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Abstract 
Turbomachinery faces rotordynamic issues such as imbalance, instability, and large 

vibrations. Such issues are costly in downtime and maintenance, while also introducing 

safety concerns. Careful design of components such as bearings and seals can reduce 

vibrations. Practitioners build computational fluid dynamics (CFD) models of these 

components to obtain performance predictions. The reliability of such CFD software is 

typically unknown, and performance studies have shown significant prediction disagreement 

between different models of the same scenario. Standard literature validation practice lacks 

rigor and formalization. Furthermore, sufficient experimental data is scarce and difficult to 

obtain. These constraints invoke the need for a standardized method of validating CFD 

models for turbomachinery components. In 2009, ASME published a standard for verification 

and validation of CFD models, V&V-20. This work intends to serve as (1) an assessment of 

the feasibility of implementing the V&V-20 procedure (2) a baseline in the refinement 

validation procedure for CFD models of turbomachinery component. Methods from V&V-

20 are applied an ANSYS CFX model and a ROMAC model of a straight liquid seal model. 

One prediction from each model is evaluated in this work. In practice, this procedure would 

be repeated for other predictions at various input conditions. This study resulted in 

uncertainty quantification of flow out of the seal, or leakage: experimental uncertainty (5%), 

numerical uncertainty (0.1% and 0.5%), input uncertainty (16% and 7%), and model error 

interval (-21% to 13% and -19% to -1%). These quantifications involved a grid convergence 

study and perturbation study consisting of hundreds of simulations. The experiment used 

for validation was performed by Kaneko, et al (2003). The study found V&V-20 to be useful 

but tedious for practical application, especially on a complicated solver such as ANSYS CFX; 

it serves as a thorough and useful starting point for quantifying uncertainties and 

standardizing terminology. 

KEYWORDS 
Keywords: Validation, Uncertainty, Numerical Uncertainty, Input Uncertainty, 

Convergence Study, Sensitivity Analysis, Grid Refinement, Bulk Flow Model, ASME Standard, 
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Chapter 1:  Overview 

1.1.  Motivation 
Computational fluid dynamics (CFD) software predicts fluid behavior by numerically 

solving governing equations of fluid mechanics. The Navier Stokes equations are the best 

mathematical representation of fluid behavior. Typically, commercial CFD software such as 

ANSYS solve the Navier Stokes equations numerically. Considering the complexity of the 

Navier Stokes equations, the embedded algorithm can take a long time to converge to a 

solution. Additionally, this type of software has a steep learning curve. Together, their 

learning curve and delayed results render complex CFD software inefficient for engineers in 

many industries. However, if an engineer is modelling a specific family of fluid dynamic 

problems, assumptions may lead to a simplified version of the Navier Stokes equations. 

Simplified equations will converge to a solution more quickly. Such CFD software is termed 

lower fidelity or reduced because of its narrower applicability and capability. 

The Rotating Machinery and Controls (ROMAC) Laboratory at the University of Virginia 

focuses on fluid flow in machine components such as bearings and seals. ROMAC develops 

software for designing and analyzing such fluid regions and their effects on the system. Since 

thin-film lubrication flow is a specific sector of fluid dynamics, ROMAC applies the 

appropriate assumptions to develop lower fidelity codes for different machine components 

and various geometries. ROMAC codes converge more quickly than commercial full Navier 

Stokes solvers such as ANSYS. This ROMAC software is much more feasible for rotordynamic 

engineers to use in practice.  

Most people build models for one of two reasons: 1) imitating an existing physical system, 

2) predicting behavior of a new, nonexistent system. Software developers build models for 

imitating when testing out their modeling software while end-users do so to troubleshoot 

observed problems. Prediction is usually for end-users for design. Either way, the model is 

intended to emulate reality. However, reality is too complex to be modeled perfectly, and 

reality includes unexplained randomness. As George Box puts it, “All models are wrong, but 

some are useful.” Even the complexity of Navier Stokes and commercial CFD cannot fully 

capture reality. Error in a model due to assumptions is termed model error. Lower-Fidelity 

models contain more simplifying assumptions and thus higher model error. A model should 

not be used for prediction until reasonable agreement with reality is demonstrated. 
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Validation, as defined in [1], is the determination of the degree to which a model agrees 

with reality. For models built to imitate, this can be done directly once a metric for agreement 

is established. If a model’s agreement with reality is considered acceptable, then the model 

may be used for prediction. 

Validation for model developers, then, is limited by the available experimental data or 

acquisition thereof. In rotordynamics, experimental data is sparse which limits the robustness 

and trustworthiness of validation studies. Researchers in ROMAC have begun building 

ANSYS models, validating them with the limited experimental data, and then using the 

ANSYS models’ outputs to represent reality in validating or checking low-fidelity models. 

This ANSYS representation of reality is used to supplement experimental data, and maybe 

eventually replace it in full. This perspective is controversial, and its statistical validity must 

be questioned. However, if the ANSYS model is found to be a reasonable representation of 

reality, then this may be a defendable substitution. Regardless of a validation study’s rigor, 

users will trust software if it has predicted well for them in personal experience. So, the 

software developers must balance theory with practicality. That is, the low-fidelity model 

should be made as accurate as possible by whatever means are available. 

The goals of this project are to outline (1) the readily available progress made in CFD model 

validation, (2) where steps in the validation process may fit practically for developers and 

users, (3) reveal the gaps in validation efforts and standardization. This project will address 

the difficulties with coupling of ANSYS and sparse experimental data to assess the reliability 

of a low-fidelity model. The practical goal for software developers should be optimizing 

accuracy and reporting the accuracy in an understandable way to the end-user. For the end-

user, higher accuracy and known accuracy means software can be trusted with more 

confidence, allowing engineers to push the limits in design. This can serve preventative 

measures such as avoiding failure, shut down, large losses, and injuries. This can also serve 

to improve efficiency and increase profit. Rotating machinery keeps progressing towards 

higher rotational speeds and fluid pressures. With improved modeling capabilities, these 

industrial advancements can be pursued sooner and with more confidence. 

1.2.  Background 
1.2.1.  NEED FOR VALIDATION 
A user’s confidence in model predictions is entirely dependent on the model’s ability 

to predict reality well [2]. Validation, according to V&V-20 [1], is the determination of the 

degree at which a model agrees with reality. Without comprehensive validation, a model’s 
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applicability is limited [3]. With proper validation, users can optimize decisions, and models 

can lead research and development into uncharted territories [2], [3]. 

A numerical model is a numerical solver which predicts the outcome of a process for a given 

set of inputs [2]. Models are extremely helpful to modern day design and troubleshooting. 

Rotating machinery can experience very critical damage from instability, unbalance, and 

misalignment [3], [4]. A study presents seven problems encountered in such issues where 

modeling was used to resolve each scenario [4]. However, models often produce inaccurate 

predictions. For a study, multiple rotordynamics model developers were asked to predict 

dynamic coefficients (which reflect dynamic behavior of a system) with their models for a 

specified scenario.  

 

FIGURE 1 
DISAGREEMENT BETWEEN MODELS, ADAPTED FROM [5] 

 

A prediction output is on each axis in Figure 1 (stiffness on the horizontal axis, damping on 

the vertical axis), and each data point represents a particular model’s predictions. Ideally, 

these datapoints should be overlapping. Instead, the spread of the reported outputs varied 

by an order of magnitude, posing concern for model accuracy and reliability [5]. Model 

prediction variability is also addressed by Stern et al [6]. These examples highlight the need 

for validation improvements in this field.  

1.2.2.  DATA LIMITATIONS 
Current validation efforts of rotordynamic models are rudimentary. Often, a model is 

compared to one experiment graphically, only mentioning minimum and maximum percent 

difference between the experiment and the predictions [7]–[11]. Additionally, users are often 

modeling a component of a system, but validation of that component and the whole system 

may be needed. The component validation would then be propagated to whole system 
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validation [12], so the validation study’s reliability becomes more critical. Control theory may 

also be employed to validate on a system level [13]. 

Often, validation is done with only of one or two real-world datasets [2], [7]–[11]. Validation 

efforts have higher error when little data is used [14]. Model inaccuracy demonstrates the 

need for more experimental data and validation; mass data collaboration could mitigate this 

issue [5], [14]. A method for scoring completeness of experimental data from validation 

perspective has been developed by Oberkampf and Smith [15]. When the available data is 

not complex enough to represent the model’s intended use, the validation opportunities is 

very limited [16]. However, Di Baldassarre and Montanari [17] suggest a method for 

combining data from a highly-related experiment with data from a tangentially-related 

experiment using a two-tier hierarchy. This could be a way to address the sparse data 

problem. 

Higher fidelity models have fewer assumptions and more thorough physics theory 

embedded in their numerical solver. Lower fidelity models have more built-in assumptions 

and are simplified for efficient runtime. Lower fidelity models are sometimes referred to as 

surrogate models or reduced models. Comparing a low-fidelity model to a high-fidelity 

model could be useful in testing if the assumptions are justified for the intended application. 

This is especially useful when dealing with sparse or insufficient data. Methods have been 

developed for N-version validation or validation between different CFD models [6]. Terming 

this ‘validation’ conflicts with V&V-20 [1] which claims validation must include experimental 

data. Nonetheless, perhaps two sources of reliable data, experimental data and a validated 

CFD model’s predictions, may be combined with a two-tier hierarchy as discussed above. 

This combined data could then be used to ‘validate’ a lower fidelity model. 

