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Preface [

Abstract

This dissertation describes two projects using mass spectrometry to analyze
proteins. In project one we use LC-MS/MS and electron transfer dissociation to
investigate the relationship between two Arabidopsis thaliana proteins, RGA and SPY,
which are key plant growth regulators. SPY had previously been identified as an
O-GIcNAc transferase that modified RGA, but our work led to the discovery that SPY is
in fact a novel O-fucose transferase. Furthermore, we have established that O-GIcNAc
and O-fucose modification have opposing effects on RGA. Modification with O-GIcNAc
represses the growth inhibiting function of RGA, while O-fucose enhances it.

The second project describes the use of mass spectrometry to identify proteins
that selectively bind to regions of DNA, called somatic hypermutation (SHM) enhancer
regions, shown to be necessary for targeting SHM to the Immunoglobulin gene variable
region in B cells. SHM is a key step in the immune system’s generation of high affinity
antibodies, but how the mutational process is confined to the immunoglobulin locus is not
yet understood. Using a label free quantitation strategy we identify a number of nuclear
proteins from the DT40 and Ramos B cell lines, in particular the transcription factors

Ikaros and Aiolos, that preferentially bind to enhancer DNA vs. control DNA.
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Chapter 1: Introduction to the Dissertation

1.1 Overview

This dissertation describes two collaborative research projects in which mass
spectrometry is used as a tool to identify and characterize proteins. In chapter two we
investigate the relationship between two Arabidopsis thaliana proteins, RGA and SPY,
which are key plant growth regulators. While these proteins have been the subject of
significant study because of their implications in regulating the growth of modern high
yield genetic variants of cereal grains (wheat, corn, rice), which are an indispensable part
of the worldwide food supply, serious questions about their roles in the cell remained. It
has long been suspected that SPY post-translationally modifies RGA, but the
experimental approaches employed so far could not definitely answer that question. Our
work yielded surprising new insights about the relationship between RGA and SPY that
could not have been obtained without mass spectrometry, and these results are important
for understanding not just plant growth, but cell signaling, and protein post-translational
modification at large.

Chapter three describes the use of mass spectrometry to identify proteins that
selectively bind to a region of DNA shown to be necessary for targeting somatic
hypermutation (SHM) to the Immunoglobulin gene variable region in B cells. SHM is a
key step in the immune system’s generation of high affinity antibodies, which are
necessary to protect from extracellular pathogens like viruses. Conversely, failure to

properly regulate this mutational process is a possible source of B cell lymphomas. Here,
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mass spectrometry was essential to distinguish the complicated array of proteins present
in our samples.

These two projects differ in their goals, detailed characterization of a few proteins
versus identification of many proteins, but the foundational mass spectrometry
experiment employed is identical. This introductory chapter will begin by describing the
general structure of proteins, how they are produced by the cell, and their importance in
biology. It will then outline the mass spectrometry experiment applied to study proteins
in these two very different research projects. The necessary theory and instrumentation
background is presented as it relates to the specific instrument used for this work, The
Thermo Scientific™ Orbitrap Fusion™ Tribrid™ (Fusion). The introduction closes with
a discussion of recent instrumental advances incorporated into the Fusion system, and
how those advances have affected the MS/MS experiment central to both research
projects.

Chapter 2 is a testament to the impressive depth of analysis possible when
studying protein post translational modification with the most advanced instrumentation.
Chapter 3 highlights these advances as well, but also serves to articulate the challenges
facing the field of protein MS. In a highly complex sample many of the components
investigated by MS/MS are never identified, and some of these likely represent important
peptides that could identify new proteins or proteo-forms. Before dealing with these

challenges, however, we begin by addressing the question why study proteins at all?
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1.2 Introduction to Proteins

A protein is a macromolecule composed of a chain of smaller molecules called
amino acids. There are twenty common amino acids. Each has an identical chemical
backbone but a unique functional side group. Figure 1.1 shows the complete structures
of all 20 common amino acids organized by the chemical properties of their side groups.
The chain is held together by peptide bonds between the carboxyl end of one amino acid
and the amine group of the next (Figure 1.2). A chain of amino acids has a free amine
group at one end called the N-terminus, and a free carboxyl group at the other called the
C-terminus. Each amino acid has an associated three letter abbreviation and 1 letter code
(Table 1.1); protein sequences are typically represented using the 1-letter codes and
displayed with the N-terminus on the left and the C-terminus on the right.

Proteins can vary tremendously in size; from fewer than fifty to thousands of
amino acids in length. Long chains of amino acids are called poly-peptides, and this
word is sometimes used interchangeably with proteins. Prior to mass spectrometry
analysis purified proteins are often broken down into shorter groups of amino acids
through enzymatic digestion. These small amino acid chains are called peptides.

A protein’s amino acid sequence is also called its primary structure. The amino
acid chain folds into higher order structures based on the chemical properties of the side
chains in the primary structure; as examples, nonpolar side chains like valine and leucine
will associate with one another through hydrophobic interactions, hydrogen bonds can
form between acidic and basic side chains, proline binds onto its own backbone causing a

sharp bend in the polypeptide chain, and cysteines form disulfide bonds with one another.
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The chemical properties of the primary structure generate organized secondary
structures called alpha helices and beta sheets. These associate with one another and
remaining disordered sections of the amino acid chain to create even more complex
tertiary structures. Many proteins also join together into complexes. Whether made
from a single protein or many, these unique three dimensional assemblies of amino acids
can then perform highly sophisticated functions based on their shape and chemical

properties.

O——0O
21
QO—0O

T T B
H H

Figure 1.2: The peptide bond. Shown here is the dipeptide glycine-glycine. The peptide bond is
highlighted in green, the amine terminus in blue, and the carboxyl terminus in red.

The order of the amino acids that compose a protein is dictated by the cell’s
genetic material, its DNA. DNA, or deoxyribonucleic acid, is stored in the cell’s nucleus
as a double stranded antiparallel chain repeating four nucleic acids, Adenine, thymine,
guanine, and cytosine, joined together by phosphodiester bonds. The nucleic acids form
complementary pairs based on hydrogen bonding, A to T and G to C, so that each DNA
strand is paired with its inverse complement strand. The region of DNA that codes for a
given protein is called a gene. Protein synthesis starts when the cell transcribes the

sequence of DNA bases from one gene into another nucleic acid chain, messenger RNA
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(mRNA). mRNA is similar in structure to DNA, but its backbone is ribose instead of
deoxyribose, the base thymine has been replaced with uracil, and it is single stranded.
After the transcription of a gene into mRNA is complete, mMRNA is transported
out of the nucleus and onto a structure called the ribosome. On the ribosome mRNA is
translated into a sequence of amino acids with the help of another nucleic acid,
translational RNA (tRNA). Each molecule of tRNA pairs with a specific set of three

MRNA nucleotides and carries with it the single amino acid indicated by that three letter

code (Table 1.2). The 20 Common Amino Acids
Chemical
Name 3-letter code 1-letter code Composition
Glycine Gly G C,HsNO
Alanine Ala A C3H:NO
Serine Ser S C3HsNO;
Proline Pro P CsH,NO
Valine Val \" CsHgNO
Threonine Thr T C4H;NO,
Cysteine Cys C C3HsNOS
Leucine Leu L CegHq11NO
Isoleucine lle | CgH11NO
Asparagine Asn N C4HgN-0,
Aspartic Acid Asp D C4HsNO3
Lysine Lys K CsH12N,0
Glutamine GIn Q CsHgN,0,
Glutamic Acid Glu E CsH;NO3
Methonine Met M CsHgNOS
Histidine His H CgHsN30
Phenylalanine Phe F CyHsNO
Arginine Arg R CgH1oN 4O
Tyrosine Tyr Y CoHgNO
Tryptophan Trp w C11H10N,0

Table 1.1: Abbreviations of the twenty common amino acids
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As new amino acids are brought into place by tRNA they are ligated onto the C-
terminus of the growing amino acid chain. The formation of new peptide bonds is
catalyzed by proteins within the ribosome structure. As the synthesis of its primary
structure progresses the protein folds into secondary and tertiary structures. Once mRNA
translation is complete and the ribosome releases the new protein it can finish forming its

unique three dimensional structure.

The Genetic Code

Amino Acid mRNA codes
Glycine GGU GGC GGA GGG
Alanine GCU GCC GCA GCG
Serine AGU AGC
Proline CCUCCCCCACCG
Valine GUU GUC GUA GUG

Threonine ACUACCACAACG
Cysteine UGU UGC
Leucine CUU CUC CUA CUG

Isoleucine AUU AUC AUA AUG

Asparagine AAUAAC
Aspartic Acid GAU GAC
Lysine AAA AAG
Glutamine CAA CAG
Glutamic Acid GAA GAG

Methonine AUG

Histidine CAUCAC
Phenylalanine UuuU uucC
Arginine AGA AGG
Tyrosine UAU UAC
Tryptophan UGG

Table 1.2: The genetic code. Amino acids in the left hand column are paired with molecules of tRNA
complementary for one of the mRNA triplets list on the right. As tRNA associates with mRNA according
to the code amino acids are ligated together into a poly-peptide.
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Because a protein’s amino acid sequence ultimately determines its structure and
function, and this sequence is contained within the genetic data of the cell, one might
expect DNA to provide all the information necessary to understand a protein; like having
detailed architectural drawings for a building. Fortunately for the field of mass
spectrometry this is not the case for three reasons.

First, DNA alone is not an accurate representation of a protein’s final amino acid
sequence. Before mRNA is trafficked out of the nucleus and translated into protein, it
can be edited through a process called splicing. Proteins sometimes have multiple
functional subunits, all of which may not be necessary at a given time. Splicing allows a
single gene to code for a set of functional subunits that can be assembled into proteins
with overlapping but distinct sequences and cellular functions [1].

Second, proteins can be chemically altered during or after their translation from
MRNA. These changes are called post-translational modifications (PTMs) [2,3]. PTMs
are covalent modifications to the side chains of amino acids, or to the free amino or
carboxy termini of proteins. PTMs have no relationship to a protein’s parent gene. Some
common PTMs are shown in Figure 1.3. PTMs can be dynamic, meaning they come on
and off of proteins rapidly (in seconds or less) during the course of specific cellular
processes, or change the chemical structure of a protein for the duration of its existence.
The specific amino acid residue on which a PTM occurs can be important to its effect,
and a single protein can have many post-translational modifications to its primary
structure. The many unique combinations of splice variants and post-translational

modifications that can exist for a given protein are commonly referred to as proteoforms,
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and two proteoforms of the same underlying protein may have different roles inside the
cell.

Third, proteins are inherently interactive. Every protein must bind to another
molecule at some point to perform its function. This means that contextual factors are as
important as a protein’s chemical properties in understanding its function. Where and
when in the cell does a protein act, and what other molecules (proteins, lipids,

carbohydrates, etc.) are present when it does?

O-phosphorylation & serine residos o
o 0=p-0°
/ETW ATP ADP o
-+ —\h—f—-mui'\w
(=]
=Meacykation at lysine residue =}
MH; HN™ R
CoASR CoAsH r
L | B
N N
o ]

=M=alkylalion al ksine residoe

MH; HN’CHJ’
/{ SAM SAH r
anh) A
H HAWW
o ]

OH

Q-glycosylation al senne resides
e HOTX0,
OH HO

UDP-Glucose UDP HO &

N S
M”f\; . ’r‘y

Cwidation ai proline residua

Figure 1.3: Examples of post-translational modification. Figure adapted from [2].
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These three conditions mean that thorough study of a protein’s function requires
one to determine its primary amino acid sequence, and the type and location of any
PTMs, in a way that is specific in space and time within the cell. Complete primary
structure analysis of a protein captured from a specific cellular event should be the
protein analytical chemist’s goal. This is the only way to determine which proteoforms
are at work in which cellular processes.

Mass spectrometry has the capability to sequence proteins and map post-
translational modifications [4]. The high sensitivity of modern MS means that small
amounts of protein purified from selected cellular compartments or at specific time points
can be characterized. While it does not yet always provide comprehensive sequence
analysis, mass spectrometry has become the dominant technique for protein sequencing,
PTM mapping, and identification of proteins within complex samples. The next part of
this chapter will describe in detail how mass spectrometry is currently applied to the
analysis of proteins.

1.3 How Proteins are Studied by Mass Spectrometry

The protein identification and sequencing mass spectrometry method described in
this section has been divided into phases; protein extraction and preparation, liquid
chromatography, electrospray ionization, tandem mass spectrometry, and data analysis.
Each phase is described generally with an emphasis on the purpose it plays in the overall
mass spectrometry experiment. Specific parameters for the experiments in chapters two
and three are provided in the methods sections of those chapters. Each section is

presented in the order that it occurs experimentally with the greatest emphasis placed on
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the tandem mass spectrometry experiment (MS/MS) that is the foundation of protein
sequencing and PTM mapping.
1.3.1 Protein Extraction and Preparation

Both projects discussed in this dissertation followed a similar sample preparation
strategy. Proteins were isolated from tens of millions of cells in a multistep protocol that
involved mechanical cell lysis, followed by some form of targeted protein capture and
removal of non-protein components. The objective was to eliminate the non-protein
components of the cell (lipids, nucleic acids, etc.), and significantly reduce the number of
proteoforms present so that the protein(s) of interest would have a higher relative
abundance in the sample. Once the protein(s) of interest were purified they were broken
into short peptides by proteolytic digestion with the enzyme trypsin. The purpose of
digestion is the break the protein(s) down into peptides of a size amenable for
chromatographic separation and MS/MS analysis.
1.3.2 Liquid Chromatography

Peptides were separated and concentrated in line with the mass spectrometer by
nano-flow reverse phase liquid chromatography (n-RPLC) [5]. Peptides in aqueous
solution were pressure loaded onto a homemade capillary liquid chromatography pre-
column using a helium bomb (Figure 1.4). The column was then connected to an LC
system and rinsed with 0.1% acetic acid in water for several column volumes to remove
salts leftover from the sample preparation buffers. The pre-column was then connected
with a teflon sleeve to a second analytical column that had an approximately 3

micrometer (um) spray tip on one end created with a laser puller.




Chapter 1: Introduction to the Dissertation 12

AN

Silicate frit

packing slurry

Helium —— | L oo

sample solution

!{-\\\
o

Flow

Figure 1.4: A helium capillary column pressure bomb. Helium is pumped into the bomb at 100-500psi.
The increased pressure inside the bomb forces the solution inside the tube out of the bomb through the
fused silica capillary. Druing column packing the solid phase bead accumulate behind the poros silicate frit
blocking the end of the capillary. The same setup is used for sample loaded on columns already containing
stationary phase.

Both columns were constructed from polyimide coated fused silica capillaries of
75 pum inner diameter and 360 um outer diameter. A solution of three parts potassium
silicate and one part formamide was allowed to polymerize at the end of the capillary to
form a porous barrier, behind which a methanol slurry of 5 um porous silica beads
functionalized with 18 carbon chains (C18) was packed into the capillary also using a
helium pressure bomb.

Once inside the capillary peptides will preferentially partition between the

hydrophobic stationary phase (C18 groups on the silica beads) and the liquid phase

(solvent flowing through the capillary) based largely on their hydrophobicity, but also on
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other factors not completely understood. Peptides are loaded onto the columnin a
solution of 0.1% acetic acid in water and are retained on the stationary phase. Once the
two columns are connected to the LC and MS/MS analysis begins the solvent
composition is gradually changed to increasing levels of acetonitrile. As the organic
composition of the solvent increases peptides can move out of the stationary phase and
into the mobile phase, elute off of the column, and pass into the mass spectrometer for
analysis.

A purification method targeting a single protein will still capture lower amounts
of hundreds of different proteins that are then digested into tens of thousands of distinct
peptides that fall within the detection limits of the mass spectrometer. With the high
sensitivity of modern mass spectrometers there is no such thing as a truly simple sample.
Chromatographic separation is essential to reduce the number of peptides passing into the
detection system at a given moment. Additionally, LC serves as a concentration step by
focusing the many copies of a given peptide into a small liquid volume eluting off of the
LC system over a few seconds to minutes. With the mass spectrometer serving as a
detection system, liquid chromatography peak areas can also be used to collect relative
quantitative information about the peptides eluting from the column.

The liquid chromatography used in this research is distinct in that it was
conducted at flowrates of approximately 100 nanoliters per minute, while the vast
majority of LC is performed at flow rates of greater than 100 microliters per minute.
Nanoflow LC has become a popular choice for analyzing proteins of limited abundance

by mass spectrometry because of its improved sensitivity over conventional LC [6,7].
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The reason for this improvement is explained next in the discussion of electrospray
ionization.
1.3.3 Electrospray lonization

Because a mass spectrometer manipulates and detects only ions, the final step
before MS/MS analysis must be to charge the peptides passing from the LC system
towards the mass spectrometer via electrospray ionization (ESI).

During ESI solvent exits the LC system at high pressure from a narrow spray tip
directed towards the inlet of the mass spectrometer while a high voltage (+2kV) is
applied to the waste line after the split in the LC solvent system and ground is held at the
inlet of the mass spectrometer (Figure 1.5). The high voltage gradient creates a
concentration of positive ions in the solvent at the electrospray tip that causes the solvent
to form a Taylor cone. The buildup of electric potential at the tip of the Taylor cone
creates a jet of charged droplets of solvent moving from the tip of the column into the
mass spectrometer [8]. Contained within these charged droplets are the peptides eluting
off the LC column.

As the droplets pass into the mass spectrometer they experience intense heat and
rapidly decreasing pressure. Solvent evaporates and the droplets shrink. The charges
within the droplets become more concentrated. When the force of electrical repulsion
within a droplet exceeds its surface tension the droplet has reached its Rayleigh limit and
must reduce its charge. There are two proposed mechanisms for how this happens, and

experimental evidence suggests that both occur [9].
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Figure 1.5: Electrospray ionization.

