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Abstract 

While the Von-Neumann architecture-based digital computing framework has been the 

foundation for modern information processing, there are certain classes of computational 

problems that are still considered intractable to solve using digital computers. Such 

problems entail exponentially increasing computing resources with increasing problem 

size. This has motivated the exploration of alternate computing paradigms. Ising 

machines have emerged as a promising candidate for solving such computationally 

challenging problems e.g., the NP-Hard problem, Maximum Cut (Max-Cut) of a graph. 

However, the effectiveness of this paradigm and its ability to outperform state-of-the-art 

digital computers will ultimately be decided by the area, scalability, energy efficiency, and 

performance of the underlying hardware implementation. Current implementations using 

CMOS, optical phenomena as well as qubits have limitations in terms of these 

performance parameters. 

In this dissertation, the electronic oscillator-based Ising machine (OIM) is investigated due 

to its promise of CMOS compatibility, compactness, and room-temperature operation. 

Prior works on coupled oscillator Ising machines have focused on small-scale prototype 

implementations (4-8 oscillators), while larger designs have been limited to solving only 

planar and sparse graphs. Therefore, to establish the coupled oscillator platform as a 

promising candidate for realizing physical Ising machines, its scalability needs to be 

evaluated- which remains missing and is the primary focus of this dissertation. To 

accomplish this, a 672 oscillator-based Ising machine IC (65nm GP CMOS technology) 

with 30,896 programmable coupling elements is developed. Using this platform, a 
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fundamental trade-off between the solution quality and the time-to-compute is 

experimentally revealed. Further, we evaluate methods to overcome this tradeoff and 

propose a hybrid (OIM + heuristic local search) approach. Our projections show that the 

hybrid approach offers 3-100× improvement in experimentally measured time-to-compute 

at iso-solution quality, compared to a digital algorithm. Finally, we expand on the 

dynamical system model to enable solving a broad range of problems requiring multi-

valued ‘spin’ states such as the traveling salesman problem, the graph coloring problem, 

the Hamiltonian path/cycle problem, etc. 
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Chapter 1 

 

Introduction 

1.1. Motivation 

The idea of high-performance computing with applications that have transcended various 

facets of our society has primarily developed around the Von-Neumann architecture [1] 

which implements the “Turing Machine” model of computation [2] with a clear distinction 

between processing units and memory. Such a computing framework—the work-horse of 

modern information technology— serves as a ubiquitous computational model that solves 

problems by decomposing them into a set of sequential binary operations [3-11]. 

However, not all computing problems are created equal. Despite the tremendous success 

of digital computers, it becomes increasingly inefficient in solving certain classes of 

computational problems. Such problems, commonly known as NP-hard (non-

deterministic polynomial times hard) problems, require an exponentially increasing 

number of operations for increasing sizes of the input problem - a fundamental property 

of the NP-hard computational classes of problems. Many Combinatorial optimization 

problems belong to this NP-Hard class of computational complexity [12-16]. It entails the 

maximization/minimization of an objective function in the combinatorial/discrete domain 

under a given constraint and finds a wide range of applications from artificial intelligence 

[17], and communication networks [18], data mining [19] to molecular biology [20], 

biocomplexity [21], molecular chemistry [22][23], scientific discovery [24]. However, in 

order to find the optimal solution to these problems, the solution space that needs to be 
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investigated increases exponentially with the problem size. As a result, these problems 

are still considered intractable to solve using digital computers as it requires exponentially 

increasing resources (computation time and memory) [25][26]. This is further aggravated 

by the Von-Neumann bottleneck [27-32] arising from the limited transfer rate between the 

processing and memory unit (the processing unit is idle while the memory block is 

accessed). Therefore, this has naturally motivated the quest to explore beyond-digital 

computing fabrics [33-43] that can confront the challenges associated with solving such 

a computationally hard class of problems.  

One potential approach is to map such problems to the Ising model [44] [45] originally 

developed for interacting spin systems. Objective functions of many combinatorial 

optimization problems (such as the Max-Cut problem, illustrated in chapter 2) can be 

formulated as the minimization of the Ising Hamiltonian [46]. This has motivated the 

investigation of physical Ising machine platforms for solving computationally hard 

problems. In this dissertation, the coupled electronic oscillator-based Ising machine (OIM) 

is extensively evaluated as it facilitates CMOS compatibility, compactness, and room-

temperature operation, compared to other approaches (detailed in the next section). OIMs 

exploit the fact that the energy function of the oscillator dynamical system can be mapped 

to the Ising model and consequently, as the system evolves to minimize its energy and 

reach its ground state (corresponding to optimal solution), it will naturally compute the 

solution to the problem [47]. However, while the coupled oscillator-based approach is 

promising, system scalability will be a critical factor in deciding its eventual success; the 

evaluation of which remains missing in the existing literature.  
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Therefore, in this dissertation, to achieve this overarching goal of evaluating the system 

scalability, first the implementation and demonstration of a scaled oscillator Ising machine 

IC of 672 oscillators and 30896 coupling elements is performed. The hardware platform 

uniquely facilitates categorical investigation of the challenges and the critical scaling 

trends not only in terms of implementation but also in terms of computational performance 

(solution accuracy, compute-time) at scaled nodes. In addition, a hardware-algorithm-

based hybrid approach is demonstrated to circumvent these challenges and to facilitate 

a successful realization of scaled oscillator Ising machines. Moreover, it is to be noted 

that prior works on oscillator Ising machines have been limited to solving a small subset 

of optimization problems such as the MaxCut. Solutions to such problems constitute 

binary spin states (±1). However, there is a broad range of problems in combinatorial 

optimization, computing solutions of which require multiple spin states such as traveling 

salesman, graph coloring, Hamiltonian cycle, etc., and utilization of OIMs to compute the 

solution to such problems remains missing. Therefore, in the dissertation, the applications 

of  OIM are expanded by presenting its capability to compute problems, with solutions 

beyond binary spin configurations. 
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1.2. Prior Studies 

There has been an active research effort to realize a physical Ising machine that 

inherently evolves to minimize its energy and, thus, naturally solves the Ising problem. 

Examples of such demonstrations include the D-Wave quantum annealer [48–53], optical 

parametric oscillator-based coherent Ising machines (CIMs) [54–59], and SRAM-based 

Ising machines that use CMOS annealing [60], as well as the CMOS annealing 

processors that use processing—in-/near—memory [61–63]. Quantum annealers 

proposed by D-Wave systems require cryogenic temperature (-273 oC) to operate and 

necessitate high cooling power (~25 KW) and a large volume (700 ft3) for implementing 

the necessary cooling system [64] [65]. On the other hand, parametric oscillator-based 

(optical) coherent Ising machines have been proposed where Ising spins are represented 

as laser pulses traveling on multiple km long optical fiber, which limits the energy and 

area efficiency [66]. Moreover, digital implementations require stochastic random number 

generators as an annealing mechanism over thousands of cycles where the spin states 

need to be repeatedly evaluated and updated [62].   

Coupled oscillators have also been explored as an alternate non-Boolean approach to 

solving computationally hard problems [67–79] and, more importantly, have recently been 

shown to behave as Ising machines [47,80–83]. Wang et al. [47], and Chou et al. [81] 

demonstrated Ising machines using four resistively coupled sinusoidal oscillators 

operating under the influence of a second-harmonic injection signal, and Dutta et al. [82] 

showed a similar functionality in four capacitively coupled injection-locked VO2 oscillators. 

Moreover, Ahmed et al. [83] recently demonstrated a scaled IC of 560 hexagonally 

connected CMOS-based oscillators to solve the Max-Cut in large planar graphs. In 
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contrast to other approaches mentioned above, such oscillator Ising machines (OIMs) 

provide a room-temperature solution that can be realized in a compact integrated circuit 

using CMOS as well as emerging technologies and attest to the increasing interest in 

exploring coupled oscillators to solve computationally hard problems.  

However, even though OIMs provide a promising pathway to solving computationally 

expensive combinatorial optimization problems, several challenges need to be addressed 

in order to develop this platform as a key candidate for Ising hardware, which remains 

missing in the existing literature. Prior works [80-83] have focused on demonstrating the 

functionality of OIM for extremely sparse and planar graphs.  Such graphs are not NP-

Hard and can be easily solved using digital algorithms in polynomial time [84]. Therefore, 

one of the challenges that need to be addressed is the implementation of a fully 

reconfigurable OIM for non-trivial system size and evaluating the impact of graph 

connectivity (both dense and sparse non-planar graphs) on the solution accuracy of 

OIMs. Moreover, the assessment of the scalability of OIM is paramount for its successful 

realization as a technology which remains missing in the prior works. As we scale up the 

system size, two key challenges evolve that are required to be tackled. Firstly, the number 

of coupling elements that are required increases quadratically with system size, which 

can considerably limit the area and reconfigurability that can be achieved. Secondly, the 

complexity of the solution space that needs to be evaluated by OIM at scaled nodes 

increases significantly, and subsequently, there can be a significant degradation in 

solution quality. As a result, the evaluation of these fundamental trade-offs in scaled OIMs 

need to be addressed for its eventual success. Furthermore, most of the works in the 

literature involving OIMs have focused on a small subset of combinatorial optimization 
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problems, such as the Max-Cut, the solution of which entails only binary spin 

configurations. Consequently, a key challenge is to demonstrate the applicability of OIM 

to solve a vast subset of problems whose solutions entail multi-valued spin configurations 

such as the Max-K-Cut, Travelling Salesman, Graph Coloring, Hamiltonian cycle/path, 

Graph Partitioning, etc., which remains unexplored in the prior works. Therefore, in this 

dissertation, we extensively evaluate each of these challenges and their potential 

solutions, which are detailed in the following chapters, as illustrated in the next section 

(dissertation organization). 

 

 

 

 

Fig. 1.1. Summary of different approaches for physical implementation of the Ising model. 
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1.3. Dissertation Organization 

The dissertation is organized as follows: Chapter 1, as was already presented, discusses 

the motivation behind this research and the prior studies in this research area.  

Chapter 2 first discusses the Ising model and the equivalence between the energy 

function of the coupled oscillator network and the Ising Hamiltonian. Subsequently, an 

integrated circuit (IC) consisting of 30 coupled oscillators with fully programmable 

capacitive coupling (30P2=870) among them (first demonstration of fully reconfigurable 

electronic oscillator Ising machine IC) is demonstrated, which allows the processing of 

graphs (up to 30 nodes) with arbitrary connectivity. The fully reconfigurable feature of the 

OIM implementation enables extensive evaluation of the impact of graph connectivity (a 

varied range of sparse and dense graphs were randomly generated) on the solution 

quality and the computational properties of OIM, to solve the NP-Hard Max-Cut problems 

in non-planar graphs.  

Chapter 3 presents the investigation of the scalability of OIMs and addresses the key 

challenges with scaling up the system both with regard to implementation and 

computational performance (solution time & accuracy). To enable scalable OIM 

implementation (672 oscillators and 30896 coupling elements) we adopt a tile-based 

coupling architecture that facilitates a maximum degree of 111 i.e. an oscillator can be 

connected to 111 other oscillators in the network. Moreover, this platform uniquely 

enables us to characterize non-planar graphs of varying connectivity (NP-Hard) at scaled 

nodes and experimentally reveal the accuracy vs. time-to-compute trade-off of OIMs, as 
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we increase the system size. Subsequently, a hybrid approach is proposed and 

experimentally demonstrated to optimize the trade-off in OIMs. 

While the previous chapters primarily focus on the oscillator Ising machines to solve the 

MaxCut problem (solution constituting only binary spin configurations), in chapter 4, 

oscillator Ising machine work is extended from computing Max-Cut to solving a large 

subset of problems in combinatorial optimization such as Max-K-Cut, Travelling 

Salesman, Graph Coloring, Hamiltonian cycle/path, etc. (solution constituting multi-

valued spin configurations) by developing novel synchronized oscillator based computing 

models. Therefore, synchronized oscillator system dynamics are expanded and showed 

that it can be engineered to solve different optimization problems by appropriately 

designing the coupling function and the external injection to each oscillator. 

