

AUTONOMOUS PLATOONING GOLF CART FOR SHORT DISTANCE TRAVEL

A Research Paper submitted to the Department of Mechanical Engineering
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Mechanical Engineering

By

Charles Rushton

May 9th, 2022

On my honor as a University student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISOR
Tomonari Furukawa, Department of Mechanical Engineering

1 Introduction

 Interest in automated vehicles has continued to grow as their ability to potentially

reshape society has become more realized. Autonomous vehicles most notably have the potential

to diminish the amount of road incidents as they can eliminate human decisions and error, which

is the cause of at least 90% of vehicle incidents. (Smith, 2013). They also provide a significant

increase in independence and accessibility to disabled people and the elderly. Implementations of

automated systems in the automotive industry are expected to drive not only on their own, but in

conjunction with other vehicles around them. At the Virginia Cooperative Autonomous Robotics

(VICTOR) lab, the development of an autonomous golf cart platooning system will add to this

ongoing research and provide the project sponsor, Club Car, with a model for developing their

own autonomous vehicles.

 Many large companies are developing autonomous vehicles and associated technologies

for commercial use. Waymo, a subsidiary of Google's Alphabet Company, has been developing

an autonomous ridesharing taxi service since 2018 and first starting in Phoenix (Waymo, 2022).

Waymo has even expanded to San Francisco, and recently obtained a commercial license to

monetize their ride sharing service (Bellan, 2022). Each vehicle uses both a 360° LiDAR and a

long-range radar to obtain accurate information about the vehicle's surroundings from far away

to allow for longer lead times. Although these sensors are good at judging distances at very large

ranges and multiple conditions, they are still affected by noise and can’t easily differentiate

between essential objects (Lampinen, 2020). The radar and lidar for example cannot easily

identify the difference between a person, a road sign, and a trash bag. To help reduce these blind

spots, Waymo uses a peripheral system with extra lidars and radars in addition to cameras to

 2

reliably identify objects (Jeyachandran, 2020). This increase in object detection certainty has

allowed Waymo to breakthrough and operate in more urban environments.

Beyond the sensors used for mapping environments, the development of drive by wire

systems and motion planning is essential to autonomous movement. Autonomous platooning

systems are an example of this because the goal is one manually-driven truck leading one or

more autonomously driven trucks. Platooning systems are more energy efficient because the

autonomously-controlled vehicle is able to safely maintain a closer following distance than a

manually-driven vehicle, which reduces the aerodynamic drag the following vehicles experience.

This closer following distance would also allow for more cars to fit in the same length of lane,

potentially reducing traffic jams, and with that the time and fuel spent idling in stop and go

traffic (Fernandes & Nunes, 2010). The technologies involved in different truck platooning

systems explained by Tsugawa, Jeschke et al. (2016) include a wide range of sensors from vision

units (cameras and lasers) to LiDAR, vehicle-to-vehicle communications (V2VC), and GPS

systems for localization. The quantities measured when the Energy ITS platooning system was

tested were lateral and longitudinal control (staying within the bounds of the lane markings and

within following distance of the preceding truck, respectively), speed, lane changing while

following a target path, and platoon formation time (Tsugawa, Jeschke et al., 2016). The vision

units placed on each of the trucks, which consisted of a CCD camera and laser scanner, were able

to effectively detect the lane markings on the road under a variety of lighting and weather

conditions and identify the trucks’ distance from and orientation with respect to the lane

markings (Tsugawa, 2014). In the event that the lane markings could not be detected, the yaw

rate information from a leading truck could be sent to the following truck (Fukao et al., 2013).

The combination of V2VC and radar and LiDAR sensors placed on each truck allowed for the

 3

trucks to mostly stay within the desired following distance behind its preceding truck within 10

cm (Tsugawa, 2014). However, platoon formation time and lane changing that followed the

target path were not successful, and the reliability of the various devices and systems was not

tested.

 The main goal of this project is to develop an autonomous platooning system using a

leader and a follower golf cart that can be used in many areas of a university campus such as

Engineers Way, a section of the University of Virginia’s campus. The follower cart will

accurately follow the leader cart which can be either autonomously driven or operated by a

human. In order to accomplish this, the leader cart must be able to create a map of its

environment and localize in it as well as detect and avoid obstacles using a suite of sensors. It

must also send accurate motion information to the follower cart which will be used in

conjunction with a motion model and other sensors to follow the leader. Lastly, it must be able to

interact with users to provide a safe experience.

 This report will expand on essential knowledge about this project including the work

done by previous teams including motion subsystems, environmental detection, and leader

detection. Next, concept generation and subsequent design decisions will be explained and

justified as to why they were chosen. The overall final design will be described and the progress

made to reach the design in each of the specific subsystems will be highlighted. Results from the

validation of the design will be explained and shown. Finally, conclusions will be made in order

to guide future team’s work to success with this project.

2 Essential Knowledge

Last year, UVA Mechanical Engineering undergraduate students Art Ken Fontelera, Jee

Soo Shin, William Smith, Peter Wellman, and Jack Yocom worked towards the goal of

 4

developing a fully autonomous golf cart platooning system. During their progress, they were able

to achieve autonomous braking, steering, and acceleration in one golf cart and develop a point

cloud map using sensors in that same golf cart. In 2018-2019, Virginia Tech Mechanical

Engineering undergraduate students Jeronimo Cox, Alina Voelker, Andrew Chen, Daniel Cox,

Shen Chu, Alejandra Arriaga, David Lee, Monica Karas, Alias Ishanzai, and Webster Bray

worked towards the same goal as well, but they focused more heavily on the platooning aspect of

the goal. During their progress, a method to transfer data between carts for autonomous

platooning was developed, but their motion subsystems did not work well enough to safely

execute their model. The knowledge gained by those students during the development of their

systems is valuable to have their design improved upon by future teams.

2.1 Braking

The braking system developed by last year’s team was installed and functional on cart

788, which is the cart to be used as the Leader Cart. This braking system consisted of a rotary

DC motor that, when engaged, pulled on an airline cable that directly pulled back the brake

pedal. The DC motor is attached underneath the golf cart, as shown in Figure 1 below. The cable

then passed through a series of pulleys before it eventually attached to the brake pedal directly,

as shown in Figure 2 below.

Figure 1: DC motor used on Cart 788 to pull the braking cable.

 5

Figure 2: Attachment of the airline cable to the brake pedal of Cart 788 that allows for the pedal

to be pulled when the brake motor is engaged.

2.2 Acceleration

Both the Virginia Tech and UVA teams have controlled acceleration through an electrical

solution rather than a mechanical actuator. Their implementation consisted of an Arduino that is

connected to a digital potentiometer, which varies the voltage supplied to the golf cart motor

controller. Cart 788 has this subsystem in place, but Cart 789 does not. An adequate method of

controlling acceleration on the following cart will be needed for successful automated following.