1.2.3.  CALIBRATION 
Lower fidelity models often have more user inputs than higher fidelity models. Some 

inputs may be physically inherent (dependent on the physics) rather than driving the physics. 

A well understood example of such a parameter is the coefficient of friction. A lower fidelity 

model may be trained with higher fidelity models to find these inherent parameters [18]. 

Training refers to calibration or determination of parameters within a model. Calibration is 

most traditionally done with experimental data, but some models are calibrated with higher 

fidelity models rather than experimental data [19]. This is commonly used for calibration and 

validation when limited data is available [14], [20], [21]. Four calibration methods are 

demonstrated with examples and found to be reliable for small datasets [21]. In facing a 

small data problem, sampling with Monte Carlo or kNN nearest neighbor may be a useful 
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approach to calibration [19]–[21]. To choose optimal next set of conditions to evaluate, Lewis 

et al [19] uses an information theory approach, and Perdikaris et al [18] uses Bayesian 

optimization with an improvement metric. Maximum likelihood estimators may be used to 

calibrate parameters [18].  

Cross validation is a way to couple validation and calibration. One must not validate with the 

same data used for calibration [22]. Otherwise, a misleading, artificially high agreement will 

be found between the data and model. Cross validation involves  

(1) splitting a dataset into two groups 

(2) calibrating with the first group 

(3) predicting the second group 

(4) comparing the predictions to second group 

1.2.4.  UNCERTAINTIES 
The computational solver and experimental setup have various sources of commonly 

recognized and anticipated error. V&V-20 [1] recognizes three sources of error in a CFD 

model: (1) model error – due to modeling assumptions (2) numerical error – due to 

numerical solver (3) input error – due to uncertain, sensitive input parameters. V&V-20 [1] 

combines error from experiment into one source of error: experimental error – due to 

measurement error and randomness.  

When assessing the agreement between the model and reality, these errors should be 

accounted for; otherwise, agreement may appear better or worse than it truly is. Since one 

cannot know the exact truth, one cannot know the exact errors introduced. Estimation of 

these errors is termed uncertainty [1]. A study suggests that disagreement between models 

is likely due to modeling assumptions [5]. V&V-20 [1] considers model uncertainty to be the 

goal of the validation process or the assessment of model accuracy.  

Though the experiment is representing the ‘truth,’ measurements are taken with 

manufactured devices, so the truth is blurred with experimental uncertainties. V&V-20 [1] 

requires a validation experiment for quantifying experimental uncertainty. A validation 

experiment involves repetition of measurements to observe variation. Data from a validation 

experiment is rare in literature, and experimental uncertainty of measurements is not 

common [2], [23], [24]. Sometimes, uncertainty is provided for a calculated value, dissolving 

the measurement uncertainty by data reduction [25], [26].  
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1.2.5.  STANDARDIZATION OF VALIDATION 
Software developers have not agreed upon a validation standard. Taxonomy of 

validation, verification, and uncertainty is also inconsistent in the literature and a topic of 

debate [2], [27]. A review of different validation approaches is demonstrated in Biondi, et al 

[2]. A universally accepted method of validation is needed, though it is difficult for one 

method to be applicable to a wide range of models [2]. Standardization can establish clear 

expectations of models for users [2], [28].  

The end user is not a statistician and should not be expected to read validation studies and 

assess a model’s trustworthiness. An assessment criterion is presented for certifying 

validation of CFD which involves the comparison of results from multiple models [6]. This 

method uses similar theory to that in V&V-20. V&V-20 compares model error and 

comparison error to assess a model’s current state; that is, this method may highlight the 

driving error source in the model. We need standardized validation criteria so that users can 

know the reliability of the model for their application [28]. V&V-20 [1] suggests validation 

should only focus on the domain of intended use of the model. Perhaps, a range of input 

variables where the model is adequately validated should be presented to the user [17].  
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Chapter 2:  Setup 

2.1.  ASME Standard: V&V 20-2009 
The validation study in this thesis follows the methods of this ASME Standard, referred 

to as V&V-20. 

2.1.1.  OBJECTIVE 
This standard aims to outline a procedure for validation of computational fluid 

dynamics and heat transfer models. Validation, as defined here, refers to determining the 

degree to which a model represents reality, with respect to its intended use. The deliverable 

of this process is an estimate of model form error or ‘model error’ [1].  

2.1.2.  SCOPE 
This process is centered around comparing one simulation result to one experimental 

result. Thus, this validation may only be performed if experimental data is available. The 

procedure requires the experiment and simulation are under the same set of conditions, or 

at the same ‘validation point.’ Typically, validation is done at various points in the domain of 

interest, and thus, this procedure would be repeated for each one. Interpolation and 

extrapolation among validation points is outside of the scope of this standard and left to 

engineering judgement. The methods within may be applied to topics outside of fluid 

dynamics and heat transfer [1].  

Note, in this thesis, that the standard’s procedure is performed once for each model. This 

results in evaluation of one prediction variable at one set of conditions. In practice, this 

procedure would be repeated for other predictions and at various input conditions. 

2.1.3.  CONTENTS  
The standard highlights the importance of verification as a precursor for validation. 

Verification is considered two-fold: code verification and solution verification. Code 

verification is the process of checking that the software accurately solves the mathematical 

model [1]. In other words, code verification checks that the model is doing what the 

developer intends for it to do. This aligns with its colloquial use of “verification.” This process 

should reveal any typos or user-errors in the code. Then, of course, the code developer 
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should amend any errors before moving forward to the solution verification and validation 

study.  

Next, solution verification should be performed. Solution verification is the process of 

estimating the numerical uncertainty of the code. Solution verification is part of the 

validation process as it results in an estimate of contributing error [1]. This study focuses on 

the validation portion, assuming code verification has already been performed. However, 

since solution verification is part of the validation process, it is included in this study.  

The model output chosen is called the quantity of interest, QOI. QOI may be flow rate, outlet 

pressure, outlet temperature, etc. The validation point is the conditions of the experiment. 

Figure 2 shows QOI plotted at a validation point. 𝑥 may be thought of as Reynold’s number, 

for example. Typically, validation point is defined by several quantities. At the validation 

point, there must be experimental data (D) and simulation output (S). Truth (T) is an inherent 

value that cannot be obtained directly. D is the direct measurement of the true value. 

 

FIGURE 2 
CONCEPTUAL DIAGRAM FOR ERROR, ADAPTED FROM [1] 

 

Figure 2 demonstrates conceptual relationships between experiment, simulation, and truth. 

Error, denoted by δ, is defined as the difference between an observed value and the true 

value T, so error cannot be directly found. δS is error in the simulation output S, and δD is 

error in the experimental observation D. Without knowing true value T, error cannot be 

found, but the difference in errors, or comparison error E, is conceivable  [1].  

 𝐸 = 𝛿𝑆 − 𝛿𝐷 = 𝑆 − 𝐷 (1) 

Thus, the sign and magnitude of the comparison error is known once the experiment and 

simulation outputs are obtained. The simulation error can be decomposed into three error 

sources. 
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 {
𝛿𝑆 = 𝛿𝑚𝑜𝑑𝑒𝑙 + 𝛿𝑛𝑢𝑚 + 𝛿𝑖𝑛𝑝𝑢𝑡

𝛿𝑚𝑜𝑑𝑒𝑙 = 𝐸 − (𝛿𝑆 − 𝛿𝐷) = 𝐸 − (𝛿𝑛𝑢𝑚  +  𝛿𝑖𝑛𝑝𝑢𝑡  −  𝛿𝐷)
 (2) 

Model error is the simulation’s error caused by its modeling assumptions. An estimate of 

model error is the deliverable result of the validation study [1].  

Let uncertainty 𝑢 be an estimate of unknown error 𝛿. It is assumed that any known errors 

have already been corrected, so the sign and magnitude of error is unknown. So 𝑢 estimates 

an interval for 𝛿 such that 𝛿 ∈ [−𝑢, 𝑢]. Uncertainty 𝑢 is analogous to one standard deviation 

of the population from which error is realized [1]. Standard deviation is a familiar estimator 

for estimating uncertainty.  

Recall model error is 𝐸 − (𝛿𝑛𝑢𝑚  +  𝛿𝑖𝑛𝑝𝑢𝑡  −  𝛿𝐷). Each error 𝛿 is estimated with its 

corresponding uncertainty as an interval, 𝛿 ∈ [−𝑢, 𝑢]. Thus, an arithmetic sum of these errors 

is estimated by combining these uncertainty intervals into a term called validation 

uncertainty. Uncertainties are combined with the square root of the sum of the uncertainties 

squared.  

 𝑢𝑣𝑎𝑙 ≡ ±√𝑢𝑛𝑢𝑚2 + 𝑢𝑖𝑛𝑝𝑢𝑡
2 + 𝑢𝐷

2  (3) 

Throughout the standard’s procedure, estimates for 𝑢𝑛𝑢𝑚, 𝑢𝑖𝑛𝑝𝑢𝑡, 𝑢𝐷 , 𝛿𝑚𝑜𝑑𝑒𝑙 are determined, 

each following the ISO guidelines. Then model error may be estimated  [1]. 

 𝛿𝑚𝑜𝑑𝑒𝑙 ∈ 𝐸 ± 𝑢𝑣𝑎𝑙  (4) 

Model error, also called model form error, is error due to built-in model assumptions and 

approximations. 

