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Abstract

Machine learning is continually being applied to increasingly complex domains. In some cases, these

involve safety-critical systems (e.g., self-driving cars) or influence important financial decisions (e.g.,

investment recommendations). Unfortunately, mistakes or unexpected behaviors in these domains

can have high cost, including large monetary losses or death. As the use of machine learning

continues to expand, it is important that we are prepared to ensure these systems behave as intended.

Fortunately, many verification and falsification tools have been introduced in the past few years that

enable us to prove properties about the behavior of neural networks. Unfortunately, these tools

are often limited in the types of networks and properties that they support. Instead of focusing

on the development of new verifiers or falsifiers, we instead develop techniques to increase the

applicability of existing verification tools for neural network properties by building on the insight

that unsupported verification problems can be rewritten into supported ones. We develop rewriting

rules for property specifications, neural networks, and environment models, that enable existing off-

the-shelf verification tools to be applied to previously unsupported verification problems. In general,

we introduce rewritings which transform problems into sets of subproblems that are supported by

a given verifier, and for which results can be mapped back to the original verification problem. We

evaluate our rewriting rules across a wide selection of benchmarks and show that our techniques

significantly increase the applicability of both verifiers and falsifiers.
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Chapter 1

Introduction

Applications of machine learning are ubiquitous throughout our lives. From online shopping rec-

ommendations to voice assistants, machine learning models, such as neural networks, are contin-

ually applied to new domains. In some cases, these domains involve safety-critical systems (e.g.,

self-driving cars) or influence important financial decisions (e.g., investment recommendations). Un-

fortunately, mistakes or unexpected behaviors in these domains can have high cost, including large

monetary losses or death. As the use of machine learning continues to expand, it is important that

we are prepared to ensure these systems behave as intended. We must develop techniques now for

ensuring the safety and correctness of machine learning systems.

Consider the simple pendulum control system shown in Figure 1.1. This system consists of an

environment that models a pendulum with a mass on a length of rod and a neural network that

controls the torque applied to the pendulum. The goal is to keep the pendulum in a vertical position,

with the mass directly above the pivot point. The environment, depicted in Figure 1.1a, models the

current state of the environment and how the state changes over time. For example, the environment

could track the angle and velocity of the pendulum and define how these values update with an input

torque value. The neural network, depicted in Figure 1.1b, takes in a set of inputs derived from the

state of the environment and outputs a torque. To ensure the correctness of this system, we must

specify properties describing the expected behavior, such as those in Figure 1.1c. These behavioral

specifications can range from simple properties over only the output of the network, to properties

describing relationships between network inputs and outputs, and to properties describing how the

state changes over time. Given an environment model, network, and property, we can check whether

the property is true for the network operating within the specified environment model, providing

1
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(a) An environment consisting of a pendulum with
a controlled torque, T .

Neural NetworkM(

[
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θ̇
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[
u
]

(b) An neural network to control torque, to maintain
a pendulum angle of 0 degrees.

φ3.1 : The neural network should never output a
value less than −1 or greater than 1.

φ3.2 : If the pendulum in the bottom left quadrant,
then the predicted torque should be negative.

φ3.3 : If the pendulum is in the upper left quad-
rant and moving clockwise, then it should
never fall below the pivot point.

(c) Three example properties for this system.

Figure 1.1: A system with a network to control the angle of a pendulum.

assurance that the network behaves as expected.

In the past few years, an abundance of techniques have been introduced for verifying properties

of neural networks [2, 11, 14, 16–18, 20, 32–34, 36, 40, 50, 55, 59, 102, 104, 111, 112, 114–117, 125,

129, 133, 135, 136, 141–143, 151]. In general, these techniques take in a neural network and a logical

formula (i.e., a property) specifying a relationship between the inputs and outputs of that network,

and seek to prove that the property is true for all inputs and outputs of the network. Unfortunately

these existing verification tools for neural networks tend to make several restrictive assumptions

about the network, property, and environment that significantly reduce the applicability of these

techniques to real-world problems.

First, many verifiers have limited support for neural network operations and architectures, often

due to the significant engineering cost. For example, the publicly available Neurify [135] tool only

supports convolution, matrix multiplication, vector addition, and ReLU operations, and adding

support for new operations to the tool requires defining a new input format and an encoding of

the new operation as constraints that are consumable by the tool. Commonly used networks, such

as VGG [113] and ResNet [48], do not satisfy this requirement, due to their use of unsupported

operations such as max pooling, average pooling, and batch normalization. Additionally, many

verifiers, such as nnenum [10] and JuliaReach [14] are restricted to network architectures in which

operations are applied sequentially to the inputs to get the final output. However, modern neural

networks such as ResNet and DenseNet [54], include operations which rely not only on the output of

a single previous operation, but the output of several previous operations, prohibiting the application

of verifiers that expect a sequential architecture.
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Second, many verifiers have no mechanism for specifying explicit environment models. Many

tools, such as Planet [34], Marabou [69], and VeriNet [49] are only applicable to correctness problems

in which the environment model can be ignored. Generally, these are problems where behavioral

properties are specified over the inputs and outputs of a network at a single instance of time. We refer

to such tools as open-loop verifiers because there is no feedback loop from the network output to the

environment. This contrasts with closed-loop verifers, which require an explicit environment model

to support verification of properties that take into account feedback from actions controlled by the

network. Due to their lack of environment support, open-loop verifiers are limited to verification of

properties over the inputs and outputs of a network, such as properties φ3.1 and φ3.2 in Figure 1.1c.

However, they cannot verify properties like φ3.3, which specifies how the environment can change

over time in response to the network.

Finally, many tools have limited support for complex property specifications, often focusing

on a specific property type due to the cost of designing and implementing an expressive property

specification language. For example, adversarial attacks such as projected gradient descent are

extremely effective at quickly finding violations to a type of property referred to as local robustness.

However, off-the-shelf, adversarial attacks are limited to only this single property type, reducing

their applicability and usefulness. Additionally, almost all verification tools only support properties

over a single neural network. This means that verifiers such as NNV [129] and Neurify [135] cannot

check property specifications over multiple networks, such as verifying whether two networks are

equivalent or whether a system with multiple network controllers, e.g., a steering controller and a

throttle controller for an autonomous vehicle, satisfies some behavioral property.

While the efficiency of verification techniques continues to improve, their application is still lim-

ited by the networks, environments, and properties that they support. In order to verify complex

behaviors of real-world neural networks we introduce a rewriting approach for verification problems

which transforms networks, environment models, and property specifications from forms unsup-

ported by a given verifier to supported forms. For example, network rewriting, or refactoring, can

enable verifiers to support VGG by rewriting max pooling, average pooling, and batch normaliza-

tion to equivalent supported forms using only convolution and relu operations. Similarly, property

rewriting, or reduction, can enable verifiers to support more complex property types by embedding

some of the property semantics into the network and defining new properties over the modified

network. We can, for example, rewrite properties into a conjunction of local robustness properties,

enabling adversarial attacks such as projected gradient descent to be applied, as well as many other

verification tools. The environment rewritings we introduce can aid other rewritings, transforming
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complex environment models into forms that are easier for other rewritings to work with. For exam-

ple, one rewriting introduced in Chapter 7 rewrites functions in an environment model to be neural

networks, enabling subsequent rewritings of the problem.

While our rewritings enable verification of more problems than ever before, they wouldn’t be

very useful if they didn’t provide insights about the original problem. A rewriting that simply

removed any unsupported operation in a neural network may allow a verifier to run, but any results

would not be applicable to the original network. In designing rewritings, we take care to preserve

the semantics of the original problem whenever we can. In many cases we can rewrite problems

such that any result to the rewritten problem also applies to the original problem. In some cases,

however, rewritings only preserve one type of result. For example, for some rewritings if we can

prove the property is true for the rewritten problem, then we know the original property must also

be true for that problem, but showing the rewritten property is not true doesn’t necessarily mean

the original property is not true. Occassionally it can even be useful to define rewritings that do

not guarantee that the semantics of the original property are preserved, such as when environment

models cannot be explicitly defined, as is the case in Chapter 6.

This work makes several novel contributions towards increasing the applicability of verification

tools for neural networks.

• First, we define a theoretical framework for verification of neural networks, which enables the

definition of network, environment, and property rewritings.

• Second, under this framework, we introduce instantiations of these rewritings to increase the

applicability of existing verification tools. We have developed instantiations for network [108,

110], environment [127], and property [108, 109] rewritings for open-loop verification, as well

as network, environment, and property rewritings for closed-loop verification.

• Third, we have empirically evaluated our rewritings across multiple benchmarks to demonstrate

the effectiveness of rewriting at increasing the applicability of verification tools.

• Finally, we implement these instantiations and make them available in publicly accessible

tools: DNNV1, DNNF2, and R4V. This immediately increases the applicability of tools already

supported by DNNV and DNNF and enables other verifiers to make use of these rewritings to

increase their applicability and usefulness going forward.

1https://github.com/dlshriver/dnnv
2https://github.com/dlshriver/dnnf

https://github.com/dlshriver/dnnv
https://github.com/dlshriver/dnnf
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The remainder of this dissertation is organized as follows. Chapter 2 presents the necessary

background information on neural networks, verification, and relevant software engineering concepts

required in this thesis. In Chapter 3 we introduce rewriting, providing an overview and definitions

of terms that make up the theoretical foundations of our approach. The following chapters then

introduce instantiations of rewritings to increase the applicability of verifiers. First, Chapter 4 intro-

duces instantiations of semantics-preserving property reduction. Second, Chapter 5 introduces an

instantiation of both non-semantics-preserving and semantics-preserving network refactoring. Third,

Chapter 6 introduces an instantiation of environment environment rewriting. Finally, Chapter 7 in-

troduces instantiations of network, environment, and property rewritings for closed-loop verification

problems. After presenting our instantiations of rewriting, we conclude and discuss possible future

research directions in Chapter 8.



Chapter 2

Background

This chapter provides background on neural networks and verification that will be useful throughout

this work.

2.1 Neural Networks

A neural network N : Rn → Rm is a machine learned model trained to approximate some partial

target function f : X → Y. For example, f may classify some n-dimensional input (e.g., an image)

as one of m possible classes (e.g., a digit in the range 0 to 9). f is partial in the sense that it is

trained to generalize to a target data distribution, X ⊂ Rn. For inputs outside this distribution, its

behavior should be considered undefined.

Training involves applying N to samples, (x,y), from a training set, X ⊂ X , and repeatedly

updating the parameters of N based on the value of some loss function error(N (x),y). Training

is performed over a training set rather than the entire data distribution, since this distribution

is generally unmanageably large (e.g., the set of all possible road images from a vehicle-mounted,

forward-facing camera). The training set is assumed to be a representative sample of the expected

input distribution.

The literature on machine learning has developed a broad range of rich operation types and

explored the benefits of different combinations of operations in realizing accurate approximations

of different target functions [43]. For example, convolution (Conv) and pooling (e.g., MaxPool,

AveragePool) operations were designed for processing inputs known to have a grid-like structure,

such as images. Other operations, such as batch normalization (BatchNorm) attempt to eliminate

known issues to improve accuracy or speed up training [57]. And some operations, such as ReLU,

6



CHAPTER 2. BACKGROUND 7

Sigmoid, Tanh, and LeakyReLU, provide the non-linearity that neural networks require to learn.

One particularly important class of operations for this work are continuous piecewise-linear oper-

ations, which are functions where the domain of definition can be partitioned into convex polytopes

each of which corresponds to a linear function. Many common non-linear network operations, such

as absolute value (Abs), ReLU, LeakyReLU, Min, and MaxPool are continuous piecewise-linear.

Prior work has shown that continuous piecewise-linear functions can be represented by the linear

combination of other continuous piecewise-linear functions, such as Abs and Max [65, 138, 139].

We make use of this relationship between piecewise-linear functions when defining some semantics

preserving network refactorings in Chapter 5.

Additionally, one class of neural network architecture is a sequential model, in which operations

are applied sequentially to a given input vector to get an output vector. Sequential architectures

are often described as having layers, which generally consist of several successive operations, such

as an affine transformation followed by a non-linear element-wise operation (e.g., ReLU, Sigmoid,

Tanh). Two common layers are fully-connected layers and convolutional layers. A fully-connected

layer consists of a matrix multiplication and vector addition, followed by a non-linear activation

function such as a ReLU operation. A convolutional layer similarly consists of affine operations

and activation function, but replaces the matrix multiplication with a 2-dimensional convolution.

While many verification tools assume that neural networks have a sequential structure, many non-

sequential architectures have been introduced in the machine learning literature, such as ResNet [48],

DenseNet [54], and Inception [121, 122]. This means that many widely used networks are not

currently supported by existing tools.

2.2 Verification of Neural Networks

Given a neural network, N , an environment model, E , and property specification, φ, over the

environment and inputs and outputs of the network, verification attempts to prove or falsify whether

φ is true for the given N and E . Formally, a verifier checks whether E ,N |= φ is satisfiable. Here

we will present an overview of existing property types prior to this work, as well as a brief overview

of existing verification approaches.

2.2.1 Property Specificatons

A survey on verification of neural networks [80] identifies several representations for input and output

constraints in property specifications. Two of these are particularly useful for certain instantiations of
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rewritings introduced in this work. A hyperrectangle is an n-dimensional rectangle where constraints

are formulated as (xi ≥ lbi) ∧ (xi ≤ ubi), where lbi, ubi ∈ R and 0 ≤ i < n define the lower and

upper bounds on the value of each dimension of x, respectively. A special case of hyperrectangles

is the unit hypercube, which is a hyperrectangle where ∀i.(lbi = 0) ∧ (ubi = 1); an n-dimensional

hypercube is denoted [0, 1]n. A halfspace-polytope is a polytope that is represented as a set of linear

inequality constraints, Ax ≤ b, where A ∈ Rk×n, b ∈ Rk, k is the number of constraints and n is the

size of the network input.

Using such encodings, researchers have specified a range of properties for neural networks. We

classify these properties into several categories.

Open- vs Closed-Loop

First, we differentiate between open-loop and closed-loop properties.

Open-loop properties specify a relationship between network inputs and outputs at a single in-

stance of time. For example, φ3.1 and φ3.2 in Figure 1.1 are open-loop specifications. φ3.1 states

that all inputs should avoid two unsafe regions in the output space, while φ3.2 states that a subset

of the input space map to a known safe region of the output space. In general, open-loop properties

specify the sets of acceptable or unacceptable outputs for a given set of inputs.

Closed-loop properties specify how the environment state and network inputs and outputs change

over time. For example, φ3.3 is a closed-loop property specification, which states that, after a given

set of environment states is reached (i.e., those when the pendulum is in the upper left quadrant

and moving clockwise), then another set of states should always be avoided (i.e., those states where

the end of the pendulum is below the pivot). In general, closed-loop properties specify either a set

of environment states that must be reached or that must be avoided as the network operates.

Open-Loop Property Taxonomy

Second, we distinguish three broad categories for open-loop property specfications: robustness, reach-

ability, and differential properties. We provide this additional categorization due to the abundance

of open-loop properties in the verification literature.

Robustness properties originated with the study of adversarial examples [123, 149]. They apply

to classification models and specify that inputs from a specific region of the input space produce

the same output class. Robustness properties can be further classified as either local or global;

the former asserts robustness in a partial region of the input domain and the latter over the entire

input domain. Detecting violations of robustness properties has been widely studied, and they are
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a common type of property for evaluating verifiers [34, 115, 116, 125, 135].

Reachability properties define the post-condition using constraints over output values rather than

output classes, and are thus not limited to classification models. Such properties have been used to

evaluate verifiers [68, 135]. Reachability properties specify that inputs from a given region of the

input space must produce outputs that lie in a given region of the output space. For example, a

neural network model controlling the velocity of an autonomous vehicle may have a safety property

specifying that the model never produces a desired velocity value greater than the maximum physical

speed of the vehicle for any input in the input domain. Similarly to robustness, reachability proper-

ties can be further classified as local or global. For example, a global halfspace-polytope reachability

(GHPR) property would specify a halfspace-polytope constraint on network output values that must

hold for all inputs.

Differential properties are the most recently introduced neural network property type [96]. These

properties specify a difference (or lack thereof) between outputs of multiple neural networks. One

type of differential property is equivalence, which states that for every input, two neural network

models produce the same output. Such a property can be used to check that neural network semantics

are preserved after some modification, such as quantization or pruning. Differential properties can

be supported by combining multiple neural networks into a single network and expressing properties

over their combined input and output domains.

In addition to the three categories above, open-loop properties can also be classified by the form

of their input pre-condition. Global properties have the most permissive pre-condition, enforcing

the post-condition for any input in the input domain of the neural network. For example, a neural

network that operates on images may accept values in [0, 1]n. The pre-condition of a global property

would not restrict this domain any further. Local properties only enforce the post-condition for

inputs within a designated region of the input domain. For example, a local property for an image

processing network may have the precondition that inputs are within distance ε of some given input

x. This is especially common in robustness properties.

Closed-Loop Taxonomy

Prior work has distinguished 2 categories of closed-loop property specifications: must-reach and

must-not-reach [107]. Must-reach properties specify that all paths beginning from a set of initial

states eventually reach some state in a set of acceptable states. For example, a property for a robotic

vacuum may specify that, starting from a set of initial conditions, the robot will eventually reach

the charging base before its battery dies. Must-not-reach properties specify that no path beginning
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from the set of initial states ever reaches an unsafe state. Equivalently, these specifications dictate

that paths must always remain in a set of safe states. For example, a property for an adaptive cruise

control system may specify that the vehicle being controlled always maintain a distance of 10 meters

from the lead car. In other words, the system must never reach a state in which the follower is less

than 10 meters from the lead vehicle.

2.2.2 Logic

Property specifications could be specified in many different forms. We will discuss 2 formal systems

useful for this work: first-order logic and linear temporal logic.

Linear Temporal Logic

Linear Temporal Logic (LTL) is a fragment of first order logic designed to encode logical formulae

over sequences of states. Formulae are constructed from a finite set of propositional variables, ρ ∈ P ,

logical operators, ∨ and ¬, and temporal operators X and U, where Xϕ1 means that ϕ1 must be

true in the next time step, and ϕ1 Uϕ2 means that ϕ1 must remain true until ϕ2 becomes true. The

LTL syntax is as follows:

ϕ := ρ | ¬ϕ1 | ϕ1 ∨ ϕ2 | Xϕ1 | ϕ1 Uϕ2 | Gϕ1 | Fϕ1

The temporal operators G and F are also often defined, where Gϕ1 means that ϕ1 must always

remain true and Fϕ1 means that ϕ1 must eventually become true. The formula Gϕ1 can be

written using the standard variables and operators as ¬((ρ ∨ ¬ρ) U¬ϕ1), while the formula Fϕ1

can be written as (ρ ∨ ¬ρ) Uϕ1.

Given an infinite sequence, w, of truth assignments to the propositional variables in P , we can

determine whether ϕ is satisfied, i.e., whether w |= ϕ, as follows:

w |= ρ if ρ ∈ w0

w |= ¬ϕ if w 6|= ϕ

w |= ϕ1 ∨ ϕ2 if w |= ϕ1 or w |= ϕ2

w |= Xϕ1 if w1..∞ |= ϕ1

w |= ϕ1 Uϕ2 if w |= ϕ2 or w |= ϕ1 and w1..∞ |= ϕ1 Uϕ2

i.e., ∃i ≥ 0.(wi..∞ |= ϕ2) ∧ (∀0 ≤ k < i.wk..∞ |= ϕ1)
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where wi is the i-th assignment in the sequence, and wi..k is the subsequence starting at index i and

ending at index k − 1. A sequence, w, satisfies an LTL formula ϕ if w |= ϕ, and ϕ is satisfiable if

there exists some w such that w |= ϕ. A formula, ϕ, is valid if all w satisfy ϕ.

LTL Variant - LTLτ For the work in Chapter 7 we use of variant of LTL which specifies properties

over finite sequences with a maximum length of τ . The syntax of this variant, LTLτ is the same as

LTL, however the rules for satisfiability replace instances of ∞ with the length of the sequence, |w|,

and the temporal operator X cannot be satisfied at the last time step, τ . Formally:

w |= ρ if ρ ∈ w0

w |= ¬ϕ if w 6|= ϕ

w |= ϕ1 ∨ ϕ2 if w |= ϕ1 or w |= ϕ2

w |= Xϕ1 if |w| > 1 and w1..|w| |= ϕ1

w |= ϕ1 Uϕ2 if w |= ϕ2 or |w| > 1 and w |= ϕ1 and w1..|w| |= ϕ1 Uϕ2

2.2.3 Verification and Falsification

Many methods have been developed to prove or falsify behavioral properties of neural networks. We

consider two categories of approaches in this work: verification and falsification.

Verification

Verification approaches attempt to show that a specification is true for a network. They can also

often determine whether a specification is false. A recent survey [80] describes several categories

of algorithmic approaches for verifiying open-loop properties of neural networks. These include

reachability methods, optimization methods, and search-based methods. Many existing tools can

use a hybrid approach and use methods from multiple categories.

Reachability methods calculate approximations of the sets of values that can be computed as out-

put of the network given an input constraint. Verification tools that use reachability methods include:

MaxSens [143], DeepGo [104], CROWN [151], CNN-CERT [16], ERAN [114–117], VeriNet [49, 50],

Debona [18], NNV [129], and nnenum [8]. Optimization methods formulate property violations

as a threshold for an objective function and use optimization algorithms to determine failure to

meet that threshold. Verification tools that use optimization methods include: MIPVerify [125],

ILP [11], Duality [33], ConvDual [142], Certify [102], and PeregriNN [71]. Search-based methods
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that explore regions of the input space where they then formulate reachability or optimization sub-

problems. Verification tools that use search-based methods in conjunction with reachability methods

include: Neurify [135], ReluVal [136], Fast-lin and Fast-lip [141], DLV [55], α-CROWN [147], and

β-CROWN [137]. Verification tools that use search-based methods in conjunction with optimization-

based methods include: Sherlock [32], Bab [20], Planet [34], Reluplex [68], and Marabou [69].

Closed-loop verification tools, particularly for continuous-time systems, almost exclusively use

reachability-based algorithms to analyze the behavior of neural network control systems. These

tools generally use Flow* [25] or CORA [4] to overapproximate the highly non-linear continuous

dynamics of the system. Closed-loop verification tools that use reachability-based methods include:

Sherlock [32], NNV [129], ReachNN* [36], JuliaReach [14, 107], and Verisig [59]. The closed-loop

verifiers designed for discrete-time problems have slightly more algorithmic variety, but primarily

focus on reachability and optimization. Reachability-based tools include SafeRL Infinity [7], while

optimization based methods include tools such as OVERT [112] and VenMAS [2].

Falsification

Falsifiers are a subset of verification approaches that seek to find examples that violate a given

specification for a given model, rather than prove the specification. Two categories of falsification

techniques that have been developed for neural are adversarial attacks and fuzzing.

Adversarial attacks are methods optimized to detect violations of robustness properties [1, 149].

They usually fall into the optimization category defined above. In general, adversarial attacks the

take in a neural network and an initial input, and attempt to produce a small perturbation that,

when applied to the input changes the class predicted by the given model. These perturbations

are often also subject to additional constraints, such as remaining within some specified distance of

the original input. A perturbed input, commonly known as an adversarial example is a violation

to a local robustness property. Adversarial attacks can be classified based on characteristics of the

attack, such as if they are white-box [45, 77, 85, 87, 123] or black-box [119]; targeted [45, 123] or

untargeted [77, 87]; iterative [77, 85, 87] or one-shot [45, 123]; or by their perturbation constraint

(e.g., L0 [119], L2 [23], or L∞ [45, 123]). A more exhaustive taxonomy and description of existing

adversarial attacks is available in the literature [1, 149].

Fuzzing involves randomly generating inputs within a given input region (often the full input

space), and checking whether the outputs they produce violate a specified post-condition. Fuzzing is

more general than adversarial attacks, in that it can support the falsification of more than robustness

properties, but requires specifying input mutation functions and objective functions (i.e., an output
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oracle), for every property of interest. Existing fuzzing techniques include TensorFuzz [90] and

DeepHunter [145].



Chapter 3

A Framework for Rewriting Neural

Network Correctness Problems

We begin by defining the theoretical framework upon which the rest of our work builds. The goal

of this framework is to establish a foundation for discussing and defining correctness problems,

verification, problem rewritings, and properties of rewritings. We first provide a high level overview

of rewriting, before formally defining the terms and concepts that we will build on in the succeeding

chapters.

3.1 Overview

To ensure that a neural network behaves as expected, verification can be performed to check whether

a given behavioral specification holds for the network operating in some specified environment. In

general, verification takes in a neural network, behavioral specification, and model of the environment

and returns whether, under the provided environment model, the behavioral specification is true or

false for the given network. Behavioral specifications define a desired relationship between inputs

and outputs of the neural network, while the environment model specifies how new input values are

obtained from previous output values.

Take, for example, the problem originally depicted in Figure 1.1, and reproduced in Figure 3.1

using the formalisms defined later in this chapter. The problem consists of a single pendulum

controlled by a neural network, with the goal of maintaining the pendulum in an upright position.

In this example, the state of the environment can be completely described using a real-valued vector

14
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(a) A model for a pendulum. The environment can be represented
by the angle and angular velocity of the pendulum.

input · · · clip
x z

N

Q = {input, . . . , clip}
q0 = input

q∗ = clip

δ = {(input, f1, x), . . . , (fk, clip, z)}

(b) A neural network to control the torque
applied to the pendulum.

∀x.(x ∈ X ) =⇒ (−1 ≤ N (x) ≤ 1) (φ3.1)

∀x.(x ∈ X ∧ π
2
≤ x0 ≤ π) =⇒ (N (x) ≤ 0) (φ3.2)

((0 ≤ s0 ≤
π

2
) ∧ (s1 < 0)) =⇒ XG((s0 <

π

2
) ∨ (

3π

2
< s0)) (φ3.3)

(c) Three formal property specifications for the single pendulum control system.

Figure 3.1: Example definitions of the environment model, neural network, and properties for the
pendulum system introduced in Chapter 1.

of 2 values, representing the angle and angular velocity of the pendulum. The environment also

defines how future states are derived from the current state and network outputs. The pendulum is

controlled by a neural network, which takes in an input vector derived from the state and outputs a

control value representing the desired torque to apply to the pendulum. For now, the only assumption

we will make about this network is that the final operation is a clip operation, which bounds the

output values to some range by setting any values lower than a specified lower bound to be equal

to that lower bound, and any values greater than a specified upper bound to be equal to that

upper bound, i.e., clip(x, L, U) = min(max(x, L), U). Finally, Figure 3.1c formally specifies 3

desired properties of the system behavior. The first two are open-loop properties, specifying how

the network should respond to specific inputs, and the third is a closed-loop property, specifying

how the environment is expected to change over time in response to the network.

Unfortunately, many of the constructs in this simple problem are not supported by various ver-

ifiers. For instance, open-loop verifiers do not support environment models, which are required to

verify closed-loop properties, such as φ3.3. While closed-loop verifiers support some environment

models, existing tools can struggle to return useful results due to significant overapproximation and

incomplete algorithmic techniques, as we show in Chapter 7. Fortunately, in many cases, we can

rewrite the problem such that the environment semantics are incorporated into the property specifi-

cation and network, enabling open-loop verifiers to support problems with non-trivial environment
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models. In addition to a lack of environment support, the property specifications themselves often

have limited support among falsifiers and verifiers. The open-loop properties in this example are

reachability properties, which cannot be directly checked by some techniques, such as adversarial

attacks, which require robustness properties. Fortunately, we can encode the property semantics as

operations in the network, and produce new robustness properties over the modified network, which

when verified provide results for the original problem. We can similarly rewrite the closed-loop

property, which enables verification using open-loop verifiers, as well as closed-loop verifers. While

closed-loop verifiers may be able to parse closed-loop property specifications, they, in addition to the

open-loop tools, often also struggle with supporting the necessary neural network operations. For

example, in the problem described above, the clip operation in the neural network is unsupported

by most verification tools. However, this function is piecewise-linear, which means it can be refor-

mulated using a linear combination of other piecewise-linear functions such as matrix multiplication,

vector addition, and ReLU operations, which are supported by most existing verifiers. For example,

the clip operation can be rewritten as:

Clip(x, L, U) =
[
In −In

]
ReLU(

In
In

x+

−Ln
−Un

) + Ln

where In is the identity matrix of size n, Ln and Un are n-dimensional vectors containing the values

L and U , respectively, and n is the length of the vector x. While existing verification tools may not

support this example problem as originally stated, rewriting the problem can enable tools to provide

useful results by verifying transformed versions of the problem.

3.2 A Framework for Rewriting Correctness Problems

We now formally define the components of a correctness problem, verification, and rewriting. We will

use these definitions to formally specify the network, environment, and properties for our example

inverted pendulum control problem, as shown in Figure 3.1.

3.2.1 Correctness Problems

Let N : Rn → Rm be a neural network which approximates a partial function f : X → Y, where

X ⊆ Rn and Y ⊆ Rm. N takes in an n-dimensional vector and produces an m-dimensional vector.

We focus here on the single input and single output case without any loss of generality. A multi-

input or -output network can be rewritten as an equivalent single-input or -output network through
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concatenation, reshaping, and indexing of inputs and outputs. A neural network can be represented

as an operation graph, which is a type of directed, acyclic graph in which nodes represent operations

over data, and edges represent the flow of data between operations. An operation graph, N =

〈Q, q0, q∗, δ〉, contains a set of operations, Q, a specified input operation, q0 ∈ Q, an output operation,

q∗ ∈ Q, and a set of named, directed edges, δ ⊂ Q × Q × Σ, where Σ is the set of possible edge

names. We depict a simplified operation graph representation of the pendulum controller network

in Figure 3.1b. In an operation graph, operations can represent arbitrary functions. The set of

operations includes an input operation, q0, and an output operation, q∗. An input operation accepts

arbitrary user-provided data and an output operation produces the final result of the neural network

computation. In figures, we will mark the input with a dashed outline and the output with a double

outline. An edge exists between two operations if the output of the first operation is used by the

second. Each edge is tagged with an identfier in order to correctly disambiguate inputs for operations

with multiple incoming edges. The output of an operation graph can be computed by sorting the

operation graphs in topological order and then executing operations from the inputs, to the outputs,

passing data along their corresponding edges.

Let E = 〈S,M, T 〉 be an environment model, such as the model we have defined for the pendulum

example in Figure 3.1a. The environment model includes a state space, S, which is the set of

all possible environment states. An environment state is some representation of the environment

or context in which the neural network is operating. It can include, for example, the positions

or velocities of objects in the environment, or any other information relevant to the function of

the neural network or property to be checked. The environment model also requires a function,

M : S → Rn, that maps from states to network inputs, as well as a function, T : S × Rm → S,

that maps from a state and network output to a new state. M enables S to be different than

the network input space. This decoupling provides more freedom to the modeller to choose a state

space that is most convenient to their problem. For instance, while the neural network in this

example takes in the angle of the pendulum in the range [−π, π], it may be more convenient to

model the system such that the angle is in the range [0, 2π]. T is necessary to enable checking

behavior of networks over time. This function specifies how the environment changes in response

to the network output. A common environment model (particularly for open-loop problems) is the

trivial environment model, E(>) = 〈Rn, x 7→ x, (s, y) 7→ s〉, in which there is no distinction between

states and network inputs, and the transition function maps states to themselves regardless of the

network output. If no environment model has been defined, then we assume the trivial environment

model is to be used.
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Let φ be a neural network behavioral property. φ is a logical formula over environment states,

network inputs, and network outputs. This formula specifies some desirable property between net-

work inputs, outputs, and environment states. For example, we define 3 property specifications in

Figure 3.1c. The first 2 are in first-order logic, and are only over network inputs and outputs. The

third property is specified in linear temporal logic, and describes a relationship between values in

the environment state as the neural network operates. Specifically, it states that if the angle of

the pendulum is between 0 and π
2 and the angular velocity is negative (i.e., the pendulum is in the

upper left quadrant and moving clockwise), then the angle of the pendulum should be less than π
2

or greater than 3π
2 in all future states (i.e., it should remain above the pivot).

Finally, let ψ = [E ,N1, . . . ,Nk, φ] be a correctness problem. A correctness problem consists of the

environment, networks, and property to be verified. For example, the environment, network, and

any of the 3 properties in Figure 3.1 compose a correctness problem. We may also refer to correctness

problems as verification problems in this work. We denote the set of all possible correctness problems

Ψ.

3.2.2 Verification and Falsification

Verification attempts to prove that a given behavioral property, φ, is valid under a given interpre-

tation of the networks and environment models used in the property. If it is, then the verifier will

output holds, otherwise it will output violated. Formally:

V(ψ) = V([E ,N1, . . . ,Nk, φ]) =

holds if E ,N1, . . . ,Nk |= φ

violated if E ,N1, . . . ,Nk |= ¬φ
(3.1)

While verifiers for traditional software systems tend to produce a witness or certificate of program

correctness on a successful proof, this is not the case for existing verifiers for neural network prop-

erties. Production of witnesses for these types of proofs is still an emerging area of research [58].

Most existing verifiers only support properties over a single network, i.e., V(E ,N , φ), and open-loop

verifiers generally implicitly use the trivial environment model, i.e., V(N , φ) = V(E(>),N , φ). Ad-

ditionally, some verifiers use incomplete decision procedures, which can return a value of unknown

if the verifier cannot determine the validity of E ,N |= φ.

One subset of verification techniques is that of falsification, which, instead of attempting to prove

validity of E ,N |= φ, attempts to prove satisfiability of E ,N |= ¬φ. Existing falsification techniques

usually produce a witness of property invalidity in the form of a counter-example, i.e., a network
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input that results in falsification of the property. While falsification methods can often be faster

than full verification methods for invalid properties, they cannot prove validity of the property, only

that it is false.

3.2.3 Rewriting

Verifiers and falsifiers often have restrictions on the types of neural networks, environment models,

and properties that they support. For example, many verifiers do not support batch normalization,

leaky ReLU, or max pooling operations, which are not uncommon in modern neural networks. Ad-

ditionally, many tools only support verification of a single property type. Adversarial attacks, for

instance, only support falsification of robustness properties. Finally, verifiers tend not to support

explicit specification of environment models, unless they have been specifically designed for verifi-

cation of closed-loop systems. In order to increase the applicability of existing tools to a broader

range of property, unsupported networks, environments, and properties can be rewritten into sets

of sub-problems that are supported by a given verifier.

