

Improving Business Development Using Gamification

A Capstone Report

presented to the faculty of the

School of Engineering and Applied Science

University of Virginia

by

Marcus Mann

May 8, 2023

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Marcus Mann

Capstone advisor: Rosanne Vrugtman, Department of Computer Science

Improving Business Development Using Gamification

CS4991 Capstone Report, 2023

Marcus Mann

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

mpm7cf@virginia.edu

ABSTRACT

Elder Research, a Charlottesville-based data

consulting company, needed to improve their

understanding of employee knowledge

regarding industry tools and methods, which

required individual employees to input their

experience into the internal company wiki,

“The Vault”. To encourage employees to

input their data, I designed a point and badge

system, which rewarded users for

contributing to The Vault and completing

technical certifications. I achieved this using

the Ruby on Rails framework, PostgreSQL,

and expanding Redmine's functionality. For

the point system, I designed a leaderboard

system for users to compare their point totals,

and for the badge system, I used design

philosophies from 2007 video game Halo 3.

As a result, Elder Research's business

development team was able to encourage the

50+ technical employees to adequately

populate The Vault with employee

knowledge. Additionally, the gamification

system encouraged employees to compete for

a higher position on the point leaderboard. In

the future, I plan to account for length of

content edited to encourage detailed

contributions.

1. INTRODUCTION

How can a data consulting company ensure

that their business leaders have an accurate

representation of their employees’ knowledge

base across different technology stacks? To

address this problem, Elder Research needed

to create an internal system that allowed

employees to share their knowledge quickly

and easily. However, anecdotally, employees

do not enjoy maintaining a wiki with their

work experience. To intrinsically motivate the

employees, I designed a point, leaderboard,

and badge system that rewarded users for

contributing to the company's internal wiki.

The Vault system was created using the Ruby

on Rails framework and PostgreSQL, and by

expanding the functionality of Redmine, an

open-source issue tracker Elder Research

leveraged to organize company knowledge.

Through this system, Elder Research was able

to encourage employees to share their

knowledge and stay up to date on their

industry's tools and methods.

2. RELATED WORKS

The most influential related work was from

the video game Halo 3 (2007). In Halo 3,

medals would be awarded to the player for

completing specific objectives, such as

getting five kills in a row (Fig. 1). However, I

found little research regarding specific

implementations of gamification systems.

 One system I investigated was the

Stack Overflow reputation system (Stack

Overflow, n.d.), which grants users reputation

based on feedback from other users. Even

though the presentation of the reputation

matched the goal for Elder Research’s

system, the fundamental goal was different.

Stack Overflow says their reputation system

“is a rough measurement of how much the

community trusts you,” which is not

applicable to the Vault, given that we can

trust all employees to update the Vault with

accurate information.

Figure 1—Halo 3 Medical Chest

3. PROJECT DESIGN

The project required modifications of the

existing Redmine system to capture and

display the points and badges. These were

broken down into several different features.

3.1 SYSTEM REQUIREMENTS

In order to meet the client’s end goal and

make a product that is designed to work as

they intend, it is important to acquire a

comprehensive list of system requirements.

3.1.1 Point System

Minimum Requirements

As a user, I should be able to:

• receive a point if I make an edit on a

wiki page in The Vault

• compare the amount of points I have

accrued to other users on a

leaderboard

• view the number of points I have

accrued on any page of The Vault.

3.1.2 Badge System

As a user, I should be able to:

• view the number of badges I currently

have on any page of The Vault.

• view all of the badges that I could

earn.

• view who has earned a badge.

• view the cumulative number of

badges all users own.

• nominate another user for a badge.

As an administrator, I should be able to:

• approve a badge nomination.

• submit a new type of badge, including

the name of the badge and the image

of the badge.

• approve a new type of badge.

Desired Requirements:

As a user, I should be able to:

• view badges in a similar manner to

Figure 1.

3.2 SYSTEM LIMITATIONS

Because The Vault is a Redmine- (and

therefore Ruby on Rails)-based web

application, the point system and badge

system both needed to be designed in

accordance with Redmine design patterns.

These closely matched Ruby on Rails Model-

View-Controller (MVC) patterns, meaning

we were required to use ActiveRecord for

interacting with PostgreSQL for designing

our data models, and using the Embedded

Ruby (ERB) templating system. Redmine

introduced additional limitations for

recommended design patterns: Redmine

introduced the notation of

“acts_as_attachable,” which is a model-

agnostic way of attaching files from the file

system onto a data model.

Redmine also introduced the notion of

plugins and hooks, which are used to add

more features to the codebase without

overwriting code from the original codebase.

I found this essential for reducing the

difference between the base Redmine

codebase and our modified Vault codebase. I

found it important to keep them similar

because Redmine regularly released security

and feature updates, and if we overwrote base

Redmine code, it created Git merge conflicts

in the future.

