamics and cross-location co-evolution dynamics using a recurrent message
passing (RMP) module to recurrently embed information from a node’s neighbors;

• We also design multiple variants of the proposed model which use a static
mobility graph, geographical adjacency graph, and attention-based trainable
graph;

• We evaluate the proposed model on forecasting the US state level daily new
cases and demonstrate that the dynamic spatial and temporal mobility informed
GNN allows for better forecasting performance compared with its variants as
well as several existing classic and state-of-the-art time series methods.

2.2 Related Work

Using mobility data to understand COVID-19 spread. Mobility data plays a
central role in most studies related to the spread of COVID-19. Important sources of
data used include: mobility data from Google, Apple, Cuebiq, Safegraph, Descartes
Labs and X-mode (UMD, 2020; Lasry et al., 2020; Apple, 2020; Gao et al., 2020;
Klein et al., 2020). During the initial phase of the outbreak much of the analysis
involved the use of airline data to determine the global spread of the virus and case
importations (Bogoch et al., 2020; Chinazzi et al., 2020; Adiga et al., 2020b). Later
phases saw the use of data to model disease dynamics (Kraemer et al., 2020b; Liu
et al., 2020; Lai et al., 2020), counterfactual analysis and forecasting, see (Bassolas
et al., 2019; Wellenius et al., 2020; Gao et al., 2020; Adiga et al., 2020c) for examples
of such analysis. The data used in this work is unique and has not been used for
COVID-19 analysis until now. The detailed description of the dataset will be presented
in Section 2.3.

Forecasting COVID-19 dynamics. Researchers have used mechanistic models,
time series models and deep learning models for COVID-19 forecasting and in general,
this is a highly active area of research. Mechanistic methods have been a mainstay
for COVID-19 forecasting due to their ability to represent the underlying disease
transmission dynamics as well as incorporating diverse interventions. They enable
counterfactual forecasting which is important for future government interventions
to control the spread. Forecasting performance depends on the assumed underlying
disease model. See (Yang et al., 2020; Anastassopoulou et al., 2020; Giordano et al.,
2020; Kai et al., 2020; Yamana et al., 2020; Talekar et al., 2020) for examples of
such approaches. As additional data becomes available and the surveillance systems
mature, data-driven models, including statistical time series models (Harvey and
Kattuman, 2020; Petropoulos and Makridakis, 2020; Ribeiro et al., 2020) and deep
learning models (Hu et al., 2020; Chimmula and Zhang, 2020; Arora et al., 2020;
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Magri and Doan, 2020; Dandekar and Barbastathis, 2020; Kapoor et al., 2020; Wang
et al., 2020a; Ramchandani et al., 2020), are becoming more promising for COVID-19
forecasting. Among these works, Kapoor et al. (2020) was the first trying of applying
GNNs with mobility data. However, only one day ahead forecasting was examined and
there was no comparison with the state of the art. To the best of our knowledge, our
model is among the first significant GNN-based models that incorporate a large-scale
mobility dataset for forecasting COVID-19 dynamics.

Spatiotemporal forecasting. With the increasing growth of spatiotemporal data,
mining valuable knowledge from spatiotemporal data is essential for many real-world
applications In the forecasting of social events (Zhao et al., 2015b; Ning et al., 2018),
text data such as news articles and tweets are often used as features, which is usually
a weak auxiliary feature for epidemic forecasting as some epidemics, e.g., influenza has
historically, and continues to, occur periodically at the population level. Collecting
and processing relevant external data such as news or tweets is also expensive. In
recent studies of air quality forecasting (Li et al., 2016; Gao et al., 2019) and traffic
forecasting (Li et al., 2017; Wu et al., 2019; Lai et al., 2018; Yu et al., 2017), researchers
have modeled spatiotemporal dependence between different sensors by integrating
graph convolutional networks (GCNs) into RNNs or CNNs. However, data sampling
for epidemic data is different than air or traffic data. For instance, traffic sensors
transmit data at 5-minute intervals. COVID-19 data collection usually shows a larger
granularity (e.g., days) with a delay. Traffic forecasting models tend to overfit in
epidemic data when the model complexity is relatively high. It is of great significance
to introduce an effective model for spatiotemporal epidemic forecasting given limited
data. In this work, we design a flexible GNN-based model architecture to account
for a variety of static and dynamic spatiotemporal signals. Our model can better
understand the forecasting results by incorporating real-time aggregated spaiotemporal
mobility maps and can be easily extended to forecast other disease dynamics.

2.3 A Large-Scale Mobility Dataset

2.3.1 Data Description
The Google COVID-19 Aggregated Mobility Research Dataset (Kraemer
et al., 2020a) contains anonymized mobility flows aggregated over users who have
turned on the Location History setting (in the default settings this is turned off). This
is similar to the data used to show how busy certain types of places are in Google Maps
— helping identify when a local business tends to be the most crowded. The dataset
aggregates flows of people from region to region, which is here further aggregated at
multiple geographical resolutions weekly. Figure 2.1 presents a snapshot of multiple
scales of mobility maps. It shows progressively the mobility volume at various S2 cell
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Figure 2.1: Multiple scales of mobility: mobility flows between 5 km2 grid cells
are aggregated to appropriate spatial resolution for the analyses. The figure shows
progressively the mobility volume at various S2 cell levels (L12 to L6) and geographical
scales (county, state, country, and globe).

levels (L12 to L6) and geographical scales (county, state, country, and globe).
To produce this dataset, machine learning is applied to logs data to automatically

segment it into semantic trips (Bassolas et al., 2019). To provide strong privacy
guarantees, all trips were anonymized and aggregated using a differentially private
mechanism (Wilson et al., 2019) to aggregate flows over time. This research is done
on the resulting heavily aggregated and differential private data. No individual user
data was ever manually inspected, only heavily aggregated flows of large populations
were handled. All anonymized trips are processed in aggregate to extract their origin
and destination location and time. For example, if users traveled from location i to
location j within time interval t.

2.3.2 Exploratory Data Analysis
Quantifying social distancing. We construct a mobility map GMF from G by
weighting the edge eij 2 E with fij(t) which represents the MF from vi to vj during
week t. We choose a weekly scale because of the mobility flow data resolution. In order
to quantify the effects of social distancing through changes in mobility, we introduce
two metrics namely the Flow Reduction Rate (FRR) and Social Distancing Index
(SDI) computing using GMF . While FRR measures the reduction in connectivity of a
region to the outside world, SDI measures the change in mixing within the region.

Flow Reduction Rate (FRR): It measures the impact of social distancing by
comparing the levels of connectivity before and after the stay-at-home orders. Given
a region vi, we first compute the average outflows during the pre-pandemic period



22
Chapter 2. Spatial and Temporal Epidemic Forecasting Using Graph

Neural Networks

for vi 2 V as f̄i = 1
|Tp|

P
tp2Tp

P
j2V fij(tp) over first Tp weeks of year 2020. FRRi(t) is

then defined as

FRRi(t) =

P
j2V fij(t)� f̄i

f̄i
. (2.1)

This defines a unit-less relative change in outflows from node vi for any given week t
with respect to f̄i. Henceforth, we omit i and t in the notation.

Social Distancing Index (SDI): It quantifies the mixing or movement within a
county, we consider the MF between the 5 km2 cells in it. Let F (t) denote the
normalized flow matrix of the county at week t where Fij(t) =

fij(t)P
j2V fij(t)

, we compare
F (t) to the uniform matrix U and the identity matrix I. The SDI quantifies the
closeness of F (t) to U and I and is defined as

SDI(t) =
||F (t)�U ||2

||F (t)�U ||2 + ||F (t)� I||2
. (2.2)

SDI(t) value close to one indicates less mixing within a county while a value close to
zeros indicates more mixing within a county.

Case count growth rate (CGR): Denoting the new confirmed case count at week t
as nt, the CGR of week t + 1 is computed as log(nt+1 + 1) � log(nt + 1), where we
add 1 to smooth zero counts.

Spatiotemporal analysis of MF patterns and COVID-19 dynamics in the
US. For MF analysis, we collected COVID-19 daily new confirmed case count data
(see Section 2.3.1 for more details). The mobility data and confirmed data are processed
to be weekly and end on Saturday. It starts from Week ending March 7, 2020 and ends
at Week ending August 29, 2020 (27 weeks). The analysis is conducted in US 53 states
and 3085 counties. In order to analyze the human mobility and COVID-19 dynamics
during different phases of the pandemic, we use a 4-week window and moving one week
ahead each time to compute Pearson correlation between new confirmed cases and
MF within the window. Figure 2.2a shows the Pearson correlation along the weeks,
Figure 2.2b shows FRR, and Figure 2.2c presents the timeline CGR, all together
with social distancing orders. We observe that mobility flow and new confirmed cases
show highly negative correlation (median -0.97) for almost all states during March
and the correlation stays high until the mid-April. The high negative correlation,
down trends of FRR (decreasing up to 41%) and up trends of CGR (increasing up
to 2.11) during March indicates that as new confirmed cases increase the mobility
flows decrease. Starting from the mid-April when the states started to reopen to some
degree, there is a large variation in correlation values, where some are close to positive
1 while some are staying close to negative 1. However, we observe there has been a
continuous rebound in the flows with flow reduction as the states reopening while
the CGR of all the states remain in the range of [-0.04,0.22], which indicates that
COVID-19 dynamics varies a lot due to that it is affected by multiple complicated
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(a) Pearson correlation

(b) Weekly FRR (c) Weekly CGR

Figure 2.2: Impact of state level social distancing policies on human mobility and
COVID-19 dynamics. The time of state level social distancing mandates including
emergency declaration (purple), school closure (orange), and stay-at-home (blue) are
marked. The spaghetti plots showing time series of (a) Pearson correlation between MF
and new confirmed cases, (b) the weekly FRR and (c) CGR in 53 states, respectively.
A boxplot is used to display variation in samples of 53 states each week. The median
value is shown along with the median line.

factors like local population size, individual behaviors (e.g., wearing a mask or not in
public location), and government reopening guidelines.

Furthermore, Figure 2.2b shows a 41% (Q1 : �50% and Q3 : �30% in FRR)
mobility reduction compared to baseline flows across the states during the week
2020/03/28 where most states had declared stay-at-home orders. There is a 27%
reduction in flows during the week of the most school closure order, and 18% flow
reduction in the week of the most stay-at-home orders. In the subsequent three weeks
after the declaration of stay-at-home orders the flows remain nearly constant, but
since then there has been a continuous rebound in the flows with flow reduction as
the states reopening. The relative timing of the reduction in flows indicates that the
population complied to the social distancing guidelines and reduced mobility.

We quantify mixing within counties using SDI. Figure 2.3 represents the variation
in SDI(t) across the various weeks of 2020. We observe SDI(t) to be nearly constant
until the implementation of national emergency and state-level orders after which
we start to observe an increase in SDI (10%) indicating reduction in mixing within
counties. As a general observation of variations in SDI across counties, we consider
five states which have experienced the highest number of cases. We observe the overall
shading moving towards yellow indicating reduction in mixing within counties. Since
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(a) SDI at US counties (b) SDI in the counties of New York, New
Jersey, Massachusetts, Illinois, California pre-
pandemic (2020/01/26).

(c) SDI in the counties of New York, New Jer-
sey, Massachusetts, Illinois, California post-
pandemic (2020/03/29)

(d) SDI in the counties of New York, New
Jersey, Massachusetts, Illinois, California re-
opening (2020/05/24)

Figure 2.3: Variation in SDI across counties of the US at different weeks of 2020.
Increase in median SDI during March-April indicates overall reduction in mixing
across counties. There is a slow but steady decrease in SDI since many states started
reopening since early May 2020.

the last week of April, we observe a decrease in SDI indicating some degree of social
distancing fatigue and possibly movement due to essential services. Importantly, the
SDI has remained nearly constant over the month of May and median SDI nearly 5%
higher than the median baseline values.

2.4 Graph Neural Network-based Epidemic

Forecasting Framework Using Mobility Maps

2.4.1 Problem Formulation
We assume there are N regions and each region is associated with time series of
multiple observed features, e.g., surveillance cases, in a time window T , where T is
the observation duration. It could be of weekly or daily granularity depending on
the data resolution. We define a dynamic graph of N regions as G(V , E , T ), where
V is the set of N nodes, E ✓ V ⇥ V is the set of edges, and T is the set of T time
points. A node vi at time t is attributed with dvi,t 2 RDv where Dv is the node feature
numbers. An edge eij 2 E at time t connecting nodes vi and vj is weighted by either
adjacency matrix or mobility flow matrix, is attributed with deij ,t 2 RDe where De is
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the edge feature numbers. Notations and their descriptions used in the work is shown
in Table 2.1.

Table 2.1: Notations and their descriptions.

Notation Description

G(V, E , T ) Dynamic graph with a set of nodes V, a set of nodes E and a set of time steps T
N Number of nodes in V
T Number of time steps T
vi A node i in a graph
eij An edge from node vi to node vj

dvi,t Node feature vector at time t

Dv Node feature number
deij ,t Edge feature vector at time t

De Edge feature number
fij(t) Mobility flow from node vi to node vj during time t

H History window size
N

active
j Cumulative cases exclude deaths in region vj

N
popu
j Population size in region vj

H
f Hidden dimension of node and edge feature encoding

p, f, g, o Feature encoding, message passing, node update, and output functions
hi,t Hidden state of node features dvi,t

aji,t Hidden state of edge features deji,t

mi,t Passing message to node vi

⌘,� Nonlinear functions w.r.t attention coefficients
✓
v
, ✓

e Trainable parameters in feature encoding modules
✓
f
, ✓

g
, ✓

⌘ Trainable parameters in RMP modules
✓
o Trainable parameters in the output module

2.4.2 Mobility Informed Graph Neural Networks
Constructing the graph. We construct a dynamic mobility graph G(V , E , T ),
where each node feature dv includes a sequence of dynamic observations regarding the
region in a history window H  T . We include daily new case count, new death count
and intra-region mobility flow (fii(t) which represents the MF from vi to vi during
time t) as the node features, i.e., dvi,t 2 RH⇥3. The graph edge features are derived
from the inter-region mobility by aggregating Google mobility data to the state or
county level. At a certain time point t, if there is any human movement from region j
to region i in the past H days, we add a directed edge eji that connects region j and
i, and associate it with the inter-region mobility flow fji(t) and flow of active cases
from source region (defined as factive

ji
(t) =

N
active
j (t)

N
popu
j

⇤ fji(t)) as the edge feature i.e.,
deji,t 2 RH⇥2 where Nactive

j
(t) is the number of active cases (cumulative cases minus

recovered cases and deaths) and Npopu

j
is the population of region j.
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Feature encoding. In the graph, node feature vectors and edge feature vectors
include temporal information from the past. We encode the vectors using an LSTM
module. At time step t 2 T , for each feature vector dvi,t or deij ,t, the LSTM module
encodes the vector into hidden representations as:

hi,t = p(dvi,t, ✓
v) 2 RH

n
,

aji,t = p(deji,t, ✓
e) 2 RH

e (2.3)

where p denotes LSTM cell computation, Hn and He are hidden dimension of node
feature and edge feature, ✓v and ✓e are parameters to be learned.

Spatiotemporal message passing. A region’s COVID-19 dynamics can potentially
be affected by regions where frequent travels occur between them. This resembles
the core insight behind GNNs, i.e., the transformation of the input node’s signal can
be coupled with the propagation of information from a node’s neighbors in order to
better inform the future hidden state of the original input. This is most evident in the
unified message passing framework proposed by Gilmer et al. (2017). In our model,
we design a Recurrent Message Passing (RMP) module to recurrently pass the hidden
representations from a node’s neighbors to the current node. As shown in Figure 2.4,
the RMP module has two phases: the message passing (MP) phase and the update
phase (UP). It runs for L rounds, so any node in the graph is taking into account of
neighbors that are L hops away. To be more specific, at time t, given a node vi at
a certain round (l + 1): In the MP phase, for each node pair (vi, vj) that vj 2 N (i)
where N i denotes neighbors of vi, we first combine the node hidden states hi,t, hj,t

and in-edge hidden representations aji,t from previous round l using a message passing
function f to get a hidden state aji,t at current round l+1. It will later be aggregated
(we use mean operation but can be sum, max, etc.) together over all pairs to obtain a
message mi for node vi. In UP phase, we use a node upate function g to update the
the node hidden states. The hidden states of the node vi at the (l + 1)th round hl+1

i,t

are updated in RMP module as :

a(l+1)
ji,t

= f
�
h(l)

i,t
,h(l)

j,t
,a(l)

ji,t
, ✓f

�
2 RH

e
,

m(l+1)
i,t

=
X

j2N (i)

a(l+1)
ji,t
2 RH

m
,

h(l+1)
i,t

= g
�
h(l)

i,t
,m(l+1)

i,t
, ✓g

�
2 RH

n

(2.4)

where ✓f and ✓g are module parameters to be learned, N (i) denotes the neighbors
of vi where there exists eji, f is the message passing function that uses a multilayer
perceptron (MLP) and g is the node update function that uses GRU, m(l+1) is the
messages passed between nodes.
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Algorithm 1: MF informed GNN forward passing
Input: Time series of COVID-19 surveillance data for N regions, Google mobility

flow data among N regions.
1 for each time step t do

2 for each region i do

3 hi,t  FtrEncode(dvi,t) // Node features encoding

4 for each region pair (i, j) do

5 aji,t  FtrEncode(deji,t) // Edge features encoding

. Simultaneous calculations for all regions
6 for each region i do

7 for l in 0, . . . , L� 1 do

8 hl+1
i,t
 RMP(h(l)

i,t
,h(l)

j,t
,a(l)

ji,t
) // Spatiotemporal message passing

9 ŷi,t  Output(h(H)
i,t

) // Predicting

Output layer. We feed the hidden representations to the output layer for the final
forecasts:

ŷi,t = o
�
h(L)

i,t
, ✓o

�
2 R (2.5)

where ✓o is the parameters to be learned, o is the output function which is a MLP in
our model.

Forward passing process. As shown in Figure 2.4, we first feed the sequences
of temporal node and edge features through the feature encoding module to obtain
node and edge embedding, which are utilized as the initial node and edge hidden
representations for the RMP module. Then we perform MP and UP computations for
L rounds. This is the core step to allow one region to leverage information from its
neighbors and their connectivity in between. The output module will output the final
forecasts.

Proposed models. The proposed model aims to examine the effect of dynamic
mobility on understanding and forecasting COVID-19 dynamics. Thus we design
several variants of the proposed model using dynamic mobility graph denoted as
GNN-dmob , using a static mobility graph denoted as GNN-smob , using a geographical
adjacency graph denoted as GNN-adj , and using an attention-based matrix denoted
as GNN-att . The details are listed below.

• GNN-dmob the proposed model with dynamic mobility graph.

• GNN-adj uses the same graph structure with GNN-dmob but remove intra-
region mobility flow from node features i.e., dvi,t 2 RH⇥2, and construct an
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Figure 2.4: An example of two-hop RMP architecture. Temporal node feature and
edge feature vectors are encoded using the feature encoder module. A two-hop RMP
module is used to further embed spatiotemporal information to hidden representations.
The output module makes the final forecasts.

adjacency matrix by adding an edge eij if region j is a neighbor of region i with
edge weight 1. The adjacency matrix is normalized by row summation. It is
static across time steps, thus the edge feature is deij ,t 2 R.