We define a general framework for defining rewritings of correctness problems. A rewriting,

rewrite : Ψ→ P (Ψ), takes in a correctness problem and produces a set of correctness problems such

that the new problems increase the applicability of a given verifier. We refer to each of the problems

produced by rewriting as a sub-problem. In most cases, rewritings should also maintain some

relationship between the original problem and sub-problems such that verifying the sub-problems

provides insight into the original problem. We discuss two classifications of rewritings in this thesis,

holds-preserving and violation-preserving.

If a rewrite is holds-preserving, then the original problem is guaranteed to be valid if all sub-

problems are valid. Formally, we say that a rewrite, f , is holds-preserving if (
∧
ψ′∈f(ψ) ψ

′) =⇒ ψ.

If a rewrite is violation-preserving, then the original problem is guaranteed to have a violation

if any sub-problem has a violation. Formally, we say that a rewrite, f , is violation-preserving if

(
∨
ψ′∈f(ψ) ψ

′) =⇒ ψ. For a sequence of rewritings to be holds-preserving or violation-preserving,

all rewritings in the sequence must also be holds-preserving or violation-preserving, respectively. If

a rewriting is both holds-preserving and violation-preserving, we may also refer to it as semantics-

preserving, since it exactly preserves the semantics of the original problem. The set of sub-problems

produced by a semantics-preserving rewriting is said to be equivalid with the original problem.

We now define 3 general classes of rewritings for the instantiations introduced in this thesis; one

for networks, one for environments, and one for property specifications. These rewritings take in

a correctness problem and rewrite it into a new set of correctness problems, such that either the
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refactor

input · · · clip
x z

input · · · gemm1 relu gemm2

x z z1 z2

N

Q = {input, . . . , clip}
q0 = input

q∗ = clip

δ = {(input, f1, x), . . . , (fk, clip, z)}

N ′

Q = {input, . . . , gemm1, relu, gemm2}
q0 = input

q∗ = gemm2

δ = {(input, f1, x), . . . , (fk, gemm1, z),

(gemm1, relu, z1), (relu, gemm2, z2)}

Figure 3.2: An example of network refactoring. The unsupported clip operation is replaced by an
equivalent sequence of gemm and relu operations.

network, environment, or property becomes more verifiable in all sub-problems. Usually, the goal of

rewriting is to increase verifiability of a given part of the correctness problem, but rewriting can also

be performed in order to make a correctness problem meet the assumptions of another rewriting,

as is the case for the environment rewritings that we introduce in Chapter 7. While correctness

problems can be defined over multiple networks, we define these 3 classes of rewritings over the

single network case. However, we also define a network rewriting which takes in any correctness

problem and rewrites it to use a single network:

rewrite([E ,N1, . . . ,Nk, φ]) = {[E ,N ′, φ′]} (3.2)

An instantiation of this rewriting is fairly straightforward. Operation graphs can be combined

by taking the union of their operation and edge sets, adding a new input operation that is the

concatenation of the inputs of all operation graphs and replacing the existing input operations with

slicing operations that selects the corresponding portion of the new input, and setting the output to

be a new operation that is the concatenation of the outputs of all operation graphs. This rewriting is

semantics-preserving, and we will assume throughout this work that it has been applied as necessary.

Network rewritings take in a correctness problem and transform the networks in some way. We

call such rewritings, refactorings. Formally, we define:

refactor([E ,N , φ]) = {[E ,N ′, φ]} (3.3)

This type of rewriting can be particularly useful for converting unsupported neural network opera-

tions into equivalent sets of supported operations. For example, we can rewrite the clip operation in

the operation graph defined in Figure 3.1b using matrix multiplication, vector addition, and ReLU
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refactor

m

L θ

u

g

S : [0, 2π]× [−2π, 2π]

M : input1 gemm1 relu1 gemm2

T : input2 gemm3 relu2 gemm4

E s = (θt, θ̇t) ∈ S = [0, 2π]× [−2π, 2π]

M((θt, θ̇t)) = (θt − 2πbπ + θt
2π

c, θ̇t)

(θt+∆t, θ̇t+∆t) = T∆t(st, yt)

= (T∆t,θ(st, yt), T∆t,θ̇(st, yt))

T∆t,θ((θt, θ̇t), yt) = θt + θ̇t∆t− 2πbθt + θ̇t∆t

2π
c

T∆t,θ̇((θt, θ̇t), yt) = θ̇t +
g∆t

L
sin θt +

∆t

mL2
yt

E ′

Figure 3.3: An example of environment rewriting. The state-to-input and transition functions are
rewritten as neural networks to support further rewritings.

operations to get the rewritten operation graph shown in Figure 3.2. While we generally recommend

defining network refactorings to be semantics-preserving, as we do in Chapter 5.1.1, non-semantics-

preserving refactoring can also be useful as an early step to produce a new neural network model as

a complete replacement for the original, as we do in Chapter 5.1.2.

Environment rewritings take in a correctness problem and transform the environment, networks,

and property such that the resulting environment is supported by the desired verifier. Formally, we

define:

remodel([E ,N , φ]) = {[E ′,N ′, φ′]} (3.4)

The problem is rewritten to a single subproblem with a modified environment model, network, and

property. One such rewriting can be used to rewrite an environment to use a neural network as

the state-to-input and transition functions, as shown in Figure 3.3. In such a case, the network

and property are generally not modified. This can be extremely useful for defining other rewritings,

since it enables composition of the environment functions and the network being verified in future

rewritings. Similar to refactorings, there are both semantics-preserving and non-semantics preserving

environment rewritings. We introduce instantiations of environment rewritings in Chapters 6 and 7.

Property rewritings take in a correctness problem and transform the environment, networks, and

property such that the resulting property specification is supported by the desired verifier. We call

such rewritings, reductions. Formally, we define:

reduce([E ,N , φ]) = {[E ′1,N ′1, φ′], . . . , [E ′k,N ′k, φ′]} (3.5)

One application of reduction is to enable the verification of non-robustness properties by verification

tools that only support robustness. For example, we can rewrite the reachability specification φ3.2

in Figure 3.1c to a robustness specification by encoding the reachability constraints as operations
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in the neural network which classify whether the property is satisfiable or not. This enables us to

rewrite the property to specify that inputs in the desired region always map to the class representing

satisfiability, a robustness property. These rewritings can also be used to encode the environment

semantics as part of the neural network and property specification, resulting in correctness problems

with the trivial environment model.



Chapter 4

Reducing Neural Network

Properties

Many verification tools are designed to check a specific property of neural networks. For example,

adversarial attacks, a common falsification method, are designed to find counter-examples to robust-

ness properties, which state that the output class of a network is invariant to small perturbations

of a given input. Likewise, the MIPVerify and VeriNet verifiers were designed to prove the absence

of violations to robustness properties. Unfortunately, this means that many interesting properties

can not be checked by existing off-the-shelf tools, as non-robustness property specifications are not

explicitly supported.

However, we have identified the key insight that properties for neural networks can be reduced

to more commonly supported forms. We build on this insight to develop an approach for reducing

correctness problems with properties in an expressive, general form to a set of problems, equivalid

with the original, that use local robustness properties, which have wide support among both falsifiers

and verifiers. Such a rewriting has the potential to bring the existing techniques to bear on a much

larger set of neural network properties.

For example, consider the network and property φ3.2 from the pendulum example in Figure 3.1,

which we reproduce on the left side of Figure 4.1. While the network contains a clip operation rarely

supported by verifiers, it is supported by common falsification methods, such as adversarial attacks.

Unfortunately the property is a reachability property rather than a robustness property, stating that

a given region of the input space reaches a specified region of the output space. Reduction can allow

falsifiers to find a result for this property, by rewriting the problem such that the semantics of the

23
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input f0 · · · clip
x1 x2 xk

N

Q = {input, f0, . . . , clip}
q0 = input

q∗ = clip

δ = {(input, f0, x1), . . . , (fk, clip, xk)}

φ = ∀x.(x ∈ X ∧ π
2
≤ x0 ≤ π) =⇒ (N (x) ≤ 0)

input′ gemmp

x0

f0 · · · clip
x2 xk

concat gemms0

relus

gemms1

x5

x6

x7

x1

x3

x4

N ′

Q′ = Q \ {input}
∪ {input′, gemmp, concat, gemms0 , relus, gemms1}

q0 = input′

q∗ = gemms1

δ′ = δ \ {(input, f0, x1)}
∪ {(input, gemmp, x0), (gemmp, f0, x1)}
∪ {(gemmp, concat, x3), (clip, concat, x4)}
∪ {(concat, gemms0 , x5), (gemms0 , relus, x6), (relus, gemms1 , x7)}

φ′ = ∀x.(x ∈ [0, 1]n) =⇒ (N (x)0 ≥ N (x)1)

reduce

Figure 4.1: A correctness problem with a reachability property for the pendulum control example is
reduced to an equivalid problem with a robustness property.

original property are encoded as operations in the network, transforming the network into a classifier

of the satisfiability of the original property and replacing the original property with one that asserts

robustness of the new network. Results for this rewritten problem can be directly mapped to a result

for the original problem.

Property reduction has been exploited by the software engineering community for verification

and program analysis for decades, such as the reduction from stateful safety properties to reachabil-

ity properties. For example, the applicability of partial order reductions was broadened by reducing

stateful properties to a form of deadlock [42], and both data flow analyses [91, 118] and SAT solv-

ing [13] can be applied to verify stateful properties by formulating the reachability of error states.

Another use of reductions is to enable the application of more efficient algorithmic methods. For

instance, the -safety option of the SPIN model checker enables it to use a significantly faster reach-

ability algorithm [52]. Reduction is now considered standard in verification and program analysis,

however, the lessons of such reductions have not yet taken root for the new domain of neural network

falsification and verification.

In this chapter, we introduce an approach for reducing a neural network correctness problem into

an equivalid set of correctness problems formulated with properties that can be processed by existing

verification techniques. In particular, we will focus on reducing to local robustness properties, which

have broad support among both verifiers and falsification approaches such as adversarial attacks.

The approach is fully automated which allows developers to specify properties in a convenient form

while leveraging the complementary strengths of falsification and verification algorithms.
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The primary contributions of this work are:

1. An automated approach for reducing neural network correctness problems into a set of robust-

ness problems which is equivalid with the original problem.

2. Two implementations, DNNF and DNNV, of our reduction approach that employ portfolios

of falsifiers and verifiers.

3. A study demonstrating that property reduction to enable application of falsifiers yields cost-

effective violations of general neural network correctness problems1.

4.1 Approach

The primary goal of our approach is to amplify the power of verifiers and falsifiers by increasing

their applicability. Our approach takes in a correctness problem comprised of a neural network and

a property (we assume a trivial environment model), and encodes it as an set of correctness problems

with robustness properties, which is equivalid with the original problem. This reduction enables us

to run a portfolio of methods applicable to this restricted property type to obtain results for the

original property.

4.1.1 Defining Property Reduction

As defined in Section 3.2, a correctness problem, ψ = [E ,N1, . . . ,Nk, φ], consists of the environment,

networks, and property to be verified, and the goal of verification is to determine whether the

proeprty φ is satisfiable under the given interpretation of the networks and environment models, i.e.,

whether or not E ,N1, . . . ,Nk |= φ. In this work we assume that problems use trivial environment

models, as defined in Section 3.2, and we will often omit them for brevity. Additionally, we will

initially assume that properties are defined for a single network, and discuss how to apply the

rewriting to properties over multiple networks in Section 4.1.4.

Reduction, reduce : Ψ → P (Ψ), aims to transform a correctness problem, [N , φ] = ψ ∈ Ψ,

to an equivalid form, reduce(ψ) = {[N1, φ1], . . . , [Nk, φk]}, in which property specifications define

robustness properties:

φi = ∀x.x ∈ [0, 1]n → Ni(x)0 > Ni(x)1

and networks have input domains defined as unit hypercubes, and output domains consist of two

values – indicating property satisfaction and falsification, i.e., Ni : [0, 1]n → R2.

1An analysis of DNNV is performed in the study in Chapter 5 after introducing network rewritings.
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As we demonstrate in Section 4.2, reduction enables the application of a broad array of efficient

neural network analyses to compute problem satisfiability and/or unsatisfiability.

As defined, reduction has two key properties. The first property is that the set of resulting

problems is equivalid with the original correctness problem (a proof of this theorem is included in

Appendix A).

Theorem 1. The reduction, reduce : Ψ → P (Ψ), maps a correctness problem with properties

constraining inputs and outputs to polytopes in the input and output space to an equivalid set of

correctness problems.

N |= ψ ⇔ ∀(Ni, φi) ∈ reduce(ψ). Ni |= φi

The second property is that the resulting set of problems all use the same property type. In

this case, we reduce to robustness, asserting that all inputs are classified as the same class, which

we will refer to as class 0. Applying reduction enables verifiers or falsifiers to support a large

set of correctness problems by implementing support for this single property type. We reduce to

robustness properties here due to their broad support among existing falsifiers and verifiers, however

the reduction described here can be trivially modified to a reachability property as described in

Section 4.1.5.

4.1.2 Overview

To illustrate reduction, consider property φ3.2 for the pendulum control example, which we reproduce

in Figure 4.1. Tools like MIPVerify or adversarial attacks cannot be used off-the-shelf to check this

property, since it is not a robustness property.

To enable the application of these tools, we reduce the property to a set of correctness problems

with robustness properties, such as the one shown in Figure 4.1. This particular example is reduced

to a single correctness problem but, in general, multiple sub-problems can be produced by reduction.

Each of the problems pair a robustness property (shown in the bottom right of Figure 4.1) with a

modified version of the original network. The new neural network is created through two key

transformations. First, we incorporate a prefix network (shown in green in Figure 4.1) to reduce

the input domain to a unit-hypercube, which is necessary to enable the application of tools that

require input constraints to be represented as hyperrectangles. This modification also facilitates

property specification by ensuring that the properties for reduced problems can all use the same

pre-condition. Second, we incorporate a suffix network (shown in blue in Figure 4.1) that takes in

the inputs and outputs of the original network and classifies whether they constitute a violation of
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Algorithm 1: Property Reduction

Input: Correctness problem 〈N , φ〉
Output: A set of robustenss problems {〈N1, φ1〉, ..., 〈Ni, φi〉}

1 begin
2 φ′ ← DNF (¬φ)
3 Ψ← ∅
4 for disjunct ∈ φ′ do
5 hpoly ← disjunct to hpolytope(disjunct)
6 prefix ← construct prefix(hpoly)
7 N ′ ← N ′ : x 7→ concat(N (x), x)
8 suffix ← construct suffix(hpoly)
9 N ′′ ← suffix ◦ N ′ ◦ prefix

10 φ′ ← ∀x.(x ∈ [0, 1]n =⇒ N ′′(x)0 > N ′′(x)1)
11 Ψ← Ψ ∪ 〈N ′′, φ′〉
12 return Ψ

the original property. This suffix transforms the network into a classifier for which violations of a

robustness property correspond to violations of the original property.

4.1.3 Reduction

We rely on two assumptions to define this property reduction. First, the constraints must be repre-

sented as a union of convex polytopes over the inputs and outputs of a network. And second, each

convex polytope must be represented in halfspace-polytope form, i.e., as a conjunction of linear in-

equalities. The first of these assumptions enables the encoding of constraints as network operations,

while the second assumption simplifies the definition of the algorithm. Properties specified using

an alternative polytope representation can first be converted to the required form before applying

the reduction. Complying with these assumptions still enables properties to retain a high degree of

expressiveness as unions of polytopes are extremely general and subsume other geometric represen-

tations, such as intervals and zonotopes. Section 4.2.1 shows that these assumptions are sufficient

to support existing neural network correctness problems.

Algorithm 1 defines the reduction at a high level. We present each step of the algorithm and

describe their application to the inverted pendulum control example described above.

Reformat the Property

Reduction first negates the original property specification and converts it to disjunctive normal

form (DNF) – line 2. Negating the specification means that a satisfying model falsifies the original

property. The DNF representation allows us to construct a property for each disjunct, such that if
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Algorithm 2: disjunct to hpolytope
Input: Conjunction of linear inequalities φi
Output: Halfspace polytope H

1 begin
2 H ← (A, b) where A is an (|φi|)× (m+ n) matrix where columns 0 to m− 1 correspond to output

variables N(x)0 to N(x)m−1 and columns m to m+ n− 1 correspond to input variables x0 to xn−1

3 for ineqj ∈ φi do
4 if ineqj uses ≥ then
5 swap lhs and rhs; switch inequality to ≤
6 else if ineqj uses > then
7 swap lhs and rhs; switch inequality to <

8 move variables to lhs; move constants to rhs
9 if ineqj uses < then

10 decrement rhs; switch inequality to ≤
11 Aj ← coefficients of variables on lhs
12 bj ← rhs constant

13 return H

any are violated, the negated specification is satisfied and thus the original specification is falsified.

For each of these disjuncts the approach defines a new robustness problem, as described below.

Transform into halfspace-polytopes

Constraints in each disjunct of the disjunctive normal form are then converted to halfspace-polytope

constraints, defined over the concatenation of the input and output domains – disjunct to hpolytope()

on line 5. This conversion is described in Algorithm 2, and simplifies the definition of future steps.

A halfspace-polytope can be represented in the form Ax ≤ b, where A is a matrix of k rows, where

each row represents 1 constraint, and d columns, one for each variable. In this case, d is equal to

m+ n, the size of the output space, plus the size of the input space. This representation facilitates

the transformation of constraints into network operations in subsequent steps. To build the matrix

A and vector b, we first transform all inequalities in the conjunction to ≤ inequalities with variables

on the left-hand-side and constants on the right-hand-side. The transformation first converts ≥ to

≤ and > to < – lines 4-7 of Algorithm 2. Then, all variables are moved to the left-hand-side and

all constants to the right-hand-side – line 8. Next, < constraints are converted to ≤ constraints by

decrementing the constant value on the right-hand-side – lines 9-10. This transformation assumes

that there exists a representable number with greatest possible value that is less than the right-hand-

side, which holds for most numeric representations used in computation2. Finally, each inequality is

converted to a row of A and value in b – lines 11-12. In the pendulum control example, DNF results

in the single disjunct (x ∈ X ∧ x0 ∈ [π2 , π]∧N (x) ≤ 0), which disjunct to hpolytope() transforms to

2We briefly discuss the validity of this assumption in Appendix A.



CHAPTER 4. REDUCING NEURAL NETWORK PROPERTIES 29

Algorithm 3: construct prefix
Input: Halfspace polytope H
Output: A fully-connected layer P

1 begin
2 lb = [−∞, ...,−∞]
3 ub = [+∞, ...,+∞]
4 for constraint ∈ H do
5 if constraint is over only input variables then
6 for xi ∈ x do
7 lbi ← max {minxi constraint, lbi}
8 ubi ← min {maxxi constraint, ubi}

9 W ← diag(ub− lb)
10 b← lb
11 GeMMp ← (x 7→Wx+ b)
12 return GeMMp

the halfspace polytope


−1 1 0 0 0

0 0 −1 1 0

0 0 0 0 1


ᵀ  x

N (x)

 ≤ [−π2 π 2π 2π 0
]ᵀ

.

Prefix Construction

Using the constructed halfspace-polytope, Algorithm 1 next constructs a prefix to the original net-

work to ensure the input domain of the resulting network is [0, 1]n, where n is the input dimension-

ality of the original network – construct prefix () on line 6. The algorithm to construct the prefix

is shown in Algorithm 3. The prefix is constructed by first extracting lower and upper bounds for

every input variable – lines 2-8. This extracts the minimal axis-aligned bounding hyperrectangle.

The lower and upper bounds can then be used to construct the prefix network, which is a single

n-dimensional fully-connected layer, with no activation function, added as a GeMM operation (i.e.,

GeMM(x) = Wx + b), which has a diagonal weight matrix with values equal to the ranges of the

input variables, and biases equal to the lower bounds of each input. For the pendulum control exam-

ple, the diagonal of the weight matrix for the added GeMM operation is
[
π
2 4π

]
and the bias vector

is
[
π
2 −2π

]ᵀ
. The prefix operates on unit hypercubes, reducing the input space to the correctness

problems. This is necessary to enable the application of tools which require input constraints to be

represented as hyperrectangles, which is common among the adversarial attack methods targeted by

this work. It also simplifies the later property specification, as all modified networks operate over

the same input domain, a unit hypercube. The prefix also encodes any interval constraints over the

original input space, allowing them to be removed before suffix construction, which can simplify the

suffix networks.
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Algorithm 4: construct suffix

Input: Halfspace polytope H = (A, b)
Output: A DNN with 2 fully connected layers S

1 begin
2 GeMMs0 ← (x 7→ Ax+−b)

3 W ←
[
1 1 ... 1
0 0 ... 0

]
4 GeMMs1 ← (x 7→Wx+~0)
5 return GeMMs1 ◦ReLU ◦GeMMs0

Forward Inputs

Next, the output of the prefix, i.e., the inputs to the original network, are forwarded to the end

of the network and concatenated with the original output layer – line 7 of Algorithm 1. Because

constraints will be encoded as a network suffix that classifies whether inputs are property violations,

this step is necessary to enable the encoding of any constraints over the inputs.

Suffix Construction

Finally, we append a suffix to the end of the network that classifies whether inputs and their

corresponding outputs satisfy the specification – construct suffix () on line 8. The algorithm for

constructing the suffix from the halfspace-polytope constraints is shown in Algorithm 4. The con-

structed suffix consists of three operations, a GeMM, followed by a ReLU, followed by a final GeMM

operation. The output of the first GeMM is a vector of size k, the number of constraints in the

halfspace-polytope defined by the disjunct. The final GeMM outputs a vector of size 2, one value

for each of the 2 possible classes.

The first GeMM operation of the suffix has a weight matrix equal to the constraint matrix, A,

of the halfspace-polytope representation, and a bias equal to −b – line 2. With this construction,

each value in the vector output by this operation will have a value greater than 0 if and only if the

corresponding constraint is not satisfied, otherwise it will have a value less than or equal to 0, which

becomes equal to 0 after the ReLU operation is applied. For the pendulum control example, we only

have a single disjunct, with the halfspace-polytope defined above.

The output operation of the suffix produces a vector of 2 values. The first of these values is

the sum of all values in the previous layer, and has a bias of 0. Because the values in the input to

this operation each represent a constraint, and each of these values is 0 only when the constraint is

satisfied, if the sum of all of these values is 0, then the conjunction of the constraints is satisfied,

indicating that a violation has been found. The second of these output values is the constant 0 – all

incoming weights and bias are 0. The resulting network will predict class 1 if the input satisfies the
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corresponding disjunct and class 0 otherwise.

Correctness Problem Construction

Lines 9-11 of Algorithm 1 define the reduced subproblem comprised of the network that we have

constructed and a robustness property. The robustness property specification is always the same

and states that the network should classify all inputs in the d-dimensional hypercube as class 0 –

no violations. If a violation is found to this property, then, according to Theorem 1, the original

property is violated by the unreduced input that violated the robustness property. In the end, we

have generated a set of correctness problems such that, if any of the problems is violated, then the

original problem is also violated. This comes from our construction of a property for each disjunct

in the DNF of the negation of the original property.

4.1.4 Properties Over Multiple Networks

While Algorithm 1 is defined over properties with a single network, it can easily be applied to

properties over multiple networks, by combining those networks into a single large network. This

is specially relevant to check for equivalence properties. This can be done by concatenating their

input and output vectors, as described in Section 3.2.3. This results in a single large network with

a computation path for each network. The transformation algorithm can then be applied as before.

4.1.5 Implementation

We have implemented instances of this reduction in 2 tools, one for falsifiers, which tend to have

greater operation and architecture support for networks, and one for verifiers.

DNNF

The tool for falsifiers, which we call DNNF3, implements the full reduction as described in Sec-

tion 4.1. The tool is implemented in Python, and takes in a property specification specified in

DNNP and a corresponding neural network in the ONNX format, and returns whether a violation

is found. Due to the lack of a standard format for specifying DNN properties, we develop a Python-

embedded DSL for DNN properties, which we call DNNP. DNNP is designed to be an expressive

language and is independent of the network. We describe DNNP in more detail in Appendix B.

3https://github.com/dlshriver/dnnf

https://github.com/dlshriver/dnnf
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DNNV

The tool for verifiers, which we call DNNV4, only partially implements this reduction, omitting

the input forwarding step, since the non-sequential structure introduced by this step is rarely sup-

ported by verification tools. Because of this difference, the suffix cannot be used to check general

polytope constraints over the inputs, restricting the space of supported properties to ones with

input constraints that can be represented as a union of hyperrectangles. However, some verifiers

allow specification of halfspace polytope constraints over the inputs, which the DNNV reduction

can support by replacing the unit hypercube input constraint of the generated sub-property with

the halfspace polytope constraint of the corresponding disjunct. This restricts DNNV to properties

where all constraints apply to either inputs or outputs, i.e., the input and output spaces are disjoint.

Both inputs and outputs can be constrained, but not to each other, e.g., x > 0 =⇒ N (x) > 0 is

allowed, but N (x) > x is prohibited. Additionally, the DNNV reduction allows reducing to reach-

ability constraints, by dropping the constant output, and simply asserting that the single output

value must always be greater than 0. The tool is implemented in Python, and takes in a property

specification specified in DNNP and a corresponding neural network in the ONNX format, and

returns whether a violation is found.

4.2 Empirical Evaluation

We now assess the cost-effectiveness of reducing neural network properties by applying it to a range

of neural network property benchmarks that provide diversity in terms of property types and network

complexity. This study only looks at DNNF. DNNV is evaluated in Chapter 5 after the introduction

of network rewriting. Our evaluation will attempt to answer the following research questions:

• RQ1: How expressive are the properties supported by property reduction?

• RQ2: How cost-effective is DNNF at finding property violations?

• RQ3: How scalable is DNNF?

4.2.1 RQ1: On the Expressiveness of Reduction

We first evaluate whether the assumptions about the property specification required by reduction,

namely that the original property is specified as a logical formula of linear inequalities, is expressive

enough to support neural network correctness properties that have been proposed in existing work.

4https://github.com/dlshriver/dnnv

https://github.com/dlshriver/dnnv
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Setup

To evaluate the expressiveness of properties supported by our reduction, we analyze and catalog the

benchmarks used by the five verifiers used in our later study, as well as the benchmarks of a recent

neural network verifier competition, VNN-Comp 2020 [81]. Additionally, we surveyed published

papers on neural network verification in 2019 and 2020 (the two years prior to the study), identifying

4 additional works [10, 35, 128, 129]. Finally, we include the 2 new benchmarks introduced in this

work.

Results

We summarize the results in Table 4.1, which lists the benchmarks used in each work, the type and

number of properties in the benchmark and whether the properties are supported by Algorithm 1.

The property types use abbreviated names with the following encoding: the first symbol indicates

whether the property is global (G) or local (L); the second symbol indicates whether the input

constraint can be represented as a hyper-rectangle (�) or not (�); the third symbol indicates whether

the property is a robustness (r) property, a reachability (R) property, or a differential (D) property.

Each cell under a property type indicates the number of properties in the corresponding benchmark

of that type. The bolded benchmarks are used later in the study for the evaluation of RQ2 and

RQ3. We describe the details of these benchmarks in more detail below.

The first benchmark is ACAS Xu, introduced for the study of the Reluplex verifier [68], and used

extensively since [10, 17, 20, 69, 81, 135, 136]. The benchmark consists of 10 properties. Properties

φ1, φ2, φ3, φ4, φ7 and φ8 are reachability properties, while φ5, φ6, φ9, and φ10 are traditional class

robustness properties. All 10 properties have hyper-rectangles constraints over the inputs and are

fully supported by our property reduction.

The next benchmark is from the evaluation of the Planet verifier. First is the Collision Avoidance

benchmark, which consists of 500 safety properties that check the robustness of a network that

classifies whether 2 simulated vehicles will collide, given their current state. All 500 properties are

L�r properties, and are all fully supported. Second is a set of 7 properties on an MNIST network.

The first 4 of these are G�R properties, while the next 2 are L�r properties, and the final property

is an L�r property. In addition to restricting the amount of noise that can be added to each pixel in

the input image, the final property constrains the difference in the noise between neighboring pixels.

All 7 properties are fully supported by our property reduction.

The Neurify verifier was evaluated on the ACAS Xu benchmark and on properties of 4 MNIST

networks, 3 android app malware classification networks, and 1 self-driving car network. The eval-
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Table 4.1: Property types of existing benchmarks and their support by reduction. The property
type names use the following encoding: the first symbol indicates a global (G) or local (L) property;
the second symbol indicates whether the input constraint can be represented as a hyper-rectangle
(�) or not (�); the third symbol indicates the property class as robustness (r), reachability (R), or
differential (D). Bolded benchmarks are used later in the study to evaluate RQ2 and RQ3.

Benchmark # of Property of Each Type Support

L�r L�r G�R L�R L�R G�D L�D Other

ACAS Xu [68] 4 6 10
Collision Avoidance [34] 500 500
Planet-MNIST [34] 2 1 4 7
Neurify-MNIST [135] 500 500
Neurify-Drebin [135] 500 500
Neurify-DAVE [135] 50 150 200
ERAN-MNIST [115] 1700 1700
ERAN-CIFAR [115] 1600 1600
ReluDiff ACAS [96] 14 14
ReluDiff-MNIST [96] 200 200
ReluDiff-HAR [96] 100 100
VNN-COMP-CNN [81] 300 300
VNN-COMP-PWL [81] 54 6 60
VNN-COMP-NLN [81] 32 32
ImageStars-MNIST [128] 900 900
ImageStars-ImageNet [128] 6 6
NNV-ACC [129] 2 0
GHPR 20 20
CIFAR-EQ 91 200 291
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uation on MNIST used 500 L�r properties across 4 networks, all of which we support. Neurify was

also evaluated on 3 networks trained on the Drebin dataset [6] to classify apps as benign or mali-

cious. This benchmark also includes 500 L�r properties, which are fully supported. Finally, Neurify

was evaluated on local reachability properties for a modified version of the DAVE self-driving car

network [15]. This benchmark consists of 200 local reachability properties, with 4 different types of

input constraints (50 properties of each type). The first type of input constraint is an L∞ constraint,

which is equivalent to a hyper-rectangle constraint. The second type of input constraint is an L1

constraint, which can be written as a halfspace polytope constraint. The third and fourth type

of input constraint is an image brightness and contrast, which can also be written as a halfspace

polytope constraints. All 200 properties are fully supported by our property reduction.

The DeepZono abstract domain of the ERAN verifier used in our study [115], was evaluated on

3300 L�r properties applied to a set of 24 MNIST networks and 13 CIFAR10 networks. All of the

properties in this benchmark are fully supported by our approach.

The ReluDiff verifier was designed to support differential properties in order to show equivalance

between two networks [96]. The verifier was evaluated on L�D properties. Each property was

defined over a network, N and a modified version of the same network with quantized weights, N ′.

The property checked whether |N (x) − N ′(x)| < ε held in a local region of the input space. 14

of these properties were verified over networks from the ACAS Xu benchmark [68], 200 properties

on networks trained with the MNIST dataset, and 100 properties on a network trained for Human

Activity Recognition [5]. All 314 differencing properties are fully supported by our approach.

The 2020 VNN-Comp competition used 3 benchmarks. The first is a benchmark with properties

applied to networks with piecewise linear activation functions. This benchmark consists of the

ACAS Xu benchmark [68] with 4 L�r properties and 6 L�R properties, as well as a set of 50 local

robustness properties with hyper-rectangle input constraints applied to 3 MNIST networks. All of

these properties are supported by our approach. The second is a set of 300 local robustness properties

with hyper-rectangle input constraints applied to convolutional neural networks trained on MNIST

and CIFAR10. All of these properties are supported by our approach. The final benchmark is a set

of 32 local robustness properties with hyper-rectangle input constraints applied to neural networks

with non-linear activation functions (sigmoid and tanh) trained on MNIST. All of these properties

are supported by our approach.

Several neural network verifiers have recently been introduced. The nnenum verifier [10] and an

abstraction-refinement approach for neural network verification [35] were evaluated on the ACAS

Xu benchmark. The reachability set representation of ImageStars [128] was evaluated on two bench-
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marks of local robustness properties applied to MNIST and ImageNet networks. The benchmark

on the MNIST networks used a version of 900 local robustness where pixels could be independently

darkened, enabling input constraints to be represented as hyper-rectangles. The benchmark on the

ImageNet networks uses 6 properties created from an original image and a corresponding adversarial

example. The properties specify that for a given region along the line between the original image

and adversarial example, all inputs along the segment are classified as the correct class. Both the

MNIST and ImageNet benchmarks are supported by our approach. The NNV verifier [129] also

introduced a benchmark with an adaptive cruise control (ACC) system. It checks a temporal prop-

erty not currently supported by Algorithm 1, however we present rewritings for such properties in

Chapter 7.

Overall, we find that the property specifications accepted by Algorithm 1 are rich enough to

express 7 of the 8 property types found in the explored benchmarks.

When considering the listed benchmarks, Algorithm 1 fully supports 16 of the 17 benchmarks.

Our analysis also shows that the current space of neural network properties has limited diversity,

with most benchmarks consisting primarily of local robustness properties. This points to the value

added of the new benchmarks we introduce. It is also expected, as has happened in the verification

community in the past, that as verification and falsification techniques improve, developers will want

to apply them to reason about a broader range of correctness properties. The proposed algorithm

will enable them to do that, even if verifiers and falsifiers do not directly support them.

4.2.2 RQ2: On the Cost-Effectiveness of Reduction-Enabled Falsification

To evaluate the cost-effectiveness of falsification enabled by the proposed reduction, we identify a set

of falsifiers and verifiers to compare their complementary performance, problem benchmarks, and

metrics that constitute the basis for the studies around RQ2 and RQ3.