 Chapter 5 presents future avenues of research topics that can be a potential extension 

of this dissertation work. Chapter 6 concludes by summarizing the key outcomes and 

contributions of the dissertation.  
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Chapter 2 

Coupled Oscillator Based Ising Machines (OIM)  

In this chapter, the direct mapping of the Max-Cut problem to the Ising Hamiltonian: H =

−∑ Jijsisj
N
i,j  is shown, where each spin s corresponds to a node of the graph and can take 

binary values s ∈ {±1}, N is the total number of nodes in the problem, and Jij is the 

interaction coefficient between nodes i and j. Computing the Max-Cut solution then 

corresponds to minimizing H [47]. In addition, a coupled relaxation oscillator IC to solve 

the Max-Cut problem in non-planar (NP-Hard) graphs is demonstrated. The platform 

incorporates: (a) 30 programmable CMOS Schmitt-trigger-based relaxation oscillators 

that operate under the influence of a second-harmonic injection signal (finj ≅ 2*fR where fR 

is the resonant frequency); (b) Reconfigurable and symmetric capacitive coupling among 

the oscillators i.e. any oscillator can be coupled to any and all other oscillators which 

allows us to process a graph (up to 30 nodes) with arbitrary connectivity. Moreover, the 

reconfigurability incorporated in the design provides a unique opportunity to characterize 

and evaluate the dynamics and computational properties of the system over a range of 

graph sizes and connectivity.  

 

2.1. The Ising Model 

The Ising model is named after German physicist Ernest Ising who in 1925 developed a 

mathematical model for explaining domain formation in ferromagnets [44]. It comprises a 
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group of discrete variables spins (si), each taking a binary value ±1, such that an 

associated “energy function”, known as the Ising Hamiltonian, is minimized: 

                         H = −∑ Jijsisj − ∑ hisi
N
i

N
i,j  

where N represents the number of nodes in a particular problem set, Jij represents the 

weight values interconnecting the nodes, si = [si…sn] represents the solution space 

where si can take the value of either +1 (spin ↑) or −1 (spin ↓), and hi is the local field 

parameter. For the problem of interest here we drop the hi term and under this 

simplification, the Ising Hamiltonian becomes H = −∑ Jijsisj
N
i,j . The Ising Model has 

become particularly interesting as many hard optimization problems can be mapped to it. 

Recently, in 2014, A. Lucas et al. have shown that all of Karp’s 21 NP-complete problems 

can be mapped to the Ising model by assigning appropriate values to the coefficients [46]. 

As a result, developing a physical system that can minimize Ising Hamiltonian (Ising 

Machines) has become an active area of research for solving such computationally 

challenging problems owing to its promise of outperforming conventional digital 

algorithms.  

 

2.1.1. Ising Formulation of the Max-Cut problem 

The Max-Cut problem can be mapped directly to the Ising Hamiltonian, and the solution 

to the problem is represented by the state s which minimizes H. The Max-Cut of a graph 

G(V, E) (V: vertices; E: edges) is a cut that divides G into two sets such that the number 
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of common edges between them is as large as possible; the number of common edges 

is the value of the Max-Cut. 

To explain this mapping scheme, the vertices of a graph are divided into two sets- V1 and 

V2. Accordingly, all the edges in the graph are separated into two groups- those that 

connect vertices within V1 (W1), those within V2 (W2), and the cut set containing edges 

across V1 and V2 (Wcut). By convention, Jij is considered to be the opposite of the weight 

of the edge between vertices i and j, i.e., Jij  = −Wij. Then, W1+W2+Wcut = ∑ Wiji,j =

−∑ Jiji,j . We can write the Ising Hamiltonian as follows: 

 

Therefore, when the Ising Hamiltonian is minimized, the cut size is maximized 

(corresponding to the Max-Cut solution). Due to this direct mapping between the Ising 

model and the max-cut problem, it is commonly used to benchmark the computational 

performance of the Ising machine. 
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2.1.2. Minimizing the Ising Hamiltonian Using Coupled Oscillators 

Wang et al. in 2017 [47] were the first to develop the model showing the equivalence 

between coupled oscillator platform and the Ising model which is briefly discussed below. 

In order to map the Ising model to the coupled oscillator network, the spins (i, j) are 

represented by oscillators, the interaction co-efficient (Jij) is represented by the coupling 

element and the spin state (+1 ↑, -1 ↓) is represented by the oscillator phases (0o or 180o). 

To binarize the oscillator phases, an external second harmonic injection signal (SHIL) is 

applied to all the oscillators in the network which induces each oscillator to settle to one 

of two stable phase-locked states (0o or 180o) [47][87]. It is to be noted that the external 

SHIL signal helps induce the bipartition (Fig. 2.1); without this signal, the oscillators exhibit 

a continuous phase ordering (as shown in prior works [70,88-89]). 

The continuous-time dynamics of the phase difference between the oscillator and 

injection-locking signal can be described by [87][90],  

  

 

where K is the coupling strength of the network, Ks is the strength of the SHIL signal, and 

J
ij
 sets the connectivity of the network. 

The continuous-time dynamics of the network are dictated by the energy of the system, 

or the Lyapunov function E(ϕ), which is expressed as, 

            E(ϕ(t)) = −K ∑ Jij cos (ϕi(t) − ϕj(t)) − Ks.  cos(2ϕi(t))                                           (2)

i,j, j≠i

 

d(ϕi(t))

dt
= −K ∑ J

ij
sin (ϕ

i
(t) − ϕ

j
(t)) − Ks.  sin (2ϕ

i
(t))                                       (1)

n

j=1, j≠i
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Now, differentiating, equation (2) with respect to ϕ, 

 

 

 

 

 

 

 

 

 

Fig. 2.1. Evolution of the oscillator phases (a) without and (b) with second-harmonic injection signal. 

Continuous phase ordering is observed in absence of SHIL whereas binarization of oscillator phases is 

observered in presence of SHIL. 

 

(a) (b)

dE(ϕ(t))

dϕi
= −K ∑ Jkl

d

dϕk
cos(ϕk(t) − ϕl(t)) − K ∑ Jlk

d

dϕk
cos(ϕl(t) − ϕk(t)) 

n

l=1, l≠k

n

l=1, l≠k

 

−Ks.
d

dϕk
cos(2ϕk(t)) 

= K ∑ Jkl sin(ϕk(t) − ϕl(t)) − K ∑ Jlk sin((ϕl(t) − ϕk(t)) + 2. Ks.  sin(2ϕk(t))

n

l=1, l≠k

n

l=1, l≠k

 

= 2. K ∑ Jkl sin (ϕk(t) − ϕlj(t)) + 2. Ks.  sin(2ϕk(t))

n

l=1, l≠k

 

= −2.
d(ϕk(t))

dt
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So, the energy function of the coupled oscillators under SHIL is naturally minimized over 

time. At points where every phase value (ϕ) is either 0o or 180o,  

   for Δϕ = 0o, cos (ϕi(t) − ϕj(t)) = si. sj = +1 and cos(2ϕ) = 1  and  

  for Δϕ = 180o, cos (ϕi(t) − ϕj(t)) = si. sj = −1 and cos(2ϕ) = 1   

Therefore, (2) can be rewritten as,  

 

 

which is equivalent to the Ising Hamiltonian with a constant offset. Therefore, as the 

coupled oscillator system under SHIL evolves to minimize its energy and reach the 

ground state, it minimizes the Ising Hamiltonian and functions as an Ising machine. 

 

 

 

 

Therefore, 

 

E(ϕ(t)) = −K ∑ Jij cos (ϕi(t) − ϕj(t)) − n.  Ks

i,j, j≠i

 

= −𝐾.∑𝐽𝑖𝑗𝑠𝑖𝑠𝑗 − 𝑛.𝐾𝑠

𝑖,𝑗
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2.2 Hardware Implementation of Fully Reconfigurable Oscillator Ising 

Machine (Test Chip-1) 

 

The fully reconfigurable 30-oscillator Ising machine IC is fabricated using the bulk CMOS 

65nm technology and occupies a total area of 1.44 mm2. The measured power dissipation 

of the chip is 1.76 mW with each oscillator consuming 52.4 µW. Fig. 2.2a shows the block 

diagram of the IC which incorporates the following:  

1. Oscillator. The basic computational unit of the hardware platform is the oscillator which 

is implemented using a Schmitt trigger inverter module along with negative RC feedback 

 

Fig. 2.2. (a) Block diagram; (b) Die photo of the IC consisting of coupled oscillators. (c) Schematic of 

the fully reconfigurable capacitive coupling scheme. The design facilitates ‘all-to-all’ connectivity which 

enables any arbitrary graph (up to 30 nodes) to be processed using the oscillators. (d) Circuit schematic 

and time domain output waveform of a single oscillator. (e) Programmability of the oscillator frequency 

using the current starver circuit. 

 

Die photo of the oscillator IC(a) (b)Block Diagram of the oscillator IC
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(Fig. 2.2d). The total area occupied by the oscillator is approximately 28 µm2. The 

oscillator implementation utilizes: 

A. Switched-Capacitor: The feedback resistor (RF = 402 MΩ) is implemented using a 

switched capacitor. The target resistance is achieved by applying two out-of-phase 

sinusoidal signals of frequency (f) 1.5 MHz onto the gates of the two MOSFETs that 

connect the capacitor (Cgg = 1.6 fF) to the input and output of the switched capacitor 

circuit; RF = 1/(f*Cgg). 

B. Output Buffer: The output of each oscillator is passed through an inverting hysteretic 

output buffer which digitizes the output while preserving the critical phase information 

(Fig. 2.2d). The binary output of the oscillator simplifies the measurement and read-out 

of the oscillator phases.  

C. Current starver circuit: The operating parameters of the oscillator such as frequency 

can be controlled using the current starver circuits implemented at the header and the 

footer. The current starver helps modulate the charging and discharging current of the 

oscillator and therefore, the oscillation frequency as shown in Fig. 2.2e. 

2. Reconfigurable Coupling Architecture. Fig. 2.2c shows a detailed view of the “all-

to-all” reconfigurable coupling scheme. Each oscillator can be coupled to any other and 

all other oscillators through a T-gate and a coupling capacitor (CC = 32.5 fF). The coupling 

elements are programmed according to the adjacency matrix of the input graph. When 

there is an edge between two vertices i.e. Aij = Aji = ‘1’, the corresponding T-gate 

associated with the coupling capacitor Cij is switched ON to facilitate capacitive coupling 

between vertices i and j.  
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3. I/O Ports 

A. Serial-input parallel-output (SIPO) shift registers: Serial-input, parallel-output (SIPO) 

shift registers are used to program the oscillators (ON/OFF) and the coupling network. 

B. 32:1 MUX: A 32:1 Multiplexer is used at the output to select and read the time domain 

output waveform of each oscillator in a serial fashion. The outputs are read using a PGLA 

(Pattern Generator Logic Analyzer). 
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2.3. Evaluation of the Computational Properties of the Oscillator Ising    

Machine  

 

 

Fig. 2.3. Experimentally measured dynamics of the coupled oscillators (operating under the influence 

of a second-harmonic injection locking signal) for a representative 6 node graph. It can be observed 

from the polar plot that the oscillator phases exhibit a bi-partition which can be used to compute a high-

quality Max-Cut of the graph. 
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2.3.1. Computing Max-Cut Using Oscillator Ising Machine  

To compute the Max-Cut of a graph using the coupled oscillators, we start with the 

adjacency matrix A of the graph where Aij indicates the presence (Aij=1) or absence (Aij=0) 

of an edge between node i and j of the graph. Since undirected graphs are considered 

here, Aij=Aji. Each node of the graph is mapped to an oscillator and every edge 

(represented by Aij=Aji) to a coupling capacitor; node ≡ oscillator; edge ≡ coupling 

capacitor; oscillator phase ≡ set (created by the cut) to which the node belongs. In the 

context of the proposed hardware, the number of rows (or columns) in A represents the 

number of oscillators required to process the graph, and Aij is used to configure the 

corresponding coupling among the oscillators. The capacitors couple the oscillators 

negatively i.e. oscillators exhibit phase repulsion when capacitively coupled, and have a 

negative relationship to the edge weight. The matrix A is passed on to the SIPO registers 

to initialize a topologically similar oscillator network. The external injection signal which is 

applied to the current mirrors implemented at the header and footer of each oscillator 

constitutes a sinusoidal signal with a peak-to-peak amplitude of 150mV, DC offset (footer: 

0.5 V, header: 0.3 V), and a frequency (finj) approximately twice the resonant frequency 

of the coupled circuit, i. e.  finj ≅ 2fR. It is to be noted that the external sub-harmonic signal 

helps to induce the bi-partition i.e. 0o or 180o which corresponds to the two sub-sets 

created by the Max-Cut.  Fig. 2.3 shows the experimentally measured oscillator outputs 

along with the corresponding phase plot for a representative 6-node graph. A bi-partition 

in the oscillator phases observed in the polar plot corresponds to the two subsets (Set I 

and II) created by the Max-Cut and the Max-Cut value can subsequently be computed by 

counting the number of common edges (=8 in this example) between the sets. 
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2.3.2 Effect of Graph Size and Connectivity on the Solution Quality 

The computational performance of the hardware is tested by generating random graph 

instances with V=10, 20, 30 nodes, and having a varied range edge density, ƞ= 0.2, 0.4, 

0.6, 0.8 (ƞ is the ratio of the number of edges in the graph to the number of edges in an 

all-to-all connected graph of the same size);  three graphs are tested for each combination 

of V and ƞ (Fig. 2.4a) with each graph being measured 10 separate times (only non-planar 

graphs are considered here). It is evident that larger and denser graphs have larger Max-

 

Fig. 2.4. (a) Bar plot showing the measured Max-Cut solutions for 36 randomly generated graph 

instances as a function of their size and edge density; (b) Bubble plot comparing (best case) Max-Cut 

solution obtained from the oscillators with the optimal Max-Cut of the graph; (c) Variation of cluster 

separation (i.e. angular separation between the two oscillator phases) with graph size and edge density. 
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Cuts, and consequently, are more challenging to solve. Fig. 2.4b shows a bubble plot 

comparing the value of the measured Max-Cut (best case) using the oscillators with the 

optimal solution obtained using the BiqMac solver developed by Rendl et al. [91], [92]. It 

can be observed that the solution to most of the analyzed graphs lies near- or on the 

identity line (y=x) although larger graphs tend to show higher deviations from the optimal 

solution. As measured, the oscillator solution is within 99% of the optimal solution in 12 

of the 36 graphs. The larger value of the Max-Cut in the larger and denser graphs makes 

them challenging to solve. This property also manifests in the oscillator dynamics such 

as the cluster separation (defined as the difference between the mean phases of each 

cluster) shown in Fig. 2.4c. Larger and denser graphs show reduced phase separation 

(i.e. more deviation from the ideal 180o phase difference) in comparison to smaller and 

sparser graphs implying that the system finds it increasingly challenging to attain the 

global energy minima corresponding to the optimal Max-Cut solution. 