2.3 Steering

 There have been two different steering systems developed by past teams. The first

solution developed by the Virginia Tech team consisted of a Nexteer Electric Power Steering

(EPS) system mounted onto cart 789. The EPS system as seen in Figure 3, allowed for CAN bus

communication and the ability to program steering angles directly to the steering column

manipulated by a geared DC motor. Last year’s UVA team used a ClearPath servo motor

mounted in parallel to the steering column on cart 788. The reason why the UVA team switched

to the Clearpath servo motor was due to communication issues with the Nexteer EPS system.

The motor as seen in Figure 3, was connected and controlled through an Arduino and moved

using absolute positioning based on the built in encoder.

 6

Figure 3 : Nexteer electric power steering system (left); Teknic ClearPath Servo Motor with

gears housed in an enclosure (right).

3 Design Process

3.1 Customer needs

3.1.1 Gather Raw Data

 To gather raw data, interviews were conducted in the markets for this autonomous golf

project. The autonomous golf cart’s goal is to track and follow a lead vehicle, with time

permitting will also be autonomous, to pick up students. Therefore, the primary market of this

project was Professor Tomonari Furukawa, a faculty member at the University of Virginia

(UVA), and William Smith, a graduate student in Professor Furukawa’s research laboratory. UVA

students, faculty, and staff, as well visitors of the campus were deemed to be the secondary

market.

 Initially, questions were posed to both markets to determine information about how

stakeholders move around UVA’s campus and their interest in autonomous vehicles. To

determine key information on transportation, the following questions were asked: “How do you

get to class”, “What's important in the way you get to class”, “What's important in the way you

get to class”, “What do you like about your current method”, and “What do you not like about

 7

your current method”. To determine various user's perspectives on autonomous vehicles, the

following questions were asked: “How comfortable are you with your car indicating cars next

to/behind you?”, “How comfortable are you with your car indicating cars next to/behind you?”,

“How comfortable are you with your car changing lanes?”, “How comfortable are you with your

car turning?”, “How comfortable are you with your car accelerating/decelerating/cruise

control?”, and “What would make you more trustworthy of computer autonomy?”.

 To determine more technical customer needs from the primary market, the team asked

William Smith and Siddharth Singh, a Ph.D candidate in Professor Furukawa’s laboratory, the

following questions: “Is there an initial budget?”, “What are the main capabilities expected?”, “Is

there any technology that must be implemented?”, “Are there any safety features that you would

like?”, “Are there any goals regarding aesthetics initially or is functionality the main concern?”,

“Is there a specific timeline?”, “Should the driver be able to have emergency take over”, “How

long should the golf cart be able to run compared to a non autonomous vehicle”, “How fast

should the carts be able to go?”, “What distance would you like the carts to maintain?”, “Is there

a minimum number of passengers required per cart?”, “What are the specific milestones?”,

“What is the necessary information to be shown to the passengers on screen?”, and “Is there a

preferred method of pick-up?”.

 From the raw data, responses followed multiple trends. The team found that the market

currently likes autonomous vehicles technology in the following circumstances: preventing

accidents, aid in parking, aid in lane adjustment, and cruise control. However, the market

generally dislikes autonomous vehicles because of a general lack of trust and the lack of

versatility in different weather conditions. Additionally, the market would typically use the

autonomous vehicle for shuttling around campus in a pick-up drop-off model, similar to bus

 8

stops. To meet the large magnitude of students shuttling, multiple vehicles platooning with

sophisticated object detection seem necessary for the stakeholders. Lastly, the market suggested

that autonomous vehicles should have improved awareness of surroundings and more reliability

when following other vehicles.

3.1.2 Construction of Customer Needs as Primary and Secondary Needs

Using the raw data, the team interpreted the need from the information. Next, the

interpreted need was given priority. High priority needs were considered primary needs, while

less necessary needs were considered secondary needs. Figure 4 summarizes the customer

statements to interpret need with priority.

Question/Prompt Customer Statement Interpreted Need P or S

Typical Uses

Shuttling Students ● Detection for students
● Dynamically determining

environment
● Recognition of stops

S

Series of Vehicles ● Detection of lead vehicle
● Communication between different

machines

P

Determination of
Obstacles

● Ability to detect objects in the
surrounding area

P

Likes-Current
technology

Accident
Prevention

● Recognition of situations that likely
lead to imminent collisions

● Analyze the surrounding
environment in relation to car speed

P

Parking/Lane
Assistance

● Constant use of sensors to detect
surroundings and white lines for
lanes/parking spots

S

Cruise Control ● Maintain a set distance between carts
by controlling speed

P

Dislikes-current
technology

Lack of Weather
Reliability

● Multiple visual sensors and radar
● Ability to perform under varying

circumstances

S

 9

Lack of Trust ● Rigorous testing
● Need for better communication

between innovators and clients

P

Suggested
Improvements

Awareness of
surroundings

● Fast and accurate processing of
sensor data

P

Reliably follows
other vehicles

● Vehicle to vehicle communication P

Figure 4: Customer Needs with Priority. The P represents “primary” needs, while S represents
“secondary needs”.

3.1.3 Rank Order the Customer Needs

Lastly, customer needs were ordered in relative importance. Rank ordering the customer

needs allows for the team to focus on the most important tasks. Figure 5 summarizes the ordering

of the five tasks that may have significant technical trade-offs in the final design.

Autonomous Golf Cart Importance Safety

Scale:
1. Feature is undesirable. I would not consider a product with this feature.
2. Feature is not important, but I would not mind having it.
3. Feature would be nice to have, but is not necessary.
4. Feature is highly desirable, but I would consider a product without it.
5. Feature is critical, I would not consider a product without this feature.

1-5 Autonomous Golf Cart Need Unique, Exciting, and
or Unexpected

1 5 Accurate detection and navigation of
environmental surroundings

2 5 Follower cart reliably follows leader cart

3 5 Manual override and emergency stops

4 3 Potential passenger detection to stop on
command

!

5 3 Driving route with set stops

Figure 5: Summary Table of the Customer Needs

 10

3.2 Target specifications

Figure 6: Quality Function Diagram from the Customer Needs

 The correlation between customer needs and technical specifications is determined

through the Quality Function Deployment (QFD) diagram shown in Figure 6. A score between 1

and 5 is given, with 1 indicating minimum correlation and 5 indicating maximum correlation

between factors. Based on the correlation, the technical importance is then calculated and ranked.

Lastly, the technical difficulty for each of the factors is taken into consideration to determine a

score and rank for technical priority. The efficient use of sensor specification ranked the highest,

with short range telecommunication software, emergency driver control, and simple HMI system

specifications ranking second. Ranking and graphing technical importance and technical priority

allows the team to develop an understanding of how much time and resources need to be

allocated to meet specifications.