2.1.3.i.  Numerical Uncertainty (V&V Section 2) 
Numerical uncertainty is the estimation of simulation error caused by the numerical 

solver. Estimation of numerical uncertainty requires a grid convergence study, also called 

mesh independence study. Three to six different grids must be generated to study the 

solution’s dependence on grid resolution. The grids should be asymptotically converging for 

these calculations to be useful. The observed order of accuracy is calculated with the grids’ 

simulation results. A factor of safety is required for calculation of GCI, grid convergence 

index. GCI is a metric for how converged the grids are. The factor of safety is lower for grids 

which were refined in a structured fashion. Structured grid refinement requires that a grid 

meshing is reduced by the same factor in all physical dimensions in the model. An expansion 

factor is applied to account for numerical error distribution assumptions. The expansion 
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factors recommended depend on the convergence behavior: some problems are poorly 

behaved and oscillatory while others are well-behaved and smooth [1]. 

This process must precede the input uncertainty analysis. This process may reveal needs for 

model improvements or a finer grid. After this evaluation, an appropriately resolved grid 

should be chosen for input uncertainty analysis. If the coarsest grid used for grid 

convergence is used for input uncertainty analysis, the input uncertainty analysis may not be 

accurate. If input and numerical uncertainties are similar in magnitude, then the finest grid 

from the grid convergence study should be used for input uncertainty analysis. If the 

numerical uncertainty is significantly smaller than the input uncertainty, then a coarser grid 

is acceptable for input uncertainty analysis [1].   

2.1.3.ii.  Input Uncertainty (V&V Section 3) 
Input uncertainty is the estimation of simulation error due to the uncertainty of input 

parameters. First, pertinent simulation input parameters must be identified, which is a 

somewhat arbitrary selection and must be done with engineering intuition and expertise. 

Inputs which aren’t included in this set of “input parameters” are then considered hard-wired 

into the model and are thus accounted for in model (form) error. Inputs which may be left 

out of the set, for instance, would be turbulence model choice, meshing statistics, or 

convergence criteria. Since turbulence model choice is not a numerical input, it cannot be 

evaluated with this method. So this is becomes a property of the model. Meshing and 

convergence specifications should be captured in numerical uncertainty. 

Next, the measurement or “standard” uncertainty of each simulation input parameter must 

be obtained. This value is found by either a manufacturer’s specifications or with a validation 

experiment. In a validation experiment, a parameter is measured many times, and the 

standard deviation of the readings serves as an estimate of the parameter’s measurement 

uncertainty. This means that the reading 𝑋 should be considered 𝑋 ± 𝑢𝑋 due to the 

measurement instrument’s inconsistency. 

Then, these experimental parameter uncertainties are scaled by sensitivity coefficients, or 

the simulation’s sensitivity to each input parameter. Sensitivity is an inherent property of the 

model’s behavior with respect to that parameter. The sensitivity coefficients can be found 

through various methods. Local and global methods are presented in V&V-20  [1]. The 

global method involves sampling. The local method specifically suggested in V&V-20 [1] is 

the finite difference approximation, also called perturbation method, mean value method, 

etc. First and second order are considered sufficient. This study uses the local method and 
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is thus focused on its explanation. Each parameter should be perturbed, one at a time, and 

the simulation result is stored. The size of the perturbation is the primary difficulty in 

executing this method. If the perturbation is too large then parameter discretization occurs 

(the approximation is inaccurate), and if the perturbation is too small, then subtractive 

cancellation occurs (round-off error). Multiple perturbations should be performed, and the 

user must select a perturbation from an interval where the sensitivity coefficient is somewhat 

constant. Then the first or second order finite difference estimation of the sensitivity 

coefficient is obtained. The input uncertainty should be compared to the numerical 

uncertainty to guarantee the grid choice was valid [1]. 

2.1.3.iii.  Experimental Uncertainty (V&V Section 4) 
Experimental uncertainty is the uncertainty of the experimental result. This process 

requires uncertainties of the experimental error sources. The random sources and the 

systematic sources are combined separately, and then all combined into the uncertainty of 

the experimental result. Due to the complexity of measurements needed, it is advised that 

the experimentalist and validation leader work concurrently. ASME PTC 19.1-2005 “Test 

Uncertainty” should be referred to for a more thorough explanation of this procedure [1].  

For the present study, no details of experiment uncertainties were reported except the 

experimental result, itself. Therefore, the procedure in the standard for estimating 

experimental uncertainty was not utilized, and the experimentalist is trusted. This choice may 

be defended by the standard’s claim that each section may be viewed independently [1]. 

2.1.3.iv.  Model Error (V&V Section 5 & 6) 
Model error is simulation error due to built-in model assumptions and 

approximations. Model error is somewhat a catchall for uncertainties which have not been 

estimated in the numerical and input uncertainty sections. Effects which are not captured in 

those sections are considered inherent to the model and thus fall under model error. 

Validation uncertainty is calculated with Equation (3) for situations where the validation 

variable QOI is directly measured. This is called the local method. For QOIs which are the 

result of data reduction of other outputs, a global method with sampling is required which 

combines input and experimental uncertainty [1].  

𝐸 and 𝑢𝑣𝑎𝑙 are validation metrics. If comparison error is much greater than validation 

uncertainty, then 𝛿𝑚𝑜𝑑𝑒𝑙 ≈ 𝑢𝑣𝑎𝑙. This reveals potential opportunities for improving the 

model. However, if 𝐸 ≤ 𝑢𝑣𝑎𝑙 , then model error is within the noise of the model’s error 

sources, and opportunities for improvement are less clear [1]. 
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2.2.  Case Study 
The experiment used in this work was published by Kaneko et al [25]. Various annular 

pressure seal geometries were tested with water as the working fluid. In industry, these seals 

are used to contain high pressure fluids in high speed machinery such as compressors and 

pumps. Annular seals avoid contact between the rotating shaft and the stationary 

components around it, so perfect fluid containment is infeasible. Leakage is the measure of 

the flow out of the seal and has a direct impact on machine efficiency. Leakage is to be 

mitigated by designers without imposing too much friction on the rotor.  

The leakage of the straight, or smooth, seal is the focused response of this validation study. 

A smooth seal is used for this demonstration due to its simple flow geometry, which allows 

for faster convergence, and the goal herein is to demonstrate a simulation-intensive 

procedure. Other quantities could be analyzed in a validation study such as stiffness or 

damping. Leakage was chosen because it is a straightforward model output for both models 

studied. 

2.2.1.  KANEKO EXPERIMENT 
The experiment used for this validation, by Kaneko et al [25], involved the testing of 

various seals. Figure 3 is a simplification of the seal test rig diagram. The horizontal dashed 

line is the axial centerline of the test rig’s rotor. The vertical dashed line represents a plane 

of symmetry: the rig tests two nominally identical seals at once, and they share an inlet.  

 

FIGURE 3 
TEST RIG ADAPTED FROM [25]: (A) INLET (B) INLET REGION (C) CLEARANCE REGION (D) OUTLET REGION (E) 

OUTLET (F) SEAL (G) ROTOR 

 

For the smooth seal, Kaneko, et  al [25] report the rotor diameter to be 71.379 mm, the seal 

clearance to be 0.168 mm, and the seal length to be 60 mm. With these reported dimensions 

and assuming the figure representing the test rig is to scale, the inlet region is estimated to 
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be 20.9 mm axially and 19.7 mm radially, and the outlet region is estimated to be a 34.1 mm 

in both directions. Similarly, each inlet is approximately 16.5 mm in diameter. There are two 

inlets, but they feed to two seals, so the area of one represents the area of the inlet flow to 

the seal. The actual inlets used appear to be pipes located at opposite sides of the cylindrical 

inlet region.  

Leakage is simply the volumetric flow rate leaving the seal from the outlet, which is a 

standard quantity to express an annular seal’s performance characteristics. No densities or 

temperatures are given for this published experiment. Figure 4 is the leakage at various 

speeds for the different seals tested by Kaneko et al [25]. 

 

FIGURE 4 
LEAKAGE FROM KANEKO EXPERIMENT, ADAPTED FROM [25] 

 

The operating point for this study is 3000 rpm, and the leakage from Figure 4 is about D =

0.528 L/s. The reported pressure differential across the seal length, 60 mm, is Pstatic =

784 kPa  [25]. 

2.2.1.i.  Experimental Uncertainty 
V&V-20 [1] explains the experimental efforts required for calculating experimental 

uncertainty with validation experiment data. A validation experiment involves repeating 

measurements inputs and outputs in the experiment to find systematic and random 

uncertainties. Kaneko, et al [25] does not report such data. Ideally, the validation analyst and 

experimentalist are working together to design the experiment [1]. Since the sections of 

V&V-20 [1] may be considered independently, for experimental uncertainty, this validation 

study used the uncertainty reported from the experimentalists, which followed an 

ASME/ANSI method found in [25], [29]. The experiment reports 5% uncertainty in leakage 

[25]. The leakage at the validation point is D=0.528 L/s, so the dimensional experimental 

uncertainty is 0.0264 L/s. 
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2.2.2.  ANSYS MODEL 
Since the purpose of this study is to investigate V&V-20 [1] with respect to CFD 

modeling of turbomachinery components, a CFD model was built to emulate the Kaneko, et 

al [25] experiment. 