• GNN-smob is similar to the GNN-adj but obtained by replacing the adjacency
matrix with a static mobility graph which is an average of mobility graphs from
March 1, 2020, to August 2, 2020.

• GNN-att is inspired by cola-GNN proposed in (Deng et al., 2019b). Instead of
using a physical matrix in our model, we implement an attention-based model
that allows the model to learn an attention matrix of all the regions. In MP
phase, we update the message between nodes as:

m(l+1)
i,t

= ⌘
�X

j2N

a(l)
ji,t

h(l)
j,t
, ✓⌘

�
(2.6)

where ✓⌘ is the trainable parameters, aji is the attention coefficient defined
as: a(l)

ji,t
= vT�(W ih(l)

i,t
+ W jh(l)

j,t
+ b) 2 R where v 2 RH

a , W 2 RH
a⇥H

f ,
b 2 RH

a are trainable parameters, � is Rectified Linear Units (ReLU) applied
at element-wise.

2.5 Experiments

In this section, we will introduce datasets, evaluation metrics, and baselines that are
used for demonstration. Then the epidemic forecasting performance is presented and
discussed. Sensitivity analysis on hyperparameters is shown at last.
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2.5.1 Settings
Datasets. Google COVID-19 Aggregated Mobility Research Dataset (Krae-
mer et al., 2020a) (details are presented in Section 2.3). COVID-19 surveillance
data (CSD) via the UVA COVID-19 surveillance dashboard (UVA, 2020). It contains
daily confirmed cases and death count worldwide. The data is available at the level
of a county in the US. Daily case counts and death counts are further aggregated to
weekly counts.

Metrics. The metrics used to evaluate the forecasting performance are: root mean
squared error (RMSE) and Pearson correlation (PCORR). Assuming we have n testing
data points and n = N ⇥m means N locations by m weeks. We denote the true value
and forecast for the ith testing data point to be zi and ẑi. We do not distinguish
locations in calculating RMSE. PCORR is calculated by locations and the final value
is the average of all locations. RMSE evaluate forecasting accuracy, PCORR evaluates
linear correlation between the true curve and the predicted curve.

• Root mean squared error (RMSE):

RMSE =

vuut 1

n

nX

i=1

(zi � ẑi)2 (2.7)

RMSE ranges in [0,+1] and smaller values are better.

• Pearson correlation (PCORR) is calculated per location:

PCORR =

P
m

i=1(ẑi � ¯̂z)(zi � z̄)qP
m

i=1(ẑi � ¯̂z)2
pP

m

i=1(zi � z̄)2
(2.8)

PCORR ranges in [-1, +1] and larger values are better. The final PCORR values
shown in our results are the average PCORR of N locations.

Baselines. We implemented several classic and state-of-the-art methods as the
comparison methods.

• Naive uses the observed value of the most recent time point as the future
forecast.

• Autoregressive (AR ) uses observations from previous time steps as input to
a regression equation to predict the value at the next time step. We train one
model per region using AR order 28.

• Autoregressive Moving Average (ARMA ) (Contreras et al., 2003) is used
to describe weakly stationary stochastic time series in terms of two polynomials
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for the autoregression (AR) and the moving average (MA). We set AR order to
28 and MA order to 2.

• CNNRNN (Wu et al., 2018) uses RNNs to capture the long-term correlation in
the data and uses CNNs to fuse time series of other regions. A residual structure
is also applied in the training process. We train one model per region. We set
the residual window size as 28 and all the other parameters are set as the same
as the original paper.

• cola-GNN (Deng et al., 2020) uses a graph message passing framework to
combine graph structures and time series features in a dynamic propagation
process. We set the RNN window size as 28 and all the other parameters are set
as the same as the original paper.

Settings and implementation details. For forecasting tasks, we conduct model
training and forecasting using daily (rather than weekly) new confirmed cases at US
state level regarding the limited number of observations. The weekly mobility graph
is expanded to daily by dividing the weekly values by 7. The training data set is from
March 1 to August 1 (125 days), the testing set is from August 2 to August 29 (28
days). We make 2, 7, 14, 21, and 28 days ahead forecasting for each data point in the
testing set. For all models, the historical window H = 28. For GNN-dmob , we use a
single layer LSTM for feature encoding with 16 units, a two-layer MLP in MP phase
with 32 and 16 units, and a single layer GRU in UP with 16 units. The same settings
are used for GNN-smob , GNN-att , and GNN-adj . AR and ARMA use AR order 28
and ARMA uses MA order 2. CNNRNN and cola-GNN set with their best parameter
settings in the original paper. We set batch size as 32, epoch number as 1000. The
mean squared error (MSE) loss function and Adam Optimizer with default settings
and early stopping with patience of 100 epochs are used for all model training. All
results are average of 5 random runs. We did not demonstrate our model at the US
county level because daily new cases at county level is much noisier and most of them
are around zeros during March and April. Through our preliminary experiments, we
see that GNN-based models (including GNN-based baselines) trained on such datasets
make arbitrary forecasts for some of the counties. Note that we are not trying to
convince others that the proposed model is the best among all existing models, but
to provide a possible good way to utilize human mobility information for COVID-19
forecasting using GNNs.

2.5.2 Results and Analysis
Forecasting performance. The proposed GNN-dmob model is evaluated w.r.t. fore-
casting daily new confirmed cases at US state level for 2, 7, 14, 21 and 28 days
ahead. Table 2.2 presents the RMSE, MAE, and PCORR performance averaging
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Table 2.2: RMSE and PCORR performance of different methods on the US state
dataset with horizon = 2, 7, 14, 21, and 28. The values are average of 5 runs. Bold
face indicates the best results of each column.

US state

RMSE(#) 2 7 14 21 28

Naive 411 389 445 496 525
AR 376 634 866 975 978
ARMA 400 637 944 1107 1186
LSTM 368 504 517 567 605
CNNRNN 416 432 512 606 659
cola-GNN 320 502 451 530 714
GNN-adj 310 411 407 412 513
GNN-att 319 479 985 457 745
GNN-smob 313 405 410 406 510
GNN-dmob 313 330 350 445 465

PCORR(") 2 7 14 21 28

Naive 0.106 0.361 0.310 0.261 0.157
AR 0.283 0.282 0.044 -0.017 -0.097
ARMA 0.281 0.260 0.071 -0.078 -0.133
LSTM 0.227 0.305 0.287 0.226 0.204
CNNRNN 0.211 0.250 0.265 0.248 0.029
cola-GNN 0.366 0.341 0.247 0.175 0.176
GNN-adj 0.293 0.395 0.319 0.315 0.280
GNN-att 0.376 0.256 0.087 0.136 0.238
GNN-smob 0.321 0.382 0.297 0.294 0.226
GNN-dmob 0.298 0.344 0.320 0.287 0.216

across 53 states and 28 days. In general, we observe that GNN-dmob has better RMSE
and MAE performance than the comparisons for long-term forecasting. GNN-adj
performs the best for 2 days ahead forecasting. The best performances on PCORR
are evenly distributed among the proposed models. The results indicate that our
proposed methods can capture the disease dynamic in both short-term and long-term.
Naive baseline outperforms the other baselines for 7, 14, 21, 28 days ahead forecasting.
This is not surprising because the testing data is from August during when the time
series of all states are showing downward trends with small changing rates. The
Naive assumes certain level of regularity in the time series leading to good forecasting
performance on the testing data. DNN-based models perform better than AR-based
models especially on long-term forecasting which indicates that DNN-based models
have better generalization capability for forecasting unseen data. In our experiments,
attention-based models cola-GNN and GNN-att are not outstanding for both short and
long-term forecasting. A possible reason is that the learned attention coefficients are
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outdated due to the fast evolution in COVID-19 dynamics between training time pe-
riod and testing time period, which leads to false attention by regions while predicting
(refer to MF analysis w.r.t Figure 2.2).

Major observations and discussion: In Figure 2.5 we show heatmap of correlation
matrix of training data and testing data, learned attention matrix of GNN-att at
2020/07/15 for horizon 2 and 28, geographical adjacency matrix, static MF matrix,
and dynamic MF matrix at two different dates i.e., pre-MF (2020/03/02) and post-MF
(2020/03/28) stay-at-home orders. The correlation matrix is the Pearson Correlation
between two time series of daily new confirmed cases between two regions. Self-loops
are suppressed from MF matrices. Except the learned attention matrix, all the other
matrices are normalized by row summation values which are consistent with values
used in the model training. We can observe that attention matrix of horizon 2 captures
a similar pattern with correlation matrix of training data while it does not capture
correlation patterns in testing data. The attention matrix of horizon 28 shows a
different pattern with correlations. This indicates that the learned attention matrix
may not capture disease dynamics of testing dataset for long-term forecasting. It
explains why we observe that cola-GNN and GNN-att achieve comparable performance
for short-term forecasting but worse performance for long-term forecasting compared
with other proposed models. Furthermore, it involves more model parameters thus
may mitigate its power when there is no sufficiently good quality training data. Static
MF matrix show normal mobility flows between regions regardless of social distancing
orders, while dynamic MF capture mobility change before and after government
interventions. The pre-MF is close to static MF matrix while post-MF is close to
adjacency matrix. Thus, in Table 2.2 we observe that GNN-adj performs similarly
with GNN-smob , while GNN-dmob explicitly projects recent mobility patterns to the
future leading to better performance.

Sensitivity analysis. We show sensitivity analysis on some of the hyperparameters:
number of hops L (Figure 2.6) and historical window size K (Figure 2.7). Except the
varying hyperparameter, all the other settings are the same with parameter setting in
Section 2.5.1. We report RMSE and PCORR performance on the US-State dataset
with horizon=28. The other results show similar observations thus are omitted for the
sake of brevity.

Number of hops L. The L values are 2, 3, 4, and 6. Results are shown in Figure 2.6.
In general, we observed that models trained with L = 4 achieves relatively better
RMSE and PCORR performance than models with other settings. However, models
with L = 3 outperform others in 7, 21, and 28 days ahead forecasting on PCORR
while performing the worst in 14, 21, and 28 days ahead forecasting on RMSE. In the
main experiment, we use L = 4 for the proposed models.

History window H. The H varies among 7, 14, 21, and 28. Results are shown in
Figure 2.7. We can observe that as the window size increases, the model performance
increases. However, there is an exception for the model with H = 21 which has larger
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(a) Correlation
(train)

(b) Correlation
(test)

(c) Attention
(horizon 2)

(d) Attention
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(e) Geographical
adjacency

(f) Static MF
(Average)
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2020-03-28

Figure 2.5: Heatmap of new cases correlation matrix (on training and testing
datasets) (2.5a,2.5b), learned attention matrix at July 15, 2020 (horizon 2 and
28) (2.5c,2.5d), geographical adjacency matrix (2.5e), static MF matrix (2.5f), dynamic
MF matrix (2.5g) and (2.5h) between states. States are ordered as per the health and
human services grouping to obtain a sense of adjacency, self-loops are suppressed from
MF matrices.

RMSE but smaller PCORR.
Major observations and discussion: we observed that some models like the one

with L = 3 in Figure 2.6 and the one with H = 21 in Figure 2.7 perform inconsistently
on different metrics. The likely reason is that all models may be overfitting to training
dataset in some degree due to the small size of training dataset. In addition, the
ground truth curves have large variation due to the noise in the surveillance data.
Thus, the correlation (i.e., measuring the trend similarity) between the ground truth
curves and the predicted curves may vary more across timeline and regions compared
with average RMSE errors (i.e., measuring the forecast error).

2.6 Conclusions and Open Questions

In this chapter, we introduce a novel GNN-based framework to incorporate aggregated
mobility flows for better understanding the impact of human mobility on COVID-19
dynamics as well as better forecasting of disease dynamics. We propose an RMP
module to embed spatiotemporal disease dynamics (COVID-19 surveillance data) and
human mobility dynamics (MF data) while making forecasting. The experimental
results of forecasting daily COVID-19 new cases for each state in the US demonstrate
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(a) RMSE (b) PCORR

Figure 2.6: Sensitivity analysis on the number of hops L.

(a) RMSE (b) PCORR

Figure 2.7: Sensitivity analysis on history window H.

the additional improvements obtained by using the mobility data. The use of GNNs for
COVID-19 is just beginning and our results are some of the first results in this area to
yield good performance. The proposed model is flexible to account for a variety of static
and dynamic spatiotemporal signals and can be extended to forecast other diseases
dynamics. However, the proposed model forecasts at daily new confirmed cases but
using weekly mobility graphs, which may degrade model performance. Furthermore,
as we have discussed in Section 2.3.2 that COVID-19 dynamics varies a lot due to
multiple factors like local population size, individual behaviors (e.g., wearing a mask or
not in public location), and government reopening guidelines. Including these factors
in the model can further improve the forecasting accuracy.

The use of MF in this work should be interpreted in consideration of several
important limitations. First, there are limitations due to lack and non-uniformity of
testing data. Second, the Google mobility data is limited to smartphone users who
have opted into Google’s Location History feature, which is off by default. These
data may not be representative of the population as whole, and furthermore their
representativeness may vary by location. Importantly, these limited data are only
viewed through the lens of differential privacy algorithms, specifically designed to
protect user anonymity and obscure fine detail. Moreover, comparisons across locations
are only descriptive since these regions can differ in substantial ways.
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Chapter 3

Combining Theory and Deep
Learning Models for Reliable

Epidemic Forecasting

In this chapter, which is based on Wang et al. (2019b, 2020b) and a work1 that is under
submission. We will present two works that aim to enhance deep learning models
with theory-based mechanistic models for improving the forecasting accuracy and the
interpretability of a learned model. Section 3.1 introduces the general background
of combining theory and deep learning models for epidemic forecasting. The two
frameworks TDEFSI and CausalGNN are presented in Section 3.2 and 3.3 respectively.
Finally, the conclusions and open questions are discussed in Section 3.4.

3.1 Background

Given the challenges discussed in Section 1.1.2 and 1.1.3, existing deep learning-based
epidemic forecasting models (Wu et al., 2018; Deng et al., 2020) barely considered
epidemiological context during their learning process. Such models are prone to be
overfitting leading to failures in epidemic forecasting, especially when the data is noisy
and sparse. Furthermore, they lack explainability of the underlying causal mecha-
nism. On the other hand, theory-based mechanistic models can capture the diffusion
patterns of disease spread through detailed simulation use a realistic representation
of the underlying social contact network formed by human mobility behavior and
population demographics. Thus, a framework that combines deep learning with theory-
based mechanistic models is promising. Current efforts on combining theory-based
mechanistic models with data-driven methods are along two lines. One direction is
using machine learning techniques to enhance theory-based mechanistic models. The
efforts in this research direction include but not exhausted to (Zhao et al., 2015a;

1CausalGNN: Causal-based Graph Neural Networks for Spatio-Temporal Epidemic Forecasting
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Hua et al., 2018) which used social media mining techniques to enhance theory-based
mechanistic models for influenza forecasting and (Dandekar et al., 2020) which mixed
first-principles epidemiological equations and a data-driven neural network when cali-
brating mechanistic model parameters. The other direction is using mechanistic causal
theory to enhance data-driven models. A limited number of works have been made
towards this direction. Wang et al. (2019b, 2020b) trained an LSTM-based model with
theory-generated training data for forecasting influenza at high geographical resolution.
Recently for COVID-19 forecasting, Gao et al. (2021) used a transmission dynamics
loss term to regularize model forecasts in a GNN training. My works introduced in
this chapter are among the first efforts in this direction. Specifically, my works focus
on enhancing deep learning models with theory-based mechanistic models with the
aim of providing accurate forecasts as well as gaining a mechanistic understanding
from a learned model.

In the rest of this chapter, we will present two frameworks TDEFSI in Section 3.2
and CausalGNN in Section 3.3. TDEFSI shows a sequential learning process where
where mechanistic models are used to generate high-resolution synthetic data then
RNN-based models are trained with synthetic training data, while CausalGNN adopts
a jointly learning process that learns a latent space to combine the spatiotemporal
and causal embeddings using graph-based non-linear transformations.

3.2 TDEFSI

3.2.1 Motivation
Influenza-like illness (ILI) poses a serious threat to global public health. Worldwide,
annually, seasonal influenza causes three to five million cases of severe illness and
290,000 to 650,000 deaths (WHO, 2019). Since 2010 in the USA, seasonal influenza has
resulted in 10-50 million cases annually, 140,000 to 960,000 hospitalizations, between
12,000 and 79,000 deaths, and is responsible for approximately $87.1 billion in economic
losses (CDC, 2019a; Molinari et al., 2007). Producing timely, well-informed, and
reliable forecasts for ILI of an ongoing flu epidemic is crucial for preparedness and
optimal intervention (Doms et al., 2018). Traditionally, ILI surveillance data from the
Centers for Disease Control and Prevention (CDC) has been used as reference data
to predict future ILI incidence. The surveillance data is updated weekly but often
delayed by one to four weeks and is provided at an HHS region (i.e., the ten regions
defined by the United States Department of Health & Human Services) level and
recently at the state level. Considering the heterogeneity between different subregions,
accurate forecasts with a finer resolution, e.g., at county or city level in the USA, are
crucial for local public health decision making, optimal mitigation resource allocation
among subregions, and household or individual level preventive actions informed by
neighboring prevalence (Yang et al., 2016). Given spatially coarse-grained surveillance
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data, it is challenging to forecast at a finer spatial level. In this work, we formally
define flat-resolution forecasting and high-resolution forecasting. The definitions are
shown in Section 1.1.2 "Spatial forecasting" paragraph. We do not repeat them for
the sake of brevity.

To address this problem, we proposed a novel epidemic forecasting framework,
called Theory Guided Deep Learning Based Epidemic Forecasting with Synthetic
Information (TDEFSI). TDEFSI uses theory generated synthetic data to train a
neural network. This is necessitated by the fact that disease surveillance data is
sparse. Furthermore, the data is noisy and incomplete. We overcome the limitations
by training TDEFSI using data generated by high-performance-computing-based
simulations of well accepted causal processes that capture epidemic dynamics. These
simulations are based on decades of work and have been extensively validated. The
simulations allow us to: (i) use a realistic representation of the underlying social
contact network that captures the multi-scale spatial, temporal and social interactions,
as well as the inherent heterogeneity of social networks (individual demographic
attributes, heavy tailed nature of social contacts, etc.), leading to forecasts that are
context specific and capture the unique properties of a given urban region; (ii) produce
multi-resolution forecasts even though observational data might only be available at
an aggregate level, leading to an ability to forecast disease incidence at a county or a
city level as well as forecasts for desired demographic groups ; and (iii) capture the
underlying causal processes and mathematical theories leading to explainable and
generalizable AI – the combination of theory and data driven machine learning is an
important and emerging approach to scientific problems that are data sparse.

TDEFSI produces accurate weekly high-resolution ILI forecasts from flat-resolution
observations. This is achieved by using a two-branch neural network for ILI forecasting.
It combines within-season observations (observed data points of the previous weeks
that characterize the ongoing epidemic) and between-season historical observations
(observed data points from similar weeks of the past seasons that characterize general
trends around the current week). It can generate probabilisitic forecasts by using
Monte Carlo Dropout (MCDropout) technique (Gal and Ghahramani, 2016).

To the best of our knowledge, TDEFSI is the first to use a realistic causal high-
resolution model to train a DNN for epidemic forecasting. The basic approach is
general and points to the potential utility of the approach to study other problems
in social and ecological sciences. Unlike physical systems, encoding system level
constraints is often possible only via simulations; the theories are largely local rules of
interactions. In this sense, training a DNN using simulations provides a natural way
to place constraints on the concept class that the DNN effectively learns.