3.3 KEY COMPONENTS

We created different specifications for the

point and badge systems, which mostly

revolved around the database models. We

also ran into Redmine-specific challenges,

such as sparse documentation and

deployment challenges.

3.3.1 Specifications

For the point system, I originally considered a

system where we would add a database

migration that would expand the User model

to record a point value. However, this system

was not dynamic enough for the client’s

needs, as they wanted to deterministically

recreate the point value of each user at any

point in time. Fortunately, Redmine’s wiki

system kept track of each change a user made

to each wiki page, meaning that summing the

number of wiki edits a user made was

possible. Because of this, we were able to

create a SQL view that aggregated user

contributions as a single number value. This

satisfied the client requirements of a

deterministic, dynamic point calculation.

For the badge system, three models were

required: a Badge model, a Badge Group

model and a Nomination model. The Badge

model contained an author, a BadgeGroup, a

user group, a many-to-many relationship with

the Nomination model, a many-to-many

relationship with the User model, and an

image, which was attached with the

“acts_as_attachable” extension provided by

Redmine.

The BadgeGroup model was responsible for

organizing the visualization of the badges to

match Figure 1. In the end, we had a name,

description, and priority field for badge

groups. The priority field was responsible for

allowing the users to control the order of the

rows of badges in the interface.

Finally, the Nomination model was

responsible for tracking the process of giving

a badge to a user, from nomination to

approval/rejection. A nomination represented

the many-to-many relationship between

badges and users. We used the “journal”

system, in which each change would be

stored as a new row in a database table, and

the aggregate of changes would represent the

current version of a Nomination. This journal

system was used in the wiki page model in

the Redmine codebase and was adapted for

my use case. A nomination would have 3

states: nominated, granted, and rejected.

3.3.2 Challenges

We encountered multiple challenges. Ruby on

Rails has a plethora of documentation, but

Redmine’s documentation was considerably

sparser. This made interacting with the

attachment system and the journal system

considerably more tedious than necessary.

However, the largest challenge was a lack of

hooks for introducing custom behavior into

base Redmine interfaces. While adding

menus for the badge display page was well

supported, meeting the client requirement of

“As a user, I should be able to view the

amount of points/number of badges I

currently have on any page of The Vault”

required editing base Redmine code, which

introduced necessary technical debt.

Additionally, the client deployed Redmine

with JRuby, a Ruby interpreter written in

Java, which was no longer supported by

Redmine. Finally, the vast test suite provided

by Redmine relied on the default localization

files, which the client overrode with

company-specific language. For instance, in a

default version of Redmine, each ticket would

be described as an “Issue.” However, in The

Vault, this was renamed an “Artifact.” The

test suite written for Redmine assumed this

when testing, resulting in the entire Redmine

suite not being available. This led to

maintenance issues that have yet to be

resolved.

3.3.3 Solutions

While the temporary solution for minimum

viable product (MVP), the JRuby issue has

been resolved by switching to a Docker based

deployment, allowing us to mitigate the

Windows-specific issues of CRuby, the

default Ruby interpreter, not being

compatible with the operating system.

Instead, by running in a Linux-based Docker

container, we can control our environment to

use the correct PostgreSQL drivers, install the

correct dependencies, and successfully deploy

regardless of which system we are running

on.

4. RESULTS

As of March, 2023, users have nominated

each other for over 50 badges, used the badge

system to track certifications, and overall

users have accrued over 2000 points across

<200 employees. These certifications are in

the process of being integrated with the

client’s resume generating system, which

would be used to generate employee resumes

to bid on contracts in the future.

5. CONCLUSION

This project has successfully addressed the

need for an efficient and engaging method of

capturing and maintaining employees'

knowledge within Elder Research. The

implementation of a point, leaderboard, and

badge system has proven to be a meaningful

and valuable approach, resulting in increased

employee engagement and better knowledge

sharing across the organization. By

combining gamification elements with

practical applications, such as tracking

certifications for the company's resume-

generating system, the project has not only

enhanced the internal knowledge base but has

also provided tangible benefits for clients and

future business opportunities. As the

company continues to grow and evolve, this

innovative solution will remain a key asset in

ensuring a comprehensive and up-to-date

understanding of industry tools and methods

among employees.

6. FUTURE WORK

Elder Research's current implementation of

the point, leaderboard, and badge system has

been successful in promoting employees'

contribution to the internal wiki. However,

there is still an opportunity for improvement.

One suggestion is to integrate content length

as a factor in determining rewards; this

incentivizes staff to produce more substantive

contributions that benefit the company's

knowledge base. Presently, the system

rewards points based on how many edits were

made without considering the quality or

length of the revision. Enhancing the point

reward system will encourage employees to

provide higher quality contributions.

REFERENCES

Stack Overflow. (n.d.). What is reputation?

How do I earn (and lose) it? Stack

Overflow.

https://stackoverflow.com/help/whats-

reputation

Halo 3. Xbox 360, Microsoft Game Studios,

2007.