2.2.2.i.  Geometry 
The seal flow region is assumed to be axisymmetric, and the seals are assumed 

identical. For this reason, a sector of the flow was modelled with symmetry boundary 

conditions on the faces. The sector angle was 1°, which allowed for reasonable aspect ratios 

between the dimensions of mesh elements, and ANSYS CFX does not support two-

dimensional geometry. The CFD model includes an inlet region, clearance region, and outlet 

region. The ANSYS model instead assumes an axisymmetric inlet ribbon with the same area 

as one inlet pipe. The width winlet of this equivalent, axisymmetric inlet ribbon was found 

with Equation (5).  

 2𝜋(𝑅𝑟𝑜𝑡𝑜𝑟 + 𝑅𝑖𝑛𝑙𝑒𝑡.𝑟𝑒𝑔𝑖𝑜𝑛)𝑤𝑖𝑛𝑙𝑒𝑡 ≡ 𝜋
𝑑𝑖𝑛𝑙𝑒𝑡
2

4
 (5) 

where Rrotor is the radius of the rotor, Rinlet.region is the radial height of the inlet region, and 

dinlet is the inlet feed hole diameter from the diagram. Then the width of the inlet ribbon is 

winlet = 0.61 mm wide.  

The final geometry of the fluid flow region is shown in Figure 5. Relative to the clearance 

regions, the inlet and outlet regions are very large. Therefore, the exact sizes of the inlet and 

outlet regions typically have little effect on the flow through the clearance region. 

 

FIGURE 5 
GEOMETRY OF CFD MODEL (INLET RIBBON NOT TO SCALE). VERTICAL= RADIAL DIRECTION, 

HORIZONTAL=AXIAL DIRECTION, NORMAL TO PAGE=CIRCUMFERENTIAL DIRECTION 

 

2.2.2.ii.  Boundary Conditions 
The fluid behavior at any cross section of the annulus is assumed to be identical. Thus, 

these two faces are connected as a domain interface with rotational symmetry. Also, since 



Madeline Carlisle Collins   20 

Validation and Uncertainty Quantification of CFD Smooth Seal Models: ANSYS and Bulk-Flow 

the actual test rig is symmetrically testing two identical seals which share an inlet, the edge 

of the inlet region is a symmetry line, shown in Figure 5.  

The hatched region above the fluid domain in Figure 5 is the stator, which is a stationary 

wall containing the fluid. On the actual test rig, the seal is the wall against the clearance 

region. Against the inlet and outlet regions are parts built into the test rig. The hatched 

region below the fluid domain in Figure 5 is the rotor, or a rotating wall containing the fluid 

from the bottom. The rotor is specified to rotate at 3000 rpm. 

Dynamic pressure of the fluid is at the rotor surface is  

 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
1

2
𝜌𝑣𝑎𝑥𝑖𝑎𝑙

2 = 97.5 𝑘𝑃𝑎 (6) 

where vaxial is the axial velocity of the fluid through the seal clearance, and ρ is the density 

of the fluid. vaxial = Q/A where Q is the reported leakage and A is the area of the annulus 

around the rotor. Therefore, the total pressure at the inlet is 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =

881.5 𝑘𝑃𝑎. This total pressure is the boundary condition applied to the inlet. The outlet has 

an average static pressure of 0 kPa. 

2.2.2.iii.  Turbulence Modeling 
The Reynolds number at 3000 rpm is  

 𝑅𝑒 =
𝐷𝐻𝑣𝑐𝑖𝑟𝑐
𝜇/𝜌

≈ 4,225 (7) 

where DH is the hydraulic diameter, vcirc is the circumferential velocity, μ is the dynamic 

viscosity, and 𝜌 is density. For flow in a seal, hydraulic diameter DH = 2𝑐 is twice the 

clearance. Circumferential velocity vcirc = (2𝜋)𝑅Ω is the linear velocity of the flow around 

the rotor at the rotational speed where Ω is rotational speed and 𝑅 is rotor radius. 3000 rpm 

rotational speed was selected to avoid the transition region at the lower speeds. According 

to [30], turbulence begins as early as Re > 1800. For fluid properties, since the temperature 

of the water is not reported, Standard Conditions for Temperature and Pressure (STP) are 

assumed, 25℃.  

Two common turbulence models are SST [31]–[33] and k-epsilon [34]–[36]. The turbulence 

model used imposes limitations on acceptable Y+ values. Y+ is a dimensionless distance 

from the wall to a point in the flow.  
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 𝑦+ =
𝑦 𝑢𝜏
𝜈

 (8) 

where 𝑦 is distance from the wall, 𝜈 is kinematic viscosity, and 𝑢𝜏 is the friction velocity 

(velocity close to the boundary) [37]. 

In numerical modeling, Y+ refers to the thickness of the first element of a mesh along a wall, 

for this model, the stator and rotor.  Y+ values below 5 are compliant with the SST turbulence 

model and must be larger than 30 for the k-ε turbulence model [38]. The initial Y+ observed 

for this model was around 10, which is not compliant with SST or k-epsilon. Since this model 

was going to be run on finer meshes than the initial mesh generated, SST was chosen.  

2.2.2.iv.  Meshing 
A structured mesh was chosen for this model because the geometry is logically 

rectangular. Three radial sweeps were used to build the mesh, shown in Figure 6. The inlet 

region and outlet region were each meshed with a sweep, both above the clearance region, 

and the clearance region was meshed with a sweep, extending into the inlet and outlet 

regions. Across the various meshes generated, the maximum mesh element size ranged 

from 0.2 mm to 0.9 mm.  

 

FIGURE 6 
CONCEPTUAL DIAGRAM OF MESH (NOT TO SCALE): BIDIRECTIONAL RADIAL MESH SWEEPS AND 

UNIDIRECTIONAL AXIAL INFLATION LAYERS 

 

To keep Y+ low, elements touching the stator and rotor need to be small. However, it would 

be a waste of computational efforts to assign the whole region to have an equally fine mesh. 

So, a bidirectional bias was imposed on each sweep to prefer smaller elements towards the 

connecting faces of the flow domain parts. These bias sweeps control the Y+ along 

horizontal edges of the rotor and stator. To maintain low Y+ values along vertical edges, a 

similar bias was imposed in the axial direction with a tool called inflation layers.   
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A growth rate is the ratio between two elements’ thicknesses, larger to smaller. The growth 

rate was kept below 1.2 for a smooth transition. Thus, the thickness of elements along the 

interface between the clearance region sweep and the inlet and outlet sweeps must be 

within a factor of 1.2. For simplicity, all three sweeps have the same first layer height. For a 

swept section with n divisions, the bias is defined as 

 {𝐵 =
𝑥𝑔𝑛−1

𝑥
= 𝑔𝑛−1

1 ≤ 𝑔 ≤ 1.2
 (9) 

where g is the growth rate and x is the first layer height. Within one sweep, the growth rate 

is constant. If a region of height H is to be meshed with a bidirectional sweep, then H is the 

sum of all of the elements’ thicknesses, which may be expressed as two identical geometric 

series. 

 𝐻 = 2∑ 𝑥𝑔𝑖 = 𝑥
1 − 𝑔𝑛

1 − 𝑔

𝑛−1

𝑖=0
 (10) 

All of these mesh relations must be satisfied. In order to keep Y+ below 5 while changing 

the total number of elements, the growth rate, the number of divisions, and the first layer 

height were adjusted accordingly. The number of divisions and bias were directly specified 

for each region in ANSYS CFX, and the first layer height was driven by these two 

specifications. A total of 13 compliant meshes were used in this study which obey Equations 

(9) and (10). Details can be found in Appendix A: ANSYS Mesh Parameters. 

 
FIGURE 7 

COARSEST MESH IN DETAIL: CLEARANCE & OUTLET REGION SWEEP, OUTLET REGION INFLATION 

 

Figure 7 gives an example mesh with one element in the circumferential direction.   
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2.2.2.v.  Solver 
Water is the working fluid with constant fluid properties at Standard Temperature 

and Pressure (STP). The simulation was assumed to be isothermal with an SST turbulence 

model. The residual target for root mean square of all conservation equation residuals is 1e-

5. A conservation target of 0.01 is enforced to ensure the differences between inflow and 

outflow of conservation properties through the boundaries is less than 1%.  

2.2.3.  BULK-FLOW MODEL 
The bulk-flow smooth seal code described here calculates multiple outputs such as 

rotordynamic coefficients and leakage. However, the output of interest for this study is 

leakage, or flow out of a seal. 

 {
�̇� = 𝜌𝑢𝑜𝑢𝑡𝑙𝑒𝑡𝐴𝑜𝑢𝑡𝑙𝑒𝑡
�̇� = 𝑢𝑜𝑢𝑡𝑙𝑒𝑡𝐴𝑜𝑢𝑡𝑙𝑒𝑡

 (11) 

where 𝜌 is fluid density, 𝑢𝑜𝑢𝑡𝑙𝑒𝑡 is axial flow through the outlet, and 𝐴𝑜𝑢𝑡𝑙𝑒𝑡 is the cross-

sectional area of the outlet. The focus for leakage evaluation in practice is typically mass flow 

�̇�. Volumetric flow �̇� will be used for this study because the experiment reports volumetric 

flow and does not report temperature or fluid properties.  

2.2.3.i.  Geometry & Meshing 
Only the clearance region is modeled for this code. An inlet loss coefficient is 

assumed to account for the change in pressure from inlet to clearance region. This is a one-

dimensional code, so the mesh elements or control-volumes are along the length of the 

seal. The user specifies a number of elements or control-volumes, and the clearance region 

is evenly divided into that number of regions. 