A natural question that arises is: why does one need to use a DNN when simulations
are available? There are multiple reasons to do this: (i) computational efficiency
(ability to rapidly produce forecasts, (ii) generalizability (often simulation parameters
might end up overfitting to the data), and (iii) ability to incorporate additional data
sources. In this sense, DNN+simulations appears to be a promising approach for
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forecasting rather than using either of them individually.

3.2.2 Related Work
Influenza forecasting. In Section 1.1.3, we have introduced methodologies for
epidemic forecasting in three categories: theory-based mechanistic methods, statistical
time series methods, and deep learning methods. We also discussed the limitation of
each type of methods. In this section, we will discuss forecasting methods specific for
high-resolution ILI. For the sake of brevity, we omitted the related works which have
been introduced in Section 1.1.3.

Theory-based mechanistic methods for ILI forecasting employing within-host
progression models (e.g., SIR or SEIR) can determine the casual mechanisms of
influenza. The underlying epidemic model can be either a CM or an ABM (more
details in Section 1.1.3). To get county level epidemics in a CM, one needs to create
compartments in each county, where county population sizes and between county
travel data become crucial. On the other hand, the individual level details in an ABM
can be easily aggregated to obtain epidemic data of any resolution, e.g., number of
newly infected people in a county in a specific week. Causal methods are generally
computationally expensive as they require the parameter estimation over a high
dimensional space. As a result, the use of such methods for real-time forecasting is
challenging.

Popular statistical time series methods for ILI forecasting include e.g., generalized
linear models (GLM), autoregressive (AR) models, and autoregressive integrated
moving average (ARIMA) (Bardak and Tan, 2015; Benjamin et al., 2003; Dugas
et al., 2013). Wang et al. (2015) proposed a dynamic Poisson autoregressive model
with exogenous input variables (DPARX) for flu forecasting. Yang et al. (2015b)
proposed ARGO, an autoregressive-based influenza tracking model for nowcasting
incorporating CDC ILI data and Google search data. The extensive work based on
ARGO was discussed by Yang et al. (2017). Statistical methods are fast but they
crucially depend on the availability of training data and as such can only produce
flat-resolution forecasts. High-resolution forecasts must be calculated by multiplying
the flat-resolution forecasts with high-resolution population proportions. The trained
models could not capture the heterogeneous dynamics between high-resolution regions.

DNNs have gained increased prominence in ILI forecasting. However, just like
statistical time series methods, DNN-based forecasting methods are data driven and
have similar limitations. In addition, the model performance usually depends on the
availability of a very large training dataset. Another well known limitation of DNNs
is their ability to explain the resulting forecasts.

Hybrid methods combining data-driven and mechanistic methods are attractive
as they can borrow the best from both worlds (Kandula et al., 2018). The authors
in (Osthus et al., 2019) proposed a dynamic Bayesian model for influenza forecasting
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which combined the machine learning approach and a compartmental model to
explicitly account for systematic deviations between mechanistic models and the
observed data. Such methods have shown promise as evidenced in recent papers on
the study of physical and biological systems (Faghmous et al., 2014; Fischer et al.,
2006; Hautier et al., 2010; Kawale et al., 2013; Khandelwal et al., 2015, 2017; Karpatne
et al., 2017; Wong et al., 2009; Xu et al., 2015) – see (Karpatne et al., 2017) for a
discussion on this subject. However, none of these works investigate high-resolution
epidemic forecasting.

TDEFSI method : Our method combines DNNs and high-resolution epidemic
simulations to enable accurate weekly high-resolution ILI forecasts from flat-resolution
observations. Compared with mechanistic methods, TDEFSI avoids searching optimal
disease model parameters over a high dimensional space because it does not need to
identify any specific mechanistic models for the forecasting. Compared with data-
driven methods (statistical and deep learning methods), TDEFSI explicitly models
spatial and social heterogeneity in a region from the training data. It can capture the
heterogeneous dynamics between high-resolution regions, as well as underlying causal
processes and mathematical theories. In addition, the large volume of synthetic training
data helps TDEFSI to overcome the risk of overfitting due to sparse observation data.

Data augmentation for time series. Data augmentation in DNNs is the process
of generating artificial data in order to reduce overfitting. It has been shown to improve
the DNNs’ generalization capabilities in many tasks especially in computer vision tasks
such as image or video recognition (Schlüter and Grill, 2015). Various augmentation
techniques have been applied to specific problems, including affine transformation of
the original images (Vasconcelos and Vasconcelos, 2017; Rizk et al., 2019; Wong et al.,
2016) and unsupervised generation of new data using Generative Adversarial Nets
(GANs) (Perez and Wang, 2017; Gurumurthy et al., 2017; Marchesi, 2017; Zhu et al.,
2017) or variational autoencoder (VAE) models (Rizk et al., 2019), etc. However, the
techniques for image augmentation do not generalize well to time series. The main
reason is that image augmentation is not expected to change the class of an image,
while for time series data, one cannot confirm the effect of such transformations on
the nature of a time series. In what follows we introduce related work on time series
data augmentation.

Data augmentation for time series classification: For time series classification
(TSC) problems, one of the most popular methods is the slicing window technique,
originally introduced for CNNs in (Cui et al., 2016). The method was inspired
by the image cropping technique for computer vision tasks (Zhang et al., 2016).
In (Kvamme et al., 2018), it was adopted to improve the CNNs’ mortgage delinquency
prediction using customer’s historical transactional data. The authors in (Krell
et al., 2018) used it to improve the Support Vector Machines accuracy for classifying
electroencephalographic time series. The authors in (Um et al., 2017) proposed a
novel data augmentation method (including window slicing, permutating, rotating,
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time-warping, scaling, magnitude-wrapping, jiterring, cropping) specific to wearable
sensor collected time series data. Le Guennec et al. (2016) extended the slicing window
technique with a warping window that generated synthetic time series by warping the
data through time. It extracted multiple small-size windows from a single window
and lengthens/shortens a part of the window data, respectively. The methods were
reported to reduce classification error on several types of time series data. Forestier
et al. (2017) proposed to average a set of time series as a new synthetic series. It relied
on an extension of Dynamic Time Warping (DTW) Barycentric Averaging (DBA).

Data augmentation for time series regression: Unlike data augmentations for TSC,
data augmentation for time series regression (TSR) has not been well investigated
yet to the best of our knowledge. Bergmeir et al. (2016) presented a method using
Box-Coxfor transformation followed by a Seasonal and Trend decomposition using
Loess (STL) decomposition to separate the time series into trend, seasonal part, and
remainder. The remainder was then bootstrapped using a moving block bootstrap,
and a new series was assembled using this bootstrapped remainder.

All above methods for TSC or TSR apply techniques directly on observed time
sequences, which generate synthetic data at the same resolution as the original data.
In our problem, we try to forecast at a higher resolution when there is no or very
sparse high-resolution observations.

TDEFSI method : We generate synthetic high-resolution data using high perfor-
mance computing based simulations of well accepted causal processes that capture
epdemic dynamics. Different from data augmentation techniques introduced above,
we synthesize high-resolution data which is not available or quite sparse in the real
world.

3.2.3 Problem Formulation
Given an observed time series of weekly ILI incidence for a specific region, we focus on
predicting ILI incidence for both the region and its subregions in short-term. Without
loss of generality, in this work we consider making forecasts for a state of the USA and
all counties in the state, using observations only from CDC state level ILI incidence
data (CDC, 2019b). In this setting, state level forecasting is flat-resolution, while
county level forecasting is high-resolution. The proposed framework is not limited to
this setting and can be generalized for subregion forecasting in any region, e.g., state
level forecasting in a country where only national level surveillance data is available.
Our proposed method is different from traditional ILI incidence forecasting methods
in that the model is trained on synthetic ILI incidence data but forecasts by taking
ILI surveillance data as inputs.

Let y = hy1, y2, · · · , yT , · · · i denote the sequence of weekly state level ILI incidence,
where yi 2 R. Let yC = hyC1 , yC2 , · · · , yCT , · · · i denote the sequence of weekly ILI
incidence for a particular county C within the state. Assume that there are K counties
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Figure 3.1: TDEFSI framework. In this framework, a region-specific disease parameter
space for a disease model is constructed based on historical surveillance data. Synthetic
training data consisting of both state level and county level weekly ILI incidence curves
is generated by simulations parameterized by samples from the parameter space. An
LSTM-based model is trained on the synthetic data. The trained model produces
forecasts by taking surveillance data as the input.

D = {C1, C2, · · · , CK} in the state. Let yD
t
= {yC

t
|C 2 D} denote ILI incidence of all

counties in the state at week t. Suppose we are given only state level ILI incidence
up to week T . The problem is defined as predicting both state level and county level
incidence at week t, where t = T + 1, denoted as zt = (yt,yD

t
), zt 2 RK+1, given

hy1, y2, · · · , yT i.
In our problem, when training a DNN, we consider three types of physical consis-

tency requirements based on epidemiologic domain knowledge. They are temporal
consistency, spatial consistency, and non-negative consistency. (i) Temporal
consistency: the ILI diseases transmit via person to person contacts. The number of
infected cases at the current time point depends on the number of infected cases at the
previous time points. In addition, infected persons’ incubation periods and infectious
periods vary due to the heterogeneity among individuals. In our work, we use an
LSTM (Hochreiter and Schmidhuber, 1997) to capture the temporal dependencies
among variables. (ii) Spatial consistency: the high-resolution ILI incidence should be
consistent with the flat-resolution ILI incidence. In our problem, this consistency is
represented as yt =

P
C2D

yC
t
, i.e., the state incidence equals the sum of ILI incidence at

the county level. (iii) Non-negative consistency: the number of infected cases at time
t is either zero or a positive value, denoted as yt, yCt � 0.
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3.2.4 Framework

The TDEFSI framework consists of three major components (shown in Figure 3.1):
(i) Disease model parameter space construction: given a state and an existing disease
model, we estimate a marginal distribution for each model parameter based on the
surveillance data of the state and its neighbors; (ii) Synthetic training data generation:
we generate a synthetic training dataset at both flat-resolution and high-resolution
scales for that state by running simulations parameterized from the parameter space;
(iii) DNN training and forecasting: we design a two-branch DNN model trained on
the synthetic training dataset and use surveillance data as its inputs for forecasting. It
works as follows: given a theory-based mechanistic model, a disease model parameter
space is identified and estimated using surveillance data. Then a synthetic training
dataset is generated using the mechanistic model and the learned parameter space.
Next, a two-branch DNN is built and trained with the generated synthetic dataset.
Finally, the learned model is used to make forecasts. We will elaborate on the details
in the following subsections.

SEIR-based epidemic simulation. We simulate the spread of the disease in a
synthetic population via its social contact network. In this work we use the synthetic
social contact network of each state in the USA (a brief description of the method-
ology used for constructing the synthetic population and the social network can be
found in (Wang et al., 2020b)). The SEIR disease model is widely used for ILI
diseases (Kuznetsov and Piccardi, 1994). Each person is in one of the following four
health states at any time: susceptible (S), exposed (E), infectious (I), recovered or
removed (R). A person v is in the susceptible state until he becomes exposed. If v
becomes exposed, he remains so for pE(v) days, called the incubation period, during
which he is not infectious. Then he becomes infectious and remains so for pI(v) days,
called the infectious period. Both pE(v) and pI(v) are sampled from corresponding
distributions, as shown in Algorithm 2, e.g., pE(v) ⇠ {1 : 0.3, 2 : 0.5, 3 : 0.2} means
that an exposed person will remain so for 1 day with probability 0.3, 2 days with
probability 0.5, and 3 days with probability 0.2, similar to PI(v). Finally, he becomes
removed (or recovered) and remains so permanently. While the SEIR model character-
izes within-host disease progression, between-host disease propagation is modeled by
transmissions from person to person with a probability parameter ⌧ , through either
complete mixing or heterogeneous connections between people. With our contact
network model, the disease spreads in a population in the following way. It can only
be transmitted from an infectious node to a susceptible node. On any day, if node u is
infectious and v is susceptible, disease transmission from u to v occurs with probability
p(⌧, w(u, v)), where w(u, v) represents the contact duration between node u and node
v. The disease propagates probabilistically along the edges of the contact network.

Various simulators are developed to model human mobility, disease spread, and
public health intervention. They include compartment-based patch models (Flahault
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et al., 2006; Lee et al., 2012; Lunelli et al., 2009), as well as agent-based models such
as EpiFast (Bisset et al., 2009), GSAM (Parker and Epstein, 2011), and FluTE (Chao
et al., 2010). Any of these simulators can be used in TDEFSI to generate synthetic
training data. In this work, we adopt an agent-based simulator EpiFast (Bisset et al.,
2009). The outputs are individual infections with their days of being infected in a
simulated season. They can be aggregated to any temporal and spatial scale, such
as daily (weekly) state (county) level ILI incidence. Vaccine intervention IV can be
implemented in EpiFast simulations, by specifying the quantity of vaccines applied to
the population in each week. Next we describe how to estimate a distribution on the
parameter space P(pE, pI , ⌧, NI , IV ) from CDC historical data, where NI denotes the
initial number of infections. In our simulations, NI of the population are infectious
while all the rest are susceptible at the beginning of the simulation.

Disease model parameter space. Of the parameters, (pE, pI) can be taken from lit-
erature (Marathe et al., 2011). We assume that each of (⌧, NI , IV ) follows a distribution
that can be estimated from historical data. For clarity, we define an epidemiological
week in a calendar year as ew, and a seasonal week in a flu season as sw, where ew(40)
is sw(1). The historical time series of CDC surveillance data (refers to historical
training data) used to construct parameter space is split into seasons at ew(40) of
each year. That is, each flu season starts from ew(40) of a calendar year and ends in
ew(39) of the next year. Note that this applies to the USA, but sw may be specified
differently for other countries.

We want to highlight that the number of clinically attended cases and the reported
or tested cases are lower than the actual number of cases in the population. Additionally,
reporting rates can vary between regions. To address the gap between ILINet case
count and population case count, we scale the former with a scaling factor, called
surveillance ratio. The ratio is different among different states. We assume that the
ratio between ILI cases captured by CDC ILINet (denoted ILITOTAL) and ILI cases in
the population (ILIPOP) is the same as that between patients of all diseases captured
by CDC ILINet (TOTALPATIENT) and patients of all diseases in the population
(PATIENTPOP). We approximate PATIENTPOP with all doctor visit data from
AHRQ (AHRQ, 2017). The doctor visit data provides county level counts for total
hospital visits in a year which is aggregated to state level counts later. Note that it is
an underestimate. From surveillance ratio = ILITOTAL

ILIPOP = TOTALPATIENT
PATIENTPOP , we can

derive the only unknown ILIPOP. Table 3.1 presents the surveillance ratios for all the
states.

Firstly, we collect observations of each parameter value as follows:

• Initial Case Number (NI): we collect the ILI incidence of sw(1) of each season
for the target state and its neighboring states (i.e., geographically contiguous
states). For example, given a state New Jersey, the training data includes 6
seasons from 2010-2011 to 2015-2016, its neighbors are Delaware, New York,
and Pennsylvania. Then we can collect 6 ⇤ 4 = 24 samples of NI for NJ.
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Table 3.1: Surveillance ratios for each state in the US.

Alabama: 0.0759 Kansas: 0.1093 New York: 0.1204
Alaska: 0.1143 Kentucky: 0.1114 North Carolina: 0.0875
Arizona: 0.0723 Louisiana: 0.0931 North Dakota: 0.1960
Arkansas: 0.0894 Maine: 0.1931 Ohio: 0.1339
California: 0.0628 Maryland: 0.0755 Oklahoma: 0.1039
Colorado: 0.0764 Massachusetts: 0.1380 Oregon: 0.1050
Connecticut: 0.1047 Michigan: 0.1356 Pennsylvania: 0.1299
Delaware: 0.1030 Minnesota: 0.0898 Rhode Island: 0.0932
District of Columbia: 0.1852 Mississippi: 0.0874 South Carolina: 0.0663
Florida: 0.0582 Missouri: 0.1492 South Dakota: 0.1882
Georgia: 0.0701 Montana: 0.1739 Tennessee: 0.0811
Hawaii: 0.0705 Nebraska: 0.1329 Texas: 0.0738
Idaho: 0.1190 Nevada: 0.0643 Utah: 0.0913
Illinois: 0.1066 New Hampshire: 0.1566 Vermont: 0.2111
Indiana: 0.1215 New Jersey: 0.0692 Virginia: 0.0914
Iowa: 0.1420 New Mexico: 0.1258 Washington: 0.0885
Kansas: 0.1093 New York: 0.1204 West Virginia: 0.1684

• Vaccine Intervention (IV ): we collect vaccination schedules of the past in-
fluenza seasons in the USA (CDC, 2018). Each schedule consists of timing
and percentage coverage of vaccine application throughout the season. Vaccine
efficacy (reduction of disease transmission probability) and compliance rate
(probability that a person will take the vaccine) are set according to a survey
used in (Wang et al., 2019a), which is conducted by Gfk.com, under the National
Institutes of Health grant no. 1R01GM109718. This survey collects data on
demographics of the respondents and their preventive health behaviors during
a hypothetical influenza outbreak. We assume that each person follows a com-
mon compliance rate, and the state level vaccine schedule is the same as the
nationwide schedule.

• Transmissibility (⌧): First we compute the overall attack rate (i.e., the fraction
of population getting infected in the season) of each historical season for the
target state and its neighboring states. Then for each attack rate ar, say
of season s and state r, we calibrate a transmissibility value as the solution
to min⌧ |AR(EpiFast(⌧, PE, PI , NI , IV ))� ar| using Nelder-Mead (Nelder and
Mead, 1965) algorithm, where pE and pI are sampled for each person from the
distributions shown in Table 3.2; NI is the initial case number of season s and
state r; IV is the vaccination schedule for season s; EpiFast(·) is a simulation
run on the population of state j with the parameters (⌧, PE, PI , NI , IV ); and
AR(·) computes attack rate from the output of EpiFast(·). Details of this
process are shown in Algorithm 2.

Secondly, for ⌧ and NI , we fit the collected samples to several distributions including
normal, uniform. Then we run KS-test (the null hypothesis being that the sample
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Algorithm 2: Calibrating disease model parameter ⌧
Input: Simulator PS, CDC historical data histCDC, and synthetic social

contact networks Network.
Output: Calibrated ⌧ ⇤.

1 pE ⇠ {1 : 0.3, 2 : 0.5, 3 : 0.2} (Marathe et al., 2011; Wang et al., 2019a);
2 pI ⇠ {3 : 0.3, 4 : 0.4, 5 : 0.2, 6 : 0.1} (Marathe et al., 2011; Wang et al., 2019a);
3 IV = ;;
4 regions = {state and its adjacent neighbors};
5 seasons = {available seasons of histCDC};
6 ⌧ ⇤ = ;;
7 for r in regions do
8 for s in seasons do
9 totalili(r,s) = TOTAL(histCDC(r,s)) // Computing total ILI

incidence for region r of season s

10 ar(r,s) = totalili(r,s)

population(r)
// Computing attack rate for region r of

season s
11 ⌧ ⇤(r,s) = min⌧ |AR(EpiFast(⌧, PE, PI , IV , NI(r,s), Network(r,s)))� ar(r,s)|

// Calibrating transmissibility ⌧ using EpiFast
12 ⌧ ⇤ = ⌧ ⇤ [ ⌧ ⇤(r,s)
13 end
14 end

is drawn from the reference distribution) to choose a distribution with the highest
significance (p-value). For IV , we assume the six vaccination schedules follow a discrete
uniform distribution. In this way, a region-specific parameter space P is constructed.
The learned parameter space is shown in Table 3.2. Note that each parameter in P
follows a marginal distribution.