Setup

Falsifiers. As falsification methods, we will use several common adversarial techniques, as well

as a DNN fuzzing tool. For adversarial attacks, we choose a subset of the methods from two

surveys [1, 149]. We select the methods common to both surveys with L∞ input constraints (which

matches our implementation) and with implementations available in the cleverhans tool [93]. The

chosen adversarial attacks are LBFGS [123], FGSM [45], Basic Iterative Method (BIM) [77], and

DeepFool [87]. Of these attacks, none use random initialization, and thus will produce the same
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(a) ACAS Xu (b) Neurify-DAVE

(c) GHPR MNIST (d) GHPR DroNet
(e) CIFAR-EQ

Figure 4.2: The number of violations found by each falsifier and verifier, reduced by the total number
of potentially falsifiable properties. The number above each bar gives the total number of violations
found. An exclamation point indicates that a verifier could not be run on a property due to the
structure of the network.

result over multiple runs. In order to observe the potential benefits of random initialization, we

also include Projected Gradient Descent (PGD) [85], which was only included in one of the surveys.

Therefore, we run each attack, except PGD, once, and if no adversarial example is found, we return

an unknown result. For PGD, if no adversarial example is found, we try again, until one is found,

or the given time limit is reached. We use the default parameters for each attack, as specified by

cleverhans. For DNN fuzzing, we use TensorFuzz [90] for its easily accessible implementation [89].

TensorFuzz requires the definition of an oracle for recognizing property violations. We provide a
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version of TensorFuzz with an oracle that identifies violations by checking whether N (x)0 ≤ N (x)1
5.

Verifiers. For comparison to verification, we select four verifiers: Reluplex [68], Planet [34], ERAN

using the DeepZono abstract domain [115], and Neurify [135]. Neurify and ERAN have been shown

to be fastest and most accurate in recent studies [146], and all four verifiers are supported by DNNV,

which makes them easy to run and allows us to use a common property specification for all verifiers

and falsifiers. For differential properties we also consider ReluDiff [96] since it is currently the only

verifier built to handle such properties. However, ReluDiff only supports fully connected networks

and so does not run on the chosen benchmarks.

Portfolios. In addition to the individual falsifiers and verifiers, we simulate portfolios of these

methods, which run analyses in parallel and return the first result. We use 3 portfolios: All Falsifiers,

which includes the 6 falsifiers described above; All Verifiers which includes all verifiers run on each

benchmark; Total which includes all methods used in this study. To simulate running each portfolio,

we take the union of the violations found by each method in the portfolio, and consider the time

to find each violation to be the fastest time among the methods in the portfolio which found that

violation.

Problem Benchmarks. We evaluate our approach on two common and representative bench-

marks from the verification literature, and two created for this work to provide a range of networks

and property types. Our selection criteria was meant to achieve two objectives. First, we wanted

to select enough benchmarks to explore all property types with hyper-rectangle input constraints.

Second, we wanted to select benchmarks with networks that varied in both size and structure since

these factors have been shown to affect verifier performance [146].

From the verification literature, we select ACAS Xu, the most commonly used benchmark, and

a slightly modified version of the Neurify-DAVE benchmark. For Neurify-DAVE, we select the 50

L�R properties supported by our current implementation, and we augment the benchmark with an

additional network. The new network is the original DAVE DNN on which the smaller network in

the benchmark was based. While the small DNN has 10277 neurons, the original DAVE network

that we add has 82669 neurons, which will allow us to explore the scalability of reduction and

falsification. The two networks in this benchmark are convolutional networks and are much larger

than the networks in the ACAS Xu benchmark.

5https://github.com/dlshriver/tensorfuzz
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(a) ACAS Xu (b) Neurify-DAVE

(c) GHPR MNIST (d) GHPR DroNet (e) CIFAR-EQ

Figure 4.3: The times, in seconds, to find violations for each verifier and falsifier. An exclamation
point indicates that a verifier could not be run on a property due to the structure of the network.

We developed 2 new benchmarks to cover property types that are not yet covered by exist-

ing benchmarks. The GHPR benchmark is a new DNN property benchmark that contains G�R

properties applied to several network architectures of varying size and structure. It consists of 30

correctness problems, 20 of which are 10 GHPR properties applied to 2 MNIST networks, and 10 of

which are GHPR properties applied to the DroNet DNN described previously. The DroNet DNN is

one of the largest in our study, with more than 475,000 neurons. The MNIST properties are of the

form: for all inputs, the output values for classes a and b are closer to one another than either is to

the output value of class c. The DroNet properties are of the form: for all inputs, if the probability of

collision is between pmin and pmax, then the steering angle is within d degrees of 0. These properties

are described in more detail in Appendix C.
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The CIFAR-EQ benchmark is a new DNN property benchmark with differential properties ap-

plied to large networks with complex structures. It contains a mix of both global and local equiv-

alence properties. It is the only benchmark to contain G�D properties, which were absent in the

property benchmarks that we found. It consists of 291 properties: 91 global equivalence properties

and 200 local equivalence properties. Of the global properties, 1 is untargeted, while the other 90 are

targeted equivalence properties. Of the 200 local properties, 20 are untargeted, while the other 180

are targeted equivalence properties. The properties are applied to a pair of neural networks trained

on the CIFAR dataset [75]. The first network is a large convolutional network with 62,464 neurons

and the second is a ResNet-18 network with over 588,000 neurons. These properties are described

in more detail in Appendix C. Because the verifiers do not support the multiple computation path

structure formed during network composition, we do not run them on this benchmark.

Metrics. For each verification and falsification approach, we will measure the number of property

violations found and the total time to find each violation. The total time to find a violation includes

both the time to transform the property, as well as to run the falsifier on the resulting properties.

Computing resources. Experiments were run on compute nodes with Intel Xeon Silver 4214

processers at 2.20 GHz and 512GB of memory. Jobs were allowed to use up to 8 processor cores,

64GB of memory, with a time limit of 1 hour.

Results

Figure 4.2 shows the number of violations found by each verifier and falsifier method on the five

benchmarks. The y-axis is the proportion of non-verified properties for which the techniques could

find violations. We eliminated correctness problems that were known to be unfalsifiable. For ACAS

this leaves 37 correctness problems, and does not reduce any of the other benchmarks. The number

above each bar in the plots indicates the number of violations found. An exclamation point indicates

that the verifier could not be run due to the architecture of the networks being verified.

The ACAS Xu benchmark with its simple and small DNN models, often used in verifier evalua-

tion, showcases where verifiers perform best today. However, even in this benchmark we notice that

falsification can complement verification, finding an additional 3 violations.

On the Neurify-DAVE benchmarks, the verifiers find only 33 violations from the 100 DNN correct-

ness problems, while the falsifiers find 82 violations, subsuming the 33 violations from the verifiers.

The best performing falsification method on this benchmark was BIM, with 74 violations found.

PGD and FGSM follow closely with 73 and 69 violations found, respectively. TensorFuzz, the top
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(a) Small DAVE (b) Large DAVE

(c) Small DAVE (d) Large DAVE

Figure 4.4: The number of violations and time to find each violation for the Neurify-DAVE bench-
mark. The number above each bar gives the total number of property check results in the bar below
it. An exclamation point indicates that a verifier could not be run on a property due to the structure
of the network.

performing falsification method on the ACAS benchmark, does not find any violations. We conjec-

ture that this is due to the much larger input space. While the ACAS Xu networks have an input

dimension of 5, the DAVE networks have an input dimension of 30000, which is more difficult to

cover by random fuzzing.

On the GHPR MNIST benchmark, the verifiers can find 17 violations for the 20 properties, while

3 falsifiers, BIM, PGD, and TensorFuzz, can find violations for every property.

On the GHPR DroNet benchmark, the verifiers cannot find any violations, due to not supporting

the residual block structures present in the DroNet network. Many of the falsifiers also struggle on

these properties, except for PGD and BIM, which can find violations to all 10 properties.

Finally, on the CIFAR-EQ benchmark, the verifiers did not find any violations because they

could not be run. Reluplex, Planet, ERAN, and Neurify do not support properties over multiple
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networks or networks with multiple computation paths, while ReluDiff is limited to networks with

only fully-connected layers. Additionally, while PGD finds the most violations, it is complemented

by the other falsification approaches, with BIM, DeepFool, and TensorFuzz each finding violations

for at least 1 unique property. We conjecture that much of PGD’s success is due to its random

initialization, which allows it to be run multiple times with different results, increasing the chance

of finding a violation.

Note that the Planet and ERAN verifiers find no violations for any benchmark. For these

benchmarks ERAN cannot find violations since its algorithmic approach focuses on proving that

a property holds, which suggests its complementarity with falsification methods. Planet fails to

find violations due to the complexity of the problem, and internal tool errors that cause Planet to

crash on almost 20% of the correctness problems. We also see that the Reluplex verifier only finds

violations for the ACAS Xu benchmark. It cannot find violations on the other benchmarks, since it

does not support the architectures of the networks in those benchmarks.

Overall, we find that falsifiers can detect many property violations usually complementing

those found by verification, that applying them in a parallel portfolio can leverage their unique

strengths, and that they successfully scale to more complex benchmarks.

Box plots of the distributions of time to find violations for each method are shown in Figure 4.3.

Figure 4.3a shows that the verifiers can be effective on the ACAS Xu benchmark, with Neurify often

out performing the falsifiers. This is likely due to the extremely small size of the ACAS Xu networks

enabling verification to run efficiently. These plots also show the efficiency struggle of the verifiers as

the network get larger. For example, on the Neurify-DAVE benchmark, even when the verifiers can

find a property violation, the falsifiers can find violations an order of magnitude faster. For more

complex benchmarks, the verifiers cannot find violations within the timeout, so we only report the

time for the falsifiers.

We find that falsification can efficiently find property violations even for the most complex

benchmarks, with a median time to find a violation across all benchmarks and falsifiers of 16

seconds.

Figures 4.2 and 4.3 also reveal that no single falsifier always outperforms the others. While

PGD performs well for the benchmarks studied here, we can still increase the number of violations

by running mutliple falsifiers. Additionally, the falsifiers that find the most violations, do not

necessarily always find them the fastest. Based on these two observations, we recommend using a

portfolio approach, running many falsifiers in parallel and stopping as soon as a violation is found
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by any technique, such as the All Falsifiers method shown in the previous figures. This approach

finds all the violations found by the verifiers as quickly as the fastest falsifier. We also recommend

using falsifiers in conjunction with verifiers, since while falsifiers can often quickly find violations,

they cannot prove when a property holds.

4.2.3 RQ3: On the Scalability of Reduction-Enabled Falsification

Setup

To explore the scalability of falsification with reduction, we want to evaluate a set of properties

across networks that vary in size. To do this we applied the Neurify-DAVE properties to both the

small DAVE network [135] and the original larger DAVE network [15]. This will allow us to see

how performance of the verifiers and falsifiers change with respect to the size of the network being

verified.

Results

We present the results of checking the properties in Figures 4.4a and 4.4b, as well as the box plots

of the times to find violations for each method in Figures 4.4c and 4.4d.

On the smaller DAVE network, the verifiers struggle to verify the properties. Reluplex does not

run at all, due to its lack of support for convolutional layers, while Planet does run, but reaches the

timeout for all properties. The ERAN verifier does not timeout on the small network, but cannot

verify any of the properties. Neurify was the only verifier that returned accurate results on the small

network, successfully falsifying 33 of the 50 properties, and reaching the time limit on the other 17.

While only a single verifier was able to falsify any properties, 4 of the 6 falsification approaches were

able to falsify properties, all of them finding more violations than Neurify. The falsifiers were also

faster than Neurify, finding violations almost an order of magnitude faster than Neurify on the small

DAVE network.

While one verifier was able to find violations on the smaller network, none of the verifiers were able

to find violations on the larger DAVE network, which has more than 8 times more neurons. Similar

to the small network, Reluplex does not support the network structure, while Planet reaches the

time limit for all properties. However, ERAN and Neurify both perform slightly differently. While

ERAN was previously able to finish its analysis on the small network, it reaches the time limit for

34 properties on the large network, indicating that it could not scale to the larger network size.

Similarly, while Neurify previously found property violations for the small network, it reaches the
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memory limit on the large network before any violations are found. The falsifiers on the other hand

still perform well, with 3 of the 6 verifiers finding property violations. Surprisingly, the DeepFool

falsifier goes from 44 violations found on the small network, to 0 violations on the large DAVE

network. We conjecture that this may be due to the use of the default parameters for DeepFool,

and that adjusting these parameters may yield better results. Additionally, the falsifiers show only

a minor increase in the time needed to find a violation, from a median time of 20.2 seconds to 20.7

seconds.

Overall we find that, on the benchmarks explored here, DNN property reduction scales well

to larger networks, and enables the application of scalable falsification approaches such as

adversarial example generation.

4.3 Conclusion

In this chapter we have presented an approach for reducing neural network correctness problems to

facilitate the application of falsifiers and verifiers to complex property specifications. We implement

our approach for both falsifiers and verifiers and apply it to a range of correctness problem bench-

marks and find that 1) the reduction approach covers a rich set of properties, 2) reducing problems

enables falsifiers to find property violations, and 3) since falsifiers tend to have different strengths,

a portfolio approach can increase the violation finding ability.



Chapter 5

Refactoring Neural Networks for

Verification

Despite significant progress in the neural network verification, the state-of-the-art tools are still

far from adequate for addressing the scale and complexity of DNNs used in autonomous systems.

End-to-end networks for autonomous driving [15, 28] and flying [66, 82] are often too complex for

cost-effective verification. These systems are generally developed with an exclusive focus on achieving

a low error, which incentivizes large complex architectures. Unfortunately, this can prohibit usage

of certain tools or substantially increase verification time.

For example, consider the network for the pendulum control example introduced in Figure 3.1,

which we reproduce on the left side of Figure 5.1. This network contains operations and structures

rarely supported by verifiers of neural networks. Specifically, the network makes use of a clip op-

eration and has a non-sequential structure, using the output of an operation as inputs to multiple

subsequent operations. One possible solution is to simply train a new network without this un-

supported operation, but this risks significantly changing the behavior of the network. We assume

that the original network architecture was selected using domain knowledge such that it learned the

desired behavior to an acceptable precision. Our goal is to rewrite this trained network to one that

is amenable to verifiers while preserving as much of its behavior as possible.

Our insight is that we can adapt the concept of refactoring to neural networks. Code refactor-

ing [38] typically seeks to (a) restructure a software system to facilitate subsequent development

activities, while (b) preserving the behavior of the original software system. Fowler’s original focus

was on improving maintainability and extensibility, but researchers have adapted the concept in

45
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refactor

input · · · fk clip
x0 xk−1 xk

input · · · fk gemm1

relu1gemm2

x0 xk−1 xk

xk′

xk′′

Figure 5.1: A neural network controller for the pendulum control example is refactored to increase
its verifiability by replacing the clip operation with an equivalent formulation using GeMM and
ReLU operations.

myriad ways. For example, to enhance the testability [27, 47] and verification [148] of software. In

this chapter we introduce two approaches for refactoring neural networks for verification, a semantics

preserving approach and a non-semantics preserving approach.

We first introduce semantics preserving refactorings which can identify specific sub-graphs of an

operation graph, and replace them with sub-graphs of equivalent behavior. These refactorings are

implemented, along with property reduction, as part of the DNNV tool introduced in Section 4.1.5.

By replacing sub-graphs containing unsupported operations with sub-graphs containing supported

operations, we can increase the verifiability of a network. For example, the Clip operation in the

network on the left side of Figure 5.1 can be replaced by a sub-graph containing a sequence of

GeMM and ReLU operations which encode the same behavior, as shown on the right side of the

figure. This type of refactoring requires coming up with encodings of operations as combinations of

other operations which are more generally supported by verifiers. While this can have a high one

time cost for development, it can significantly increase the applicability of verifiers without requiring

any additional user intervention, such as providing a transformation specification or replacing the

original network.

In some cases, a network may contain operations or architectures for which a semantics-preserving

refactoring has not been developed. For example, a network may contain a non-linear Sigmoid

operator, while the desired verifier only supports ReLU operators. In other cases, the network

structure may be supported by a given verifier, but be too large to be efficiently analyzed. For

such networks, we introduce the non-semantics preserving refactoring for verification (R4V), in

Section 5.1.2. This refactoring first transforms the network architecture to both remove unsupported

operations and decrease the network complexity. We choose to transform the original architecture

rather than develop a completely new model under the assumption that the original architecture

encodes some domain knowledge of the designer and that in many cases, only small transformations
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will be necessary to make a network more verifiable. For the example network in the left half of

Figure 5.1, this transformation might simply be to drop the Clip operation from the network. Next,

R4V uses knowledge distillation to transfer the behavior of the original model to the transformed

model. This process results in a more verifiable network with behavior highly similar to the original.

After refactoring, the original network should be discarded, and the new model should replace the

original.

This chapter makes the following contributions:

1. Development of both semantics preserving and non-semantics preserving automated refactoring

methods for neural networks to increase verifiability.

2. An analysis of semantics-preserving refactoring in conjunction with reduction across a larges

space of verification benchmarks, demonstrating its potential to increase the applicability of

many existing verifiers, off-the-shelf.

3. A study of non-semantics preserving refactoring on 3 case studies, demonstrating its ability to

increase both verifier applicability and efficiency.

5.1 Approach

We introduce two refactoring approaches for neural networks: a semantics preserving approach,

DNNV, and a non-semantics preserving approach, R4V.

5.1.1 Semantics Preserving Refactoring

We first introduce a semantics preserving approach to refactor networks with the goal of increasing

the applicability of verifiers. These refactorings produce networks that are more amenable to veri-

fication by a given verifier, and for which, for all network inputs, the refactored network produces

the same output as the original. Formally, we define semantics preserving refactorings as:

refactor([E ,N , φ]) = {[E ,N ′, φ]} (5.1)

where the rewritten properties must satisfy:

∀[E ′,N ′, φ′] ∈ refactor([E ,N , φ]). ∀x ∈ X . N ′(x) = N (x) (5.2)
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· · · Conv(x,W, b)
BatchNorm(

x, γ, β, µ, σ2)
· · · · · · Conv(x,W ′, b′) · · ·refactor

W ′i,j,m,n =
γi
σi
Wi,j,m,n

b′i =
γi(bi −mi)

σi
+ βi

Figure 5.2: Batch normalization operations can be refactored out of a network by combining them
with a preceeding convolution operation.

We implement several semantics preserving refactorings as part of DNNV, which also implements

property reduction (introduced in Section 4.1.5). DNNV takes in a network and property, applies

semantics preserving rewritings, and runs a user specified verifier on the rewritten sub-problems. It

currently includes 6 semantics preserving refactorings, which we describe below. These refactorings

were selected based on our experience verifying neural networks and are sufficient for the networks we

have studied, but many additional refactorings are possible and will be investigated and implemented

in future work.

Batch Normalization Refactoring. Batch normalization refactoring removes batch normal-

ization operations from a network by combining them with a preceding convolution operation or

generalized matrix multiplication (GeMM) operation. This is possible since batch normalization,

convolution, and GeMM operations are all affine operations. The refactoring of a batch normaliza-

tion operation following a convolution operation is shown in Figure 5.2. If no applicable preceding

layer exists, the batch normalization layer is converted into an equivalent convolution or GeMM op-

eration, depending on the shape of the inputs to the operation, as shown in (5.3). This refactoring

enables the application of verifiers without explicit support for batch normalization operations, such

as Neurify and Reluplex, to networks with these operations.

BatchNorm(x; γ, β, µ, σ2)→

Conv(x; reshape(diag( γσ ), (c, c, 1, 1)), (β − γµ
σ ))

GeMM(x; diag( γσ ), (β − γµ
σ ))

(5.3)

Identity Refactoring. Identity refactoring removes sequences of operations that result in no

change to the input to the sequence. Such sequences only add complexity to the model and have

no effect on the behavior, and can be safely removed. For example, explicit Identity operations

(which may be added by tools when exporting models to ONNX) simply output their inputs and

are removed by this refactoring. In addition, this refactoring checks for Concat operations with
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a single input operation, Flatten operations applied to already flat tensors, and ReLU operations

applied to vectors that are guaranteed to contain positive values (such as the outputs of another

ReLU or Sigmoid operation). If any of these operation sequences are found they are removed by

this refactoring.

Affine Refactoring. The fully-connected refactoring converts MatMul and Add operations into

equivalent GeMM operations, as follows:

Add(MatMul(x;W ); b)→ GeMM(x,W, b) (5.4)

Add(x; b)→ GeMM(x, I, b) (5.5)

MatMul(x;W )→ GeMM(x;W,0) (5.6)

This refactoring does not necessarily increase verifier support, but it simplifies the specification of

other refactorings, since it enables them to be defined only over the GeMM case.

Operation Combination Refactoring. The operation combination refactoring combines cer-

tain pairs of consecutive operations with a single, semantically-equivalent operation. For example,

because GeMM operations are affine operations, consecutive GeMMs can be combined into a single

GeMM operation as shown in Figure 5.3. Additionally, consecutive Conv operations can be com-

bined into a single Conv operation if the initial Conv has a kernel size of 1, with a diagonal weight

matrix, and default values for all other parameters according to version 11 of the ONNX operator

specification1. In this scenario, we can combine the two Conv operations as follows:

Conv(Conv(x;W (1), b(1));W (2), b(2))→ Conv(x;W, b) (5.7)

where Wi,j,k,l = W
(2)
i,j,k,l ∗W

(1)
j,j,0,0

and bi = b
(2)
i +

∑
j,k,l

(W
(2)
i,j,k,l ∗ b

(1)
j )

This configuration of the Conv operation can occur when we convert BatchNorm operations to

Conv operations. Finally, explicit Pad operations preceding a Conv or pooling (e.g., MaxPool or

AveragePool) can be combined with the padding parameters of the Conv or pool operation, if

padding parameters match those of the Conv or pool. For example, if the Pad operation pads zeros

to its input, then it can be combined with a succeeding Conv operation, but not necessarily with a

1https://github.com/onnx/onnx/blob/main/docs/Operators.md#Conv

https://github.com/onnx/onnx/blob/main/docs/Operators.md#Conv


CHAPTER 5. REFACTORING NEURAL NETWORKS FOR VERIFICATION 50

· · · GeMM(x;A1, B1) GeMM(x;A2, B2) · · · · · · GeMM(x;A′, B′) · · ·refactor

A′ = A1A2

B′ = B1A2 +B2

Figure 5.3: Consecutive GeMM operations can be refactored to a single GeMM operation.

succeeding MaxPool operation, which assumes that padding values will never be larger than values

in the input.

Activation Placement Refactoring. Activation placement refactoring re-orders operations such

that activation functions (e.g., Relu, Sigmoid, Tanh) do not come after reshaping operations (e.g.,

Transpose, Reshape, Flatten). If this refactoring finds an activation function after a reshape op-

eration, it moves the activation operation backwards to the first non-reshape operation. This is

possible since activation operations are element-wise operations, and reshaping operations do not

change element values, only position. This refactoring facilitates operation graph pattern matching

and other refactorings, such as identity refactoring, since it will ensure that activation functions are

not separated by only reshaping operations.

Reluify MaxPool Refactoring. The Reluify MaxPool refactoring transforms MaxPool opera-

tions into an equivalent sequence of Conv and ReLU operations to enable verifiers without support

for MaxPool operations to verify networks with these operations. This refactoring takes advantage

of the equivalence max(a, b) = relu(a−b)+relu(b)−relu(−b). The refactoring halves one dimension

of the MaxPool kernel, and replaces it with an equivalent sequence of Conv, ReLU, Conv, which

computes this max equivalence between pairs of input values. The output of this sequence has a

new MaxPool operation applied to it, with the kernel size halved. This process is repeated until

a MaxPool with a 1 × 1 kernel is obtained, which can be omitted as it is effectively an identity
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operation. One refactoring step can be defined as follows,

MaxPool(x; k1 × k2)→MaxPool(Conv(ReLU(Conv(x;W (1), b(1)));W (2), b(2));
k1
2
× k2) (5.8)

where W
(1)
·,j,2k,l =

 1 0 0 · · · 1 0 0

−1 1 −1 · · · −1 1 −1

 , for 0 ≤ k < k1
2

W
(2)
i,·,0,0 =

[
1 1 −1 · · · 1 1 −1

]
b(1) = b(2) = 0

where the MaxPool is refactored in the first kernel dimension. Other dimensions can be refactored

similarly. The above formulation also assumes that kernel dimensions are always even, however

extension to odd dimensions is straightforward and can be accomplished by adding only a single

row to W (1) for the last value of k when k1 is odd that is the sum of the two rows inserted for all

other values of k. This process takes log2(K) steps, where K is the original kernel size, and adds

three operations at each step, however the consecutive Conv operations that appear from recursively

applying this refactoring can be merged using the operation combination refactoring defined in (5.7).

This refactoring can significantly increase the network size for large MaxPool kernels, however it

enables verifiers to run on networks which they previously would not support. Due to the potential

cost, this refactoring must be explicitly enabled by a user of DNNV.

Implementation

We have implemented these semantics-preserving refactorings in a tool called DNNV. DNNV takes

in networks in the ONNX format, and properties in a custom DSL named DNNP (described in more

detail in Appendix B). It applies semantics-preserving network refactoring and property reduction

(see Section 4.1) and translates the rewritten subproblems to the input format of any of 13 verification

techniques supported by the tool.

DNNV is publicly available at https://github.com/dlshriver/dnnv.

5.1.2 Non-Semantics Preserving Refactoring For Verification

While semantics preserving refactoring can produce equivalent networks, it is not always possible

to replace unsupported operations with supported ones in an equivalent manner. To address this,

we introduce a non-semantics preserving approach with the goal of increasing the applicability and

scalability of verification, which we call R4V. An overview of R4V is depicted in Figure 5.4. The

https://github.com/dlshriver/dnnv
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Figure 5.4: An overview of R4V.

original network is first transformed according to a user provided specification, designating which

operations to drop, scale, or transform to meet verifier requirements. This transformation proceeds

by propagating inter-operation constraints to produce a well-defined, but untrained, network that

is less complex than the original and thereby facilitates verification. This transformed architecture

is trained using knowledge distillation which seeks to match the accuracy of the original, trained

network [51]. Formally, we specify this refactoring as:

refactorR4V ([E ,N , φ]) = {[E ,N ′, φ]} (5.9)

where N ′ satisfies ∀x ∈ X .N ′(x) ∼ N (x) for some measure of similarity, ∼, provided by the devel-

oper. In the rest of this section we describe these two components, transformation and distillation,

in more detail and describe our implementation and recommendations for use.

Transformations

Many different strategies can be used to reduce the complexity of a neural network. Here, we

define a simple set of transformations over network operations, focused on those that can reduce

the complexity of networks. These transformations permit dropping operations and scaling certain

operation types, since these can reduce the size of networks or remove unsupported operations. We

also define a utility operation to apply transformations to operations that satisfy a given predicate.

Drop. The drop transformation (Eq. 5.10) takes in a set of operations O, and removes those

operations from the network.

drop(O) :∀o ∈ O. o′ = ⊥ (5.10)



CHAPTER 5. REFACTORING NEURAL NETWORKS FOR VERIFICATION 53

After dropping an operation, the output shape of the preceding operation is used to update successive

operations, to ensure that the new architecture is valid. The drop transformation can be applied to

operations that perform some computation on their input. We prohibit its application to the output

operation to ensure that the transformed architecture produces outputs with the same dimensions

as the original architecture. We also prohibit dropping reshaping operations, such as Transpose and

Flatten, since they are required to ensure that the input to an operation is the correct shape.

Scale. The scale transformation (Eq. 5.11) takes in a set of operations O, and a scale factor f ,

and scales the output size of each specified operation by the factor f .

scale(O, f) :∀o ∈ O (o 6= ⊥)→ (#o′ = bf ·#oc) (5.11)

where # denotes the output size of an operation. After scaling an operation, its new output shape

is used to update the parameterization of successive operations, to ensure that the new architecture

is valid. Our current framework supports the scale transformation on the input operation, GeMM

operations, and Convolution operations. GeMM operations are scaled by changing the size of their

weight matrix and bias vector. Convolution operations are scaled by changing the number of kernels.

The input operation is scaled by changing its specified size.

Forall. We also define a utility transformation forall (Eq. 5.12), that applies a partially param-

eterized transformation λ over all operations of a neural network N = 〈Q, q0, q∗, δ〉, that satisfy a

predicate ϕ.

forall(〈Q, q0, q∗, δ〉, ϕ, λ) = λ({o ∈ Q | ϕ(o)}) (5.12)

We have applied and investigated these transformations individually and in combination over

several networks, including the ones that we report on in Section 5.3. We have considered extending

the transformation framework with additional capabilities, for example, to Add an operation. To

date, however, we have focused on capabilities that reduce the complexity of refactored networks

– adding operations generally works against that goal – and that are necessary to support existing

verifiers for neural networks.
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Distillation

After transforming the architecture, we must transfer the knowledge of the original model to the

untrained transformed network. To do this we employ knowledge distillation, which was introduced

by Hinton et al. [51] as a general approach to addressing the differing requirements in training and

deploying neural networks (e.g., less computation, lower energy consumption). Distillation trains

a student network to match the accuracy of a trained teacher model. It has proven useful in

addressing varied deployment requirements [24, 53, 103]. In R4V, we employ distillation to address

the requirement that neural networks be verified prior to deployment.

Distillation is a flexible, highly parameterizable framework for training neural networks, and we

identify three degrees of freedom to adapt distillation for R4V: datasets, training parameters, and

stopping rules. Once parameterized, R4V trains the student network automatically. The resulting

network can be assessed for accuracy and subjected to property verification.

Datasets. Separate datasets can be specified for training, validation, and testing. Additionally,

while the same datasets will generally be used for the teacher and student, R4V supports the uti-

lization of different datasets for each, enabling enabling data to be pre-processed offline to accelerate

distillation.

Training Parameters. As with other neural network training approaches, there is a large hyper-

parameter space to tune distillation performance. For refactoring classification networks, R4V fol-

lows prior work beginning with Hinton et al. [51], incorporating the output of the teacher as target

vectors, however the true labels can also be used to augment computation of the loss. For refactoring

regression networks, we distill strictly using the outputs of the teacher as the target vectors.

Stopping Rules. In addition to establishing a timeout for distillation, R4V can terminate distilla-

tion when the relative student-teacher error is below a given threshold. For example, in a regression

setting, the MSE between the teacher and student outputs may be used to measure relative accuracy.

Implementation

Our implementation of R4V consists of two main components: a transformation component, and

a distillation component. Both components are parameterized using a single configuration file,

specified using the TOML language [100], such as the one shown in Listing 1.
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1 [distillation]

2 maxmemory = "32G"

3 threshold = 0.01

4 type = "regression"

5 [distillation.parameters]

6 epochs = 100

7 optimizer = "adam"

8 loss = "MSE"

9 [distillation.data]

10 format = "dronet"

11 batchsize = 32

12 [distillation.data.transform]

13 grayscale = true

14 [distillation.data.train]

15 shuffle = true

16 student.path = "artifacts/dronet.200/training"

17 teacher.path = "artifacts/dronet.200/training"

18 [distillation.data.validation]

19 shuffle = false

20 student.path = "artifacts/dronet.200/validation"

21 teacher.path = "artifacts/dronet.200/validation"

22 [distillation.teacher]

23 model = "networks/dronet/model.onnx"

24 input_shape = [1, 200, 200, 1]

25 input_format = "NHWC"

26 [[distillation.strategies.drop_layer]]

27 layer_id = [2, 3]

28 [[distillation.strategies.forall]]

29 layer_type = "ResidualConnection"

30 strategy = "linearize"

31 [[distillation.strategies.scale_layer]]

32 layer_id = [0]

33 factor = 0.5

Listing 1: An example R4V configuration file.

The transformation component is pa-

rameterized with a teacher architecture

and a set of transformation strategies. The

teacher model is specified using the Open

Neural Network Exchange (ONNX) for-

mat [92], which can be produced from

many of the most popular machine learn-

ing frameworks. The configuration file in

Listing 1 will transform the teacher archi-

tecture (specified in lines 22-25) by drop-

ping layers 2 and 3 (lines 26-27), linearizing

all residual blocks in the network (lines 28-

30), and scaling the first layer by a factor

0.5 (lines 31-33). After transforming the

architecture, the R4V tool will automati-

cally begin distillation.

The distillation component was imple-

mented in Python, with PyTorch as the un-

derlying machine learning framework [95]

used for training. The default distillation

settings are based on the knowledge distil-

lation method of Hinton et al. [51], and can be configured through the configuration file provided

by the user. R4V allows users to choose the training algorithm and loss function (lines 7 and 8),

as well as set hyper parameters such as the learning rate, and the batch size (line 11). We also

extend distillation with a relative-performance-based stopping criteria (such as the error threshold

specified in line 3), as well as a memory limit (line 2) and timeout. These permit developers to en-

force a distillation budget to allow for fast partial distillation training to rapidly explore the space of

refactorings; something we plan to explore in more depth in future work. Our distillation procedure

also allows for different datasets to be specified for the student and the teacher (lines 14-21). This

allows the student to be trained on smaller input sizes or on inputs that have been pre-processed

differently than the teacher. For example, in the second case study for R4V, in Section 5.3.3, we

transform the DroNet network to operate on smaller input sizes, so we update lines 16 and 20 to

point to a pre-processed dataset with the smaller image sizes. The distilled student model is saved
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Table 5.1: Verifier benchmarks.

Features
Key Name Uses #P #N ¬HR C R ¬ReLU

AX ACAS Xu [10, 20, 68, 69, 135] 10 45
CD Collision Detection [20, 34, 69] 500 1
PM Planet MNIST [34] 7 1
TS TwinStream [19] 1 81
PCA PCAMNIST [20] 12 17
MM MIPVerify MNIST [125] 10000 5
MC MIPVerify CIFAR10 [125] 10000 2
NM Neurify MNIST [49, 135] 500 4
NDb Neurify Drebin [135] 500 3
NDv Neurify DAVE [135] 200 1
DZM DeepZono MNIST [115] 1700 10
DZC DeepZono CIFAR10 [115] 1700 5
DPM DeepPoly MNIST [49, 116] 1500 8
DPC DeepPoly CIFAR10 [116] 800 5
RZM RefineZono MNIST [117] 800 8
RZC RefineZono CIFAR10 [117] 200 2
RPM RefinePoly MNIST [114] 600 6
RPC RefinePoly CIFAR10 [114] 300 3
VC VeriNet CIFAR10 [49] 250 1

in the ONNX format.

Our implementation is publicly available at https://github.com/dlshriver/R4V.