2.2.3.ii.  Boundary Conditions 
The circumferential velocity of the rotor is 3000 rpm. This boundary condition is a 

user input to the code which drives the circumferential flow. Static pressure is a user input 

which drives the axial flow, given by Kaneko et al [25] to be 784 kPa.  

2.2.3.iii.  Solver 
The bulk flow method breaks the fluid region into multiple discrete control-volumes, 

slicing along the axial direction. The smooth seal code evaluates the fluid flow in a smooth 

seal by solving the continuity equation and conservation of axial and circumferential 
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momentum equations. Radial velocity is assumed to be negligible in this small clearance 

flow region. The continuity equation is 

 0 =
𝜕ℎ

𝜕𝑡
+
𝜕(𝑢ℎ)

𝜕𝑧
+
1

𝑟

𝜕(𝑤ℎ)

𝜕𝜙
 (12) 

The conservation of axial momentum equation is 

 −ℎ
𝜕𝑃

𝜕𝑧
− 𝜏𝑠𝑧 − 𝜏𝑟𝑧 = 𝜌ℎ (

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑧
+
𝑤

𝑟

𝜕𝑢

𝜕𝜙
)   (13) 

The conservation of circumferential momentum equation is  

 −
ℎ

𝑟

𝜕𝑃

𝜕𝜙
− 𝜏𝑠𝜙 − 𝜏𝑟𝜙 = 𝜌ℎ (

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑧
+
𝑤

𝑟

𝜕𝑤

𝜕𝜙
)  (14) 

where 𝑢 is axial velocity, 𝑤 is circumferential velocity, ℎ is fluid thickness, 𝑟 is radius, 𝑃 is 

pressure, 𝜏 is shear stress (subscripts 𝑟 and 𝑠 refer to rotor and stator). For solvability, the 

code assumes a linear perturbation form for components of the driving equations. Axial and 

circumferential velocities are assumed to be  

 

 
{
𝑢 = 𝑢0 +

𝜖

𝑐
(𝑢𝑟𝑒 + 𝑖𝑢𝑖𝑚)𝑒

𝑖(Ω𝑡+𝜙)

𝑤 = 𝑤0 +
𝜖

𝑐
(𝑤𝑟𝑒 + 𝑖𝑤𝑖𝑚)𝑒

𝑖(Ω𝑡+𝜙)
 (15) 

The fluid thickness is assumed to be  

 ℎ = 𝑐 − 𝜖𝑒𝑖(Ω𝑡+𝜙) (16) 

Pressure is assumed to be 

 𝑃 = 𝑃0 +
𝜖

𝑐
(𝑃𝑟𝑒 + 𝑖𝑃𝑖𝑚)𝑒

𝑖(Ω𝑡+𝜙) (17) 

Shear stress is assumed to be  

 

𝜏𝑠𝑧 =
1

2
𝜌𝑢𝜆𝑠√𝑢0

2 + 𝑤0
2 

𝜏𝑟𝑧 =
1

2
𝜌𝑢𝜆𝑟√𝑢0

2 + (𝑤0
2 − 𝑅𝜔)2  

(18) 

where 𝜖 is eccentricity, 𝑐 is clearance, 𝑅 is rotor radius, Ω is whirl speed, 𝜔 is rotor speed, 

and 𝜆 is the friction factor. Friction factors are typically estimated by empirical data or 

approximations. Blasius and Moody approximations for the friction factor is of the form 
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𝜆 = 𝑎𝑅𝑒−𝑏  

𝜆 = 0.0055 [1 + (2 ∙ 104
𝑒

𝑐
+
106

𝑅𝑒
)

1
3

] 

𝑒=0 
𝑏=0.217
⇒     𝑎 = 𝜆𝑅𝑒𝑏 = 0.0055 [1 + 100 ∙ 𝑅𝑒−

1
3 ] 𝑅𝑒0.217 

(19) 

where 𝑅𝑒 is the Reynold’s number, 𝑒 is eccentricity, 𝑐 is clearance, and 𝑎 and 𝑏 are empirically 

found constants. For this experiment, eccentricity is zero for leakage measurements. Hirs 

found 𝑎 = 0.0674, 𝑏 = 0.217 describes the friction factor well for fluid flow in rotating 

machinery [39]. The friction factor coefficient 𝑎 is an adjustable coefficient in the smooth 

seal code as this is the parameter most often adjusted to improve models. Removing the 

friction factor term through development of a 2D seal code is the subject of current research 

in our lab. More details on this smooth seal bulk-flow code can be found in references [40], 

[41].
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Chapter 3:  Numerical 

Uncertainty 

3.1.  Overview 
Numerical uncertainty is an estimate of error in simulation output due to the numerical 

scheme of the CFD solver. V&V-20 [1] recommends the Grid Convergence Index method 

for estimating numerical uncertainty, which is represented below.  

Three meshes, or grids, of sufficiently different sizes are needed to test convergence. Define 

a representative mesh size hi for a 3D model as 

 ℎ𝑖 =

{
  
 

  
 (
𝑉

𝑁𝑖
)
1/3

, 3𝐷 𝑚𝑜𝑑𝑒𝑙

(
𝐴

𝑁𝑖
)
1/2 

, 2𝐷 𝑚𝑜𝑑𝑒𝑙

(
𝐿

𝑁𝑖
) ,               1𝐷 𝑚𝑜𝑑𝑒𝑙

 (20) 

where V, A, L are the volume, area, and length of the fluid domain and Ni is the number of 

elements in the ith mesh. hi physically represents the average size of an element from a 

mesh in one dimension [1]. Meshes 1,2, and 3 are ordered finest to coarsest mesh where 

h1 < h2 < h3. Define the ratio between one grid and a finer grid to be 

 𝑟𝑖+1,𝑖 =
ℎ𝑖+1
ℎ𝑖

 (21) 

The meshes must be sufficiently different in size to test convergence, so V&V-20 

recommends the ratio between mesh sizes to be ri+1,i ≥ 1.3 [1]. After at least three 

compliant meshes have been created, run the simulation to collect the quantity of interest S 

for each mesh. Relative error between simulations is 

 𝜀𝑖+1,𝑖 = 𝑆𝑖+1 − 𝑆𝑖 (22) 

Observed order of convergence 𝑝 is the order of the error in a numerical scheme as it 

approaches zero with finer resolution. Observed order of convergence may be estimated 
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empirically with the output of various mesh sizes. Solution error is proportional to ℎ𝑝 such 

that  

 𝑆𝑖 − 𝑆𝑒𝑥𝑎𝑐𝑡 = 𝐶ℎ
𝑝 + 𝐻.𝑂. 𝑇. 

⇒ 𝑙𝑜𝑔(𝑆𝑖 − 𝑆𝑒𝑥𝑎𝑐𝑡) ≈ 𝑝 𝑙𝑜𝑔(ℎ) + 𝑙𝑜𝑔(𝐶) , 𝐻. 𝑂. 𝑇. ≈ 0 

(23) 

This relationship can be approximated by fitting a line to 𝑙𝑜𝑔(𝑆𝑖 − 𝑆𝑒𝑥𝑎𝑐𝑡) vs 𝑙𝑜𝑔(ℎ) and the 

slope approximates 𝑝. Since 𝑆𝑒𝑥𝑎𝑐𝑡 is not affecting the slope 𝑝, this value is not needed. If 

𝑟21 = 𝑟32, then the calculation of 𝑝 is direct with three grid solutions, shown in Equation (24) 

with 𝑞 = 0. Otherwise, Richardson’s extrapolation is needed, which involves expressing 𝑆 as 

a Taylor expansion of ℎ. This results in the following nonlinear system of equations [42].   

 

{
 
 

 
 𝑝 =

𝑙𝑛|𝜀32/𝜀21| + 𝑞

𝑙𝑛(𝑟21)

𝑞 = 𝑙𝑛 (
𝑟21
𝑝 − 𝑠

𝑟32
𝑝 − 𝑠

)

 (24) 

where s = 1 ∗ sign(ε32/ε21) [1]. These equations are solved simultaneously. This (observed) 

order of convergence formulation can only estimate the convergence of three points at a 

time and therefore only assesses their convergence with respect to each other. The Grid 

Convergence Index GCI is  

 

𝐺𝐶𝐼 =
𝐹𝑠|𝜀21|

𝑟21
𝑝 − 1

 

𝐹𝑠 = {
1.25, 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑 𝑔𝑟𝑖𝑑 𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡
3, 𝑢𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑 𝑔𝑟𝑖𝑑 𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡

 

(25) 

where 𝐹𝑠 is a factor of safety whose values were empirically determined from several hundred 

case studies with a 95% confidence [1]. Structured grid refinement preserves the geometry 

of each element from grid to grid. In other words, all physical dimensions are altered by the 

same amount (𝑟𝑥 ≈ 𝑟𝑦 ≈ 𝑟𝑧).  

Recall from section 2.1.3. , 𝑢𝑛𝑢𝑚 is an estimate of one standard deviation of the random 

error imposed by numerical error. To reach an estimate of standard deviation, assumptions 

must be made about the shape of the numerical error distribution. 𝐺𝐶𝐼 is an estimate of 

length of a 95% confidence interval of numerical error, based on the empirical observations 

which led to 𝐹𝑠. An expansion factor 𝑘 is applied to 𝐺𝐶𝐼 to estimate the standard deviation, 

𝑢𝑛𝑢𝑚 [1]. 
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𝑢𝑛𝑢𝑚 =
𝐺𝐶𝐼

𝑘
 

𝑘 = {
1.15, 𝑤𝑒𝑙𝑙 𝑏𝑒ℎ𝑎𝑣𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒
2, 𝑝𝑜𝑜𝑟𝑙𝑦 𝑏𝑒ℎ𝑎𝑣𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

 

(26) 

A poorly behaved problem (oscillatory convergence) is assumed to have a Gaussian error 

distribution. A well-behaved problem (smooth, monotonic convergence) is assumed to have 

a shifted Gaussian error distribution [1].  