Synthetic training dataset. For each simulation run, a specific parameter setting
is sampled from P , and the simulator is called to generate daily individual health states.
These individual health states are aggregated to get state and county level weekly
incidences, called synthetic epicurves. Week 1 in the synthetic epicurve corresponds to
sw(1) of a flu season. Large volumes of high-resolution synthetic data are generated by
repeating the sampling and simulating process. Let us denote all simulated epicurves
by ⌦ = {(y(i),yD

(i)) 2 R`⇥(K+1)|i = 1, 2, · · · , r}, where ` is the length of an epicurve
(number of weeks), K is the number of counties in the state, and r is the total number
of simulation runs. Algorithm 3 describes the generating process.

Compared with CDC surveillance data, the training dataset ⌦ is prominent in two
aspects: (i) it includes high-resolution spatial dependencies between subregions; (ii)
the large volume of synthetic training data reduces the possibility of overfitting when
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Table 3.2: Marginal distributions of the parameter spaces for VA and NJ. N denotes
normal distribution, U denotes uniform distribution.

Parameter State Name Distribution P-value

pE
VA Discrete distribution (1:0.3, 2:0.5, 3:0.2) Marathe et al. (2011); Wang et al. (2019a) -
NJ Discrete distribution (1:0.3, 2:0.5, 3:0.2) Marathe et al. (2011); Wang et al. (2019a) -

pI
VA Discrete distribution (3:0.3, 4:0.4, 5:0.2, 6:0.1) Marathe et al. (2011); Wang et al. (2019a) -
NJ Discrete distribution (3:0.3, 4:0.4, 5:0.2, 6:0.1) Marathe et al. (2011); Wang et al. (2019a) -

⌧
VA Normal N (µ = 4.88e�5, � = 9.33e�7) 0.74
NJ Normal N (µ = 4.63e�5, � = 1.05e�6) 0.85

NI

VA Uniform U(7355, 16278) 0.85
NJ Uniform U(567, 7647) 0.40

IV
VA Discrete uniform 6 vaccination schedules CDC (2018) -
NJ Discrete uniform 6 vaccination schedules CDC (2018) -

The null hypothesis for the two-sample KS test is that both groups were sampled from
populations with identical distributions. If the p-value returned by the KS test is less
than a significance level, we reject the null hypothesis. In our experiments, we do not
specify a significance level but instead choose the distribution with the largest p-value
among multiple assumed distributions.

Algorithm 3: Generating Training Dataset for TDEFSI
Input: Simulator PS, and Parameter space P .
Output: Simulated epicurves ⌦ = {(y(i),yD

(i))|i = 1, 2, · · · , r}.
1 ⌦ = ;;
2 for i = 1 to r do
3 P = Sample(P) // Parameter setting sampling
4 (y(i),yD

(i)) = PS(P ) // Simulating based on a sampled setting P

5 ⌦ = ⌦ [ (y(i),yD
(i))

6 end

training a DNN model. Thus the trained model has better generalization ability.

TDEFSI - a deep neural network model. LSTM (Hochreiter and Schmidhuber,
1997) is adopted in our neural network architecture to capture the inherent temporal
dependency in the weekly incidence data. Figure 3.2 shows unrolled k-stacked LSTM
layers. Each LSTM layer consists of a sequence of cells. The number of cells depends
on the number of input time points. In this figure, the input is a time series of
y1, ..., yt�1, the output comprises all the cell outputs h(k) from the last layer k ("last"
depth-wise, not time-wise). Each LSTM layer consists of t� 1 cells. In the first LSTM
layer (layer 0), a cell will work as described in 3.1, e.g., cell 2 takes y1, cell state c(0)1

and cell output h(0)
1 from the previous cell 1 as inputs, then outputs (c(0)2 ,h(0)

2 ) so you
could feed them into the next cell and feed h(0)

2 into the next layer (layer 1). The first
LSTM layer takes y1, ..., yt�1 as the input, the second layer takes h(0)

1 , ...,h(0)
t�1 as the

input, and the rest of the layers behave in the same manner.
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Figure 3.2: Unrolled k-stacked LSTM layers. Each LSTM layer consists of a sequence
of cells. The number of cells depends on the number of input time points. In this
figure, the input is a time series of y1, ..., yt�1, the output comprises all the cell outputs
h(k) from the last layer k ("last" depth-wise, not time-wise). Each LSTM layer consists
of t� 1 cells. In the first LSTM layer, a cell will work as described in 3.1, e.g., cell 2
takes y1, cell state c(0)1 and cell output h(0)

1 from the previous cell 1 as inputs, then
outputs (c(0)2 ,h(0)

2 ) so you could feed them into next cell and feed h(0)
2 into next layer.

The first LSTM layer take y1, ..., yt�1 as the input, the second layer take h(0)
1 , ...,h(0)

t�1

as the input, and rest of the layers behave in the same manner.

Let H(i), 0  i  k be the dimension of the hidden state in layer i. For the first
layer, assume the input of the current cell is yt�1. Then the computation within the
cell is described mathematically as:

i(0)
t�1 = �(W(0)

i
· yt�1 +U(0)

i
· h(0)

t�2 + b(0)
i
) 2 RH

(0)

f (0)
t�1 = �(W(0)

f
· yt�1 +U(0)

f
· h(0)

t�2 + b(0)
f
) 2 RH

(0)

o(0)
t�1 = �(W(0)

o
· yt�1 +U(0)

o
· h(0)

t�2 + b(0)
o
) 2 RH

(0)

eC(0)
t�1 = tanh(W(0)

C
· yt�1 +U(0)

C
· h(0)

t�2 + b(0)
C
) 2 RH

(0)

C(0)
t�1 = f (0)

t�1 �C
(0)
t�2 + i(0)

t�1 � eC
(0)
t�1 2 RH

(0)

h(0)
t�1 = o(0)

t�1 �C
(0)
t�1 2 RH

(0)

(3.1)

where � and tanh are sigmoid and tanh activation functions. W 2 RH
(0)
,U 2
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RH
(0)⇥H

(0) , and b 2 RH
(0) are learned weights and bias. C(0)

t�2,h
(0)
t�2 are the cell state

and output of the previous cell. Operator � denotes element wise product (Hadamard
product). The cell computation is similar in the layer i, but with yt�1 being replaced
by h(i�1)

t�1 2 RH
(i�1) , and W 2 RH

(i)⇥H
(i�1) .

In traditional time series models, ILI incidences of the previous few weeks are used
as the observations for the forecast of the current week. In TDEFSI, we use two kinds
of observations: (i) Within-season observations , denoted as x1 = hyt�a, · · · , yt�1i,
are ILI incidence from previous a weeks which are back from time step t. (ii) Between-
season observations , denoted as x2 = hyt�`⇤b, · · · , yt�`⇤1i, are ILI incidences of the
same sw from the past b seasons. They are used as the surrogate information to
improve forecasting performance. As shown in Figure 3.3, for example, there are 4
seasons ordered by sw. The within-season observations are ILI incidence of previous
a = 3 weeks in current season. The between-season observations are ILI incidence of
the same sw(t) from the past b = 3 seasons.

In TDEFSI model, we design a two-branch LSTM-based model to capture temporal
dynamics of within-season and between-season observations. As shown in Figure 3.4,
the left branch consists of stacked LSTM layers that encode within-season observations
x1 = hyt�a, · · · , yt�1i. The right branch is also LSTM-based and encodes between-
season observations x2 = hyt�`⇤b, · · · , yt�`⇤1i. A merge layer is added to combine the
outputs of two branches. The final output is ẑt which consists of state level and county
level forecasts (as defined in Section 3.2.3).

In the left branch, the output of the Dense layer is:

Ol =  l(wl · h(kl)
t�1 + bl) 2 RH (3.2)

where kl is the number of LSTM layers in the left branch, H is the dimension of
output of the left branch, wl 2 RH⇥H

(kl) and bl 2 RH ,  l is the activation function.
Similarly, the output of the Dense layer in the right branch is:

Or =  r(wr · h(kr)
t�1 + br) 2 RH (3.3)

where kr is the number of LSTM layers in the right branch, H is the dimension of
output of the right branch, wr 2 RH⇥H

(kr) and br 2 RH ,  r is the activation function.
The merge layer combines the output from two branches by addition, denoted as:

ẑt =  (w[Ol �Or] + b) 2 RK+1 (3.4)

where w 2 R(K+1)⇥H , b 2 RK+1,  is the activation function, and � denotes the
element-wise addition.

This LSTM-based deep neural network model is able to connect historical ILI
incidence information to the current forecast. It also allows long-term dependency
learning without suffering the gradient vanishing problem. The number of LSTM
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layers is a hyperparameter that we tuned by grid searching.

Figure 3.3: Within-season and between-season observations as the input for the
TDEFSI neural network model. In this graph, there are four flu seasons (rows). Nodes
in each row denote weekly ILI incidence in each season, which are ordered by sw. For
a target week sw(t) (black square), the model observes two kinds of information: (i)
within-season observations x1 - the ILI incidence from the previous weeks back from
week sw(t) (green rectangular); (ii) between-season observations x2 - the historical
ILI incidence from similar weeks of the past seasons (yellow rectangular). z is the
target week of ILI forecasting. x1 and x2 are state level ILI, while z includes state
and county level ILI.

We are interested in a predictor f , which predicts the current week’s state level
and county level incidence zt based on the previous a weeks of within-season state
level ILI incidence x1 and the previous b seasons of between-season state level ILI
incidence x2:

ẑt = f([x1,x2]t, ✓) (3.5)

where ✓ denotes parameters of the predictor, ẑt denotes the forecast of zt. Note that
the output of f is always one week ahead forecast in our model.

The optimization objective is:

min
✓

L(✓) =
X

t

kzt � f([x1,x2]t, ✓)k22 + µ�(ẑt) + ��(ẑt), (3.6)

where �(ẑt) is an activity regularizer added to the outputs for spatial consistency
constraint ŷt =

P
C2D

ŷC
t
:

�(ẑt) =

�����ŷt �
X

C2D

ŷC
t

����� , (3.7)

and �(ẑt) is an activity regularizer added to the outputs for non-negative consistency
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Figure 3.4: TDEFSI model architecture. This architecture consists of two branches.
The left branch consists of stacked LSTM layers that encodes state level within-season
observations x1, and the right branch consists of stacked LSTM layers that encodes
state level between-season observations x2. A merge layer is added to combine two
branches and the output z is the state and county level forecasts.

constraint ŷt, ŷCt � 0:

�(ẑt) =

����
1

K + 1

X
max(�ẑt,0)

���� , (3.8)

µ,� are two pre-specified hyperparameters, min(ẑt,0) returns element-wise minimum
value, K is the number of counties in the state, �(ẑt) returns the absolute mean of
element-wise minimum values. The Adam optimization algorithm (Kingma and Ba,
2014) is used to learn ✓. How the activity regularizers affect the model performance
will be discussed in Section 3.2.5.

Variants of TDEFSI. The two-branch neural network architecture has multiple
variants: (i) TDEFSI : A two-branch neural network as shown in Figure 3.4. (ii)
TDEFSI-LONLY : Only the left branch is used to take within-season observations.
(iii) TDEFSI-RDENSE : The left branch comprises of stacked LSTM layers, while the
right branch uses Dense layers, which means that the model does not care about the
temporal relationship between between-season data points. We will discuss the results
of different variants in Section 3.2.5.

Training and forecasting. In the training process, we use synthetic training data
⌦ to train the TDEFSI models. The historical surveillance data is only used for
constructing the disease model parameter space P . In the predicting step, the trained
model takes state level surveillance as input and makes one week ahead forecasts at
both state and county levels. TDEFSI models are trained once before the target flu



Chapter 3. Combining Theory and Deep Learning Models for Reliable
Epidemic Forecasting 51

season starts, then can be used for forecasting throughout the season.
In practical situations, we are interested in making forecasts for several weeks

ahead using iterative method. In TDEFSI, the left branch of the model appends the
most recent state level forecast to the input for predicting the target of the next week,
and the right branch uses the state level ILI incidences from the past seasons with sw
equal to the next week number.

3.2.5 Experiments
Datasets. CDC ILI incidence (CDC, 2019b): The CDC surveillance data used in
the experiments is the weekly ILI incidence at state level from 2010 ew(40) to 2018
ew(18). Note that it may be revised continuously until the end of a flu season. We
use the finalized data in this work. ILI Lab tested flu positive counts of New
Jersey (DOH, 2019): To evaluate the county level forecasting performance, we collect
state level and county level ILI Lab tested flu positive counts of season 2016-2017
and 2017-2018 in NJ. The data is available from ew(40) to the next year’s ew(20).
We use it as the ground truth when evaluating county level forecasting. Google
data (Google, 2018; GHT, 2018): The Google correlate terms (keyword: influenza) of
each state are queried; we choose the top 100 terms. Then the Google Health Trends
of each correlated term for each state is collected and aggregated weekly from 2010
ew(40) to 2018 ew(18). Weather data (CDO, 2018): we download daily weather
data (including max temperature, min temperature, precipitation) from Climate Data
Online (CDO) for each state and compute weekly data as the average of daily data
from 2010 ew(40) to 2018 ew(18). Google data and weather data are used as surrogate
information in comparison methods. Simulated data: For each state, we generate
1000 simulated curves of weekly ILI incidence at both state level and county level. Of
each curve, the first week sw(1) corresponds to epi-week 40 ew(40) of real seasonal
curves.

We divide the real data into: real-training: the beginning 80% of season 2010-2011
to season 2015-2016 (251 data points per state). real-validating: the last 20% of
season 2010-2011 to season 2015-2016 (63 data points per state). real-testing: season
2016-2017 to season 2017-2018 (83 data points per state). County level real-evaluating:
county level ILI lab tested flu positive counts for NJ (64 data points per county of
NJ). For TDEFSI models, we use the training dataset to learn disease parameter
space, while for baselines, we use training dataset to train the model directly and use
validating dataset to validate and choose the final models. Testing and county level
evaluating datasets are used for all methods to evaluate their performance. And the
final result of each method is the average value of 10 trials.

We divide the simulated data into: sim-training: 80% of 1000 simulated curves.
sim-validating: 15% of 1000 simulated curves. sim-testing: 5% of 1000 simulated
curves. The synthetic data is only used for training and validating of TDEFSI models.
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No baselines are applied for synthetic data.

Baselines. Our method is compared with state-of-the-art deep learning methods,
statistical methods, and mechanistic methods. They are:

• LSTM (CDC data) (Hochreiter and Schmidhuber, 1997) and AdapLSTM (CDC
+ weather data) (Venna et al., 2019) representing deep learning methods;

• SARIMA (CDC Data) (Benjamin et al., 2003) and ARGO (CDC + Google
data) (Yang et al., 2015b) representing statistical methods; and

• EpiFast (Beckman et al., 2014) representing mechanistic methods.

AdapLSTM, LSTM, ARGO, and SARIMA can make flat-resolution forecasting directly
from the model, then flat-resolution forecasts can be turned into high-resolution
forecasts by multiplying by county level population proportions. EpiFast is applied
for both flat-resolution and high-resolution forecasting directly.

Experiment setup. In this section, we describe the experiment settings, including
simulation setting and TDEFSI model setting. Note that we conduct the experiments
on two states of the USA i.e. VA and NJ. State level forecasting performance will be
evaluated on both VA and NJ, while county level forecasting performance is evaluated
on NJ only due to the limitation on the availability of high-resolution observations.

Disease model settings for generating simulated training data: The simulation
parameter settings are listed in Table 3.2. The length of a simulated epicurve is set
to ` = 52, and the total runs of simulations is r = 1000. We adopt EpiFast as the
simulator, PS=’EpiFast’.

TDEFSI model settings : We set up the architectures for TDEFSI and its variants
as follows:

• TDEFSI : The left branch consists of two stacked LSTM layers, one dense layer;
the right branch consists of one LSTM layer, one dense layer. kl = 2, kr = 1,
H(kl) = H(kr) = 128, H = 256,  l, r, are linear functions.

• TDEFSI-LONLY : The left branch consists of two stacked LSTM layers, one
dense layer and no right branch. kl = 2, H(kl) = 128, H = 256,  l, are linear
functions.

• TDEFSI-RDENSE : The left branch consists of two stacked LSTM layers, one
dense layer; the right branch consists of one dense layer. kl = 2, kr = 0,
H(kl) = H(kr) = 128, H = 256,  l, r, are linear functions.

For all TDEFSI models, we set a = 52, b = 5, (µ,�)V A = (0.1, 0.1), (µ,�)NJ = (1, 0.01).
We use Adam optimizer with all default values. We choose the final model using grid
searching with sim-validating dataset. The grid searching space is about 500 mod-
els, including a(10, 20, 30, 40, 50), b(5), µ(0, 0.001, 0.01, 0.1, 1), �(0, 0.001, 0.01, 0.1, 1),
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kl(1, 2), H(128, 256). In the training process, the best models are selected by early
stopping when the validation accuracy does not increase for 50 consecutive epochs,
and the maximum epoch number is 300. Unless explicitly noted, in our experiments,
these hyperparameters are set with the values described above.

Baselines settings: We elaborate the details of model setting of the baselines. Note
that, in the experiments, we choose the final model with the best validation accuracy
by grid searching. Unless explicitly noted, the hyperparameters are set with default
values from python libraries.

• LSTM : It consists of one LSTM layer and one dense layer. The input is the
sequence of state level ILI incidence and the output is the state level forecast of
the current week. By grid searching, we set the look back window size to 52 and
LSTM hidden units to 128. The Adam optimizer is used.

• AdapLSTM (Venna et al., 2019): This method makes forecasts using a simple
LSTM model, then adjusts the forecasts by applying impacts of weather factors
and spatiotemporal factors. The LSTM model has the same setting with single
layer LSTM model described above. In (Venna et al., 2019), the weather
features include maximum temperature, minimum temperature, humidity, and
precipitation. However, humidity is not used in our experiments since it is
not publicly available in the collected weather dataset. The confidences of
symbol pairs (the climatic variable time series and the flu count time series)
in our experiment are less than 0.3, which will lead to arbitrary adjustment
for forecasts. The neighbors of each state used for spatiotemporal adjustment
factor are geographical adjacent states that are the same with those used in
constructing disease parameter space. For more details please refer to the original
paper (Venna et al., 2019).

• SARIMA: We use the Seasonal ARIMA model, denoted as SARIMA(p, d, q) ⇥
(P,D,Q)m, where p is the order (number of time lags) of the autoregressive model,
d is the degree of differencing (the number of times the data have had past values
subtracted), q is the order of the moving-average model, m refers to the number
of periods in each season, and the uppercase P,D,Q refer to the autoregressive,
differencing, and moving average terms for the seasonal part of the SARIMA
model. By grid searching, the selected model is SARIMA(8, 1, 0)⇥ (5, 0, 0)52.
No exogenous variables are used in this model.