5.2 Study: Semantics Preserving Refactorings

We now examine the applicability of verifiers to existing verification benchmarks with and without

DNNV. A verification benchmark consists of a set of verification problems which are used to evaluate

the performance of a verifier. A problem is made of a neural network and a property specification

and asks whether the property is valid for the given neural network. We consider a verifier to

support a benchmark if it can be run on that benchmark out of the box. We consider a verifier

to have support for a benchmark through DNNV if it would be possible to run DNNV on that

benchmark with networks specified using ONNX and properties specified in DNNP, by reducing the

properties, refactoring the networks, and translating the problem to work with the target verifier.

Note that, in addition to network refactoring, DNNV also performs property reduction as introduced

in Section 4.1.5.

https://github.com/dlshriver/R4V


CHAPTER 5. REFACTORING NEURAL NETWORKS FOR VERIFICATION 57

Table 5.2: Benchmark support by each verifier. The left half of the circle is black if the verifier can
support the benchmark out of the box, and is white otherwise. The right half is black if the verifier
supports the benchmark through DNNV, and is white otherwise. An absent circle indicates that the
verifier can not be made to support some aspect of the benchmark.
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5.2.1 Benchmarks

To evaluate benchmark support, we collected the benchmarks used by each of the 13 verifiers sup-

ported by DNNV, and determined whether each verifier could run on the benchmark out of the

box, and also whether they would be able to run on the benchmark when DNNV is applied. The

verification benchmarks are shown in Table 5.1 and are also described in more detail in Appendix D.

Each row of the table corresponds to a benchmark, to which we assign a short key for identification.

For each benchmark, we give the name, some of the verifiers it evaluated, the number of properties

(#P) and networks (#N ), and features that can make it challenging for verifiers. These features in-

clude whether any properties cannot represent their input constraints using hyper-rectangles (¬HR),

whether any network in the benchmark contains convolution operations (C), whether any network

contains residual structures (R), and whether any network uses any non-ReLU activation functions

(¬ReLU).

5.2.2 Results

The support of verifiers for each benchmark is shown in Table 5.2. Each row of this table corresponds

to one of the 13 verifiers supported by DNNV, and each column corresponds to one of the 19
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benchmarks identified in Table 5.1. Each cell of the table may contain a circle that identifies the

support of the verifier for the benchmark. The left half of the circle is black if the verifier can

support the benchmark out of the box, and is white otherwise. The right half is black if the verifier

supports the benchmark through DNNV, and white otherwise. An absent circle indicates that the

verifier can not be made to support some aspect of the benchmark. For the benchmarks shown here,

this is always due to the presence of non-ReLU activation functions in some of the networks in the

benchmarks and indicates a potential use case for the non-semantics preserving refactoring R4V.

As shown in Table 5.2, DNNV can dramatically increase the support of verifiers for benchmarks.

For example, the Planet verifier would originally be able to run on only 5 of the 19 benchmarks,

but would be able to run on 16 using DNNV. Similarly, the nnenum verifier, could originally only

be run on 1 of the existing benchmarks, but would be able to run on 13 using DNNV. Of the 223

pairs of verifiers and benchmarks for which support may be possible, 166 of them are

currently supported by DNNV, an increase of over 2.4 times the 68 pairs supported

without DNNV.

5.3 Study: Non-Semantics Preserving Refactorings

We explore the potential of supporting neural network verification with R4V through 3 case studies

on verifier applicability, verifier efficiency, and error-verifiability trade-offs.

The first case study focuses on Verifier Applicability. Verifiers are constantly playing catch-up to

the latest operations and architectural features introduced for neural networks. As a result, a favorite

verifier will often not support the features of a network of interest. For example, some verifiers, such

as CROWN [151] and ReluVal [136], are restricted to fully-connected layers. Other verifiers, such

as MIPVerify [125] and DeepGo [104], add support for Convolution and MaxPool operations, but

cannot handle more complex operation graphs such as those with residual connections. In this case

study, we showcase how R4V can help verifiers overcome this kind of limitation by refactoring the

network to one that satisfies the verifier’s feature constraints.

The second case study focuses on Verifier Efficiency. When faced with modern complex networks,

even when verifiers can support the operations and structures in a network, they often struggle to

provide results within an actionable time frame. In such cases R4V can refactor the network into

one that can be verified significantly more efficiently.

The third case study focuses on Error-Verifiability Trade-offs. While the first two studies inves-

tigate R4V under a small number of refactorings, this study provides a much broader exploration
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of the refactoring space. It demonstrates a binary search for refactored versions of the original

network that lie in the complexity sweet spot where the error and verification time meet acceptable

thresholds, providing concrete evidence of the trade-offs illustrated earlier in the chapter.

We explore these three case studies using two large neural networks, four verifiers, and multiple

refactorings, described in more detail below.

5.3.1 Setup

Here we describe the correctness problems, verifiers, and methodology used in the three studies.

Correctness Problems

We evaluate R4V using correctness problems for two neural networks for both autonomous ground

and aerial control. Both artifacts apply local reachability properties to large neural network models.

DAVE2 is a network trained to predict steering angles from color images from a front-facing

camera to control an autonomous ground vehicle [15]. Because the original DAVE-2 model is not

publicly available, we use the network trained by other researchers [97] on the Udacity self-driving

car dataset [131]. This model was trained on color images which have been mean-centered and scaled

to a height and width of 100 by 100. We use the same input pre-processing when refactoring the

network. The network before refactoring has a MSE of 0.047 when run on the test set.

Following the process of Neurify [135], we randomly generated 10 safety properties for DAVE-2.

The properties specify that images within an Linf ball with radius 2 centered at a given test image

must produce a steering angle within 15 degrees of the angle predicted for the original test image.

Different from Neurify [135], we restricted the output to a tighter range (from ±30 to ±10 degrees)

to make it more realistic for the problem domain.

DroNet is a network trained to provide control signals for an autonomous quadrotor [82]. It

consumes a 200x200 grayscale image and outputs a steering angle, as well as a probability that the

drone is about to collide with an obstacle. The model is trained on a version of the Udacity self-

driving car dataset [131] augmented with a set of images taken from a camera mounted to a bicycle as

it is ridden on the streets of a city. The Udacity dataset provides the data for the steering prediction,

while the bicycle data provide data for the probability of collision prediction. The resulting network

has a MSE of 0.013 for the steering angle and an accuracy of 0.93 for the collision prediction when

evaluated on the test set.
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We randomly generated 20 safety properties for the DroNet networks, 10 for the steering angle

regression task, and 10 for the collision probability classification task. The steering properties specify

that images within an Linf ball with radius 2 centered at a given test image must produce a steering

angle within 15 degrees of the angle predicted for the original. The collision probability properties

specify that images within an Linf ball with radius 2 centered at a given test image must produce

a collision classification that is the same as the test image, e.g., if the probability was greater than

0.5 for the test image, it must also be greater than 0.5 for all images within the Linf ball.

Verifiers

We selected four verifiers: ERAN [116], Neurify [135], Reluplex [68], and Planet [34]. These tools

represent a variety of verification techniques. Reluplex is based on an adaptation of the simplex

method that provides support for fully-connected networks with ReLU activation functions. ERAN

uses abstract interpretation to overapproximate the reachable output region. We use ERAN with the

DeepPoly abstract domain, which supports convolutional, fully-connected, and maxpooling layers

with ReLU, tanh, or Sigmoid activation functions [116]. Neurify combines symbolic interval analysis

with symbolic linear relaxation, and supports convolutional and fully-connected layers with ReLU

activations. Planet blends techniques from SMT and search, and supports layers that can be specified

as a linear combination of neurons, as well as ReLU activations and maxpooling layers. All these

verifiers also have freely available open source implementations.

Unfortunately each of these tools has it’s own input format, so, for each verifier, we wrote a

translation tool to convert networks in the ONNX format and properties in a Python-embedded

DSL (the output format of R4V) to the specific input format required by each verifier2. For some of

the verifiers we had to make small modifications to get the tool to work on the artifacts used in this

study. For Reluplex, we use the version of the tool modified by [20] to support generic properties.

This version of the tool works by checking whether the output neuron is less than 0. Properties can

be specified by encoding them as a set of layers at the end of the network being verified. Because

the Neurify tool is hard-coded to check a constant set of properties, we modified the DAVE2 version

of the tool to be more general by allowing a user specified input and output interval to be specified

at runtime.

2This toolchain later became the initial version of the DNNV framework: https://github.com/dlshriver/dnnv/

commit/e516a51b49f127a723162cd5e1461cbee8245d66

https://github.com/dlshriver/dnnv/commit/e516a51b49f127a723162cd5e1461cbee8245d66
https://github.com/dlshriver/dnnv/commit/e516a51b49f127a723162cd5e1461cbee8245d66
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Methodology

For each case study, we use R4V to refactor the original neural networks. The transformations in

each scenario are meant to demonstrate how R4V can be applied to increase verifiability. Distil-

lation parameters are set to correspond to the training parameters reported for the original net-

works, including the number of epochs (50 for DAVE2 and 100 for DroNet), optimization method

(Adadelta [150] for DAVE2 and Adam [72] for DroNet), and batch size (256 for DAVE2 and 32

for DroNet). After training, we select the model from the epoch with the best mean squared er-

ror (MSE) performance (relative to the teacher), evaluated on the validation set. For DAVE2, the

refactored performance is measured as the MSE of the output steering angle with respect to the

original network, evaluated on the test set. Because DroNet has 2 outputs, we report the refactored

performance as 2 values: the MSE of the steering angle with respect to the original network, and

the accuracy with respect to the original probability of collision, evaluated on the test set.

For each scenario in each case study, we verify the correctness problems described above. The

first study pairs the DAVE2 problems with the Reluplex verifier and the DroNet problems with

the ERAN verifier. The second study pairs the DAVE2 problems with the Neurify verifier and the

DroNet problems with the Planet verifier. The third study uses only the DAVE2 problems, paired

with the Neurify verifier. For each scenario we report the verification results (true, false, unknown,

“out of resources” (OOR)) as well as the mean verification time.

Distillation took around 11 hours on average to complete all the epochs. We made no effort to

optimize this time. As an example of the potential for optimization, the average best epoch for the

accuracy-verifiability trade-off study below was 37 (out of 50 total), suggesting that early stopping

could have reduced distillation time by up to 20%. More aggressive training optimizations, such as

those used in neural architecture search [99], apply a strict training budget, e.g., 5% of the epochs,

when making preliminary assessments about the suitability of an architecture and then only using

larger budgets for very promising architectures. This could work well for the approach described in

the third case study and would reduce the time for most distillation runs to a matter of minutes.

Computing Resources

Distillation tasks were run on GPU compute nodes with 64GB of memory, and using NVIDIA 1080Ti

GPUs. Verification tasks were run on Linux compute nodes with 2.3GHz Xeon processors, 64GB of

memory, and a time limit of 24 hours.
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Table 5.3: Results for the Verifier Applicability study.

Result Count Time (sec.)

Artifact/Verifier T F U O
O

R

T F U

DAVE-2/Reluplex - - - - - - -
R4V(DAVE-2)/Reluplex 10 0 0 0 52 - -

DroNet/ERAN - - - - - - -
R4V(DroNet)/ERAN 8 12 0 0 519 525 -

5.3.2 Results: Verifier Applicability

This case study pairs the DAVE-2 and DroNet correctness problems with the Reluplex and ERAN

verifiers, respectively. The pairing is designed to showcase the potential value of R4V to overcome

a verifier’s limited support for certain features of a network architecture. The original DAVE-2

network has several convolutional layers, which are not supported by Reluplex. The original DroNet

network has complex residual blocks which are not supported by ERAN when using the DeepPoly

domain.

Refactoring. Since Reluplex only supports fully-connected layers, DAVE2 must be refactored to

remove its convolutional layers. We apply the transformation forall(N , isConvLayer, drop), where

isConvLayer is a predicate that determines whether an operation is part of a convolutional layer,

resulting in a network consisting of only the final 5 fully-connected layers. R4V automatically

adjusts the first of these layers to accept vectors with the same size as the input vector. To en-

able ERAN (using the DeepPoly domain) to run on DroNet, we first drop the convolution and

MaxPool operations at the beginning of the DroNet network, as well as the last 2 residual blocks us-

ing the transformation forall(N , isNth(Conv, 1)∨ isNth(MaxPool, 1)∨ isNth(ResidualBlock, 2)∨

isNth(ResidualBlock, 3), drop), where isNth(t, i) returns a predicate that returns whether an op-

eration is the ith operation of type t in the network, counting from the inputs. We then linearize the

remaining residual connection with linearize(N ) = forall(N , isResidualConnection, drop), where

isResidualConnection is a predicate identifies if an operation is part of a residual connection. The

distillation step for both artifacts uses the parameters described in the previous section, resulting

in a refactored DAVE2 network with an MSE of 0.062 relative to the original (other refactorings

of DAVE2 that render much smaller errors are presented in the last case study), and a refactored

DroNet with a relative steering angle MSE of 0.020 and a relative accuracy on the collision avoidance

of 0.979.
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Findings. The results from this case study are shown in Table 5.3. The first column of this table

is the paired artifact and verifier, the next four columns are the number of checked properties that

resulted in either proving (T) or falsifying (F) the property, returning unknown (U), or running out

of resources (OOR). The next three columns show the mean verification time across all properties

for each result type. We do not report verification times for OOR results.

While Reluplex can not be applied to the original DAVE2 artifact, and ERAN could not be

applied to the original DroNet artifact, both verifiers could be applied to the refactored networks.

In the case of DAVE2 and Reluplex, all 10 properties where shown to hold for the refactored network

in less than a minute per property. In the case of DroNet and ERAN, the refactoring enabled the

verification of all 20 properties, eight were deemed true and 12 deemed false for the refactored

network, taking on the order of 10 minutes to complete verification of each property.

The most significant finding of this case study is that R4V enables the application of previously

inapplicable verifiers.

5.3.3 Results: Verification Efficiency

This case study pairs the DAVE-2 and DroNet correctness problems with the Neurify and Planet

verifiers, respectively. While these verifiers can run on these verification problems, they take a

considerable amount of time. Using the original networks, Neurify takes an average of 5.6 hours to

check a single DAVE-2 property, and Planet cannot verify any DroNet property within 24 hours.

Refactoring. To improve the efficiency of Neurify on the DAVE2 network, we apply R4V to

refactor the network by applying the transformation forall(N , isLayer({2, 3, 4, 7, 9}), drop), where

isLayer(I) is a predicate which identifies whether an operation is part of the layer at position i ∈ I,

which matches the one manually generated by Wang et al. in the evaluation of Neurify [135]. To

increase the efficiency of Planet on DroNet, we apply R4V to remove the first convolutional and

maxpooling layers, as well as the last two residual blocks (forall(N , isLayer({0, 2, 3}), drop)). We

also scale the size of the input layer to a 10 by 10 grayscale image (forall(N , isInput, scale(·, 0.05))).

This last step is necessary to enable Planet to verify any of the properties within the time limit.

Findings. The results from this case study are summarized in Table 5.4. The first column of this

table is the artifact and verifier pair, the next four columns are the number of properties that were

checked that resulted in either proving or falsifying the property, or returning unknown or running

out of resources. The next three columns show the mean verification time for each kind of returned
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Table 5.4: Results for the Verification Efficiency study.

Result Count Time (sec.)

Artifact/Verifier T F U O
O

R

T F U

DAVE-2/Neurify 0 0 10 0 - - 20318*
R4V(DAVE-2)/Neurify 10 0 0 0 2449 - -

DroNet/Planet 0 0 0 20 - - -
R4V(DroNet)/Planet 1 2 0 17 1155 45423 -

result. We do not report times for OOR results.

While Neurify could mostly handle the original DAVE2 network, its results were flaky for some

properties, alternating between segmentation errors and verification completions. Hence, the re-

ported numbers on the original DAVE2 with Neurify correspond to the best of up to five tries. Even

when Neurify completed its execution after an average of 339 minutes per property, the complexity

of the original network introduced significant imprecision into the analysis, causing all 10 property

checks to return an unknown result. In contrast, Neurify was able to prove all properties were true

of the refactored network, taking about 41 minutes on average to verify a property - an 8 times

speedup over results on the original.

Similarly, although Planet can accept the original DroNet architecture, it could not complete any

of the property checks within one day. After applying R4V to refactor the network, Planet was able

to finish checking three out of the 10 properties, taking just under 20 minutes to verify a property

and a little over 16.5 hours to falsify a property.

The most significant finding of this case study is that R4V can speed up the verification time and

enable verifiers to provide more useful results.

5.3.4 Results: Error-Verifiability Trade-Offs

In this case study, we explore the error-verifiability trade-offs using DAVE-2 and the Neurify verifier.

We generate multiple refactored versions of the DAVE-2 network to explore the trade-offs.

Refactoring. We start our exploration of the refactoring space using the coarser granularity trans-

formation drop, and performing a binary search to determine the layers to drop based on the refac-

tored network error and verification time. Because it rarely makes sense to drop a convolution or

fully-connected (e.g., GeMM) operation without also droping its corresponding ReLU operation we

treat an operation followed by a ReLU as a single layer to be dropped. This results in 11 layers,
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Figure 5.5: Results for the Error-Verifiability Trade-Offs study. The horizontal axis lists the 10
DAVE2 safety properties. The vertical axis lists 17 networks (original plus 16 refactorings). Each
shape in the plot corresponds to a verification result, where the size indicates the time and the color
and pattern indicate the verification result.

where 9 are droppable: 5 convolutions and their corresponding ReLUs, and 4 fully-connected op-

erations with their corresponding ReLUs. The sixth and seventh layers correspond to reshaping

operations and cannot be dropped. Each of the 11 layers is labelled with a hexidecimal digit in the

range 0-A.

As stopping criteria for the search we set desired thresholds on the error and verifiability of the

refactored network. We arbitrarily set the acceptable error in terms of the MSE relative to the

original network to be under 0.01. In terms of verifiability, we require for all the properties to be

verified as true or falsified in under three hours per property.

Findings. To provide a characterization of the space of trade-offs involved with refactoring we

use R4V to refactor the original network into 16 networks. The results are depicted in Figure 5.5.

Each row in this figure is a refactored network, and each column is a DAVE2 safety property. The

network names and number of neurons appear in the first and second column along the left vertical

axis. The networks are sorted by the number of neurons, so networks towards the bottom of the

plot are less complex by this measure of complexity. The size of each circle represents the time to

verify the corresponding network and property, and the color and pattern of the circle indicate the

verification result. The relative MSE of each network appears on the right of the plot.

Starting from the top, we notice that the original network takes over 10,000 seconds to verify

every single property, and for the second property as much as 39306 seconds, and in all cases it

returns unknown. When R4V is applied to refactor the original network by removing the fully-
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connected layer labeled as “7” resulting in 0123456 89A (second row in the graph), we observe a

2.1x speedup in verification time and also more useful returned results (eight properties were shown

to be true, one unknown, and one timed-out). The third row shows network 0123456 9A, which

has another fully-connected layer removed, resulting in a speedup of 3.6x in verification time and all

properties checked as true. The following two rows of networks keep dropping fully-connected layers,

and when all fully-connected layers are dropped we notice that Neurify returns an error as it cannot

deal with the resulting architecture of 0123456 which is correct but has no fully connected layers,

which was unexpected by the verifier. The following rows start the removal of convolutional layers,

resulting in another noticeable reduction in network complexity. Network 01 56789A renders a

speedup of 6.3x in verification time while retaining a MSE of 0.008 relative to the original network.

That is also the case with 0 56789A, with 9.4x speedup and still an acceptable error rate. The

rows below have too large of an error to be deemed viable.

In total, 3 of the 16 refactored DAVE2 networks in Figure 5.5 meet the error-verifiability criteria,

suggesting that the complexity sweet spot for DAVE2 contains a variety of acceptable networks.

The most significant finding of this case study is that, without prior domain knowledge, R4V can

enable the effective exploration of the error and verifiability tradeoffs and converge towards a network

that meets both criteria.

5.4 Conclusion

This chapter introduces automated support for refactoring neural networks to facilitate verifica-

tion while retaining behavior of the original network. We introduce both non-semantics preserving

refactorings (R4V), which transform the network to increase verifiability and retrain the network

to achieve similar (but not necessarily equivalent) error to the original, and semantics preserving

refactorings (DNNV), which transform the network to one with equivalent behavior and increased

verifiability.



Chapter 6

Distribution Models for

Verification

Joint work with fellow UVA PhD student Felipe Toledo.

A neural network, N : Rn → Rm, is trained to approximate a target function, f : X → Y, where

X ⊆ Rn and Y ⊆ Rm. In many common use cases, such as for images, the domain of definition

– referred to as the data distribution X – is an infinitesimal portion of the full domain, |X ||Rn| ≈ 0.

This becomes more common as n grows large. Take for example, an instantiation of the pendulum

system introduced in Chapter 1 in which the network takes in images of the pendulum in order to

predict a torque, as depicted in Figure 6.1. One common image representation is a vector of values

between 0 and 1 (i.e., [0, 1]n), where each value in the vector corresponds to the intensity of one

pixel in the image. However, the set of vectors that make up the space of images corresponding to

pendulum images is vanishingly small within this space as the image size grows. A neural network

is trained to operate as desired on this small space of pendulum images, but its behavior on inputs

outside of this restricted subspace is undefined.

Unfortunately, validation and verification of neural networks often ignores the partial defini-

tion of a network with significant negative consequences. First, existing test generation tech-

niques [90, 97, 120, 124, 145] have been shown to produce a majority of inputs that lie outside

the data distribution [12, 31]. Second, white-box coverage criteria [84, 97] do not take the distri-

bution into account which can drive coverage-directed test generators to give misleading reports of

the coverage achieved [31]. Third, faults detected for inputs outside the distribution constitute false

67
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Figure 6.1: An example instantiation of the environment model and neural network for the pendulum
system introduced in Chapter 1 in which the network takes in images of the pendulum to produce
a control signal.

reports [12, 31] which can lead to wasted effort in fault triage, localization, and repair.

While recent work has explored leveraging models of the data distribution for testing neural

networks [21, 31], we present the first approach to use such models to support verification and

falsification. We draw inspiration from research exploiting environmental models of the feasible

input domain for software systems to focus Verification and Validation (V&V). These models are

typically built from the system requirements and can be expressed in a variety of forms, such as

simulations [130], state-machines [26], or logical specifications [70]. Such environment models [126]

have become an essential component of V&V approaches for software systems [22, 30, 39, 41, 76],

which has led to their adoption in several domains [86].

To be amenable for V&V, environment models must satisfy three requirements. First, they must

be accurate in defining the set of feasible inputs, i.e., they should not include too many inputs

off the data distribution or exclude many inputs on the distribution. For example, for an under-

approximating analysis, e.g., [76], an underapproximating model is required to guarantee feasible

counter-examples; dually an overapproximating analysis requires an overapproximating environment

model. Second, they must be generative, providing the ability to be executed, interpreted, or solved

to generate feasible inputs. This can enable, for example, generating feasible counter-examples when

verifiers or falsifiers detect property violations [94]. Third, for verification, they must be amenable

to constraint-based encoding in a form that can be leveraged by the verification algorithm. For

example, for a SMT-based verification method, e.g., [76], an environment model must be convertible

to logical formulae in a supported theory. For abstract interpretation, e.g., [46], an environment

model must be convertible to supported abstract domains.

In this chapter, we adapt the concept of an environment model to support existing verification and

falsification techniques for neural networks. To do this, we must address the potential intractability

of specifying an accurate model of the feasible inputs for a complex neural network – like those that
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process images (such as the one in Figure 6.1). A key insight of this work is that we can leverage the

rich body of research that the machine learning community has developed for learning generative

models of a data distribution, which we exploit to define environment models. By defining an

environment model with a generative model to map from states to network inputs, we can develop

rewritings to incorporate this environment model into the property. This rewriting modifies the

property such that the generative model is used as a prefix to the network under analysis, focusing

V&V tools on the state space of the environment model rather than the network input space. Because

the generative model only maps states to network inputs within the distribution, this method of

environment modelling and rewriting focuses V&V on the data distribution.

Our distribution-based falsification and verification (DFV) approach transforms a correctness

problem into a new problem focused on the data distribution by leveraging generative models for

defining environments and introducing rewritings to enable V&V tools to support problems with

this type of non-trivial environment model. DFV supports the reporting of feasible on-distribution

counter-examples when property violations are detected, and that subsets of the data distribution

are free of violations when verifiers are able to discharge such proofs. We evaluate DFV on networks

for classifying images of clothing [144] and controlling a drone from image data [82], for a range of

challenging property specifications. We find clear evidence that DFV enables existing V&V tools

to produce counter-examples much more representative of the data distribution than are computed

otherwise – both visually and in terms of quantitative similarity measures. While scaling of verifica-

tion techniques is challenging, we find evidence that distribution models can enable them to prove

properties over the data distribution. Our results can be used to guide the development of models

to support DFV.

The primary contributions of this work are the:

1. Formulation of the first model-based verification and falsification method for neural networks.

2. Demonstration that distribution models yield substantially better counter-examples from ver-

ification and falsification.

3. Exploration of different models of the data distribution and their trade-offs.

6.1 Approach

Figure 6.2 depicts the general process taken by DFV. Given a correctness problem with an envi-

ronment model in which the state-to-input mapping, M is specified as a neural network, such as
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Figure 6.2: An overview of DFV.

a generative model, DFV rewrites the problem such that the new network composes M with the

original network, and the new property adds a constraint over the inputs of M and rewrites con-

straints over the original network input to constraints over the output of M. More formally, this

environment rewriting takes the following form:

rewriteDFV ([〈S,M, T 〉,N : Rn → Rm, φ]) = {[〈S, s 7→ s, T 〉,N ′, φ′]} (6.1)

A correctness problem is rewritten to a single correctness problem with equivalent semantics to the

original problem, such that the state-to-input mapping of the environment model in the modified

problem is the identity function, and the new network and property encode the semantics of the

original state-to-input mapping. We discuss this rewriting in more detail below.

6.1.1 Rewriting

This rewriting relies on a few assumptions to enable transformation of the original problem. First,

we assume that the state-to-input mapping function, M, of the environment model is modelled as

a neural network which maps states to network inputs on the data distribution. Second, we assume

that the statespace, S, is defined by a bounded polytope. We provide a more detailed analysis of

these two assumptions and their implications in Section 6.1.2. Finally, similar to previous work [109],

we assume that properties are defined in a subset of first-order logic in which variables are universally

quantified and constraints are linear inequalities over network input and output values. This form

facilitates property manipulation while maintaining expressiveness [108, 109].

Algorithm 5 presents a high-level overview of this rewriting. The rewriteDFV algorithm, which
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Algorithm 5: rewriteDFV
Input: A correctness problem,

ψ = [E = 〈S,M = 〈Q(M), q
(M)
0 , q

(M)
∗ , δ(M)〉, T 〉,N = 〈Q, q0, q∗, δ〉, φ].

Output: A singleton containing a semantically equivalent correctness problem,
ψ′ = [E ′,N ′, φ′], with trivial environment model.

1 begin
2 q′0 ← qM0
3 q′∗ ← Concat(x, y)

4 Q′ ← Q ∪Q(M) ∪ {q′∗} \ {q0}

5 δ′ ← {(q(M)
∗ , q′∗, x), (q∗, q

′
∗, y)} ∪ δ(M) ∪ {

{
(q

(M)
∗ , op2, σ) if op1 = q0

(op1, op2, σ) otherwise
| (op1, op2, σ) ∈ δ}

6 N ′ ← 〈Q′, q′0, q′∗, δ′〉
// N ′(s)N returns the output values associated with N,

// while N ′(s)M returns the output values associated with M.

7 φ′ ← (s ∈ S =⇒ φ[N ′(s)N /N (x),N ′(s)M/x])
8 E ′ ← 〈S, s 7→ s, T 〉
9 ψ′ ← [E ′,N ′, φ′]

10 return {ψ′}

we will refer to more generally as DFV, takes in a correctness problem, and outputs a semantically

equivalent problem which incorporates the semantics of the original environment as part of the

modified network and property. The output of this algorithm can then be processed by additional

rewritings, such as the reduction introduced in Chapter 4 before being checked by existing V&V

tools for neural networks.

The rewriting transformation occurs in four steps.

First, DFV constructs a new neural network (lines 2-6), which is the composition of the original

network, N and the state-to-input mapping, M. The output of M is connected to the inputs of N

and also forwarded to the end of the network where they are concatenated with the outputs of N .

This concatenation enables constraints to be specified over both inputs and outputs. Without this

step we could not specify constraints over network inputs, since they would now be in the middle

of the composed network. This new network, N ′, is a function from environment states to network

inputs and outputs. Because M is assumed to only produce inputs on the data distribution this

has the effect of focusing N on inputs within this distribution since this construction forces N to

only operate on outputs ofM. This composition can be simplified for problems with properties that

do not constrain network inputs by omitting the input forwarding and output concatenation since

those forwarded values would not be used in the final specification.

Second, DFV constructs a new property specification (line 7) by substituting the expression

N ′(s)N for usages of N (x) and N ′(s)M for usages of x and using the updated specification as the
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consequent to an implication with s ∈ S as the antecedent. The expression N ′(s)N returns the

subset of the output values that correspond to outputs of N . If the output of N has size m, this

corresponds to the rightmost m values of the output of N ′. Similarly, the expression N ′(s)M returns

the subset of the output values that correspond to outputs ofM. If the output ofM (i.e., the input

of N ) has size n, this corresponds to the leftmost n values of the output of N ′. After substitution,

this new property captures the semantics of the original property specification in conjunction with

the environment.

Third, we specify a new environment model (line 8) in which M is replaced by an identity

mapping. This is necessary to preserve the semantics of the correctness problem, since the rewritten

network now operates on environment states rather than over the original network input space.

While this step may be able to be skipped if DFV is the last rewriting applied before verification

and the target verifier does not take in an environment model, it ensures that rewriteDFV preserves

the problem semantics for future rewritings.

Finally, we construct a correctness problem (line 9) from the modified network, property, and

environment and return a single element set containing this problem to the user. This new correctness

problem is semantically equivalent to the original, but uses an environment with an identityM and

a network which operates only on inputs from the modelled distribution.

6.1.2 Environment Modelling

Algorithm 5 assumes both that the state-to-input mapping function,M, of the environment model is

modelled as a neural network which maps states to network inputs on the data distribution, and that

the statespace, S, is defined by a bounded polytope. However, for many domains, such as images,

it is difficult to explicitly define such an S and M. Fortunately, the field of machine learning has

long understood the importance of modelling the data distribution and many techniques have been

developed to generate unseen samples from the data distribution, generally known as generative

models. There are three broad classes of generative models: variational autoencoders (VAE) [73],

generative adversarial networks (GAN) [44], and autoregressive models such as PixelCNN++ [105].

Among these, VAEs and GANs can be classified as latent variable models since they make explicit

the mathematical structure of the learned latent space which models the distribution. While they

cannot produce a perfectly accurate characterization of the data distribution, we argue, and later

demonstrate in Section 6.2.2, that generative models learn a close enough abstraction to obtain

useful results, and the state-of-the-art techniques continue to produce more accurate models.

In this work, we advocate the use of a latent variable generative model, G : Rd → Rn, where
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d� n, for defining the statespace and state-to-input mapping of an environment model, E = 〈S,G, ·〉.

The generative model maps from a vector of latent variable values to a network input. The key here

is that G is designed to be a total function, i.e., every point in Rd is a valid input, meaning that G

outputs only network inputs from the learned distribution. The input space of G can be thought of as

a learned statespace where the model has learned some (often uninterpretable) state representation,

and how to map from the learned representation to data from the desired distribution. Ideally we

could model E with S = Rd, however our definition of environment models (in Section 3.2) requires

the statespace be a bounded set1. Fortunately, the training of G generally enforces some structure

on its input space, such as being multivariate Gaussian. This structure can enable the specification

of meaningful bounds. For instance, in a d-dimensional Gaussian space, the L2 ball of radius c

contains all points within c standard deviations of the mean. Given such a space, c can be specified

to contain an arbitrarily large portion of the data distribution, e.g., c = 5 covers 99.99994% of the

distribution. Unfortunately, many existing V&V tools do not support the non-linear constraints

necessary for defining an L2 ball, so we formulate approximations using convex polytope, e.g., an

L∞ ball. This enables specification of the environment statespace as S = {s ∈ Rd | As ≤ b}, where

As ≤ b specifies the convex polytope bounding the desired subset of the input space.

The rewriting introduced in this chapter assumes that the environment model has been specified

with a bounded state space and a neural network as the state-to-input mapping. While we advocate

use of generative models, we leave modelling of the environment to the user due to the many degrees

of freedom when training G, and the specific needs of the user. For example, for simple VAEs, such

as those used in Section 6.2.2, the accuracy of the learned model depends on many factors, including

the architecture (e.g., number, type, and configuration of layers) and the training parameters (e.g.,

optimizer, batch size, and learning rate). Independent of the model and training process, the goal

is for G to approximate the distribution. We note that the development of distribution models that

have high precision and recall is an active area of ML research [3, 88], and that recent research has

defined high-precision VAEs [29]. We also note, however, that models with lower levels of precision

can still be quite valuable. As we show in Section 6.2, rather simple VAE models can yield much

more meaningful counter-examples than those produced without using a distribution model. We

leave to future work a broader study of how model accuracy impacts the cost and benefit of DFV.

1Additionally, most V&V tools require input spaces be bounded.
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(a) FashionMNIST training images.

(b) DroNet training images.

Figure 6.3: Samples from FashionMNIST and DroNet training sets.

6.2 Evaluation

Here we assess the cost-effectiveness and scalability of DFV by applying it in conjunction with

multiple falsifiers and verifiers. We conduct experiments to evaluate the following research questions:

1. How cost-effective is falsification and verification with DFV?

2. How does DFV scale with input domain complexity?

6.2.1 Design

In this section, we describe the correctness problem benchmarks, generative models, V&V tools,

metrics, and computing resources that we use in the experiments of our study. We describe the

experimental procedure and configuration of these components for each experiment under the results

section for the corresponding research question.

Correctness Problem Benchmarks

GHPR-FMNIST is a new correctness problem benchmark introduced in this work, which is based

on the GHPR-MNIST benchmark from the evaluation of DNNF [109]. The benchmark consists

of 20 global reachability properties applied to a small FashionMNIST [144] network. A sample of

images from the FashionMNIST training set is shown in Figure 6.3a. The network used is based

on the architecture of the small MNIST network from the evaluation of the Neurify verifier [135].