 11

3.3 Concept Generation and Concept Selection

The braking system, microcontroller, and leader cart detection were the three areas the

team had to determine concepts for. A braking actuation system was needed for Cart 789 and a

more powerful microcontroller was needed to control the motion subsystems simultaneously on

both golf carts. To implement a leader following system, a leader detection method needed to be

determined. After generating concepts for each of the areas, a concept screening and scoring was

completed for each system (Figure 7, 8, and 9). Concept screening involved rating a potential

solution “+” for excellent performance, “-” for poor performance, and “0” for acceptable level of

performance for each of the selection criteria. Concept scoring phase consisted of giving each

selection criteria a weight based on its importance. Then, a score between 1 and 5 was given

based on their expected performance, with 5 representing the highest performance and 0

representing poor performance. Based on the scores and weight, a rank was computed for all

potential solutions.

Figure 7: Microcontroller Concept Scoring and Screening

 12

Figure 8: Braking Actuation Concept Scoring and Screening

Figure 9: Leader Detection Concept Scoring and Screening

The Raspberry Pi 4, linear actuator, and infrared camera with IR LEDs were the highest-

ranking systems in the three categories. The selected solution for leader detection would have IR

LEDs placed on the leader cart and an IR sensor on the following cart. While the linear actuator

was the highest ranked for braking, the team decided to use the clear path servo motor that was

used for steering in the leader cart. The decision was made based on the information that a team

previously had encountered difficulty using linear actuator for smooth braking.

4 Final Design

The final design of our system consists of a leader cart that is able to map and localize

itself within the surrounding environment and a follower cart that is able to track the leader cart

and autonomously follow its path. In order to achieve this autonomous platooning, the leader cart

must send position, orientation, steering, and acceleration data to the follower cart. The follower

cart uses sensors to detect the distance between the two carts. Recursive Bayesian Estimation

(RBE) is used to combine this sensor data with the motion model of the follower golf cart in

 13

order to determine the position of the follower cart in the global frame. Using this information,

the follower cart is able to execute autonomous platooning with controls for acceleration and

steering in order to follow the path of the leader cart. A diagram of the information transfer

between the two carts is shown in Figure 10 below.

Figure 10: Depiction of the information transferred between the two carts.

As shown in Figure 10, the leader cart receives position and orientation data from the

map localization and receives steering angle and velocity from the encoders on those respective

sub-systems. The leader detection system uses sensors to determine the distance between the two

golf carts. All this information is used in the particle filter to localize the follower cart’s position.

Using the positions of both carts in the global frame, the follower cart is able to execute motion

controls to autonomously follow the leader cart. The controls used, along with the descriptions of

each subsystem will be discussed further below.

4.1 Platooning

 In order to achieve successful platooning, a particle filter is used to accompany the leader

detection sensor readings in order to accurately determine the follower cart’s position in the

global frame. Motion controls are then able to control the follower cart to autonomously follow

the leader cart’s path.

 14

4.1.1 Particle Filter

Particle filter is an example of RBE technique that we have implemented to estimate the

position of an object, in this case the follower cart. RBE uses motion data to make a prediction of

where an object will be, then uses sensor data to update its prediction in order to develop an

accurate estimation of the object’s position. The particle filter was chosen due to its ability to

handle non-linear and non-gaussian systems.

The motion of the golf carts follows an Ackerman steering motion model. Figure 11

below depicts the equations of motion for the states of the vehicle using this motion model.

Figure 11: Equations of motion for Ackerman steering vehicles. x, y, and theta represent the
vehicle’s position and orientation in the global frame and v and gamma represent the control
inputs of speed and steering angle, respectively. L is the distance between the front and back

wheels.

 The particle filter iteratively goes through a four-step process in order to accurately

estimate the position of the follower cart. First, an initial sample of particles is spread evenly

through the global frame. Each of these particles acts as an individual cart with its own position

and orientation. Then, the motion model is used to predict the next state of the golf cart

according to the speed and steering control inputs. In this step, each of the particles is moved to a

new position according to the motion model. Following the prediction, the sensor reading of the

distance between the two carts is used to determine the leader cart’s estimated position. This is

done using Eqns (1-6) below. The following equations estimate the leader cart position (XL,YL)

 15

according to follower cart state (𝑋! , 𝑌! , 𝜃) and sensor reading of the position of the leader cart

with respect to the follower cart (𝑑𝑥" , 𝑑𝑦").

𝑋# = 𝑋! + 𝑥 (1)
𝑌# = 𝑌! + 𝑦 (2)
𝑥 = 𝑑𝑐𝑜𝑠(𝑑𝜃) (3)
𝑦 = 𝑑𝑠𝑖𝑛(𝑑𝜃) (4)

𝑑𝜃 = 𝜃 − tan$%(&'!
&(!
) 	 (5)

𝑑 = 6𝑑𝑥") + 𝑑𝑦")	 (6)

After the estimation of the leader cart position is made for each particle, it is compared to

the actual position of the leader cart in order to assign that particle a weight (a closer estimation

results in a higher weight). This weight is then used for the next resampling of particles. Particles

with higher weight are resampled more than particles with lower weight. By iteratively going

through this four-step process of predicting, updating, assigning a weight, and resampling the

particles, an accurate estimation of the follower cart’s position is determined by averaging the

positions of all the particles.

4.1.2 Controls

Once both positions are known for the golf carts, the follower cart then must control the

three motion subsystems in order to follow the leader cart. The following distance between the

two carts will be set to a finite distance, so in order to control the acceleration and steering, a PID

controller will be used to maintain minimal deviation from the desired following distance and a

feed-forward PID controller using the steering angle of the leader cart will be used to maintain

minimal deviation from the path set by the leader cart.

To compare with the feed-forward PID controller, a Stanley Controller will be used. A

Stanley Controller steering control is shown in Figure 12 and Equation 7.

 16

Figure 12: A visual representing the key variables in a stanley controller. (Thrun et al.,

2007). Sigma is the turning angle, x is the cross track error, phi is orientation of the nearest path

segment, u is the the speed of the vehicle.

𝛿(𝑡) = 	𝜓(𝑡) + 𝑎𝑟𝑐𝑡𝑎𝑛(*∗((-)
/(-)

) (7)

 For the Stanley Controller, the Leader Cart will transmit the location it traveled. Next, a

cubic spline will be fitted to the series of points to interpolate between points in case of a loss of

communication between the vehicles. Afterwards, a point is selected and Equation 7 is used to

determine the ideal turning angle of the vehicle.

4.2 Steering

For the steering system, two iterations have been previously used: a Teknic ClearPath

servo motor mounted in parallel with the steering column and a Nexteer Electric Power Steering

system. As mentioned earlier the ClearPath servo motor was used in cart 788 due to

communication errors involved with the Nexteer EPS. The issues with communicating between a

CPU and the Nexteer EPS system have been solved, and the EPS will be installed onto the

steering columns of both carts 788 and 789 as seen in Figure 13.

 17

Figure 13: Nexteer Electric Power Steering System

The Nexteer power steering system has five wires coming out of it, one being power, one

being ground, one being ignition, and two being CAN HIGH and CAN LOW. The EPS also has

its own encoder allowing it to measure the current angle of the shaft, and convert it into an

electrical signal read by a computer. The system is driven by a motor and runs on Controller Area

Network (CAN) communication protocols to allow a connection between the steering motor and

the CPU. To establish communication protocols the two CAN communication wires were

connected to pins on the CAN USB Adapter as seen in Figure 14. The system was wired in

accordance with the PCAN-USB user manual and is soldered onto a PCB board mounted next to

the EPS system.