• ARGO (Yang et al., 2015b): The method uses an autoregression model utilizing
Google search data. We use the publicly available tool from (Yang et al., 2015b).
In our experiment, we set the look back window size to 52 and the training
window to 104. In the Google data we collected, all of the top 100 Google
correlate terms of VA are flu related, while only one out of the top 100 Google
correlated terms of NJ are flu related.
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• EpiFast (Beckman et al., 2014): This method takes the same setting of pE and
pI as shown in Table3.2, and searches for NI , ⌧ by minimizing the dissimilarity
between the predicted and the actual ILI incidence using the Nelder-Mead
algorithm (Nelder and Mead, 1965).

Experimental setup for testing on real seasonal ILI dataset: In these experiments,
we evaluate TDEFSI models and all comparison methods. The experiments are
performed on two states: Virginia (VA) and New Jersey (NJ). The county level
evaluation is conducted on NJ counties. For TDEFSI and its variants, the real-training
dataset is used to estimate disease parameter space, while for all baselines, real-training
and real-validating are used for training directly. The county level real-evaluating
dataset is only used for evaluation of the performance of county level forecasts. At
each time step in the testing season, each model makes forecasts up to five weeks
ahead, i.e. horizon = {1, 2, 3, 4, 5}.

Metrics. The metrics used to evaluate the forecasting performance are: root mean
squared error (RMSE) (see Equation 2.7), mean absolute percentage error (MAPE)
(see Equation 3.9), Pearson correlation (PCORR) (see Equation 2.8). Assuming we
have n testing data points and n = N ⇥m means N locations by m weeks. We denote
the true value and forecast for the ith testing data point to be zi and ẑi. We do
not distinguish locations in calculating RMSE and MAPE. PCORR is calculated by
locations and the final value is the average of all locations. Among these metrics,
RMSE and MAPE evaluate ILI incidence forecasting accuracy, PCORR evaluates
linear correlation between the true curve and the predicted curve.

• Mean absolute percentage error (MAPE):

MAPE = (
1

n

nX

i=1

|zi � ẑi
zi + 1

|) ⇤ 100 (3.9)

where the denominator is smoothed by 1 to avoid zero values. MAE ranges in
[0,+1] and smaller values are better.

Performance of flat-resolution forecasting. We forecast state level ILI incidence
on real-testing dataset for VA and NJ. Table 3.3 shows the performance on RMSE,
MAPE, PCORR for (a) VA and (b) NJ with horizon={1, 2, 3, 4, 5}. Figure 3.5
presents the overall performance across all states, weeks, horizons. (i) Performance
on RMSE : In VA, TDEFSI, TDEFSI-LONLY, TDEFSI-RDENSE, SARIMA, ARGO,
and LSTM achieve similar performance that is better than EpiFast and AdapLSTM.
Compared with other methods, AdapLSTM does not perform well with small horizons
while EpiFast has poor performance with large horizons. In NJ, TDEFSI, TDEFSI-
LONLY, and TDEFSI-RDENSE consistently outperform others across the horizon.
Overall, TDEFSI and its variants slightly outperform comparison methods in RMSE.
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Table 3.3: State level performance across season 2016-2017 and 2017-2018 for VA and
NJ with horizon = 1, 2, 3, 4, 5. The best value is marked in bold, and the second-best
value is marked with underline.

VA NJ
RMSE 1 2 3 4 5 1 2 3 4 5

SARIMA 824 1463 2059 2440 2682 218 464 690 891 1050
ARGO 1073 1592 2072 2444 2580 313 512 717 760 874
LSTM 1083 1629 2013 2273 2438 240 470 699 902 1070

AdapLSTM 2012 2038 2264 2382 2449 586 729 640 871 1006
EpiFast 1300 2087 2989 3674 4284 238 382 567 725 871

TDEFSI 1000 1447 2014 2358 2544 174 344 511 665 757
TDEFSI-LONLY 900 1572 2119 2582 2742 197 373 531 696 801

TDEFSI-RDENSE 1109 1686 2136 2421 2540 193 358 506 630 711

MAPE 1 2 3 4 5 1 2 3 4 5
SARIMA 15.96 32.57 50.62 65.60 77.94 13.28 24.32 35.62 48.32 59.99

ARGO 31.06 54.00 73.69 78.97 77.85 24.96 33.14 44.52 50.05 54.60
LSTM 38.40 49.29 58.80 67.98 71.00 39.44 78.53 131.19 189.79 243.40

AdapLSTM 42.67 51.22 61.02 67.33 70.60 64.30 64.77 65.56 74.14 76.50
EpiFast 31.14 53.45 84.32 124.05 167.44 30.32 32.40 50.75 64.61 76.27

TDEFSI 25.75 40.69 58.61 74.06 88.95 18.16 29.74 43.49 55.12 66.09
TDEFSI-LONLY 22.40 35.18 59.27 89.95 123.70 15.56 32.21 45.74 60.46 72.13

TDEFSI-RDENSE 31.89 51.69 76.94 101.38 125.23 15.17 21.74 29.19 37.95 44.14

PCORR 1 2 3 4 5 1 2 3 4 5
SARIMA 0.9461 0.8271 0.6468 0.4925 0.3788 0.9541 0.8173 0.6421 0.4611 0.3195

ARGO 0.9590 0.8728 0.7219 0.4518 0.3218 0.9444 0.8005 0.6043 0.4530 0.2921
LSTM 0.9223 0.7890 0.6350 0.5050 0.4101 0.9603 0.8542 0.6995 0.5340 0.3939

AdapLSTM 0.7048 0.6397 0.5174 0.4307 0.3818 0.8113 0.5912 0.7686 0.4477 0.2753
EpiFast 0.8876 0.7665 0.5616 0.3906 0.2340 0.9573 0.8535 0.7044 0.3835 0.2841

TDEFSI 0.9358 0.8487 0.6892 0.5555 0.4647 0.9683 0.8773 0.7348 0.5639 0.4247
TDEFSI-LONLY 0.9460 0.8776 0.7037 0.5074 0.3266 0.9659 0.8697 0.7288 0.4946 0.3245

TDEFSI-RDENSE 0.9043 0.7824 0.6182 0.4409 0.2826 0.9654 0.8692 0.7280 0.5630 0.4248

(ii) Performance on MAPE : In VA, SARIMA performs the best overall among all
methods. In NJ, TDEFSI-RDENSE achieves the best performance closely followed by
SARIMA. Overall, SARIMA outperforms others, and TDEFSI and its variants achieve
similar performance with ARGO which are better than LSTM, AdapLSTM, EpiFast.
(iii) Performance on PCORR: In VA, ARGO performs the best with horizon 1,2,3 and
TDEFSI achieves better performance with horizon 4,5. In NJ, TDEFSI performs the
best and TDEFSI-LONLY, TDEFSI-RDENSE achieve similar performance. Overall,
TDEFSI and its variants slightly outperform SARIMA, ARGO, LSTM, while they
are much better than AdapLSTM and EpiFast.

Figure 3.6 shows the weekly state level model performance measured on season
2017-2018 using RMSE: The x-axis denotes ew number, the value is averaged over
5 horizons. A log y-scale is used. The black vertical line marks the peak week of
the season. We observe that these models perform with great variance around the
beginning and the end of a season than in weeks near the peak.

In general, the proposed model and its variants achieve comparable or better
performance than the comparison methods on the state level ILI forecasting.

Performance of high-resolution forecasting. The performance of county level
forecasts is evaluated on NJ counties. Note that EpiFast, TDEFSI, TDEFSI-LONLY,



56
Chapter 3. Combining Theory and Deep Learning Models for Reliable

Epidemic Forecasting

Figure 3.5: State level performance (RMSE, MAPE, PCORR). The value is averaged
across two states, two seasons, and 5 horizons.

(a) VA, 2017-2018 (b) NJ, 2017-2018

Figure 3.6: State level performance by weeks (RMSE). (a) VA, 2017-2018; (b) NJ,
2017-2018. TDEFSI and its variants, and all comparison methods are evaluated and
compared. The x-axis denotes ew number, the value is averaged on 5 horizons. A log
y-scale is used. The black vertical line marks the peak week of the season in the state.

TDEFSI-RDENSE make county level forecasts directly from models, while the other
baselines obtain county level forecasts by multiplying state level forecasts with county
population proportions. Table 3.4 shows the forecasting performance on RMSE,
MAPE, PCORR with horizon={1, 2, 3, 4, 5}. The value is the average across weeks
and counties. Figure 3.7 presents the overall performance across all counties, weeks,
horizons. From the table we observe that SARIMA performs well with horizon =
1. TDEFSI consistently outperforms others across horizons, followed by TDEFSI-
RDENSE. Among TDEFSI variants, TDEFSI and TDEFSI-RDENSE perform better
than TDEFSI-LONLY, which indicates that the between-season observations are
helpful for improving forecasting accuracy. The figure shows consistent results with
the table. Overall, our method outperforms the comparison methods on the county
level forecasting.

Discussion. In general, for state level, AdapLSTM and EpiFast do not perform very
well in our experiments compared with other methods. For AdapLSTM, weather
features are considered for post adjustment of LSTM outputs. As stated in (Venna
et al., 2019), the weather factors are estimated using time delays computed by apriori
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Table 3.4: County level performance for counties of NJ with horizon = 1, 2, 3, 4, 5.
The value is the average of 21 counties of NJ across season 2016-2017 and 2017-2018.
The best value is marked in bold, and the second-best value is marked with underline.

NJ-Counties
RMSE 1 2 3 4 5

SARIMA 30.58 38.02 48.60 58.92 67.68
ARGO 33.69 39.89 49.61 51.46 57.35
LSTM 33.80 41.95 52.25 61.56 68.30

AdapLSTM 36.67 45.30 39.46 51.70 59.60
EpiFast 34.34 36.74 40.51 47.40 54.09

TDEFSI 35.17 31.40 34.70 40.44 45.95

TDEFSI-LONLY 33.13 36.45 42.41 50.63 56.22
TDEFSI-RDENSE 34.79 31.59 35.22 40.98 46.35

MAPE 1 2 3 4 5
SARIMA 575.19 550.74 540.04 525.20 525.57

ARGO 649.32 552.18 498.42 430.74 366.89
LSTM 745.52 876.56 1066.80 1264.64 1417.91

AdapLSTM 584.18 489.51 417.72 599.53 717.61
EpiFast 712.97 632.96 577.74 519.37 487.54

TDEFSI 260.95 247.70 209.69 270.58 308.95

TDEFSI-LONLY 603.33 528.62 478.08 454.52 435.50
TDEFSI-RDENSE 614.95 499.13 412.68 360.99 315.78

PCORR 1 2 3 4 5
SARIMA 0.8645 0.7474 0.5678 0.3806 0.2211

ARGO 0.8606 0.7388 0.5455 0.3922 0.2211
LSTM 0.8611 0.7699 0.6132 0.4234 0.2597

AdapLSTM 0.7260 0.5150 0.6717 0.3710 0.2205
EpiFast 0.8555 0.7762 0.6450 0.3530 0.2133

TDEFSI 0.7877 0.8500 0.7835 0.6425 0.4710

TDEFSI-LONLY 0.8499 0.7669 0.6184 0.4146 0.2176
TDEFSI-RDENSE 0.7860 0.8063 0.7056 0.5467 0.3774

associations and selected by the largest confidence. However, in our experiment, they
all show very low confidences (less than 0.3). This may cause arbitrary adjustment
for forecasts and consequently poor performance. For EpiFast, one possible reason is
that we did not find a good estimate of the underlying disease model for a specific
region and season due to the noisy CDC observations. If we rank the performance of
all methods, ARGO performs slightly better on VA than on NJ. The possible reason is
that about 80% of the top 100 Google correlated terms for NJ are irrelevant to flu and
most of them have zero frequencies, while the top 100 correlated terms for VA are of
good quality. This will give ARGO a better performance on VA than on NJ. Similarly,
LSTM performs relatively better on VA than on NJ. One possible reason is that LSTM
cannot learn a pattern that has never occurred in the historical observations. So its
performance depends on whether a similar epicurve occurred in previous seasons. As
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Figure 3.7: County level performance (RMSE, MAPE, PCORR). The value is averaged
on two seasons, 5 horizons and 21 counties of NJ.

Figure 3.8: CDC surveillance ILI incidence of VA (blue dash line) and NJ (red dot
line). It is observable that, for testing season 2017-2018, a similar epi-curve (i.e.,
similar curve shape and the peak size) occurs at season 2014-2015 in VA, while no
similar seasons could be found in NJ.

shown in Figure 3.8, the epicurve of VA 2017-2018 is similar to that of VA 2014-2015,
and 2016-2017 is similar to 2012-2013. However, the epicurve of NJ 2017-2018 seems
to be much higher than all previous ones, as well as 2016-2017. In actuality, this is
the limitation of all data driven models. On the contrary, TDEFSI models have stable
performance on both VA and NJ. They manage to avoid overfitting through training
on a large volume of synthetic training data. In addition, the simulated training
dataset includes many realistic simulated patterns that are unseen in the real world,
thus provides a better generalizability to our models.

As seen through the results, TDEFSI enables high-resolution forecasting that
outperforms baselines. Meanwhile, it achieves comparable/better performance than
the comparison methods at state level forecasting. In the proposed framework, the
large volume of realistic simulated data allows us to train a more complex DNN
model and reduces the risk of overfitting. My experiments demonstrate that TDEFSI
integrates the strengths of ANN methods and causal methods to improve epidemic
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forecasting.

Interpretability of TDEFSI. As we discussed above, we found that compared
with baselines, TDEFSI performs better on NJ than on VA. A possible reason is that
for testing season 2017–2018, a similar epi-curve occurs at season 2014–2015 in VA,
while no similar seasons could be found in historical data for NJ. Let’s take a closer
look at the predicted curves. In Figure 3.9a and 3.9b we show the predicted curves
together with the ground truth curve of 2017-2018 flu season for VA and NJ. We can
observe that for NJ, TDEFSI and its variants can capture the peak intensity even
this was not seen in the history. However, the data-driven baselines (AdapLSTM,
ARGO, SARIMA, LSTM) did not capture the new pattern as they never saw the
pattern in the historical data. Our methods can forecast unseen patterns because
many unseen patterns are included in the synthetic training data. On the contrary,
most of data-driven baselines can capture the pattern of VA 2017-2018 season because
they have seen similar patterns in the historical training data.

(a) NJ, 2017-2018 (b) VA, 2017-2018

Figure 3.9: Predicted curves for season 2017-2018. (a) NJ, 2017-2018; (b) VA, 2017-
2018. This is state level forecasts with horizon = 3. The black curves are ground
truth.

Sensitivity analysis. In this section, we conduct sensitivity analysis on two regu-
larizer coefficients µ and � in equation equation 3.6, which control the weights of the
spatial constraint � and non-negative constraint � in the loss function. µ = 0 means
no spatial constraint and � = 0 means no non-negative constraint. We train TDEFSI
by setting a = 52, b = 5 with various µ,� values. We then use the trained models to
make forecasts for Season 2017-2018 of VA and NJ. The performance is evaluated
using RMSE.

Spatial consistency : The experiments are conducted using � = 0 and µ = {0, 0.001,
0.01, 0.1, 1, 10, 100}. We evaluate the spatial consistency by computing RMSE of the
predicted state level ILI incidence and the summation of the predicted county level ILI
incidence, i.e.,

r
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P
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i
)2. Figure 3.10 shows the spatial consistency error
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(a) VA, 2017-2018 (b) NJ, 2017-2018

Figure 3.10: Spatial consistency error with different µ values. Spatial consis-
tency error (computed as

r
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i=1(ŷi �
P
C2D

ŷC
i
)2) on (a) VA, 2017-2018; (b) NJ,

2017-2018. The coefficient of the spatial consistency regularizer is set to µ =
{0, 0.001, 0.01, 0.1, 1, 10, 100}. The results show that the spatial consistency error
does not vary much with horizon, but significantly depends on µ. The optimal µ
differs between states.

measured by RMSE on (a) VA, 2017-2018 and (b) NJ, 2017-2018. The results show
that the spatial consistency error does not vary much with horizon, but significantly
depends on µ. The possible reason is that ,in TDEFSI model, the input is only
state level data, so the LSTM layers learn the temporal pattern on state level time
sequence which closely relates to model performance with horizons. However, spatial
information is not propagated along the cells during training, but only compounds
in the last step of outputs, thus is not impacted by horizons. The optimal µ differs
between states. The results indicate that TDEFSI enables the spatial consistency
with a proper µ value. However, a better spatial consistency does not mean a better
model forecasting performance. In practice, we need to keep balance between keeping
good spatial consistency and maintaining good model performance.

To evaluate the significance of the spatial consistency constraint for model forecast-
ing power, we compare the forecasting performance of models on real seasonal data
with various µ using RMSE (shown in Figure 3.11). For VA, the best performance
is the model with µ = 0.1. For NJ, the best performance is the model with µ = 1.
Overall, the spatial consistency constraint with a proper coefficient, which may vary
between different regions, helps improve the forecasting performance.

Non-negative consistency : The experiments are conducted using µ = 0 and � = {0,
0.001, 0.01, 0.1, 1, 10, 100}. Similar to the spatial consistency evaluation, we compare
the performance of models with various � using RMSE (shown in Figure 3.12). For VA,
the best performance is the model with � = 1, and the models with the non-negative
consistency constraint (�  1) outperform the model without the constraint. For
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(a) VA, 2017-2018 (b) NJ, 2017-2018

Figure 3.11: TDEFSI performance with different µ values. spatial consistency con-
straints of different coefficients µ = {0, 0.001, 0.01, 0.1, 1, 10, 100}. The performance is
evaluated on (a) VA 2017-2018 season and (b) NJ 2017-2018 season. The results show
that the coefficient µ has significant influence on the model forecasting performance
especially with large horizons. The optimal value of µ should be chosen independently
in different regions. A log y-scale is used in RMSE and MAPE.

NJ, the best performance is the model with � = 1. For both VA and NJ, from
the figures we observe that the models with � equal or larger than 10 will have no
predicting power (i.e., they are almost horizontal lines with high RMSE). The possible
reason is that a strong penalty (large �) may cause the weights of the hidden units to
shrink towards zero. When W,U in Equation 3.1 become zero the LSTM layer gives
a constant output. This will make the network stop learning and output constant
forecasts. Overall, the non-negative consistency constraint with a proper coefficient,
which may vary between different regions, helps improve the forecasting performance.

Implications : The computational experiments show that these constraints can lead
to a better domain consistency as well as improve the forecasting performance. By
incorporating physical consistency, TDEFSI enables theory guided deep learning for
epidemic forecasting. Spatial and non-negative consistency constraints also positively
influence the overall performance. However, we note that no single parameter setting
works across all scenarios thus context specific tuning is needed.

Uncertainty estimation. In the epidemic forecasting domain, probabilistic fore-
casting is important for capturing the uncertainty of the disease dynamics and to
better support public health decision making. Probabilistic forecasting with deep
learning models is challenging due to the lack of interpretability of such models. Most
works on this are based on Bayesian Neural Networks. Gal and Ghahramani (2016)
proved that using dropout technique was equivalent to Bayesian NN’s and proposed
MCDropout to estimate uncertainty in deep learning. The proposed method was
computationally efficient. We implement MCDropout in TDEFSI and demonstrate



62
Chapter 3. Combining Theory and Deep Learning Models for Reliable

Epidemic Forecasting

(a) VA, 2017-2018 (b) NJ, 2017-2018

Figure 3.12: TDEFSI performance with non-negative consistency constraints of
different coefficients � = {0, 0.001, 0.01, 0.1, 1, 10, 100}. The performance is evaluated
on (a) VA 2017-2018 season; (b) NJ 2017-2018 season. The results show that the
coefficient � has significant influence on the model forecasting performance. The
optimal value of � should be chosen independently in different regions. A log y-scale
is used in RMSE.

estimation of uncertainty with a case study of state level forecasting for NJ season
2016-2017. The model setting is the same as that described in the experiment setting
section, and the MC number is 20. Figure 3.14 shows the curve of mean estimations
with predictive intervals of (mean± k ⇤ std) where k = {0.5, 1, 1.5, 2}. We can observe
that all ground truths are within 2 standard deviations.