To improve the Max-Cut solution obtained from the oscillators, a simple polynomial-time 

scheme based on local search is proposed as shown in the flow-chart in Fig. 2.5a. Using 

the Max-Cut solution computed from the oscillators, the scheme proceeds by moving 

nodes between the sets if and only if the move increases the value of the Max-Cut. This 

process is repeated until no more nodes can be found that can increase the value of the 

cut. The cumulative graph count distribution as a function of the distance from the optimal 

solution (i.e. difference between the Max-Cut solution obtained using the coupled 

oscillators and optimal Max-Cut) before and after post-processing shows the 

corresponding improvement in the solution for the experimentally measured graphs (Fig. 
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2.5b). The hybrid hardware-algorithm approach produces the optimal Max-Cut in 26 

(~72%) of the 36 graphs. Moreover, the oscillators are also effective in solving challenging 

dense graphs where they produce optimal solutions in 7 out of the 9 measured graphs 

with edge density ƞ=0.8. 

 

2.4. Summary 

In summary, the computational properties of coupled oscillators to solve the NP-Hard 

Max-Cut problem were experimentally investigated by developing a prototype IC of 30 

oscillators with reconfigurable all-to-all coupling. The fully reconfigurable feature of the 

prototype oscillator Ising machine IC enables exploration of the effect of edge density 

 

Fig. 2.5.  (a) Flow chart for the local search-based post-processing scheme to improve the Max-Cut 

solution generated by the oscillators. (b) Deviation of the oscillator generated Max-Cut solution (w/ and 

w/o post-processing) from the optimal solution. 
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(sparsity and density of the graph) on the solution quality for varying problem sizes. The 

evaluation of the randomly generated graph instances over a varied range of connectivity 

experimentally reveals that as the problem size increases, the graphs with denser edge 

density yield lower solution accuracy. Moreover, to improve the solution quality, a 

polynomial time post-processing algorithm is developed and it shows that using minimal 

post-processing the solution accuracy can be significantly enhanced even in non-planar 

dense graphs. However, such lowering of the solution quality as we advance towards 

larger and denser graphs (even for a problem size of 30 nodes) preludes to the fact that 

the system scalability will be a critical factor in deciding the eventual success of oscillator-

Ising machines- which is the main focal point of discussion in the next chapter.  
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Chapter 3 

Scalability of the Oscillator Ising Machine 

In this chapter, the key challenges regarding the scalability of oscillator Ising machines 

are investigated. To evaluate and ultimately circumvent the challenges of a scaled OIM 

system, the implementation of a 672 oscillator-based Ising machine IC with 30896 

programmable coupling elements is performed. Such reconfigurability in the coupling 

scheme is achieved by employing a tile-based architecture, which facilitates >13x 

improvement in terms of connectivity (maximum degree) over prior OIM designs at scaled 

nodes [80,83]. Subsequently, the role of input graph properties (size & connectivity) on 

the computational performance (compute time & solution accuracy) is performed which 

enables experimental demonstration of the inherent trade-off for oscillator Ising machines, 

where achieving a significant speedup in compute time while maintaining high solution 

quality at scaled nodes becomes challenging. Consequently, a hybrid approach is 

developed that exploits the oscillator Ising machine to obtain near-optimal solutions (very 

fast), which are then subsequently improved using a simple local-search algorithm with 

minimum time penalty (elucidated in the following sections). Utilizing the hybrid approach, 

we experimentally demonstrate 3-100× improvement in experimentally measured time-

to-compute at iso-solution quality, when compared to a digital algorithm (manifold 

optimization [93], executed on a 32-core processor with 256GB RAM). Finally, 

benchmarking of the proposed implementation with the digital algorithm is performed. 
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3.1 Hardware Implementation of Scaled Oscillator Ising Machine (Test 

Chip-2) 

The CMOS oscillator-based scaled Ising machine IC (Fig. 3.1a) is realized using 672 

oscillators implemented using a CMOS Schmitt trigger-based design with RC feedback, 

as shown in Fig. 3.1b. As entailed by the computational model [47], a second harmonic 

signal is injected into the oscillators through the header and the footer. The programmable 

coupling element between any two oscillators is realized using a series combination of a 

MOM (metal-oxide-metal) capacitor (5.2fF) in series with a transmission gate (T-gate) that 

can be used to turn the coupling ON/OFF (Fig. 3.1c). The computational 

 

Fig.3.1 (a) Die photo of the scaled OIM IC. Architecture of the (b) CMOS Schmitt-trigger oscillator and 

the (c) coupling element; (d) Table showing computational capability of the oscillator Ising machine. 

5.2 fF

1-bit 

Register

5.2 fF

1-bit 

Register

Coupling ElementDie Photo of The OIM Chip

Oscillators 

and 

Couplings

S
P

I 
&

 M
U

X

(a)

Oscillator Circuit

(b)

(d) Computational Capability

-# of oscillators (spins) measured 672 Read out Interface

1. MUX: Direct read-out of oscillator time-

domain output.

2. SPI (Serial peripheral interface): 

Parallel read-out of all oscillator states. 

Used to obtain timing information

Corresponding Max. # of Edges 

(coupling elements)
30896

Maximum degree of a vertex

(max. # of coupling elements 

available to each oscillator)
111

(c)



37 
 

capabilities are summarized in Fig. 3.1d. The IC is fabricated using TSMC 65nm GP 

CMOS process. The input graph is mapped to the oscillator hardware using a SIPO 

(Serial Input Parallel Output) Register. Both MUX and SPI are available for read-out. The 

MUX enables direct observation of the time-domain output of the oscillators (in a serial 

fashion) whereas the SPI enables a parallel readout of the oscillators, required to obtain 

 

Fig.3.2 (a) Tile-based coupling architecture of the IC. (b) Inter-tile: Each oscillator in a tile is coupled to 

every other oscillator in 6 adjacent tiles i.e., all-to-all programmable coupling among one tile and six 

adjacent tiles (except at the edges). (c) Intra-tile: Each tile consists of 16 oscillators where each oscillator 

can be coupled to any and all other oscillators. 
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timing information. To facilitate a scalable coupling scheme, a tiled architecture is adopted 

as shown in Fig. 3.2a. In the Intra-tile coupling, each tile consists of 16 oscillators (a total 

of 42 tiles) with all-to-all (programmable) coupling among the oscillators (Fig. 3.2c). Inter-

tile: each oscillator in a tile is coupled to every other oscillator in 6 adjacent tiles i.e., there 

is all-to-all programmable coupling among all the oscillators in one tile and all other 

oscillators in six adjacent tiles (except at the edges) as shown in Fig. 3.2b. Consequently, 

the design allows us to measure graphs with up to 30,896 coupling elements with nodes 

having a maximum degree of 111.  

It is to be noted that, as the system size is scaled up, implementation of the coupling 

network in OIM poses a significant challenge as the required coupling element increases 

quadratically with respect to the system size. For the 672 OIM implemented here, 225,456 

(=C(672,2)) (non-directional) coupling elements would be needed to achieve full 

reconfigurability, which is not possible within a reasonable frame of area (2x2 mm2 area 

was considered for this chip implementation). Moreover, since most practical graphs at 

scaled nodes [94] are locally very dense and globally sparse, we, therefore, adopt a tile-

based coupling architecture that enables us to have densely connected oscillator clusters 

with relatively sparse connectivity amongst them to achieve an optimal trade-off between 

functionality and reconfigurability. 
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3.2 Accuracy vs. time-to-compute trade-off 

While the coupled oscillator system evolves through the high-dimensional solution space 

towards the ground state energy (corresponding to the optimal solution), it is likely to 

encounter many local minima where the system can get trapped, and subsequently, give 

rise to a sub-optimal solution. This is illustrated with the example of an oscillator network 

with 20 nodes and 114 edges (corresponding to the interactions among the oscillators) 

as shown in Fig. 3.3a. Fig. 3.3b shows the measured solutions (𝐻) over 100 separate 

trials. Figure 3.3c compares the measured 𝐻 attained by the system (and its frequency) 

with the entire combinatorial solution space i.e., 𝐻 corresponding to all the possible spin 

assignments (grey in Fig. 3.3c) for the problem; there are 524,288 possible spin 

 

Fig. 3.3. (a) A representative network of 20 spins with randomly generated interactions (represented by 

edges); (b) Experimentally measured 𝑯 over 100 separate trials (𝑯𝒎𝒊𝒏=minimum/optimal 𝑯); (c) 

Distribution showing occupied energy states (represented by 𝑯) and their frequency (orange) compared 

to the complete solution space (grey) of the problem (=524,288 possible states); (d) Hamming distance 

distribution (normalized) between the experimentally measured solutions over 100 runs. 
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assignments out of which only 7 correspond to the optimal solution. It is evident from Fig. 

3.2c that the spin configurations measured using the system are sub-optimal with the best 

solution only equal to 92% of the optimal value. Moreover, it can also be observed that 

the system energy (proportional to 𝐻) at which the peak of the distribution of the measured 

solutions (over the 100 trials) occurs, coincides with the 𝐻 value where the maximum 

number of local minima states occur. This indicates that the system - despite trying to 

minimize its energy- gets trapped in one of the many local minima of the phase space, 

consequently, giving rise to sub-optimal spin assignments. Furthermore, the Hamming 

distance among the measured spin assignments (Fig. 3.3d) is also computed to explore 

if there is a correlation among the solutions (generated in each trial). The resulting 

Hamming distance exhibits a Gaussian distribution implying that the solutions are 

different from each other and the exact local minima where the system gets trapped is 

random as the system evolves with a different trajectory during every run. This implies as 

the complexity of the solution space increases for scaled systems, the solution can get 

trapped in one of the many local minima resulting in an increasing sub-optimal nature of 

the solution. Therefore, there is an inherent solution quality vs compute-time trade-off for 

oscillator Ising machines, where achieving a significant speedup in compute-time while 

maintaining high solution quality becomes challenging. 
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3.2.1 Evaluating the trade-off in scaled OIM (Test Chip-2) 

In order to experimentally evaluate the solution accuracy vs. time-to-compute trade-off, 

the MaxCut solution trajectories as a function of time for varying graph sizes (N=200, 400, 

600 nodes) are measured utilizing the scaled OIM hardware. Fig. 3.4(a-c) shows the 

representative measured MaxCut solution trajectories as a function of time for graph sizes 

of 200, 400, and 600 nodes, and for each instance, the solution trajectory was measured 

10 separate times. It can be observed that, in all cases, the OIM shows an exponential 

 

Fig. 3.4. Experimentally measured MaxCut solution vs. computation time for graphs with (a) N=200; (b) 

N=400; (c) N=600 nodes. 10 solution trajectories for oscillator Ising machine are shown in each case. 

Exponential behavior (∝ (1 − exp (−𝑡/𝛼)); similar to the charging of a capacitor) is observed. (d) 

Constant in the exponential function (𝛼) as a function of graph size (N). α increases with N indicating 

that the convergence time required to obtain an optimal solution will degrade further in larger graphs. 
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(capacitor charging-like) behavior wherein it converges to a near-optimal solution and 

saturates. The mean of the 10 separate measurements is fitted, represented by the 

diamond symbol in Fig. 3.4(a-c), to the equation 𝐾(1 −   𝑝(−𝑡/𝛼)). This implies that while 

the system will compute a near-optimal solution (~80%) very fast (within one “time 

constant” 𝛼), improving the solution from thereon will take a significant amount of time. 