The first mechanism is columbic fission of the droplets. A droplet at its Rayleigh
limit simply splits into two droplets, thereby increasing the ratio of surface area to charge
and temporarily stabilizing the droplet until further solvent evaporation forces it to split
again. After several generations of fission and evaporation the solvent is removed and
only charged peptides remain. The second mechanism is charge ejection. Instead of
splitting, the droplet ejects a peptide into the gas phase that carries some excess charge
with it, thus reducing the overall charge of the droplet and temporarily stabilizing it.

Regardless of the specific mechanism one certainty is that ESI is a competitive

process. For any given droplet traveling from the Taylor cone to the mass spectrometer
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there are more molecules of solvent and peptide then there are excess protons, so not
every molecule in the droplet can become an ion. Peptides compete with each other and
the solvent molecules for protons based on their gas phase basicity [10], and only some
become ionized. The ions are guided further into the instrument by electric fields where
MS/MS analysis begins.
1.3.4 Tandem Mass Spectrometry Analysis

Tandem mass spectrometry, or MS/MS, is the foundational experiment in protein
analysis by mass spectrometry [11]. Both chapters two and three of this dissertation
describe the study of very different proteins under very different circumstances using the
same MS/MS experimental structure. Every peptide MS/MS experiment has three parts:
first ionized peptides have their intact mass determined by the mass spectrometer in an
MS! scan, second, individual peptides are isolated and fragmented inside the mass
spectrometer, and third, the masses of the fragments are determined by the MS? scan.
The mass differences between its fragments, in conjunction with the intact mass, can be
used to determine the sequence of the peptide and type and location of any post-
translational modifications to its amino acids. Peptide sequences can then be linked back
to their parent proteins through genetic databases of observed and predicted protein
amino acid sequences. The mass spectrometer can only perform one MS/MS experiment
at a time. The duration of each MS/MS event varies by the instrument and specific
experimental parameters used, but in this work it varies between approximately 50 and

300 milliseconds. All of the liquid chromatography separations in this dissertation were
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approximately 90 minutes long and over the course of each LC run tens of thousands of
MS/MS experiments were performed.

All of the mass spectrometry experiments referenced in this dissertation were
performed on a Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer
(Fusion) [12]. This is a hybrid mass spectrometer that contains several distinct sets of
devices: an ion optics system for the transmission of ions throughout the regions of the
instrument, an lon Routing Multipole for ion storage and higher energy collisional
fragmentation, a Quadrupole Mass Filter for ion isolation, a Duel Cell Linear lon Trap for
ion storage, ion-ion reactions, low energy collisional fragmentation, and low resolution
m/z measurement, and an Ultra High Field Orbitrap [13] for high resolution m/z
measurement. A full diagram of the Fusion instrument can be seen in Figure 1.6. We
are going to review the specific functions and operating principles of each sub-system of
the Fusion instrument then describe their role in an MS/MS experiment.
1.3.4.1 Components of the Fusion Instrument
1.3.4.1.1 lon Optics

Following electrospray ionization ions must be guided from the inlet of the mass
spectrometer to the first ion storage chamber, the lon Routing Multipole (IRM). The ion
optics consist of the S-lens, Q-00, Active Beam Guide, MP1, MP 3, and all lenses.
During transmission from the source to the IRM the Quadrupole Mass Filter and C-trap

are also both part of the ion optics system.
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Positive peptide ions are guided axially through the instrument by a static electric
field of increasing negative potential until they reach the IRM, at which point positive
potentials are applied to both ends of the device to contain the ion cloud. The field
gradient is created by applying increasingly negative DC potentials to each component of
the optics between the source and the IRM. The potentials vary based on the specific MS
experimental parameters, but typically range from 0 to -30V and differ by only a few
volts from one device to the next. Radially, ions traveling through the instrument are
trapped by radio frequency AC potentials applied to multipole devices.

Within the ion optics system there are several specialized devices. The S-lens
captures ions as they exit the capillary with high velocity and focus them into a
concentrated beam that can be passed effectively into the rest of the instrument [14]. The
curved multipole removes neutral species from the ion stream. lons being guided by the
DC and AC electric potentials should be carried through the curve, while neutral species
being drawn into the instrument by the pressure differential should move in a straight
path past the rods of the device and be pumped away. The gate lens regulates the passage
of ions from source into the rest of the instrument. To stop the transmission of positive
ions a high positive potential is applied to the lens. The Fusion system contains a
specialized two part split gate lens that was developed to reduce transmission bias created
by the different flight times of ions across the m/z range.
1.3.4.1.2 lon Routing Multipole

The lon Routing Multipole serves as an ion storage device and a fragmentation

cell. The IRM is filled with nitrogen to a pressure of 8mTorr. During ion collection
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peptide cations lose kinetic energy through collisions with the nitrogen bath gas as they
enter the IRM. This collisional cooling allows more ions to be stably trapped than could
be contained with electric fields alone. To fragment ions in the IRM, the segmented
electrodes are used to generate a potential gradient much steeper than the one used during
ion injection. This increases the energy of the collisions with the nitrogen to a level high
enough to activate the peptides for fragmentation.

1.3.4.1.3 Quadrupole Mass Filter

The Quadrupole Mass Filter (QMF) consists of four parallel round rods (Figure
1.7) and has two operating modes; an AC only potential that allows a broad m/z range of
ions (typically 150-2000m/z) to pass through the instrument to the IRM for collection, or
a mass filter mode in which an AC and DC potential are both applied so that only a
specific m/z range can pass through the quadrupole. The amplitude of the AC potential
determines the center of the allowed m/z window, and the ratio of the DC to the AC
potential determines the width of the window. The Fusion’s QMF can filter windows
from 1200m/z wide to 0.7m/z .

The QMF’s operating principle is based on the stability equation for ions in a
quadrupolar device, derived from the Mathieu equation (Equation 1.1) [15, 16] . The
Mathieu equation is a second order linear differential equation developed by the French
mathematician Mathieu while studying vibrating animal skins. Solutions to Mathieu’s
equation describe regions of stability in terms two unitless parameters, a and q, arising in
the face of changing position (described by u) and the changing input § (Equation 1.2).

Another way to state it is that the solutions to the Mathieu equation define conditions
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under which the total change in displacement over time will be zero for a particle with a
constantly changing position experiencing a changing but cyclical force.

Fortunately, this also perfectly describes the situation faced by a moving ion
experiencing a changing electric field (AC potential). The parameters, a and g, can be
related to the applied DC and AC potentials respectively (Equations 1.3 & 1.4) in a
mass-to-charge (m/z) dependent manner. Solutions to the Mathieu equation, plotted in
Figure 1.8, can then be used to define which m/z will be stable at particular voltages and

frequencies.

| O
oo
O

Figure 1.7: The Quadrupole Mass Filter. A) lons travel through a series of four round rods spaced
equally apart in the x and y axis. B) The x rods receive a positive DC bias and a radio frequency AC
potential, while the y rods receive a negative DC bias and the same RF AC 180 degrees out of phase with
the x rods.

2
372 + (ay, — 2qy, cos285)u =10 Equation 1.1: The canonical Mathieu equation.

Qt
2

&= Equation 1.2: The changing input in the Mathieu equation
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Figure 1.8: The Mathieu stability diagram in a/q space.

There is one particularly important caveat to the stability of ions in the QMF. The
stability diagram assumes ions are entering the device with no prior momentum and
positioned equidistant from all four rods. This is, of course, never the case. lons in fact
are entering the device with a great deal of kinetic energy having just passed out of the
first stages of ion optics and are traveling in a cloud several millimeters in radius.

As a result, in addition to the stability diagram defined by Paul QMFs also have
an “acceptance aperture” defined by their coordinates in the x/y plane of the rods and
their momentum vector [17]. A consequence of this is that because ions of higher m/z
have larger momentum vectors, they experience a smaller x/y acceptance aperture

parameter when entering the QMF. As a result, the percent of ions that are successfully
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transmitted from one end of the QMF to the other (the transmission efficiency) decreases
as m/z increases.
1.3.4.1.4 Dual Cell Linear lon Trap

The Linear lon Trap (LIT), introduced by Syka et al in 2002, is a multipurpose
device that can perform ion trapping, isolation, ion-ion reactions, collisional
fragmentation, and low resolution m/z measurement (Figure 1.9) [18]. The linear ion
trap consists of four parallel rods with hyperbolic inner surfaces spaced 4 mm apart in the
y dimension and 5.5mm in the x dimension. Each rod has three sections that are
electrically isolated from one another. The two end sections are equally sized at 12mm
long, and the center section is 37mm long. The electrodes in the X dimension have
narrow slits of 0.25 mm wide occupying the middle 30 mm of the center trap section.
Outside both slits is a conversion dynode held at -15kV to focus positive ions exiting the
trap onto the electron multiplier detection system. The trap is filled with a helium bath

gas to a pressure of approximately 2.0x10™ Torr.

~ Back
Section

~ Center
Section

Figure 1.9: The linear ion trap.
Figure adapted from [18].
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The LIT confines ions based on the same principle as the QMF, and the Matthew
equation is use to define the operating potentials on the rods. Notably though, the LIT is
operated with no large DC offset so that the a value is effectively 0. Only the q value is
used to determine the range of ions stably held in the trap. As a result the LIT can
function as an ion storage device where many m/z values fall into the range of stable
values and can be confined within the trap. While the LIT stability equation suffers from
the same limitation as the QMF, that ions are not entering the trap at rest and centered
between the rods, collisional cooling from the He bath gas significantly reduces these
effects so that the trapping efficiency is high across a wide m/z range.

To perform functions other than ion storage, the LIT takes advantage of a second
phenomenon of ions in a quadrupolar AC electric field. In response to the AC trapping
potential ions will orbit within the trap with frequencies in the x and y dimension that are
functions of their m/z. By applying a small supplemental AC voltage, in the x dimension
only and in resonance with the frequency of a particular m/z, the velocity and radius of
oscillation for that species can be increased. This can be used to fragment ions through
repeated high velocity collisions with the helium bath gas, eject ions from the trap by
exciting them until they exceed the dimensions of the trap in order to isolate a particular
m/z, or push ions through the slits in the x rods and into the electron multiplier detection
system for m/z measurement.

The Fusion has a duel cell LIT. The ideal helium pressure for ion storage and
fragmentation (higher pressure) differs slightly from the ideal pressure for m/z analysis

(lower pressure), so a two part trap was introduced in 2009 [19]. The front and back
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traps have identical dimensions, but the front helium pressure is 7x107 torr while the
back is 1x107 torr.

An important advantage of the LIT is that an AC quadrupolar field will trap ions
independent of the sign of their charge. In other words both positive and negative ions
can be stably held in the trap at the same time. On the Fusion, the LIT is used for
Electron Transfer Dissociation reactions. The properties of ETD fragmentation will be
discussed later in this chapter. Before an ETD reaction, the peptide cation precursor
chosen to be fragmented is held in the back section of the linear trap by DC offsets
applied to the sectioned electrodes. Then radical anions of fluoranthene are generated in
the first stage of the instrument ion source and directed to center section of the LIT.
Finally, the DC potentials separating the cations and anions are removed, and an AC
potential is applied to the end lenses of the trap so that cations and anions are stably
trapped together in three dimensions. After a user defined period of time a negative DC
offset is applied to the center section of the trap and positive potentials to the outer
sections to remove the leftover fluoranthene anions while continuing to trap the peptide
cation reaction products [20], thus ending the ETD reaction.
1.3.4.1.5 The Orbitrap and C-Trap

Introduced in 2000 by Makarov, the Orbitrap is a high resolution mass analyzer
[21]. Prior to m/z measurement ions are passed into the C-trap, another quadrupolar
based ion storage device created to aid ion injection into the Orbitrap. The C-trap is
filled with nitrogen to a pressure of approximately 1 millitorr. lons are collisionally

cooled by the N, bath gas, and then squeezed into a compact packet by high voltages
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applied to the four electrodes. After squeezing, the potentials on the electrodes at the
entrance to the Orbitrap are removed and the ions are guided through a Z shaped path
designed to prevent N, from entering the Orbitrap, which is kept at a pressure of 1x10™°
Torr or below. As ions pass into the Orbitrap a voltage ramp is applied to the central
spindle electrode, eventually reaching -5kV. The ions assume a stable orbit around the
central electrode. As the ions orbit the spindle electrode they also oscillate axially in the
trap at a frequency that is a function of the electric field, the dimensions of the trap, and
their m/z (Equation 1.5). As ions traverse the trap they induce a current detected by the
two outer capping electrodes. This image current can then be Fourier transformed into

ion frequencies and subsequently into a mass spectrum [22,23].

W= (3) k Equation 1.5: Oscillation frequency in the orbitrap

The resolution of the mass spectrum collected by the Orbitrap is determined by
the number of periods of oscillation in the trap. Because frequency of oscillation
decreases as m/z increases the resolution of the Orbitrap is inversely dependent on m/z.
Resolution can be increased by allowing the ions more time to oscillate in the trap
(collecting longer image currents). Resolution is defined by Equation 1.6, and its
importance to the tandem MS experiment will be explained shortly. Transients on the
Fusion system range from 32 to 1028ms for 15,000 and 480,000 resolution respectively

at m/z 200.
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Resolution = Equation 1.6: Definition of resolution in mass spectrometry

1.3.4.1.6 Automatic Gain Control

All ion trap instruments, like the lon Routing Multipole, Linear lon Trap, and
Orbitrap, have a limit to the number of elementary charges that can be stored before the
cumulative field generated by those charges begins to distort the electric field created by
the trapping electrodes. Additionally, too many charges can interfere with the ability of
the ion optics to effectively transmit ions between sections of the instrument. As a result,
the number of charges (and therefor ions) that enter the instrument is carefully regulated
by a process known as automatic gain control. Prior to every MS scan the instrument
allows ions to accumulate in the IRM for a very short period of time (<1ms). It then
sends this small ion packet to the low pressure cell of the linear ion trap and ejects it into
the electron multipliers. No mass spectrum is recorded, but an estimate of the ion current
coming from the electrospray source (in charges per second) is made. The instrument
then calculates the ion accumulation time necessary to reach the ideal number of charges,
called the “target”, and uses that time to accumulate ions for the next analytical scan [24].
One important consequence of this system is that as the charge states of peptides
increase, the real number of those peptides accumulated for an MS experiment will go
down. Now we will describe each individual step of the tandem MS experiment in more

detail.
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1.3.4.2 Ms?

The first step of the tandem MS experiment is acquisition of a high resolution
mass spectrum of the intact peptides inside the Orbitrap. Peptide cations generated by
electrospray are guided through the instrument by the ion optics and accumulated in the
IRM to a target of 2x10° charges. The ions are then passed into the C-Trap and injected
into the Orbitrap for mass analysis.

Figure 1.10 is an MS* mass spectrum of tryptic peptides acquired in the Fusion’s
Orbitrap mass analyzer with a 250 millisecond transient. High resolution is of particular
importance in the MS! scan during peptide analysis in order to determine the charge state
and therefore the intact mass of a particular peptide [25]. Charge states of peptide ions are
determined by the delta m/z between isotopic peaks for a particular peptide. Since 1.07%
of all naturally occurring carbon atoms are the C*2 isotope, and a given MS* scan contains
hundreds if not thousands of each peptide species, some of the signal for a given peptide
will come from molecules containing one or more C*3 atoms and appear at a higher m/z.
This range of peaks for a single molecular species is called the “isotopic envelope”. The
peaks in the isotopic envelope will differ by 1.008/z (the mass of a neutron divided by the
number of charges on the peptide). Sufficient resolution makes it possible to determine
the charge state of a peptide from its observed isotopic envelope, and then calculate the
intact mass of the peptide.

Based on a single MS* scan multiple precursors will be targeted for MS? analysis.

The Fusion software allows the user to target a predefined number of precursors (Ex. Top
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10), or perform as many MS?s as possible in a fixed time window (usually 2 to 3 seconds)
before collecting a new MS* Spectrum.
1.3.4.3 Identification, Isolation, and Fragmentation of Specific m/z species

Once a high resolution MS* has been acquired, species appearing in it are
targeted for fragmentation and MS? analysis in a data dependent manner. The instrument
control software selects species appearing in the MS* scan in order of decreasing
abundance for further study by MS? To increase the number of precursor ions selected
for fragmentation a dynamic exclusion list is employed, meaning that once targeted for

MS? analysis a particular species cannot be targeted again for a user defined period of

time.
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Figure 1.10 High Resolution MS®. An Orbitrap spectrum of complex sample of tryptic peptides. The
blown up portion shows the isotopic envelope around the +3 charge state of the peptide
HSDAVFTDNYTR at 475.8846 m/z.
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In the Fusion instrument, peptides of a specified m/z are isolated by the
Quadrupole Mass Filter using a user defined m/z window and accumulated in the lon
Routing Multipole. The peptide of interest can then be fragmented by three mechanisms:
high energy collisions with N in the IRM (HCD), lower energy collisions with He in the
high pressure cell of the Linear lon Trap (CID), or reaction with radial fluoranthene ions
in the high pressure cell of the Linear lon Trap (ETD). Each option has advantages and
disadvantages, and their effectiveness at producing informative sequence ions is often
peptide specific.