Figure 14: Circuit diagram for CAN communication

 EPS

12 V
battery

+
-

Battery
Conne

CAN Bus
Adapter

7
2

CAN
CAN

Ignitio

14

USB

 18

CAN communication allows for messages to be written directly to the EPS system by

manipulating bits in a signal and sending them as messages to the CPU as seen in Figure 15.

These bits can also be read directly from the EPS by the CPU and can serve as a loop validation

on the angle of the column. By writing the messages directly to the steering column through

ROS topics such as /cmd_vel, it is possible to avoid using a microprocessor and control the

steering system directly from a CPU.

Figure 15: Writing Message to EPS System

4.3 Acceleration

A similar acceleration system to Cart 788 will be implemented on Cart 789 due to its ease

of implementation and effectiveness at precisely controlling the acceleration. A digital

potentiometer is used as a voltage divider to supply a variable voltage between 0 and 5V to the

golf cart’s motor controller. The difference is that the Raspberry Pi 4 microcontroller will be used

on Cart 789 instead of an Arduino. The digital potentiometer chip MCP 4151 is connected to the

Raspberry Pi 4 microcontroller as shown in Figure 16 and it communicates with the golf cart’s

microcontroller using Serial Peripheral Interface (SPI) communication protocol. Pins 1-3 of the

 19

potentiometer are connected to the SPI pins on the Raspberry Pi. There are three wires that

connect the accelerator pedal with the golf cart motor controller. These wires were disconnected

and a new Deutsch three pin connector was installed to connect with pins 5-7 on the digital

potentiometer circuit.

Figure 16: Circuit diagram for acceleration control on cart 789

For SPI to function properly, SPI interface had to be enabled on the Raspberry Pi in

configurations and the spidev library was also installed. A value between 0 and 255 is written to

the chip to change the wiper position. This outputs a variable voltage to the golf cart motor

controller to accelerate the golf cart. The acceleration pedal is connected to a switch and a

clicking sound is made when the pedal is pressed down. To replicate this behavior, a relay was

connected to the input switch wires to turn the acceleration on when the digital potentiometer is

sending varying voltage and off otherwise.

4.4 Braking

The braking system consists of a cable that is attached to a rotary motor at one end, then

travels through a series of pulleys and connects to the brake pedal at the other end. When the

motor rotates, it pulls the cable and thus pulls the brake pedal down.

 20

The follower cart (Cart 789) uses a ClearPath Servo motor to pull the brake cable. This

motor is depicted in Figure 17 below. The motor is attached to the golf cart with a mount that

was custom-made from steel sheets, which can also be seen in Figure 17.

Figure 17: ClearPath Servo motor used for braking system on Cart 789 with motor

mount attaching it to the steel bracket underneath the cart.

The leader cart does not currently have a braking system set up because only the follower

cart needs to have autonomous capabilities for our platooning system, but if future teams would

like to make Cart 788 autonomous as well, then the braking design can be replicated on that cart.

Any rotary motor can be used in this design, but the ClearPath servo motor is recommended due

to its encoding capabilities.

4.5 Mapping & Leader Detection

 There are two components to the follower cart correctly following the driving path of the

leader cart. The first component is sending pertinent data from the leader cart to the follower, and

the second component is the follower cart physically detecting the leader cart. The former is

feedforward, while the latter will act as feedback. These two systems will be used to create the

follower cart’s belief of how far away the leader cart is and whether it is turning. To achieve

 21

feedforward, the leader cart will use three sensors, two zed cameras and a LiDAR, to localize

within the map. One zed camera is mounted on the front, approximately 1.448 meters in front of

the LiDAR and 1.255 meters below. The second zed is mounted on the back, approximately

1.038 meters in behind the LiDAR and 0.349 meters below. Figure 18 depicts a digital layout of

the sensors.

Figure 18: A depiction of the layout of the sensors.

After localization, the leader cart will communicate its location, speed, and steering commands

to the follower cart. The follower cart will interpret these commands to determine proper

movement.

To achieve feedback, a TeraRanger Evo Thermal 33 IR camera is placed at the front of

the follower cart as shown in Figure 19.

 22

Figure 19: Location of IR sensor at the front of the follower cart.

The camera is used to detect four separate heat lamps placed on the back of the leader

cart. The heat lamps are placed in a square formation as shown in Figure 20, with two at the top

and two further down the sides.

Figure 20: Four heat lamps are secured to metal bars at the back of the leader cart.

This formation was chosen to be able to more accurately differentiate between detecting

changes in distance or orientation of the leader cart compared to the follower. The IR sensor

maps the temperature data onto a 32 x 32 pixel image to display the location of distinct heat

sources. A diagram of the heat lamp and sensor system as seen from a birds-eye view of the golf

carts is shown in Figure 21.

 23

Figure 21: Birds eye view of two heat lamps (squares) and the IR sensor (circle).

The pixel locations of the heat lamps, p1 and p2, are identified in the pixel frame. The

horizontal distance between the two heat lamps, d, is known, and so is half of the pixel viewing

dimension, P. Half of the sensor’s observable region range, D, is calculated using a distance-per-

pixel ratio. The formula for D is shown in Equation 8.

 𝐷	 = 	𝑃	 ∗ 	 !
|#!$#"|

 (8)

The distance between the two carts, z, is derived using D and half of the field of view of

the sensor which is 16.5°. The calculation for z is shown in Equation 9.

 𝑧	 = 	 0
-12(%3.5")

 (9)

The process of calculating D and z is repeated for every combination of two out of four

lamps. These values are then averaged and any outliers are removed to obtain an average

distance measurement between the two carts. If the horizontal and vertical distances between the

lamps in the pixel frame are changing, this means that the distance between the two carts is

changing. If only the horizontal distances between the heat lamps in the pixel frame is changing,

it is known that the orientation of the leader cart is changing.

 24

5 Mathematical/Numerical Analysis

5.1 Path Following Algorithm

To test the accuracy of the path following algorithm, the path of the leader cart needs to

be compared to the path of the follower cart. First, the two paths will be discretized into a set of

points. At each x coordinate, there is an associated y coordinate for the leader path and the

follower path. Figure 22 is the visual representation of this idea.

Figure 22: Visual for Residual Sum of Squares. The blue points represent where the actual

point of the cart is. The red points represent a point on the given path. The orange bars

represent a residual.

For each x coordinate, the residual is calculated with Equation 10.

𝑒 = 	𝑦 − 𝑓 (10)

The residual represents the error between the two paths. To find the total error, the

residual sum of squares must be calculated using Equation 11.

𝑆𝑆678 = 𝛴	𝑒9) = 𝛴(𝑦9 − 𝑓9)) (11)

 25

The residual sum of squares acts as a usual metric. However, as the path increases, the

residual sum of squares will increase. Therefore, a better metric would be the residual sum of

squares per unit length. Therefore, Equation 12 gives us the metric that should be minimized for

optimal path following.