Moreover, the coefficient 𝛼 (similar to the time constant of a charging capacitor) increases 

with the size of the graph (Fig. 3.4d) indicating that the stand-alone Ising machine 

performance will degrade with size i.e., require exponentially longer time to converge. 

This can be attributed to the increasing complexity of the solution space for such a scaled-

up system and the OIM is trapped in the local minima which consequently gives rise to a 

sub-optimal solution.  

It is to be noted that, the OIM system might attain an improved solution if the 

measurement is kept on running above the timeframe considered here (10 ms). However, 

in such a case, the time penalty that the system will incur for improving the accuracy will 

be significant when compared to the digital algorithm. This creates a fundamental 

bottleneck for the (stand-alone) oscillator Ising machine for achieving a substantial 

speedup compared to digital algorithms while maintaining the same solution quality. 

Therefore, it is imperative to find an approach that can enhance the accuracy of the 

solution computed by the OIM hardware without acquiring significant compute time. To 

do so, a hardware-algorithm-based hybrid approach is developed and demonstrated as 

illustrated in the following sub-sections. 
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3.2.2 Hybrid Approach to overcome the trade-off  

To circumvent this long tail in the solution trajectory of the oscillator Ising machine, a 

hybrid approach is proposed and implemented. Here, the oscillator Ising machine is 

utilized to compute a near-optimal solution (very fast), which is subsequently, improved 

using a simple polynomial-time algorithm based on local search [95]. The algorithm 

essentially exchanges nodes between the sets only if the move increases the MaxCut. 

This process is repeated until no more nodes can be moved. Fig. 3.5(a-b) shows the 

average number of iterations, and the corresponding time required for the post-

processing scheme; ~1 extra iteration is required for every 200-node increase in the graph 

size. Moreover, the time required for this scheme is significantly smaller than that required 

for the digital algorithm. These characteristics enable our hybrid approach to improve the 

solution without a significant time penalty. 

This is illustrated with the example graph solved in Fig. 3.6. The 600-node graph with 

7366 edges, when mapped to a grid of 24x25 (=600) oscillators is designed such that the 

 

Fig.3.5. (a) No. of iteration required; and (b) computation time for the local search-based polynomial-

time algorithm used in the hybrid approach; for comparison, the computation time for the manifold 

optimization algorithm, implemented on a workstation with 32-cores and 256 GB RAM, is also shown. 

 

N
o
. 

o
f 

It
e
ra

ti
o
n
s
 (

#
)

Graph Size, N (#)
200 400 600

0

5

10

15

20

 

R
a

n
g

e

Y
 A

x
is

 T
it
le

X Axis Title

N=200

T
im

e
 (

m
s
)

Graph Size, N (#)
200 B 400 E 600 G

0

1000

2000

3000

4000

R
a

n
g

e

 

 

Manopt digital algorithm

Local search algorithm

~1 extra iteration required when 

graph size increases by 200 

N=400 N=600

N
o
. 

o
f 

It
e
ra

ti
o
n
s
 (

#
)

Graph Size, N (#)
200 400 600

0

5

10

15

20

 

R
a

n
g

e

Y
 A

x
is

 T
it
le

X Axis Title

N=200

T
im

e
 (

m
s
)

Graph Size, N (#)
200 B 400 E 600 G

0

1000

2000

3000

4000

R
a

n
g

e

 

 

Manopt digital algorithm

Local search algorithm

~1 extra iteration required when 

graph size increases by 200 

N=400 N=600

(b)(a)



44 
 

oscillator phases corresponding to the optimal MaxCut produce the UVA logo. Post-

processing is performed on the solution measured from the oscillators at T=6.4ms. It can 

be observed that the hybrid approach can converge to the optimal solution 3.3× faster 

than the digital algorithm. We note that the speedup observed in this graph is at the lower 

end of the range (3-100×) observed in this work owing to the bipartite nature of the graph. 

Furthermore, while the oscillator-Ising machine converges to a near-optimal solution very 

fast (~6.4ms), it subsequently, remains stuck in a local minimum (sub-optimal solution) 

even after the hybrid approach has converged to the optimal solution. 

Next, the effect of the graph size (N=200, 400, 600) and the density of edges on the 

performance and solution accuracy of the oscillator Ising machine (stand-alone and 

hybrid) as well as the digital algorithm (Fig. 3.7) are analyzed. A total of 60 graphs are 

measured; 20 graphs per graph size of varying edge density are measured 10 separate 

times. The density of edges is quantified using the average degree which represents the 

number of connections per oscillator; dense 600-node graphs with an average degree of 

45 contain up to 27,000 coupling elements. It can be observed from Fig. 3.7(b-d) that the 

accuracy of the stand-alone oscillator Ising machine is sensitive to the 

 

Fig. 3.6. Evolution of the oscillator phases while converging to the MaxCut solution. The MaxCut of the 

input graph is the UVA logo. It can be observed that the digital approach takes 3.3× longer to converge 

to the optimal solution. The oscillator-only approach is stuck in a sub-optimal solution even after the 

hybrid approach has converged to the optimal solution. 
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sparsity of the graph with the solution accuracy varying by up to ~ 8%. In contrast, it can 

be observed that the hybrid approach shows significantly less variation (~2%) in 

comparison to the stand-alone machine; similar behavior for accuracy is observed for the 

digital algorithm. Figs. 3.7e-g show the corresponding computation times. It can be 

observed that even with a time penalty associated with the local search, the hybrid 

approach facilitates a minimum 21× reduction in compute time compared to the digital 

algorithm while producing a similar quality of solutions. 

 

 

 

 

 

Fig. 3.7. (a) Illustration of a sparse & dense graph. (b-d) Accuracy; and (e-g) Computation time for the 

stand-alone and hybrid oscillator-based approach as well as digital algorithm as a function of the graph 

size (N=200-600) and connectivity (avg. degree: 15-45). The solution quality of the stand-alone 

oscillator-system is sensitive to the input graph connectivity. In contrast, the solution quality of the hybrid 

approach remains nearly constant. The hybrid approach converges faster than the digital algorithm for 

graphs of all size & connectivity. 
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3.3. Benchmarking 

Finally, the benchmark of the proposed hybrid approach with the stand-alone oscillator 

Ising machine as well as the digital algorithm is presented. Fig. 3.8a shows that for all 

graph sizes (irrespective of connectivity), the hybrid approach produces better solutions 

than the stand-alone hardware, and is comparable to the digital solver. This is because 

of the exponential solution tail observed in the stand-alone Ising machine. The hybrid 

approach overcomes this using a simple local search algorithm. Fig. 3.8b compares the 

(mean) computation time vs. observed solution accuracy (mean) for the three 

approaches. It can be observed that: (i) the hybrid approach provides the best trade-off 

between performance and computation time. It produces solutions that have the same 

level of accuracy as a digital algorithm but require ~3-100× lesser time to compute. (ii) 

Unlike the digital algorithm where the (mean) solution time increases with graph size; the 

hybrid approach shows minimal sensitivity to the input graph properties.  

 

Fig. 3.8. (a) Comparison of the solution accuracy (mean) observed with oscillator-based stand-alone 

& hybrid approach, and the digital algorithm. (b) Comparison of the accuracy vs. compute time trade-

off for the three approaches. The hybrid approach yields the best trade-off. 
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Fig. 3.9(a,b) show the die photo and the characteristics of the test chip. The area 

breakdown for different components of the OIM hardware is shown in Fig. 3.9c. A 

comparison of the present oscillator Ising hardware with prior works is shown in Fig. 3.9d. 

Earlier works have primarily focused on small prototypes while larger demonstrations 

 

Fig. 3.9. (a) Die photo, (b) summary of the test chip characteristics and (c) area breakdown for different 

components of the implemented scaled OIM IC. (d) Comparison of the capabilities of the hardware 

demonstrated in the present work with prior reports. 
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have used planar graphs with extremely sparse connectivity that is polynomial-time 

solvable. Consequently, performing a comprehensive comparison of the performance 

and trade-offs of the oscillator Ising machine with digital algorithms on NP-hard problems 

has been difficult. The oscillator hardware uniquely enables us to characterize the 

inherent trade-offs in oscillator Ising machines, and subsequently, design a hybrid 

hardware-software approach that produces high-quality solutions, significantly faster than 

digital approaches. 

Moreover, from the comparison of the proposed hybrid approach with prior works (which 

are either limited to small graph sizes or have constrained connectivity), our 

implementation not only provides significant improvement in the connectivity that can be 

achieved (>13x) but also provides a pathway to exploit the time advantage of OIMs in 

large graphs of practical relevance. 

 

3.4. Summary 

In summary, the fundamental trade-off in solution accuracy and computation time in 

oscillator-Ising machines for solving NP-hard non-planar graphs (first of its kind) is 

experimentally revealed. Subsequently, we have demonstrated a hybrid approach, that 

exploits oscillator Ising machines and a simple local search algorithm, to reduce the 

computation time by 3-100× compared to the manifold optimization-based digital 

algorithm while yielding the same solution quality. Additionally, we address the challenge 

of implementing a scalable coupling scheme by adopting tile-based architecture that 

facilitates >13x enhancement in connectivity per oscillator. However, we note that our 
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evaluation of the oscillator Ising machine so far has been limited to solving the MaxCut 

problem. The solution to such a problem entails binary spin configuration (oscillator phase 

of 0o or 180o corresponding to spin state ±1) and constitutes a small subset of the 

combinatorial optimization problems. Therefore, in the following chapter, we expand our 

evaluation of the OIM platform to solve a large subset of optimization problems, solutions 

of which constitute multi-valued spin configurations.   
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Chapter 4 

Computational Models Based on Synchronized 

Oscillators for Solving Combinatorial Optimization 

Problems Beyond MaxCut 

Prior work [47,80-83] as well as the evaluation of the OIM platform done so far in this 

dissertation, has primarily focused on formulating oscillator-based computational models 

for a relatively small subset of combinatorial problems whose solutions require binary spin 

states. For instance, while oscillator-based models are available for the MaxCut problem 

– a special instance of the Max-K-Cut (with K=2), no such models have been developed 

for the general instance of K. Therefore, the applicability of OIM for solving a broad range 

of problems whose solutions require multi-valued spin configurations remain unexplored. 

In this chapter, coupled oscillator-inspired computational models are developed and 

formulated for solving other archetypal combinatorial optimization problems, solutions of 

which are not limited to binary spin configurations but rather require multi-valued spin 

states. Namely, (a) the Max-K-Cut Problem: defined as the problem of dividing the nodes 

of a graph G (V, E) into K subsets such that the number of edges across the subsets is 

maximized; (b) the Graph Coloring Problem: defined as the problem of finding the 

minimum number of colors required such that every node in the graph is assigned one 

color, and no two connected nodes (i.e., nodes that share an edge) are assigned the 

same color; (c) the Traveling Salesman Problem (TSP): which asks the question: “Given 

a list of cities and the distances between each pair of cities, what is the shortest possible 
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route that visits each city exactly once and returns to the origin city?”; (d) the Hamiltonian 

Path (and Cycle) Problem: defined as the problem of identifying a path (if it exists) that 

visits every node in the graph exactly once. The Hamiltonian cycle is the same problem 

but imposes the additional constraint that the path must return to the node from where it 

originated, and (e) the Graph Partitioning Problem: defined as the challenge of dividing 

the vertices of a graph into two equal sets such that the number of common edges is 

minimized. Building on prior work by Wang et al. [47], the Lyapunov functions that map 

to the problems considered here are developed, and subsequently, the associated 

Kuramoto dynamics are constructed. It has been shown that besides phase 

partitioning/clustering (using external force functions), the relative phase ordering (in 

appropriately constructed Kuramoto dynamics) can be mapped to the solutions of 

combinatorial optimization problems such as the traveling salesman problem, and the 

Hamiltonian path problem, etc. 

Additionally, these example problems also help illustrate the general principle and 

approach behind developing such models for other problems not covered here. It has 

been shown that the synchronized oscillator system dynamics can be engineered to solve 

different optimization problems by appropriately designing the coupling function and the 

external injection to each oscillator. Firstly, the formulation of the Max-K-Cut problem is 

discussed, which can be considered as a general case of the MaxCut problem. 
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4.1. Max-K-Cut 

To develop the computational model for the oscillator-inspired Max-K-Cut solver, we first 

start with the description of the Ising model developed for MaxCut problem and illustrate 

how the oscillator dynamics can be used to solve the same. The MaxCut problem can be 

mapped to the Ising Hamiltonian H by representing each node of the corresponding graph 

by a spin  −1,+1}. Every edge between the nodes i and j is represented by the interaction 

coefficient Jij among the spins; Jij = −1 when an edge exists between the nodes, and Jij =

0 when the edge is absent. Subsequently, solving the MaxCut problem is equivalent to 

minimizing the Ising Hamiltonian described as: 

H = − ∑ Jijsisj

N

i,j=1,i<j

 (4.1) 

Wang et. al [47] considered the Lyapunov function defined in equation (4.2) and 

demonstrated that it is associated with the dynamics of a topologically equivalent 

(oscillator ≡ spin; coupling element ≡ interaction coefficient; oscillator phase ≡ spin 

assignment) network of coupled oscillators, under second harmonic injection and is 

equivalent to H.  