Figure 1.11 shows the 6 types of backbone peptide fragments that can be used to
sequence a peptide by mass spectrometry [4]. The collisional dissociation methods HCD
and CID produce predominantly b and y type ions by fragmenting the peptide bond,
while ETD produces predominantly ¢ and z type ions by fragmenting the N-Ca bond.
Figure 1.14 shows an HCD, CID, and ETD MS? spectrum of the peptide

HSDAVFTDNYTR.
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Figure 1.11: The six types of complementary fragment peptide
ions.
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For many peptides, HCD and CID produce nearly identical MS2 spectra, but there
are some important differences in the two mechanisms of fragmentation. HCD takes
place in the lon Routing Multipole where the segmented electrodes create a high voltage
potential gradient across the cell. As peptide cations are accelerated through the potential
gradient they collide with the N bath gas [26]. Some of the kinetic energy imparted to
peptide ions by these collisions is converted to vibrational energy and facilitates peptide
fragmentation. Because of the higher energy of the collisions, in addition to backbone
cleavages HCD will also produce fragments of the amino acid side groups called
immonium ions. During HCD fragments can also undergo additional collisions that
cause secondary fragmentation events.

CID is a collisional fragmentation technique that uses the characteristic frequency
of a particular m/z, as described during the discussion of the operating principle of the
Linear lon Trap, to resonantly excite peptide cations into collisions with the He bath gas
of the LIT [27] . As in HCD the collisions impart kinetic energy that can be translated to
vibrational energy and activate the peptide bond for fragmentation [28], but the collisions
are of lower energy than HCD because of the lighter bath gas (He vs Ny), and lower
velocity of the cations. Additionally, because CID relies on resonant excitation targeted
at a particular m/z, fragments are much less likely to undergo secondary fragmentation
events because they are out of resonance with the excitation voltage and no longer being
accelerated into the He bath gas.

Both HCD and CID suffer from a critical disadvantage. They cause the loss of

labile O-linked post translational modifications like phosphorylation and O-linked
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Glycosylations, and example of an O-GIcNACc loss is seen in Figure 1.12. This loss can
be used as a fingerprint for peptides containing an O-linked modification, but the loss
makes it impossible to definitively map the modification to a single amino acid.
Additionally, because the loss of the modification dominates the MS? spectrum there are
fewer informative sequence ions. This makes it less likely that the spectra can be

successfully used to determine an unknown peptide’s sequence.
loss of O-GlcNAc

100 57477
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Figure 1.12: CAD of an O-GIcNAcylated peptide. The dominant peak in the MS2 spectrum is the loss
of the neutral GIcNAc fragment from the peptide while there is essentially no backbone fragmentation to
provide sequence information.

Electron Transfer Dissociation, developed in 2004 Hunt and colleagues, solves
this problem [20]. During ETD a radical anion reagent is generated and simultaneously
trapped with the peptide cations in the linear ion trap. Following the mechanism shown

in Figure 1.13 the radical electron is transferred from the anionic reagent to a molecular
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orbital in the cationic peptide, then relaxes to one of the carbonyl carbons on the peptide
backbone. The extra electron density makes the carbonyl carbon highly basic, and it
abstracts a proton from a nearby charged site; likely the N-terminal amine or the side
chain of a lysine or Arginine. The electron transfer is exothermic, and the intra-peptide
proton transfer activates the N-Ca bond and facilitates fragmentation of the peptide.
ETD produces ¢ and z type ions, but can also result in side chain fragmentations [29].

N Ha
HN—C

CH,l

+
¢ Z,
Figure 1.13: The ETD mechanism.

Importantly, not every electron transfer results in peptide cleavage. Termed
ETnoD, these reactions create species in the MS? spectra with the same mass as the

precursor but the charge reduced by 1 or more. One known cause of ETnoD is proline.
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Because the N-Ca bond is bridged by the proline side chain its breakage does not result
in two separate ions. Proline does not account for all instances of ETnoD, but the other
causes are not yet well understood. It is known that there is a high correlation between
charge density and ETD efficiency. Peptides with fewer than three charges, or m/z > 600
tend to not yield informative ETD spectra.

A key advantage of ETD is the analysis of peptides containing O-linked post
translational modifications like phosphorylation. ETD does not cause loss of these
modifications making it possible to assign them to specific amino acids.
1.3.4.4 MS°

Following fragmentation by one of the possible mechanism the peptide fragment
ions are sent to one of the mass analyzers (Orbitrap or LIT) for MS? analysis. High
resolution MS2 spectra take more time to acquire and are generally less sensitive but can
provide a higher degree of certainty in peptide identification. They are especially
valuable for large highly charged peptides that yield more complex fragmentation
spectra. It has been shown that high resolution MS?s typically provide more successful
peptide identifications from complex samples, while low resolution MS?s are more
effective for finding modified peptides of very low abundance.

1.3.5 Data Analysis

The final phase of the LC-MS/MS experiment is data analysis. In asingle LC run
of 90 minutes thousands of MS/MS experiments will be performed. Each of these
experiments has its own data set that includes the intact mass of an unknown peptide, and

fragment masses from that peptide. The experiment is successful if that data set can be
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used to determine the sequence of the unknown peptide. This can be done manually by
using the mass differences between the backbone fragments (b,y,c,or z ions) to determine
the component amino acids of the peptide, or by a computer algorithm that compares the
observed fragment masses against a set of theoretical backbone fragments generated from
a database of possible peptides.

There are a number of commercially available MS/MS data search algorithms.
Only two were applied to the data in this dissertation, MASCOT and SEQUEST. Both
programs follow a similar scheme [30,31,32]. The software begins with a database of
protein sequences provided by the user. Each protein in the database is broken into
peptides based on a user specified enzyme (ex. Trypsin cleaves proteins after R and K).
Each peptide has an intact mass, and a list of possible fragment masses. Theoretical
peptide masses from the database are compared to the list of precursor masses from every
MS/MS experiment. Matches are then compared on the fragment mass level. Database
peptides with a high degree of correlation to observed MS/MS spectra are reported as
“peptide spectral matches” (PSM).

The LC-MS/MS datasets used in this work were subjected to very different
interpretation mechanisms. All of the peptides reported in chapter two were manually
sequences from maximum accuracy of PTM site assignment. This was possible because
the analysis was focused on a limited set of peptides from a single protein. In chapter
three peptides were assigned to MS/MS spectra entirely by software. This was necessary
because the samples contained more than 1,000 different proteins, and we had no prior

knowledge of which were important to the results.
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1.4 Advantages of MS/MS on the Fusion Platform

The outline of the tandem MS experiment used in this dissertation is always the
same: MS* -> peptide selection -> isolation -> fragmentation -> MS?. In a single LC run
of 90 minutes thousands of these experiments will be performed. The greater the portion
of unknown peptides selected for MS/MS by the instrument software, and the greater the
number of MS/MS spectra that can be correctly matched with a peptide, the more
comprehensive the analysis. In other words there are two properties of the LC-MS/MS
experiment directly related to the mass spectrometer that determine its overall success.
First, the rate at which the instrument can perform MS/MS, and second, the likelihood of
those MS/MS to contain sufficient numbers of informative fragment ions to be
interpretable.

The Fusion platform represents a significant advance in MS instrumentation in
both these areas. The Fusion has a much higher MS/MS acquisition rate than previous
generations of Orbitrap-Linear lon Trap hybrid instruments, in part because of
improvements in individual instrument components that reduce the time of each event in
the MS/MS experiment, but largely because of its unique architecture [12]. In older
instruments, the Linear lon Trap was responsible for most of the subcomponents of the
MS? scan event. Precursor lons were accumulated in the LIT, Isolated in the LIT,
Fragmented in the LIT, and mass analyzed in the LIT. As a result, each MS? event began
at the completion of the prior event. The time to perform N MS? experiments was simply
the sum of the length of each individual experiment. On the Fusion platform however,

ion isolation and accumulation are now performed by the QMF and IRM respectively.
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lons are then passed to the LIT if CID or ETD fragmentation is taking place. MS? events
can now overlap, with ion accumulation for the Nth event beginning as soon as the ions
for the N-1 event have been passed to the LIT or Orbitrap.

A second advantage of the Fusion instrument is the flexible nature of its method
control software. Combined with the three modes of fragmentation (HCD, CID, ETD)
this gives the user the ability to treat precursor ions very differently from one scan to the
next to maximize the quality of the MS/MS data. This flexibility will be discussed in
more detail when it becomes relevant in chapter three.

1.5 Conclusion

In the next two chapters we will see the same tandem MS experiment used to
answer two very different biological questions. In chapter two we look for evidence that
the Arabidopsis protein RGA is post translationally modified by the protein SPY, and in
chapter three we try to identify the proteins selectively binding to a region of DNA in the
Immunoglobulin locus of B cells, but in both projects we detect the proteins of interest by
using MS/MS spectra to identify tryptic peptides.

Over the last several decades there have been dramatic improvements in MS
instrument speed and sensitivity. These improvements have made the analysis of
increasingly challenging samples possible. Some of the proteoforms identified in chapter
two likely could not have been detected on previous generation instruments.

However, during the RGA analysis we knew exactly what we were looking for
(modified forms of specific peptides from the protein RGA). As a result every aspect of

the experiment was designed to maximize the chance of finding and characterizing those




Chapter 1: Introduction to the Dissertation 39

peptides. Chapter two illustrates the power of protein MS when directed towards a
narrow target, but chapter three articulates some of the biggest challenges remaining in
protein MS.

During the SHM project our search was far less specific, and so the MS
experiment and data analysis was designed to capture the widest possible range of
proteins. Unfortunately, the vast majority of MS/MS experiments could not be
successfully linked to a peptide sequence, and this is normal for experiments of this type.
It is not clear whether this is due to a failure in the way peptides are captured,
fragmented, and detected by the instrument, or a failure of the data interpretation
software. Probably both are to blame. Data interpretation algorithms are beyond the
scope of this research, but MS/MS experiment design is definitely not. A secondary goal
of the work in chapter three then, is to identify trends in the MS/MS data that suggest
areas for method improvement.
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Chapter 2: Mapping a Novel O-Glycosylation on the Protein RGA

2.1 Introduction

This chapter describes our investigation into the interaction between two proteins,
RGA and SPY. Both were previously known to be growth regulating proteins in
Arabidopsis thaliana, and it was suspected that SPY post-translationally modified RGA,
but the effects of SPY on RGA had never been directly studied. Our work led to a
surprising discovery about SPY’s function and a new post translational modification
important to RGA, but to understand the importance of these results it is necessary to first
explain how RGA came to be subject of our investigation.
2.1.1 Origin of Interest in the Protein RGA

During the 1960s and 1970s world food production outpaced population growth,
particularly in the developing areas of South America, Asia, and Africa. This increase in
agricultural production, since termed “The Green Revolution”, prevented a worldwide
food shortage and the subsequent mass starvation that had been widely predicted during
the mid-20™ century; most notably by the famous biologist Paul Erlich in his 1968 book
“The Population Bomb” [1]. A major driver of this increase in agricultural production
was the development of improved varieties of wheat, and later corn and rice, by plant
geneticist Norman Borlaug, who was awarded the Nobel Peace Prize in 1970 [2]. These
new plants exhibited a high yield semi-dwarf phenotype. They had increased grain mass,
but also grew shorter stalks that required less water and were less likely to be damaged

during storms.
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The more productive and robust phenotypes of these new plants spurred research
into the cellular signaling pathways mediating plant growth, and the initial focus of these
investigations was on a plant hormone called gibberellin. Interest in gibberellin began in
the early 20" century in Japan because of a disease called bakanae that caused rice plants
to grow unusually tall [3]. The disease was eventually traced to a fungus named
Gibberella fujikuroi. In 1938 two scientists at the University of Tokyo, Yabuta and
Sumiki, were able to isolate growth stimulating compounds, which they named
“gibberellins”, from the fungus [3]. More than a decade passed before gibberellin caught
the attention of western scientists, but its ability to enhance the growth of certain
commercial crops led to the common use of gibberellin in the agricultural industry by the
late 1950s [4].

Curiously, when tested on the new plants developed by Borlaug, gibberellin did
not have its usual growth enhancing effect. These mutants of wheat, rice, and corn were
gibberellin insensitive. This lack of response to gibberellin provided an important clue
for researchers trying to understand the growth pathways that were altered in these plants.
By generating a series of gibberellin insensitive mutants in different plant species and
characterizing the function of the altered proteins through a combination of biochemical
assays and sequence homology, researchers over the next several decades were able to
form a near complete picture of how the gibberellin signaling pathway functioned.

While genetic experiments continued in corn, wheat, and rice plants, Arabidopsis
thaliana also became a popular laboratory model for studying gibberellin signaling.

Multiple Arabidopsis plants can be grown in a single petri dish, the plants grow well
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under fluorescent lights, the full life cycle is only six weeks, and the genome is relatively
small at 120mB divided into 5 chromosomes [5]. A number of Arabidopsis mutants with
altered gibberellin responses and growth phenotypes were created in the 1980s and
1990s, and a few provided key insights into the gibberellin signaling pathway [6].

The Arabidopsis mutant gai was identified as a gibberellin insensitive dwarf, and
the associated wild type protein GAI was determined to be a negative regulator of
gibberellin signaling [7]. GAI was later shown to be an ortholog of RHT, D8, and SLR
[18]. These proteins are mutated in the high-yield dwarf phenotypes of wheat, corn, and
rice respectively that were created during the green revolution [9]. All of these proteins
have nuclear localization signals and sequence homology to known transcription factors,
and GAI had been shown to be a repressor of gibberellin responses.

GAl is one of a family of proteins named for a shared N-terminal amino acid
sequence, DELLA [10]. DELLAs are putative transcription factors, with a nuclear
localization signal, and are highly conserved throughout plant species (RHT, D8, and
SLR1 are also DELLA proteins). In Arabidopsis there are five known DELLA proteins:
GAI, RGA, RGL1, RGL2, and RGL3. All known DELLAs are negative regulators of
Gibberellin signaling, but it was unclear whether DELLAS interact directly with DNA or
suppress growth by binding to other transcription factors [11,12].

In 2005 a soluble gibberellin receptor protein was identified, GID1 [13]. GID1
was shown to enter the nucleus in the presence of bioactive gibberellin and bind to SLR1.

Furthermore, another gibberellin insensitive mutant, gid2, was found to have a defective




Chapter 2: RGA 47

subunit of an SCF E3 ubiquitin ligase, and SLR1 was shown to be degraded only in
plants with wild type (WT) GID1 and GID2.

Based on data from these mutants and others it was hypothesized that gibberellin
signaling functioned through the following mechanism; bioactive gibberellin bound to the
soluble cytoplasmic gibberellin receptor protein GID1, which was then able to enter the
nucleus and bind to DELLA proteins. This targeted DELLAS for degradation by the
ubiquitin/proteasome pathway, and opened pro-growth genes to transcription (Figure

2.1) [14].

ud

Figure 2.1: The current model of gibberellin signaling. a) In the absence of the gibberellin receptor
GID1 DELLA proteins inhibit the transcription of growth related genes. b) When gibberellin binds to its
receptor the complex can enter the nucleus and target the DELLLA proteins for degradation, thus allowing
growth genes to be transcribed. Figure adapted from [14].

2.1.2 Unanswered Questions about Gibberellin Signaling

While the relationship between gibberellin, its receptor, and the DELLA proteins was
becoming increasingly clear, the function of another protein modulator of gibberellin
responses, SPY, remained a mystery. First identified in 1993, the spy (spindly) mutation
caused a “gibberellin overdose” phenotype, in which the gibberellin signaling pathway
seemed to be constitutively turned on [15,16]. The dwarf phenotype created by

mutations in the synthesis pathway for gibberellin could be partially rescued by mutations
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to SPY. SPY was clearly an actor in gibberellin signaling, but its relationship to the
DELLAs was unknown. A breakthrough came in 1997 when the mammalian O-GIcNAc
transferase (OGT) enzyme was identified [17]. Shortly afterwards SPY was tentatively
identified as an OGT as well based on sequence homology with the mammalian protein.
In 2002 a second OGT homolog in Arabidopsis, SEC (SECRET AGENT), was also
identified [18,19]. Gibberellin researchers began operating under the assumption that
SEC and SPY were O-GIcNACc transferases; and that O-GIcNAcylation of the DELLA
proteins modulated their interaction with the gibberellin-receptor complex and
subsequent degradation. However, there was no direct evidence of the O-GIcNAcylation
of any of the DELLASs by SEC or SPY.

2.1.3 What is O-GIcNAc?

O-GIcNACc is O-linked N-Acetyl Glucosamine (Figure 2.2). An O-GIcNAc
transferase (OGT) is an enzyme that catalyzes the addition of N-Acetyl Glucosamine
(GIcNAC) to the hydroxyl group of serine and threonine residues in a protein. O-GIcNAc
can be removed from proteins by a second enzyme, an O-GIcNAcase. O-GIcNAc is a
post translational modification; altering the chemical properties of a protein in response
to cellular processes without changing the amino acid sequence. The donor substrate for
O-GlcNAcylation is UDP-GIcNAC, and its concentration is directly tied to glucose levels
in the cell (Figure 2.2). As a result, O-GIcNAc modification has been proposed to be a
nutrient sensing mechanism for cells.

First identified by Hart et al. in 1984 [20], O-GIcNAc is believed to be present in

all eukaryotic cells and an essential component of many cellular processes [21].
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O-GIcNAc is distinct from the branched O and N-linked glycans commonly seen in cells

in that it is a dynamic single sugar modification.
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Figure 2.2: O-GIcNAc

Because of its dynamic nature O-GIcNAc is often compared to phosphorylation, another
ubiquitous post-translational modification [22]. Some studies have demonstrated an
interplay between O-GIcNAcylation and phosphorylation, and the modifications are

known to share some amino acid sites [23].
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LC-MS/MS is the most effective tool for mapping protein post-translational
modifications, but several challenges exist when studying O-GIcNAc. The primary
challenge is that, as described in chapter 1, O-linked modifications are labile under the
collisional dissociation methods most commonly used for mass spectrometry based
peptide sequencing. One approach to bypass this problem is a chemical reaction
developed by the Hart lab. A beta-elimination/Michael addition (BEMAD) reaction is
used to replace the O-link sugar with a dithiothreitol chemical tag that is not labile during
collisional dissociation [24]. Unfortunately this approach suffers from several
drawbacks. First, the chemical reaction poorly distinguishes between O-linked
modifications on serine and threonine. While there appears to be a kinetic difference
between the beta-elimination of O-GIcNAc and Phosphorylation, it is still impossible to
guarantee only formerly O-GIcNAcylated residues will be tagged. There is also no data
to suggest that the technique can distinguish between different O-linked sugars.