There are 2 formulations of properties in this benchmark. The first 10 properties specify a relation
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between output values conditioned on the input being classified as a certain class. We refer to these

as conditional output relational (COR) properties, and they have the form: for all inputs, if class a

has the maximal value, then the output values for classes a and b are closer to one another than the

output values for classes a and c. Formally:

∀x ∈ X : (argmax(N (x)) = a) =⇒ (|N (x)a −N (x)b| < |N (x)a −N (x)c|)

The intuition behind this property is that, if a model classifies the image as some class, then similar

classes should be ranked higher than dissimilar classes. For example, one of the properties states that

for all inputs, if the network predicts the class sneaker, then the class sandal will be ranked higher

than class shirt. The other 10 properties are unconditional output relational (UOR) properties, and

are weaker variations that drop the maximal value constraint. Formally:

∀x ∈ X : (|N (x)a −N (x)b| < |N (x)a −N (x)c|)

These properties capture some intuition of structure in the rankings, specifying that similar classes

should always be ranked nearer to each other than to a given dissimilar class.

GHPR-DroNet, introduced in DNNF [109], consists of 10 global reachability properties applied

to the DroNet network [82], which predicts a steering angle, N(x)steer, and probability of collision,

N (x)Pcoll
, for a quadrotor from 200 by 200 black and white images. A sample of images from the

DroNet training set is shown in Figure 6.3b. The properties are of the form: for all inputs, if the

probability of collision is between pmin and pmax, then the steering angle is within d degrees of 0.

Formally:

∀x ∈ X : (pmin ≤ N (x)Pcoll
≤ pmax) =⇒ (|N(x)steer| < d◦)

As pmin increases, so does d, capturing the intuition that if the probability of collision is low, then

the quadrotor vehicle should not make sharp turns, encoding one notion of safety in the highway

driving and flying context for which this network was trained. We specify 10 such properties where

pmin ranges from 0.0 to 0.9 in steps of size 0.1, pmax is always 0.1 greater than pmin, and d is 100

times larger than pmin, except for pmin = 0 where we set d = 5 to allow some degree of steering.

Environment Models

We consider two types of latent variable generative models to learn the data distributions and

model the environments in our study – VAEs and GANS. We selected these models because: 1) they
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meet the requirements of the approach, 2) they are among the most popular unsupervised learning

approaches to encode a data distribution, and 3) they work in different ways and provide different

tradeoffs. Given the number of variables involved in our experiments, we chose VAEs for RQ1 and

incorporated GANs for RQ3. We explored a total of 3 environment models, 1 to characterize the

distribution of GHPR-FMNIST and 2 to characterize the distribution of GHPR-DroNet. Details for

the configuration of those models is provided in the experimental procedures for each of the research

questions.

Falsifiers and Verifiers

For the falsifiers, we use four common adversarial techniques included in the DNNF tool [109].

DNNF reduces correctness problems to adversarial robustness problems to allow them to be falsified

by off-the-shelf adversarial attacks. We chose to use FGSM [45], Basic Iterative Method (BIM) [77],

DeepFool [87], and Projected Gradient Descent (PGD) [85] as they were the top performing falsifiers

in the DNNF study. We use the default parameters for each adversarial attack method, as used in

that study.

For the verifiers, we use three tools included in DNNV [108]: Neurify [135], VeriNet [49], and

nnenum [10]. These tools have performed well in recent benchmarks [81, 146], and, importantly,

each of these verifiers is able to return counter-examples.

Metrics

For each run of the falsifiers and verifiers we report the number of counter-examples found and the

time to find each counter-example. To judge the quality of counter-examples we compute the mean

reconstruction similarity (MRS) which adapts encoder-stochastic reconstruction error (ESRE) to

use the SSIM metric. ESRE is computed as the mean of ‖x− x̂‖, where x̂ is the output of a VAE

for an input x, for many samples of x ∈ X [132]. We adapt ESRE to use the structural similarity

index measure (SSIM) [140] to assess the quality of generated image data. Given a reference VAE,

V, MRS computes for a given input, x, the expected similarity for a set of reconstructed inputs,

MRS(x,V) = 1
N

∑N
i=1 SSIM(V(x),x). In this work, we estimate the mean using a sample size, N ,

of 100 reconstructions.

For each problem benchmark we require a separate VAE model, independent of falsification and

verification, for measuring the MRS. For FashionMNIST we trained a fully-connected VAE model,

VAEMRS , with a 100-dimensional latent space, and symmetric encoder and decoder, each with two

hidden layers, one of 256 neurons and one of 512 neurons, and ReLU activations. The decoder
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uses a Sigmoid activation so that output values are in the range 0 to 1. We chose to use a model

significantly larger than those used for DFV for evaluating MRS under the assumption that a larger

model would be able to better model the distribution and thus provide accurate MRS measures

for all models tested. For DroNet we trained a convolutional VAE model, Conv-VAEDroNet, with

symmetric encoder and decoder, and a 512 dimensional latent space. The decoder consists of 8

blocks, each composed of a convolutional transpose operation followed by batch normalization and

an ELU activation, except for the final block, which uses a Sigmoid activation so that output values

are in the range 0 to 1. We chose to use this model as the baseline for MRS, since we expected a

convolutional model to perform well on the complex image data of the DroNet benchmark.

Computing Resources

Experiments were run on Linux compute nodes with Intel Xeon Silver 4214 processors at 2.20 GHz

and 512GB of memory.

6.2.2 Results: RQ1 - Efficacy

In this experiment we quantitatively and qualitatively assess the effectiveness of DFV and its costs

when applied in conjunction with 4 falsifiers and 3 verifiers.

Experimental Procedure

We use the GHPR-FMNIST benchmark in this experiment. We run the verifiers and falsifiers

on this benchmark, both with and without DFV. When using DFV, we use generative model

VAERQ1, which was designed to be supported by all existing tools by constraining its size and

type of activation functions. More specifically, we design VAERQ1 with a single hidden layer of

size 24 in the decoder, and instead of a sigmoid activation on the output, it uses a piecewise-

linear approximation of the sigmoid function with ReLU activations, since, of the verifiers explored

in this work, only VeriNet supported non-ReLU activation functions. The approximation used is

Sigmoid(x) ≈ ReLU(−ReLU(−0.25 ∗ x + 0.5) + 1). We run all tools 5 times on each problem to

account for random noise and we record the number of problems that return a violated result, as

well as the MRS of each counter-example found. Properties generated by DFV used a radius of 3

in the latent space. Each verification or falsification job was allowed to use a single processor core

and had a time limit of 1 hour.
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Figure 6.4: MRS for counter-examples across falsifiers and verifiers, both with (blue) and without
(red) DFV. The solid horizontal line indicates the median MRS of the test set images. The shaded
bars, measured on the right vertical axis, represent the number of counter-examples found.

Analysis and Findings

We first examine the MRS of counter-examples. Figure 6.4 shows box plots representing the distri-

bution of the MRS of the counter-examples found by each of the 7 tools (x-axis) when applied to the

original problems (red) and the problems using the decoder of VAERQ1 as generated by DFV (blue).

We find that, across all tools, the use of DFV results in counter-examples with a higher MRS than

those found without DFV, i.e., counter-examples generated using DFV are reconstructed better by

VAEMRS . Indeed, the median MRS for the counter-examples found for the original benchmark

problems is less than 0.1, while the median MRS when using DFV is greater than 0.6. This implies

that counter-examples produced using DFV are closer to the distribution learned by VAEMRS and

thus they may be closer to the true input distribution. A statistical analysis of variance with the

Kruskal-Wallis method2 confirmed that the differences between using and not using DFV on any

given tool are significant at p = 0.05.

Figure 6.4 also includes a horizontal line representing the median MRS of the FashionMNIST test

set, providing another guideline to judge the quality of counter-examples. As shown in the figure,

counter-examples found without DFV are well below the median MRS of the test data, indicating

that they are reconstructed poorly, likely due to being far from the distribution. Counter-examples

found with DFV tend to have an MRS higher than the median of the test set, indicating that they

likely come from the distribution.

2We performed the non-parametric Kruskal-Wallis test given the different standard deviations observed across the
distributions.
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Figure 6.5: Counter-examples with highest MRS found for GHPR-FMNIST without DFV. Rows
correspond to properties while columns correspond to tools.

The shaded bars in Figure 6.4, measured on the right vertical axis, show the number of counter-

examples found. The data show that, as expected, the number of counter-examples found when

using DFV decreases as irrelevant parts of the input space are pruned. For example, DeepFool

found 74 counter-examples without DFV and 56 when applying DFV3.

This portion of the study also revealed an interesting opportunity for verifiers. Based on the

property design, we highly expected COR properties to be false and we expected all UOR properties

to be false for the original correctness problem, which was indeed the case. However, when we

used DFV to focus verification to a representation of the data distribution, the nnenum verifier

was able to prove 25 problems true for the reduced input space encoded by the VAERQ1. This

observation points to an opportunity for enabling verification to prove properties that may not hold

over the whole input space but may hold over the relevant input space encoded by the training

distribution. In order for such an approach to be effective, further studies are needed to guarantee

that the generative model encodes a faithful model of the input distribution. We discuss this further

in future work.

We now qualitatively examine the counter-examples generated with and without DFV. The

tabulated images in Figure 6.5 are the counter-examples with the highest MRS produced without

3One exception to this trend was nnenum, which reported a floating point error for many properties without DFV
but did not do the same with DFV. We conjecture that this is because DFV may be steering the the tool away from
inputs that cause the failure.
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Figure 6.6: Counter-examples with highest MRS found for GHPR-FMNIST with DFV. Rows cor-
respond to properties while columns correspond to tools. When applied with DFV, the counter-
examples appear to be much better aligned with the training distribution.

DFV, and the ones in Figure 6.6 with DFV. Each row corresponds to one of the V&V tools used

and each column a property. Without DFV (in Figure 6.5) the counter-examples generated by

the falsifiers look like random noise, while the counter-examples generated by the verifiers have

a bit more structure, with larger blocks of similarly valued pixels, but still have little discernible

pattern. On the other hand, most counter-examples generated when using DFV (in Figure 6.6) bear

some resemblance to the training images (e.g., boots, pants, sandals), and some of them are clearly

identifiable. We argue that when no counter-examples are found for a given property property when

using DFV, but they are found without DFV, like for Property A-1 and A-3, those counter-examples

are likely to be spurious as they reside outside the data distribution. By the same token, when

counter-examples are found with DFV but not found without DFV, like for Property A-4, we argue

that DFV enables tools to explore the pruned space more extensively, enabling their generation.

Last, we briefly examine the time distribution for each tool to generate the counter-examples.

Figure 6.7 presents box plots for each of the tools, and we again plot the number of counter-examples

on the y2-axis. As expected, falsifiers are faster than verifiers. Looking at the upper quartiles of

the times spent by the different tools, we can see that all falsifiers took under 1.5 seconds, while the

verifiers took up to 1444.5 seconds. PGD detected the most counter-examples, 85 without DFV and

71 with DFV, while its median execution time was just over a second. When comparing the boxes

within a tool, we find that incorporating DFV did not have a major impact on the time taken by
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Figure 6.7: Times to find counter-examples by each tool. Blue box plots represent the times when
using DFV, while red box plots represent the times without DFV. The shaded columns, measured
on the y2-axis, represent the number of counter-examples found.

any of the tools4.

Major Findings: Tools applied in conjunction with DFV generate fewer counter-examples,

with four times higher MRS, negligible time penalty, and more visual similarity to the training

distribution.

6.2.3 Results: RQ2 - Scalability

In this experiment, we assess the scalability of DFV by applying it to a large neural network for

autonomous UAV control using 2 different input distribution models.

Experimental Procedure.

We use the larger and more complex GHPR-DroNet benchmark and apply the PGD falsifier, both as

is, and using DFV with both a VAE and a GAN as the generative models. We train a fully-connected

VAE, FC-VAEDroNet with a symmetric encoder and decoder. The decoder of FC-VAEDroNet has 6

hidden layers in the decoder with sizes 512, 512, 512, 512, 1024, and 2048, all with ELU activations,

except the final layer which uses a Sigmoid activation. For GANDroNet we train a DCGAN [101]

model on the DroNet dataset [82] with a Sigmoid on the final layer. Both models use a 512 dimen-

sional latent space. As before, we run each falsifier 5 times to account for random noise and we

record the number of counter-examples found and the time to find each counter-example. Each job

4The larger variation for Neurify can be attributed to the smaller number of counter-examples it generated.
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Figure 6.8: The mean reconstruction similarity (solid box), time (dashed box), and numbers of
counter-examples (color bar) to the DroNet properties.

had a timeout of 1 hour.

Analysis and Findings.

Figure 6.8 shows box plots with solid outlines for the distributions of the reconstruction similarities

of counter-examples found using PGD on the DroNet DNN without DFV, as well as using DFV with

the decoder of FC-VAEDroNet and the generator of GANDroNet. Figure 6.8 also shows the number

of counter-examples found using each model using bars with the count labeled above each bar. We

find that, for DFV with both models, while fewer counter-examples are found, they clearly have

higher reconstruction similarities than those found using the DroNet model alone. Indeed, the MRS

differences between DroNet, FC-VAEDroNet, GANDroNet are shown to be statistically significant

overall by a Kruskal-Wallis test with p=0.05, and so do their pairwise differences. Corroborating

the previous findings, this implies that the counter-examples found using DFV are closer to the

distribution learned by Conv-VAEDroNet, the model used to compute the MRS values, and thus

may be closer to the actual input distribution. Without DFV, violations were found for all 10

properties across all 5 seeds. Using FC-VAE , 28 violations were found for 6 properties. Using GAN ,

9 violations were found across 2 properties. While the lowest MRS for a counter-example found

using DFV was 0.42, the MRS without DFV never exceeded 0.11.

We now proceed to visually examine the counter-examples generated with and without DFV

for 5 properties. Figure 6.9 shows the counter-examples with highest MRS generated by PGD. All

generated counter-examples are provided in Appendix F. The images generated without DFV look
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(a) Without DFV.

(b) With DFV, using FC-VAEDroNet

(c) With DFV, using GANDroNet

Figure 6.9: Counter-examples to DroNet properties with 3 distinct input models. The counter-
examples shown are those with the highest MRS across 5 runs of the falsifier on each of the 10
properties. When applied in conjunction with DFV, whether using a VAE or a GAN, the generated
counter-examples visually appear to be much better aligned with the training distribution.
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like random noise, while the images generated with DFV, independent of the chosen model, have

structure and contain features seen in the training images such as roads, trees, or horizon lines.

The model used for DFV has an impact on the images produced. While the VAE model tended to

produce blurrier counter-examples, the GAN model produced counter-examples with sharper lines,

but fewer recognizable road features.

Finally, Figure 6.8 shows box plots, with dashed outlines, of the time to generate each counter-

example using each model. The median time to falsify DroNet alone was 321 seconds, while DFV

with FC-VAEDroNet took 146 seconds and DFV with GANDroNet took 259 seconds, but there is

enough performance variance that those differences are not deemed statistically significant.

Major Findings: DFV can be applied with various models without significant time penalty,

while also producing counter-examples with up to a nine-fold improvement in reconstruction simi-

larity.

6.3 Threats to Validity

External Validity. Three threats to the generalization of our findings are our choice of tools,

benchmarks, and generative models to evaluate DFV. We mitigate the concern about tools generality

by selecting multiple falsifiers and verifiers as part of the first research question. For the next question

we traded generality across tools for more insights about the performance of DFV under different

models, which implied that we had to drop DNN verifiers from the rest of the assessment because

they did not scale to the networks and models we were targeting. Regarding benchmarks, we selected

ones from different domains, one a classification task, and the other being a regression task, with very

different architectures and training data. Still, more benchmarks are needed to more broadly explore

the cost-effectiveness of DFV. To mitigate the threat about model selection, we explored the use of

both VAEs and GANs. Still, the examination of more generative models and their parameterization

is part of the future work.

Construct Validity. Our choice of MRS as a quality measure and our personal qualitative judg-

ment of generated counter-examples pose a threat in that the relevance of a counter-example could

be judged by many means. We mitigated this threat by basing MRS on a popular measure, ESRE,

and specializing it to images with SSIM. We also provide results using ESRE in the appendix, and

we will explore additional measures including those for outlier detection in the future and perform

studies with users to help us judge the counter-examples quality.
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Internal Validity. Our training processes for the networks and the models constitute a threat

to the internal validity of the study as their correctness could have affect the findings. We have

documented and programmed those processes when possible through scripts to facilitate their re-

production. We also mitigate this threat by making our data and scripts for running our experiments

and analyzing our results publicly available. Another threat to validity is the randomness involved

in training of networks and models, and in the tools’ performance. We mitigated that threat by

running falsifiers multiple times and showing their variability.

6.4 Conclusion

This chapter introduces DFV, an approach enabling existing verification and falsification techniques

for neural networks to target the data distribution. DFV composes learned latent variable genera-

tive distribution models with the network under analysis, rewriting the problem so that generated

counter-examples are on the data distribution. We explore different data distribution models and

find that using even simple models yield substantially better counter-examples across a range of ver-

ification and falsification techniques for two different benchmarks. These findings along with recent

work on distribution-aware testing [21, 31], suggest that models of the data distribution can play

an important role in V&V of neural networks. In future work, we plan to explore how performance

metrics for latent variable generative models that assess their precision and recall [3], can guide

the development of distribution models customized to best suit different V&V activities for neural

networks.



Chapter 7

Enabling Verification of

Closed-Loop Systems with Neural

Network Components

Neural networks are increasingly used in systems that interact with the environment in which they

are used, such as autonomous ground [28, 78, 98] and aerial [63, 67, 82] vehicles. These systems often

have a high cost of failure and it is essential to assure their safety and correctness. Several tools

have been introduced to verify behavioral properties of neural networks as they interact with their

environment, often referred to as verifiers for closed-loop systems with neural network controllers [2,

14, 32, 36, 59, 107, 111, 112, 129]. However, these tools often struggle to provide a result as the

reachability analyses they tend to favor lead to overapproximations that can neither prove the

property nor identify a counter-example. For example, as we descibe in our evaluation, in a friendly

competition consisting of a total of 6 participants across 2 years, among 8 benchmark problems

consisting of closed-loop systems, no tool was able to return a result for more than 3 benchmarks

without significantly altering the problem definition [60, 61].

Complementary to verification of closed-loop systems components is that of verification of in-

put/output properties of networks, which aims to prove properties about network behavior at a

single instance of time, such as adversarial robustness. Such properties are referred to as open-loop,

since they do not consider the feedback from network to environment. Many tools with diverse

algorithmic approaches for verifying open-loop properties of neural networks have recently been

86
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introduced [8, 16–18, 20, 33, 34, 40, 50, 55, 68, 69, 96, 102, 104, 114–117, 125, 133, 135, 136, 141–

143, 151]. Unfortunately these tools are not designed to verify properties of a closed-loop system,

as they have no model of how the neural network interacts with the environment over time.

Recent work has shown a general set of open-loop properties that use polytope constraints can

be rewritten to adversarial robustness properties, enabling verification tools to support a much

broader set of properties than originally designed [109]. We build on this insight to develop three

new rewritings for closed-loop correctness problems consisting of a discrete-time environment model,

behavior specification, and neural network, which transform the closed-loop problem into a set of

sub-problems which can be solved by existing open-loop verification tools. The result of verifying

these open-loop sub-problems provides a solution to the original closed-loop problem, enabling open-

loop verifiers to be used to solve closed-loop problems. We show that this approach enables tool

users to obtain twice as many verification results compared to using existing closed-loop verifiers

alone.

We assume we are given a discrete-time model of the environment with a function that provides

the next state given the current state and network output, a property specified in linear temporal

logic over finite-length paths, and a neural network. We introduce rewritings that: (a) transform

the environment transition function into a neural network that overapproximates the true next state

with high probability, (b) unroll the property specification for a bounded number of time steps

based on the temporal logic specification, and (c) transform the unrolled networks into sequential

multi-layer perceptrons which are supported by existing verifiers.

Our work is conceptually similar to 2 other closed-loop verification approaches. OVERT [112]

first approximates non-linear environment dynamics with piecewise-linear bounds, and formulates

the problem as piecewise linear relations which can be solved by mixed-integer programming. Our

approach differs in our treatment of the environment model and neural network, both of which we

treat as black boxes in contrast to the white box approach taken by OVERT. This means we are not

limited to environment models with defined bounding approximations and that we can make use of

off-the-shelf verifiers without modifying them for our approach. VenMAS [2] trains neural networks

to approximate non-linear functions in the environment model, however they do not account for

model error, which can lead to unsound results. Our approach rewrites the whole environment

model, rather than individual non-linear functions, and accounts for the error of the trained model.

The contributions of this work are:

1. A new rewriting approach which can transform closed-loop correctness problems to a set of

open-loop sub-problems.
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Figure 7.1: An example closed-loop problem specification for the inverted pendulum system.

2. An implementation of these rewritings in a publicly available tool.

3. A demonstration the effectiveness of rewriting by applying it to several closed-loop correctness

problems and show that open-loop verifiers, after problem rewriting, doubles the number of

results obtained compared to state-of-the-art closed-loop verifiers.

7.1 Approach

To enable the application of open-loop verifiers to closed-loop verification problems, we must develop

several new rewritings which take into account a model of the environment in which, and on which,

a neural network operates. Take for example, the verification problem introduced in Figure 3.1 and

reproduced in Figure 7.1. This problem defines a property in a temporal logic, which incorporates

knowledge of how the environment changes over time. This knowledge is encoded in the given

environment model. To check this problem with open-loop tools, we must rewrite the problem to

one with an open-loop property and a trivial environment model. We can do this through the use

of several new rewritings.

7.1.1 Assumptions

We assume that we are given an environment model, with explicitly defined state-to-input and

transition functions, and a bounded state space, as described in Section 3.2. Additionally, we assume

a discrete-time model. This is not the case for many problems, including most of the benchmarks in
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λt(x)→M(λt(s)) (7.1)

λt(y)→ N (λt(x)) (7.2)

λt(s)→

{
s if t = 0

T (λt−1(s), λt−1(y)) otherwise
(7.3)

λt(¬ϕ)→ ¬λt(ϕ) (7.4)

λt(ϕ1 ∨ ϕ2)→ λt(ϕ1) ∨ λt(ϕ2) (7.5)

λt(Xϕ)→

{
⊥ if t = τ

λt+1(ϕ) otherwise
(7.6)

λt(ϕ1Uτϕ2)→


λτ (ϕ2) if t = τ

λt(ϕ2) ∨ (λt(ϕ1)∧ otherwise

λt+1(ϕ1Uτϕ2))

(7.7)

λt(φ)→ φ[s/λt(s), x/λt(x), y/λt(y)] (7.8)

Figure 7.2: Property rewriting rules.

our study (Section 7.2). However, a continuous-time system can be discretized to obtain a discrete-

time model that approximates the continuous one. Unfortunately, continuous and discrete models

are fundamentally different, and results do not directly transfer from one to the other. However, a

violation for the discrete time problem can be checked against the continuous time specification, and

proving a property holds for a discrete time model can provide some confidence in the correctness

of the continuous time model, although not a guarantee. In addition to having a discrete-time

model, we assume that property is specified in the time bounded linear temporal logic described in

Section 2.2.2.

7.1.2 Property Rewritings

We first define rewriteϕ : Ψ 7→ Ψ, which takes in correctness problems where E is specified such

that M and T are represented as neural networks (justified in Section 7.1.3) and ϕ is specified in

the restricted LTL defined in Section 2.2.2, and returns a new problem with an equivalent property,

free of temporal operators.

Given ψ with E and ϕ satisfying those assumptions, and a maximum time bound τ determined

from ϕ, we can rewrite the problem to one in which the semantics of E are included in the network

N by unrolling the property through time. We do this through the property rewriting rules in

Figure 7.2. We introduce a rewriting function λ : Φ × N → Φ, which takes in a formula and a

parameter indicating the time step and recursively rewrites sub-expressions, effectively unrolling the
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rewrite
input · · · fk

x0 xk−1

input · · · fk

input2 Add

x0 xk−1

slack

xk

Figure 7.3: After training a network approximation for M or T , rewriteE modifies the trained
network with a new input that is added added element-wise with the original output.

temporal property up to a user specified bound τ . We list rewritings for the basic LTL operators.

Additional operators such as F , G, and ∧ can be supported by first rewriting them using the basic

operators. This rewriting process is semantics preserving and results in a new property formula free

of temporal operators.

7.1.3 Environment Rewritings

Next, we define rewriteE : Ψ 7→ Ψ, which takes in a correctness property and rewrites it such that

the environment is specified such that M and T are represented as neural networks, as required

by rewriteϕ. This rewriting simply trains a neural network for any non-linear M and T functions.

However, because environment models may be quite complex, the trained network may be a poor

approximation of the original function, so the rewriting also modifies these trained networks such

that, with high probability, they overapproximate the original environment.

This rewriting takes in the environment model, and trains a neural network for any non-piecewise-

linear M or T . Any linear M or T is exactly encoded as a neural network with a single GeMM

operation. The rewriting generates training data by sampling inputs from the domain of the target

function, i.e.,M or T , and computing the ground-truth outputs using that function. This results in

a neural network that approximates the target function, but is not exact. For example, if the target

function is the dashed black line in Figure 7.4, one approximation could be the solid red line also

shown in that figure. This approximation can output values lesser or greater than the target value

and these errors can compound over time causing verification results for the approximation to be

unsound for the original model.

To achieve soundness, we must ensure that the network overapproximates the ground truth

function. To do so, we estimate the error for outputs of the trained model by sampling inputs

and computing error bounds for the outputs. With the computed error bounds, we modify the

trained network with an additional input vector whose values are constrained to be in the computed
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Figure 7.4: An example of added slack (shown in red shaded area) allowing the approximation (solid
red line) to overapproximate the target function (dashed black line).

error intervals, as depicted in Figure 7.3. We term this error vector the slack. The network with

added slack can output any value in the pink shaded area in Figure 7.4. A verifier can select any

value within the error bounds for the slack, ensuring that the true next state is reachable by the

trained model. However, it also overapproximates the reachable states, increasing the chances for

spurious counter-examples. A neural network that better approximates the ground truth will have

a lower error, thus a smaller overapproximation, and thus a lower chance of producing spurious

counter-examples.

7.1.4 Network Rewritings

Finally, we define rewriteN : Ψ 7→ Ψ, which takes in a problem where N is assumed to be piecewise-

linear, a common assumption for neural network verifiers, and rewrites it such that the network is

a single sequential path of operations, a requirement for most existing open-loop verifiers. This is

necessary because rewriteϕ introduces complex structure into the neural network. In particular, the

network constructed by property rewriting rule (7.3) has 2 parallel computation paths, one to get

the previous state, and one to get the control input. This branching structure can be repeated many

times based on the bounds in the temporal operators, leading to large complex network structures.

To remove the complex structure, rewriteN , transforms the network into a multilayer perceptron

with ReLU operations using the rewriting rules in Figure 7.5. Starting from the last network oper-

ation we work backwards, combining parallel paths into a single path, until we reach the beginning

of the network. The result of this network rewriting is a sequential neural network with alternating
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z = A(x, y)→ [z′ = C(x, y),

z = G(z′,

[
In
In

]
, 0)] (7.9)

z = C(x, x)→ [z = G(x,
[
In In

]
, 0)] (7.10)

z = C(x, y)→ [z′ = C(x′, y′),

z = R(z′)]

where x = R(x′)

and y = R(y′) (7.11)

z = C(x, y)→ [z′ = C(x′, y′),

where x = G(x′, A1, b1) z = G(z′,

[
A1 0
0 A2

]
,

[
b1
b2

]
)]

and y = G(y′, A2, b2) (7.12)

z = C(x, y)→ [z′ = C(x′, y),

where x = G(x′, A, b) z = G(z′,

[
A 0
0 In

]
,

[
b
0

]
)] (7.13)

z = C(x, y)→ [zx = G(x, In, 0),

where x = R(x′) z′′y = G(y,
[
In −In

]
, 0),

z′y = R(z′′y ),

zy = G(z′y,

[
In
−In

]
, 0),

z = C(zx, zy)] (7.14)

Figure 7.5: Network rewriting rules using A (Add), C (Concat), G (GeMM), and R (ReLU). 7.13
and 7.14 have symmetric rewritings when the order of Concat inputs is swapped.

GeMM and ReLU operations, and with behavior equivalent to the original network, i.e., the rewrit-

ing is semantics preserving. This network architecture is supported by all known open-loop verifiers

for neural networks.

7.1.5 Rewriting Correctness Problems

With these three rewritings we can transform correctness problems with closed-loop properties to

ones with open-loop properties, enabling application of open-loop verifiers. We define rewritecl(ψ) =

{rewriteN (ψ′) | ψ′ ∈ reduce(rewriteϕ(rewriteE(ψ)))}, where reduce : Ψ 7→ P (Ψ) reduces the

property to one supported by the desired verifier, V, as described in Chapter 4. This rewriting

produces a set of correctness problems such that for all ψ′ ∈ rewritecl(ψ), ψ′ is supported by

V, and (
∧
ψ′∈rewritecl(ψ) V(ψ′) = holds) ⇒ (E ,N |= φ), assuming that the rewritten environment

overapproximates the true environment model.
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7.1.6 Implementation

We have implemented DNNV+LTL as extensions to DNNV, a tool for rewriting open-loop neural

network verification problems to equivalid sets of problems which can be solved by several backend

verifiers (discussed in Chapters 4 and 5).

We extended the DNNP property specification language used by DNNV to support LTL opera-

tors, and we added functions for constructing neural networks from a set of linear functions to allow

explicit specification of linear environment models. We added rewritings from LTL expressions to

first order logic formula using the rewriting rules in Figure 7.2, and rewritings from piecewise-linear

operation graphs to multilayer perceptrons with ReLUs using the rules in Figure 7.5.

We implemented the environment rewriting as a separate tool, which trains neural networks

given an environment model. We chose to implement this rewriting separately since DNNV contains

only equivalid rewritings, while this environment rewriting does not completely preserve the original

problem semantics. This tool allows users to specify hyperparameters for training, including the

network architecture, training batch size and learning rate. Additionally, training requires the ability

to randomly sample from the input space of the target function, and we assume such a sampling

procedure is provided.

All tools were written in Python 3.7+, and will be publicly available at https://github.com/

dlshriver/dnnv1.

7.2 Study

To evaluate our approach to enabling verification of closed-loop properties of neural networks by

off-the-shelf open-loop verifiers, we will explore the following research questions:

1. How effective is our approach at enabling verification of stateful properties by existing stateless

verifiers?

2. How does the neural network configuration of the rewritten environment model affect verifica-

tion?

7.2.1 Study Design

We perform 2 experiments, one for each research question. The details of each experiment are

provided in this section.

1The environment rewriting tool is provided in the tools/ directory.

https://github.com/dlshriver/dnnv
https://github.com/dlshriver/dnnv
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Benchmarks

We will evaluate our approach across the 8 problems included in the 2020 and 2021 ARCH-COMP

AINNCS competitions [60]. This is a friendly, open competition for verifiers of closed-loop systems

with neural network controllers. The systems have well defined environment models and neural

networks on which to study our approach. Detailed descriptions of the benchmarks are provided

in Appendix G. The competition consisted of 8 problems, 7 with continuous-time environments,

and 1 discrete-time model (VCAS), each with 2 to 12 state values. The neural network controllers

vary in size from 1 to 5 hidden layers and 50 to 500 total hidden units. All networks use ReLU

activations. The second experiment explores the effect of the network architecture of the rewrit-

ten environment transition function using several modified versions of one of the more challenging

AINNCS benchmarks.

Rewriting Parameters.

For the environment rewriting, the state-to-input mappings are linear for all benchmarks so we need

only rewrite the transition functions. For each benchmark in the first experiment we train a linear

model to approximate the transition function. We explore the effect of different model architectures

in experiment 2, where we train 4 additional models for the SB9 benchmark with single hidden

layers of size 64, 128, 256, and 512. We trained each model for 100, 000 iterations with batches

of 100 randomly generated input samples per iteration. We used the AdamW optimizer [83] with

an exponentially decaying learning rate starting from 0.001 and ending at 0.000001. Models were

evaluated using a randomly generated set of 50, 000, 000 sample points. Training times are reported

in Appendix H.1.1, but we summarize them here. For experiment 1, the mean training time across

the 8 benchmarks was 721.0 seconds, with a standard deviation of 1116.332. For experiment 2, the

mean training time across the 5 models was 294.4 seconds, with a standard deviation of 6.9. We

then perform property and network rewriting and apply 4 verifiers for open-loop properties of neural

networks to the rewritten problems.

Verifiers

We evaluate DNNV+LTL using 4 open-loop verifiers: ERAN [116], Marabou [69], nnenum [8], and

Neurify [135]. These were chosen because they are supported by DNNV, upon which we implemented

our approach, and represent a diverse set of algorithmic approaches. We will provide the reported

2The AP benchmark was an outlier at 3247.0 seconds. Removing this model, the mean drops to 300 seconds with
a standard deviation of 81.33.
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results from the closed-loop verifiers that competed in ARCH-COMP AINNCS as a baseline. These

are JuliaReach [14], NNV [129], Verisig [59], ReachNN* [36], OVERT [112], and VenMAS [2]. We

assume the reported results represent a best case performance of the tools given the tuning performed

by the authors for each problem in the competition. Similar to our approach, OVERT and VenMAS

support discrete time systems, while the other 4 tools support continuous time systems.

Metrics

For each verification problem in each benchmark we will record the verification result from each

verifier, as well as the verification time. Each problem will also have several environment rewritings,

for each of which we will report the error bounds on the outputs of the approximated environment

models.

Computing Resources

Environment rewriting was performed on a Linux machine with an AMD Ryzen Threadripper

2970WX 24-Core Processor, 128 GB of memory, and 2 NVIDIA GeForce RTX 2080 Ti graphics

cards. All other rewritings and verification used Linux compute nodes with Intel Xeon Silver 4214

processers at 2.20 GHz and 512GB of memory. Verifiers were allowed to use 48 logical processor

cores, 64 GB of memory, and up to 30 minutes.

7.3 Results

We present the results of our 2 experiments in this section.

7.3.1 RQ1: Effectiveness of Rewriting

We evaluate the effectiveness of rewriting on the ARCH-COMP AINNCS benchmarks by performing

rewriting, running the 4 open-loop verifiers on the rewritten problems, and recording the verification

results. We compare the verification results to those reported by the AINNCS competitors.