E(ϕ(t)) = −C1 ∑ Jij cos( ϕij) − ∑Csynccos(2ϕi(t))

N

i=1

N

i,j=1, j≠i

 (4.2) 

where C1 is the coupling strength, and Csync modulates the strength of the second 

harmonic injection signal. 

Furthermore, equation (4.2) being a Lyapunov function, the coupled oscillator phases, ϕI, 

will partition themselves in a way such that the system will tend to minimize E(ϕ(t)) as 
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the system evolves over time. Consequently, this also minimizes H (Appendix 1). E(ϕ(t)) 

is minimized at discrete points  0, π} in the phase space which effectively correspond to 

the partitions/sets created by the MaxCut. This enables the oscillator network to directly 

compute the MaxCut solution as the system evolves towards the ground state energy. 

Now this approach is extended to the Max-K-Cut problem. To aid the analysis for the 

Max-K-Cut problem, it is useful to recast the ‘spins’ that represent each set of the MaxCut 

as complex quantities, reiθk, where r = 1, θk =
2πk

K
 k = 1, 2, … , K. For the MaxCut 

problem, where K = 2, it is evident that the possible spin configurations are 1eiπ = −1  

(k = 1) and 1ei(2π) = 1  (k = 2). To map the Max-K-Cut problem, we formulate the “spin” 

assignment for each of the K sets using the above scheme i.e., each set is assigned a 

value reiθk, where r = 1, θk =
2πk

K
 k = 1, 2… , K. It is to be noted that defining “spins” using 

this approach for K  2  disengages it from the physical significance of a spin i.e., a spin 

with an assignment 1ei(
2π

3
)
 (k = 1, K = 3) may not have physical relevance. However, we 

will continue to use the term here for continuity. It is also noteworthy though that while a 

complex spin has little physical significance, in oscillator networks, such assignments can 

be easily represented by the amplitude and phase. In fact, each set created by the Max-

K-Cut will be represented by a specific oscillator phase, as discussed further.  

The objective function describing the Max-K-Cut (modeled along the same lines as the 

Ising Hamiltonian) can be described as: 
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HMax−K−Cut

= − ∑ Jij. Re
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(4.3) 

where si, sj represent the ‘spin’ assignments given by reiθ; Δθij = θi –  θj,  Jij describes the 

connectivity among the nodes of the graph; Jij = −1(0), when an edge is present (absent) 

between nodes i and j. For simplicity, equation (4.3) can be re-written as: 

HMax−K−Cut = − ∑ Jij. Re(eif(Δθij)sisj
∗)

N

i,j,i<j

 (4.4) 

where, 

f(Δθij) =  lim
σ→0

∑

(
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(4.5) 

f(Δθij) is a 2π-periodic odd function. Equation (4.4) can also be expressed as: 
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HMax−K−Cut = − ∑ Jijcos (Δθij + f(Δθij))

N

i,j,i<j

 (4.6) 

HMax−K−Cut is designed such that −JijRe(eif(Δθij)sisj
∗) = −1 if and only if the nodes 

corresponding to an edge are in different partitions. For example, consider an edge whose 

corresponding nodes are placed in the sets with assignments si = 1ei(
4π

3
)
 (using ki = 2), 

and sj
∗ = 1e−i(

2π

3
)
 (using kj = 1), respectively. For this edge, f(Δθij) = (

π

3
)   eif(Δθij) = ei(

π

3
)
, 

and thus, −Jij. Re(eif(Δθij)sisj
∗) = −1. In contrast, if the edge is assigned to the same set (say, 

using ki = kj = 1), then si = 1ei(
2π

3
), sj

∗ = 1e−i(
2π

3
)
 and f(Δθij) = 0  ei(0) = 1. 

−JijRe(eif(Δθij)sisj
∗) then evaluates to 1. Thus, computing the Max-K-Cut of the graph is 

equivalent to minimizing HMax−K−Cut. Fig. 4.1 shows the spin assignment and f(Δθij) for 

various partitions K. 

To emulate the minimization of HMax−K−Cut in a physical system, a coupled oscillator 

system with N oscillators is considered. For an oscillator in a coupled network, the phase 

evolution of that oscillator in the network can be described using the Gen-Adler’s equation 

[97] as described by Wang et al. [47], 

dϕi(t)

dt
= ωi  −  ωsync + ωi ∑ cij( ϕij)

N

j=1,   j≠i

 (4.7) 

where ωI is the natural frequency of the individual oscillator, ωsync is the frequency of the 

synchronized network and cij(. ) is a 2π-periodic function for the coupling among 

oscillators i and j. The oscillator network is designed to be topologically equivalent to the  
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 input graph i.e., oscillator ≡ node; coupling element ≡ edge. Thus, the coupling network 

can be described by the matrix (Jij) of the graph. 

 
Fig. 4.1. Spin assignments and corresponding f(Δθij) for various values of K in the Max-K-

Cut problem. 
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Further, assuming that all the oscillators have the same frequency, equal to the 

synchronized frequency of the network [47], equation (4.7) evolves to:  

dϕi(t)

dt
= −C1 ∑ Jijcij( ϕij)

N

j=1,   j≠i

 (4.8) 

where C1 is a positive constant that signifies the coupling strength among the oscillators.  

Under the influence of the injection of the Kth harmonic signal to every oscillator in the 

system, equation (4.8) further evolves to: 

dϕi(t)

dt
= −C1 ∑ Jijcij( ϕij)

N

j=1,   j≠i

− Csyncsin(Kϕi(t)) (4.9) 

where Csync is a positive constant that describes the amplitude of the injected signal (Kth 

harmonic). In order to engineer the properties of the oscillator network for solving the 

Max-K-Cut problem, we carefully design the coupling function cij(. ) to be sin ( ϕij +

f(Δϕij)), where f(Δϕij) is derived from equation (4.5). The system dynamics can then be 

expressed as: 

dϕi(t)

dt
= −C1 ∑ Jij sin ( ϕij + f(Δϕij)) − Csyncsin(Kϕi(t))

N

j=1,   j≠i

 (4.10) 

Here, f (Δϕij) can be considered as a coupling function as illustrated in Appendix 2. For a 

system with the dynamics as described in equation (4.10), the following Lyapunov 

function candidate is considered: 
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E(ϕ(t)) = −
KC1

2
∑ Jij cos ( ϕij + f(Δϕij)) − ∑Csynccos(Kϕi(t))

N

i=1

N

i,j, j≠i

 (4.11) 

To show that E(ϕ(t)) is a Lyapunov function, we first analyze 
ⅆE(ϕ(t)) 

ⅆt
 which can be 

expressed as 
ⅆE(ϕ(t)) 

ⅆt
=

∂E(ϕ(t)) 

∂ϕi(t)
.
ⅆϕi(t) 

ⅆt
. It can be shown (detailed in Appendix 3) that 

∂E(ϕ(t)) 

∂ϕ𝑖(t)
=  −K

dϕi(t) 

dt
 (4.12) 

Thus,  

dE(ϕ(t)) 

dt
= ∑[(

∂E(ϕ(t)) 

∂ϕi(t)
) . (

dϕi(t) 

dt
)]

N

i=1

 (4.13) 

      = −K∑[(
dϕi(t) 

dt
)

2

] ≤ 0

N

i=1

 (4.14) 

This indicates that the oscillator network described by the dynamics in equation (4.10) will 

aim to minimize the energy function in equation (4.11) as it evolves over time. E(ϕ(t)) is 

minimized at the discrete phase points ϕk =
2πk

K
, k = 1, 2, … , K which effectively 

correspond to the partitions / sets (si = reiθk, where r = 1, θk =
2πk

K
 k = 1, 2, … , K) created 

by the Max-K-Cut. It is to be noted that the minimization of E(ϕ(t)) at the discrete phase 

points is facilitated by appropriately designing the injection/forcing function in the 

dynamics described in equation (4.9). The role of the forcing function is illustrated in 

Appendix 4. Equation (4.11) is equivalent to HMax−K−Cut in equation (4.6) with a constant 

offset which implies that the system will aim to compute the solution to the Max-K-Cut 

problem as well.  
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Fig. 4.2 shows the phase partitions and the resulting Max-K-Cut (K= 2, 3, 4) solutions for 

an illustrative graph (with 10 nodes) using the oscillator-inspired model developed above. 

An annealing scheme similar to that used by Wang et al. [47], is used to help the system 

escape from local minima (Appendix 5).  It can be observed that the oscillator phases, 

 
Fig. 4.2. (a) Illustrative 10 node graph; (b)-(d) Evolution of oscillator phases for different values 

of K (=2,3,4) in the Max-K-Cut problem. 
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representing the nodes of the graph, separate into K partitions to yield Max-K-Cut 

solutions. Further, using the oscillator-inspired solver developed above, larger graph 

instances (Appendix 6) from the G-Set dataset for K=2, 3, and 4 partitions are also 

evaluated. In each case, the system is simulated for 100 cycles and yields high-quality 

Max-K-Cut solutions. Next, the above approach is used to formulate oscillator-inspired 

computational models for other combinatorial optimization problems. 

4.2. Graph Coloring  

 

 

 
Fig. 4.3. A representative 10 node graph along with the corresponding phase partitions 

obtained using the oscillator-based computational model (K=5). The graph is 5 colorable 

since every edge is shared between (any) two sets i.e., there are no edges that lie entirely 

within one set. Further, the largest such set is the MIS (=3, optimal). 
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Given a graph G(V, E) such that each node is to be assigned a specific color, the graph 

coloring problem entails finding the minimum number of colors required such that the no 

two connected nodes (i.e., nodes that share an edge) are assigned the same color. Nodes 

having the same color can be considered as a set that does not contain edges. Thus, the 

graph coloring problem can be formulated as finding the smallest K for which the sets 

created by the Max-K-Cut of the graph do not contain any edges within the set i.e., every 

edge in the graph are shared between (any) two sets. Solving the problem using this 

approach entails computing the Max-K-Cut of the graph for different values of K in 

ascending order, and determining the (smallest) K for which the sets created by the Max-

K-Cut does not contain an edge internal to a set. The smallest value of K is the Chromatic 

number of the graph. This can be considered equivalent to solving the decision version 

of the graph coloring problem which evaluates if a graph is K-colorable i.e., can a graph 

be colored with K colors? It is noteworthy that Crnkic et al. [98] also proposed a similar 

oscillator-inspired model to solve the graph coloring problem but used a different 

formulation for the energy function. Some additional constraints on the value of K can be 

imposed by using graph properties e.g., the value of K will be at most Δ+1, where Δ is the 

maximum degree of the graph (Brooks theorem [99]). Fig. 4.3 shows the coloring for an 

illustrative example for a graph (same as that considered in Fig. 4.2) considering K=5 

where it can be observed that nodes split into 5 partitions. Moreover, none of the sets 

contain an edge within the set, implying that the graph is 5 colorable. In contrast, the 

partitions generated by the Max-4-Cut for the graph (Fig. 4.2d), which verifies if the graph 

is 4 colorable, shows that 2 edges lie within the set. Consequently, this implies that the 
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graph is not 4 colorable, and thus, 5 is the minimum number of colors required to color 

the graph (i.e., chromatic number). 