A second problem is that because of its dynamic nature, the relative concentration
of any O-GIcNAcylated peptide is very low, making detection in complex samples
difficult. The same challenge exists for phosphorylated peptides, but immobilized metal
affinity chromatography can be used to enrich for phosphorylated peptides and raise their
relative abundance in a complex sample. While several attempts have been made to
enrich for O-GIcNAc [25,26], no reliable technique has been developed. To worsen
matters, there is evidence that the ionization of glycosylated peptides is suppressed by

their unmodified counterparts, making them even more difficult to detect [27].
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2.1.4 Prior Mass Spectrometry Analysis of RGA

In 2008 the Hunt lab began collaborating with the Sun lab at Duke University to
confirm the identity of SEC and SPY as O-GIcNAc transferases and to identify any sites
of O-GIcNAc modification on DELLA proteins. O-GIcNAc is not labile when peptides
are fragmented by electron transfer dissociation. During ETD the modification remains
on the peptide being fragmented. This makes it possible to map the sugar(s) to a specific
amino acid(s) even when multiple possible modification sites are present on a single
peptide.

A two part approach was used to confirm that SEC O-GIcNAcylated RGA and
determine the sites of modification. Samples of RGA expressed in tobacco plants with or
without SEC, or RGA purified from Arabidopsis plants with mutations in SEC, were
digested with trypsin or Asp-N and analyzed by LC-MS/MS using electron transfer
dissociation (ETD). Initial experiments were done by Sushmit Maitra and Namrata
Udeshi, but the bulk of the analysis was completed by Andrew Dawdy and described in
his dissertation [28]. I completed some supplementary analysis to Andrew’s work, and
our findings, briefly summarized here, were published in [29].

RGA is extensively O-GlcNAcylated by SEC (Figure 2.3). The majority of
modifications are found in several serine and/or threonine rich regions on the N-terminal
half of the protein, although additional isolated sites were also identified albeit at much
lower frequency (Table 2.1). Biological assays performed by the Sun lab indicated a role
for O-GIcNAcylation of RGA by SEC in modulating Gibberellin signals during plant

growth. O-GlycNAcylation of RGA by SEC blocks its association with other signaling
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proteins and reduces it growth retarding effects. Importantly, mutations to SEC reduce

plant growth.

1 MKRDHHOFQGRLSNHGTSSSSSS I SKDKMMMVKKEEDGGGNMDDELLAVLGY
53 KVRSSEMAEVALKLEQLETMMSNVQEDGLSHLATDTVHYNPSELYSWI{DNML
105 SELNPPPLPASSNGILIDPVLPSPEICGEPASDYDLKVIPGNAIYQFPAIDSSS
157 SSNNONKRLKSCSSPDSMVTSTSTGTQIG (K) GVIGTTVTTITTTTTTAAGES
206 TRSVILVDSQENGVRLVHALMACAEAIQONNLTLAEALVKQIGCLAVSQAGA
258 MRKVATYFAEALARRIYRLSPPONQIDHCLSDTLOMHFYETCPYLKFAHFEFTA
306 NOAILEAFEGKKRVHVIDEFSMNQGLOWPALMOALALREGGPPTFRLTGIGPP
362 APDNSDHLHEVGCKLAQLAEAIHVEFEYRGFVANSLADLDASMLELRPSDTE
414 AVAVNSVFELHKLLGRPGGIEKVLGVVKQIKPVIFTVVEQESNHNGPVFLDR
466 FTESLHYYSTLEFDSLEGVPNSQDKVMSEVYLGKQICNLVACEGPDRVERHET
518 LSOWGNRFGSSGLAPAHLGSNAFKQASMLLSVFNSGOQGYRVEESNGCLMLGW
570 HTRPLITTSAWKLSTAAY

Figure 2.3: Sites of GIcNAcylation on RGA. Bolded residues indicate sites of O-GIcNAc modification
confirmed by MS/MS. Highlighted areas are modified, but the exact site could not be determined. All sites
were observed on RGA expressed with SEC in tobacco. Boxed regions were also observed on RGA-TAP
purified from WT Arabidopsis. Figure adapted from [29].

Abundance of Forms containing:
o v ©Q o o o

z s 5 |38 |32 |8o3koze &

> o ] Y 0 o o Yo jo Q

o z @ T o ® e o oo
DHHQFQGRLSNHGTSSSSSSISK 74% <1% 4% 3% 3% <1% <1% 84%
DELLAVLGYKVRSSEM 28% 0 1% 29%
DGLHLAT 6% 0 <1% 6%
DTVHYNPSELYSWL <1% 0 0 <1%
DPVLPSPEICGFPAS 1% <1% 0 1%
LSELNPPPLPASSNGL 61% 0 31% 2% 94%
VIPGNAIYQFPAIDSSSSSNNQNKR 1% <1% 0 1%
SCSSPDSMVTSTSTGTQIGK 42% 5% 2% 9% 2% 60%
GVIGTTVTTTTTTTTAAGESTR 33% 0 1% 61% 94%
QIGCLAVSQAGAMR <1% 0 0 <1%
FTESLHYYSTLFDSLEGVPNSQDK <1% 0 0 <1%
FGSSGLAPAHLGSNAFK 1% 0 0 1%
LSTAAY 1% 0 0 1%

Table 2.1: Relative abundance of O-GlcNacylated RGA Asp-N peptides. These are Asp-N generated
peptides from RGA expressed in tobacco plants with SEC. Figure adapted from [28].
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A supplementary finding from the work on RGA and SEC was that in
Arabidopsis mutants with mutations in SEC, no O-GIcNAcylation of RGA was observed.
This suggested that SPY either did not modify RGA, or that it is not an O-GIcNAc
transferase. Following the completion of the analysis of RGA +SEC we began a second
project with the Sun lab to analyze the effect of the protein SPY on RGA. Those
experiments and their surprising results are the focus of the rest of this chapter.

2.2 Materials, Equipment, and Instrumentation
Agilent Technologies (Palo Alto, CA)

1100 Series high performance liquid chromatograph

1100 Series vacuum degasser
Branson (Danbury, CT)

Branson 1200 ultrasonic bath
Eppendorf (Hauppauge, NY)

5414R Benchtop centrifuge
Honeywell (Morristown, NJ)

Burdick and Jackson® Acetonitrile, LC-MS grade
Labconco Corporation (Kansas City, MO)

Centrivap centrifugal vacuum concentrator
Molex (Lisle, IL)

Polymicro Technologies™ polyimide coated fused silica capillary

Sizes: 360 pm o0.d. x 50, & 75 pum i.d.

PQ Corporation (Valley Forge, PA)
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Kasil — Potassium silicate solution
Promega Corporation, (Madison, WI)
Sequencing grade modified trypsin
SGE Analytical Science (Melbourne, Australia)
PEEKsil tubing 1/16” o0.d., 0.025 mm i.d.
Sigma Aldrich (St. Louis, MO)
2-propanol, LC-MS grade
Ammonium Acetate
Ammonium Hydroxide
Angiotensin I acetate salt hydrate, >99% purity (human)
1,4-Dithiothreitol, >97% purity
Glacial acetic acid, >99.9% purity
Iodoacetamide (Bioultra), > 99% purity
Trichloroacetic acid
Vasoactive intestinal peptide fragment 1-12, >97% purity (human)
Sutter Instrument Co. (Novato, CA)
P-2000 microcapillary laser puller
Thermo Fisher Scientific (San Jose, CA/Bremen, Germany)
Calibration mixture
The Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer
Orbitrap Elite™ mass spectrometer (custom modified with front-end ETD)

Pierce® water, LC-MS grade
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Urea
YMC Co., LTD (Kyoto, Japan)

ODS-AQ, C18 5 um spherical silica particles, 120 A pore size

ODS-AQ, C18 15 um spherical silica particles, 120 A pore size
Zeus Industrial Products (Orangeburg, SC)

Teflon tubing, 0.012” i.d. x 0.060” o.d.
2.3 Methods
2.3.1 Generation of RGA tryptic peptides from Tobacco, Ecoli, and Arabidopsis

Details for transgenic plant generation, growth, and protein harvesting, performed
by R. Zentella, have been described previously [29,30]. Briefly, 6His-3XFLAG-RGA or
RGA-TAP was tandem affinity purified from tobacco, Arabidopsis, or E.coli. onto
agarose anti-3XFLAG or anti-Protein A beads respectively. 10% of the beads were
transferred to a new tube, and protein was eluted with 1% SDS and analyzed by SDS-
PAGE gel to estimate protein recovery. The remaining beads were treated with DTT to
reduce protein disulfide bonds, alkylated with lodoacetamide, and digested with trypsin.
The supernatant containing RGA tryptic peptides was transferred to a new tube, dried
under vacuum, and stored. Prior to MS analysis samples were reconstituted with 0.1%
Acetic Acid in LCMS grade water to a concentration of 1pmol of RGA per puL based on
the gel estimate.
2.3.2 HPLC Column Fabrication

Nano-Flow HPLC columns were fabricated in house. Pre-columns were

generated by fritting the end of a 20cm length 360 pm o.d. x 75 um i.d. Polymicro
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Technologies™ polyimide coated fused silica capillary by wicking approximately 1cm of
a solution of 3 parts potassium silicate and 1 part formamide into the end of the capillary,
then baking in a lab over for approximately 16 hours at 60°C. After polymerization in
the oven the columns were trimmed to that a frit of 2-4 mm remained. The column was
then packed to a length of 12-13cm with ODS-AQ, C18 15 um spherical silica particles,
120 A pore size, in a methanol slurry, using a helium pressure bomb. Analytical columns
were fritted by wicking approximately 3 cm of a solution of 3 parts potassium silicate and
1 part formamide into the end of the capillary. A soldering iron was then used to
polymerize a 2-4 mm section of the silicate 3cm from the end of the capillary , and the
rest of the solution was rinsed from the column. Analytical columns were packed with
12-13 cm of ODS-AQ, C18 5 pum spherical silica particles, 120 A pore size, by the same
method as the pre-columns. Columns were conditioned by several rounds of loading
approximately 10pmol of internal standard peptides Angiotensin | and Vasoactive
Intestinal Peptide fragment 1-12 and rinsing the column with an LC gradient of 0-100%
solvent B in 17 minutes. (Solvent A: 0.1% acetic acid in water and Solvent B: 70%
acetonitrile in 0.1% acetic acid in water). After conditioning analytical columns were
modified with a nano-emitter tip for electrospray ionization. A 1 cm section of polyimide
coating was removed from the capillary between the frit and the end of the column not
containing packing material. A laser puller was used to form an emitter tip of

approximately 3um internal diameter.
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2.3.3 Sample Loading and LC Separation

A 1 pmol fraction of sample (1uL) and 100fmol of internal standard peptides
Angiotensin | and Vasoactive Intestinal Peptide fragment 1-12 (was pressure loaded onto
a pre-column at a flow rate of <1 pL/min followed by a 15 min desalting rinse with 0.1M
acetic acid at approximately 3 pL/min. The pre-column was butt-connected to the
analytical column with a 2 cm Teflon sleeve (0.060 in 0.d. x 0.012 ini.d). Tryptic RGA
peptides were gradient eluted and electrosprayed into the mass spectrometer at a split-
flow-generated rate of 100 nL/min by an Agilent1100 series binary LC pump using a
linear LC gradient of 0-60% Solvent B in 60 min, 60-100% Solvent B in 8 min, hold
100% Solvent B for 2 min, 100%-0% Solvent B in 8 min, 100% Solvent A for 20 min
(Solvent A: 0.1% acetic acid in water and Solvent B: 70% acetonitrile in 0.1% acetic
acid in water).
2.3.4 Mass Spectrometric Data Acquisition Methods

All mass spectrometry analysis was performed on the The Thermo Scientific™
Orbitrap Fusion™ Tribrid™ mass spectrometer. Full parameters for the acquisition
method are contained with the mass spectrometry results files. Briefly, a full MS scan
was performed from 300 to 1200 m/z in the Orbitrap at a resolution of 120,000 at m/z
200 and an AGC target of 2E5 charges and a maximum injection time of 100ms. lons
appearing in the MS! scan were selected for MS? analysis in a data-dependent manner in
order of decreasing intensity isolated by the QMF with a 2 m/z window. Dynamic
exclusion was turned on with a repeat count of 1, an exclusion duration of 10 seconds,

and an exclusion window of +10ppm. Precursors with charge states of 2-6 were
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subjected to CAD fragmentation and MS? analysis in the linear ion trap at normal scan
speed. Precursors with charge state 3-6 were also subjected to ETD fragmentation using
calibrated reaction times and ion trap MS? analysis. Raw data was visualized using
Thermo Xcalibur V 4.0.27.10.
2.4 Results
2.4.1 Mass Spectrometry Work Performed at UVA

The wild type Arabidopsis Thaliana protein RGA has 587 amino acids and a
weight of 64kDa. For these analyses we relied largely on an altered version of the
protein first employed during the RGA+SEC experiments. A 6-histidine 3XFLAG
affinity tag was added to the protein’s N-terminus to facilitate protein capture, and a
lysine was inserted between G184 and G185 to add a trypsin cleavage site in a region of
the protein of particular interest. The fusion protein was referred to as 6His3XFLAG-
RGA-GKG and its full sequence with the affinity tags and lysine insertion marked can be
seen in Figure 2.3. This fusion protein was expressed in tobacco plants because it was
possible to generate a much larger portion of plant tissue in a short period of time relative
to Arabidopsis. Tobacco purifications typically yielded RGA amounts >100 pmol from a
single sample prep, as opposed to <10pmol when the protein was prepared from
Arabidopsis tissue.

The histidine/3xFLAG affinity tag allowed for efficient two step purification as
described in section 2.2.1; step one was a column purification using a nickel containing
solid support with affinity for the histidine tag, step two was an on bead capture with

anti-3xFLAG antibodies. Captured protein was then reduced, alkylated, and digested on
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the beads with trypsin. Soluble peptides were separated from the beads, dried under

vacuum, and then reconstituted in dilute acid prior to LC-MS/MS analysis. An in-silico

MRGSHHHHHHDYKDHDGDYKDHDIDYKDDDDKTDPMKRD
HHQFQGRLSNHGTSSSSSSISKDKMMMVKKEEDGGGNMD
DELLAVLGYKVRSSEMAEVALKLEQLETMMSNVQEDGLS
HLATDTVHYNPSELYSWLDNMLSELNPPPLPASSNGLDP
VLPSPEICGFPASDYDLKVIPGNAIYQFPAIDSSSSSNN
QNKRLKSCSSPDSMVTSTSTGTQIGKGVIGTTVTTTTTT
TTAAGESTRSVILVDSQENGVRLVHALMACAEAIQQNNL
TLAEALVKQIGCLAVSQAGAMRKVATYFAEALARRIYRL
SPPQNQIDHCLSDTLQMHFYETCPYLKFAHFTANQAILE
AFEGKKRVHVIDFSMNQGLQWPALMQALALREGGPPTFR
LTGIGPPAPDNSDHLHEVGCKLAQLAEAIHVEFEYRGFV
ANSLADLDASMLELRPSDTEAVAVNSVFELHKLLGRPGG
JTEKVLGVVKQIKPVIFTVVEQESNHNGPVFLDRFTESLH
YYSTLFDSLEGVPNSQDKVMSEVYLGKQICNLVACEGPD
RVERHETLSQWGNRFGSSGLAPAHLGSNAFKQASMLLSV
FNSGQGYRVEESNGCLMLGWHTRPLITTSAWKLSTAAY

Figure 2.3: 6His-3XxFLAG-RGA-GKG. This is the sequences of the modified RGA protein used in most
experiments. The 6His tag is highlighted in red, the 3xFLAG tag in green, and the lysine insertion in blue.
Regions of the protein typically observed in our mass spectrometry experiments are underlined.

trypsin digest of 6His3XFLAG-RGA-GKG can be seen in Table 2.2. The efficiency of
the two step purification allowed us to generate samples where RGA was the dominant
protein. A high relative abundance of RGA compared to contaminating species increased

our ability to detect low level modified forms of RGA peptides.
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Unless otherwise stated all samples were directly loaded onto and separated on
homemade 20-25cm C18 75um i.d. reverse phase nanospray LC columns with a
90minute LC gradient and eluted into the mass spectrometer at flow rates of
approximately 100nl/min. All samples also included the addition 100fmol of
angiotension and vasoactive peptides as standards to evaluate run to run instrument
performance. All samples were analyzed on the Fusion mass spectrometry system,
described in detail in Chapter 1, using a standardized acquisition method described in
section 2.2.5, but that included a high resolution MS1 scan in the Orbitrap followed by
CID and ETD MS/MS spectra of precursors selected by the instrument computer based
on intensity. Following instrumental analysis data files were subjected to manual
interpretation and searching with the MASCOT algorithm.