The results are shown in Table 7.1, along with the results reported by the participants in ARCH-

COMP AINNCS. The top section of the table shows the participating verifiers by competition year

(descending), then alphabetically. The bottom section of the table shows the results using open-loop

verifiers after applying our rewriting approach. Each column is one of the benchmark problems and

each row is a verifier. Each cell indicates whether the corresponding verifier returned the expected

result (i.e., holds or violated) on the corresponding benchmark without changing the problem. We
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Table 7.1: ARCH-COMP AINNCS benchmarks that can be verified, without modification, by
AINCSS 2020 and 2021 closed-loop verifiers (above the line) and by open-loop verifiers in con-
junction with property, environment, and network rewriting.

Verifier ACC AP DPLR DPMR SB9 SB10 SP VCAS Total

C
lo
se

d
-l
o
o
p

JuliaReach 3
NNV 2
Verisig 0
ReachNN* 0
OVERT 2
VenMAS 2

O
p
e
n
-l
o
o
p Rewrite+ERAN 2

Rewrite+Marabou 4
Rewrite+Neurify 5
Rewrite+nnenum 6

note that competition participants were permitted to modify problems to facilitate the use of their

tool, including using knowledge of a counter-example to change the initial conditions to target a

smaller input region, or using a simplification of the controller. We do not count results which were

obtained on modified problems, as they either require knowledge of the result or do not provide

results for the original problem. The one exception we make is for discretization of the environment

models, which was employed by OVERT and VenMAS, in addition to our work. We note that holds

results may not directly apply to the continuous time system, however violated results, such as those

for AP, DPLR, DPMR, SP, and VCAS, can be checked against the original model.

Table 7.1 clearly demonstrates the ability of rewriting to expand the scope of closed-loop ver-

ification problems that can be verified. ARCH-COMP AINNCS problem support is quite limited

among closed-loop verifiers, with the most productive verifier, JuliaReach, returning results for 3 of

the 8 unmodified benchmarks. Only 5 of the benchmarks were able to be solved by any closed-loop

verifiers, with AP, DPLR, and DPMR unable to be solved by any verifier without property modifi-

cation. Problem rewriting provides a more general solution, and enables open-loop verifiers to solve

as many as 6 of the 8 unmodified benchmarks. Additionally, rewriting allows the open-loop verifiers

to find counter-examples for the AP, DPLR, and DPMR benchmarks, which previously could not be

done without modifying the property. We provide a more in depth analysis of the results for each

tool in Appendix H.1.1.

Two benchmarks stand out as not being solved by the rewriting approach, SB9 and SB10. SB9

was a difficult problem for the open-loop verifiers, with 2 verifiers encountering errors, 1 returning

unknown, and 1 running out of time (the next experiment studies variants of SB9 that vary in

difficulty). SB10 was difficult for our rewriting. It was the only problem in which the property
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Figure 7.6: Plots of 50000 simulations of the SB9 benchmark. Each plot shows the value of 1 state
variable (vertical axes) over time (horizontal axes) within control periods. The black rectangles
indicate the bounds of each state variable as specified in the original property: s0 ∈ [0.6, 0.7] ×
[−0.7,−0.6]× [−0.4,−0.3]× [0.5, 0.6]⇒ ∀t ∈ [1, 20] : st ∈ [−2, 2]4.

stated that all initial states must eventually reach some region. This is difficult for our rewriting as

the property reduction method results in a set of sub-problems, each specifying that at some time

step, at least one path has not reached the target region. This results in (4k)τ sub-problems, where

k is the size of the state vector and τ is the number of time steps. We conjecture that one way to

improve this reduction is to first reduce stronger versions of the property that imply the original. If

none of these problems are proven to hold, then we can fall back to reducing the original property.

We will explore this approach further in future work.

7.3.2 RQ2: Effect of Environment Architecture

Environment rewriting trains a neural network to overapproximate the true environment model. The

degree of overapproximation depends on the accuracy of the trained network, which we hypothesize

is affected by the network architecture. To evaluate the effect of the network architecture of the

rewritten environment on verification, we performed rewriting to 5 different architectures, and used

these environments for verification of 10 versions of the SB9 benchmark, modified to provide a range

of problem difficulties.

For this experiment we selected a single verification benchmark from ARCH-COMP AINNCS,
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(a) Linear model.

(b) Non-linear model with size 128. (c) Non-linear model with size 512.

Figure 7.7: Per bound verification accuracy for 3 models. Each bar represents 1 correctness problem
executed on the 4 verifiers. Problems on the left have violations, problems on the right hold, and
those near β = 2 are more challenging for the verifiers.

SB9, for which the original version was a difficult for our approach and that we know the expected

result to be holds. The property specifies that the region that the state must stay within a hypercube

centered at the origin. Figure 7.6 shows a simulation of this benchmark with black rectangles

indicating a hypercube radius of 2 for the original property; as can be observed the property holds

for the simulation results.

We varied the difficulty of the problem by scaling the radius up or down to get more holds or

violated results, respectively. Intuitively, the larger the radius, the easier it should be for tools

to prove the property, and the smaller the radius, the easier it should be for tools to falsify the

property. We created 10 versions of this property, of varying difficulty, by changing the radius of

the hypercubes. Radii values, which we denote β, were selected on an exponential scale from 0.5

to 8 to obtain a range of correctness problems, from those that should be easily falsified, to those

that should be easily verified. This range was chosen to be roughly centered around a radii of 2, the

original radius. This modifies the property from the one shown in Figure 7.6 by replacing st ∈ [−2, 2]

with st ∈ [−β, β]4, where β ∈ {0.5, 0.68, 0.93, 1.26, 1.71, 2.33, 3.17, 4.32, 5.88, 8.0}.

We present the results for 3 of the 5 environment models in Figure 7.7. Bars depict the correct

results, which can be either violated or holds, produced for the problems. We use the same 4 verifiers
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as in experiment 1. The appendix includes a more detailed set of plots for all 5 environment models

and explain why verifiers fail to produce correct results.

The nonlinear model with hidden layer of size 128 (Figure 7.7b) performed worst, with verifiers

only returning results for the easier violated properties. This model cannot accurately capture the

environment, resulting in large overapproximations which make it difficult for verifiers to produce

holds results. The nonlinear model with a hidden layer of 512 appears better able to capture

the environment, allowing for tighter slack intervals and enabling more accurate results, including

holds results. The linear model performs best, producing the most results on these problem. We

hypothesize that this is due to 2 reasons. First, the linear model adds the least amount of complexity

into the rewritten problems for the verifiers, reducing the amount of work that they must perform.

Second, the linear model has the tightest slack intervals of the 3 models even though it has the

highest mean average error on the validation set. We conjecture that this is due to it having a

higher bias but lower variance.

The results of this experiment indicate that a linear model is a good choice to approximate the

environment behavior, but if it cannot accurately capture the non-linear dynamics of the environment

then a larger non-linear model may be able to support accurate verification.

7.4 Case Study: ACAS Xu

Our study showed that rewriting closed-loop problems for open-loop verifiers was effective for a set

of competitive benchmark problems. To demonstrate the power of rewriting, in this section we take

the lessons learned from that study and apply them to a closed-loop property for a set of networks

for aircraft collision avoidance.

7.4.1 Problem Description

Airborne collision avoidance systems are essential to ensure the safe operation of aircraft. One

such system, ACAS Xu, outputs horizontal maneuver advisories based on the relative states of an

ownship and intruder aircraft [74]. Recently, neural network representations have been explored as a

potential replacement for the memory-intensive lookup table based approach [63, 64]. One of these

network based representations uses an array of 45 neural networks [63]. This is the neural network

representation which we will use in this work.

We model the system with two aircraft, the ownship and intruder, where the ownship has an

aircraft collision avoidance system, ACAS Xu, which issues turn rate advisories once per second. We
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choose to model the state with a vector: [φown, xown, yown, vown, φint, xint, yint, vint, φ̇int, τ, aprev],

where φ is the heading of the ownship or intruder (own and int, respectively), x and y are the

positions of the ownship or intruder, v is the speed of the ownship or intruder, φ̇int is the turn rate

of the intruder, τ is the time to loss of vertical separation, and aprev is the last turn advisory. To

simplify the modelling, we will assume that both the ownship and intruder have constant speed, and

the intruder is turning at a constant rate.

While we model the system using the absolute positions and headings of the aircraft to facil-

itate the transition function specification, the ACAS Xu neural networks take as input the rel-

ative distance and headings between the aircraft. The neural networks take as input a vector,

[ρ, θ, ψ, vown, vint, τ, aprev], where ρ is the distance between ownship and intruder, θ is the angle to

the intruder relative to the ownship heading, and ψ is the heading of the intruder relative to the

ownship heading. This requires us to specify a state-to-input function as follows:

ρ =
√

(xown − xint)2 + (yown − yint)2

θ = arccos(
yint − yown

ρ
) ∗ sign(xown − xint)− φown

ψ = φint − φown

The other 4 input values are simply identity mappings from their corresponding state variable.

Based on the given input, each network can produce any of 5 possible advisories, each with an

associated turn rate:

0) Clear of Conflict (COC), 0.0

1) Weak Left (WL), 1.5 deg

2) Weak Right (WR), −1.5 deg

3) Strong Left (SL), 3.0 deg

4) Strong Right (SR), −3.0 deg

The network has 2 outputs, the advisory index a, and the turn rate u.

Given the current state, and the network output, this problem can be modelled as a discrete
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time system with a transition function that defines the following state variable updates:

(φown)t+1 = (φown)t + u∆T (φint)t+1 = (φint)t

(xown)t+1 = (xown)t − ((vown)t ∗ sin((φown)t))∆T (xint)t+1 = (xint)t − ((vint)t ∗ sin((φint)t))∆T

(yown)t+1 = (yown)t + ((vown)t ∗ cos((φown)t))∆T (yint)t+1 = (yint)t + ((vint)t ∗ cos((φint)t))∆T

(vown)t+1 = (vown)t (vint)t+1 = (vint)t

(τ)t+1 = (τ)t (φ̇int)t+1 = (φ̇int)t

(aprev)t+1 = (a) + t

where ∆T = 1.0 is the discrete time step size, (a)t is the advisory predicted by the control network,

and (u)t is the corresponding turn rate. Additionally, we define the statespace to be S = [−π, π]×

[−50000, 50000]2× [100, 1200]× [−π, π]× [−50000, 50000]2× [100, 1200]× [−6◦, 6◦]× [0, 0]× [0, 4]2×

[−6◦, 6◦]. These state bounds were selected based on the bounds on the network inputs specified in

the network controller specifications.

Given the ACAS Xu networks and environment model defined above, we specify a property

based on a requirement for detect and avoid (DAA) systems. Specifically the requirement, “for

single-intruder, non-accelerating encounters, horizontal DAA guidance to regain [DAA well-clear]

DWC shall (261) have at most one reversal” [106]. We encode this requirement in LTL as follows:

(S0 ×X × Y) =⇒ (

(S × X × left ∧X (S × X × right)) =⇒ XXG¬(S × X × left)

∧

(S × X × right ∧X (S × X × left)) =⇒ XXG¬(S × X × right)

)

where S0 = [0, 0]3× [100, 1200]× [−π, π]× [−50000, 50000]2× [100, 1200]× [−3◦, 3◦]× [0, 0]× [0, 4]2×

[−3◦, 3◦], left = {(a, u) ∈ Y | a = 1∨ a = 3}, right = {(a, u) ∈ Y | a = 2∨ a = 4}, and X and Y are

the full input and output sets of the network, respectively. Intuitively, this property specification

states that, from the initial conditions, if the network predicts a left turn, followed immediately by

a right turn, then the network should not predict another left turn, and similarly for turns in the

opposite direction. The initial conditions, S0 are a subset of the full statespace, S. Because our

state representation uses absolute positions and headings, but the network takes in relative values,
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the initial position and heading of the ownship are irrelevant to verification. Therefore we specify

that it is at the origin with a heading of 0 degrees. We will attempt to verify this property with two

different maximum time bounds, first with a bound of 3 states (2 state transitions), the minimum

number of steps at which a counter example could occur, and second with a bound of 4 states

to demonstrate the effect of the path length on verification. Additionally, in the 4 state case, we

manually split the property into 2 properties to better parallelize verification. We split the property

on the conjunction in the consequent of the outer implication, producing one subproperty in which

the initial turn advisory must be to the left and another in which the initial turn advisory must be

to the right.

7.4.2 Rewriting Parameters

Based on the results from Section 7.2 we choose to use a linear architecture for both environment

functions as the linear models tended to perform quite well, and offer the best chance at getting a

result from the verifier. In addition, we kept the batch size and number of training iterations the

same as that study, at 100 and 100, 000, respectively. We used the AdamW optimizer [83] with

an exponentially decaying learning rate starting from 0.001 and ending at 0.000001. Models were

evaluated using a randomly generated set of 50, 000, 000 sample points.

7.4.3 Verifiers

Due to the much larger problem size, and longer expected verification time, we select a single verifier.

We initially selected nnenum [8] as it is the most recently released verifier supported by DNNV and

it performed well on the ARCH-COMP AINNCS benchmarks. However it reported internal floating

point errors after around 30 minutes, so instead we use Marabou [69] as it is the second most recently

released tool, and tends to perform better than ERAN [116] and Neurify [135] on larger networks in

our experience.

7.4.4 Computing Resources

Both rewriting and verification were performed on a Linux machine with an AMD Ryzen Threadrip-

per 2970WX 24-Core Processor, 128 GB of memory, and 2 NVIDIA GeForce RTX 2080 Ti graphics

cards. Verification jobs were allowed to run for up to 48 hours.
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Table 7.2: Training time and mean absolute error for the rewritten environment functions for ACAS
Xu.

Model Time (seconds) MAE

Mlin 346 0.123
Tlin 423 146.661

7.4.5 Results

We first rewrite the environment model. The complex ACAS Xu environment required training

neural networks for both M and T during the environment remodelling step. We trained linear

networks, Mlin and Tlin, for both functions. We report the training times and mean absolute error

(MAE) of each network in Table 7.2. The MAE is computed on a randomly generated set of 100,000

network inputs. For bothMlin and Tlin, the training time was under 10 minutes. As seen in column

3 of Table 7.2, the MAE of Mlin was several orders of magnitude lower than Tlin. This is due to

the much larger output ranges of T , particularly for the aircraft positions. The max output range

of T is about 4 orders of magnitude larger than the max output range of M.

After rewriting the environment, we apply our extended version of DNNV for closed-loop rewrit-

ings, along with the Marabou verifier.

On the 2 state transition case, Marabou ran for a total of 24.5 hours before returning a holds

result, indicating that the ACAS Xu networks will not switch the direction of the turn advisory

twice within 2 state transitions. Rewriting enabled Marabou to both run and return a result for a

closed-loop verification problem, when it previously could not. While we were able to obtain results

for the desired property, it took over 24 hours, and only explored up to 2 state transitions. However,

this result demonstrates that rewriting enables open-loop verifiers to prove important closed-loop

properties of safety-critical systems.

On the 3 state transition case, Marabou ran for a total of 15.98 hours before running out of

memory on the subproperty that started with a right turn and 15.78 hours on the subproperty

starting with a left turn. While Marabou could not prove the full property over 3 state transitions,

it was able to prove several subproblems within that time, providing some confidence in the original

property. In both cases Marabou was able to prove 10 out of 16 subproblems, the first 8 of which are

sufficient to prove the 2 state transition case. Unfortunately, while rewriting has enabled verifiers

to run on more problems than ever before, we are still reliant on performant tools to get results.

Fortunately, rewriting is independent of any specific verifier, and simply increases the number of tools

which can run on a given problem. As more efficient tools are developed, rewriting, in conjunction
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with these more performant verifiers, will be able to solve more problems than ever before.

7.5 Conclusion

In this work introduced rewritings to transform correctness problems for closed-loop systems into

open-loop problems, enabling application of open-loop verification tools for neural networks. We

applied these rewritings to a set of 8 benchmark problems and showed that our rewriting, in con-

junction with off-the-shelf open-loop verifiers can solve up to twice as many problems as existing

closed-loop verifiers. In future work we will explore more efficient rewritings for specifications that

specify states that must eventually be reached, as well as explore methods for rewriting continuous

time systems.



Chapter 8

Conclusions and Future Work

In this thesis we have defined a new framework for rewriting correctness problems to enable the ap-

plication of a broader verification and falsification tools. Under this framework we have introduced

several rewriting instantiations for properties, networks, and environment models to increase their

support among existing verifiers. The property reduction introduced in Chapter 4 enables tools,

such as the adversarial attacks studied in that chapter, to be applied to any property that can be

specified using halfspace-polytope constraints, an extremely general and expressive property form.

The network refactorings introduced in Chapter 5 increase the application of tools by transforming

networks. Semantics preserving refactorings can enable the verification of many networks at veri-

fication time, but they currently support a limited set of network operations. On the other hand,

non-semantics preserving refactoring is not limited by the operations in the network, but it does

not produce an equivalent network and must be performed separate to verification, with the new

network replacing the original in all usages. The environment remodelling approach in Chapter 6 en-

ables open-loop verifiers to take advantage of an environment model and can decrease the number of

spurious counter-examples found by keeping verifiers and falsifiers focused on the data distribution.

Chapter 7 brings together all 3 types of rewriting to enable open-loop verifiers to support closed-loop

correctness problems. We introduce an environment remodelling to transform functions to neural

networks which likely overapproximate the original behavior. Given a remodelled environment, we

introduce a property reduction to transform temporal specifications into non-temporal ones. And

finally, we introduce a network refactoring to remove the complex operation graph structures that

are introduced by the temporal property reduction. These 3 rewritings are sufficient to enable open-

loop verifiers to check closed-loop problems, and we show that, on a set of competition benchmarks,

105
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they can find more property violations than state-of-the-art closed-loop verifiers.

This work has resulted in several publications [108–110, 127], each with publicly available tools

and artifacts (i.e., R4V, DNNF, DNNV, and DFV) to facilitate the spread and application of the

ideas presented in this work. These tools are utilized by a variety of users, from researchers, to

students, to ML practitioners. At the time of this writing, DNNV and DNNF have a combined 50

stars on GitHub, and almost 20 unique users interacting with the tool repositories on GitHub through

issues or pull requests. Our work has inspired others to push the limits of our tools, and propose

improvements to overcome those limits and support more complex problems than before [134].

Our rewritings are enabling the current generation of verifiers to support more problems than

ever before. The network rewritings included in DNNV, especially the MaxPool nework rewriting,

were relied on by state-of-the-art verifiers such as PerigriNN [71], nnenum [8], VeriNet [50], MN-

BaB [37] and alpha-beta-CROWN [137, 147] in VNN-COMP 2022 [9] to support complex networks.

These include the 4 highest placing tools in that competition and 5 of the top 6 participants (out of

11 tools).

8.1 Broader Impacts

Rewriting increases the applicability of verifiers, enabling machine learning developers and testers

to assure that their systems behave as expected. Our approach enables verification of more machine

learning models, significantly reducing the gap between the current state-of-the-art neural networks

and those supported by verifiers. As network complexity continues to increase, our rewritings will

enable verifiers to keep up. Rewriting also enables tools to check more complex behaviors than

ever before, including properties of the system and environment interaction. As networks become

more utilized in domains with high-cost consequences, our rewritings in conjunction with verification

will enable us to assure the correctness of these systems. Enabling this assurance will reduce the

likelihood of system failures, and lead to safer, more trustworthy systems.

8.2 Future Work

In this section we suggest several lines of future research for each of the three rewriting types

introduced in Chapter 3, as well as rewritings for closed-loop properties in particular. In addition to

the research directions presented here, there is still significant work to be done on specifying useful

behavioral properties (both what and how to specify) and environment modelling, such as how to
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develop more accurate generative models.

8.2.1 Reduction

The property reduction introduced in Chapter 4 produces a set of independent subproblems that,

together, are equivalid with the original problem. The original problem, and generated subproblems

are restricted to linear constraints over the input and outputs of the network. Two directions

for future work include reductions that produce non-independent subproblems and reductions for

properties that include free variables, i.e., variables that are not inputs or outputs to a network.

Non-Independent Subproblems

A new property reduction could produce sets of non-independent subproblems, where proving one

or several of the subproblems removes the need to verify others. For example, given a problem with

the property ∀x ∈ X .N (x)0 > 0 =⇒ (N (x)1 > −1 ∧ N (x)1 < 1) the reduction introduced in

Chapter 4 will produce two subproblems, one to check ∀x ∈ X .N (x)0 > 0 =⇒ (N (x)1 > −1) and

another for ∀x ∈ X .N (x)0 > 0 =⇒ (N (x)1 < 1). However, it may be better to generate additional

subproblems, such as a subproblem that encodes ∀x ∈ X .N (x)0 ≤ 0 as well as those produced by

the original reduction. This is a much simpler specification, and it implies the original property (and

its subproblems), so, if it can be proved quickly, then verification can stop without having to obtain

a result from the verifier for the other subproblems. Instead of needing to prove 2 subproblems, we

only needed to prove 1 to get a result for the original problem.

Free Variables

In this thesis, properties have been defined to be specified over the inputs and outputs of neural

networks, and environment states in the case of closed-loop properties. However, it can often be

easier to write logical specifications after introducing an extra variable. For example, an image

brightness constraint can be specified using only constraints over network inputs, such as ∀x ∈

[0, 1]n.∀i ∈ [n].∀j ∈ [i].((x[i] − x0[i] = x[j] − x0[j]) ∨ (x[i] = 0) ∨ (x[i] = 1)) =⇒ N (x) = N (x0).

This constrains all pixels to change by the same value (or saturate at 0 or 1) by constraining the

difference in changes between pairs of pixels to be equal. An equivalent formulation using a free

variable, ε, is ∀x ∈ [0, 1]n.∀i ∈ [n].(|x[i]− x0[i]| = ε ∨ (x[i] = 0) ∨ (x[i] = 1)) =⇒ N (x) = N (x0). A

property reduction could be developed to support such properties to further reduce the burden on

users when writing specifications.
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8.2.2 Refactoring

The semantics preserving refactorings introduced in Chapter 5 provide a small set of refactorings

that can enable verification for many networks. However, more refactorings are still needed. For

example, we still don’t have refactorings for ConvTranspose operations, which are relatively common

in VAEs and GANs for images. This is primarily an engineering effort to increase refactoring support

for these operations.

There are several interesting directions for future research in refactoring neural networks, one of

which we present here, overapproximations for holds preserving refactorings.

The refactorings introduced in Chapter 5 all assume a deterministic network as input and produce

a deterministic network as output. However, the environment modelling method introduced in

Chapter 7 proposes the idea of using non-determinism to force verifiers to overapproximate neural

network behavior. This could enable verifiers without support for smooth network operations, such

as Sigmoid and Tanh, to verify properties of networks with these operations by first approximating

them with piecewise-linear operations and then adding random noise to overapproximate the desired

operation. The level of overapproximation could be controlled by the precision of the piecewise-linear

approximation. A more precise approximation would lead to a tighter overapproximation, but it

would also likely introduce more non-linearity which verifiers struggle with. This approach could

even be paired with a refinement step if a spurious counter-example is found, which would produce

a tighter overapproximation by using a more precise piecewise-linear approximation.

8.2.3 Remodelling

The environment rewritings in Chapters 6 and 7 generally assume that the target verifier does not

accept an explicit representation of the environment. Future work on verifiers could look at both

developing open-loop tools which do take in a model of the environment, as well as developing rewrit-

ings to support such tools. Additionally, the environment remodelling in Chapter 7 requires training

neural networks to replace components of the environment, which can be time consuming and result

in highly overapproximated models when poorly configured. Future work should explore rewritings

which can automatically construct neural networks from these components without training, and

with error guarantees. One way to do this would be through picewise-linear approximations, which

can approximate continuous functions arbitrarily well.
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8.2.4 Closed-Loop Rewriting

The rewritings for closed-loop problems introduced in Chapter 7 were able to support must-not-

reach properties for discrete-time closed-loop systems. However, these rewritings do not directly

support continuous-time systems and perform poorly on must-reach properties, opening at least two

directions for future work.

Continuous-Time Systems

The rewritings in Chapter 7 all assume a discrete-time system. While a continuous-time system can

be approximated with a discrete-time system, this requires additional work by the user to perform

this remodelling, and holds results for the discrete-time system do not necessarily map to continuous-

time system. Ideally rewritings would directly support the continuous-time system. One possible

direction to explore is to develop environment rewritings which make use of a representation for the

time such that verifiers could explore the statespace at all possible values of time rather than at

discrete time steps.

State-Reachability Property Support

The study in Chapter 7 showed that the rewriting approach performed poorly on properties that

specified states that should eventually be reached by the system, such as the one for the SB10 bench-

mark. This was due to the property reduction used, which produced a number of subexpressions

exponential in the number of time steps for this property type. To better support these properties,

we must explore new, more efficient reductions. One possible direction to address this issue may be

to rewrite to non-independent subproblems, as described in Section 8.2.1. For example, we could

generate a subproblem that specifies that all states must be in the set of safe states at the last

time step. Then, if this subproblem holds, the original problem holds, but if it doesn’t, then we

must check the other subproblems. Additionally, our current reductions do not differentiate between

properties and make no attempt to optimize subproblem generation. However, it could be beneficial

to explore more property-specific reductions which are tailored to certain property types in order

to produce either easier or fewer subproblems. For example, a reduction tailored to must-reach

property could be designed to produce dependent subproblems, which may not be necessary for

must-not-reach properties.
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[94] Corina S Păsăreanu, Matthew B Dwyer, and Willem Visser. Finding feasible counter-examples

when model checking abstracted java programs. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 284–298. Springer, 2001.

[95] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in

pytorch. In NIPS-W, 2017.

[96] Brandon Paulsen, Jingbo Wang, and Chao Wang. Reludiff: Differential verification of deep

neural networks. In Proceedings of the 42nd International Conference on Software Engineering,

ICSE 2020, 2020.

[97] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox

testing of deep learning systems. In Proceedings of the 26th Symposium on Operating Systems

Principles, Shanghai, China, October 28-31, 2017, pages 1–18, 2017.

[98] Zi Peng, Jinqiu Yang, Tse-Hsun (Peter) Chen, and Lei Ma. A First Look at the Integration of

Machine Learning Models in Complex Autonomous Driving Systems: A Case Study on Apollo,

page 1240–1250. Association for Computing Machinery, New York, NY, USA, 2020.

https://github.com/onnx/onnx


BIBLIOGRAPHY 121

[99] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural

architecture search via parameter sharing. In Proceedings of the 35th International Conference

on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
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[116] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An abstract domain

for certifying neural networks. PACMPL, 3(POPL):41:1–41:30, 2019.
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Appendix A

On the Equisatisfiability of

Reduction

Lemma 2. Let φ be a conjunction of linear inequalities over the variables xi for i from 0 to n− 1.

We can construct an H-polytope H = (A, b) with Alg. 2 s.t. (Ax ≤ b)⇔ (x |= φ).

Proof. Let f(x) =
∑n−1

0 aixi We first show that every lin. ineq. in the conjunction can be reformu-

lated to the form f(x) ≤ b. It is trivial to show the ineq. can be manipulated to have variables on

lhs and a constant on rhs, that ≥ can be manipulated to an equivalent form with ≤, and > can be

manipulated to become <. The < comparison can be changed to a ≤ comparison by decrementing

the rhs constant from b to b′ where b′ is the largest representable number less than b. We prove ineq.

with < can be reformulated to use ≤ by contradiction. Assume either f(x) < b and f(x) > b′ or

f(x) ≥ b and f(x) ≤ b′. Either b′ < f(x) < b, a contradiction, since f(x) cannot be both larger than

the largest representable number less than b and also less than b.1 Or b ≤ f(x) ≤ b′, a contradiction,

since b′ < b by definition.

Given a conjunction of lin. ineq. in the form f(x) ≤ b, Alg. 2 constructs A and b with a row in

A and value in b corresponding to each conjunct. There are two cases: (Ax ≤ b) → (x |= φ) and

(x |= φ)→ (Ax ≤ b).

We prove case 1 by contradiction. Assume (Ax ≤ b) and (x 6|= φ). By construction of H in

Alg. 2, each conjunct of φ is exactly 1 constraint in H. If Ax ≤ b, then all constraints in H must be

satisifed, and thus all conjuncts in φ must be satisfied and x |= φ, a contradiction.

We prove case 2 by contradiction. Assume (x |= φ) and (Ax 6≤ b). By construction of H in

1We discuss the assumption that such a number exists in Appendix A.1.
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Alg. 2, each conjunct of φ is exactly 1 constraint in H. If x |= φ, then all conjuncts in φ must be

satisfied, and thus all constraints in H must be satisifed and Ax ≤ b, a contradiction.

Lemma 3. Let H = (A, b) be an H-polytope s.t. Ax ≤ b. Alg. 4 constructs a DNN, Ns, that

classifies whether inputs satisfy Ax ≤ b. Formally, x ∈ H ⇔ Ns(x)0 ≤ Ns(x)1.

Proof. There are 2 cases:

1. x ∈ H → Ns(x)0 ≤ Ns(x)1

2. Ns(x)0 ≤ Ns(x)1 → x ∈ H

We prove case 1 by contradiction. Assume x ∈ H and Ns(x)0 > Ns(x)1. From Alg. 4, each

neuron in the hidden layer of Ns corresponds to one constraint in H. The weights of each neuron

are the values in the corresponding row of A, and the bias is the negation of the corresponding value

of b. If input x satisfies the constraint, then the neuron value will be at most 0, otherwise it will be

greater than 0. After the ReLU, each neuron will be equal to 0 if the corresponding constraint is

satisfied by x and greater than 0 otherwise. The first output neuron sums all neurons in the hidden

layer, while the second has a constant value of 0. If x ∈ H, then all neurons in the hidden layer

after activation must have a value of 0 since all constraints are satisfied. However, if all neurons

have value 0, then their sum must also be 0, and therefore Ns(x)0 = Ns(x)1, a contradiction.

We prove case 2 by contradiction. Assume Ns(x)0 ≤ Ns(x)1 and x 6∈ H. If x 6∈ H, at least

one neuron in the hidden layer must have a value greater than 0 after the ReLU since at least one

constraint is not satisfied. Because some neuron has a value greater than 0, their sum must also be

greater than 0, and therefore Ns(x)0 > Ns(x)1, a contradiction.

Lemma 4. Let H = (A, b) be an H-polytope s.t. Ax ≤ b. Alg. 3 constructs a DNN, Np, that maps

values from the n-dim. unit hypercube to the axis aligned hyperrectangle that minimally bounds H.

The range of this mapping does not exclude any x s.t. Ax ≤ b. Formally, ∀x ∈ H.∃z ∈ [0, 1]n.x =

Np(z).

Proof. The proof is by contradiction. Let the axis aligned hyperrectangle that minimally bounds

H be specified by lower bounds ~lb and upper bounds ~ub s.t. ∀x ∈ H.∀i.xi ∈ [lbi, ubi]. Alg. 3

constructs a DNN, Np, that computes Np(z) = Wz + b, where W = diag(ub − lb) and b = lb.

This function is invertible: N−1p (x) = W−1(x − b) = W−1x − W−1b. Assume ∃x ∈ H.∃i.(z =

N−1p (x)) ∧ ((zi < 0) ∨ (zi > 1)). From the def. of N−1p , we get N−1p (lb)i ≤ zi ≤ N−1p (ub)i and

W−1i,i (lbi)−W−1i,i (lbi) = 0 ≤ zi ≤W−1i,i (ubi)−W−1i,i (lbi) = ( 1
ubi−lbi (ubi)− 1

ubi−lbi (lbi)) = 1. Therefore

(lbi ≤ xi ≤ ubi)→ (0 ≤ zi ≤ 1), a contradiction.
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Theorem 5. Let ψ = 〈N , φ〉 be a correctness problem with property defined as disjunctions and

conjunctions of linear inequalities over the inputs and outputs of N . Property Reduction (Alg. 1)

maps ψ to an equivalid set of correctness problems reduce(ψ) = {〈N1, φ1〉, . . . , 〈Nk, φk〉}.

N |= ψ ⇔ ∀〈Ni, φi〉 ∈ reduce(ψ).Ni |= φi

Proof. A model that satisfies any disjunct of DNF (¬φ) falsifies φ. If φ is falsifiable, then at least

one disjunct of DNF (¬φ) is satisfiable.

Alg. 1 constructs a correctness problem for each disjunct. For each disjunct, Alg. 1 constructs

an H-polytope, H, which is used to construct a prefix network, Np, and suffix network, Ns. The

algorithm then constructs networks N ′(x) = concat(N (x), x) and N ′′(x) = Ns(N ′(Np(x))). Alg. 1

pairs each constructed network with the property φ = ∀x.x ∈ [0, 1]n → N ′′(x)0 > N ′′(x)1. A

violation occurs only whenN ′′(x)0 ≤ N ′′(x)1. By Lemmas 2, 3, and 4, we get thatN ′′(x)0 ≤ N ′′(x)1

if and only if N ′(x) ∈ H. If N ′(x) ∈ H then N ′(x) satisfies the disjunct and is therefore a violation

of the original property.

A.1 On Existance of a Bounded Largest Representable Num-

ber

Our proof that property reduction generates a set of robustness problems equivalid to an arbitrary

problem relies on the assumption that strict inequalities can be converted to non-strict inequalities.

To do so we rely on the existance of a largest representable number that is less than some given

value. While this is not necessarily true for all sets of numbers (e.g., R), it is true for for most

numeric representations used in computation (e.g., IEEE 754 floating point arithmetic).
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DNNP

A property specification defines the desired behavior of a neural network in a formal language.

DNNF and DNNV use a custom Python-embedded DSL for writing property specifications, which

we call DNNP. Embedding DNNP in Python allows for the rich ecosystem of the host language to

be used in writing specifications [56]. However, DNNP is a work-in-progress, so some expressions

(such as star expressions) are not yet supported by our property parser. We are still working to

fully support all Python expressions, but the current version supports the most common use cases.