 

4.3. Maximum Independent Set (MIS) and Maximum Clique (MC)  

Each set obtained while computing the graph coloring problem (using the Max-K-Cut 

formulation) that does not contain an edge corresponds to an independent set of the 

graph. Thus, the largest independent set among them provides a good approximate 

solution for the MIS (Fig. 4.3) [88]. Additionally, using the relationship that the Maximum 

Clique of a graph is the MIS of its complement graph, the same approach can be used to 

compute the Maximum Clique of a graph by computing the MIS of the complement graph.  
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4.4. Traveling Salesman Problem (TSP) 

Given a list of cities and the distances between each pair, the archetypal TSP is defined 

as the challenge of finding the shortest possible route that visits each city exactly once 

and returns to the city of origin. The objective function for the TSP can be formulated as 

minimizing HTSP, where HTSP is defined as: 

HTSP = − ∑ Jij. Re(eif𝑇𝑆𝑃(Δθij)sisj
∗)

N

i,j,i<j

 (4.15) 

where si denotes the graph node (city), expressed as a complex quantity described 

earlier, and Jij=−Dij, where Dij refers to the distance between nodes (cities) i and j. Here, 

f𝑇𝑆𝑃(Δθij) = lim
σ→ 

− ∑

(

 
 
 
 
 
2γπ

N
. e

−(
( θij −

2γπ
N

)
2

2σ2 )

+ (−
2γπ

N
) . e

−(
( θij +

2γπ
N

)
2

2σ2 )

)

 
 
 
 
 

𝛾=1,𝑁−1

+ lim
σ→ 

∑

(

 
 
 
 
 

(𝜋 −
2kπ

N
) e

−(
( θij −

2kπ
N

)
2

2σ2 )

+ (
2kπ

N
− 𝜋) . e

−(
( θij +

2kπ
𝑁

)
2

2σ2 )

)

 
 
 
 
 N

k=2,k≠N−1

 

 

(4.16) 

HTSP = − ∑ Jijcos (Δθij + f𝑇𝑆𝑃(Δθij))

N

i,j,i<j

 (4.17) 

The TSP is equivalent to computing a phase ordering such that the sum of distances (Dij) 

among the adjacent nodes (cities) in the phase ordering is as small as possible. To 

achieve this, f𝑇𝑆𝑃(Δθij) is designed such that −JijRe(eif𝑇𝑆𝑃(Δθij)sisj
∗) = Dij if the nodes are 

adjacent (i.e., Re(eif𝑇𝑆𝑃(Δθij)sisj
∗)=1), else −JijRe(eif𝑇𝑆𝑃(Δθij)sisj

∗) = −Dij (i.e., Re(eif𝑇𝑆𝑃(Δθij)sisj
∗) =

−1); in other words, the system incurs a larger energy penalty for putting nodes with larger 
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distances adjacent to each other. Therefore, minimizing HTSP minimizes the sum of 

distances among the adjacent nodes. Furthermore, the circular phase ordering ensures 

that dynamics not only compute the shortest route among the cities but also guarantee 

that one returns back to the original city after visiting each city only once. Along similar 

lines as the Max-K-Cut problem, the corresponding oscillator dynamics can be expressed 

as: 

 

 
 
Fig. 4.4. (a) A representative 10 node graph; (b) oscillator phase evolution in a topologically 
equivalent oscillator system. (c) phase plot and the corresponding phase ordering that 
encodes the TSP solution. (d) TSP solution obtained from the phase ordering (=51; optimal for 
the above graph). 
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dϕi(t)

dt
= −C1 ∑ Jij sin ( ϕij + f𝑇𝑆𝑃(Δϕij)) − Csyncsin(Nϕi(t))

N

j=1,j≠i

 (4.18) 

As discussed earlier, the force term on the right-hand side ensures that the oscillators 

settle to a phase value of 
2πk

K
 k = 1, 2, … , N. Similar to the Max-K-Cut analysis, the 

Lyapunov function candidate considered for these dynamics is: 

E(ϕ(t)) = −
NC1

2
∑ Jij cos ( ϕij + f𝑇𝑆𝑃(Δϕij)) − ∑Csynccos(Nϕi(t))

N

i=1

N

i,j, j≠i

 (4.19) 

Which can be shown to be minimized over time. Further, equation (4.19) is equivalent to 

HTSP (with a constant offset), and thus, will be minimized over time. Fig. 4.4 shows a 

representative example for a 10 city TSP graph solved using the coupled oscillators.  

 

4.5. Hamiltonian Cycle/Hamiltonian Path  

The Hamiltonian path problem is defined as the problem of identifying a path (if it exists) 

that visits every node exactly once; computing the Hamiltonian cycle entails solving the 

same problem with the added constraint of returning back to the node of origin. In terms 

of the oscillator system dynamics, the objective here is to design a topologically 

equivalent coupled oscillator network that yields a phase ordering such that the number 

of edges among the adjacent nodes is maximized. Subsequently, if every node shares 

an edge with the adjacent nodes in the phase ordering, the resulting ordering represents 

the Hamiltonian cycle (and path); if only one edge is missing, then only a Hamiltonian 

path (but not cycle) exists. The Hamiltonian for the above problem can be formulated 

using the same approach used for TSP with the exception that the system is ‘rewarded’ 



66 
 

(in terms of energy) for bringing connected nodes with edges adjacent to each other. The 

objective function for the Hamiltonian cycle path can be expressed as: 

HHC = − ∑ Jij. Re(eif𝐻𝐶(Δθij)sisj
∗)

N

i,j,i<j

 (4.20) 

where, 

 

f𝐻𝐶(Δθij) =  lim
σ→ 

− ∑

(

 
 
 
 
 

(𝜋 −
2γπ

N
) . e

−(
( θij −

2γπ
N

)
2

2σ2 )

+ (
2γπ

N
− 𝜋) . e

−(
( θij +

2γπ
N

)
2

2σ2 )

)

 
 
 
 
 

𝛾=1,𝑁−1

+ lim
σ→ 

∑

(

 
 
 
 
 

(
𝜋

2
−

2πk

N
) e

−(
( θij −

2kπ
N

)
2

2σ2 )

+ (
2πk

N
−

𝜋

2
) . e

−(
( θij +

2kπ
𝑁

)
2

2σ2 )

)

 
 
 
 
 N

k=2,k≠N−1

 

 

(4.21) 

 

HHC = − ∑ Jijcos (Δθij + f𝐻𝐶(Δθij))

N

i,j,i<j

 (4.22) 

It can be observed that f𝐻𝐶(Δθij) has a similar form to f𝑇𝑆𝑃(Δθij) defined for TSP (equation 

(4.16)) with the exception that Δθij + f𝐻𝐶(Δθij) converges to π when a pair of connected 

nodes are adjacent to each other (i.e.,  θij = ±
2π

N
) in the phase space whereas Δθij +

f𝑇𝑆𝑃(Δθij) converges to π when they are in non-adjacent positions (i.e.,  θij = ±
2kπ

N
 1 <

 ≤ 𝑁  ≠ 1,𝑁 − 1). In these respective (desired) scenarios, the system is ‘rewarded’ by 

lowering energy (equations (4.17) and (4.22)). Further, Δθij + f𝐻𝐶(Δθij) (for the Hamiltonian 

cycle /path problem) converges to 
𝜋

2
 when the connected nodes are in non-adjacent 
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positions (undesired case) whereas Δθij + f𝑇𝑆𝑃(Δθij) (for the TSP) converges to 0 when 

the nodes are in adjacent to each other in the phase space. In the case of the Hamiltonian 

cycle/path problem, this implies that the system does not lower energy when the 

connected nodes are in non-adjacent positions (i.e., system is rewarded only for placing 

nodes adjacent to each other) whereas in the case of TSP the system energy actually 

increases when the connected nodes are placed next to each other in the phase space. 

It is to be  noted that similar to the TSP, Δθij + f𝐻𝐶(Δθij) can be designed to converge to 0 

(instead of 
𝜋

2
) by modifying the pre-factors for the gaussian distributions in the second 

term in the right-hand side of equation (4.21). This would impose an energy penalty similar 

 
Fig.4.5. (a) A representative 10 node randomly instantiated graph; (b) phase dynamics of the 

equivalent coupled oscillator network for solving the Hamiltonian path/cycle problem; (c) 

corresponding ordering of phases, resulting in a Hamiltonian cycle as shown in (d). 
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to TSP when a pair of connected nodes attains an undesirable configuration. Our 

motivation in choosing 
𝜋

2
 here was to illustrate how different energy functions can 

‘designed’. For both of the cases (i.e., Δθij + f𝐻𝐶(Δθij) converging to 
𝜋

2
 or 0, when a pair of 

connected nodes are non-adjacent to each other), the equivalence between the optimal 

solution to the Hamiltonian cycle / path problem and the ground state of the system does 

not change, and the system will still continue to evolve towards a lower energy state in 

both the cases. 

Similar to the TSP, the corresponding oscillator dynamics and the energy function of the 

system can be described by, 

dϕi(t)

dt
= −C1 ∑ Jij sin ( ϕij + fHC(Δϕij)) − Csyncsin(Nϕi(t))

N

j=1,j≠i

 (4.23) 

 

E(ϕ(t)) = −
NC1

2
∑ Jij cos ( ϕij + f𝐻𝐶(Δϕij)) − ∑Csynccos(Nϕi(t))

N

i=1

N

i,j, j≠i

 (4.24) 

Equation (4.24), which is equivalent to HHC in equation (4.20) (with an offset), is minimized 

over time and in the process evolves towards the solution of the Hamiltonian cycle. Fig. 

4.5 shows the Hamiltonian cycle computed on a demonstrative problem using the above 

approach. 
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4.6. Graph Partitioning 

The problem of dividing the nodes of a graph into two equal sets such that the number of 

common edges is minimized. For simplicity, here that the number of nodes (N) is assumed 

to be even. The objective function for the problem can be defined as: 

HGP = − ∑ Jij

(

 
 

A. Re((∏sn

N

n=1

)

1
N

. e−i
π
2) + B. Re(sisj

∗)

)

 
 

N

i,j,i<j

 
(4.25) 

Here, sj = 1eiθj, where θj ∈  0, π}. The first term on the RHS in equation (4.20) determines 

the relative reward (energy reduction) for dividing the set into two equal parts, and the 

second term determines the reward for minimizing the number of common edges. A (>0) 

and B (>0) are constants that determine the ratio of the two rewards and determine which 

constraint has preponderance in the optimization process. Further, Jij = +1(0) when an 

edge is present (absent). 

 

Fig. 4.6. (a) A representative 10 node graph and (b) phase dynamics of the coupled oscillators 

for the representative graph. (c) Corresponding graph partition solution of 21 (optimal). 
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To solve the problem using coupled oscillators, the objective can be expressed as 

designing coupled oscillator network where the oscillators exhibit a phase bi-partition 

 0, π} such that each set has an equal number of oscillators, and the number of edges 

among the two clusters is small as possible. These properties can be realized using a 

system that exhibits the following dynamics: 

dϕi(t)

dt
= − ∑ Jij (2C1sin(

1

N
∑ ϕn

N

n=1

−
π

2
) + C2sin( ϕij)) − Csyncsin (2ϕi

(t))

N

j=1, j≠i

 (4.26) 

with the corresponding Lyapunov function: 

E(ϕ(t)) = − ∑ Jij  (2NC1cos(
1

N
∑ ϕn

N

n=1

−
π

2
) + C2cos( ϕij))

N

i,j=1, j≠i

− ∑Csynccos (2ϕi
(t))

N

i=1

 

(4.27) 

The solution to the graph partitioning problem then corresponds to the two sets of 

oscillators corresponding to a phase value of 0 and π, respectively, as shown in Fig. 4.6. 

 

4.7. Summary 

This work elucidates how natural energy minimization in oscillator-based dynamical 

systems can be used to develop computational models for solving combinatorial 

optimization problems. Moreover, the models developed in this work help expand the 

applications of this computing approach beyond the traditional combinatorial problems 

(e.g., MaxCut) considered in prior works, and thus, help bolster the case for exploring 

analog-inspired non-Boolean approaches to computationally intractable optimization 
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problems. However, it is to be noted that the scope of this dissertation has been primarily 

on solving problems with objective functions that have a quadratic degree i.e. an edge 

can connect to only two nodes. There is a larger class of problems (Boolean Satisfalibility, 

Integer Factorization, etc.) wherein the objective functions have a degree greater than 

two i.e an edge can connect to any number of nodes, and such data structures are 

represented using hypergraph. In the future, the oscillator-based computational model 

developed in this chapter to solve problems with the quadratic degree can be further 

extended to solving hypergraphs (degree>2) [100].  
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Chapter 5 

Future Works 

5.1. Towards a highly scalable Ising Machine Implementation 

As illustrated in the earlier chapters, the intrinsic energy minimization in the highly 

interconnected system gives rise to rich spatio-temporal properties, which can 

subsequently be mapped to the solutions of many computationally intractable 

optimization problems. However, the highly interconnected nature of the system also 

poses a significant implementation and scalability challenge for Ising platforms (chapter 

3). In fact, the number of coupling elements (representing edges) required for mapping 

an arbitrary graph scales up quadratically (~N2) with the number of nodes in the graph, 

and consequently, scaling the system to large sizes continues to be a significant 

 
 

Fig. 5.1. Proposed design for the Ising machine using CMOS latches (cross-coupled inverters) as 

artificial Ising spins. The interaction among the spins is implemented using a CMOS-process compatible 

FeFET based array. 
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challenge for most Ising machine designs. In chapter 3, it has been shown that the tile 

architecture-based coupling scheme can enable significant improvement in the 

connectivity that can be realized for a scaled-up system. In the future, this scaling work 

on Ising machines can be further extended to explore potential new avenues by 

developing novel hardware components that are not only compact but can also leverage 

the maturity of CMOS-process technology and integration. Fig. 5.1 shows an Ising 

machine platform that exploits the novel behavior of compact bi-stable CMOS-latches 

(cross-coupled inverters) as classical Ising spins interact through highly scalable and 

CMOS-process compatible ferroelectric-HfO2-based Ferroelectric FETs (FeFETs) which 

act as coupling elements. Such an Ising machine can provide a significant area 

advantage as it facilitates a considerable reduction in the number of components not only 

for the realization of Ising spins (12T Schmitt-trigger oscillator to 4T bi-stable latch) but 

also for coupling network (1T-gate+1 bulky capacitor to 1T FeFET). 