M+H Mass Location Sequence peptide found
1391.6100 3-13 GSHHHHHHDYK
849.3373 14-20 DHDGDYK
905.3999 21-27 DHDIDYK
607.2205 28-32 DDDDK
591.2807 33-37 TDPMK
1024.4707 39-46 DHHOFQGR
1478.7081 47-61 LSNHGTSSSSSSISK
639.3027 64-68 MMMV K
2024.9117 70-88 EEDGGGNMDDELLAVLGYK
1064.5292 91-100  SSEMAEVALK
8141.8278 101-174 LEQLETMMSNVQEDGLSHLATDTVHYNPSELYSWLDNMLSELNPPPLPASSNGLDPVLPS
2551.2423 175-198 VIPGNAIYQFPAIDSSSSSNNONK
1973.8790 202-221  SCSSPDSMVTSTSTGTQIGK
2127.0775 222-243 GVIGTTVITTTTTTTAAGESTR
1415.7488 244-256 SVILVDSQENGVR
2664.4211 257-281 LVHALMACAEAIQONNLTLAEALVK
1404.7086 282-295 QIGCLAVSQAGAMR
1211.6419 297-307 VATYFAEALAR
451.2663 309-311 1IYR
3321.5377 312-339 LSPPQNQIDHCLSDTLOQMHFYETCPYLK
1893.9493 340-356 FAHFTANQAILEAFEGK
2738.4269 359-382 VHVIDFSMNOGLOWPALMOQALALR
860.4261 383-390 EGGPPTFR
2157.0393 391-411 LTGIGPPAPDNSDHLHEVGCK
1788.9279 412-426 LAQLAEATHVEFEYR
3745.8741 427-461 GFVANSLADLDASMLELRPSDTEAVAVNSVFELHK
1039.6258 462-471 LLGRPGGIEK
614.4235 472-477 VLGVVK
2766.4573 478-501 QIKPVIFTVVEQESNHNGPVFLDR
2777.2940 502-525 FTESLHYYSTLFDSLEGVPNSQDK
1025.5336  526-534 VMSEVYLGK
1417.6562 535-547 QICNLVACEGPDR
403.2299 548-550 VER
1227.5865 551-560 HETLSOWGNR
1660.8441 561-577 FGSSGLAPAHLGSNAFK
1757.8639 578-593 QASMLLSVFNSGQGYR
2729.3538 594-617 VEESNGCLMLGWHTRPLITTSAWK
625.3191 618-623 LSTAAY

Table 2.2: In silico trypsin digest of 6His-3xFLAG-RGA-GKG

ZH A AL ZAL AL LA Z LA A AL AL AL AL Z L AL AL AL A AL ZL X ZCLCZZZZZ
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Our sample prep and analysis scheme yielded 79% coverage of the fusion protein
and covered 80/93 serines and threonines available for O-linked modification. Based on
results from the analysis of O-GIcNAc modification of 6His3XFLAG-RGA-GKG by the
Arabidopsis protein, and SPY homolog, SEC, we were expecting modifications by SPY
to be concentrated in four regions of the protein that include S, T, or ST repeats. Because
of the similarity between SPY and SEC it was assumed SPY was also an O-GIcNAc
transferase, although there had been some previous evidence to call this assumption into
question.

Early analysis of the LCMS data revealed some low level O-GIcNAcylated RGA
peptides in the RGA+SPY tobacco samples that matched the most prominent O-GIcNAc
sites observed in RGA+SEC tobacco experiments, however these modified peptides were
also observed in the control samples and there was no increase above control for
RGA+SPY. Manual inspection of the MS* spectra and sequencing of peaks not
identified by the MASCOT search revealed a version of the RGA tryptic peptide
LSNHGTSSSSSSISK shifted by mass +146 (Figure 2.5), which was determined to be an
O-fucose modification (Figure 2.6). Importantly, the O-fucosylated peptides were only
present when SPY was co-expressed with RGA. The discovery of this unexpected
modification, never before observed on a nuclear protein, set the direction for the rest of
our analysis. We operated on the assumption that SPY was a protein O-fucose

transferase (POFUT) and not an OGT.
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Figure 2.5: The discovery of O-fucosylated RGA. A) We discovered a significant peak in the LC

chromatogram created by a peptide that did not match any unmodified RGA tryptic peptides or common

contaminating tobacco proteins. B) The peak corresponded to a mass shift of 146.0680 from the
unmodified RGA peptide LSNHGTSSSSSSISKDK, which is a product of a missed trypsin cleavage. This
is the exact mass of an O-linked fucose.
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Figure 2.6: Fucose

We began by identifying as many O-Fucose residues on 6His3XFLAG-RGA-
GKG as possible when co-expressed with SPY in tobacco. Figure 2.7 is an ETD MS?
spectrum of the mono-fucosylated peptide LSNHGTSSSSSSISK, and Table 2.3 shows
the fragment ion coverage map for the peptide. We were able to determine that the O-
Fucose modification is evenly distributed across four sites in the peptide, and appears on
both threonine and serine.

Overall, RGA is highly O-fucosylated by SPY, but on a much more limited
number of residues compared to the O-GIcNAcylation by SEC. In addition to the first
poly-S region already described, we identified O-fucosylation on three other regions of
the protein, but no fucose residues were ever found outside of these regions in contract to
O-GIcNAc. In addition to fucosylation, we also observed O-GIcNAcylation,
phosphorylation, and a poorly understood O-linked Hexose (first seen by Andrew Dawdy
in his dissertation work) in three of the four fucosylated regions. Our ability to observe
combinatorial modifications was limited by the trypsin digestion, but we also were able
to identify and in some cases precisely map multiple modifications within a single poly-
S/T region. All identified modified peptide forms of the 6His3XFLAG-RGA-GKG are

shown in Figure 2.8.
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ETD spectrum of RGA peptide LSNHGTSSSSSSISKDK +4 species c,
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Figure 2.7: ETD MS?pectrum of mono-Fucosylated peptide LSNHGTSSSSSSISKDK. C and Z type
fragment ions are marked in purple and blue respectively, while unreacted precursor and charge reduced
species from ETnoD are labeled in black. Some fragment ions exist with and without fucose because of the
mixed modification sites. For fragments where two copies are present the heavier fucosylated version is
marked with an *.

We assessed the relative abundance of modified and unmodified peptides from
control and +SPY samples. Peptides were quantified by summing the ion current for any
charge states and isotopic peaks >10% relative abundance at the center of the peptides

chromatographic peak. The ion current for every peptide covering a given modified
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ETD fragments from LSNHGTSSSSSSISKDK mono O-fucose
C+lionsw/ C+lions Z+lionsw/o Z+lionsw/
fucose  w/ofucose Sequence fucose fucose
131.12 1 L 17 1721.83 1867.89
364.21 218.15 2 S 16 1592.73 1738.79
478.25 332.19 3 N 15 1505.70 1651.75
615.31 469.25 4 H 14 1391.65 1537.71
672.33 526.27 5 G 13 1254.59 1400.65
773.38 627.32 6 T 12 1197.57 1343.63
860.41 714.35 7 S 11 1096.52 1242.58
947.44 801.39 8 S 10 1009.49 1155.55
1034.47 888.42 9 S 9 922.46 1068.52
1121.51 975.45 10 S 8 835.43 981.49
1208.54 1062.48 11 S 7 748.40 894.45
1295.57 1149.51 12 S 6 661.36 807.42
1408.66 1262.60 13 [ 5 574.33 720.39
1495.69 1349.63 14 S 4 461.25 607.31
1623.78 1477.72 15 K 3 374.22
1738.81 15982.75 16 D 2 246.12
1867.89 1721.83 17 K 1 131.09

Table 2.3: Fragment ion coverage map for RGA tryptic peptide LSNHGTSSSSSSISKDK. Observed
fragments are highlighted in grey. Some ions appear with and without fucose because the modification is
spread across multiple sites.

region was summed, and each individual modification form’s relative abundance was

expressed compared to the summed abundance of all detected forms including

unmodified peptide. The relative abundance of all observed modified forms can be seen

in Table 2.4.
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Figure 2.8: Observed modified RGA peptides from tobacco. This is a list of all observed modification
sites for Fucose, Hexose, GIcNAc, and Phosphorylation observed in the tobacco samples. Sites that could
not be mapped to a single residue are indicated by [ ].
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To assess the influence, if any, of the Tobacco expression system on SPY’s
specificity and activity we also analyzed 6His3XxFLAG-RGA-GKG expressed in E. coli
with and without SPY. The extent of O-fucosylation was drastically reduced in the E. coli
samples. We were only able to detect O-fucose within the N-terminal peptide
LSNHGTSSSSSSISKDK. While the sites modified, T, S, S, S were identical, the
modified peptide was <1% of the unmodified in relative abundance (Table 2.4).

To further explore the functionality of SPY, and the importance of various regions
of the protein for its association with RGA and subsequent enzymatic activity we
expressed 6His3XFLAG-RGA-GKG in tobacco with five SPY mutants: spy-2, spy-12,
spy-15, spy-19, and 3TPR-spy. The characteristics of the mutants are shown in Figure
2.9.

Mutants spy-8, spy-12, spy-15, and spy-19 all showed dramatically reduced O-
fucosylation activity, with modification levels falling to what was seen in the control
samples. 3TPR-SPY, however, showed slightly increased modification activity over wild
type SPY. Interestingly, the level of hexosylated peptide also increased in the 3STPR-SPY
sample. In fact, although our analyses were not directed toward Hexosylation, there does
appear to be a positive correlation in all samples between the level of O-fucosylated
peptide and the level of O-hexosylated peptide. Levels of modification produced by the 5
SPY Mutants relative to control (no SPY co-expression) and wild type SPY can be seen

in Table 2.4.
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Figure 2.9: SPY mutants. a) Schematic of SPY protein structure. The spy-8 mutation is in the TPR
protein-protein interaction domain, while spy-15 and spy-19 mutations are near the suspected active site of
the enzyme. In a gibberellin deficient background (gal-3) all three mutants studied by mass spectrometry
rescue growth in the seedling (panel b) and adult (panel d) stage. Figure adapted from [30].

Following our experiments in tobacco and E. coli we began to investigate O-
fucosylation directly in Arabidopsis thaliana. Our first Arabidopsis samples were
generated from an RGA-TAP fusion protein clone that was already available in the Sun
lab at Duke. The TAP tag is a large protein purification tag with two binding sites, a
calmodulin binding peptide tag and a Protein A tag divided by a TEV protease cleavage
site. TAP-tagged proteins are first captured with 1gG (binds to Protein A), released using

the TEV protease, and purified again using calmodulin. The RGA-TAP protocol did not
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purify RGA as effectively as the histidine/immuno-purification scheme used with 6His-
3XFLAG tag, but because the mutant was already available we elected to test it first
before generating a 6His-3XxFLAG RGA Arabidopsis clone. O-fucose was detectable in
the RGA-TAP clones, but at much lower levels then the tobacco samples. Additionally,
because the Arabidopsis clone did not have the lysine insertion present in the tobacco
system, two of the four poly-S/T areas were not covered.

Once fucosylation had been confirmed in Arabidopsis, we generated a 6His-
3XFLAG-RGA Arabidopsis clone and analyzed samples from WT, Spy8, and Sec3
Arabidopsis. Spy8 and Sec3 are both believed to be loss of function mutants. This RGA
fusion protein did not contain the lysine insertion in its sequence, so we did not expect to
observe the third a fourth poly S/T regions modified in tobacco. Modification sites
identified in Arabidopsis were the same as those from tobacco, and relative levels of

fucose and GIcNAc between the three Arabidopsis clone types can be seen in Figure
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Figure 2.10: O-fucose activity in Arabidopsis. The two graphs show relative levels of fucosylation and
GlcNAcylation on the peptide LSNHGTSSSSSSISKDK observed from Arabidopsis wild type and mutant
samples. Figure adapted from [30].
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Finally, we performed competition experiments between SPY and SEC by
transiently expressing fixed amounts of SPY and varying amounts of SEC in tobacco.
Increasing levels of SED relative to SPY led to decreased fucosylation and increased

GlcNAcylation (Figure 2.11).

<)
o

80 1 m
F -GlcN
- - 010310 1.0 SEC A BO-Fuc W O-GlcNAc
- 10101010 - SPY 38 601 M
MW (kDa) 8 9
> T
Anti-SEC 100 = —m P <« SEC 2% 40 -
58
Anti-SPY 100~ ceeeeses <SPy 52 20+
-l
764 4.0 LA
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- - by SPY - 10 10 10 10
SEC = = 01 03 10

Figure 2.11: SPY and SEC competition experiment. a) An immunoblot assay shows stable levels of
SPY expression as SEC is increased. FLAG-RGA mobility decreases as SEC increases likely due to
increasing levels of O-GIcNAc modification. b) Mass spectrometry analysis of modified peptides showed
decreasing fucosylation and increasing GIcNAcylation correlating with the increase in SEC as determined
by peak area ratios between the modified peptides. Asterisk, data included from previous control
experiments where RGA was expressed without SPY or SEC. Figure adapted from [30].
2.4.2 Biological Assays Performed at Duke

We performed in vitro assays to assess the direct activity of SPY on RGA
peptides. Two RGA peptides shown to be modified in plant samples by LC-MS/MS
were incubated with 3-TPR SPY (a truncated mutant that showed no loss of activity in
our plant assays) or SEC, and GDP-fucose, the presumed donor substrate for Spy O-

fucosyltransferase activity. Peptides were then analyzed by Matrix-assisted laser

desorption/ionization mass spectrometry (MALDI-MS).
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As shown in Figure 2.12, 88% of peptidel was modified in the presence of
3TPR-SPY and GDP-fucose, but no modification of peptide 1 was found in the absence
of either. Peptide 2 was also O-fucosylated by Spy, but at much lower levels than
peptide 1. Additionally, incubation of RGA peptide 1 with GDP-fucose and SEC did not
yield any detectable O-fucosylated peptide.

To evaluate the donor substrate tolerance of SPY four other nucleotide-sugars
were incubated with 3TPR-SPY and peptide 1. These sugars were UDP-GIcNAc, GDP-
mannose, UDP-galactose, UDP-glucose. No O-fucosyltransferase activity was detected
by MALDI-MS in the presence of sugars other than GDP-fucose.

To further characterize the POFUT activity of SPY, we used a malachite green-
coupled reaction described in detail in . Briefly, the glycosyltransferase reaction is
coupled with a phosphatase (ectonucleoside triphosphate diphosphohydrolase, ENTPD)
that releases the B-phosphate of GDP, which can then be detected by malachite green
reagents. Using this assay we determined that SPY activity is pH sensitive, with the
highest activity at pH 8.2 Two reactions were performed, one with a fixed GDP-fucose
concentration at 800uM, and one with a fixed peptide concentration at 312.5uM. For
3TPR-SPY, the K, for RGA peptidel was 8.23+ 0.10uM, with a K¢y of 0.50+0.02 sect:
The K, for GDP-fucose was determined to be 50.48+3.90 uM, with kcat of 0.27+
0.01sec™® (Figure 2.12).

We assessed the phenotypic effects of the spy mutants assessed earlier through

LCMS/MS in a Gibberellin deficient mutant gal-3 background. Previous work has
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Figure 2.12: SPY in vitro activity and kinetics. Figure adapted from [30].
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shown that spy-12, spy-15, and spy-19 show more severe fertility defects and earlier
flowering in Arabidopsis than spy-8. In this work spy-8 rescued the hypocotyl growth of
gal-3 in the seedling stage to a similar level as observed in spy-15 and spy-19 mutants.
At the adult stage, spy-19 rescued the stem growth defect of gal-3 more efficiently than
spy-8 and spy-15 (Figure 2.9).

We repeated the in vitro malachite green assay with purified spy mutants (spy-8,
spy-15, and spy-19) to assess their remaining enzymatic activity. Spy-8 POFUT activity
was 7.3% relative to the wild type protein, but spy-15 and spy-19 had no detectable
POFUT activity.

Spy has a demonstrable effect on the function of RGA, but does not promote its
degradation or restrict its nuclear localization. Another possible pathway for Spy’s effect
on RGA, is that O-fucosylation regulates RGA’s interaction with other nuclear proteins.
We investigated this possibility by performing pulldown assays with three known RGA
interacting proteins, BZR1, PIF3, and PIF4, expressed in E.coli as Glutathione S-
transferase fusion proteins. FLAG-RGA purified from WT Arabidopsis showed stronger
interaction with the three proteins than FLAG-RGA from spy-8 Arabidopsis. If
fucosylation of RGA enhances its interaction with BZR1, PIF3, and PIF4, then SPY
mutation should enhance the transcription of genes normally induced by those
transcription factors. We performed RT-qPCR and found that transcript levels of IAA9

and PRE1 were increased in spy-8 and spy-19 mutants.
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Furthurmore, gal-3 spy seedlings had longer hypocotyls than those of gal-3
seedlings, an effect known to be promoted by PIF3, PIF4 and PIF5 (refs. 37,38 from
NCB paper). In the presence of a BR-biosynthesis inhibitor, spy-8 enhanced the BR
response in hypocotyl elongation. This suggests that O-fucosylation of RGA enhances its

activity and negatively regulates GA-, BR-, and PIF-dependant pathways.
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Figure 2.13: RGA-transcription factor interaction experiments. Figure adapted from [30].
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2.5 Conclusions

These experiments show that SPY is a protein O-fucosyl Transferase enzyme
(POFUT), not an O-GIcNACc transferase as previously suspected. Fucose is a common
component of the O and N-linked glycans that decorate many proteins, but O-linked
mono fucose has not been extensively detected. Two protein O-fucosyltransferases have
been identified in humans, and the donor substrate for both is GDP-Fucose. Known
examples of O-fucosylation occur on the membrane bound signaling protein notch, but
here appears to be little commonality between previously known O-fucosyltransferases
and SPY, with the exception of the shared substrate GDP-fucose.

