

Peer-to-Peer Variable Service
Transaction

Alex Zummo and Sonia Aggarwal

May 7, 2021

Capstone Research CS 4980

1

Table of Contents

Abstract 2

Introduction 2

Detailed Technical Description (i.e. Method and Implementation)

User Interface 3

Design Flow and System Architecture 10

Database Design, Implementation, and Population 11

Matching Algorithm 11

API work 12

AWS Hosting 12

Next Steps 13

References 14

2

Abstract

 Peer-to-Peer Variable Service Transaction (P2P-VST) systems make it simple for people

to give their time to others in exchange for the same courtesy later. The problem is that such

services are not easily found. Thus, an application for users to exchange their time, called

Hamlet, was proposed. This application will be developed by “evaluating how recommending

service requests targeted at a person’s context impacts their willingness to enter a transaction”

[1]. Preliminary research has shown that even if people have not actively volunteered for a

service, they are influenced by convenience.

Introduction

This research project will build a mobile application that uses context-aware matching

algorithms to enable community members to interact with one another for the purpose of

fulfilling each other’s service needs. What is context-aware matching? To be “context-aware, a

system or application should adapt its behavior according to [the] current context, changing over

time” [2]. Current context is often acquired by sensors or other applications, in this case a mobile

application. The algorithms used will be built with emphasis placed on timely and context aware

notifications and matches found by the current context. The goal is to enhance community

camaraderie and human efficiency by increasing instances when people may have specific needs

fulfilled on a casual basis by other residents of the same community. The motivation of this

research began with the idea of time banking. Time banking and the sharing economy became

popular when the conventional economy failed to provide the means for many to earn income

and acquire resources, including services such as Uber, Airbnb, and more. This project will allow

specific communities to be able to interact with one another and exchange their personal time, as

best determined by the community.

3

Detailed Technical Description (i.e. Method and Implementation)

User Interface

 The user interface of Hamlet is designed first using Figma as a way to map out the plans

that will be implemented in code. The implementation used the React Native Javascript

framework with flexbox CSS.

Figure 1: App.js implementation/Landing Page

4

To see the complete flow, the Software Flow Diagram is shown in Figure 8.

To begin, upon opening the application, there is a splash screen which will show for

approximately 10 seconds. This was a design choice to allow for all node modules (from the

React Native framework) to load and make any necessary installs before the application is in use,

as well as establish connection to backend servers. Once this splash screen disappears, the user

will see Figure 1, the landing page, which shows that there are three ways to progress through

the application.

The first option is to Login with Gmail, which will pre-populate all identification fields

based on your account information. After all this information is collected, the user will be

redirected to the Home Screen. The first way to progress through the application is “Sign up.”

This screen is shown in Figure 1, where the user is able to enter their desired credentials (email,

and password), check that the user is 13 or older for research purposes, and their name that they

would like to use publicly. Here the user will also have the option to note if they have a car,

which, once indicated to be true, will be used to help match certain needs and skills together. For

example, someone needs help with moving a couch. Therefore, someone with a car would be

very helpful. Once the user clicks submit, they will be prompted to enter their skills, as shown in

Figure 2. These skills can range anywhere from tutoring and delivering food, to grabbing

groceries and assisting a move.

5

Figure 2: My Skills Page

After the user submits their skills, they will then be redirected to the My Needs pages

shown in Figure 3. This figure shows where users will indicate their needs for delivery, tutoring,

etc. In each screen the user will be asked to rate their need or skill level from one to five, where

five is a high priority need or expert level skill and one is a low priority need or poor skill level.

6

Figure 3: My Needs Page

After this, the user will click the submit button and then be redirected to the Home

Screen, as shown in Figure 4. The home screen will have two main components, an interactive

map and a search bar. The map will ask for permission to access the user’s current location and

then have a marker at the current location of the logged in user. This map will also render pins

for positing needs that are within a ten mile radius of the user. These posting pins will refresh

based on a few factors when the user logs in and when the user navigates to this page from any

other page in the application. The pins will change if: a user creates a posting within ten miles of

the logged in user, the logged in user creates a posting, the expiration date of some of the pins

are past the current time therefore deleting the pin, and lastly if a user accepts a posting request.