Figure 2 shows the definition of the DNNP grammar. The general structure of a property

specification is as follows:

1. A set of python module imports

2. A set of variable definitions

3. A property expression

B.1 Imports

Imports have the same syntax as Python import statements, and they can be used to import arbitrary

Python modules and packages. This allows re-use of datasets or input pre-processing code. For

example, the Python package numpy can be imported to load a dataset. Inputs can then be selected

from the dataset, or statistics, such as the mean data point, can be computed on the fly.
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<property> ::= <python-imports> <assignment-list> <expr>

<python-imports> ::= `'

| <python-imports> `import' <id>

| <python-imports> `import' <id> `as' <id>

| <python-imports> `from' <id> `import' <id>

<assignment-list> ::= `'

| <assignment-list> <assignment>

<assignment> ::= <id> `=' <expr>

<expr> ::= `Forall(' <id> `,' <expr> `)'

| `And(' <expr-seq> `)'

| `Or(' <expr-seq> `)'

| `Implies(' <expr> `,' <expr> `)'

| `Parameter(' <id> `, type=' <id> `)'

| ...

| <python-expr>

<expr-seq> ::= <expr> | <expr-seq> `,' <expr>

Listing 2: Subset of the grammar for DNNP.

B.2 Definitions

After any imports, DNNP allows a sequence of assignments to define variables that can be used in

the final property specification. For example, i = 0, will define the variable i to a value of 0.

These definitions can be used to load data and configuration parameters, or to alias expressions

that may be used in the property formula. For example, if the torchvision.datasets package

has been imported, then data = datasets.MNIST("/tmp") will define a variable data referencing

the MNIST dataset from this package. Additionally, the Parameter class can be used to declare

parameters that can be specified at run time. eps = Parameter("epsilon", type=float), will

define the variable eps to have type float and will expect a value to be specified at run time. This

value can be specified to DNNF or DNNV with the option --prop.epsilon.

Definitions can also assign expressions to variables to be used in the property specification later.

For example, x in unit hyper cube = 0 <= x <= 1 can be used to assign an expression specifying

that the variable x is within the unit hyper cube to a variable. This could be useful for more complex

properties with a lot of redundant sub-expressions.

A network can be defined using the Network class. N = Network("N"), specifies a network with

the name N (which is used at run time to concretize the network with a specific network). All
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networks with the same name refer to the same model.

B.3 Property Expression

Finally, the last part of the property specification is the property formula itself. It must appear at

the end of the property specification. All statements before the property formula must be either

import or assignment statements.

The property formula defines the desired behavior of the neural network in a subset of first-order-

logic. It can make use of arbitrary Python code, as well as any of the expressions defined before

it.

DNNP provides many functions for defining logical expressions. The function Forall( symbol,

expression) can be used to specify that the provided expression is valid for all values of the specified

symbol. The function And(*expression), specifies that all of the expressions passed as arguments

to the function must be valid. And(expr1, expr2) can be equivalently specified as expr1 & expr2.

The function Or(*expression), specifies that at least one of the expressions passed as arguments

to the function must be valid. Or(expr1, expr2) can be equivalently specified as expr1 | expr2.

The function Implies(expression1, expression2), specifies that if expression1 is true, then

expression2 must also be true. The argmin and argmax functions can be used to get the argmin

or argmax value of a network’s output, respectively.

In property expressions, networks can be called like functions to get the outputs for the network

for a given input. Networks can be applied to symbolic variables (such as universally quantified

variables), as well as numpy arrays.



Appendix C

Evaluation Benchmarks for

Chapter 4

C.1 ACAS Xu Property Benchmark

The ACAS Xu problem benchmark consists of 10 DNN properties, each applied to a subset of 45

small networks. This benchmark is described in detail in Appendix VI of [68]. Each of the 45

fully-connected networks in this benchmark have 5 input values and 5 output values with 6 hidden

layers of 50 neurons each and relu activations. For completeness, we provide formal definitions of

the 10 ACAS Xu properties.

Property φ1

∀x.((55947.691 ≤ x0 ≤ 60760) ∧ (−π ≤ x1 ≤ π) ∧ (−π ≤ x2 ≤ π)

∧(1145 ≤ x3 ≤ 1200) ∧ (0 ≤ x4 ≤ 60))→ (N (x)0 ≤ 1500)

Property φ2

∀x.((55947.691 ≤ x0 ≤ 60760) ∧ (−π ≤ x1 ≤ π) ∧ (−π ≤ x2 ≤ π)

∧(1145 ≤ x3 ≤ 1200) ∧ (0 ≤ x4 ≤ 60))→ (argmax(N (x)) 6= 0)
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Property φ3

∀x.((1500 ≤ x0 ≤ 1800) ∧ (−0.06 ≤ x1 ≤ 0.06) ∧ (3.10 ≤ x2 ≤ π)

∧(980 ≤ x3 ≤ 1200) ∧ (960 ≤ x4 ≤ 1200))→ (argmin(N (x)) 6= 0)

Property φ4

∀x.((1500 ≤ x0 ≤ 1800) ∧ (−0.06 ≤ x1 ≤ 0.06) ∧ (0 ≤ x2 ≤ 0)

∧(1000 ≤ x3 ≤ 1200) ∧ (700 ≤ x4 ≤ 800))→ (argmin(N (x)) 6= 0)

Property φ5

∀x.((250 ≤ x0 ≤ 400) ∧ (0.2 ≤ x1 ≤ 0.4) ∧ (−π ≤ x2 ≤ −π + 0.005)

∧(100 ≤ x3 ≤ 400) ∧ (0 ≤ x4 ≤ 400))→ (argmin(N (x)) = 4)

Property φ6

∀x.(((12000 ≤ x0 ≤ 62000) ∧ (0.7 ≤ x1 ≤ π) ∧ (−π ≤ x2 ≤ −π + 0.005)

∧(100 ≤ x3 ≤ 1200) ∧ (0 ≤ x4 ≤ 1200))

∨(12000 ≤ x0 ≤ 62000) ∧ (−π ≤ x1 ≤ −0.7) ∧ (−π ≤ x2 ≤ −π + 0.005)

∧(100 ≤ x3 ≤ 1200) ∧ (0 ≤ x4 ≤ 1200))→ (argmin(N (x)) = 0)

Property φ7

∀x.((0 ≤ x0 ≤ 60760) ∧ (−π ≤ x1 ≤ π) ∧ (−π ≤ x2 ≤ π)

∧(100 ≤ x3 ≤ 1200) ∧ (0 ≤ x4 ≤ 1200))→ (argmin(N (x)) 6= 4)
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Property φ8

∀x.((0 ≤ x0 ≤ 60760) ∧ (−π ≤ x1 ≤ −0.75π) ∧ (−0.1 ≤ x2 ≤ 0.1)

∧(600 ≤ x3 ≤ 1200) ∧ (600 ≤ x4 ≤ 1200))→ ((argmin(N (x)) = 0) ∨ (argmin(N (x)) = 1))

Property φ9

∀x.((2000 ≤ x0 ≤ 7000) ∧ (−0.4 ≤ x1 ≤ −0.14) ∧ (−π ≤ x2 ≤ −π + 0.01)

∧(100 ≤ x3 ≤ 150) ∧ (0 ≤ x4 ≤ 150))→ (argmin(N (x)) = 3)

Property φ10

∀x.((36000 ≤ x0 ≤ 60760) ∧ (0.7 ≤ x1 ≤ π) ∧ (−π ≤ x2 ≤ −π + 0.01)

∧(900 ≤ x3 ≤ 1200) ∧ (600 ≤ x4 ≤ 1200))→ (argmin(N (x)) = 0)

C.2 Neurify-DAVE Property Benchmark

The Neurify-DAVE benchmark, introduced in [135], is a set of local interval-reachability properties

applied to a network that predicts steering angles for a self-driving car. The original benchmark

applied these properties to a smaller version of the original DAVE DNN. The networks take 100x100

color images as input and produce a single value, y, which is converted to a value between −π and π

with the function f(x) = 2∗arctan(x). While the smaller network has an input domain of [0, 1]30000,

the original network uses an input domain of [−103.939, 103.939]10000 × [−116.779, 116.779]10000 ×

[−123.68, 123.68]10000, due to mean centering of inputs originally in the interval [0, 255]30000.

The small version of DAVE has 2 convolutional layers with relu activations, and 24 and 36

5x5 kernels, respectively. Both of these layers use strides of 5 and have no padding. These are

followed by 2 fully-connected layers, the first of which has a size of 100 and relu activations, and the

second of which has a single neuron and no activation. This network has 10277 neurons and 81261

parameters. In addition to this small network, we include the original DAVE network as part of this

benchmark to help demonstrate the scalability of analyses. The original DAVE networks has five
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convolutional layers with 24, 26, 48, 64, and 64 convolutional kernels, respectively. The first 3 layers

use 5x5 kernels, with strides of 2, while the next two use 3x3 kernels with strides of 1. All of the

convolutional layers use relu activations and have no padding. The convolutional layers are followed

by 5 fully-connected layers with sizes 1164, 100, 50, 10, 1, respectively. The first four of these have

relu activations. The original DAVE network has 82669 neurons and 2116983 parameters.

The properties for the Neurify-DAVE benchmark all have the following form: for all inputs within

distance ε from input x, the output value must be within 15 degrees of N (x). Formally, this can be

stated as:

∀x′.((x′ ∈ [x− ε, x+ ε]) ∧ (x′ ∈ X ))→ (N (x)− 15◦ ≤ N (x′) ≤ N (x) + 15◦)

where X is the appropriate input domain, described above. This benchmark uses ε ∈ {1, 2, 5, 8, 10}

for the original DAVE network, and ε ∈ { 1
255 ,

2
255 ,

5
255 ,

8
255 ,

10
255} for the small network to adjust for

input domain.

C.3 GHPR Problem Benchmark

The global halfspace-polytope reachability (GHPR) problem benchmark, is made up of 2 sets of

properties, one of which is defined over MNIST networks, and one of which is defined over the

DroNet network. Each property sets consists of 10 properties. Within the benchmark, the 10

MNIST properties are each applied to 2 networks, drawn from benchmark used for the ERAN

verifier [115]. We chose to use a small convolutional network and a medium convolutional network,

both with relu activations. The 10 DroNet properties are applied to the DroNet network [82], which

has a ResNet based architecture. The properties are described in more detail below.

C.3.1 MNIST

The networks used as part of the GHPR-MNIST benchmark are the convSmallRELU Point.pyt and

convMedGRELU Point.pyt models from the ERAN-MNIST benchmark1. The small network has 2

convolutional layers with 16 and 32 4x4 kernels respectively, and strides of 2 and no padding. The

convolutional layers are followed by 2 fully-connected layers with dimensions 100 and 10, respectively.

The network has 4398 neurons and 89608 parameters. The medium network has 2 convolutional

layers with 16 and 32 4x4 kernels respectively, and strides of 2 and uses zero padding. The convo-

1Available at https://github.com/eth-sri/eran#neural-networks-and-datasets

https://github.com/eth-sri/eran#neural-networks-and-datasets
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lutional layers are followed by 2 fully-connected layers with dimensions 1000 and 10, respectively.

The network has 6498 neurons and 1587508 parameters.

The MNIST properties are of the form: for all inputs, the output values for classes a and b are

closer to one another than either is to the output value of class c. The values of a, b, and c are

selected from the confusion matrix of the medium convolutional network on the MNIST test set,

shown in Table C.1 with the diagonal values removed. We select the 10 pairs of a and b with the

most confusion. We then select a value for c, such that images of digit a were never classified as c,

and images of digit b were never classified as c. As an example, we would select 4 and 9 for a and

b, since images of fours were classified as nines 13 times, more than any other pair. We then select

the value 8 for c, since no images of fours or nines were ever misclassified as eights. This results in

10 properties, defined formally below.

Predicted Label
True Label 0 1 2 3 4 5 6 7 8 9

0 * 1 1 0 1 0 0 0 2 1
1 0 * 1 3 0 1 0 0 0 0
2 1 2 * 1 0 0 1 2 0 0
3 0 0 0 * 0 1 0 2 1 4
4 0 0 1 0 * 0 4 2 0 13
5 2 0 1 10 0 * 1 1 1 1
6 7 3 0 1 2 3 * 0 0 0
7 1 4 7 1 0 0 0 * 1 3
8 4 0 5 10 0 4 0 2 * 5
9 2 3 0 2 4 2 0 3 0 *

Table C.1: The confusion matrix of the medium convolutional DNN on the MNIST test set.

Property φ0.

∀x.(x ∈ [0, 1]n)→ ((|N (x)4 −N (x)9| < |N (x)4 −N (x)8|)

∧(|N (x)4 −N (x)9| < |N (x)9 −N (x)8|))

Property φ1.

∀x.(x ∈ [0, 1]n)→ ((|N (x)3 −N (x)8| < |N (x)3 −N (x)1|)

∧(|N (x)3 −N (x)8| < |N (x)8 −N (x)1|))
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Property φ2.

∀x.(x ∈ [0, 1]n)→ ((|N (x)5 −N (x)3| < |N (x)5 −N (x)4|)

∧(|N (x)5 −N (x)3| < |N (x)3 −N (x)4|))

Property φ3.

∀x.(x ∈ [0, 1]n)→ ((|N (x)6 −N (x)0| < |N (x)6 −N (x)7|)

∧(|N (x)6 −N (x)0| < |N (x)0 −N (x)7|))

Property φ4.

∀x.(x ∈ [0, 1]n)→ ((|N (x)7 −N (x)2| < |N (x)7 −N (x)5|)

∧(|N (x)7 −N (x)2| < |N (x)2 −N (x)5|))

Property φ5.

∀x.(x ∈ [0, 1]n)→ ((|N (x)8 −N (x)9| < |N (x)8 −N (x)6|)

∧(|N (x)8 −N (x)9| < |N (x)9 −N (x)6|))

Property φ6.

∀x.(x ∈ [0, 1]n)→ ((|N (x)8 −N (x)2| < |N (x)8 −N (x)4|)

∧(|N (x)8 −N (x)2| < |N (x)2 −N (x)4|))

Property φ7.

∀x.(x ∈ [0, 1]n)→ ((|N (x)7 −N (x)1| < |N (x)7 −N (x)6|)

∧(|N (x)7 −N (x)1| < |N (x)1 −N (x)6|))

Property φ8.

∀x.(x ∈ [0, 1]n)→ ((|N (x)3 −N (x)9| < |N (x)3 −N (x)2|)

∧(|N (x)3 −N (x)9| < |N (x)9 −N (x)2|))
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Property φ9.

∀x.(x ∈ [0, 1]n)→ ((|N (x)8 −N (x)5| < |N (x)8 −N (x)4|)

∧(|N (x)8 −N (x)5| < |N (x)5 −N (x)4|))

C.3.2 DroNet

The network used for the GHPR-DroNet benchmark is the DroNet network2 [82] for autonomous

quadrotor control. This network is based on a ResNet type architecture, with 3 residual blocks. It

is comprised of 475131 neurons and 320226 parameters.

The properties for DroNet codify the desired behavior that, if the probability for collision is low,

the system should not make sharp turns. The DroNet properties are of the form: for all inputs, if

the probability of collision is between pmin and pmax, then the steering angle is within d degrees of

0.

Property φ0.

∀x.((x ∈ [0, 1]n) ∧ (0 < N (x)P ≤ 0.1))→ (−5◦ ≤ N (x)S ≤ 5◦)

Property φ1.

∀x.((x ∈ [0, 1]n) ∧ (0.1 < N (x)P ≤ 0.2))→ (−10◦ ≤ N (x)S ≤ 10◦)

Property φ2.

∀x.((x ∈ [0, 1]n) ∧ (0.2 < N (x)P ≤ 0.3))→ (−20◦ ≤ N (x)S ≤ 20◦)

Property φ3.

∀x.((x ∈ [0, 1]n) ∧ (0.3 < N (x)P ≤ 0.4))→ (−30◦ ≤ N (x)S ≤ 30◦)

Property φ4.

∀x.((x ∈ [0, 1]n) ∧ (0.4 < N (x)P ≤ 0.5))→ (−40◦ ≤ N (x)S ≤ 40◦)

2https://github.com/uzh-rpg/rpg_public_dronet

https://github.com/uzh-rpg/rpg_public_dronet
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Property φ5.

∀x.((x ∈ [0, 1]n) ∧ (0.5 < N (x)P ≤ 0.6))→ (−50◦ ≤ N (x)S ≤ 50◦)

Property φ6.

∀x.((x ∈ [0, 1]n) ∧ (0.6 < N (x)P ≤ 0.7))→ (−60◦ ≤ N (x)S ≤ 60◦)

Property φ7.

∀x.((x ∈ [0, 1]n) ∧ (0.7 < N (x)P ≤ 0.8))→ (−70◦ ≤ N (x)S ≤ 70◦)

Property φ8.

∀x.((x ∈ [0, 1]n) ∧ (0.8 < N (x)P ≤ 0.9))→ (−80◦ ≤ N (x)S ≤ 80◦)

Property φ9.

∀x.((x ∈ [0, 1]n) ∧ (0.9 < N (x)P ≤ 1.0))→ (−90◦ ≤ N (x)S ≤ 90◦)

C.4 CIFAR-EQ Property Benchmark

The CIFAR-EQ problem benchmark, is made up of a set of 291 equivalence properties defined over

2 networks trained on CIFAR10. The benchmark has a 91 global equivalence properties, the first

of which is an untargeted equivalence property specifying that the two networks must predict the

same class for every input.

∀x.(x ∈ [0, 1]n)→ (argmax(N1(x)) = argmax(N2(x)))

The other 90 properties are targeted equivalence properties, specifying that if the first network

predicts class A, then the second network cannot predict class B, and vice versa, where A and B

are different classes. We create a property for each possible pair of output classes for a total of 90

properties.
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∀x.(x ∈ [0, 1]n)→ ((argmax(N1(x)) 6= A) ∨ (argmax(N2(x)) 6= B))

The next 200 properties are local properties, created from the first 10 images from the CIFAR10

test set that are correctly classified by both networks. Each local property is specified with an L∞

ε-ball around the original input. In this work, we use the epsilon values of 1
255 and 10

255 . The first

20 properties are untargeted equivalence properties, specifying that all inputs within the ε-ball are

classified as the same class by both networks. This results in 20 properties, 2 for each of the 10

inputs.

∀x′.(x′ ∈ [x− ε, x+ ε]n)→ (argmax(N1(x′)) = argmax(N2(x′)))

The final 180 properties are targeted equivalence properties, specifying that if either network

classifies the input to the correct class, C, then the other network should not classify it as class D,

different from the correct class. This results in 180 properties, 18 for each of the 10 inputs.

∀x′.(x′ ∈ [x− ε, x+ ε]n)→ (((argmax(N1(x′)) = C)→ (argmax(N2(x′)) 6= D))

∧ ((argmax(N2(x′)) = C)→ (argmax(N1(x′)) 6= D)))



Appendix D

Benchmarks for Analysis of DNNV

We examine the benchmarks used to evaluate each of the 13 verifiers supported by DNNV, and

determine whether each verifier can run on the benchmark out of the box, and also whether they

could be run on the benchmark when DNNV is applied. Here we provide a short description of each

of the 19 verification benchmarks that we have identified. A short summary of some of the features of

each verifier relevant to DNNV are shown in Table 5.1. These features include whether any properties

cannot represent their input constraints using hyper-rectangles (¬HR), whether any network in the

benchmark contains convolution operations (C), whether any network contains residual structures

(R), and whether any network uses any non-ReLU activation functions (¬ReLU).

The ACAS Xu (AX) benchmark, introduced for Reluplex [68], is one of the most used verification

benchmarks [10, 20, 69, 135]. The benchmark consists of 10 properties. Property φ1 is a reachability

property, specifying an upper bound on one of the 5 output variables. Properties φ5, φ6, φ9, and

φ10 are all traditional class robustness properties, specifying the desired class for the given input

region. Properties φ3, φ4, φ7 and φ8 are reachability properties, specifying a set of acceptable

classes for the input region. Properties φ2 is also a reachability property, specifying that a given

output value cannot be greater than all others. Each of the properties are applied to a subset of

45 networks trained on an aircraft collision avoidance dataset, with 5 inputs, 5 output classes and

6 layers of 50 neurons each. The original benchmark included networks in Reluplex-NNET format,

and a custom version of Reluplex was written for each property. Later uses of the benchmark

translated the verification problems into RLV format, which is used by Planet, BaB, and BaBSB, as

well as translating the networks into ONNX. The benchmark in ONNX and DNNP format is fully

supported by DNNP.
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The Collision Detection (CD) benchmark [34], intoduced for the evaluation of Planet, consists

of 500 local robustness properties for an 80 neuron network with a fully connected layer and max

pooling layer that classifies whether 2 simulated vehicles will collide, given their current state. The

verification problems, in RLV format, are supported by Planet, BaB, and BaBSB. The problems

have also been modified to convert max pooling operations to a sequence of fully-connected layers

with ReLU activations, and then translated to Reluplex-NNET format, enabling off the shelf support

by Marabou, and a generalized version of Reluplex. This benchmark is one of the few that is not

supported by R4V, since the network contains structures that are not easily supported by ONNX.

In particular, the max-pooling operation in the original network, applied to a flat tensor, cannot be

encoded by ONNX from their original format.

The Planet MNIST (PM) benchmark [34] is a set of 7 properties over a convolutional network

trained on the MNIST dataset [79]. The first 4 of these are reachability properties with hyper-

rectangle input constraints, while the next 2 are local robustness properties with hyper-rectangle

input constraints, and the final property is an local robustness property with halfspace-polytope

input constraints. The original benchmark was provided in RLV format. The first 6 of these

properties are currently supported by R4V, while the final property could be supported by R4V

with additional engineering effort.

The TwinStream (TS) benchmark [19] consists of 1 property applied to 81 networks that output

a constant value. The property asserts that for all inputs, the output of the network is positive.

The original benchmark was provided in RLV format. This benchmark is fully supported by R4V

for all verifiers.

The PCAMNIST (PCA) benchmark [20] consists of 12 reachability properties applied to 17

networks trained on modified versions of the MNIST dataset to predict the parity of the digit rep-

resented by the first k components of the PCA decomposition of an image. The original benchmark

was provided in RLV format. This benchmark is fully supported by R4V for all verifiers.

MIPVerify MNIST (MM) consists of 10000 local robustness properties applied to 5 networks

trained on the MNIST dataset. The networks have varied structures: 2 networks are fully connected

and 3 are convolutional. We could not find an available version of the benchmark used by MIPVerify

to evaluate its original input format. This benchmark is fully supported by R4V for all verifiers

except Reluplex, which does not support convolution operations.

MIPVerify CIFAR (MC) consists of 10000 local robustness properties applied to 2 networks

trained on the CIFAR10 dataset [75]. One of these networks is a convolutional network and the

other is a residual network. We could not find an available version of the benchmark used by
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MIPVerify to evaluate its original input format. This benchmark is supported by R4V for verifiers

that can support residual connections, including: Planet, DeepZono, DeepPoly, RefineZono, and

RefinePoly. While the benchmark is supported by the version of MIPVerify used in its study, it

is not supported through R4V, since the publicly available version of MIPVerify does not support

residual connections.

The Neurify MNIST (NM) benchmark [135] consists of 500 L∞ local robustness properties across

4 MNIST networks, 3 fully connected networks with 58, 110, and 1034 neurons respectively, and a

convolutional network with 4814 neurons. The original benchmark was provided in Neurify-NNET

format, with properties hard-coded into the verifier. R4V enables almost all verifiers to run on

this benchmark. Reluplex cannot be run due to the presence of convolutional layers, which are not

supported. MIPVerify cannot be run due to the presence of non-hypercube input constraints. While

this limitation of the verifier can be satisfied with a property reduction for fully-connected networks,

R4V does not currenly support such a reduction for convolutional networks.

The Neurify Drebin (NDb) benchmark [135] consists of 500 L∞ local robustness properties across

3 fully connected Drebin [6] networks with 102, 212, and 402 neurons each. The original benchmark

was provided in Neurify-NNET format, with properties hard-coded into the verifier. This benchmark

is fully supported by R4V for all verifiers.

The Neurify DAVE (NDv) benchmark [135] consists of 200 local reachability properties, with 4

different types of input constraints (50 properties of each type). The first type of input constraint

is an L∞ constraint, which is equivalent to a hyper-rectangle constraint. The second type of input

constraint is an L1 constraint, which can be written as a halfspace polytope constraint. The third and

fourth type of input constraint are image brightning and contrast, which can be written as halfspace

polytope constraints. The properties are applied to a convolutional network for an autonomous

vehicle, with 10276 neurons. The original benchmark was provided in Neurify-NNET format, with

properties hard-coded into the verifier. Similar to the Neurify MNIST benchmark, R4V enables

almost all verifiers to run on this benchmark. Reluplex cannot be run, due to the presence of

convolutional layers, which are not supported, and MIPVerify cannot be run due to the presence of

non-hypercube input constraints.

The DeepZono MNIST (DZM) benchmark [115] consists of 1700 local robustness properties,

subsets of which are applied to 10 networks trained on the MNIST dataset. The networks have

varied structures and activation functions: 3 networks are fully connected, 1 of which uses ReLU

activations, 1 with Tanh activations, and 1 with Sigmoid activations; 6 are convolutional, 4 of which

have ReLU activations, 1 with Tanh activations, and 1 with Sigmoid activations; and 1 is a residual
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network. The networks in the original benchmark were provided in a custom human-readable text

format, with properties hard-coded into the verifier. R4V does not increase the support for this

benchmark due to the presence of both a residual network and non-ReLU activation functions.

The DeepZono CIFAR10 (DZC) benchmark [115] consists of 1700 local robustness properties,

subsets of which are applied to 5 networks trained on the CIFAR10 dataset. The networks have

varied structures and activation functions: 3 networks are fully connected, 1 of which uses ReLU

activations, 1 with Tanh activations, and 1 with Sigmoid activations; and 2 are convolutional with

ReLU activations. The networks in the original benchmark were provided in a custom human-

readable text format, with properties hard-coded into the verifier. R4V enables VeriNet to run on

this benchmark. Other verifiers are not supported due to the non-ReLU activation functions.

The DeepPoly MNIST (DPM) benchmark [116] consists of 1500 local robustness properties,

subsets of which are applied to 8 networks trained on the MNIST dataset. The networks have

varied structures and activation functions: 5 networks are fully connected, 3 of which uses ReLU

activations, 1 with Tanh activations, and 1 with Sigmoid activations; and 3 are convolutional with

ReLU activations. The networks in the original benchmark were provided in a custom human-

readable text format, with properties hard-coded into the verifier. R4V enables VeriNet to run on

this benchmark. Other verifiers are not supported due to the non-ReLU activation functions.

The DeepPoly CIFAR10 (DPC) benchmark [116] consists of 800 local robustness properties,

subsets of which are applied to 5 networks trained on the CIFAR10 dataset. The networks have

varied structures: 3 networks are fully connected with ReLU activations; and 2 are convolutional

with ReLU activations. The networks in the original benchmark were provided in a custom human-

readable text format, with properties hard-coded into the verifier. R4V enables several additional

verifiers to support this benchmark. In particular, it enables most verifiers that can be applied to

convolutional networks with relu activations.

The RefineZono MNIST (RZM) benchmark [117] consists of 800 local robustness properties,

subsets of which are applied to 8 networks trained on the MNIST dataset. 5 networks are fully

connected with ReLU activations and 3 are convolutional with ReLU activations. The networks

in the original benchmark were provided in a custom human-readable text format, with properties

hard-coded into the verifier. R4V enables several additional verifiers to support this benchmark.

In particular, it enables most verifiers that can be applied to convolutional networks with relu

activations.

The RefineZono CIFAR10 (RZC) benchmark [117] consists of 200 local robustness properties,

subsets of which are applied to 2 networks trained on the CIFAR10 dataset. One of the networks is
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fully connected with ReLU activations and the other is convolutional with ReLU activations. The

networks in the original benchmark were provided in a custom human-readable text format, with

properties hard-coded into the verifier. R4V enables several additional verifiers to support this

benchmark. In particular, it enables most verifiers that can be applied to convolutional networks

with relu activations.

The RefinePoly MNIST (RPM) benchmark [114] consists of 600 local robustness properties,

subsets of which are applied to 6 networks trained on the MNIST dataset. 4 networks are fully

connected with ReLU activations and 2 are convolutional with ReLU activations. The networks

in the original benchmark were provided in a custom human-readable text format, with properties

hard-coded into the verifier. R4V enables several additional verifiers to support this benchmark.

In particular, it enables most verifiers that can be applied to convolutional networks with relu

activations.

The RefinePoly CIFAR10 (RPC) benchmark [114] consists of 300 local robustness properties,

subsets of which are applied to 3 networks trained on the MNIST dataset. Two of the networks are

convolutional with ReLU activations and the third is a residual network with ReLU activations. The

networks in the original benchmark were provided in a custom human-readable text format, with

properties hard-coded into the verifier. R4V enables the Planet verifier to support this benchmark.

In particular, it enables most verifiers that can be applied to convolutional networks with relu

activations. Other verifiers do not support the residual structure of one of the networks.

The VeriNet CIFAR10 (VC) benchmark [49] consists of 250 local robustness properties applied to

1 convolutional network with ReLU activations. The networks were provided in ONNX format, with

hard-coded properties. R4V enables support of this benchmark by most of the integrated verifiers.

Reluplex does not support convolutional networks, and MIPVerify does not support properties with

input constraints that are not hyper-cubes.



Appendix E

Correctness Problem Benchmarks

for Chapter 6

In this section we describe the benchmarks used in our study of DFV.

E.1 FashionMNIST

E.1.1 Properties

The properties for FashionMNIST consists in comparing different pieces of clothes in a way that the

difference between clothes with similar shapes are smaller that others with different shapes. E.g.

the difference between a t-shirt/top and a shirt should be smaller than the difference between a

t-shirt/top and a sneaker. There are two types of properties:

Conditional output relational (COR) properties specify a relation between output values and

require that the predicted output class must be one of the output classes being compared.

Property φCOR,0.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 7))→

(|N (x)7 −N (x)6| > |N (x)7 −N (x)5|)
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Property φCOR,1.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 6))→

(|N (x)6 −N (x)9| > |N (x)6 −N (x)2|)

Property φCOR,2.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 5))→

(|N (x)5 −N (x)8| > |N (x)5 −N (x)7|)

Property φCOR,3.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 4))→

(|N (x)4 −N (x)1| > |N (x)4 −N (x)6|)

Property φCOR,4.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 3))→

(|N (x)3 −N (x)7| > |N (x)3 −N (x)0|)

Property φCOR,5.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 9))→

(|N (x)9 −N (x)0| > |N (x)9 −N (x)7|)

Property φCOR,6.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 2))→

(|N (x)2 −N (x)1| > |N (x)2 −N (x)4|)

Property φCOR,7.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 5))→

(|N (x)5 −N (x)2| > |N (x)5 −N (x)9|)
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Property φCOR,8.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 0))→

(|N (x)0 −N (x)8| > |N (x)0 −N (x)6|)

Property φCOR,9.

∀x.((x ∈ [0, 1]n) ∧ (argmax(N (x)) = 1))→

(|N (x)1 −N (x)7| > |N (x)1 −N (x)3|)

Unconditional output relational (UOR) properties do not require a specific output class but do

specify a relationship between output values.

Property φUOR,0.

∀x.(x ∈ [0, 1]n)→ (|N (x)7 −N (x)6| > |N (x)7 −N (x)5|)

Property φUOR,1.

∀x.(x ∈ [0, 1]n)→ (|N (x)6 −N (x)9| > |N (x)6 −N (x)2|)

Property φUOR,2.

∀x.(x ∈ [0, 1]n)→ (|N (x)5 −N (x)8| > |N (x)5 −N (x)7|)

Property φUOR,3.

∀x.(x ∈ [0, 1]n)→ (|N (x)4 −N (x)1| > |N (x)4 −N (x)6|)

Property φUOR,4.

∀x.(x ∈ [0, 1]n)→ (|N (x)3 −N (x)7| > |N (x)3 −N (x)0|)
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Property φUOR,5.

∀x.(x ∈ [0, 1]n)→ (|N (x)7 −N (x)2| > |N (x)7 −N (x)9|)

Property φUOR,6.

∀x.(x ∈ [0, 1]n)→ (|N (x)6 −N (x)5| > |N (x)6 −N (x)4|)

Property φUOR,7.

∀x.(x ∈ [0, 1]n)→ (|N (x)5 −N (x)1| > |N (x)5 −N (x)7|)

Property φUOR,8.

∀x.(x ∈ [0, 1]n)→ (|N (x)4 −N (x)8| > |N (x)4 −N (x)2|)

Property φUOR,9.

∀x.(x ∈ [0, 1]n)→ (|N (x)3 −N (x)9| > |N (x)3 −N (x)0|)

E.2 DroNet

E.2.1 Network

The network used for the GHPR-DroNet benchmark is the DroNet network1 [82] for autonomous

quadrotor control. This network is based on a ResNet type architecture, with 3 residual blocks. It

is comprised of 475131 neurons and 320226 parameters.

E.2.2 Properties

The properties for DroNet codify the desired behavior that, if the probability for collision is low, the

system should not make sharp turns. The DroNet properties are of the form: for all inputs, if the

probability of collision is between pmin and pmax, then the steering angle is within d degrees of 0.

1https://github.com/uzh-rpg/rpg_public_dronet

https://github.com/uzh-rpg/rpg_public_dronet
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Property φ0.

∀x.((x ∈ [0, 1]n) ∧ (0 < N (x)P ≤ 0.1))→

(−5◦ ≤ N (x)S ≤ 5◦)

Property φ1.

∀x.((x ∈ [0, 1]n) ∧ (0.1 < N (x)P ≤ 0.2))→

(−10◦ ≤ N (x)S ≤ 10◦)

Property φ2.

∀x.((x ∈ [0, 1]n) ∧ (0.2 < N (x)P ≤ 0.3))→

(−20◦ ≤ N (x)S ≤ 20◦)

Property φ3.

∀x.((x ∈ [0, 1]n) ∧ (0.3 < N (x)P ≤ 0.4))→

(−30◦ ≤ N (x)S ≤ 30◦)

Property φ4.

∀x.((x ∈ [0, 1]n) ∧ (0.4 < N (x)P ≤ 0.5))→

(−40◦ ≤ N (x)S ≤ 40◦)

Property φ5.

∀x.((x ∈ [0, 1]n) ∧ (0.5 < N (x)P ≤ 0.6))→

(−50◦ ≤ N (x)S ≤ 50◦)

Property φ6.

∀x.((x ∈ [0, 1]n) ∧ (0.6 < N (x)P ≤ 0.7))→

(−60◦ ≤ N (x)S ≤ 60◦)
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Property φ7.