The Arabidopsis proteins SEC and SPY, and their respective activities as
an O-GIcNAc transferase and O-fucose transferase, are now known to have opposing
rather than overlapping functions in DELLA regulation. We propose a new model for the
regulation of RGA by SPY and SEC (Figure 2.14) where GIcNAcylation promotes a
closed, less active form of RGA that has reduced interactions with transcription factors
and therefore reduced growth inhibiting activity while O-fucosylation by SPY stabilizes
an open form of RGA that can bind to transcription factors to regulate growth.
2.6 Future Work

We have immediate plans for two new lines of investigation into RGA and SPY.
We have recently generated an Arabidopsis line containing the 6His-3xFLAG-RGA-
GKG protein that provides sequence coverage of all known modified sites on RGA. We
have already purified samples of this protein from Arabidopsis and are working to fully

map sites of O-fucose on RGA in Arabidopsis. Additionally, we hope to use these
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samples to investigate the interplay between O-GIcNAc, O-fucose, and phosphorylation
on RGA in Arabidopsis. Additionally, it remains unclear whether other DELLA proteins
are also modified by SPY. A preliminary analysis showed some evidence for
fucosylation of RGL1 by SPY in tobacco, but the results are not definitive and more work

needs to be done.

UDP-GIcNAc

UDP

Closed form Open form
(less active) (more active)

(BZR1and PIFs)

@Eh» - N

GA- BR- and PIF-dependent growth

Figure 2.14: A new model for DELLA regulation by SPY/SEC. Figure adapted from [30].
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Chapter 3: Identification of SHM Enhancer Binding Proteins

3.1 Introduction

This chapter describes the use of tandem mass spectrometry to identify proteins
involved in targeting B cell somatic hypermutation to the immunoglobulin gene locus.
Chapter 2 of this dissertation demonstrated how the tandem mass spectrometry
experiment detailed in chapter 1 could be applied to the in depth analysis of a single
protein. By performing many MS/MS experiments on a relatively simple sample
dominated by a single protein we were able to identify rare modified forms of that protein
and discover a new post-translational modification. In this chapter, we will use the same
foundational tandem MS experiment to identify many proteins within complex samples.
Unfortunately, we will see that this breadth of analysis comes at a cost. A tryptic digest
of a sample containing thousands of proteins yields far more peptides, and therefore
potential targets for our MS/MS experiments, than even the most advanced instrument
can analyze during the course of a liquid chromatography gradient. To worsen matters,
many of the MS/MS experiments we do perform will not be correctly matched to a
peptide sequence. As a result, our sequence coverage of the proteins we find is far lower
than that seen on RGA in chapter 2 (>80%), and we do not gain any appreciable
information about post-translational modifications. Nevertheless, we were able to

identify several proteins of interest for further study by our collaborators.
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3.1.1 The Function of Somatic Hypermutation

B cell somatic hypermutation is part of a larger process, called antibody affinity
maturation, which is essential to the production of high affinity antibodies [1,2].
Antibodies are soluble proteins, secreted by B cells, that bind to pathogens like viruses
and bacteria and facilitate their elimination or destruction by other parts of the immune
system. The higher the affinity of the antibody for its complementary pathogen the more
effective it is at preventing or eliminating an infection. The immune system’s challenge
is that there is a constantly changing and near infinite array of possible pathogen
molecular structures antibodies will need to recognize.

There are five classes of antibody (IgA, IgD, IgE, 1gG, and IgM) active in
different tissues or at different points in the immune response, but they are all produced
by B cells and all recognize antigen by the same mechanism. The core antibody unit is
two roughly 25 kD identical light chains and two 50 kD identical heavy chains joined in a
tetramer. Both light and heavy chains are characterized by variable and constant regions,
with the variable regions responsible for antigen binding and the constant region of the
heavy chain responsible for effector functions.

It is estimated that a human will produce over 1x10° different antibody sequences
in their lifetime, while the human genome is estimate to contain only approximately
25,000 genes . This diverse antibody repertoire cannot, therefore, possibly be contained
in the germline DNA of B cells. Instead, there is a sophisticated two part process for
generating novel antibody sequences; part one is VV(D)J rearrangement, and part two is

affinity maturation (Figure 3.1).
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B cells begin development in the bone marrow. During their early stages of
differentiation there is no single gene coding for the entire antibody protein. Instead the
protein is divided into DNA segments V, J, and C for the light chain, and V, D, J, and C
for the heavy chain. There are multiple copies of each segment. The V, D, and J
segments code for the variable regions of the antibody that interact with antigen, and the
C regions determine the class of the antibody (ex. 1gG, IgA, etc.). Specialized proteins,
notable RAG1 and RAG2 randomly assemble V, D, J, and C segments into a functional
antibody gene [3]. While the segments are being joined new DNA bases are randomly
inserted in the joints, altering the gene even further. When V(D)J rearrangement is
complete, for both light and heavy chains, the B cell has a functional antibody gene. A
membrane bound version of the antibody, called the B cell receptor (BCR), is displayed
on the surface of the B cell and tested for self-reactivity. B cells that successfully
generate a non-self-reactive BCR leave the bone marrow and enter a lymph node.

During an infection B cells waiting in the bone marrow are activated when their
BCR binds to a pathogen passing through the lymph node. Activated B cells begin
dividing rapidly. Some clones begin secreting low affinity antibodies immediately to
combat the infection, while others enter the affinity maturation process. These B cells
form a cluster within the lymph node called a germinal center that also contains

specialized dendritic cells and helper T cells [4].
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Figure 3.1: V(D)J recombination and somatic hypermutation drive antibody diversity. An additional
process called class switch recombination, in which antibodies change constant regions to alter their
effector function, shares some mechanistic features with SHM. Figure adapted from [1].

Within the germinal center the activated B cells cycle between periods of rapid
proliferation during which they alter their BCR, and antigen capture from dendritic cells
and interaction with helper T cells. B cell clones compete for available antigen, then
endocytose and digest it. Fragments of captured antigen are displayed again on the B cell
surface bound within MHC Class Il proteins. Helper T cells recognize these
antigen/MHC 11 complexes and through them form stable interactions with the B Cells.
During this interaction the T cell provides critical stimulatory signals to the B cell [5].

Antigen capture is competitive, and T cell help is dependent on antigen capture.
B cells that do not receive sufficient T cell help will die, while those that do continue
through cycles of proliferation and BCR modification. This survival pressure selects for
B cell clones that have improved the affinity of their BCR for the pathogen, and discards

changes that do not improve affinity. This is the affinity maturation process, and it
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increases the Ky of antibody for target pathogen by several orders of magnitude over the
first several days of an immune response [6]. Once the B cells have reached a threshold
affinity, they become antibody secreting plasma cells and distribute their high affinity

antibodies throughout the body to help eliminate the infection (Figure 3.2).

Antibodies from B cells in germinal centers in
other regions of the body are also circulating
and competing for antigen.

Cells that

capture antigen B Cells compete for
interact with antigen and

CD4+ T cells subsequent T-cell

and rotate to help in the light

the Dark zone. Light zone.
Zone
JA
Cells that fail to G inal
capture antigen = €rmina

cannot interact Center

with CD4+ T
cells and die by
neglect.

Dark
Zone

B Cells divide and
undergo somatic
hypermutation in the Dark
Zone, then rotate to the

Lymph Node light zone.
Figure 3.2: SHM and the germinal center.

The affinity of an antibody for pathogen is determined by the amino acids in the
variable regions of the protein that interact with antigen. Affinity maturation changes
this interaction by changing amino acids within the variable regions. As described in
chapter one, a proteins amino acid sequence is determined by DNA according to the
genetic code (Table 1.2). B cell somatic hypermutation refers to the step during affinity

maturation when B cells alter the DNA bases that code for the hypervariable region of the
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antibody protein, thereby changing the amino acids responsible for binding to the
pathogen and the antibody’s affinity for its target. Most importantly, these mutations are
well confined to the DNA coding for the variable region of the antibody protein.

3.1.2 Biochemistry of Somatic Hypermutation

Somatic Hypermutation begins with the enzyme Activation-Induced Cytidine
Deaminase (AID) [7]. AID deaminates cytidines to uracils, which creates a base pair
mismatch between the DNA coding and noncoding strand. Mice and Humans deficient
in AID do not undergo somatic hypermutation, proving that AID is an essential actor in
SHM. AID only acts on single stranded DNA, and the rate of mutation is correlated with
the rate of transcription. AID has a hotspot motif, WRCY (W = A/T,R=A/G, Y =C/T),
but not all hotspots are deamidated and not all deamidations occur in a hotspot.

AID introduces mismatches between C and G only, but 60% of SHM mutations
are between A-T base pairs. Additionally, when constitutively expressed in non-B Cells
AID readily acts across the entire genome. These two facts mean that while AID
initiates SHM, it alone is not responsible for the mutations or their targeting to the Ig
locus. Current models for SHM view it as a two-step process. Step one is introduction of
a G-U mismatch by AID. This occurs randomly in any transcriptionally active single
stranded DNA. Step two is repair of that mismatch, and it is the second step that is now
believed to be specifically targeted to the Ig locus.

Once the G-U mismatch is created there are three possible fates for the DNA
lesion. The first is replication across the mismatch, which would resultina Gto Aand C

to T mutation at the site of deamidation. The second is Base Excision Repair in which
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the uracil is removed by the Uracil-DNA glycosylase enzyme UNG and the abasic site is
filled with a new nucleotide by a DNA polymerase. The third pathway is recognition of
the G-U mismatch by the mismatch recognition protein heterodimer MSH2/MSH6. This
triggers the mismatch repair pathway where a short section of DNA is excised and
entirely rewritten.

There is strong evidence that all three of these pathways are active and
responsible for mutations during SHM. Mice deficient in UNG and MSH2/MSHS6 still
undergo SHM, but only acquire the G to A and C to T mutations characteristic of
replication across the U-G mismatch. Mice deficient in MSH2/MSH®6 are unable to
mutate at A-T base pairs near deamidation sites. Figure 3.3 illustrates the three G-U
mismatch processing pathways active in Somatic Hypermutation and the types of
mutations they can confer [2,8].

One of the biggest unanswered questions about the SHM process centers around
the BER and Mismatch repair pathways. Cells regularly utilize these mechanisms during
DNA replication, and under normal circumstances they have an extremely low error rate.
The overall error rate for DNA replication is 1 in 10° base pairs, while the error rate
during SHM is roughly 1 in every 1000 base pairs. Why do these DNA repair
mechanisms become error prone during SHM, and how is that activity confined to the

Immunoglobulin gene variable region? A number of lower fidelity DNA polymerases
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have been discovered, and several have been shown to affect SHM rates when deleted
[9,10], but currently there is no clear evidence for how these low fidelity polymerases
might be targeted to the variable region of the Immunoglobulin protein gene.
3.1.3 Identification of Somatic Hypermutation Enhancing DNA Sequences

In addition to the coding segments that dictate the sequence of a protein, DNA
also contains regulatory segments that facilitate the interaction of proteins involved in
DNA transcription, replication, and repair [11]. In recent years there has been growing
evidence that a region of DNA near the antibody coding segment is responsible for
targeting SHM [12,13], likely by recruiting specialized proteins involved in the mutation
process.

In 2009 a 10kB region near the chicken IgA light chain locus was shown to have
SHM enhancing effects, but the relative importance of specific nucleotide sequences
within this larger region remained a mystery [14]. Recently our collaborators, The
Schatz lab at Yale Medical School, have developed a highly sensitive green fluorescent
protein (GFP) based assay to detect mutation rates for a single gene, and used it to
investigate the chicken and human immunoglobulin gene locus in more detail [15].

They have identified much shorter regions of DNA containing multiple
transcription factor binding motifs that when inserted near the GFP gene have significant
effects on rates of SHM, and term these DNA segments “SHM enhancers”. Point
mutations within the transcription factor binding motifs of the enhancers reduce mutation
rates. Importantly, parts of these sequences are conserved between the chicken, murine,

and human genome. We propose that they act by recruiting proteins necessary for
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targeting the error prone repair step of SHM. Our goal is to use a selected set of the
chicken and human enhancer sequences, those shown to have the highest SHM enhancing
effect, as bait to capture proteins that preferentially bind to these DNA regulatory
elements, and then identify those proteins bound to the DNA by LC-MS/MS.
3.1.4 Our Proposed Experimental Approach

Biotinylated enhancer or control DNA is bound to streptavidin coated magnetic
beads. DT40 or Ramos cells are lysed, and the intact nuclei captured. Nuclei are lysed
and the soluble portion separated. Soluble nuclear lysates are then incubated with the
DNA coated magnetic beads. Proteins bound to the beads are digested with trypsin and
the resulting peptides analyzed by LC-MS/MS. Database search software is used to
correlate MS/MS spectra with tryptic peptides and map those tryptic peptides back to
their parent protein. LC peak areas are used to relatively quantitate peptides between
enhancer and control samples and identify proteins that bind preferentially to the
enhancer DNA.
3.2 Materials, Equipment, and Instrumentation
Agilent Technologies (Palo Alto, CA)

1100 Series high performance liquid chromatograph

1100 Series vacuum degasser
Branson (Danbury, CT)

Branson 1200 ultrasonic bath
Eppendorf (Hauppauge, NY)

5414R Benchtop centrifuge
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Honeywell (Morristown, NJ)
Burdick and Jackson® Acetonitrile, LC-MS grade
Labconco Corporation (Kansas City, MO)
Centrivap centrifugal vacuum concentrator
Molex (Lisle, IL)
Polymicro Technologies™ polyimide coated fused silica capillary
Sizes: 360 um o0.d. x 50, & 75 um i.d.
PQ Corporation (Valley Forge, PA)
Kasil — Potassium silicate solution
Promega Corporation, (Madison, W1)
Sequencing grade modified trypsin
SGE Analytical Science (Melbourne, Australia)
PEEKsil tubing 1/16” o0.d., 0.025 mm i.d.
Sigma Aldrich (St. Louis, MO)
2-propanol, LC-MS grade
Ammonium Acetate
Ammonium Hydroxide
Angiotensin I acetate salt hydrate, >99% purity (human)
1,4-Dithiothreitol, >97% purity
Glacial acetic acid, >99.9% purity
Iodoacetamide (Bioultra), > 99% purity

Trichloroacetic acid
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Vasoactive intestinal peptide fragment 1-12, >97% purity (human)

Sutter Instrument Co. (Novato, CA)
P-2000 microcapillary laser puller
Thermo Fisher Scientific (San Jose, CA/Bremen, Germany)
Calibration mixture
The Thermo Scientific™ Orbitrap Fusion™ Tribrid™ mass spectrometer
Streptavidin coated M-280 Dynabeads (magnetic)
Orbitrap Elite™ mass spectrometer (custom modified with front-end ETD)
Pierce® water, LC-MS grade
Urea
YMC Co., LTD (Kyoto, Japan)
ODS-AQ, C18 5 um spherical silica particles, 120 A pore size
ODS-AQ, C18 15 um spherical silica particles, 120 A pore size
Zeus Industrial Products (Orangeburg, SC)
Teflon tubing, 0.012” i.d. x 0.060” o.d.
3.3 Methods
Our nuclear protein extraction, DNA capture, and on bead digestion protocols
were adapted from [16-18]. The detailed procedure is in Appendix A. Four DNA
sequences were used for protein capture based on [15], Chicken Enhancer, Chicken
Control, Human Enhancer, Human Control. Annotated DNA sequences can be seen in

Appendix B.
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Capillary LC column fabrication and liquid chromatography gradients were
identical to those described in Chapter 2.

Several different MS acquisition methods were used for sample analysis. All
mass spectrometry analysis was performed on the The Thermo Scientific™ Orbitrap
Fusion™ Tribrid™ mass spectrometer. Full parameters for the acquisition method are
contained with the mass spectrometry results files. For acquisition methods a full MS
scan was performed from 300 to 1200 m/z in the Orbitrap, at a resolution of 120,000 at
m/z 200, an AGC target of 3E> charges, and a maximum injection time of 100ms. lons
appearing in the MS1 scan with charge states between 2 and 6 were selected for MS2
analysis in a data-dependent manner in order of decreasing intensity and isolated by the
QMF with a 2 m/z window. Dynamic exclusion was turned on with a repeat count of 1,
an exclusion duration of 30 seconds, and an exclusion window of £10ppm. Methods
differed in their MS? acquisition parameters.

HCD fragmentation was performed in the IRM at a pressure of 8 millitor and a
normalized collision energy of 25% on a target of 5E* charges. HCD MS? spectra were
acquired in the Orbitrap at a resolution of 15,000 at m/z 200. CID fragmentation took
place in the high pressure cell of the linear ion trap at normalized collision energy of 30%
on a target of 1E* charges. CID MS? spectra were acquired in the ion trap at the normal
scan rate. ETD fragmentation took place in the high pressure cell of the linear ion trap
using calibrated charge state dependent reaction times, a precursor target of 1E* charges

and a fluoranthene reagent target of 2E° charges.
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MS result files were evaluated using Thermo Scientific Proteome Discoverer Beta
V2.2.0.336. HCD and CID spectra were searched using the SEQUEST algorithm and
ETD using the MASCOT algorithm against either the Chicken TrEMBL database or the
Human Swissprot database downloaded from uniprot. PD generated decoy databases,
and peptide spectral matches were filtered to a 1% false discovery rate by the Percolator
algorithm. Match peptides were assigned to proteins, and proteins quantitated based on
the summed peak areas of all their assigned peptides. Protein abundances were
normalized for each sample against the total measured peptide content of that sample,
then averaged across any technical and biological replicates. Final ratios of protein
abundance between enhancer and control samples were calculated.

3.4 Results and Discussion
3.4.1 DT40 Samples

We performed three primary protein capture experiments. The first experiment
identified and relatively quantified proteins captured from the nuclei of DT40 cells using
either the chicken enhancer or chicken enhancer control sequence described above. The
second experiment identified and relatively quantified proteins captured from the nuclei
of Ramos cells using either the Human enhancer or Human enhancer control sequence,
and the third experiment used Ramos but chicken Enhancer and control sequences.