What-if forecasting. In this section, we are going to discuss a potential ability of
TDEFSI framework – what-if forecasting. What-if forecasting means forecasts that
can capture various what-if scenarios as epidemic is evolving. It is crucial when an
unprecedented epidemic happens and consequently some public health interventions
get involved during a flu season. The existing data-driven methods are hard to capture
such patterns since they can only see historical observations. In our framework, high
computing simulations of epidemic process allow us to incorporate multiple scenarios
that are not really happening in current time but are of high possibility to happen in
the future into the deep neural network model training. What-if scenarios can be any
assumptions, such as emerging of the second virus strain during the season, temporary
interventions like school closure or multiple vaccine schedules due to an intensive flu
outbreak, etc. These scenarios can be involved in the epidemic simulations which will
then generate new training data. The models trained on this data can capture the
what-if scenarios leading to what-if forecasts, so helping the public health decision
making and planning. What-if forecasting works as following using our framework:

• Make an assumption ⇣
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(a) VA, 2017-2018

(b) NJ, 2017-2018

Figure 3.13: State level forecasting performance comparison between TDEFSI models
trained on the base-case simulated training dataset (TDEFSI-base) and the vaccine-
case simulated training dataset (TDEFSI-vac). They test on VA, 2017-2018 with a
horizon up to ten weeks ahead. TDEFSI-vac outperforms TDEFSI-base across three
metrics. A log y-scale is used in RMSE and MAPE.

• Parameterize ⇣, ⇥(⇣), so that it can be applied to the epidemic simulation using
casual models;

• Generate synthetic epi-curves using the simulations with ⇥(⇣);

• Expand training data with new generated curves;

• Train TDEFSI model on new training data;

• Make forecasting.

Note that multiple assumptions can stack in one simulation. In the following, we will
show a what-if scenario analysis with respect to vaccination-based intervention IV .

In my experiments, we setup IV using real world vaccination schedules so that
the generated synthetic training dataset considers vaccination intervention context.
Let’s assume another scenario where there is no vaccination intervention applied, i.e.,
IV = ;. We generated two synthetic training datasets: (i) vaccine-case : generated
by simulations with IV ; and (ii) base-case : generated by simulations that share the
common settings of pE, pI , ⌧, NI with vaccine-case except IV = ;. We train TDEFSI
on the vaccine-case and base-case with the same settings described in Section 3.2.5,
and denote the trained models as TDEFSI-vac and TDEFSI-base , respectively.
Note that here TDEFSI-vac is the same as TDEFSI in the previous experiments.
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Figure 3.14: NJ state level mean predicted curve with predictive intervals of (mean±
k ⇤ std) where k = {0.5, 1, 1.5, 2}. The black circles are ground truths. We can observe
that all ground truths are within 2 standard deviations.

Figure 3.13b and Figure 3.13a show the state level forecasting performance of NJ
and VA on RMSE, MAPE, and PCORR using real-testing dataset. We observe that
TDEFSI-vac significantly outperforms TDEFSI-base for all metrics on both states
except that for the MAPE result of VA, TDEFSI-vac is compatible with TDEFSI-base.
The results indicate that by using TDEFSI, vaccination-based interventions applied
in the simulations can significantly improve the forecasting performance. The models
learned from the vaccine-case dataset benefit from realistic settings thus are more
generalizable to unseen surveillance data. The proposed framework is extensible for
other realistic interventions, such as school closure or antivirals, to further improve
the forecasting performance. These are future works to be explored.
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3.3 CausalGNN

3.3.1 Motivation
As we have discussed, it is an area of active research for modeling and forecasting the
spatial and temporal evolution of infectious disease. In the context of new emerging
epidemics (e.g., COVID-19 pandemic), the forecasting problem has been particularly
complicated (more discussions in Section 1.1.2). Applying existing methods to solve
such forecasting problems presents several major challenges:

• The network-based compartmental models, compared to single-patched models,
explicitly account for the connectivity among patches. Thus, it is more promising
in capturing the relation between the model parameters and spatiotemporal data.
However, calibrating such models, especially at the high geographical resolution,
is challenging given the need to capture time-varying inter- and intra-regional
effects which may not be accounted for in the static/dynamic travel matrix.
For example, for the United States with 3000+ counties and W weeks of data,
there are technically 3000⇥W+ entries in the spatiotemporal transmissibility
matrix to be calibrated, making traditional Bayesian techniques computationally
intensive and susceptible to overfitting due to the limited training data size.

• Deep learning models especially GNN-based models usually require a sufficiently
large quality dataset to train the large number of model parameters in order to
avoid overfitting. Existing works (Wu et al., 2018; Deng et al., 2020) proposed
models whose parameter sizes increased with graph node size making them fail
when forecasting over a large number of locations. Reducing the complexity of
such models is crucial for accurate forecasting.

• Prior works of physics, biology, and epidemiology (Karpatne et al., 2017; Wang
et al., 2020b; Gao et al., 2021) have shown the evidence that incorporating
domain knowledge into data-driven models can help improve spatiotemporal
forecasting algorithms. However, existing deep learning models barely explicitly
consider epidemiological context (Wu et al., 2018; Deng et al., 2020) for epidemic
forecasting. Such models are prone to be overfitting leading to failures in long-
term forecasting, especially when the data is noisy and sparse such as COVID-19
surveillance data at the US county level.

• Our model TDEFSI cannot applied directly to COVID-19 forecasting since
there is no seasonal historical training data. Furthermore, generating realistic
synthetic training data is particularly challenging due to the rapidly co-evolving
dynamics of individual behavioral adaptations, government policies, and disease
spread.
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To address the above challenges, we propose Causal-based Graph Neural Network
(CausalGNN). The CausalGNN attempts to capture the spatial and temporal dynamics
via a well designed GNN module and uses a causal module to mutually provide and
embed causal features to get epidemiological context. Causal constraints are also
added to further improve model forecasting performance. The major contributions
are summarized below:

• We propose a novel spatiotemporal learning framework that learns a latent
space to combine the spatiotemporal and causal embeddings using graph-based
non-linear transformations. Previous works (Wang et al., 2020b; Gao et al.,
2021) have not considered the theory generated features in graph embedding.
We present a jointly learning process for incorporating epidemiological context
in GNN learning.

• We design an attention-based dynamic GNN module to embed spatial and
temporal signals from disease dynamics. The parameter size in our design
is agnostic to the number of locations thus leading to a stable forecasting
performance on datasets of varying location numbers.

• We incorporate single-patched compartmental models into the framework to pro-
vide epidemiological context. Different from traditional compartmental models,
in our framework, the patches are connected via a learned GNN. Calibration
is done through GNN training, which is computationally efficient. The causal
outputs are embedded as graph node features and used to regularize neural
network forecasts for causal-based forecasting, leading to better forecasting
performance.

• In order to allow for interaction between the causal and GNN modules, we design
a causal encoder to encode causal features as node embedding to propagate over
the graph and a causal decoder to infer mechanistic model parameters from
latent space at each time step. We are the first to propose this iterative feedback
mechanism that benefits from the learning in both modules.

• We evaluate the proposed framework for forecasting daily new confirmed case
counts of COVID-19 at global, US state, and US county levels. Comparing with
a broad range of baselines, our model performs the best in most cases. Through
an ablation study, we demonstrate the effectiveness of GNN module, attention
mechanism, and causal module in improving model performance.

3.3.2 Related Work
Epidemic forecasting methods are introduced in Section 1.1.3, COVID-19 forecasting
methods and spatiotemporal forecasting methods are presented in Section 2.2, and
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hybrid methods that combining mechanistic models and deep learning models are
discussed in Section 3.1 and Section 3.2.2. We omit the details here for the sake of
brevity. In summary, it is challenging to calibrate network-based mechanistic models,
particularly at high geographical resolution, given the need to capture time-varying
inter- and intra-regional effects. Using GNN-based models to capture spatiotemporal
disease spread dynamics is promising as more sufficient good-quality surveillance data
become available. However, existing methods barely explicitly consider epidemiological
context leading to difficulties in explaining the learned model. Furthermore, their
model complexity increases with graph node size making them fail when forecasting
over a large number of locations.

CausalGNN method: Our method combines mechanistic models and deep learning
models in a novel spatiotemporal learning framework. Different from TDEFSI (de-
scribed in Section 3.2) which adopts a sequential learning process that involves the
disease model calibration, the parameter space construction, and the deep learning
model training in separate and sequential steps. Our method learns disease models
and GNNs in an interactive way so that they can mutually impact each other. The
jointly learning process allows deep learning models to explicitly incorporate epidemi-
ological context while generate meaningful disease model parameters leading to better
forecasting performance and better explainability of the learned model. To the best
of our knowledge, the proposed CausalGNN is among the first significant hybrid
methods that can achieve decent forecasting accuracy and can gain explainability of a
learned GNN-based model while keeping a graph-size-agnostic parameter size (i.e., the
parameter size of the model does not increase as the number of graph nodes increases).

3.3.3 Problem Formulation

We assume N regions in total, and each region is associated with a time series of
reference data (for instance, confirmed cases of COVID-19). We define a dynamic
graph on the N regions as G(V , E , T ), where V is the set of N nodes, E ✓ V⇥V is the
set of weighted edges, and T is the set of T time points at weekly or daily granularity
depending on the available data. Let Ct = (ci,t) 2 RN⇥C represent the matrix of node
features for N nodes where C is the feature number. An edge eij,t 2 E connecting
nodes vi and vj is weighted by an adjacency matrix At (such as geographical adjacency)
where aij,t denotes the impact of node vj on node vi at time t. The edge weights can
differ at each time depending on the type of adjacency matrix. We denote the historical
window size as K where K  T . The objective is to predict an epidemiological target
at future time T + h for N regions by looking back K time points where h denotes
the horizon time.
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Figure 3.15: Framework of CausalGNN. The framework consists of a causal module
and an attention-based dynamic GNN module. In the causal module, we run a single
patch SIRD model for each region. In GNN module, the input data is a sequence of
disease dynamic graphs that are fed into GCN layers in time order to learn dynamic
spatial features. At each time step, we use a temporal encoder (TE) layer to learn
temporal features from hidden states of a GCN layer. The two modules interact
through a causal encoder (CE) and a causal decoder (CD) module. CE is to encode
causal features from SIRD model for graph node embedding and CD is to decode the
hidden states of a TE layer as SIRD model parameters at each time step.

3.3.4 Framework
The proposed framework (shown in Figure 3.15) consists of two major modules: 1)
a causal module to provide epidemiological context for GNN learning via ordinary
differential equations; 2) an attention-based dynamic GNN module (we called ADGNN)
to capture the spatial and temporal disease dynamics via GCN layers and temporal
encoder (TE) layers. The two modules interact with each other through causal encoder
(CE) and decoder (CD) layers. The number of each type of the layer equals to the
input length (K). They share common parameters along the time steps. It works as
follows: we run a single patch SIRD model for each location. For each time of SIRD
computation except the first one (initialized with ground truth data), the current
disease model parameters are inferred from the current CD layer. After each SIRD
computation, we save the current causal features for the next computation and feed
them into the current TE layer. In ADGNN, the input data is embedded as a sequence
of input embedding via an input layer. For each GCN layer except the first one, the
input of the current GCN layer is the output of the previous TE layer which combines
the hidden outputs from the GCN layer, the input layer, and the causal encoder layer
at previous time. This iteration is repeated by K times. Then an attention-based
GCN (AGCN) layer is employed to learn hidden impact between two hidden states
from the last TE layer. The SIRD computation is run for h steps further with the
most recent disease model parameters to get causal features at time T +h. The hidden
features from the AGCN layer and the last CE layer are combined and fed into an
output layer to get the final forecast. The pseudocode of the model training process is
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Algorithm 4: CausalGNN training
Input: G(V, E , T ); Geographical adjacency matrix A; Historical window size K;

forecast horizon h.
Output: Model parameters ⇥

1 b a batch training sample
2 for each instance 2 b do

3 Qt  Q
g

T�K+1 // Initializing causal features
4 H̃t  H

f

T�K+1 // Initializing temporal embedding
5 for t in T �K + 2 . . . T do

6 H
c
t  CausalEncoder(Qt) // Causal encoding

7 H
f

t
 Input(Ct) // Input embedding

8 Ht  GCNLayer(H̃t�1,At) // Spatial embedding
9 H̃t+1  TempEncoder(Ht,H

f

t
,H

c
t) // Temporal embedding

10 Pt  CausalDecoder(H̃t�1) // Causal decoding
11 Ŷ

c

t+1,Qt+1  SIRD(Qt,Pt) // Causal simulating

12 for t in T + 2 . . . T + h do

13 Ŷ
c
t ,Qt  SIRD(Qt�1,PT ) // Causal simulating for another h� 1
steps

14 H
c  CausalEncoder(QT+h) // Causal encoding at time T + h

15 H
o  AGCN(H̃T ) // Attention-based spatial embedding

16 Ŷ  Output(Ho
,H

c) // Predicting
17 Ŷ

c  [Ŷ c

T�K+2, . . . , Ŷ
c

T+h
]

18 ⇥ BackProp
�
LossFunc(Y, Ŷ,Y

c
, Ŷ

c
,⇥

�
) . Adam opt

described in Algorithm 4.

SIRD causal modeling. Inspired by the previous works on theory-guided data-
driven algorithms developed across multiple domains (Karpatne et al., 2017; Wang
et al., 2020b), we import epidemiological context by incorporating causal-based
differential equations into deep learning framework. In this work, we focus on COVID-
19 confirmed case forecasting. Based on the availability of daily confirmed, death,
and recovered counts reported by the surveillance system, we choose a single patch
compartmental susceptible(S)-infected(I)-recovered(R)-deceased(D) (SIRD) model
(Loli Piccolomini and Zama, 2020) to simulate the COVID-19 spread in each location.
Other models such as SIR can also work. We discuss this in the experiment section via
an ablation study. Consider a population of Ni individuals in patch i, each of whom
can be in one of the following states: S, I, R, D. Compartmental models operate under
a homogeneous mixing assumption, i.e., every individual can directly infect any other
individual. Let qi,t = [Si(t), Ii(t), Ri(t), Di(t)] denote the causal feature vector where
the element represents the cumulative number of individuals in each of the states, at
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time t, and
P

qi,t = Ni, 8t. Similarly, �qi,t = [�Si(t),�Ii(t),�Ri(t),�Di(t)] denotes
the newly added number of individuals in each state. The dynamics of epidemic spread
in such a patch model are described by the following equations:

�Si(t+ 1) = ��i(t)Si(t)
Ii(t)

Ni

�Ii(t+ 1) = �i(t)Si(t)
Ii(t)

Ni

� �i(t)Ii(t)� ⇢i(t)Ii(t)

�Ri(t+ 1) = �i(t)Ii(t)

�Di(t+ 1) = ⇢i(t)Ii(t)

(3.10)

where �(t) denotes the transmissibility, �(t) and ⇢(t) denote the recovery rate
and mortality rate, respectively, at time t. We also assume that individuals who
become recovered do not get infected again. The causal parameter vector is denoted
as pi,t = [�i(t), �i(t), ⇢i(t)]. We denote Pt = (pi,t) 2 RN⇥3 as a matrix of causal
parameters and Qt = (qi,t) 2 RN⇥4 as a matrix of causal features for N regions at
time t.

In our framework, Pt is inferred by a neural network and Qt+1 is updated as
Qt+�Qt+1 where the initial values QT�K+1 are given as the input. The SIRD equations
are run iteratively for K steps using inferred parameters PT�K+1, . . . ,PT and are run
for another h � 1 steps using PT . This generates a series of �QT�K+2, . . . ,�QT+h

which will be fed into the GNN module in time order and then be used to regularize
model forecasts in loss function.

GCN-based dynamic graph encoding (GCN). We leverage GCN (Kipf and
Welling, 2017) to generate node embedding based on local network neighborhoods
through message passing. The neighborhoods are defined using an adjacency matrix.
A traditional GCN model consists of multiple layers for a single graph convolution.
In our problem, the node features and adjacency matrix vary across time, hence we
implemented a dynamic GCN (Deng et al., 2019a) that a GCN layer corresponds to a
time step to learn spatial and temporal features. The number of GCN layers is the
number of time points in the input sequence and they share a common parameter set.
This dynamic GCN architecture allows our model to recurrently propagate forward
the spatial and temporal features with a small parameter size.

The dynamic graph G is represented as a sequence of static graphs [GT�K+1, · · · , GT ]
with adjacency matrices [AT�K+1, · · · ,AT ] where K is the historical window size. We
use a geographical adjacency matrix for all time points. At time t, let Hf

t 2 RN⇥F
(t)
f

represent the matrix of hidden states of disease dynamics for N nodes by the input
layer:

Hf

t = �
�
CtW

(t)
f

+ b(t)
f

�
2 RN⇥F

(t)
f , (3.11)

where W(t)
f
2 RC⇥F

(t)
f , b(t)

f
2 RF

(t)
f are model parameters and � is sigmoid activation
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function. F (t)
f

is the hidden dimension. And let Ht 2 RN⇥F
(t) denotes the matrix of

hidden states from the GCN layer. A GCN layer at time t+ 1 maps from Ht to Ht+1

as:
Ht+1 = g

�
ÂtH̃tW

(t) + b(t)
�
2 RN⇥F

(t+1)
, (3.12)

where W(t) 2 RF
(t)⇥F

(t+1) , b(t) 2 RF
(t+1) are model parameters. Ât = D̃

� 1
2

t ÃtD̃
� 1

2
t is

the normalized symmetric adjacency matrix, where Ãt = At+ IN and IN is an identity
matrix. D̃

� 1
2

t is the degree matrix computed as Dii,t =
P

j
Ãij,t. H̃t 2 RN⇥F

(t) is the
output from the previous temporal encoder (TE) layer. g is the activation function
adopted as rectified linear units (ReLU) (Nair and Hinton, 2010).

Temporal encoder (TE). To consider temporal features in the graph, at each
time step, we employ a temporal encoder (TE) layer to re-encode the node hidden
representatives including hidden states from the current disease dynamics, the current
causal features, and the current GCN layer. In Equation 3.12 the output H̃t from the
previous TE layer at time t is computed as:

Ḣf

t = Hf

tW
(t)
f

+ b(t)
f
,

Ḣc

t
= Hc

t
W(t)

c
+ b(t)

c
,

Ḣt = HtW
(t)
g

+ b(t)
g
,

H̃t = tanh
�⇥
Ḣf

t kḢc

t
kḢt

⇤�
2 RN⇥F

(t)
,

(3.13)

where Hf

t ,H
c

t
,Ht are the hidden embedding from the input layer, the causal encoder

layer (described below), and the GCN layer, respectively. W(t)
f
2 RF

(t)
f ⇥a, W(t)

c 2
RF

(t)
c ⇥b, W(t)

g 2 RF
(t)
g ⇥c, b(t)

f
2 Ra, b(t)

c 2 Rb, and b(t)
g 2 Rc are model parameters, and

a+ b+ c = F (t). k represents concatenate operation. The TE module can be replaced
by existing RNN modules such as RNN, GRU, or LSTM. We use the simple one to
keep the parameter size small.