A MATLAB Code was developed for this analysis, found in Appendix C.III. Numerical 

Uncertainty Analysis (general). 

3.1.  ANSYS Model 
13 meshes were generated and the simulation was run to collect the quantity of interest for 

each mesh. Figure 8 shows the simulation results (leakage) for all grids. The grids were 

generated with a structured grid refinement (𝑟𝑥 ≈ 𝑟𝑦 ≈ 𝑟𝑧). Details of the structured grid 

refinement and mesh parameters can be found in Appendix A: ANSYS Mesh Parameters. 

Since the convergence is not monotonic in Figure 8, this problem is assumed to be poorly 

behaved. 

 

FIGURE 8 
LEAKAGE ANSYS OUTPUT FOR 13 DIFFERENT GRIDS 

  

The ANSYS model consistently estimates leakage to be near 0.505 L/s. In the ANSYS model, 

the volume of the seal sector’s fluid region is 1410 mm3, which is applied to Equation (20) to 

find representative mesh sizes, ℎ𝑖. Since 13 different meshes were generated, there were 57 

possible combinations of three meshes (grid triplets) of sufficiently different size (𝑟 > 1.3). 
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One grid triplet was chosen for the remainder demonstration; this selection is discussed in 

Special Considerations. These grids’ results are shown in Table 1, following Equations (21) 

and (22). 

TABLE 1 
CONVERGENCE METRICS RESULTS 

 

Table 2 shows the observed order of convergence 𝑝, the associated term 𝑞, and the grid 

convergence index 𝐺𝐶𝐼 following Equations (24) and (25). The results in Table 2 are based 

on the grid triplet shown in Table 1. Since the grid refinement was structured, 𝐹𝑠 = 1.25 is 

used for 𝐺𝐶𝐼 in Equation (25). 

TABLE 2 
CONVERGENCE METRICS RESULTS 

 

The convergence in in Figure 8 is poorly behaved, so 𝑘 = 2 is used for 𝑢𝑛𝑢𝑚 in Equation (26). 

Finally, for the set of grids in Table 1, the numerical uncertainty is  𝑢𝑛𝑢𝑚 = 0.0006251 𝐿/𝑠, 

which estimates numerical error 𝛿𝑛𝑢𝑚 ∈ [−𝑢𝑛𝑢𝑚, 𝑢𝑛𝑢𝑚]. 
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3.1.  Bulk-Flow Model 
49 meshes were generated and the simulation was run to collect the quantity of interest for 

each mesh. Figure 9 shows the simulation results (leakage) for all grids. Since this model is 

one-dimensional, only the number of nodes is specified, which is naturally a structured grid 

refinement. Since the convergence is smooth and monotonic in Figure 9, this problem is 

assumed to be well behaved. A MATLAB code was developed for running a mesh 

independence study on this code, found in Appendix C.I. Mesh Independence Study 

(example). 

 
FIGURE 9 

LEAKAGE OUTPUT FOR 49 DIFFERENT GRIDS 

 

The bulk-flow model converges to a leakage of about 0.475 L/s. The length of the seal fluid 

region is the seal length, 60 mm, which is applied to Equation (20) to find representative 

mesh sizes, ℎ𝑖 . Since 49 different meshes were generated, there were 813 possible 

combinations of three meshes (grid triplets) of sufficiently different size (𝑟 > 1.3). One grid 

triplet was chosen for the remainder demonstration; this selection is discussed in Special 

Considerations. These grids’ results are summarized in Table 3, following Equations (21) and 

(22). 

Table 4 shows the observed order of convergence 𝑝, the associated term 𝑞, and the grid 

convergence index 𝐺𝐶𝐼 following Equations (24) and (25). The results in Table 4 are based 

on the grid triplet shown in The length of the seal fluid region is the seal length, 60 mm, 

which is applied to Equation (20) to find representative mesh sizes, ℎ𝑖 . 
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TABLE 3 
THREE COMPLIANT MESHES AND SIMULATION RESULTS 

 
 

Since 49 different meshes were generated, there were 813 possible combinations of three 

meshes (grid triplets) of sufficiently different size (𝑟 > 1.3). One grid triplet was chosen for 

the remainder demonstration; this selection is discussed in Special Considerations. Since the 

grid refinement was structured, 𝐹𝑠 = 1.25 is used for 𝐺𝐶𝐼 in Equation (25). 

TABLE 4 
THREE COMPLIANT MESHES AND SIMULATION RESULTS 

 

The convergence in Figure 9 is well behaved, so 𝑘 = 1.15 is used for 𝑢𝑛𝑢𝑚 in Equation (26). 

Finally, for the set of grids in Table 3, the numerical uncertainty is 𝑢𝑛𝑢𝑚 = 0.002528 𝐿/𝑠, 

which estimates numerical error 𝛿𝑛𝑢𝑚 ∈ [−𝑢𝑛𝑢𝑚, 𝑢𝑛𝑢𝑚].  

This evaluation is also done on the other simulation output variables, shown in Appendix B: 

Additional Bulk-Flow Results. To do this efficiently, each output variable was stored for all 

grid sizes. The analysis above was run for all outputs and for all grid triplets. 

3.2.  Special Considerations 
3.2.1.  DISCREPENCY BETWEEN MODELS 

The bulk-flow model converges to a leakage of about 0.475 L/s while the ANSYS model 

consistently estimates leakage to be near 0.505 L/s. The experimental measurement was 

0.528 L/s. There are many differences between these models which may account for the 

difference in their predictions.  

The ANSYS model includes the inlet region and outlet region where the bulk-flow model 

does not. However, recirculation and radial flow in the inlet and outlet region should slow 

down the flow out of the seal, leakage. The higher leakage in the ANSYS model indicates 

that it loses less pressure than the Bulk-Flow model. This may be because total pressure is 
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specified at the inlet so ANSYS determines the initial velocity. The Bulk-Flow model instead 

requires static pressure at the inlet. The inlet and outlet region geometries were estimated 

from a diagram. These dimensions could be off enough to affect the flow. Nonetheless, the 

ANSYS model is much more directly replicating the experiment by including the inlet and 

outlet regions. This could explain why its prediction is closer to the experimental value. 

Another major difference between the models is ANSYS models turbulence with SST while 

Bulk-Flow models turbulence with the empirical Hirs model. This validation point is expected 

to be well into the turbulence regime, so the turbulence model choice plays a big role in 

predicting flow. For the ANSYS model, SST is used where the Bulk-Flow model uses the 

empirical estimates from the Hirs model. This could account for the Bulk-Flow’s lower 

leakage, which is further from the experimental value. 

3.2.2.  SPREAD OF P 
V&V-20 gives no recommendation on how to incorporate more than three grids in the 

numerical uncertainty quantification or how to deal with multiple uncertainty calculations. 

For each model, these calculations were done on all grid triplets. V&V-20 recommends 

running this calculation on more than one grid triplet to check if 𝑝 is consistent. 𝑝 should be 

close to the theoretical 𝑝. Comparing these is useful for assessing numerical error [1]. If 𝑝 

varies greatly across grid triplets, it may indicate 

• The grid is not refined enough. 

• There are unaddressed errors in the code. 

• The boundary or initial conditions are unsatisfactory. 

• The convergence is incomplete. 

• The grid refinement is not structured enough.  

• The simulations are not in the asymptotic region of convergence. 

There are various suggestions for estimating 𝑝 outside of the methods in V&V-20.  

For the ANSYS model, the variance in 𝑝 across grid triplets was unsatisfactory. Initially, the 

grid refinement was not structured, resulting in a huge spread of 𝑝, shown in Figure 10. 
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FIGURE 10 

ANSYS: SPREAD OF P FOR UNSTRUCTURED GRID REFINEMENT 

To address this issue, a structured grid refinement was developed, detailed in Appendix A: 

ANSYS Mesh Parameters. This reduced the spread of 𝑝, shown in Figure 11. 

 

FIGURE 11 

ANSYS: SPREAD OF P FOR STRUCTURED GRID REFINEMENT 

The spread of 𝑝 remained unsatisfactory but improved. ANSYS is a 2nd order model, and the 

spread of 𝑝 is bimodal with a sharp peak at 𝑝 ≈ −1.5 and a shallow peak at 𝑝 ≈ 2.5. The 

grid could not be easily refined further as finer meshes resulted in numerical overflow. The 

grid refinement was, in fact, structured. The simulation seems to be in the asymptotic region 

as its leakage predictions are consistently within 1% of one another. 

In contrast, the spread of 𝑝 was satisfactory for the bulk-flow model, shown in Figure 12. 

There was still a spread, but the spread was much smaller and the peak is at 𝑝 = 1, which is 

the theoretical order of accuracy for this code. 
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FIGURE 12 

BULK-FLOW: SPREAD OF P 

3.2.3.  CHOOSING A GRID TRIPLET 
The grid triplet used in the ANSYS numerical uncertainty calculations were chosen by first 

only considering grid triplets with the smallest N1 grid (N1 = 80580 elements), allowing for 

efficient computations for input uncertainty. This was important for ANSYS due to the slow 

computations. Since ANSYS CFX is a second order scheme, the order of convergence should 

be near 2. So the grid triplet which best resembles the numerical scheme was chosen, with 

p ≈ 2. 