All protein capture experiments were performed in biological triplicate, and
samples from the first experiment were analyzed in technical triplicates with three
different MS2 acquisition schemes: low resolution ion trap ETD MS?, low resolution ion

trap CID MS?, or High Resolution Orbitrap HCD MS?. Data from the ETD analysis of
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the third control replicate was omitted because a clog in the LC system interfered with
data acquisition. Samples from the Ramos/Human and Ramos/Chicken experiments
were analyzed only once using the same High Resolution Orbitrap HCD MS? method.

Proteome Discoverer Beta version 2.2.0.336 was chosen in part because of its
unique label free quantitation features. Each protein was quantified by summing the
integrated LC peak area for all peptides assigned to that protein. Relative protein
abundances in each sample were normalized against the total measured peptide content of
that sample, averaged across all 9 replicates for the Enhancer samples and 8 replicates for
the control samples, and ratios of each protein’s abundance in Enhancer vs Control
samples was calculated.

Across all biological and technical replicates (17 LC-MS/MS Runs) from
experiment 1 there were 144,651 individual MS/MS experiments, 33,860 of which were
matched with peptide sequences from the chicken TrEMBL database for an overall PSM
rate of just over 23%. Many of the MS/MS events represented multiple targeting of the
same peptide, and so the PSMs were condensed into 6,083 unique peptide hits. These
peptides were assigned to 1850 proteins.

Figure 3.4 shows the protein abundance distributions in all samples before and
after normalization. Figure 3.5 shows the overlap between peptides identified between
biological replicates and activation type, and Figure 3.6 performs the same comparison
on the protein level. Figure 3.7 shows the total protein identification overlap from all
fragmentation types across all samples. From the DT40 nuclei 89 proteins were found

with at least 2 PSMs and at least a 2X increase in signal in the DIVAC vs Control
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samples (Table 3.1). These proteins vary in relative abundance by more than 3 orders of
magnitude. There are also large differences in the number of PSMs, individual peptides

identified, and sequence coverage for each protein that scale roughly with relative

Before Normalization After Normalization

abundance.

Samples Controls Samples Controls
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Figure 3.4: Protein abundances from all DT40 replicates before and after normalization.
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Figure 3.6: Identified peptides by dissociation type and biological replicate.
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3.4.2 Ramos Samples

The twelve LC-MS/MS data files from experiments two and three were analyzed
as a single set by PD using the same processing and consensus workflows employed for
the orbitrap HCD replicates from experiment one, with only the proteins database
changed. For the 12 samples there were 124,798 individual MS/MS experiments, 42,434
of which were matched with peptide sequences from the human Swissprot database for
an overall PSM rate of 33.62%. These PSMs were condensed into 6,653 unique peptide

hits which were then assigned to 2,590 proteins.

Overlap of proteins found in Overlap of proteins found in
Ramos/Human enhancer biological replicates | Ramos/Chicken enhancer biological replicates

all 3 reps rep #2 only #1 & #2 rep #2 onl
112 shared 101 protein 28 shared prcony
18 40 01 proteins 17 proteins
3 shared rep #1 only
9 proteins
rep #1 only
2 proteins #2 & #3
27 shared

#1 & #3
3 shared

#1&4#3

LS 12 shared

204 shared

rep #3 only
26 proteins

rep #3 only
32 proteins

Figure 3.8: Overlap of proteins identified in human and chicken enhancer Ramos samples by
biological replicate.

Figure 3.8 shows the overlap between proteins identified from Ramos cells
between biological replicates with either the Human or Chicken enhancer sequences.
Figure 3.9 shows the protein abundance distributions in all samples before and after

normalization. Table 3.2 lists the 199 proteins for which there was a 2X signal increase
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over control in the Ramos/human samples, and Table 3.3 shows the 184 proteins for the
Ramos/Chicken Samples. There were 88 proteins, highlighted in grey, that were enriched
at least 2X over control by both the chicken and human enhancer sequences. These

results show a similar distribution of protein properties as the DT40 samples.

All Ramos Replicate Protein Abundances

Biological Replicate # o L
Before Normalization After Normalization

11 l
# #1 #3 # L #3

#3 #1 #3 #2
#2 4
10 o 3 #2 #2

L LITTTLI TR LITTETINT T

Log Abundance
=2

Human Enhancer  Human Control Chicken Enhancer  Chicken Control Human Enhancer  Human Control Chicken Enhancer  Chicken Control

Figure 3.9: Protein abundances for all Ramos replicates.

3.4.3 Ikaros, Aiolos, and Helios

Among all three experiments the protein most consistently enriched in the
enhancer samples was lIkaros. Ikaros is a zinc finger DNA binding protein with well-
established links to transcriptional regulation and B cell development. The chicken and
human canonical Ikaros sequences are 519 and 518 amino acids in length respectively,
both have 6 zinc finger domains, and are 85% identical. The protein Ikaros is a member
of the Ikaros family of zinc finger transcription factors which also includes Aiolos,
Helios, Eos, and Pegasus. There are 8 known splice variants of Ikaros, Aiolos has 16,

Helios 8, Eos 2, but Pegasus only 1. Aiolos and Helios were also identified by




Chapter 3: Enhancer Proteins 105

the data processing algorithm as being enriched in the DIVAC samples in all three
experiments. Figure 3.x shows the alignment of the canonical sequences for Ikaros,
Aiolos, and Helios. Regions of each protein potential observed by mass spectrometry are
highlighted. While there are substantial numbers of peptides unique to Ikaros or Aiolos,
the only peptides assigned to Helios by the Proteome Discoverer search algorithm are
also part of the sequence of Ikaros and Aiolos. Due to its lack of unique peptides, it is
unlikely that Helios is actually enriched in the enhancer samples.

Figure 3.x shows the 8 human Ikaros isoform sequences aligned and regions of
the protein observed by mass spectrometry are highlighted. Unfortunately, because of the
extensive sequence overlap among lkaros isoforms it is impossible to determine which
ones are present in our sample. Additionally, there is no discernable pattern to the
abundance in peptides across the Ikaros sequence to suggest the dominance of one

Isoform over another.
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Figure 3.10: Sequence alignment of the proteins Ikaros, Aiolos, and Helios. Regions highlighted in

---------------------------- MDADEGQDMSQVSGKESPPVSDTPDEGDEPMP
MEDIQTNAELKSTQEQSVPAESAAVLNDYSLTKSHEMENVDSGEG-PANEDEDIGDDSMK
---------------------------------- METEAIDGYITCDNELSPEREHSNMA

IPEDLSTTSGGQQSSKSDRVVASNVKVETQSDEENGRA - -~ - - CEMNGEECAEDLRMLDA
VKDEYSERDE-------- NVLK============———mmm— SEPMGNA--EEPEIPYS
IDL-TSSTPNGQHASPSHMTSTNSVKLEMQSDEECDRKPLSREDEIRGHDEGSSLEEPLI

SGEKMNGSHRDQGSSALSGVGGIRLPNGKLKCDICGITICIGPNVLMVYHKRSHTGERPFQC
YSREYNEYENIKLERHVVSFDSSRPTSGKMNCDVCGLSCISFNVLMVHKRSHTGERPFQC
ES---SEVADNRKVQELQGEGGIRLPNGKLKCDVCGMVCIGPNVLMVHKRSHTGERPFHC

NQCGASFTQKGNLLRHIKLHSGEKPFKCHLCNYACRRRDALTGHLRTHSVGKPHKCGYCG
NQCGASFTQKGNLLRHIKLHTGEKPFKCHLCNYACQRRDALTGHLRTHSVEKPYKCEFCG
NQCGASFTQKGNLLRHIKLHSGEKPFKCPFCSYACRRRDALTGHLRTHSVGKPHKCNYCG

RSYKQRSSLEEHKERCHNYLESMGLPGTLYPV------- IKEETNHSEMAEDLCKIGSER
RSYKQRSSLEEHKERCRTFLQSTDPGDTA-----=--====--—--~- SAEARHIKAEMGSER
RSYKQRSSLEEHKERCHNYLQNVSMEAAGQVMSHHVPPMEDCKEQEPIMDNNISLVPFER

SLVLDRLASNVAKRKSSMPQKFLGDKGL-S---DTPYDSSASYEKENEMMKSHVMDQAIN
ALVLDRLASNVAKRKSSMPQKFIGEKRHCF---DVNYNSSYMYEKESELIQTRMMDQAIN
PAVIEKLTGNMGKRKSSTPQKFVGEKLMRFSYPDIHFDMNLTYEKEAELMQSHMMDQAIN

NAINYLGAESLRPLVQTPPGG-SEVVPVISPMYQLHKPLAEGTP---RSNHSAQDSAVEN
NAISYLGAEALRPLVQTPPAPTSEMVPVISSMYPIALTRAEMSN---GA----- PQELEK
NAITYLGAEALHPLMQHPPSTIAEVAPVISSAYSQVYHPNRIERPISRETADSHENNMDG

LLLLSKAKLVPSEREASPSNSCQDSTDTESNNEEQRSGLIYLTNHIAPHARNGLSL-KEE
KSIHLPEKSVPSERGLSPNNSGHDSTDTDSNHEERQNHIYQQNHMVLSRARNGMPLLKEV
PISLIRPKSRPQEREASPSNSCLDSTDSESSHDDHQS--YQGHPALNPKRKQSPAYMKED

HRAYDLLRAASENSQDALRVVSTSGEQMKVYKCEHCRVLFLDHVMYTIHMGCHGFRDPFE
PRSYELLKPPPICPRDSVKVINKEGEVMDVYRCDHCRVLFLDYVMFTIHMGCHGFRDPFE
VKALDTTKAPKGSLKDIYKVFNGEGEQIRAFKCEHCRVLFLDHVMYTIHMGCHGYRDPLE

CNMCGYHSQDRYEFSSHITRGEHRFHMS 519
CNMCGYRSHDRYEFSSHIARGEHRALLK 509
CNICGYRSQDRYEFSSHIVRGEHTFH-- 526

32
59
26

87
88
85

147
148
142

207
208
202

260
252
262

316
309
322

372
361
382

431
421
440

491
481
500

yellow were sequenced by peptides unique to that protein. Regions in pink were sequenced from peptides
common to more than one of the three proteins.




Chapter 3: Enhancer Proteins

121

NV A WN = NV A WN = NV A WN =

NV A W

TQSDEENGRACEMNGEECAEDLRMLDASGEKMNGSHRDQGSSALSGVGGIRLPNGKLKCD
TQSDEENGRACEMNGEECAEDLRMLDASGEKMNGSHRDQGSSALSGVGGIRLPNGKLKCD
TQSDEENGRACEMNGEECAEDLRMLDASGEKMNGSHRDQGSSALSGVGGIRLPNGKLKCD
TQSDEENGRACEMNGEECAEDLRMLDASGEKMNGSHRDQGSSALSGVGGIRLPNGKLKCD
TQSDEENGRACEMNGEECAEDLRMLDASGEKMNGSHRDQGSSALSGVGGIRLPNGKLKCD
TQSDEENGRACEMNGEECAEDLRMLDASGEKMNGSHRDQGSSALSGVGGIRLPNGKLKCD

ICGITCIGPNVLMVHKRSHTGERPFQCNQCGASFTQKGNLLRHIKLHSGEKPFKCHLCNY
------------------- VGERPFQCNQCGASFTQKGNLLRHIKLHSGEKPFKCHLCNY
ICGITICIGPNVLMVHKRSHTGERPFQCNQCGASFTQKGNLLRHIKLHSGEKPFKCHLCNY
ICGITICIGPNVLMVHKRSHTGERPFQCNQCGASFTQKGNLLRHIKLHSGEKPFKCHLCNY
ICGIICIGPNVLMVHKRSHT----=-=-==---—--—-———— e e m = =~
ICGITCIGPNVLMVHKRSHTGERPFQCNQCGASFTQKGNLLRHIKLHSGEKPFKCHLCNY
ICGITCIGPNVLMVHKRSHTGERPFQCNQCGASFTQKGNLLRHIKLHSGEKPFKCHLCNY

ACRRRDALTGHLRTHSVGKPHKCGYCGRSYKQRSSLEEHKERCHNYLESMGLPGTLYPVI
ACRRRDALTGHLRTHSVGKPHKCGYCGRSYKQRSSLEEHKERCHNYLESMGLPGTLYPVI
ACRRRDALTGHLRTHS = = == == === = = = oo oo

ACRRRDALTGHLRTHS == == === = = = = == — - mm e e e e
ACRRRDALTGHLRTHS —= === === ===~ —m — o e oo VI
ACRRRDALTGHLRTHS == == = == = = = = = = o e e o e e VI

KEETNHSEMAEDLCKIGSERSLVLDRLASNVAKRKSSMPQKFLGDKGLSDTPYDSSASYE
KEETNHSEMAEDLCKIGSERSLVLDRLASNVAKRKSSMPQKFLGDKGLSDTPYDSSASYE
——————————————————————————————————————————— GDKGLSDTPYDSSASYE
——————————————————————————————————————————— GDKGLSDTPYDSSASYE
——————————————————————————————————————————— GDKGLSDTPYDSSASYE
—————————————————————————————————————————— VGDKGLSDTPYDSSASYE
KEETNHSEMAEDLCKIGSERSLVLDRLASNVAKRKSSMPQKFLGDKGLSDTPYDSSASYE
KEETNHSEMAEDLCKIGSEISRAGQTSK========= === == —mmmmmm oo

120

120
76
120

120
120

180

180
136
140

180
180

240
153
196
152

198
198

300
213
213
169
157
70

258

Figure 3.11: Sequence alignment of the 8 Ikaros sequence variants. Highlighted regions
were sequenced by mass spectrometry.
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coONGOUVT A WNRE coONOUVT A WNRE CoONO VTS WN R

co~NOYUVT A WNR

KENEMMKSHVMDQAINNAINYLGAESLRPLVQTPPGGSEVVPVISPMYQLHKPLAEGTPR
KENEMMKSHVMDQAINNAINYLGAESLRPLVQTPPGGSEVVPVISPMYQLHKPLAEGTPR
KENEMMKSHVMDQAINNAINYLGAESLRPLVQTPPGGSEVVPVISPMYQLHKPLAEGTPR
KENEMMKSHVMDQAINNAINYLGAESLRPLVQTPPGGSEVVPVISPMYQLHKPLAEGTPR
KENEMMKSHVMDQAINNAINYLGAESLRPLVQTPPGGSEVVPVISPMYQLHKPLAEGTPR
KENEMMKSHVMDQAINNAINYLGAESLRPLVQTPPGGSEVVPVISPMYQLHKPLAEGTPR
KENEMMKSHVMDQAINNAINYLGAESLRPLVQTPPGGSEVVPVISPMYQLHKPLAEGTPR

SNHSAQDSAVENLLLLSKAKLVPSEREASPSNSCQDSTDTESNNEEQRSGLIYLTNHIAP
SNHSAQDSAVENLLLLSKAKLVPSEREASPSNSCQDSTDTESNNEEQRSGLIYLTNHIAP
SNHSAQDSAVENLLLLSKAKLVPSEREASPSNSCQDSTDTESNNEEQRSGLIYLTNHIAP
SNHSAQDSAVENLLLLSKAKLVPSEREASPSNSCQDSTDTESNNEEQRSGLIYLTNHIAP
SNHSAQDSAVENLLLLSKAKLVPSEREASPSNSCQDSTDTESNNEEQRSGLIYLTNHIAP
SNHSAQDSAVENLLLLSKAKLVPSEREASPSNSCQDSTDTESNNEEQRSGLIYLTNHIAP
SNHSAQDSAVENLLLLSKAKLVPSEREASPSNSCQDSTDTESNNEEQRSGLIYLTNHIAP

HARNGLSLKEEHRAYDLLRAASENSQDALRVVSTSGEQMKVYKCEHCRVLFLDHVMYTIH
HARNGLSLKEEHRAYDLLRAASENSQDALRVVSTSGEQMKVYKCEHCRVLFLDHVMYTIH
HARNGLSLKEEHRAYDLLRAASENSQDALRVVSTSGEQMKVYKCEHCRVLFLDHVMYTIH
HARNGLSLKEEHRAYDLLRAASENSQDALRVVSTSGEQMKVYKCEHCRVLFLDHVMYTIH
HARNGLSLKEEHRAYDLLRAASENSQDALRVVSTSGEQMKVYKCEHCRVLFLDHVMYTIH
HARNGLSLKEEHRAYDLLRAASENSQDALRVVSTSGEQMKVYKCEHCRVLFLDHVMYTIH
HARNGLSLKEEHRAYDLLRAASENSQDALRVVSTSGEQMKVYKCEHCRVLFLDHVMYTIH

MGCHGFRDPFECNMCGYHSQDRYEFSSHITRGEHRFHMS 519
MGCHGFRDPFECNMCGYHSQDRYEFSSHITRGEHRFHMS 432
MGCHGFRDPFECNMCGYHSQDRYEFSSHITRGEHRFHMS 432
MGCHGFRDPFECNMCGYHSQDRYEFSSHITRGEHRFHMS 388
MGCHGFRDPFECNMCGYHSQDRYEFSSHITRGEHRFHMS 376
MGCHGFRDPFECNMCGYHSQDRYEFSSHITRGEHRFHMS 289
MGCHGFRDPFECNMCGYHSQDRYEFSSHITRGEHRFHMS 477

Figure 3.11 continued.

360
273
273
229
217
130
318

420
333
333
289
277
190
378

480
393
393
349
337
250
438
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3.5 Conclusions

The use of DNA to capture proteins for mass spectrometry analysis is limited.
Our experiments show the technique can be successfully applied for the identification of
transcription factors selectively binding to short regions of DNA by nanoflow LC and
MS/MS. However, we believe there is substantial room for improvement to our
protocols. The current sample preparation method includes a high number of wash steps
designed to remove detergents and salt prior to MS analysis. Unfortunately these could
also be removing additional proteins of interest, especially if these proteins are not
interacting directly with the DNA, but instead part of a larger regulatory complex. The
high number of sample replicates we performed provide a baseline data set that can be
used to compare against as incremental improvements are made in the sample preparation
scheme.