7

Figure 4: Home Screen

The home screen also has a search bar that will search through the descriptions and

addresses of the postings such that if the word searched is found in any posting, these postings

will show up below the search bar indicating that “matches” to your search have been found. A

resulting “match” can then be clicked on and will display a modal. This modal can be seen in

Figure 4 (right). The modal shows the contact information of the poster (or recipient of the post),

and details regarding the request such as location, description, and expiration date.

There are two options that can be done by the user who did not create the post, from this modal

screen. The first is dismiss the modal and return the home screen. This acts as a “back button.”

The second is accepting the posting. If this posting is accepted, the user who accepted (or

provider of the post) will be redirected to the My Postings screen that will now include this

posting. This action will also prompt a push notification to be sent to the recipient that will

include the name, email, and request service type, such that the recipient will need to accept this

8

provider to their request. If the recipient accepts the provider, then the provider will have a match

show up in their My Postings page. However, if the user declines, then the handshake action is

incomplete and the provider will not be able to see this posting in their My Postings page.

On each screen, there will be a navigation bar that can be found after swiping from the left,

shown in Figure 7 toward the middle, as shown in Figure 5: Navigation Bar.

Figure 5: Navigation Bar

The navigation bar shows the Make a Request page. From this page, as shown in Figure

6: Make a Request Page, the user is able to create a request for a tutor, someone to clean/deliver,

etc. The required fields for a successful posting will be shown, and marked with an asterisk. If a

field is not filled out, the user will not be able to continue with the posting. The user, once

posted, can then find this posting on the home screen as a pin in the desired location. This

9

location will be entered by the user and validated using geolocation. Once the posting has been

submitted, all users within a 10 mile radius of the posting address will be notified through a push

notification that a request has been made and that they are able to fulfil it if desired. On this same

page, if the service type includes grocery delivery or moving, then the user will be given the

option to enter a source address and a destination address for the provider’s ease of use.

Figure 6: Make a Request Page

10

Figure 7: My Posts Page

The My Posts page shows all the posts the user has created and have matched with. When

a match is confirmed, both users involved will have a posting show under “My Matches” that

will give the recipient the option to confirm the completion of the task, and then rate their

provider. Ratings are done using stars, with 1 star representing a poor match and 5 stars

representing an excellent match.

Design Flow and System Architecture

11

Figure 8: Software Flow Diagram

In Figure 8: Software Flow Diagram, the software or user flow diagram is shown. Users

have two main entries into the application from the splash screen, sign up or login. Sign up will

lead to creating a profile, entering the user skills and then user needs before directing to Home.

Login will direct the user to Home immediately. From home, the user can navigate to any part of

the application and update their preferences, needs, skills, and requests as necessary by

navigating to the appropriate tab.

Database Design, Implementation, and Population

The backend of the system is implemented using Flask with a SQLite database, using the

SQLAlchemy library. In Figure 9, the database relationships are shown. The database will

12

populate the tables and rows based on the user, and only save certain information for the current

user such as the profile information, authentication information, and posting information.

Figure 9: Database Tables

Matching Algorithm

The matching algorithm consists of three main ways that users can find each other to

provide a service or request a need. One, when a user creates or updates a need or skill, each user

with a complementary need or skill will be notified with a push notification that there is someone

who is able to help. For example, if a user needs tutoring in python and another user has a python

programming skill, once both of these facts are placed into the database, a “match” is made and

one of the users will get a push notification with the other user’s contact information. The

recipient of the notification is decided simply by who updated the database first. Second, when a

13

user creates a post or request, the user of the application within a ten mile radius will receive a

notification that a request has been made and will be given the option to look at the posting upon

tap. And lastly, a match is made if a user creates a post, another user accepts to provide for the

post, and the creator of the post receives and accepts the post provider.