Proof-of-Concept Experiment: In the preliminary experiment, we demonstrate CMOS 

latches as highly scalable and compact Ising spins. To implement the coupling network, 

we aim to exploit the non-volatile behavior of CMOS-compatible FeFET memory arrays 

(in fact, the FeFETs used in this preliminary experiment are built in 28 nm high-κ metal 

gate technology platform) to implement the interaction among the spins (CMOS latches). 

Our choice of using the FeFET as the coupling element is motivated by the fact that 

FeFETs are compatible with CMOS process technology, provide a wide dynamic range 

for the resistance (coupling strength), and can be efficiently integrated and programmed 
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in a scalable array that is required to map the spin interactions in the entire network. We 

envision that the tunable threshold voltage of the FeFET (Fig. 5.2a) would allow us to 

program the interaction between the latches; the low VT (high conductance) state would 

correspond to Jij=±1 whereas the high VT (low conductance) state would correspond to 

Jij=0. 

  

Fig. 5.2. FeFET coupled CMOS latches. (a) Schematic and TEM cross-section [102] of a 28 nm high-

κ metal gate FeFET device. (b) IDS–VGS characteristics of the FeFET (W/L=0.5/0.5 µm) after program 

and erase pulses. (c) Evolution of memory window (MW) as a function of write voltage (VGS). FeFET 

coupled two-latch system settles (d) out-of-phase and (e) in-phase when the coupling is negative (Jij=-

1) and positive (Jij=+1), respectively. 
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Fig. 5.2b shows the experimentally measured transfer characteristics of the ferroelectric-

HfO2-based FeFETs used in this work; the devices are fabricated (see methods) on 28 

nm high-κ metal gate technology platform, as shown in the cross-sectional TEM image 

[101][102]. It features a doped HfO2 layer as the ferroelectric and SiO2 as the interlayer. 

Detailed processing information is described elsewhere [102]. Fig. 5.2c shows the 

memory window vs. programming voltage characteristics for the FeFET. When a 

programming voltage of ±4 V is used to program the FeFET state, a 100× modulation in 

the current is obtained for VGS= 1V.  

We subsequently characterize the behavior of the FeFET as a programmable coupling 

element in a two-latch system. To evaluate this, the FeFETs are first programmed into 

the low VT/high conductance state (Jij =±1) using a programming pulse of magnitude +4V 

and a period of 1 µs. We test the interaction induced by the FeFETs among the latches 

by intentionally programming them into the ‘incorrect’ state, in order to observe the system 

evolve into the correct state i.e., when Jij=-1 (+1), the latches are initialized into the same 

(opposite) states (0/VDD), and subsequently, it is observed whether the system evolves to 

the correct state. During the initialization of the latches, the FeFETs are maintained at 

VGS=-0.5V. This reduces the conductance of the FeFETs without affecting the threshold 

voltage. After the latches are initialized, the gate voltage is increased to VGS = 1.5 V, and 

the corresponding dynamics of the FeFET-coupled CMOS latches are evaluated. We 

note that VGS=1.5V was required to achieve the desired level of conductance from the 

FeFET-based coupling element (coupling strength) since the threshold voltage of the 

device has not been yet optimized for this demonstration. The gate voltage can be 

reduced to zero by appropriately adjusting the threshold as will be evaluated in the future. 
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The coupled two-latch system settles in-phase (out-of-phase) when the coupling is 

positive Jij=+1 (negative, Jij=-1), respectively.  

 

5.2. Summary 

The proposed implementation provides a potential pathway to realizing a compact and 

scalable Ising machine to solve computationally challenging problems such as MaxCut 

using CMOS-compatible components. In the future, evaluation of the scalability of Ising 

hardware based on the proposed architecture could be vital as the design is also well-

positioned to take advantage of the maturity of the CMOS process technology to realize 

scaled implementations, making it a promising design approach for realizing high-

performance application-specific accelerators for solving combinatorial optimization 

problems. 
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Chapter 6 

Conclusion 

The primary focus of this dissertation is to demonstrate and address the challenges to 

successfully realizing a low-power, CMOS-compatible, scalable, and reconfigurable 

coupled oscillator-based Ising machine. In order to achieve this objective, I start by 

designing a fully reconfigurable oscillator-based Ising machines (OIM) IC that can process 

graphs up to 30 nodes of arbitrary connectivity. The goal of this implementation was to 

understand the impact of graph connectivity on the solution quality computed by OIMs for 

non-planar NP-Hard graphs -which was missing in the prior literature. Utilizing the fully 

reconfigurable hardware platform, it has been experimentally shown that, as the problem 

size is increased, graphs with a higher edge density result in lower accuracy. Moreover, 

it is to be noted that to enable full reconfigurability, 870 coupling elements were required 

in the design, and the number of coupling elements (representing edges) for mapping an 

arbitrary graph scales quadratically (~N2) with the number of nodes in the graph. This 

points to the fact that as the system size is increased in order to solve graphs with 

practical relevance two primary challenges evolve. One is mitigating the accuracy and 

compute time degradation as we increase the system size and the other is to circumvent 

the connectivity constraints in OIM implementation to realize non-planar graphs of varying 

connectivity.  

To evaluate and ultimately address these limitations, next a 672 oscillator-based Ising 

machine IC (65 nm GP CMOS) with 30,896 programmable coupling elements is 

implemented. In order to facilitate reconfigurability in the connectivity of the non-planar 
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graphs that can be solved, a tile-based coupling architecture is developed in the design, 

which provides >13x enhancement over prior OIM demonstrations in terms of connectivity 

of each oscillator (maximum degree). Using this platform the fundamental trade-off in 

solution accuracy and computation time is revealed in oscillator-Ising machines for 

solving NP-hard non-planar graphs. Furthermore, we propose a hybrid approach utilizing 

which we experimentally demonstrate 3-100× improvement in experimentally measured 

time-to-compute at iso-solution quality, when compared to a digital algorithm.  

However, prior work as well as the work in the dissertation so far has been limited to 

evaluating a relatively small subset of combinatorial problems whose solution entails 

binary spin configurations (such as the MaxCut problem).  Therefore, in this dissertation, 

the applicability of oscillator Ising machines is furthered by solving broad set of 

combinatorial optimization problems whose solution entails multi-valued spin 

configurations namely, Max-K-Cut, TSP, Graph coloring, Maximum Independent Set, 

Hamiltonian Path/Cycle, Graph Partitioning, etc. Novel oscillator-based computational 

models are formulated which demonstrates that the synchronized oscillator system 

dynamics can be engineered to solve different optimization problems by appropriately 

designing the coupling function and the external injection to each oscillator. In the future, 

such dynamical system-based computational models can be extended to solving 

hypergraph problems. 

Therefore, the coupled oscillator platform demonstrated here facilitates a scalable non-

Boolean approach to problems that are considered computationally hard to solve on 

digital platforms. Our work demonstrates, using experiment and simulation, that the rich 

spatio-temporal dynamics of the coupled oscillators can be leveraged to compute (-near) 
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optimal solutions to a varied range of challenging optimization problems. Our work marks 

an important step towards enabling application-specific analog computing platforms to 

solve computationally hard problems. 
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Appendices 

Appendix 1:  

Here, we illustrate that minimizing the Lyapunov function for the MaxCut problem in 

equation (4.2) is equivalent to minimizing H in equation (4.1), first shown by Wang et al. 

[47]. Similar analysis can be extended to the other combinatorial optimization problems 

considered here. 

The Lyapunov function for the oscillator system to solve the MaxCut is given by: 

E(ϕ(t)) = −C1 ∑ Jij cos( ϕij) − ∑Csynccos(2ϕi(t))

N

i=1

N

i,j=1, j≠i

  (A1.1) 

where, C1  0, Csync  0  Jij = −1. 

Equation (A1.1) (same as equation (4.2)) will achieve a minimum when cos( ϕij) =  −1  

(resulting from the first term on the right-hand side) and cos(2ϕi(t)) = 1  (resulting from 

the second term on the right-hand side of the equation). 

These conditions are satisfied (facilitating E to achieve a minimum) when ϕi =  0  or π. At 

these discrete phase points, equation (A1.1) can be expressed as: 

E(ϕ(t)) = −C1 ∑ Jij cos( ϕij) − NCsync

N

i,j=1, j≠i

  (A1.2) 

since cos(2ϕi(t))=1 for ϕi=0 or π.  

Further, by mapping every spin si = +1 to ϕi = 0 (π), and si = −1 to ϕi = π (0), it can be 

observed that cos( ϕij) =  −1,   when the nodes lie in the opposite set and cos( ϕij) =
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+1  when the nodes lie in the same set. This is similar to sisj = −1 (+1) when the spins 

have opposite (same) alignment, respectively. Furthermore, the phase configuration 

[ϕ1, ϕ2, ϕ3,…ϕN] (where ϕi = 0 or π) which minimizes E(ϕ(t)) will correspond to the spin 

configuration [s1, s2, s3…,sN] that minimizes the Ising Hamiltonian H given by: 

H = − ∑ Jijsisj

N

i,j=1,i<j

 (A1.3) 

In fact, with C1 =
1

2
, equation (A1.2) is equivalent to the Ising Hamiltonian with a constant 

offset. 

E(ϕ(t)) = − ∑ Jij cos( ϕij) − NCsync

N

i,j=1,i<j

 (A1.4) 

Here, 
1

2
 is used since the spin interaction in the Hamiltonian is represented by two terms 

( Jij, Jji) in the Lyapunov function. 

 

Appendix 2:  

Here, we illustrate how f (Δϕij) can essentially be considered as a coupling function. 

Equation (4.10) can be expanded and rewritten as: 

dϕi(t)

dt
= −C1 ∑ [𝐉𝐢𝐣𝐜𝐨𝐬 (𝐟(𝚫𝛟𝐢𝐣)) . sin( ϕij) + (𝐉𝐢𝐣𝐬𝐢𝐧 (𝐟(𝚫𝛟𝐢𝐣))) . cos( ϕij)]

N

j=1,i≠j

− Csyncsin(Kϕi) 

(A2.1) 
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Here, 𝐽 𝑗cos (𝑓 (𝛥𝜙 𝑗)) and 𝐽𝑖𝑗𝑠 𝑛 (𝑓(𝛥𝜙𝑖𝑗)) can be considered as coupling functions 

between the quadrature outputs of the oscillator. 

Appendix 3: Proof to show 
∂E(ϕ(t)) 

∂ϕi(t)
= −K

ⅆϕi
(t) 

ⅆt
 

E(ϕ(t)) = −
KC1

2
∑ Jij cos ( ϕij + f(Δϕij)) − ∑Csynccos(Kϕi(t))

N

i=1

N

i,j, j≠i

 
(A3.1) 

 

∂E(ϕ(t)) 

∂ϕi(t)
= −

KC1

2
∑ Jij

∂

∂ϕi(t)
cos (ϕi −  ϕj + f(ϕi −  ϕj))

N

j=1, j≠i
 

−
KC1

2
∑ Jji

∂

∂ϕi(t)
cos (ϕj −  ϕi + f(ϕj −  ϕi)) − Csync

∂

∂ϕi(t)
cos(Kϕi)

N

j=1, j≠i
 

   

(A3.2) 

 

∂E(ϕ(t)) 

∂ϕi(t)
= C2 ∑ Jij sin ( ϕij + f(Δϕij)) . (1 +

∂

∂ϕi(t)
f(Δϕij))

N

j=1, j≠i
 

+C2 ∑ Jji sin ( ϕji + f(Δϕji)) . (−1 +
∂

∂ϕi(t)
f(Δϕji)) + CsyncK. sin(Kϕi)

N

j=1, j≠i
 

(A3.3) 

 

∂
∂ϕi(t)

f(Δϕij) = lim
σ→ 

∑

(

 
 
 

−((2k − 1)π −
2kπ

K
) . e

−

(

 
(ϕi − ϕj−

2kπ
K

)
2

2σ2

)

 

. (
2 (ϕi −  ϕj −

2kπ
K

)

2σ2
)

K−1

k=1

− (
2kπ

K
− (2k − 1)π) . e

−

(

 
(ϕi − ϕj 

2kπ
K

)
2

2σ2

)

 

. (
2 (ϕi −  ϕj +

2kπ
K

)

2σ2
)

)

 
 
 

 

 

(A3.4) 
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∂
∂ϕi(t)

f(Δϕji) = lim
σ→ 

∑((2k − 1)π −
2kπ

K
) . e

−

(

 
(ϕj − ϕi−

2kπ
K

)
2

2σ2

)

 

. (
2 (ϕj −  ϕi −

2kπ
K

)

2σ2
)

K−1

k=1

 

+(
2kπ

K
− (2k − 1)π) . e

−

(

 
(ϕj − ϕi 

2kπ
K

)
2

2σ2

)

 

. (
2 (ϕj −  ϕi +

2kπ
K

)

2σ2
) 

(A3.5) 

Using the relation that, lim
σ→ 

e
−α2

σ2⁄

σ2 = 0 in equations (A3.4) and (A3.5) 

∂

∂ϕi(t)
f(Δϕij) =

∂

∂ϕi(t)
f(Δϕji) = 0 

 

(A3.6) 

Similarly, 
∂

∂ϕi(t)
fTSP(Δϕij) =

∂

∂ϕi(t)
fTSP(Δϕji) relevant to solving the TSP can be shown to be 

equal to 0 as illustrated further on. 