∀x.((x ∈ [0, 1]n) ∧ (0.7 < N (x)P ≤ 0.8))→

(−70◦ ≤ N (x)S ≤ 70◦)

Property φ8.

∀x.((x ∈ [0, 1]n) ∧ (0.8 < N (x)P ≤ 0.9))→

(−80◦ ≤ N (x)S ≤ 80◦)

Property φ9.

∀x.((x ∈ [0, 1]n) ∧ (0.9 < N (x)P ≤ 1.0))→

(−90◦ ≤ N (x)S ≤ 90◦)



Appendix F

Additional Experimental Data for

Chapter 6

In this section we provide some additional data for the experiments conducted in our study of DFV.

F.1 Additional Data: RQ2 - Scalability

All counter-examples found for the DroNet benchmark in the experiment for RQ2 in Section 6.2.3

are shown in Figure F.1. Each subfigure represents 1 of the treatments: falsification without DFV

(Figure F.1a), with DFV using a VAE (Figure F.1b), and with DFV using a GAN (Figure F.1c).

We omit columns for the treatments using DFV which did not return any counter-examples to save

space and fit the figure on a single page.

Figure F.1 demonstrates the ability of DFV to produce inputs closer to the data distribution by

using a model of the environment, even when the network under test and environment models are

quite large. Without DFV, the PGD falsifier finds a counter-example for every property on every

run. However, these counter-examples are likely useless to testers and developers, as they are far

from the data distribution on which the network would be expected to operate correctly, and they

provide little insight into a potential fault.
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(a) Without DFV

(b) With DFV, using FC-VAEDroNet (c) With DFV, using GANDroNet

Figure F.1: Counter-examples to DroNet properties with 3 distinct input models. Each row of a grid
corresponds to 1 of 5 runs of the falsifier, and each column corresponds to 1 of the 10 properties.
When applied in conjunction with DFV, whether using a VAE or a GAN, the generated counter-
examples visually appear to be much better aligned with the training distribution.



Appendix G

Benchmarks for Closed-Loop

Problem Rewriting

This section describes the benchmarks used in our evaluation. The benchmarks are originally from

the 2020 and 2021 ARCH-COMP AINNCS competition for closed-loop verification tools [60, 61].

We provide definitions of the problems, both with continuous and discrete time environment models.

Our paper and much of this appendix makes use of short names for the benchmarks, and a mapping

from short names to full names, as used in AINNCS, is provided in Table G.1.

G.1 ACC: Adaptive Cruise Controller

This benchmark models an adaptive cruise control system in which the ego vehicle has a target

velocity, but must also maintain a safe distance behind a lead vehicle. The state of this system can

Table G.1: Benchmark Names

Short Name Full Name

ACC Adaptive Cruise Controller
AP Airplane
DPLR Double Pendulum (Less Robust)
DPMR Double Pendulum (More Robust)
SB9 Sherlock-Benchmark-9 (TORA)
SB10 Sherlock-Benchmark-10 (Unicycle Car)
SP Single Pendulum
VCAS VCAS
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be represented by the vector [xlead, vlead, γlead, xego, vego, γego], where xlead, vlead, and γlead are the

position, velocity, and acceleration of the lead vehicle, and xego, vego, and γego are the position,

velocity, and acceleration of the ego vehicle.

The continuous time dynamics are defined by:

ẋlead = vlead

v̇lead = γlead

γ̇lead = −2γlead + 2alead − uv2lead

ẋego = vego

v̇ego = γego

γ̇ego = −2γego + 2aego − uv2ego

where u = 0.0001 is a friction parameter, and alead = −2 and aego are the acceleration control inputs

of the lead and ego vehicles, respectively.

A discrete model of the environment can be specified as:

(xlead)t+1 = (xlead)t + (vlead)t∆T

(vlead)t+1 = (vlead)t + (γlead)t∆T

(γlead)t+1 = (γlead)t + (2alead − 2(γlead)t − 2u(vlead)t)∆T

(xego)t+1 = (xego)t + (vego)t∆T

(vego)t+1 = (vego)t + (γego)t∆T

(γego)t+1 = (γego)t + (2(aego)t − 2(γego)t − 2u(vego)t)∆T

, where ∆T is the discrete time step size.

A neural network is used to control the acceleration, aego, of the ego vehicle. The network

takes in a vector [vset, Tgap, vego, Drel, vrel], where vset = 30 is the target velocity, Tgap = 1.4,

Drel = xlead − xego is the distance between the vehicles, and vrel = vlead − vego is the relative

velocity. The network is queried at a control period of 0.1 seconds.

To define the environment in the form 〈S,M, T 〉, we require a bounded state space. We choose

to use S = ([0, 300] × [0, 100] × [−20, 20])2, which bounds the positions to be positive values less

than 300, the velocities to be positive values less than 100, and the accelerations to be between

negative and positive 20. While the acceleration can be negative, we assume the velocity will never

be negative, which we believe to be a reasonable assumption for a cruise control system, as the
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vehicle should always be moving forward. We define M as:

M(s) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

1 0 0 −1 0 0

0 1 0 0 − 0


s+



30

1.4

0

0

0


. We define the transition function, T as a function that takes in s ∈ S and the output of the network,

y, and applies the discrete environment model 100 times, with ∆T = 0.001 and (aego)t = y.

Property: Given the environment and network defined above, the system must satisfy the follow-

ing property:

(S0 ×X × Y) =⇒ XG50(Ssafe ×X × Y)

where the set of initial states is S0 = [90, 110] × [32, 32.2] × {0} × [10, 11] × [30, 30.2] × {0}, and

Ssafe = {[xlead, vlead, γlead, xego, vego, γego] ∈ S | xlead−xego ≥ 10 + 1.4vego} is the set of safe states,

and X and Y are the full input and output sets of the network, respectively.

G.2 AP: Airplane

This benchmark consists of a simple airplane model with a controller that outputs forces, (Fx, Fy, Fz),

and moments, (Mx,My,Mz), in three dimensions. The state can be modelled by the position of the

airplane, (x, y, z), the velocity in each of those dimensions (u, v, w), the body rotation rates, (p, q, r)

and Euler angles (φ, θ, ψ).
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The continuous time dynamics can be specified as:
ẋ

ẏ

ż

 = A1


u

v

w



u̇

v̇

ẇ

 =


Fx − qw + rw − sin(θ)

Fy − ru+ pw + cos(θ) sin(φ)

Fz − pv + qu+ cos(θ) cos(φ)



φ̇

θ̇

ψ̇

 = A2


p

q

r



ṗ

q̇

ṙ

 =


Mx

My

Mz


where

Tψ =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1



Tθ =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)



Tφ =


1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)


A1 = TψTθTφ

A2 =


1 tan(θ) sin(φ) tan(θ) cos(φ)

0 cos(φ) − sin(φ)

0 sec(θ) sin(φ) sec(θ) cos(φ)


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A discrete time model of the system can be specified as:
xt+1

yt+1

zt+1

 =


xt

yt

zt

+ ((A1)t


ut

vt

wt

)∆T


ut+1

vt+1

wt+1

 =


ut

vt

wt



+


(Fx)t − qtwt + rtwt − sin(θt)

(Fy)t − rtut + ptwt + cos(θt) sin(φt)

(Fz)t − ptvt + qtut + cos(θt) cos(φt)

∆T


φt+1

θt+1

ψt+1

 =


φt+1

θt+1

ψt+1

+ ((A2)t


pt

qt

rt

)∆T


pt+1

qt+1

rt+1

 =


pt

qt

rt




(Mx)t

(My)t

(Mz)t

∆T

where

(Tψ)t =


cos(ψt) − sin(ψt) 0

sin(ψt) cos(ψt) 0

0 0 1



(Tθ)t =


cos(θt) 0 sin(θt)

0 1 0

− sin(θt) 0 cos(θt)



(Tφ)t =


1 0 0

0 cos(φt) − sin(φt)

0 sin(φt) cos(φt)


(A1)t = (Tψ)t(Tθ)t(Tφ)t

(A2)t =


1 tan(θt) sin(φt) tan(θt) cos(φt)

0 cos(φt) − sin(φt)

0 sec(θt) sin(φt) sec(θt) cos(φt)


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where ∆T is the discrete time step.

To define the environment in the form 〈S,M, T 〉, we require a bounded state space. We choose

to use S = [−25, 25]3 × [−20, 20]3 × [−π2 ,
π
2 ]3 × [−1, 1]3, which were estimated by simulating the

environment with the controller for 20 timesteps and selecting bounds which overapproximated the

visited states. We chose to use the same bounds for semantically similar state variables. We define

M(s) = s, since the state and network input representations are the same. We define the transition

function, T as a function that takes in s ∈ S and the output of the network, y, and applies the

discrete environment model 100 times, with ∆T = 0.001 and (Fx, Fy, Fz,Mx,My,Mz) = y.

A neural network is used to control the forces and their moments of the airplane. The network

takes in a vector [x, y, z, u, v, w, φ, θ, ψ, r, p, q] that is the same as the state representation, and

outputs 6 control signals, [Fx, Fy, Fz,Mx,My,Mz]. The network is queried at a control period of

0.1 seconds.

Property: Given the environment and network defined above, the system must satisfy the follow-

ing property:

(S0 ×X × Y) =⇒ XG20(Ssafe ×X × Y)

where S0 = {0}3 × [0, 1]6 × {0}3, and Ssafe = [−∞,∞]6 × [−1, 1]3 × [−∞,∞]3, and X and Y are

the full input and output sets of the network, respectively.

G.3 DPLR: Double Pendulum (Less Robust)

This benchmark uses a neural network to control an inverted double (two-link) pendulum, which

consists of 2 balls, each of mass m = 0.5, attached to the ends of massless rods of length L = 0.5.

Each rod is actuated with a separate torque u1 and u2 for each link. The state can be modelled by

the angles of the pendulum, θ1 and θ2, from the upward vertical axis and the angular velocities, θ̇1

and θ̇2.

The continuous time dynamics are defined by:

2θ̈1 + θ̈2 cos(θ2 − θ1)− θ̇2
2 sin(θ2 − θ1)− 2 sin(θ1)

L
=

u1

mL2

θ̈2 + θ̈1 cos(θ2 − θ1) + θ̇2
1 sin(θ2 − θ1)− sin(θ2)

L
=

u2

mL2
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A discrete model of the environment can be specified as:

(θ1)t+1 = (θ1)t + (θ̇1)t∆T

(θ2)t+1 = (θ2)t + (θ̇2)t∆T

(θ̇1)t+1 = (θ̇1)t + ((θ̈1)t)∆T

(θ̇2)t+1 = (θ̇2)t + ((θ̈2)t)∆T

where

(θ̈1)t =
(crel)t(θ̇1)2

t (srel)t
(crel)2

t − 0.5

−
(crel)

2
t (

(s1)t
L
− (θ̇2)2t (srel)t

2
+ (u1)t

2mL2 )

(crel)2
t − 0.5

+
(s2)t
L

+ (u2)t
mL2

(crel)2
t − 0.5

− (θ̇2)2
t (srel)t
2

+
sin((θ1)t)

L
+

(u1)t
2mL2

(θ̈2)t =
(θ̇1)2

t (srel)t
0.5((crel)2

t − 2)

(crel)
2
t (

(s1)t
L
− (θ̇2)2t (srel)t

2
+ (u1)t

2mL2 )

0.5((crel)2
t − 2)

(s2)t
L

+ (u2)t
mL2

0.5((crel)2
t − 2)

(ci)t = cos((θi)t),where i ∈ {rel, 1, 2}

(si)t = sin((θi)t),where i ∈ {rel, 1, 2}

(θrel)t = (θ1)t − (θ2)t

, where ∆T is the discrete time step size.

To define the environment in the form 〈S,M, T 〉, we require a bounded state space. We choose

to use S = [−π, π]4, which allow the angles to cover a full rotation of the pendulum and bounds

the angular velocity to reasonably high values. We define M(s) = s, since the state and network

input representations are the same. We define the transition function, T as a function that takes in

s ∈ S and the output of the network, y, and applies the discrete environment model 100 times, with

∆T = 0.0005 and ut = y.

A neural network is used to control the torque applied to the two pendulums, with the goal of

keeping the pendulum inverted, i.e., with θ1 = θ2 = 0. The network takes in a vector [θ1, θ2, θ̇1, θ̇2]

that is the same as the state representation. The network is queried at a control period of 0.05

seconds.
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Property: Given the environment and network defined above, the system must satisfy the follow-

ing property:

(S0 ×X × Y) =⇒ XG20(Ssafe ×X × Y)

where S0 = [1, 1.3]4, and Ssafe = [−1, 1.7]4, and X and Y are the full input and output sets of the

network, respectively.

G.4 DPMR: Double Pendulum (More Robust)

This problem uses the same environment description as DPLR, except with ∆T = 0.0002 in the

definition of T .

A neural network is used to control the torque applied to the two pendulums, with the goal of

keeping the pendulum inverted, i.e., with θ1 = θ2 = 0. The network takes in a vector [θ1, θ2, θ̇1, θ̇2]

that is the same as the state representation. The network is queried at a control period of 0.02

seconds.

Property: Given the environment and network defined above, the system must satisfy the follow-

ing property:

(S0 ×X × Y) =⇒ XG20(Ssafe ×X × Y)

where S0 = [1, 1.3]4, and Ssafe = [−0.5, 1.5]4, and X and Y are the full input and output sets of the

network, respectively.

G.5 SB9: Sherlock-Benchmark-9 (TORA)

This benchmark models a system with rotational actuators. The environment consists of a cart on

a frictionless surface, which is attached to a wall with a spring. The cart contains a weight attached

to an arm, which can be rotated to move the cart. A network is used to control the actuation of

this rotating arm.
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The continous time dynamics can be defined by:

ẋ1 = x2

ẋ2 = 0.1 sin(x3)− x1

ẋ3 = x4

ẋ4 = u

, where u is the control signal.

The discrete time system can be specified as:

(x1)t+1 = (x1)t + (x2)t∆T

(x2)t+1 = (x2)t + (0.1 sin((x3)t)− (x1)t)∆T

(x3)t+1 = (x3)t + (x4)t∆T

(x4)t+1 = (x4)t + ut∆T

, where ∆T is the discrete time step size.

To define the environment in the form 〈S,M, T 〉, we require a bounded state space. We choose

to use S = [−3, 3]4. We define M(s) = s, since the state and network input representations are the

same. We define the transition function, T as a function that takes in s ∈ S and the output of the

network, y, and applies the discrete environment model 100 times, with ∆T = 0.01 and ut = y.

A neural network is used to control the actuation of the rotating arm, with the goal of stabilizing

the cart at x = 0. The network takes in a vector x = [x1, x2, x3, x4] that is the same as the state

representation. The output of the network must be normalized by subtracting a value of 10, i.e.,

u = N (x)− 10. The control period is 1.0 second.

Property: Given the environment and network defined above, the system must satisfy the follow-

ing property:

(S0 ×X × Y) =⇒ XG20(Ssafe ×X × Y)

where S0 = [0.6, 0.7]× [−0.7,−0.6]× [−0.4,−0.3]× [0.5, 0.6], and Ssafe = [−2, 2]4, and X and Y are

the full input and output sets of the network, respectively.
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G.6 SB10: Sherlock-Benchmark-10 (Unicycle Car)

This benchmark uses a neural network to control a unicycle model of a car, which can be described

by the 2-d postion of the car, x1 and x2, and the yaw, x3 and velocity x4.

The continous time dynamics can be defined as:

ẋ1 = x4 cos(x3)

ẋ2 = x4 sin(x3)

ẋ3 = u2

ẋ4 = u1

, where u1 and u2 are the speed and yaw control signals, respectively.

A discrete model of the environment can be specified as:

(x1)t+1 = (x1)t + (x4)t cos((x3)t)∆T

(x2)t+1 = (x2)t + (x4)t sin((x3)t)∆T

(x3)t+1 = (x3)t + (u2)t∆T

(x4)t+1 = (x4)t + (u1)t∆T

, where ∆T is the discrete time step size.

To define the environment in the form 〈S,M, T 〉, we require a bounded state space. We choose

to use S = [−1.141, 10.907] × [−5.125, 0.427] × [−0.175, 2.824] × [−1.607, 3.404], which was derived

from the bounds on the data in the training set for the control network by computing the min and

max values of each state variable, and then adding five percent of the range of each variable to its

lower and upper bounds to ensure full coverage of the state space. We define M(s) = s, since the

state and network input representations are the same. We define the transition function, T as a

function that takes in s ∈ S and the output of the network, y, and applies the discrete environment

model 100 times, with ∆T = 0.002 and ((u1)t, (u2)t) = y.

A neural network is used to control the speed and yaw of the vehicle. The network takes in a

vector x = [x1, x2, x3, x4] that is the same as the state representation. The output of the network

must be normalized by subtracting a value of 10, i.e., (u1, u2) = N (x) − 20. The control period is

0.2 seconds.
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Property: Given the environment and network defined above, the system must satisfy the follow-

ing property:

(S0 ×X × Y) =⇒ XF 50(Sgoal ×X × Y)

where S0 = [9.5, 9.55]× [−4.5,−4.45]× [2.1, 2.11]× [1.5, 1.51], and Sgoal = [−0.6, 0.6]× [−0.2, 0.2]×

[−0.06, 0.06]×[−0.3, 0.3], and X and Y are the full input and output sets of the network, respectively.

G.7 SP: Single Pendulum

This benchmark uses a neural network to control an inverted pendulum. A ball of mass m = 0.5 is

attached to a massless rod of length L = 0.5, which is actuated with a torque u. The state can be

modelled by the angle of the pendulum, θ, from the upward vertical axis and the angular velocity,

θ̇.

The continuous time dynamics are defined by:

θ̈ =
1

L
sin(θ) +

u

mL2

A discrete model of the environment can be specified as:

θt+1 = θt + θ̇t∆T

θ̇t+1 = θ̇t + (
1

L
sin(θt) +

ut
mL2

)∆T

, where ∆T is the discrete time step size.

To define the environment in the form 〈S,M, T 〉, we require a bounded state space. We choose

to use S = [−π, π]2, which allow the angle to cover a full rotation and bounds the angular velocity

to reasonably high values. We define M(s) = s, since the state and network input representations

are the same. We define the transition function, T as a function that takes in s ∈ S and the output

of the network, y, and applies the discrete environment model 100 times, with ∆T = 0.0005 and

ut = y.

A neural network is used to control the torque applied to the pendulum, with the goal of keeping

the pendulum inverted, i.e., with θ = 0. The network takes in a vector [θ, θ̇] that is the same as the

state representation. The network is queried at a control period of 0.05 seconds.
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Property: Given the environment and network defined above, the system must satisfy the follow-

ing property:

(S0 ×X × Y) =⇒ XXXXXXXXXXG20(Ssafe ×X × Y)

where S0 = [1, 1.2] × [0, 0.2], and Ssafe = [0, 1] × (−∞,∞), and X and Y are the full input and

output sets of the network, respectively.

G.8 VCAS

This benchmark models a system involving two aircraft, the ownship and intruder, in which the

ownship has an aircraft collision avoidance system, VerticalCAS [62], which issues climb rate advi-

sories once per second. The goal is to avoid near mid-air collisions, which occur when the ownship

are separated by less than 100ft vertically and 500ft horizontally. The ownship is assumed to have

a constant horizontal speed, and the intruder is assumed to follow a constant horizontal trajectory.

The state can be modelled by the intruder altitude relative to the ownship, h, the ownship vertical

climb rate, ḣo, the time to loss of vertical separation, τ , and the previous advisory, ap.

There are 9 possible advisories, each with an associated set of acceptable horizontal accelerations

(advisory, accelerations):

0) COC, {0}

1) DNC, {−10.7333,−9.3917,−8.05}

2) DND, {8.05, 9.3917, 10.7333}

3) DES1500, {−10.7333,−9.3917,−8.05}

4) CLI1500, {8.05, 9.3917, 10.7333}

5) SDES1500, {−10.7333}

6) SCLI1500, {10.7333}

7) SDES2500, {−10.7333}

8) SCLI2500, {10.7333}

The competition allowed tools to choose from 2 strategies for selecting accelerations. Either they

could select the worst-case acceleration that takes the ownship closer to the intruder, or they could

always select the middle acceleration. Here we always select the middle acceleration.
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The discrete time system is modelled as:

ht+1 = ht − (ḣot + 0.5(u2)t∆T )∆T

(ḣo)t+1 = (ḣo)t + (u2)t∆T

τt+1 = τ −∆T

at+1 = (u1)t

, where ∆T = 1.0 is the discrete time step size, (u1)t is the advisory predicted by the control network,

and (u2)t is the corresponding acceleration.

To define the environment in the form 〈S,M, T 〉, we require a bounded state space. We choose

to use S = [−8000, 8000]× [−100, 100]× [0, 40]× [0, 8], which was derived from the bounds specified

in the network controller specifications. The neural networks require normalized input values, so we

define M as:

M(s) =


0.0000625 0 0 0

0 0.0002 0 0

0 0 0.025 0

0 0 0 1

+


0

0

−0.5

0


. Because the system is defined as a discrete time system with ∆T = 1, the transition function is

linear, and can be exactly defined as:

T ((h, ḣo, τ, a), (u1, u2)) =


1 −1 0 0 0 −0.5

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0





h

ḣo

τ

a

u1

u2


+


0

0

−1

0



This problem is unique in that it uses 9 control networks, one of which is selected at each step

by using the previous advisory specified in the state and network input. The control period is 1.0

seconds.



APPENDIX G. BENCHMARKS FOR CLOSED-LOOP PROBLEM REWRITING 168

Property: Given the environment and network defined above, the system must satisfy the follow-

ing property:

(S0 ×X × Y) =⇒ XG10(Ssafe ×X × Y)

where S0 = [−133,−129]× {−19.5,−22.5,−25.5,−28.5} × {25} × {0}, and Ssafe = ((−∞,−100) ∪

(100,∞))× (−∞,∞)3, and X and Y are the full input and output sets of the network, respectively.



Appendix H

Additional Experimental Data for

Chapter 6

H.1 Environment Rewriting Data

Here we present data on the environment rewriting step, including the time to train and the error

of the trained models. We trained each model for 100000 iterations with batches of 100 randomly

generated input samples per iteration. We used the AdamW optimizer with an exponentially decay-

ing learning rate starting from 0.001 and ending at 0.000001. The final mean average error (MAE)

and slack bounds evaluated using a set of 50000000 randomly sampled points, independent of the

training data.

H.1.1 Time to Rewrite Environments

The times to train each model are shown in Tables H.6 and H.7. Table H.6 shows the time in seconds

of the linear models used in Experiment 1 of our evaluation. VCAS uses a linear environment model,

and so did not require training as it can simply be directly converted to a neural network. All models

except that of the AP benchmark took less than 10 minutes to train. The environment model for

the AP problem is complex, with 12 state variables, 6 control variables, and is highly non-linear,

and computing the ground truth labels at every iteration was an expensive step, leading to increased

time cost.

169
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Table H.1: Mean absolute error (MAE) for each model in Experiment 1. All models are linear.

Benchmark MAE

ACC 0.0020063617
AP 0.43135616
DPLR 0.36752835
DPMR 0.14504883
SB9 0.027825627
SB10 0.08174728
SP 0.01977753
VCAS NA

Table H.2: Mean absolute error (MAE) for each SB9 model.

Model MAE

Linear 0.027953
Non-linear (64 hidden units) 0.002881
Non-linear (128 hidden units) 0.002061
Non-linear (256 hidden units) 0.001648
Non-linear (512 hidden units) 0.002437

H.1.2 Fidelity of Rewritten Environments

Here we present the error of each rewritten model, as both the MAE and the slack bounds.

Tables H.1 and H.2 present the MAE of each model for Experiment 1 and 2, respectively. No

model was trained for VCAS because bothM and T were linear and could be trivially encoded as a

network using a single GeMM operation. The MAE values are not necessarily between benchmarks

as each model has different size input and output vectors with different scales.

Tables H.3, H.4, and H.5 present the slack intervals for the state values of each model. The

model for the AP benchmark in Experiment 1 is presented separately in Table H.4 due to space

considerations, since it has double the number of state variables as the benchmark with the next

largest state vector. The slack bounds tend to be relatively low for most benchmarks, showing that

these models can capture the environment model. The linear model does quite poorly for the AP

benchmark, where 2 variables have slack bounds with magnitudes around 20000. We believe this is

due to the extreme nonlinearity of the environment and the large input space.

H.2 Experiment 1

In this section we present detailed accounts of the verification results reported by ARCH-COMP

AINNCS participants, as well as the verification results obtained by our rewriting approach with
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Table H.3: Measured slack intervals for the trained linear environment models in Experiment 1,
excluding AP, which is presented separately due to space considerations.

State ACC DPLR DPMR SB9 SB10 SP

x1 [−0.001, 0.001] [−0.089, 0.090] [−0.015, 0.014] [−0.661, 0.693] [−0.079, 0.079] [−0.003, 0.003]
x2 [−0.002, 0.000] [−0.113, 0.113] [−0.018, 0.018] [−0.887, 0.420] [−0.147, 0.147] [−0.122, 0.122]
x3 [−0.019, 0.006] [−3.657, 3.685] [−1.474, 1.457] [−0.128, 0.124] [−0.000, 0.000]
x4 [−0.001, 0.001] [−4.644, 4.632] [−1.836, 1.835] [−0.103, 0.100] [−0.128, 0.097]
x5 [−0.001, 0.001]
x6 [−0.018, 0.006]

Table H.4: Measured slack intervals for the trained linear environment model used for the AP
benchmark in Experiment 1.

State AP

x1 [−3.841, 3.808]
x2 [−4.548, 4.547]
x3 [−3.787, 3.801]
x4 [−4.220, 4.163]
x5 [−4.254, 4.299]
x6 [−4.203, 4.346]
x7 [−20103.314, 21869.316]
x8 [−0.229, 0.235]
x9 [−19719.666, 21869.324]
x10 [−0.000, 0.000]
x11 [−0.000, 0.000]
x12 [−0.000, 0.000]

open-loop verifiers. We present the results of the verifiers in Table H.8. The top section of the table

shows the participating verifiers by competition year (descending), then alphabetically. The bottom

section of the table shows the results using open-loop verifiers after applying our rewriting approach.

Each column is one of the benchmark problems and each row is a verifier. Each cell indicates the

reported result of each tool with a symbol indicating our classification as one of the following:

• Correct result for the original problem ( )

Table H.5: Measured slack intervals for each SB9 model.

State Variable
Model x1 x2 x3 x4

Linear [−0.079, 0.079] [−0.15, 0.15] [−2.1e− 5, 2.0e− 5] [−0.13, 0.097]
64 hidden units [−0.13, 0.23] [−0.20, 0.082] [−0.34, 0.23] [−0.32, 0.38]
128 hidden units [−0.16, 0.15] [−0.22, 0.20] [−0.38, 0.19] [−0.19, 0.20]
256 hidden units [−0.068, 0.051] [−0.12, 0.093] [−0.15, 0.13] [−0.093, 0.094]
512 hidden units [−0.056, 0.082] [−0.10, 0.10] [−0.073, 0.081] [−0.086, 0.12]
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Table H.6: Time to train a linear environment model for each benchmark problem.

Benchmark Time (seconds)

ACC 431
AP 3247
DPLR 321
DPMR 310
SB9 305
SB10 243
SP 190
VCAS NA

Table H.7: Time to train each SB9 model.

Model Time (seconds)

Linear 305
Non-linear (64 hidden units) 286
Non-linear (128 hidden units) 292
Non-linear (256 hidden units) 294
Non-linear (512 hidden units) 295

• Spurious violation for the original problem ( )

• Incorrect holds result for the original problem (X)

• Tool ran on, but produced no result for, the original problem (U)

• Tool ran on, but produced an error on, the original problem (E)

• Correct result on modified problem with reduced input space ( ′)

• Returned a result on a modified problem (?′)

.

H.2.1 Results for ARCH-COMP AINNCS Participants

The JuliaReach [14] verifier fully supports benchmarks ACC, SB9 and SB10. It does not support the

VCAS benchmark due to the use of multiple controllers and a discrete-time system. On benchmarks

AP, DPLR, DPMR, and SP, the tool authors modified the input space of the problem to contain a

single point using knowledge of a known counter-example to focus their tool and ensure a counter-

example was found.
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Table H.8: Verification results on the ARCH-COMP AINNCS benchmarks by AINCSS 2020 and
2021 closed-loop verifiers (above the line) and by open-loop verifiers in conjunction with property,
environment, and network rewriting.

Verifier ACC AP DPLR DPMR SB9 SB10 SP VCAS Total

C
lo
se

d
-l
o
o
p

JuliaReach ′ ′ ′ ′ 3
NNV U ′ ′ U U ′ 2
Verisig ?′ 0
ReachNN* U U U 0
OVERT U U 2
VenMAS ?′ ?′ ?′ 2

O
p
e
n
-l
o
o
p Rewriting+ERAN U U U U U U 2

Rewriting+Marabou U U U X 4
Rewriting+Neurify E U 5
Rewriting+nnenum E U 6

NNV [129] supports, and was able to return results for the ACC and VCAS benchmarks. While

NNV was able to run on the SB9 and AP benchmarks, it could not provide a result due to the

overapproximation of the reachability analysis used. Additionally, NNV could reportedly run on

SB10, but ran out of memory (32GB) and did not provide a result. Finally, on benchmarks DPLR,

DPMR, and SP, the tool authors modified the input space of the problem using knowledge of a

known counter-example to focus their tool and ensure a counter-example was found.

Verisig [59] supports only smooth activation functions, limiting its application to the benchmarks.

Verisig was run on a different version of the ACC benchmark, using both a different controller and

a property with different initial conditions.

ReachNN* [36] was able to run on the ACC and SB9 benchmarks, but had large overapproxima-

tion errors. In the case of large overapproximation errors, ReachNN* distills new control networks

and attempts to verify the problem with those instead of the original controllers. In this case,

both of these benchmarks could be verified by ReachNN* using the distilled controllers, however

the verification result is not meaningful for the original problem. ReachNN* could also reportedly

run on the AP benchmark, but was unable to return a result after running out of memory (32GB).

ReachNN* does not support SB10 due to the use of multiple controller outputs, and it does not

support VCAS due to the discrete-time dynamics. No results were reported for the DPLR, DPMR,

or SP benchmarks.

The OVERT [112] verifier was designed to verify discrete-time systems, and so they first discretize

the continuous-time dynamics of the 4 benchmarks on which they evaluate their tool, ACC, SB9,

SB10, SP. While this means that they are verifying a fundamentally different system than the

continuous-time version, we do not penalize them for this change in this analysis. After discretization,
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OVERT runs and returns results on the SP and SB9 benchmarks. While OVERT was able to run

on the discretized versions of the ACC and SB10 benchmarks, it was not able to check the property

up to the full time bound.

Similar to OVERT, VenMAS [2] is designed for discrete-time systems, and discretized continuous-

time dynamics when necessary. Additionally, to support non-linear terms in the dynamics model,

it trained neural network approximations of some functions, such as sin(x), x sin(y), and x cos(y).

VenMAS fully supports the VCAS benchmark, and it supports the ACC benchmark after discretiza-

tion. While VenMAS was run on the SB9, SB10, and SP benchmarks, the tool authors first had to

convert several non-linear operations in the environment models to neural network approximations,

which produces a new problem that can lead to incorrect results. In particular, the use of neural

network approximations on SB10 for x sin(y) and x cos(y) led to an incorrect proof of the result to

be reported. In particular, VenMAS shows that the vehicle reaches the target region in 24 time

steps, but using the true environment, it doesn’t reach the target region until step 50. VenMAS was

not run on the AP, DPLR, and DPMR benchmarks due to their highly non-linear models.

H.2.2 Results for Probelm Rewriting plus Open-Loop Verification

Our rewriting approach enabled the application of many open-loop verifiers, 4 of which we explore

in this work.

After rewriting ERAN was able to return results for 2 benchmarks, ACC and VCAS. Because

ERAN uses a reachability method it frequently reported unknown results. It was, however, able to

prove that the property was true for the discrete version of ACC, and was able to prove that the

VCAS property was violated.

After rewriting Marabou was able to return results for 4 benchmarks, finding verified violations

for the AP, DPLR, DPMR, and SP benchmarks. While it did run on ACC, SB9, and SB10, it ran

out of memory on ACC, and exceeded the time limit on both SB9 and SB10. Additionally, Marabou

incorrectly reported a holds result for the VCAS benchmark. We plan to open a bug report to the

maintainers of this tool with this example.

After rewriting Neurify was able to return results for 5 benchmarks, finding verified counter-

examples for DPLR, DPMR, SP, and VCAS. It also correctly reported a holds result for the discrete

time ACC benchmark. Neurify also returned a counter-example for the AP benchmark, which was

determined to be spurious after checking it against the ground truth environment model. Neurify

was not able to return a result on SB10 due to exceeding the 30 minute time limit. On SB9, the

Neurify tool encountered an error and did not return a result.
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(a) Linear model.

(b) Non-linear model with hidden layer of size 64. (c) Non-linear model with hidden layer of size 128.

(d) Non-linear model with hidden layer of size 256. (e) Non-linear model with hidden layer of size 512.

Figure H.1: Verification results per problem bound. Problems on the left should have violations and
problems on the right should hold. In between, a transition occurs. Problems nearer the transition
are more challenging.

After rewriting nnenum returned results for 6 of the 8 benchmarks. It found verified counter-

examples for AP, DPLR, DPMR, SP, and VCAS, and correctly returned holds for the discrete time

ACC benchmark. Similar to Neurify, nnenum exceeded the time limit on SB10, and encountered an

error on SB9, causing it to exit before returning a result.

H.3 Experiment 2

The full results of the open-loop verifiers on the rewritten closed-loop problems using the 5 environ-

ment models described in Experiment 2 are shown in Figures H.1. Results are classified as either
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correctly being a holds result or violated result, being a spurious violation (when checked agains the

ground truth environment), or being one of unknown, timeout, error. An error result indicates that

the verifiers began running, but encountered an issue internally and terminated before returning any

result.

As shown in the paper, the linear environment model performs the best, returning the most

correct results. Of the non-linear models, the larger models tended to perform better in terms of the

number of correct results. These results also show that as the problems move from sat to unsat (left

to right), the verifiers return fewer results, with the middle problems returning the fewest correct

results. The problems in the middle are more difficult for the verifiers, and lead to more timeout

and error results.
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