(𝑚𝑒𝑡𝑟𝑖𝑐) 	= 	 ::#$%
;
= <('&$"&)'

<=((()*$(()'>('()*$'()'
 (12)

6 Experimental Validation

6.1 Leader Detection

For the leader detection, the accuracy was tested by recording the measured value at

known distance values of 5ft, 6ft, 7ft, 9ft, and 11ft. The percent errors from closest to farthest

were 33.19, 6.34, 7.32, 2.72, and 0.096. There was a relatively large error at 5ft, but that was

expected due the limited field of view of the IR camera causing the heat lamps to be partially out

of frame.

Figure 23: Test of Leader Detection Accuracy

 26

6.2 Path Following Algorithms

 To test the path following algorithm, a computer visualization software simulated the

ability of the follower cart to platoon. Instead of receiving signals from the leader cart, a

fictitious path was given to the follower cart to interpret. Three different paths were used to

verify the platooning ability. The three paths were a slow turn to the left, a fast turn to the right,

and a semi-circle. After the paths were given to the simulated follower cart, the locations of the

cart were recorded to compare to the original path. Figures 24-26 shows the results.

Figure 24: Test 1 of the path following algorithm. The given path is a straight line, followed by a

slow turn to the left.

 27

Figure 25: Test 2 of the path following algorithm. The given path is a straight line, followed by a

quicker turn to the right compared to Test 1.

Figure 26: Test 3 of the path following algorithm. The given path is a semicircle.

 Using Equations (10-12), Figure 27 shows the results. The cart performed best from Test

1 and the worst on Test 3. Therefore, the current algorithm can support straight line motion as

well as a small turning angle. However, as the turning angle increases, the cart is unable to

follow the path. The issues arise from steering tuning. The Stanley Controller performs properly,

 28

but the low-level control of translating the message into specific instructions for the cart needs to

be tuned properly.

 Test 1 Test 2 Test 3

Residual Sum of Squares 8.62 100.23 2373.39

Total Given Path Length 13.82 15.19 6.88

Residual Squared per Unit Length 0.62 6.60 344.83

Figure 27: Summary of Results

6.3 Acceleration

The first implementation of acceleration was designed to strictly take in the cmd_vel

topic values and did not correspond to actual movement in the real world. To translate these

values to the real world an experiment was conducted where cmd_vel topic values were sent to

the golf cart, and the time it took to reach 4 meters was measured. Knowing the distance and

time it took to reach 4 meters provides the velocity of the cart in the real world. Figure 28 shows

the results of the tests and a fit equation was generated.

Figure 28: Tuning Acceleration to True Environment

 29

This fit equation was then implemented into our code to ensure that cmd_vel values sent

to the cart had real world implications as well. The same test as above was implemented again to

test our new code and validate our work (Figure 29).

Figure 29: Tuned Acceleration

As seen in Figure 12 the new tuned acceleration code is fit with a linear trendline and a

high 𝑅)value helps validate the fact that the cmd_vel topic corresponds with a velocity in the real

world.

6.4 Particle Filter

To determine the effectiveness of the particle filter, an experiment was conducted in a

simulated environment to determine the effect of the golf cart’s velocity on the accuracy of the

estimated position. In order to conduct this simulation, a script was created with mock publishers

that the particle filter node subscribes to. These mock publishers send information about the

position, orientation, velocity, and steering angle of each golf cart to the particle filter. The

simulation started with a distance of 3 meters between each cart for each trial and the speed of

the follower cart matched the speed of the leader cart. The leader cart was then given varied

inputs for velocity to determine the correlation between those velocity inputs and the accuracy of

the estimated position. To measure accuracy, the actual x and y values for the follower cart were

 30

compared to the weighted average x and y values of the particle filter estimation. Equations (13-

15) were then used to calculate the distance (𝐷) between the follower cart’s actual position

(𝑋1?-/1; , 𝑌1?-/1;) and the particle filter’s estimation of the follower cart’s position

(𝑋78-9@1-7& , 𝑌78-9@1-7&).

𝐷 =	D𝑑𝑥) + 𝑑𝑦) (13)

𝑑𝑥 = 	𝑋1?-/1; − 𝑋78-9@1-7& (14)

𝑑𝑦 = 𝑌1?-/1; − 𝑌78-9@1-7& (15)

Figure 30: Effect of the golf carts’ velocity on particle filter accuracy.

As shown in Figure 30 above, the particle filter has larger error when moving at

velocities lower than 0.5 m/s, but at velocities of 0.5 m/s or larger, the accuracy of the particle

filter is relatively stable and unaffected by velocity. These results could be due to the fact that the

particle filter relies on sensor data to update the belief of the golf carts position. If the golf cart is

moving too slowly, then the error of the sensor readings is larger than the difference in the golf

cart's true position between readings. For example, if the golf cart’s leader detection accuracy is

 31

0.3 m, but the golf cart’s change in position is only 0.2 m, then it is difficult for the particle filter

to determine whether the change in position is due to the actual movement of the golf cart or due

to the inaccuracy of the sensor.

This information can be used to determine the optimal velocity for platooning. When the

golf cart is traveling at speeds greater than 0.5 m/s, then the average error of the estimated

position is 0.0633 m. This is an acceptable accuracy for successful platooning.

6.5 Platooning

For validation of our PID controller platooning method, we set our follower cart to have a

desired distance of 3 meters away from the back of the leader cart. The follower cart starts

exactly at this 3-meter distance for our testing. The leader and follower carts were then started at

the same time with the leader cart being driven at a constant speed in a straight line. The ZED

camera on the back of the leader cart recorded the distance that the follower cart was behind for

the duration of the test. Figure 31 below shows the results of our testing.

Figure 31: PID Platooning Validation

The initial peak in following distance from the start to around 3 seconds is primarily due to

the acceleration relay initially receiving the signal to start up. It is also an indication that

proportional gain (𝐾A) was too small to shorten this longer initial rise time. From 6 - 15 seconds

 32

the distance starts to hover around the desired 3 meters. When it dips below the desired 3 meter

mark an acceleration is no longer applied and only is reapplied when it is farther than 3 meters

away. This is also an indication that our integral gain (𝐾B) did its job of helping our system reach

its steady state in a relatively quick manner.

6.6 Accuracy of Map

 To test the map generation of the leader cart, the cart drove around the VICTOR lab three

times. An aerial view of the VICTOR lab is shown in Figure 32.

Figure 32: A Google Map image of the mapped area.

 As the cart moved around the lab, the LIDAR and two ZEDs all generated a point cloud

at a discretized series of locations. Synchronizing messages creates a map, shown in Figure 33.

 33

Figure 33: A point cloud visualization of the generated map from the leader cart.

Figure 34 shows the generated map overlaid on the satellite map of the VICTOR lab. The

two map line up well. The outlines of the building is crisp and accurate to the real world. Most

visual discrepancies from the two maps comes from the manual overlay rather than the accuracy

of the map itself.

Figure 34: The generated map overlaid on Google maps.