API work

The project employs a REST API. A RESTful API “determines how the API looks like.”

It stands for “Representational State Transfer”. It is a set of rules that developers follow when

they create their API (Zell, 2018). Every request sent from the front end React Native

framework, which includes the Sign Up, My Needs, My Skills, Home, Make a Request, and My

Postings screens, must go through an API request to redirect the user to the correct action item,

based on their session cookie, user id, and their profile status. Each api request is different. The

HTTP methods used in this project are GET, POST, and DELETE requests. Currently there are

several API requests shown in Appendix B. For more information on the specific APIs employed

in the application, please see Appendix B.

AWS Hosting

The application will be hosted on an Ubuntu 18.04 server virtual machine on the Amazon

Web Services (AWS) Elastic Cloud Compute (EC2) service. The current IP address that this

application is hosted on is: http://54.237.126.87/ which is what the EC2 instance of AWS has

directed the application to. The backend Flask server was then built as an NGINX (pronounced

“Engine X”) service. This service gave the developers two abilities. First, a way to run the

backend in the background on the VM without having to physically run a command every time

the app is launched. Second, the NGINX service specifically was built to create Flask

applications as services, which made development and deployment simple. To create the EC2

14

instance and run flask applications as a service using nginx, see Appendix C for detailed

documentation.

Next Steps

Major Feature Additions

The future work of this app would include adding a more sophisticated matching

algorithm to track users for their frequently visited locations and times they are in these places.

The app could then predict when a user would be in the area and if they would be willing to fulfil

a request. Further, an in-app chat feature would allow users to communicate about a request

directly. The chat functionality would create an entirely in-house experience and ease user

interaction.

Small Feature Fixes

Some things already in the app could clearly be improved in future iterations, such as the

user experience, automatic refresh, and an admin interface. The user experience could be

improved if there was a graphics designer who was also working on the application alongside the

developers. The automatic refresh feature would use a server push to service interface, such that

whenever an element changes (such as a posting is added to the Home Screen) the application

would refresh the screen automatically. The user would then be able to interact with the app as

usual.

Code Logistics

The codebase itself could also be improved with automated testing using Jest, which is

React Native’s unit testing library. These Jest tests could be developer-written as code is

developed and executed in an automated build sequence. This automated build sequence would

15

be integrated with the github repository such that every time code was pushed to the repository,

automated regression testing would occur and flag issues before a merge is executed.

References
A. B. Kocaballı and A. Koçyiğit, “Granular best match algorithm for context-aware computing

systems,” Journal of Systems and Software, 15-Mar-2007.

Doryab, Afsaneh, et al. “If It’s Convenient.” Proceedings of the ACM on Interactive, Mobile,

 Wearable and Ubiquitous Technologies, vol. 1, no. 3, 2017, pp. 1–28.,

 doi:10.1145/3130913.

Zell, Z. (2018, January 17). Understanding And Using REST APIs. Smashing Magazine.

https://www.smashingmagazine.com/2018/01/understanding-using-rest-api/.

Appendix

Appendix A: Github Repository: https://github.com/ihcc-lab/nightingale

Appendix B: All APIs in detail at:
https://docs.google.com/spreadsheets/d/1byTrp842ym9KOFTL08OqPz9JPvRSa02kVmqFESeQ
EuE/edit#gid=0

Appendix C:
https://docs.google.com/document/d/1QecbwOW4z9DIqGsseVEp5yzO3mkCxTZUlMQ5ybkC5
nI/edit?usp=sharing

Appendix D:
https://docs.google.com/document/d/1HHiOqZatARgK1KITfT7OneqHZCRJr1VjCaMj_yR-
L2c/edit?usp=sharing

Appendix E:
https://docs.google.com/document/d/1x7Si6bZzm0xSaqhuU3ten7nIYfSvUYCLpYhOjN9-
w1o/edit?usp=sharing