Substituting equation (A3.6) into (A3.3) and using sin(x) = −sin(−x)  & J
ij
= J

ji
 we get, 

∂E(ϕ(t)) 

∂ϕi(t)
 = 2C2 ∑ Jij sin ( ϕij + f(Δϕij)) + CsyncK. sin(Kϕi)

N

j=1, j≠i

 
(A3.7) 

 

∂E(ϕ(t)) 

∂ϕi(t)
 = 2.

K. C1

2
∑ Jij sin ( ϕij + f(Δϕij)) + CsyncK. sin(Kϕi)

N

j=1, j≠i

 
(A3.8) 

 

∂E(ϕ(t)) 

∂ϕi(t)
 = KC1 ∑ Jij sin ( ϕij + f (Δϕij)) + CsyncK. sin(Kϕi) = −K.

dϕi(t) 

dt

N

j=1, j≠i

 (A3.9) 
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dE(ϕ(t)) 

dt
= ∑[(

∂E(ϕ(t)) 

∂ϕi(t)
) . (

dϕi(t) 

dt
)] = −K∑[(

dϕi(t) 

dt
)

2

] ≤ 0

N

i=1

N

i=1

 (A3.10) 

 

To show 
∂

∂ϕi(t)
fTSP(Δϕij) =

∂

∂ϕi(t)
fTSP(Δϕji) = 0. 

∂
∂ϕi(t)

fTSP(Δϕij)

= lim
σ→ 

− ∑

(

 
 
 
(−

2γπ

N
) . e

−(
(ϕi − ϕj−

2γπ
N

)
2

2σ2 )

. (
2 (ϕi −  ϕj −

2γπ
N

)

2σ2
)

𝛾=1,𝑁−1

+ (
2γπ

N
) . e

−(
(ϕi − ϕj 

2γπ
N

)
2

2σ2 )

. (
2 (ϕi −  ϕj +

2γπ
N

)

2σ2
)

)

 
 
 

+ lim
σ→ 

∑

(

 
 
 

−(π −
2kπ

N
) . e

−

(

 
(ϕi − ϕj−

2kπ
𝑁

)
2

2σ2

)

 

. (
2 (ϕ𝑖  −  ϕj −

2kπ
𝑁

)

2σ2
)

N

k=2 k≠N−1

− (
2kπ

N
− π) . e

−

(

 
(ϕi − ϕj 

2kπ
𝑁

)
2

2σ2

)

 

. (
2 (ϕ𝑖 −  ϕ𝑗 +

2kπ
N

)

2σ2
)

)

 
 
 

 

 

(A3.11) 
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∂
∂ϕi(t)

fTSP(Δϕji)

= lim
σ→ 

− ∑

(

 
 
 
(
2γπ

N
) . e

−(
(ϕj − ϕi−

2γπ
N

)
2

2σ2 )

. (
2 (ϕj −  ϕi −

2γπ
N

)

2σ2
)

𝛾=1,𝑁−1

+ (−
2γπ

N
) . e

−(
(ϕj − ϕi 

2γπ
N

)
2

2σ2 )

. (
2 (ϕj −  ϕi +

2γπ
N

)

2σ2
)

)

 
 
 

+ lim
σ→ 

∑

(

 
 
 

(π −
2kπ

N
) . e

−

(

 
(ϕj − ϕi−

2kπ
𝑁

)
2

2σ2

)

 

. (
2 (ϕj −  ϕi −

2kπ
𝑁

)

2σ2
)

N

k=2

+ (
2kπ

N
− π) . e

−

(

 
(ϕj − ϕi 

2kπ
𝑁

)
2

2σ2

)

 

. (
2 (ϕj −  ϕi +

2kπ
N

)

2σ2
)

)

 
 
 

 

 

(A3.12) 

Using the relation that, lim
σ→ 

e
−α2

σ2⁄

σ2 = 0 in equations (A3.11) and (A3.12) 

∂

∂ϕi(t)
fTSP(Δϕij) =

∂

∂ϕi(t)
fTSP(Δϕji) = 0 

 

(A3.13) 

Substituting equation (A3.13) into (A3.3), and using a similar approach as described 

above, it can be shown that the energy function for the TSP (equation (4.19) in main text) 

is a Lyapunov function. The approach can be used to show that 
∂

∂ϕi(t)
fHC(Δϕij) =

∂

∂ϕi(t)
fHC(Δϕji) = 0, and the corresponding energy function for the Hamiltonian cycle/path 

(equation (24) in the main text) is a Lyapunov function. 
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Appendix 4: 

Here, we elucidate the role of the injection term/ external forcing function in discretizing 

the phases for the general case of the Max-K-Cut problem. We first consider the system 

dynamics for solving the Max-K-Cut problem without the external injection: 

dϕi(t)

dt
= −C1 ∑ Jij sin ( ϕij + f(Δϕij))

N

j=1,   j≠i

 (A4.1) 

The corresponding Lyapunov function for this system is given by: 

E(ϕ(t)) = −
KC1

2
∑ Jij cos ( ϕij + f(Δϕij))

N

i,j, j≠i

 (A4.2) 

Equation (A4.2) achieves a minimum when the phase difference is 
2π 

K
,  =  1,2, … , K. We  

also note that f (Δϕij) in the first term is specifically designed such that the 

cos ( ϕij + f(Δϕij)) term equals −1 (minimum value for the cos(.) function) when  ϕij =

2π 

K
 (for MaxCut, f (Δϕij)=0 since the cos(.) naturally achieves a minimum at a phase 

difference of π). 

While this minimum is attained when  ϕij =
2π 

K
, ϕi and ϕj  can assume analog values. 

For instance, in the case of the Max-3-Cut problem, ϕi = 0 and ϕj =
2π

3
, and ϕi =

π

3
 and 

ϕj = π are both probable solutions since    ϕij =
2π

3
 in both cases (f (Δϕij) =

π

3
 in both 

cases). Consequently, the oscillators exhibit a continuous distribution of phases, that 

cannot be directly mapped to the K-sets created by the Max-K-Cut. 
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In contrast, when the force term is considered, the resulting system dynamics are 

described by, 

dϕi(t)

dt
= −C1 ∑ Jij  sin ( ϕij + f(Δϕij)) − Csyncsin(Kϕi(t))

N

j=1,   j≠i

 (A4.3) 

for which the corresponding Lyapunov function is given by, 

E(ϕ(t)) = −
KC1

2
∑ Jij cos ( ϕij + f(Δϕij)) − ∑Csynccos(Kϕi(t))

N

i=1

N

i,j, j≠i

 (A4.4) 

In order for Equation (A4.4) to achieve a minimum, not only does  ϕij + f(Δϕij) =

(2m + 1) π has to hold true (condition arises from the first term), but ϕi and  ϕj have to 

also equal 
2π 

K
. In other words, the forcing term discretizes the phases to K points. 

Subsequently, these phase points can be directly mapped to the K sets created by the 

Max-K-Cut problem. 

 

Appendix 5: 

The strength of the coupling among the oscillators (C1) is increased linearly given by 

 C1 = 1 + t
A−1

T
; where T is the total simulation time (equivalent to 100 oscillation cycles), 

and A is a constant which is chosen such that the maximum value of C1 = A (at t = T). 

This implementation is inspired by prior work by Wang et al. [47], wherein increasing C1 

linearly was effectively used as an annealing schedule that helped the system better 

escape from local minima, and thus, facilitated improved solution quality. We observe
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similar behavior as shown in the representative graph (Fig. A1), wherein increasing the 

coupling strength linearly (while maintaining C1 below a critical threshold) produced better 

solutions compared to maintaining a constant coupling strength.  

However, it must be noted that considering the negative nature of coupling, C1 cannot be 

made indefinitely large and must be below a certain threshold. In fact, we observe that 

the 
C1

Csync
 ratio (i.e., coupling strength among the oscillator nodes relative to the coupling 

constant for external forcing function) is critical to achieving the desired functionality, and 

the system clusters get destabilized if the 
C1

Csync
 ratio is above a certain threshold. This is 

illustrated for a representative graph in Fig. A2 where it can be observed that the clusters 

start to destabilize for 
C1

Csync
 70. We note that the exact value of the threshold will depend 

on the properties of the graph such as size and connectivity as well as the computing 

problem. 

  

Fig. A1. Impact of C1 evolution on the MaxCut solution quality. (a)(b) Two schemes for evolution of the 

coupling constants considered in the example. C1 increases linearly in (a), while it is constant in (b); 

Csync is constant in both the cases. (c)(d) Observed MaxCut solutions (normalized to optimal solution) 

for two representative Mobius ladder graphs of size 30 and 50 nodes, respectively. It can be observed 

empirically that linearly increasing C1 produces improved solutions. 

1 2
90

95

100

B  

 
Graph Size=50

Mobius Ladder

Graph

Constant 

C1

Increasing 

C11 2

90

100

B  

 

Constant 

C1

Increasing 

C1

Graph Size=30

Mobius Ladder

Graph

(d)(c)

10 20 30 40 50 60
0

2

4

 

Time (cycles)

Increasing C1 Scheme

C1

Csync

M
a

g
n

it
u

d
e

10 20 30 40 50 60
0

2

4

 

C1

Csync

Constant C1 Scheme

M
a

g
n

it
u

d
e

(a)

(b)

M
a

x
C

u
t

(n
o

rm
a

liz
e

d
)

M
a

x
C

u
t

(n
o

rm
a

liz
e

d
)

0.9

1

0.9

1

0.95

Time (cycles)



89 
 

 

We also note that besides C1, Csync the standard deviation σ of the gaussian distributions 

must be carefully designed for the problems considered in this work. While force function 

ensures that certain angles (
2 𝜋

𝑁
  = 1, 2, 3. . 𝑁) are energetically favored, the system, 

while evolving towards this low energy configuration, may assume other phase angles 

not equal to 
2 𝜋

𝑁
. It is important to make sure that such angles do not help the system 

evolve towards a lower energy configuration. This can be ensured by appropriately 

choosing σ as well as adding additional gaussian terms in the function 𝑓( 𝜃𝑖𝑗) designed 

to penalize the system (i.e., increase energy) for such configurations. For instance, in the 

case of the Hamiltonian cycle, gaussian functions can be added to ensure that the system 

energy is increased for all angles not equal to the ±
2𝜋

𝑁
 (instead of just considering an 

energy penalty for 
2 𝜋

𝑁
  ≠ 1,𝑁 − 1. 

 

 
Fig. A2. (a) Mobius ladder graph considered in the illustrative example. (b)-(e) Evolution of oscillator 

phases for different C1/Csync  ratios (=10, 70, 80, 100, respectively). C1: coupling strength among the 

oscillators; Csync : Coupling strength of external injection signal / force function. It can be observed that 

C1 (relative to Csync) must remain below a critical threshold in order to observe the phase clustering. 
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Appendix 6:  

 

 

 

 
Fig. A3. A representative 100 node (randomly instantiated) graph and the evolution of 

oscillator phases corresponding to the solution of the Max-K-Cut problem (K=2, 3, 4).  
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Fig. A4. Graph instances from the G-Set solved using the oscillator-based computational 

model; the oscillators compute yields high quality Max-K-Cut solutions within >96% of the 

solutions obtained by F. Ma et al. [103]. Here, Solution Quality =
OScillator Solution

Best Known Solution
 x 100%. 
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