The grid triplet used in the bulk-flow numerical uncertainty calculations were chosen by first 

only considering grid triplets with N1 = 100 nodes. This was chosen because 𝑁 = 100 is at 

the beginning of the asymptotic region in Figure 9 and for the other Bulk-Flow output 

variables shown in Appendix B: Additional Bulk-Flow Results. This 100-node grid allowed 

for efficient but reliable output for input uncertainty quantification and running this 

procedure on other output variables. Since the ROMAC Smooth Seal code is a first order 

scheme, the order of convergence should be near 1. So the grid triplet which best resembles 

the numerical scheme was chosen, with p ≈ 1 for leakage and all output variables.  

These two 𝑁1 grids are deemed adequate for demonstration in the perturbation study for 

input uncertainty. V&V-20 remarks that its sections may be considered independently, so 

the following section is not tainted by the uncertain order of convergence of these grids. If 

𝑢𝑖𝑛𝑝𝑢𝑡 ≈ 𝑢𝑛𝑢𝑚, then the finest grid from the grid triplet (𝑁1) should be used for estimating 

𝑢𝑖𝑛𝑝𝑢𝑡. If 𝑢𝑖𝑛𝑝𝑢𝑡 ≫ 𝑢𝑛𝑢𝑚, then a coarser grid from the grid triplets may be used for estimating 

𝑢𝑖𝑛𝑝𝑢𝑡. This cannot be checked until 𝑢𝑖𝑛𝑝𝑢𝑡 is estimated, but we proceed using 𝑁1 to be 

conservative, so no modifications will need to be made later on.  
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Chapter 4:  Input Uncertainty 

4.1.  Overview 
For a CFD model with m relevant input parameters, the input uncertainty uinput is 

 𝑢𝑖𝑛𝑝𝑢𝑡
2 =∑(𝑢𝑋𝑖 ∙

𝜕𝑆

𝜕𝑋𝑖
)

𝑚

𝑖=1

2

 (27) 

where uXi is standard uncertainty of input parameter Xi, and 
∂S

∂Xi
 is sensitivity coefficient of 

simulation output S with respect to input parameter Xi [1]. The sensitivity coefficient 

expresses how sensitive the simulation output is to the input parameter and is found by 

perturbing the input parameter. The input to the model should replicate the experiment, so 

uncertainties of experimental parameters are contributing to the uncertainty of the inputs 

to the model. To account for this, each input parameter’s input uncertainty is the standard 

uncertainty from experiment scaled by the simulation’s sensitivity to the parameter itself. 

The standard uncertainty should be found from the experiment, a database, or expert 

opinion [1]. Since uncertainties are combined as root sum of the squares, uinput is simply a 

combination of input uncertainty introduced by each input parameter.  

To approximate the sensitivity coefficients 
∂S

∂𝑋
, second order finite difference is used 

 
𝜕𝑆

𝜕𝑋
≈
𝑆(𝑋 + ∆𝑋) − 𝑆(𝑋 − ∆𝑋)

2 ∆𝑋
 (28) 

The first order finite difference approximation may also be used here [1], but second order 

was used for a more robust estimation. Choosing an appropriate perturbation ∆𝑋 is a 

nontrivial task. If the perturbation is too small (ie, 0.1 rpm for a 3000 rpm input), then there 

will be no observable change in S due to the limitations of computer precision. This effect is 

called subtractive cancellation [1]. If the perturbation is too large (i.e., 1000 rpm for 

a 3000 rpm input) then the observed change in S is reflecting the change in the physics 

rather than the model’s sensitivity; the value S(𝑋 + ∆X) would no longer represent the same 

problem. This effect is called parameter discretization [1]. To determine an appropriate value 

for ∆𝑋 which avoids these effects, a wide range of values should be tested [1]. 
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Normalizing metrics are useful in graphically assessing the perturbation study of all 

parameters. Let the order of the relative perturbation be O𝑋 and the order of the relative 

sensitivity coefficient be O𝑆. 

 

𝑂𝑋 = 𝑙𝑜𝑔 (
∆𝑋

𝑋
)

𝑂𝑆 = 𝑙𝑜𝑔 (𝑋
∆𝑆

∆𝑋
)

 (29) 

These normalizations allow for a generalized, fair analysis of the parameters with graphs of 

the order of relative sensitivity coefficient against the order of each relative perturbation.  

For a given model, let the precision of the output be 10−PS, so when no change in output is 

observed, ∆S = 10−(PS+1) is assumed, though it could be smaller. If no change in simulation 

output is observed,  

 𝑂𝑆 = 𝑙𝑜𝑔(∆𝑆) − 𝑙𝑜𝑔 (
∆𝑋

𝑋
) (30) 

to reflect model output precision, where ∆S = 10−(PS+1) represents the precision of the 

results.  

The simulations in this section should be on one of the grid triplets evaluated for numerical 

uncertainty. Choosing which grid to use is a somewhat iterative process. If 𝑢𝑖𝑛𝑝𝑢𝑡 ~ 𝑢𝑛𝑢𝑚, 

then the finest grid should be used in this perturbation study. If 𝑢𝑖𝑛𝑝𝑢𝑡 ≫ 𝑢𝑛𝑢𝑚, then one of 

the coarser grids is adequate for the perturbation study. 

A MATLAB Code was developed for this analysis, found in Appendix C.IV. Input Uncertainty 

Analysis (general). 

4.2.  ANSYS Model 
This section quantifies input uncertainty for ANSYS Grid 1 shown in Table 1. This was chosen 

because 𝑢𝑖𝑛𝑝𝑢𝑡 is not much larger than 𝑢𝑛𝑢𝑚, because of the noise in 𝑝, and to be 

conservative. 

4.2.1.  STANDARD UNCERTAINTY 
The experiment used for this work did not report standard uncertainties; therefore, 

expert opinions were sought. Specifically, a ROMAC post-doc, graduate student, and 

practicing engineer were consulted; additionally, several publications were referenced [23], 
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[43], [44]. For this smooth seal sector model, there are twelve relevant input parameters. The 

three dimensions specified in the publication (seal length, seal clearance, and rotor diameter) 

are assigned standard uncertainty of 5 μm. The five dimensions interpreted from the 

diagram in the publication (inlet and outlet regions’ height and width along with the inlet’s 

width) are assigned standard uncertainty of 5 mm (see Table 6 and [25]). The rotor rotational 

speed is estimated to have a standard uncertainty of 100 rpm, and the inlet pressure has an 

estimated standard uncertainty of 5 kPa. Since the temperature of the water was not given, 

the temperature was assumed to be between 10 and 50 degrees Celsius. The standard 

uncertainty of viscosity and density were approximated with the standard deviation of known 

values for water across this temperature range [45], [46]. Estimation of these standard 

uncertainties was somewhat subjective without the appropriate experimental data. 

4.2.2.  SENSITIVITY COEFFICIENT 
The sensitivity coefficients are found with 

∂S

∂X
≈
∆S

∆𝑋
 by perturbing by ∆𝑋. For this study, 

the perturbations were within 0.2 ≥
∆𝑋

𝑋
≥  10−10. One realization of 

∆S

∆𝑋
 for a particular 

∆𝑋

𝑋
 is 

needed for input uncertainty estimation. The chosen value should be within an interval of 
∆X

𝑋
 

where 
∆S

∆𝑋
 is stable or where the effect X has on S is constant. The leakage is reported with 

precision of 10−6, so when no change in leakage output is observed, ∆S = 10−7 is assumed, 

though it could be smaller. 

Normalizing metrics from Equations (29) and (30) are useful in graphically assessing the 

perturbation study of all twelve parameters, again using the order of the relative 

perturbation be OX and the order of the relative sensitivity coefficient be OS.  

 

FIGURE 13 
SENSITIVITY VS. PERTURBATION FOR X1-X3 

 



Madeline Carlisle Collins   38 

Validation and Uncertainty Quantification of CFD Smooth Seal Models: ANSYS and Bulk-Flow 

 

FIGURE 14 
SENSITIVITY VS. PERTURBATION FOR X4-X6 

 

 

FIGURE 15 
SENSITIVITY VS. PERTURBATION FOR X7-X9 

 

 

FIGURE 16 
SENSITIVITY VS. PERTURBATION FOR X10-X12 
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Only one parameter was adjusted at a time, and each of the twelve parameters were 

adjusted bilaterally with 13 different perturbation sizes ∆𝑋. This required 312 simulations, 

costing about half of a week of runtime. In order to do this efficiently, the relevant 

parameters were flagged in ANSYS so that they may be adjusted easily. A script was created 

in MATLAB which read an Excel sheet of input parameters; case by case, adjusted parameters 

in ANSYS; ran the simulations; and wrote the important results to a file. These results were 

used to approximate each derivative with Equation (28). 

The results of the perturbation study are shown in Figure 13-Figure 16 for each parameter 

and each perturbation. The interval of OX where the OS is most stable is desired. This value 

will be trusted to represent the true estimation of the sensitivity coefficient, 
∂S

∂Xi
. The 𝑂𝑥 values 

are shown in Table 5. 