 34

7 Operation Manual

7.1 Setting up Leader Vehicle (Hardware)

1) Lift up the front row seats (within the cab of the golf cart)

2) There will be rows of batteries. On the wall nearest to the rear of the vehicle, there is a

switch located in the center of that wall. The switch should be pointed down. Flip the

switch up to “Run” to give the vehicle power.

3) On the dash of the vehicle (located to the right of the battery level), there will be a key.

Turn the key to the clockwise to allow the vehicle to run.

4) Approach the rear of the vehicle. Look between the rear row and the wheels, there will be

electronics in the storage area. In the back, there is a silver turning switch. Turn the

switch clockwise to allow electricity to flow in the back.

5) There will be a large inverter straight in front (large green and black box). On the right

side of the inverter, there should be a small switch to turn it on. Flip the switch to turn on

the inverter.

6) With all the power turned on, find the computer sitting on the rear row of the vehicle.

There should be a button on the right side of the computer. Press it to turn the computer

on.

Common troubleshooting:

A. If the computer doesn’t power on:

a. The cart may be dead: plug the cart in using the port in the cab of the vehicle.

b. The power strip might be off: find the power strip in the electronics portion of

the vehicle (look at step 4 to locate). The power strip will be on the right side of

the vehicle. Ensure the switch is on “reset” and not “off”

 35

c. The computer didn’t receive a signal: wait 10-15 seconds to allow the computer

to get the proper power. Press the on button again. Now the computer should be

on.

d. The computer appears off, but it is on: When the computer is on, the fan on the

computer will be spinning. Check to make sure it is on. If so, check the monitor in

the cab of the vehicle. Press the power button on the monitor to turn it on.

7.2 Map Generation with the Leader Cart

1. Follow 7.1 to power the computer and sensors.

2. Find the keyboard and mouse associated with the rear computer. Use them to login to the

computer.

3. Open the terminal. Type “cd ~/all_sensors” and press enter. The terminal will now be in

the proper workspace.

4. In that terminal, type “source devel/setup.bash” and press enter. This terminal now

correctly sourced the workspace.

5. Now, type “roslaunch zed_rtabmap_example demo_mapping.launch”. This will launch

all sensors and rtabmap. Generally, rtabmap usually takes ~30 seconds to launch properly.

Once rtabmap launches, the vehicle is ready to drive around and map the surroundings.

Common troubleshooting:

A. ZEDs don’t launch properly:

a. The front ZED isn’t plugged in: find the ZED at the front of the vehicle. Follow

the cord at the back of the ZED. It should be plugged into a USB extender near

the pedal. The USB extender might be hidden below the mat. Next, check the

computer in the rear to see if the USB extender is properly connected.

 36

b. The rear ZED isn’t plugged in: find the ZED at the back of the vehicle. Follow

the cord at the back of the ZED. It should be plugged into the computer in the rear

of the vehicle.

c. Other ZED nodes are running: Other ZED nodes might be running. First, make

sure that no other programs are running. Second, make sure that there is no other

“roscore” running in another terminal. Either of these can create issues with

launching the ZEDs.

B. LiDAR doesn’t launch properly:

a. The LiDAR isn’t powered: Find the LiDAR box on the left side of the rear of the

vehicle. It is the only thing connected to the LiDAR sensor on the top of the

vehicle. Make sure the black cord is plugged into the box.

b. The LiDAR isn’t connected to the router: Located the yellow ethernet cord

from the LiDAR. Make sure that it is both plugged into the LiDAR sensor and

router. Make sure the router is connected to the computer with another yellow

ethernet cord. Both of the cords are connected to ports 1-4.

c. The computer changed IP addresses: Check the IP address of the computer.

There are many ways to do this. One is to find the Angry IPScanner application.

Running the application and find the IP address for golf-desktop. Next, open the

file directory and go to the directory: “Home/all_sensors/src/zed-ros-

examples/examples/zed_rtabmap_example/launch”. Open file

“lidar_ouster_2.launch”. Look at the udp_dest parameter. Make sure that the

string of the IP address matches what you found earlier.

7.3 Map Localization with the Leader Cart

 37

1. Follow 7.1 to power the computer and sensors.

2. Find the keyboard and mouse associated with the rear computer. Use them to login to the

computer.

3. Open the terminal. Type “cd ~/all_sensors” and press enter. The terminal will now be in

the proper workspace.

4. In that terminal, type “source devel/setup.bash” and press enter. This terminal now

correctly sourced the workspace.

5. Now, type “roslaunch zed_rtabmap_example demo_localization.launch”. This will launch

all sensors and rtabmap. Generally, rtabmap usually takes ~30 seconds to launch properly.

Once rtabmap launches, the program will attempt to localize. Drive around until you get a

green box on the left of the rtabmap program. Once that occurs, the vehicle has been

localized.

Common troubleshooting:

C. Rtabmap doesn’t launch properly:

a. There is no map: To localize, there needs to be an existing map. Go to the file

directory and click the icon with three horizontal bars and then show hidden files.

Next, locate the directory “Home/.ros”. See if there is a file called “rtabmap.db”.

If not, follow 7.2 to generate a map.

D. ZEDs don’t launch properly:

a. The front ZED isn’t plugged in: find the ZED at the front of the vehicle. Follow

the cord at the back of the ZED. It should be plugged into a USB extender near

the pedal. The USB extender might be hidden below the mat. Next, check the

computer in the rear to see if the USB extender is properly connected.

 38

b. The rear ZED isn’t plugged in: find the ZED at the back of the vehicle. Follow

the cord at the back of the ZED. It should be plugged into the computer in the rear

of the vehicle.

c. Other ZED nodes are running: Other ZED nodes might be running. First, make

sure that no other programs are running. Second, make sure that there is no other

“roscore” running in another terminal. Either of these can create issues with

launching the ZEDs.

E. LIDAR doesn’t launch properly:

a. The LIDAR isn’t powered: Find the LIDAR box on the left side of the rear of

the vehicle. It is the only thing connected to the LIDAR sensor on the top of the

vehicle. Make sure the black cord is plugged into the box.

b. The LIDAR isn’t connected to the router: Located the yellow ethernet cord

from the LIDAR. Make sure that it is both plugged into the LIDAR sensor and

router. Make sure the router is connected to the computer with another yellow

ethernet cord. Both of the cords are connected to ports 1-4.

c. The computer changed IP addresses: Check the IP address of the computer.

There are many ways to do this. One is to find the Angry IPScanner application.

Running the application and find the IP address for “golf-desktop”. Next, open the

file directory and go to the directory: “Home/all_sensors/src/zed-ros-

examples/examples/zed_rtabmap_example/launch”. Open file

“lidar_ouster_2.launch”. Look at the udp_dest parameter. Make sure that the

string of the IP address matches what you found earlier.

7.4 Object Detection with Leader Cart

 39

1. Follow 7.1 to power the computer and sensors.

2. Find the keyboard and mouse associated with the rear computer. Use them to login to the

computer.