The label free quantitation method performed surprisingly well. Isotopic labeling
and isobaric mass tag have become popular options for quantitative mass spec protein
analysis, but they are expensive and require additional sample processing steps that can
hurt sensitivity. Label free quantitation is largely regarded as unreliable by the protein
mass spectrometry community, but our experiments suggest it can be a valuable option if
applied correctly. As seen in Figures 3.4 and 3.9, normalized protein abundances are
highly consistent across all sample replicates. The coefficients of variance listed in
Tables 3.1, 3.2, and 3.3 would be considered high by most analytical chemists, but the
majority are <50%. As a result we can be confident in identifying proteins with a

sample/control abundance ratio of 2x or higher as being enriched.
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Figure 3.8 suggests a high degree of inconsistency in the proteins identified
between the three biological replicates of the Ramos/human enhancer samples. However,
the proteins not common among the samples are largely those of low abundance with few
PSMs. Of the 100 most abundant proteins in the Ramos/Human biological replicates
65% are present in all three samples, and 95% in at least two. One sample in particular,
the first biological replicate, is entirely responsible for the lack of protein identification
overlap. Results from the other two replicates are highly consistent. The proteins
identified from the Ramos/chicken, and DT 40/chicken samples also show a high degree
of overlap between biological replicates.

In conclusion, we were able to meet the primary goal of our experiments and
identify by mass spectrometry proteins that selectively bind to the Enhancer DNA of
Chickens and Humans. These proteins, particularly Ikaros and Aiolos, are promising
candidates for further biological study by our collaborators.
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Appendix A

Nuclear Extract Preparation

1.

N

10.

11.
12.

13.

Grow DT40 or Ramos cells to approximately 1 x 1076 cells/mL at a 100 mL volume in
T-175 flasks. Collect 300-600 x 1076 cells in 50 mL centrifuge tubes.

Centrifuge the cells at 300 x g for 8 min and aspirate the supernatant.

Wash cells with 50 mL of ice cold PBS and centrifuge the cells at 300 x g for 8 min.
Aspirate the supernatant.

Resuspend cells in each 50 mL centrifuge tube in 1 mL of ice cold PBS. Transfer to 1.5
(or 1.7) mL eppendorf tubes.

Centrifuge the cells at 300 x g for 8 min. Aspirate the supernatant.

During centrifugation pipet 5-15 mL of Buffer A into a 15 mL conical tube. Add
Aprotinin, Pepstatin A, AEBSF to make a 1X solution.

Estimate the volume of the cell pellet. Add 5 volumes of complete Buffer A and
resuspend the cells by gently pipetting up and down until homogenous.

Allow the cells to incubate on ice for 10 min. Centrifuge the cells at 300 x g for 8 min.
Aspirate the supernatant.

Due to the osmotic uptake caused by the hypotonicity of Buffer A, the cells should have
swelled. Determine the new volume of the pellet.

a. Ifthe cells are DT40 cells, add 3 volumes of complete Buffer A and resuspend
the pellet.

b. If the cells are Ramos cells, add 8-10 volumes of complete Buffer A and
resuspend the pellet.

Gather an appropriate size type B (tight) dounce based on the volume of cell solution you
will be douncing. Rinse the dounce with Buffer A and remove any remaining buffer with
a 1 mL pipette.

Transfer the cell solution to the dounce.

Dounce the cells.

a. For DT40 cells apply 30-40 slow and firm dounces (see step 14), being careful
not to introduce bubbles into the solution. Stop every ten dounces and take a 45-
60 sec break and leave the dounce on ice. This will prevent the cells from
overheating.

b. For Ramos cells apply 20-30 slow and firm dounces. Stop every ten dounces for
a break to prevent overheating.

After 20 dounces of the DT40 cell solution or 12-15 dounces of Ramos cell solution,
remove the pestle and take a 5 uL sample of the dounced solution. Dilute the sample at
least 1:1 with hypotonic buffer. Make a 1:1 solution of the diluted sample and trypan
blue. Using a hematocytometer and a light microscope, check for cell lysis. The nuclei of
lysed cells will appear light blue (lysed nuclei will appear dark blue). About 90-95% cell
lysis is ideal.

a. Note: During the douncing steps if the cell solution starts to become viscous, stop
douncing immediately and check the cells under the light microscope (as
described above). Viscoscity is indicative of lysis of nuclei. Nuclear lysis during
the dounces is more likely with Ramos than DT40. If it occurs, the best solution
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14.

15.

16.

is to dilute the solution with complete hypotonic solution further and use a bigger
dounce and pestle.
Depending on the volume of the cell solution either transfer the suspension to a fresh 1.5
(or 1.7) mL eppendorf tube or a 15 mL conical tube and centrifuge at 500 x g for 15 min.
The supernatant is the cytoplasmic extract. Collect or discard the supernatant. If
collecting, add glycerol to a 10% concentration, aliquot and snap freeze in a dry ice and
ethanol bath.
The pellet is composed of the nuclei. Estimate the volume of the pellet. Add 10 volumes
of hypotonic buffer. Gently resuspend and centrifuge at 500 x g for 15 minina 1.5 (or
1.7) mL eppendorf tube.

17. While cells are spinning aliquot 5 mL of cold Buffer C in a 15 mL conical tube. Add
Aprotinin, Leupeptin, Pepstatin A, and AEBSF to make a 1x solution.

18. Gently remove the supernatant. Determine the volume of the pellet and slowly add 2
volumes of complete Buffer C. Gently resuspend the pellet making sure to avoid nuclear
lysis.

19. Incubate the suspension on a rotating wheel at 4C for 1 hr.

20. Centrifuge the solution at 20,800 x g for 20 min.

21. The supernatant is the nuclear extract. The pellet contains the chromatin fraction
(composed of DNA and tightly bound proteins). Transfer the supernatant to eppendorf
tubes in 100-200 uL aliquots. Make sure to save a 10 uL aliquot for protein concentration
determination.

22. Snap freeze the nuclear extract in a dry ice and ethanol bath. Store at -80 C.

DNA Preparation

1. Design and order complimentary pairs of primers to amplify your sequence of interest
from a plasmid. Either the forward or reverse primer should be biotinylated (not both).

a. Note: All DIVAC sequences for ITA to date have been cloned in JMB’s plgL-
GFP2 construct at the Spel-Nhel site. Primers used to amplify are RKD021 and
RKDO022, with RKD022 being 5’ biotin triethylene glycol(BTEG)-labeled and
purchased from IDT.

2. Using Phusion (or any other reasonably high fidelity polymerase), amplify the sequences
of interest.

a. Note: To get sufficient amounts of DNA, | usually run eight 100 uL reactions for
35 cycles.

b. Note: Make sure to also amplify negative control sequences alongside your
DIVAC sequence of interest. This can either be a mutated sequence or portions
of the chicken IgL known to have no SHM stimulating activity.

3. Make agarose gel while PCR runs.

4. Pool PCR products. Take 10 uL of PCR reaction and run on agarose gel to check if
reaction has run as expected and appropriate size product is produced without nonspecific
bands or smearing.

5. Estimate the volume of pooled PCR reaction. Add two volumes of Buffer NTI from the
Macherny and Nagel Nucleospin Gel and PCR purification kit.

6. Add Nucleospin column to holder. Mix the solution and add 700 uL to the column.
Centrifuge at 11,000 x g for 30 sec. Discard flow through.

7. Repeat Step 6 until the entirety of the sample has passed through the column(s).
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8. Add 700 uL of Buffer NT3 to column. Centrifuge at 11,000 x g for 30 sec. Discard flow
through.

9. Repeat Step 8.

10. Dry the membrane by placing the column back in the centrifuge. Centrifuge at 11,000 x g
for 60 sec to remove any remaining excess buffer NT3.

11. Place the column on a fresh eppendorf tube. Add 50-100 uL of autoclaved ddH20.
Incubate for 1 minute at RT.

12. Centrifuge at 11,000 x g for 60 sec.

13. Collect eluent and measure DNA concentration on Nanodrop.

Immobilized DNA Template Assay

1. Take Invitrogen M-280 beads and vortex briefly to resuspend beads until the solution is
uniform. Aliquot 75 uL of beads into two separate eppendorf tubes (one for reaction and
another for a negative control).

2. Add 1 mL of 1X Binding and Washing (BxW) Buffer and place the tubes in a magnetic

Eppendorf holder.

Once the solution is clear, aspirate the supernatant.

Reconstitute the beads in each tube in 500 uL of 1X B&W Buffer.

Add 15 ug of either biotinylated DIVAC sequence or biotinylated control sequence to

each tube. Invert the tubes until beads are completely resuspended.

a. Note: According to the manufacturer the beads come in a concentration of 10
mg/mL. 1 mg (~100 uL) of beads is expected to have a binding capacity of
approximately 10 ug of biotinylated DNA (with larger DNA fragments having
lower capacity due to steric hindrance). It is expected that 15 ug of biotinylated
DNA should saturate 75 uL of beads.

Allow the beads to incubate at RT on a rotation wheel for 1 hr.

During incubation, cast agarose gel.

8. Centrifuge briefly and place the tubes on a magnetic rack. After the solution has cleared,
remove the supernatant and check coupling of the DNA to the beads by assessing the
depletion of the DNA from the solution on an agarose gel.

9. Wash the beads two times with 0.5 mL of B&W Buffer using the magnetic rack.

10. Wash the beads two times with Protein Binding Buffer using the magnetic rack.

11. Add 400 ug of nuclear extract and 25 ug of polyDADT (or polyDIDC) in a total volume
of 600 uL of protein binding buffer to each tube.

12. Incubate for 90 min at 4 C on a rotation wheel.

13. Wash the beads 2X with 0.5 mL of protein binding buffer using magnetic rack.

14. Wash the beads 2X with 0.5 protein washing buffer using magnetic rack.

15. Resuspend the beads in 0.5 mL protein washing buffer and transfer to a new tube.

16. Wash the beads 2X with 0.5 protein washing buffer using magnetic rack.

17. Centrifuge samples and aspirate supernatant.

18. Add 50 uL of digestion buffer (2M Urea in 100 mM Tris-Cl, pH7.5) to the beads.

19. Add .505 uL of 1M DTT to the beads and incubate on thermoshaker at RT and 1400
RPM for 20 minutes.

20. Add 5 uL of .55M IAA (in 50 nM ammonium bicarbonate) and incubate for RT, 1400
RPM for 20 min.

ok w

No
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21.

22.
23.
24,
25.
26.

Add 2.5 uL of trypsin solution (0.1 mg/mL trypsin in 50 mM acetic acid) solution (0.04
mg/mL in 10 mM Tris-HCI pH 7.5) and incubate for 2 hr.

Spin down beads and remove supernatant.

Add 50 uL of fresh digestion buffer and incubate for 5 min at RT with shaking.

Spin down beads and remove supernatant.

Combine supernatant fractions and add 1 uL of trypsin and incubate O/N.

Flash Freeze on dry ice and place in -80 C

REAGENTS

DT40 Media

500 mL RPMI 1640

50 mL FBS

5 mL Chicken Serum

5 mL Penicillin/Streptomycin/Glutamine

3.5 uL 2-mercaptoethanol

Ramos Media

500 mL RPMI 1640

50 mL FBS

5 mL Penicillin/Streptomycin/Glutamine

Buffer A

10 mM HEPES, pH 7.9

1.5 mM MgCl»
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10 mM KClI

0.2 mM AEBSF

2 ug/mL Aprotinin
1 uM Leupepetin

1 uM Pepstatin

Buffer C

20 mM HEPES, pH 7.9
20% glycerol

0.42 M NacCl

2 mM MgCl»

0.2mM EDTA
0.1% NP-40

0.2 mM AEBSF

2 ug/mL Aprotinin
1 uM Leupepetin

1 uM Pepstatin

DNA Binding and Wash Buffer (2x)
10 mM Tris-HCI (pH 7.5)
1 mM EDTA

2 M NaCl

Protein Binding Buffer
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150 mM NacCl

50 mM Tris—HCI pH 8.0
1mMDTT
0.25%lgepal CA-630
0.2 mM AEBSF

2 ug/mL Aprotinin

1 uM Leupepetin

1 uM Pepstatin

Protein Wash Buffer
150 mM NacCl

50 mM Tris—HCI pH 8.0
1mMDTT

0.2 mM AEBSF

2 ug/mL Aprotinin

1 uM Leupepetin

1 uM Pepstatin
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Appendix B
Human Enhancer Sequence

AGCAGCCCTGAAACTGCCCCATGCTCCTCCTGGGCCACACCTGGGCCTGTTTGTCACTCATCCCATGCCCG
GGTGGCCATGAGCTCAGTTTCTCTTCCTCTTATTTTTCTCCTTTTGTCACTCTGAGTTCTGGTTTCAGCCAAC
TTGGGGTTAAATTTAGCCTGGGGATTTCCAGGGGTGGCCAGCTGCAGGCAGGGCCACCAGAGCTGGGA
AAGCGCATCCCCCAACCCCATCCGCTAGTTTTTCAGTTTCGGTCAGCCTCGCCTTATTTTAGAAACGCAAA
TTGTCCAGGTGTTGTTTTGCTCAGTAGAGCACTTTCAGATCTGGGCCTGGGCAAAACCACCTCTTCACAAC
CAGAAGTGATAAATTTACCAATTGTGTTTTTTTGCTTCCTAAAATAGACTCTCGCGGTGACCTGCTTCCTGC
CACCTGCTGTGGGTGCCGGAGACCCCCATGCAGCCATCTTGACTCTAATTCATCATCTGCTTCCA

Human Control Sequence

AGCAGCCCTGAAACTGCCCCATGCTCCTCCTGGGCCAGGCCTGGGCCTGTTTGTCACTCATCCCATGCCC
GGGTGGCCATGAGCTCAGTTTCTCTTCCTCTTATTTTTCTCCTTTTGTCACTCTGAGTTCTGGTTTCAGCCA
ACTTGGGGTTAAATTTAGCCTGGGGATTTCCAGGGGTGGCCAGCTGCAGGCAGGGCCACCAGAGCTGG
GAAAGCGCATCCCCCAACCCCATCCGCTAGTTTTTCAGTTTCGGTCAGCCTCGCCTTATTTTAGAAACGCA
AATTGTCCAGGTGTTGTTTTGCTCAGTAGAGCACTTTCAGATCTGGGCCTGGGCAAAACCACCTCTTCACA
ACCAGAAGTGATAAATTTACCAATTGTGTTTTTTTGCTTCCTAAAATAGACTCTCGCGGTGACCTGCTTCCT
GCGGCCTGCTGTGGGTGCCGGAGACCCCCATGCAGCCATCTTGACTCTAATTCATCATCTGCTTCCA
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Chicken Enhancer Sequence

CCGTCGACGGATCCACTAGTAGCCATGGCCAAAATGGGGCCCAAATCAGCATTTCCTGCTCCTGGCTCTG
CTTGCTGCTGTGCCGGGCAGCGGCGCTCGTGGTGCCACATACTGGAATGTTTGTGCCGAGGAAGCAGAG
CGTGCCGTGGCCACGGCTATTCCTGTCCTCCAGCTGCTGTTTGGCCGAAGTTGCCACGTGTTTTCTTCCCG
GCTACAATTTTTAGCAAGAGAAACTGTTGCCCCCGTGGCTGCGGTCAGCACATCTGGGAGAGTGCAGGC
TCAGCTGTGGGGCTGGCGGCACGTGGCGGTACCCGTATGCCCGGGCCCATGCTGCCCCTCCAAACATGC
CCAAAAACATGGCAGAAACACTTAAACCTTGTGCTCAGCCCATGCAGAGGCTGCAGAGAGATGGGAAG
GCCGCTAGTGCGCGGCGCTCGCTCTGCTTCACACGTCAGTGCTTTCTGGAGACTGTTTCGTTTCCTTTTTTI
GGCCGGCGTGGGCCCCTCAGCTTCAGTTTCTGATTGGAGACTGAGAAGTAAATTTAGCTTGGGGATGCC
CCGGCCgCACAGCTGCATGGTGGGGCTGAGCGTGGCTAGCCTGCTCCCTGCTTG

Chicken Control Sequence

CCGTCGACGGATCCACTAGTAGCCATGGCCAAAATGGGGCCCAAATCAGCATTTACTGCTCCTGGCTCTG
CTTGCTGCTGTGCCGGGCAGCGGCGCTCGTGGTGCCACATACTTTAATGTTTGTGCCGATTAAGCAGAGC
GTGCCGTGGCCACGGCTATTAATGTCCTCTTGCTGCTGTTTGGCCGAAGTTGCTTCGTGTTTACTTAACGG
CTACAATTAAAAGCAAGATAAACTGTTGCCCCCGTGGCTAAAGTCAGCACATCTTGGAGAGTGCAGGCTT
TGCTGTGGGGCTGGCGGTTCGTGGCGGTACCCGTATGCCCGGGCCCATGCTGCCCCTCCAAACATGCCC
AAAAACATGGCATAAACACTTAAACCTTGTGCTCAGCCCATGCAGAGGCTGCAGAGAGATGTTAAGGCC
GCTAGTGCGCGGCGCTCGCTCTGCTTCACACGTCAGTGCTTACTGGAGACTGTTTAGTTTAATTTTTTTGG
CCGGCGTGGGCCCCTCAGCTTCAGTTACTGATTGGAGACTGAGAAGTAAATGTCCCTTGGGGATGCGGC
GGCCGCAGGGCTGCATGGTGGGGCTGAGCGTGGCTAGCCTGCTCCCTGCTTG