Causal-based encoder (CE) and decoder (CD). A causal encoder (CE) is
designed to encode causal features as node embedding at time t. It works as:

Hc

t
= tanh

�
QtW

(t)
e

+ b(t)
e

�
2 RN⇥F

(t)
c , (3.14)

where W(t)
e 2 R4⇥F

(t)
c and b(t)

e 2 RF
(t)
c are model parameters and � is tanh function.

In causal module, the disease model parameters Pt for N nodes are inferred
dynamically from GNN module via a causal decoder (CD).

Pt = �
�
H̃tW

(t)
d

+ b(t)
d

�
2 RN⇥3, (3.15)

where H̃t is the hidden representatives from TE module. W(t)
d
2 RF

(t)⇥3 and b(t)
d
2 R3
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are model parameters and � is the sigmoid activation function.

Attention-based GCN (AGCN). In GNN module, we apply a GCN layer at each
time step to learn spatial features of the dynamic graph using an adjacency matrix.
However, the disease dynamics change and co-evolve at each time step thus the static
or historical dynamic adjacency matrix cannot reveal the true connectivity. We want
the model to learn an adaptive relationship between two nodes for forecasting at future
time points. We define an attention matrix Ȧ = (aij) 2 RN⇥N from the hidden states
H̃T 2 RN⇥F

(T ) of the last TE layer to weight the graph edges at the last GCN layer
and we call it the attention-based GCN (AGCN) layer. aij denotes the impact of node
j on node i, computed as:

aij = vT g(Wshi,T +Wthj,T + ba) + ba, (3.16)

where g is ReLU that is applied element-wise; Ws,Wt 2 RFa⇥F
(T ) , v,ba 2 RFa , and

ba 2 R are model parameters. We use softmax function to normalize each row in Ȧ.
Note that Ȧ is an asymmetric matrix meaning that the impact of region i on region j
is different than vice versa.

By using Ȧ, a GCN layer maps from H̃T to Ho as:

Ho = g
�
ȦH̃TWo + bo

�
2 RN⇥Fo , (3.17)

Wo 2 RF
(T )⇥Fo , bo 2 RFo are model parameters. g is ReLU function. The output of

the AGCN layer will be fed into the output layer.

Output layer. As described above, the causal parameters PT are used to run the
SIRD model h� 1 steps further to generate causal forecasts and QT+h will then be
fed into a CE layer to generate Hc 2 RN⇥Fc . We concatenate Hc 2 RN⇥Fc and the
output of AGCN layer Ho and feed them to an output layer for final forecast:

Ŷ = �
⇣h

Ho kHc

i
Wo + bo

⌘
2 RN⇥3, (3.18)

where Wo 2 R(Fc+Fo)⇥3, bo 2 R3 are model parameters, � is an identity function, and
Ŷ = [�Î(T + h),�R̂(T + h),�D̂(T + h)] denotes the predicted causal vectors at time
T + h for N regions.

Optimization. We consider forecasting loss of causal module and GNN module in
the loss function and then optimize a `1-norm loss via gradient descent:

L(⇥) = kY � Ŷk+
T+hX

t=T�K+2

kYc

t
� Ŷc

t
k, (3.19)
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Table 3.5: Dataset statistics: min, max, mean, and standard deviation (std) of patient
counts; dataset size means number of locations multiplied by # of days.

Data set Size Min Max Mean std

Globe 93⇥355 0 823225 3988 15381
US-State 52⇥355 0 62168 1670 3192
US-County 1351⇥355 0 34497 59 238

where Ŷc

t
= [�I(t),�R(t),�D(t)] denotes the causal vector from SIRD simulations

at time t for N regions and Y,Yc represents the corresponding ground truth values.

Predicting. In the framework, given an epidemiological target, we have two predictive
vectors from causal module and GNN module respectively. We use the forecasts from
the GNN module as our final forecasts as it embeds hidden information from both
modules via the output layer.

Model complexity. The number of parameters of the proposed model is O(C ⇥
F (t) + F (t) ⇥ F (t)). It is agnostic to the number of locations in the dataset. In my
setting, C and F (t) are limited to small numbers. Thus, the proposed model can
capture spatiotemporal patterns and causal features of disease transmissions in an
elegant and efficient way. We will provide more detailed analysis in the experiment
section.

3.3.5 Experiments
In this section, we briefly describe the data preparation, the evaluation metrics, and
baselines. We evaluate the proposed model on COVID-19 daily new confirmed case
count forecasting at global, US state, and US county levels and compare the model
with the state of the art. We also analyze the results and the methodology.

Datasets. We use three kinds of datasets for our experiments: disease dynamics
datasets, geographical adjacency datasets, and population datasets. Disease dy-
namics datasets: We collected COVID-19 surveillance data for experiments via the
JHU COVID-19 surveillance dashboard2. It contains daily confirmed, death, and
recovered counts at global, US state and county levels, as well as locations’ latitude
and longitude, from May 3, 2020, to April 23, 2021. We compute daily new added
counts based on the collected data. The US state dataset also includes hospitalization
count. We select countries with population size of more than 8.7 million and US
counties with more than 3000 confirmed cases by March 20, 2021 to ensure the data
source accuracy. Finally, we include 93 countries, 52 states, and 1351 counties. Their
statistics are shown in Table 3.5. Geographical adjacency datasets: Country

2Source:https://github.com/CSSEGISandData/COVID-19

https://github.com/CSSEGISandData/COVID-19
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Table 3.6: MAE and MAPE performance of different methods on the three datasets
with leadtime= 7, 14, 21, 28. Mean and 95% confidence interval of 5 runs are shown.
Bold face indicates the best result of each column and underlined the second-best.

Globe US-State US-County

MAE(#) 7 14 21 28 7 14 21 28 7 14 21 28
SIR 4777±819 4880±615 5090±1125 5182±282 677±31 738±58 831±51 854±60 38.8±3.3 44.2±2.7 51.3±2.8 58.5±2.0
PatchSEIR 4419±500 4562±601 4737±349 5167±298 633±78 687±78 757±37 876±77 73.5±5.4 84.4±6.7 100.8±14.6 110.6±6.4
AR 2298±10 3024±7 3619±17 4258±246 377±1 580±3 683±11 758±28 24.8±0.1 33.6±0.3 34.2±0.3 35.6±0.4
ARMA 2254±13 2987±14 3596±23 4239±60 379±3 583±3 686±9 750±17 23.8±0.1 27.0±0.1 33.0±3.8 35.9±0.7
RNN 2395±44 2871±28 3328±27 3596±178 369±13 525±38 660±191 745±181 21.5±1.0 25.0±2.4 35.9±5.0 36.1±3.7
GRU 2189±48 2916±30 3379±37 3620±130 385±27 504±80 660±100 833±174 31.6±4.1 30.1±11.5 35.1±8.8 38.1±11.1
LSTM 1911±16 2585±11 3050±21 3598±140 344±9 421±24 552±161 748±134 23.4±1.0 23.7±0.3 33.0±4.7 37.6±1.3
DCRNN 2287±189 2892±137 3369±71 3804±177 393±20 470±26 657±172 702±165 22.4±1.3 25.3±1.0 31.2±6.7 36.3±6.4
CNNRNN-Res 4143±649 4526±572 4467±437 4479±390 642±31 658±41 732±94 856±148 29.8±1.3 31.0±1.1 33.4±1.1 36.0±2.8
LSTNet 2693±91 3535±125 3909±209 4285±155 443±19 597±34 744±73 815±53 24.5±0.7 28.0±1.7 31.5±1.0 33.2±1.6
STGCN 4750±796 4325±357 4669±202 4494±162 580±19 630±19 699±95 793±60 23.7±1.1 26.5±2.7 30.9±2.7 32.7±5.4
Cola-GNN 2314±231 3012±682 3225±263 3755±175 384±30 497±19 613±124 810±343 22.5±1.4 37.7±19.1 34.5±7.5 37.5±9.3
STAN 1851±172 2628±144 3163±138 3574±142 350±16 428±27 512±80 622±122 22.2±0.7 25.3±1.9 28.5±1.7 31.2±4.6
CausalGNN 1905±192 2509±144 3045±211 3313±58 340±13 419±16 500±68 645±51 21.4±0.4 24.3±0.1 27.5±0.7 29.4±0.7

MAPE(#) 7 14 21 28 7 14 21 28 7 14 21 28

SIR 577±46 335±61 285±10 298±19 141±27 147±34 139±26 146±31 233.7±9.3 260.9±11.5 217.8±9.3 234.0±2.3
PatchSEIR 342±26 268±17 225±13 228±21 152±26 143±24 153±31 180±23 472.9±15.0 479.4±18.2 546.3±10.0 642.1±31.5
AR 108±0.3 109±0.7 110±0.7 130±13.1 93±1.0 114±1.7 150±8.4 178±18.6 79.7±0.1 79.4±0.9 81.8±0.9 84.7±0.9
ARMA 109±0.3 110±2.8 110±1.3 127±9.7 91±2.4 111±2.0 146±12.0 175±25.5 75.6±0.1 89.4±0.6 92.2±13.4 86.8±0.7
RNN 131±13 98±10 108±13 112±3 86±9 130±34 158±61 192±85 62.9±13.4 87.0±6.3 98.2±9.8 137.2±31.9
GRU 124±10 115±13 99±13 113±11 95±14 98±40 118±28 210±97 64.3±4.6 79.9±12.0 118.6±20.0 134.3±42.0
LSTM 126±4 104±1 95±4 119±16 84±3 89±7 122±48 182±54 62.5±6.0 62.1±3.7 108.2±27.2 134.1±33.3
DCRNN 135±14 120±10 122±7 132±10 95±3 107±3 132±37 137±38 63.5±6.1 71.0±4.6 85.4±6.8 96.1±25.8
CNNRNN-Res 230±41 218±20 206±48 204±20 108±11 136±26 150±34 167±11 90.8±12.2 91.9±8.4 97.3±13.8 103.7±19.2
LSTNet 131±4 114±17 129±14 147±19 86±3 110±9 137±11 171±11 72.7±3.0 81.3±8.3 86.5±4.8 107.9±9.7
STGCN 210±13 173±9 168±24 163±16 129±11 146±21 155±37 180±31 62.9±4.4 71.4±6.3 83.8±10.1 85.3±12.1
Cola-GNN 125±31 119±53 96±10 100±11 95±16 119±27 122±14 218±144 56.5±5.7 101.1±10.4 110.2±12.7 123.4±22.5
STAN 126±5 96±7 92±10 109±11 86±1 96±1 108±1 109±3 75.4±1.9 82.8±0.6 95.4±1.0 104.9±2.4
CausalGNN 123±4 99±6 91±9 98±17 81±4 88±4 106±11 146±10 62.1±3.7 65.6±1.0 72.3±4.4 73.1±2.8

adjacency and US state adjacency matrices are manually collected and cleaned. US
county adjacency is downloaded from the US Census Bureau3. Population datasets:
The country population (2020) data is collected from the worldometers website 4. The
US state and county population (2019) datasets are downloaded from the US Census
Bureau5.

Metrics. The metrics used to evaluate the forecasting performance are: mean absolute
error (MAE) (see Equation 3.20) and mean absolute percentage error (MAPE) (see
Equation 3.9). Assuming we have n testing data points and n = N ⇥m means N
locations by m days. We denote the true value and forecast for the ith testing data
point to be zi and ẑi. We do not distinguish locations in calculating MAE and MAPE.

• The Mean absolute error (MAE) is a measure of absolute difference between
two variables:

MAE =
1

n

nX

i=1

|zi � ẑi| (3.20)

MAE ranges in [0,+1] and smaller values are better.

3Source:https://www2.census.gov/geo/docs/reference/county_adjacency.txt
4Source:https://www.worldometers.info/world-population/population-by-country/
5Source:https://www.census.gov/data/datasets/time-series/demo/popest/

2010s-counties-total.html

https://www2.census.gov/geo/docs/reference/county_adjacency.txt
https://www.worldometers.info/world-population/population-by-country/
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
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Baselines. To serve as baselines, we implemented a broad range of classic and the
state-of-the-art forecasting methods.
• SIR is a single patch SIR compartmental model. PatchSEIR (Venkatramanan

et al., 2017) is a network-based SEIR compartmental model for influenza forecasting.
We use a gravity model (Barbosa et al., 2018) to generate a network flow of mobility.

• AR uses observations from previous time steps as input to a regression equation
to predict the value at the next time step. We adopt an AR model of order 28.
ARMA (Contreras et al., 2003) is used to describe weakly stationary stochastic
time series in terms of two polynomials for the autoregression (AR) and the moving
average (MA). We set AR order to 28 and MA order to 2.

• RNN (Werbos, 1990) is a one layer RNN model with hidden state dimension as 32.
GRU (Cho et al., 2014) is a one layer GRU model with hidden state dimension as
32. LSTM (Hochreiter and Schmidhuber, 1997) is a one layer LSTM model with
hidden state dimension as 32.

• DCRNN (Li et al., 2017) combines GCNs with RNNs in an encoder-decoder
manner. CNNRNN-Res (Wu et al., 2018) combines CNNs, RNNs, and residual
links in one framework. It employs RNNs to encode temporal information and
CNNs to fuse information from data of different locations. LSTNet (Lai et al.,
2018) uses CNNs and RNNs to extract short-term local dependency patterns among
variables and to discover long-term patterns for time series trends.

• STGCN (Yu et al., 2017) integrates graph convolution and gated temporal con-
volution through spatiotemporal convolutional blocks for traffic forecasting. Cola-
GNN (Deng et al., 2020) uses location-aware attention graph neural networks to
combine graph structures and time series features in a dynamic propagation process.
STAN (Gao et al., 2021) integrates disease dynamics theory into GNN training
for COVID-19 forecasting. Partial data such as ICU visits are not available for our
selected locations thus has been omitted from the model implementation.

Settings and implementation details. For all models, the historical window
H = 28. Unless otherwise specified, all baselines have parameters set in accordance
with the original paper. In our model, the hidden dimensions of the input layer (F (t)

f
),

GCN layers (F (t)), and causal encoder (F (t)
c = Fc) and decoder (F (t)) layers are 32.

AGCN layer hidden dimension (Fa) is set as 16 (F (t)

2 ) and the output layer hidden
dimension (Fo) is equal to K. We set the hidden dimension of linear transformation
in equation 4 as a = 12, b = 10, c = 10. All the parameters are initialized with Glorot
initialization (Glorot and Bengio, 2010). We set batch size as 32, epoch number as
1000. We use mean absolute error (MAE) loss and Adam (Kingma and Ba, 2014)
optimizer with default settings, and early stopping with patience of 100 epochs for
all model training. The collected disease dynamics datasets are split into training
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(a) Globe

(b) US-State

(c) US-County

Figure 3.16: Performance of MAE and MAPE computed across all locations at various
forecast days. It is observable that the model performance varies across the days, but
our model performs the best in most of the days.

datasets (from May 3, 2020, to March 20, 2021) and testing datasets (from March
21, 2021, to April 23, 2021). For each data point in a testing dataset, we make 7, 14,
21, and 28 days ahead forecasting of the data point. All results are an average of 5
randomized trials. We show experiment results with their means and 95% confidence
intervals. All programs are implemented using Python 3.7.4 and PyTorch 1.4.0 with
CUDA 10.1 in a Simple Linux Utility for Resource Management (SLURM) system
with K80, P100, V100, and RTX2080 NVIDIA GPU devices that serve in random.
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Results and Analysis

In this section, we first show model performance on daily new confirmed case count
forecasting. Then we present an ablation study to show the importance of each
component in our framework. We also conduct sensitivity analysis on several hy-
perparameters and analyze model complexity of all baselines. Then we discuss the
interpretability of the proposed model. At last, we present the comparison results
with methods from COVID-19 Forecast Hub.

Forecasting performance. We evaluate our method and all baselines on three
datasets in four different forecasting horizons (horizon = 7, 14, 21, 28). Table 3.6
shows the model performance in terms of MAE and MAPE. It is to be noted that the
MAE performance of different datasets is not comparable while the MAPE performance
is comparable.

We observe that the CausalGNN performs consistently better than the baselines
across multiple scales and with increasingly horizon. A possible reason is that it consid-
ers both graph structure information and disease transmission dynamics. STAN with
similar components also performs well in long-term forecasting. However, CausalGNN
performs better than STAN in most cases because it not only adds a causal-based
regularizer in the loss function but also jointly encodes causal features into GNN learn-
ing, which provides epidemiological context recurrently. Another possible reason is
that CausalGNN model complexity is smaller than STAN which may avoid overfitting
particularly when the training data is small in size and noisy in quality. Cola-GNN
performs well on the Globe and US-State datasets but not on the US-County dataset.
The possible reason is that its model size increases linearly with the squared number
of locations (N2) leading to overfitting to the US-County dataset of 1351 locations.

SIR and PatchSEIR perform worse than data-driven methods, especially for
long-term forecasting. PatchSEIR performs worse than SIR at county level. As
we mentioned in the beginning of this work, single patched models do not consider
the spatial connectivity thus fail to capture spatial disease transmission dynamics.
PatchSEIR leverages a gravity model-generated network but may not represent real
world mobility activities. Further, calibrating is prone to overfitting on the US-County
dataset due to the large number of counties (discussed in Section 3.3.1). In our
framework, the patches are connected via a learned GNN and allows the spatial and
temporal disease dynamics to exchange information in a latent space. The results
demonstrate the practical value of our design.

Compared with GNN-based models like Cola-GNN, STAN, and CausalGNN, the
vanilla RNN, GRU, LSTM models perform well in horizon=7,14. However, as the
horizon increases their advantages have diminished. This indicates the importance of
capturing spatial and temporal disease transmission patterns in the input data for long
term forecasting. In most cases, the classic statistical methods (AR, ARMA) show
a poorer performance than the classic RNNs (RNN, GRU, LSTM). This implies the
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importance of modeling non-linear patterns for achieving good forecasting performance.
The proposed model can capture spatial and temporal patterns using a dynamic

GNN architecture with a relatively small parameter size. This provides a consistent
forecasting performance across datasets of varying number of locations when compared
with existing spatiotemporal models.

Figure 3.16 shows the model performance of MAE and MAPE computed across
all locations at various forecast day. We observe that the model performance varies
across the days but our model performs the best in most of the days. We also observe
that the MAE values at the Global level increase by days. The trend in MAE values
coincides with the trend in the number of global daily new confirmed cases, which
increases day by day from March 21, 2021, to April 23, 2021. The same happens to
the MAE values at US-State and US-County levels. However, the MAPE results show
a flat trend with interval spikes across days (variability in reporting across day of a
week). The spikes of MAPE are caused by the noise in the testing datasets. These
observations indicate that all models are implemented in a fair manner and perform
stably across days.

(a) MAE (Globe) (b) MAE (US-State) (c) MAE (US-County)

(d) MAPE (Globe) (e) MAPE (US-State) (f) MAPE (US-County)

Figure 3.17: Ablation analysis on major components of the proposed model: Causal-
GNN w/o csl, CausalGNN w/o grf, and CausalGNN w/o att. The analysis is conducted
at three datasets and evaluated by MAE and MAPE.