3. Open the terminal. Type “cd ~/zed_ws” and press enter. The terminal will now be in the

proper workspace.

4. In that terminal, type “source devel/setup.bash” and press enter. This terminal now

correctly sourced the workspace.

5. Type “roslaunch zed_wrapper zed2.launch” and press enter.

6. In another terminal, check to make sure you’re in the zed_ws. If so, type “source

devel/setup.bash”.

7. Lastly, type “rviz” and press enter.

8. In rviz, click the add button in the lower left corner of the program. Click the “By Topic”

tab on the top. Scroll down and find “zed2”. Within “zed2”, find “/point_cloud” and click

on it. It should drop down to show “/cloud_registered” and click on the “PointCloud2”.

After this you should see the point cloud from the zed.

9. Next, click the add button in the lower left corner of the program. Click the “By Topic”

tab on the top. Scroll down and find “zed2”. Within “zed2”, find “/obj_det” and click on

it. It should drop down to show “/objects” and click on the “ZedOdDisplay”. After this

you should see the point cloud from the zed.

Common troubleshooting:

A. Bad parameters: In “zed_ws/src/zed-ros-wrapper/zed_wrapper/params/”, there is a file

called zed2.yaml. In this, make sure that “od_enable” is “true”. Select the mc_[object]

 40

that you wish to detect. Additionally, change the “confidence_threshold” if you are

over/under selecting objects.

B. The ZED isn’t plugged in: find the ZED. Follow the cord at the back of the ZED. It

should be plugged into the computer in the rear of the vehicle.

7.5 Setting up Follower Cart (Hardware)

1. Lift up the front row (within the cab of the golf cart)

2. There will be rows of batteries. On the wall nearest to the rear of the vehicle, there is a

switch located in the center of that wall. The switch should be pointed down. Flip the

switch up to “Run” to give the vehicle power.

3. On the dash of the vehicle (located to the right of the battery level), there will be a key.

Turn the key to the clockwise to allow the vehicle to run.

4. Lift up the mat by the pedal. You will see a cluster of wires. There will be a deutsch

connector with yellow, purple, and white wires coming out of the male end. Plug in

purple, yellow, white end labeled “manual” to the male for the ability for a person to

drive. Plug in purple, yellow, white end labeled “autonomous” to the male for the ability

for autonomous driving.

5. Approach the rear of the vehicle. Look between the rear row and the wheels, there will be

electronics in the storage area. There will be a rectangular gray with red dial and a battery

logo centered on the dial. To power on, turn the dial to the green section. When the power

is turned on, you should hear the brake motor engage briefly.

6. With all the power turned on, find the NUC on the leftahnd side of the electronics box.

There should be a button on the front face of the NUC. Press it to turn the NUC on.

Common troubleshooting:

 41

A. If the computer doesn’t power on:

a. The cart may be dead: plug the cart in using the port in the cab of the vehicle.

b. The power strip might be off: find the power strip in the electronics portion of

the vehicle (look at step 4 to locate). The power strip will be on the right side of

the vehicle. Ensure the switch is on “reset” and not “off”

c. The computer didn’t receive a signal: wait 10-15 seconds to allow the computer

to get the proper power. Press the on button again. Now the computer should be

on.

d. The computer appears off, but it is on: When the computer is on, the fan on the

computer will be spinning. Check to make sure it is on. If so, check the monitor in

the cab of the vehicle. Press the power button on the monitor to turn it on.

B. Raspberry PI doesn’t turn on:

a. Raspberry PI isn’t connected properly: Look in the electronics box (look at

step 5 to locate). Find the Raspberry PI in the box. Make sure that the red light is

on the Raspberry PI. If not, unplug it and plug it back in.

7.6 Joystick Control

7.6.1 NUC Setup

1. Follow 7.5 to power the follower cart in autonomous mode.

2. Find the keyboard and mouse and plug into the NUC and login.

3. Open the terminal. Type “cd ~/steering_ws” and press enter. The terminal will now be in

the proper workspace.

4. In that terminal, type “source devel/setup.bash” and press enter. This terminal now

correctly sourced the workspace.

 42

5. Type “cd /src/steering_files/src”. This folder contains all iterations of the steering code.

6. Type “python3 ModifiedSteeringCMDVEL_scaled.py”. The steering column will now be

engaged and will be harder to turn

7. Run roslaunch teleop_twist_joy teleop.launch. The joystick is now on. Hold the middle

logitech button and move the left stick to control.

7.6.2 Raspberry PI Setup

1. Disconnect the keyboard and mouse from the NUC and plug into the Raspberry PI and

login. The password is “GolfCart”.

2. Open the terminal. Type “cd ~/testing_ws” and press enter. The terminal will now be in

the proper workspace.

3. In that terminal, type “source devel/setup.bash” and press enter. This terminal now

correctly sourced the workspace.

4. Type “rosrun accel_brake braking_cmd.py” and run. The brake will engage and then

disengage in a second.

5. In another tab type “source devel/setup.bash” and hit enter. Run each of the following

commands.

a. sudo chmod 666 /dev/spidev0.0

b. sudo chmod 666 /dev/spidev0.1

c. sudo chmod 666 /dev/gpiomem

d. rosrun accel_brake accel_cmd.py

6. The follower cart is now fully joystick controllable.

Common Troubleshooting

A. If commands are not allowed to be run. “Can not connect to localhost error”

 43

a. Make sure that the Leader Cart’s router is on.

b. The NUC and PI should also be connected to the follower carts router by ethernet.

c. Turn off WIFI on the NUC and PI, but allow wired connections.

d. Ensure a roscore is running on the leader cart.

B. Steering.

a. Ensure white CAN Bus cable is connected to NUC and power light is on.

b. Follow Figure 12 to ensure that all wires are correct on the PCB.

c. If the steering wheel is locked after code is stopped, unplug CAN Bus cable from

NUC.

C. Braking and Acceleration

a. Ensure PCB shield is securely connected onto Raspberry PI pins.

b. Follow Figure 35 to ensure wires are connected correctly.

Figure 35: Raspberry Pi Acceleration and Braking Wiring

c. Ensure the car is put into forward/reverse when running acceleration.

7.7 Platooning

1. On the leader cart to set up sensor and follower detection.

a. Follow 7.1 to power the computer and sensors.

 44

b. Open the terminal. Type “cd ~/zed_ws” and press enter. The terminal will now be

in the proper workspace.

c. In that terminal, type “source devel/setup.bash” and press enter. This terminal

now correctly sourced the workspace.

d. Type “roslaunch zed_ar_track_alvar _example zed_ar_track_alvar.launch”

e. Type “rosrun zed_rtabmap_example PID_w_steering.py”

2. On the follower cart to set up PID motion listening.

a. Follow 7.5 to set up Raspberry PI.

b. Open the terminal. Type “cd ~/testing_ws” and press enter. The terminal will now

be in the proper workspace.

c. In that tab type “source devel/setup.bash” and hit enter. Run each of the following

commands.

i. sudo chmod 666 /dev/spidev0.0

ii. sudo chmod 666 /dev/spidev0.1

iii. sudo chmod 666 /dev/gpiomem

iv. rosrun accel_brake rosrun accel_brake accel_pid.py

d. Follow 7.6.1 to set up steering.

Common Troubleshooting

A. Orange on the follower cart is not detected by the leader cart.: Check the Image

window containing the mask. If the white outline does not appear the orange is not being

detected. Different lighting conditions change the required HSV values in the

BallDetect_skeleton.py code.

 45

B. If the follower gets too close to the leader: Tune the Ki, Kp, Kd values in the PID.py

file.

C. Communication between both Carts: Make sure that both routers are on and the front

PC, follower NUC, and follower Raspberry Pi have connection. Check the bashrc files of

each machine to make sure that they are exporting the correct IP and hostname.

7.8 Gazebo Simulation

1. Logon to the “Team 2” NUC with associated mouse and keyboard

2. Open terminal and type “roslaunch catvehicle catvehicle_neighborhood.launch”. This

creates the gazebo environment with the vehicle (Ford Escape).

3. Open a second terminal and type “gzclient”. The gazebo program should launch and a

Ford Escape should be in a small neighborhood.

4. Open a third terminal and type “rosrun catvehicle cmdvel2gazebo.py”. This translates the

cmd_vel topic to gazebo messages to move the vehicle.

5. Open a fourth terminal and type “rosrun catvehicle path_planner2.py”. This program has

a pre-programmed path and chooses the ideal point and publishes it.

6. Open a fifth terminal and type “rosrun catvehicle stanley_controller2.py”. This uses the

ideal published point and determines how the vehicle can reach that point. Then, the

program publishes to cmd_vel.

Common Troubleshooting

A. The terminal isn’t properly sourced: Go to the file directory and click the icon with

three horizontal bars and then show hidden files. Find the .bashrc and open it. Make sure

that the sourced workspace is the catvehicle_ws.

 46

B. Gazebo Program doesn’t launch: If you launch gzclient too quickly after the

catvehicle_neighborhood, then the visual won’t launch. Quit both programs and restart,

allowing more time between the launches.

7.9 Leader Detection

1. Follow 7.1 and 7.5 to power on both the leader and follow cart

2. On the leader cart, plug in all four of the heat lamps; two of them are plugged into the

white surge protector while the other two need to be plugged into an extension cord

which is then plugged into the inverter.

3. Each lamp has a switch with a small line on one end which, when flipped down, turns on

the lamp. Flip all of the switches to turn them on, ensuring that they have enough time to

heat up before running leader detection code

4. On the NUC on the follower vehicle, open a terminal and type “sudo chmod 666

/dev/ttyACM0”

5. Open a new terminal and type “cd ~/golfcart_ws/src” to navigate to the folder containing

the leader detection code.

6. In the same terminal, run the python file by typing “python3 leaderdetection_v3.py”. You

should see a 32 x 32 pixel grid pop up with four black blobs in a rectangular formation,

indicating that all of the heat lamps on the leader cart are in the field of view of the IR

sensor. Distance values should also be printed out in the terminal.

Common Troubleshooting

A. Code outputs “ZeroDivisionError” instead of a distance: If the code continues to run

long enough to open the GUI, check if all four heat lamps are in the camera’s view, and

that the heat lamps have warmed up enough to be distinct from the environment

 47

B. One of the lamps is not heating up: Check the lamp is plugged in, turned on, and

receiving power. Then change the bulb in the malfunctioning lamp

8 Conclusions and Future Work

 As stated above, the main goal of this project is to create an autonomous platooning

system using two golf carts. The follower was able to autonomously maintain a consistent

distance from the leader cart along a straight path. The steering was able to be remotely or

computer controlled, but the control system needs to be refined to allow for it to be consistently

used in platooning. The problems with the Nexteer EPS connection from prior years has been

fixed, and the braking system and acceleration system have successfully mimicked the systems

that were developed for cart 788 by prior teams. A novel concept was developed for the leader

detection system that involved using a thermal sensor on cart 789 to detect four heat sources on

cart 788, and an algorithm to calculate distance between the two carts was implemented.

The next steps are to coordinate the platooning controller with the results of the particle

filter and leader detection systems to improve the reliability and accuracy of the follower’s

motion. Then, the system could be improved by fixing the platooning controls to more accurately

be able to perform hard turns, and potentially utilizing the leader detection system to track the

relative horizontal distance between the centers of the carts and their orientation to provide

feedback on the actual motion of the versus the predicted motion of the cart. Another important

feature to consider is improving and consolidating the information produced by the various

subsystems into a single informative user interface to provide the average user with

understandable updates and details on the motion of the carts.

 48

References

Bellan, R. (2022, March 1). Waymo to begin charging for robotaxi rides in San Francisco.
TechCrunch. Retrieved March 28, 2022, from
https://techcrunch.com/2022/02/28/waymo-to-begin-charging-for-robotaxi-rides-in-san-
francisco/

Fernandes, P., & Nunes, U. (2010). Platooning of autonomous vehicles with intervehicle
communications in SUMO traffic simulator. Annual Conference on Intelligent
Transportation Systems, 1313-1318. doi:10.1109/ITSC.2010.5625277

Fukao, T., Aoki, T., Sugimachi, T., Yamada, Y., Kawashima, H. (2013). Preceding Vehicle
Following Based on Path Following Control for Platooning. IFAC Proc. Vol., 46 (21), pp.
47-51

 Jeyachandran, S. (2020, March 4). Waypoint - the official waymo blog: Introducing the 5th-
generation Waymo Driver: Informed by experience, designed for scale, engineered to
tackle more environments. Waymo Blog. Retrieved March 28, 2022, from
https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html

Lampinen, M. (2020, August 3). Lidars for self-driving vehicles: A technological arms race.
Automotive World. Retrieved March 28, 2022, from
https://www.automotiveworld.com/articles/lidars-for-self-driving-vehicles-a-
technological-arms-
race/#:~:text=It%20is%20used%20by%20a,up%20to%2060%20metres%20away.

Smith, B. (2013, December 18). Human error as a cause of vehicle crashes. Center for Internet
and Society. Retrieved March 20, 2022, from
http://cyberlaw.stanford.edu/blog/2013/12/human-error-cause-vehicle-crashes

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J.,
Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P.,
Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., … Mahoney, P. (2007). Stanley:
The robot that won the DARPA Grand Challenge. Journal of Field Robotics, 23(9), 661–
692. https://doi.org/10.1002/rob.20147

Tsugawa, S. (2014). Results and issues of an automated truck platoon within the energy ITS
project, Proc. 25th IEEE Intell. Veh. Symp., pp. 642-647.

Tsugawa, S., Jeschke, S., & Shladover, S. E. (2016). A review of truck platooning projects for
energy savings. IEEE Transactions on Intelligent Vehicles, 1(1), 66-77.
doi:10.1109/TIV.2016.2577499

Waymo. (2022). Waymo Company History. Waymo. Retrieved March 28, 2022, from
https://waymo.com/company/#story