Ablation study. To explore the effect of the causal module and graph structure in
our model, we conduct an ablation analysis on three datasets.

• CausalGNN w/o csl: Remove the SIRD causal encoder and decoder layers
from the proposed model and remove the second term from the loss function in
Equation 3.19. We call the removed components as the causal module (CSL).
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• CausalGNN w/o grf: Remove the GCN layers and the AGCN layer from the
model architecture. This means remove the geographical adjacency information
and the attention mechanism. We call the removed parts as graph structure
module (GRF).

• CausalGNN w/o att: Remove the AGCN layer from the proposed model
architecture, which means remove the attention mechanism. We call the excluded
component as the graph attention module (ATT).

We present the comparisons of forecasting performance in terms of MAE and
MAPE for the above-described model configurations in Figure 3.17. Each comparison
group (of the same metric, dataset and horizon) involves four models: CausalGNN,
CausalGNN w/o csl, CausalGNN w/o grf, and CausalGNN w/o att. Within a group,
CausalGNN serves as the baseline, a model with a larger MAE or MAPE value than
the baseline indicates a more important role of the missing component in that model.

Major observations and discussion : CausalGNN always performs the best among
the four models on different datasets and horizons. This implies that all three
components play important roles in improving our model performance. Specifically, in
long-term forecasting (horizon=21,28), CausalGNN w/o grf performs the worst on three
datasets, followed by CausalGNN w/o csl with the second worst and by CausalGNN
w/o att. This indicates that GRF plays the most important role in improving
long-term forecasting performance. It complies with the fact that incorporating
cross-spatial signals is crucial for a good epidemic forecasting model. Also, GRF’s
importance increases with increasing spatial resolution which is intuitive as the spatial
interdependence is higher at state and county level. The results also show that adding
the CSL to the framework can lead to a performance improvement. This demonstrates
the effectiveness of the CSL in improving epidemic forecasting performance.

(a) Window size (b) Hidden dimension (c) Mechanistic model (d) TE module

Figure 3.18: Sensitivity analysis on (a) historical window size K = 7, 14, 28, 35, (b)
Hidden dimension F (t) = 8, 16, 32, 64, (c) Mechanistic model (SIR, SIRD), and (d) TE
module (TE, RNN, GRU, LSTM). The blue markers represents the MAE performance
of CausalGNN at the US state level from the main experiment.

Sensitivity analysis. In this section, we show sensitivity analysis on some of the
hyperparameters of CausalGNN: historical window size K (Figure 3.18a), hidden
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dimension F (t) (Figure 3.18b), causal disease model (Figure 3.18c), and TE module
(Figure 3.18d). Except the varying hyperparameters, all the other settings are the
same with parameter setting described in the setting paragraph. We only report MAE
performance on US-State dataset with horizon=28. The other results show similar
observations thus are omitted for the sake of brevity.

Major observations and discussion : (1) Figure 3.18a shows that the model perfor-
mance gets improved when K increases from 7 to 14, however, there is no obvious
improvement after K = 14. (2) Figure 3.18b shows that the performance changes as
F (t) increases. We observe that there is no significant performance improvement by
increasing F (t) value. We keep a value less than 64 in the experiment to reduce the
model parameter size. (3) The results in Figure 3.18c show that there is no significant
difference between the performance of using SIRD model and SIR model. We choose
SIRD model since it complies with the fact that COVID-19 virus can cause deaths.
For future use of our framework, we recommend using a model that is as realistic
as possible to mitigate the forecasting error imported by an assumption bias. (4)
Figure 3.18d shows that the model performance does not vary too much in terms of
TE module type. We prefer a module of smaller parameter size.

Model complexity. The number of parameters of our model is agnostic to the
number of locations N , as well as RNN, GRU, and LSTM models. The parameter sizes
of AR, ARMA, and LSTNet increase linearly with the N while those of CNNRNN-Res
and Cola-GNN increase linearly with N2. The parameter sizes of SIR and PatchSEIR
are linearly increasing with N ⇥ T0 where T0 is the length of historical time series.
We compare the model parameter size of all methods in Table 3.7. The results show
that compared with the other graph-based neural network models, CausalGNN keeps
a relatively small parameter size even when the number of locations increases. This
demonstrates that our method can perform stably on different datasets.

Fairness analysis. Besides predicting the spread of an infectious disease, AI systems
can be used for other important tasks, such as predicting the presence and severity
of a medical condition or matching people to jobs. Any unfairness in such systems
can have a far-reaching impact. Therefore, it is critical to work towards systems that
are fair and inclusive for all. In this section, we perform fairness analysis on our
model and evaluate its performance across regions with a broad range of demographic
distributions and other variability. We show the MAPE performance over a map of
the US in Figure 3.22a and a corresponding distribution over values in Figure 3.22b.
Compared with Figure 3.22e which shows the urban-rural classification scheme for
counties over the US map, we observe that the urban counties achieve better MAPE
performance than the rural counties. One possible explanation is that the rural
counties have low level confirmed cases (many have 0 counts) compared to the urban
counties and MAPE is biased by those data points of very small ground truth values
due to the nature of MAPE metric (please refer to the MAPE definition shown in the
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Table 3.7: Model parameter size comparison on the US-State, Globe, and US-county
datasets.  denotes the real parameter size on US-State level. We show real parameter
size for US-State level and relative values for US-County and Global level.

Methods US-State Globe () US-County ()

SIR 16.6K 1.79 2.60
PatchSEIR 16.6K 1.79 2.60
AR 1.5K 1.79 25.98
ARMA 2.9K 1.79 25.98
RNN 0.5K 1.00 1.00
GRU 1.4K 1.00 1.00
LSTM 1.9K 1.00 1.00
DCRNN 21 1.00 1.00
CNNRNNRes 9.7K 2.04 201.98
LSTNet 13.3K 1.61 20.48
STGCN 14.6K 1.01 1.35
ColaGNN 5.7K 2.05 323.51
STAN 8K 0.96 0.96
CausalGNN 1.4K 0.97 0.97

metrics section). To remove the bias imported by the metric, we computed Pearson
correlation (PCORR) between predicted curves and the ground truth curves for all
counties and show their performance distribution in Figure 3.22c and 3.22d. The
magnitude of PCORR metric is independent of the ground truth values. We see that
the model performs similarly across counties and there is no discernible pattern in
the forecast distribution. This indicates that our model can perform fairly well in all
counties.

Interpretability. The aim of the proposed framework is to provide not only correct
inferences but also the mechanistic understanding of the learned deep learning model
as well as the model forecasts. We show an example of the learned attentions of
New York City, NY in figure 3.19a. We smoothed the curves of daily new confirmed
cases by Savitzky–Golay filter (Savitzky and Golay, 1964) with window size 7 and
polynomial order 1 to remove biases in daily reporting of cases. The counties with
the highest and the second highest attention values are not geo-adjacent to the target
county but show similar trend with the target curve within the input time duration,
while the counties with the lowest and the second lowest values show an opposite
trend (uptrend vs. downtrend). The results indicate that spatial attentions provide
indicators for future event forecasts.

Figure 3.19b shows an example of the learned SIRD model of Hardin, KY. We
present the simulated curves by a single patch SEIR model using post-calibrated
parameters (shown by the blue line), and a single patch SIRD model using parameters
inferred by CausalGNN (shown by the yellow line). The curves are smoothed for
ease of viewing. The results show that CausalGNN can reveal mechanistic causal
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process by producing meaningful causal parameters which can provide meaningful
epidemiological context for GNN learning. By using the inferred causal parameters, we
can run SIRD model independently to produce multiple forecasts such as death count.
Furthermore, our model enables counterfactual forecasting by introducing different
circumstance such as vaccine schedule to the simulations in causal space. The example
we present here does not mean that our model can learn meaningful parameters in
all places, but it is a good start of building explainable deep learning models by our
method. More systematic and rigorous experimental analysis is needed in the future.

(a) Learned attentions (b) Learned SIRD

Figure 3.19: An example of (a) the learned attentions of New York City and (b)
the learned SIRD model of Hardin, KY. Shaded area is the input. Solid curves are
smoothed.

To illustrate how the causal module can help in improving the model performance, I
compare the state level forecasts by CausalGNN and CausalGNN w/o csl in Figure 3.20.
It shows the forecasts of confirmed cases of 2021-04-18 at the US state level. The black
curve represents the ground truth while the orange curve represents the generated
causal forecasts by the causal module in CausalGNN. Both solid lines and dots are
smoothed values. The shaded area is the input window. The blue dots represent the
forecasts by CausalGNN and the red crosses represent the forecasts by CausalGNN
w/o csl. They are both 7 days ahead forecasting. We can observe that the causal
module can generate meaningful curves and CausalGNN makes a better forecast than
CausalGNN w/o csl for most states.

Comparison with state-of-the-art forecasts. To demonstrate the practical value
of the proposed model, we add a dropout layer to the model and generate probabilistic
forecasts for the US county level. The daily forecasts are aggregated to weekly values
and then compared with state-of-the-art forecasts submitted to CDC COVID-19
Forecast Hub (marked by *). Among the 70 modeling teams present in the Hub only
a handful of them provide county-level forecasts. In order to make a fair comparison,
we only consider teams that have been providing consistent forecasts across most
locations and targets since August 2020.

State-of-the-art forecasts: (1) *COVIDhub-ensemble* linearly combines the
forecasts from teams with uniform weights produce probabilistic forecasts. (2) *CU-
select* is a metapopulation county-level SEIR model. (3) *JHU_IDD-CovidSP*
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Figure 3.20: US state level forecasts of COVID-19 new confirmed cases at date 2021-
04-18 by CausalGNN and CausalGNN w/o csl. The black curve represents the ground
truth while the orange curve represents the generated causal forecasts by the causal
module in CausalGNN. Both solid lines and dots are smoothed values. The shaded
area is the input window. The blue dots represent the forecasts by CausalGNN and
the red crosses represent the forecasts by CausalGNN w/o csl. They are both 7 days
ahead forecasting.

is a county-level metapopulation model with commuting and stochastic SEIR disease
dynamics with social-distancing indicators. (4) *LANL-GrowthRate* is SI model
with a dynamic growth rate parameter assumed to follow a statistical model. (5)
*UVA-ensemble* uses Bayesian Model Averaging (BMA) to combine forecasts from
AR, ARIMA, LSTM, Kalman Filter, and metapopulation SEIR models.

We employ the Interval Score (IS) (Bracher et al., 2021) for evaluating the
performance of the probabilistic forecast F .

IS↵(F, y) = (u� l) +
2

↵
(l � y) (y < l) +

2

↵
(y � u) (y > u) (3.21)

where (1 � ↵) ⇥ 100% is the prediction interval of F characterized by the upper
bound u and the lower bound l that is likely to contain the forecast value y. (·) is
the indicator function that outputs binary value. The IS is computed for a various
prediction intervals and their weighed combination yields the Weighted Interval
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(a) WIS (b) WIS rank

Figure 3.21: Probabilistic forecasting performance compared with state-of-the-art
forecasts. (a) The mean WIS computed across all locations and all forecast weeks
(in the testing dataset) for each of the modeling team. (b) The number of locations
across the weeks that a model is ranked 1 by WIS.

Score (WIS):

WIS↵0:l
=

1

L+ 1

LX

k=0

↵l

2
IS↵l

(F, y) (3.22)

L is the number of prediction intervals and smaller values are better (see Section 1.1.2
for the introduction of IS and WIS).

Figure 3.21 shows the probabilistic forecasting performance compared with state-
of-the-art forecasts in CDC COVID-19 Forecast Hub. From Figure 3.21a, we see that
the proposed CausalGNN outperforms UVA-ensemble and JHU_IDD-CovidSP for 1
week ahead forecasting and is comparable with UVA-ensemble for 2, 3, and 4 weeks
ahead forecasting. COVIDhub-ensemble ensemble the forecasts of all thus is prone to
perform the best. In Figure 3.21b we plot the number of locations across the weeks
that a model is ranked top 1 by WIS. We observe that across targets CausalGNN is
one of the top three performing models (there are six comparison methods). We’d like
to point out that all COVIDhub teams conduct delicate inspection on their real-time
submitted forecasts every week. They retrained their models when new data becomes
available and involved expert feedback as part of the forecasting loop. However,
CausalGNN made retrospective forecasting i.e., no model retraining when forecasting
the testing data points without expert feedback. Thus, our model does not surpass
these state-of-the-art results in WIS performance. However, the mediocre performance
still indicates that our model matches the average performance of these state-of-the-art
results. This demonstrates the practical value of our model very well.

3.4 Conclusions and Open Questions

In this chapter, we discussed two frameworks that combine theory-based mechanistic
models with deep learning models for spatial and temporal epidemic forecasting. They
are one of the first efforts that have been made towards using mechanistic causal
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theory to enhance data-driven models.
First, TDEFSI is proposed to train an LSTM-based model with theory generated

synthetic training data. The learned model can provide accurate high-resolution
forecasts using low-resolution time series data. The proposed framework transfers
theory-based causal mechanism from a mechanistic model to a deep learning model.
Unlike data augmentation that are directly applied on observed data for time series
classification or regression, the proposed framework generates synthetic high-resolution
data using high-performance-computing-oriented simulations of epidemic processes
over realistic social contact networks, which is not available or quite sparse in the real
world. In addition, incorporating mechanistic models into the framework enables what-
if forecasting by deep learning models. A direction for future work is to investigate
the use of synthetic data generated by social, epidemiological, and behavioral models
in conjunction with observed data to improve epidemic forecasts. In this work, we try
to reduce the gap between simulated and real world data distributions by simulating
with parameter settings learned from observations so that the generated epi-curves
are realistic. In future work, we plan to further reduce the gap by using synthetic
data based on real-time observations to train the neural networks.

Second, CausalGNN is proposed to create a jointly learning process between deep
learning models and theory-based mechanistic models. The attention-based dynamic
GNN module embeds spatiotemporal features in an efficient way, leading to better
spatiotemporal forecasting performance. We incorporate a causal module into the
framework via a mutually learning mechanism to provide epidemiological context
to the learned GNN model, leading to better long-term forecasting performance.
Future directions may include: (1) testing the proposed framework on datasets of
other epidemics, such as Ebola or influenza; (2) exploring what-if forecasting via
the mechanistic models; (3) conducting a deeper analysis on the learned model for
explainability; (4) considering fairness in AI-based epidemic forecasting.
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(a) US map - MAPE (b) Histogram - MAPE

(c) US map - PCORR (d) Histogram - PCORR

(e) 2013 urban-rural classification scheme for
counties

Figure 3.22: CausalGNN performance distribution over US counties. (a) MAPE
performance across counties. The darker the smaller MAPE values. (b) MAPE
distributions over counties. (c) PCORR performance across counties. The darker the
smaller MAPE values. (d) PCORR distributions over counties. (e) 2013 urban-rural
classification scheme for counties6.
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Chapter 4

General Conclusions and
Perspectives

In this thesis, we investigated deep learning methods for reliable epidemic forecasting
with the aim of producing accurate and explainable forecasts. To promote the accuracy
of deep learning-based forecasting models, we investigated GNN-based frameworks that
consider temporal and spatial signals using a novel large scale mobility dataset. We
discussed how the mobility information helps to understand the disease transmission
dynamics. To explore the explainability of deep learning-based forecasting models,
we investigated a new emerging direction that combines deep learning models with
theory-based mechanistic models to incorporate epidemiological context. The results
are as follows.

First, we introduced a large-scale aggregated spatiotemporal mobility data and
incorporated it into GNNs. The proposed model leverages priors from domain knowl-
edge and mobility data and uses those to instruct the model learning. We showed
that the proposed model can capture cross-location co-evolving disease dynamics
and generate more accurate forecasts compared with baselines who do not leverage
mobility information. We also showed that the proposed model provides a natural
representation of disease and human mobility dynamics to develop spatially explicit
forecasts thus leading to better forecasting accuracy.

As future work, the proposed method is flexible to account for any static and
dynamic spatiotemporal signals and can be extended to forecast other diseases dy-
namics, such as seasonal flu. Also, text data, such as online posts or news, provide
timely information about disease dynamics. For example, social media users may
report their symptoms through online posts, which are known to be the best signals
for early disease detection, even before diagnoses. However, traditional surveillance
data of disease dynamics usually do not include text knowledge leading to the lack
of semantic features in model learning process. Leveraging text data to generate
semantic embeddings for GNN-based models’ learning can be explored.

Second, we proposed two frameworks TDEFSI and CausalGNN that work towards
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enhancing deep learning models with theory-based mechanistic models with the aim
of providing accurate forecasts as well as gaining a mechanistic understanding from a
learned model. We first proposed TDEFSI who shows a sequential learning process
where mechanistic models are used to generate context-specific synthetic training data
and then an LSTM-based model is trained with the synthetic data. We showed that
TDEFSI produces accurate high-resolution forecasts from flat-resolution observations.
We also showed that the high-performance-computing-based simulations allow us to
make forecasts that are context specific and capture the underlying causal processes.
Moreover, we showed that physical constraints based on epidemiological prior help
improve forecasting accuracy.

We further proposed CausalGNN who adopts a jointly learning process that learns
a latent space to combine the spatiotemporal and causal embeddings using graph-
based non-linear transformations. We showed that the proposed model achieves better
forecasting performance than the data-driven baselines who do not employ mechanistic
models. Compared with the other GNN-based models in the baselines, our model has
a relatively small parameter size which does not increase as the number of locations
increases. We also showed that the epidemiological context provided by mechanistic
simulations can be used to regularize model forecasts leading to better forecasting
accuracy. To gain the understanding of the learned model, we further presented that
the learned model can generate meaningful disease model parameters.

Explainability of deep learning models is scientifically challenging but also an
important requirement to help policy makers trust the models when applying AI-based
technologies for epidemic forecasting tasks. Future work would be to further explore
the explainability of the learned model using epidemiological theory. The presented
ideas that combine theory and deep learning models can be generalized to forecast
other diseases such as mental health and new emerging diseases which have sparse
surveillance data to train a deep learning model. Immediate uses of the proposed
framework are 1) augmenting existing training datasets with realistic synthetic data to
generalize the learned model for unseen data patterns, 2) generating synthetic training
datasets for different temporal and spatial resolutions where real-world observations
are absent. In addition, incorporating causal models into the frameworks enables
what-if forecasting by deep learning models. Another possible future work is to make
what-if forecasts with the proposed frameworks.

Besides accuracy and explainability of deep learning model, fairness in AI systems
is also an active area of research. AI systems can be used for other critical tasks, such
as predicting the presence and severity of a medical condition or matching people
to jobs and partners. Any unfairness in such systems can have a wide-scale impact.
Thus, as the impact of AI increases across sectors and societies, it is critical to work
towards systems that are fair and inclusive for all. Fairness in an AI-based system is
critical yet not well-defined problem. In epidemic forecasting domain, unfairness in
the system with deep learning models exists because the models learn from existing
epidemic data collected from the real world, and so an accurate model may learn
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or even amplify problematic pre-existing biases in the data based on race, gender,
religion or other characteristics. Furthermore, there is no standard definition of fairness
in epidemic forecasting system. Given these challenges, a future work would be to
build deep learning-based epidemic forecasting system that can advance fairness and
inclusiveness in an epidemic at different temporal and spatial scales. I plan to define
fairness in epidemic forecasting problems, assess biases in the collected datasets, and
select representative datasets to train and test the model. I also plan to incorporate
the defined fairness into model design, deployment, and evaluation.
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