TABLE 5 
STABLE OX FOR EACH INPUT PARAMETER 

 

For parameters X2, X4-X7, the stable regions are very distinct and wide, so any 𝑂𝑥 along the 

flat part of each curve are acceptable. For parameters X1, X3, X8-X12, a stable region is not 

clear, but the above values were chosen as best estimates. 

4.2.1.  INPUT UNCERTAINTY 
TABLE 6 

INPUT UNCERTAINTY SUMMARY 
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Table 6 summarizes each parameter’s nominal value, standard uncertainty, sensitivity 

coefficient from analysis of Figure 13-Figure 16, and input uncertainty contribution.  

According to Table 6, seal clearance (X1), dynamic viscosity (X6), outlet width (X11), and 

outlet height (X11) are the dominating contributors to input uncertainty, which are on the 

order of 1E-2 L/s. All other contributions were on the order of 1E-3 L/s or smaller. As given 

by Equation (27), the uncertainty contributions of each parameter are combined into a total 

input uncertainty to be 𝑢𝑖𝑛𝑝𝑢𝑡 = 0.08550 𝐿/𝑠, which estimates input error 𝛿𝑖𝑛𝑝𝑢𝑡 ∈

[−𝑢𝑖𝑛𝑝𝑢𝑡, 𝑢𝑖𝑛𝑝𝑢𝑡]. 

4.1.  Bulk-Flow Model 
This section quantifies input uncertainty with a perturbation study on Bulk-Flow Grid 1 

shown in Table 3. This was chosen because 𝑢𝑖𝑛𝑝𝑢𝑡 is not much larger than 𝑢𝑛𝑢𝑚 and to be 

conservative. 

4.1.1.  STANDARD UNCERTAINTY 
For this Bulk-Flow model, there are nine relevant input parameters. The first six bulk-

flow parameters (X1-X6) correspond directly to the ANSYS model’s first six parameters (X1-

X6). The seventh parameter is static pressure rather than total pressure. The same resources 

and standard uncertainties were used as in the ANSYS analysis for these parameters. Pre-

swirl standard uncertainty was estimated with values from Darden et al [26]. Since the 

necessary experimental data was unavailable, the standard uncertainty of friction factor 

coefficient was estimated by sampling with the friction factor expressions from Blasius and 

Moody in Equation (19). Assuming 𝑏 = 0.217, the friction factor coefficient becomes a 

function of Reynold’s number 𝑎 = 𝑎(𝑅𝑒) from Equation (19). Since 𝑅𝑒 = 𝑅𝑒(𝑐, 𝑅, 𝛺, 𝜌, 𝜇) 

from Equation (7), the friction factor coefficient is a function of these other input parameters 

𝑎 = 𝑎(𝑐, 𝑅, 𝛺, 𝜌, 𝜇). For 500 trials, each of these input parameters 𝑋 = 𝑐, 𝑅, 𝛺, 𝜌, 𝜇 is sampled 

from as a random variable from a normal distribution x~𝑁(𝑋, 𝑢𝑋) with its nominal value as 

mean and its standard uncertainty as standard deviation. Each trial estimates friction factor 

coefficient 𝑎. From the 500 trials, a standard deviation of 𝑎 was found to estimate 𝑢𝑋 for 

friction factor coefficient, resulting in 𝑢𝑋=𝑎 =0.0054. 

4.1.2.  SENSITIVITY COEFFICIENT 
The sensitivity coefficients are found with 

∂S

∂Xi
≈

∆S

∆Xi
 by perturbing by ∆Xi. For this 

study, the perturbations were within 0.5 ≥
∆Xi

Xi
≥ 10−10. One realization of ∆S/∆Xi for a 

particular ∆Xi/Xi is needed for input uncertainty estimation. The chosen value should be 
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within an interval of ∆Xi/Xi where ∆S/∆Xi is stable or where the effect Xi has on S is constant. 

The leakage is reported in MATLAB with precision of 10−16, so when no change in leakage 

output is observed, ∆S = 10−17 is assumed, though it could be smaller. 

Only one parameter should be adjusted at a time, and each of the nine parameters was 

adjusted bilaterally with 16 different perturbation sizes ∆Xi. This required 288 simulations, 

which took less than ten minutes of runtime. In order to do this efficiently, the relevant 

parameters were automatically adjusted in MATLAB with a loop. These results were used to 

approximate each derivative with Equation (28).  

A MATLAB Code was developed for running a perturbation study on this code, found in 

Appendix C.II. Perturbation Study (example). 

 

FIGURE 17 
SENSITIVITY VS. PERTURBATION FOR X1-X3 

 

 

FIGURE 18 
SENSITIVITY VS. PERTURBATION FOR X4-X6 
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FIGURE 19 
SENSITIVITY VS. PERTURBATION FOR X7-X9 

 

Normalizing metrics from Equations (29) and (30) are useful in graphically assessing the 

perturbation study of all nine parameters, again using the order of the relative perturbation 

be OXi and the order of the relative sensitivity coefficient be OSi .  

For each of the parameter’s graphs in Figure 17-Figure 19, the interval of OX where the OS 

is most stable is desired. This value will be trusted to represent the true estimation of the 

sensitivity coefficient, 
𝜕𝑆

𝜕𝑋𝑖
. The stable region for these parameters is much clearer than for 

those in the ANSYS simulation. OX = −0.7 is sufficient for each parameter. Results are shown 

in Table 7. 

4.1.3.   INPUT UNCERTAINTY 
Table 7 summarizes each parameter’s nominal value, standard uncertainty, sensitivity 

coefficient from analysis of Figure 17-Figure 19, and input uncertainty contribution. 

According to Table 7, the seal clearance (X1), dynamic viscosity (X6), and friction factor 

coefficient (X8) are the dominating contributor to input uncertainty, on the order of 1E-2 

L/s. All other contributions were on the order of 1E-3 L/s or smaller. As given by Equation 

(27), the uncertainty contributions of each parameter are combined into a total input 

uncertainty to be 𝑢𝑖𝑛𝑝𝑢𝑡 = 0.03741 𝐿/𝑠, which estimates input error 𝛿𝑖𝑛𝑝𝑢𝑡 ∈

[−𝑢𝑖𝑛𝑝𝑢𝑡, 𝑢𝑖𝑛𝑝𝑢𝑡]. 

 

TABLE 7 
INPUT UNCERTAINTY SUMMARY 
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This evaluation was also done on the other simulation output variables, shown in Appendix 

B: Additional Bulk-Flow Results. This was done with grid 𝑁1 = 100 nodes for each output 

variable. For each perturbation, all output variables were stored, so the number of 

perturbation simulations was the same as for the study shown above. This was possible 

because in the previous section, the grid size with 𝑁1 = 100 nodes was found to be 

reasonable for all output variables. If their converged regions did not overlap so nicely, these 

perturbation simulations would need to be done separately, for each output parameter’s 

converged grid size. Practically, finding a grid size where all output variables are numerically 

converged is more useful with respect to using the model for prediction purposes. For each 

output variable, perturbation curves were plotted and analyzed, as shown here, and flat 

region were identified. The graphs were steady, as they are for leakage shown above.  

4.2.  Special Considerations 
The process of determining the appropriate perturbation OX can be quite subjective, 

especially for ANSYS parameters X1, X3, X8-X12. This choice could misrepresent the input 

uncertainty. Such a situation calls for refinement and poses questions for future work. This 

may highlight needs for model improvement, more simulations, or a more detailed analysis 

of sensitivity study results. 

Assigning a standard uncertainty without the appropriate experimental data is quite 

subjective. This can have a major impact on the input uncertainty predictions. For example, 

the friction factor coefficient has a standard uncertainty of 0.0054. This value was found by 

estimating the standard deviation of Moody and Blasius approximations with sampled input 

parameters, rather than by experimental perturbations. This estimate was used because it 

was the best available information. If the true value of standard uncertainty for friction factor 

coefficient was 10 times larger, then the input uncertainty of friction factor coefficient would 
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be 10 large smaller as well. This would have a huge impact on the total input uncertainty of 

the bulk flow model. The same logic follows for the other standard uncertainties in this 

section. The subjectivity of standard uncertainty without the necessary experimental data is 

concerning. 

As remarked earlier, if 𝑢𝑖𝑛𝑝𝑢𝑡 ≫ 𝑢𝑛𝑢𝑚, then a coarser grid from the grid triplets may be used 

for estimating 𝑢𝑖𝑛𝑝𝑢𝑡. Since this is the case for both models, each perturbation study could 

have been performed with grid 𝑁2 or 𝑁3 instead of grid 𝑁1. This would reduce runtime. 
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Chapter 5:  Model Error 

Estimate 

5.1.  Overview 
The difference in errors, or comparison error E, is explicitly attainable.  

 𝐸 = 𝛿𝑆 − 𝛿𝐷 = 𝑆 − 𝐷 (1) 

The simulation error is the culmination of three error sources. 

 {
𝛿𝑆 = 𝛿𝑚𝑜𝑑𝑒𝑙 + 𝛿𝑛𝑢𝑚 + 𝛿𝑖𝑛𝑝𝑢𝑡

𝛿𝑚𝑜𝑑𝑒𝑙 = 𝐸 − (𝛿𝑆 − 𝛿𝐷) = 𝐸 − (𝛿𝑛𝑢𝑚  +  𝛿𝑖𝑛𝑝𝑢𝑡  −  𝛿𝐷)
 (2)  

Model error is error in simulation caused by modeling assumptions and the deliverable result 

of this validation study. Validation uncertainty is then the uncertainty of the estimate of 

model error. 

 𝑢𝑣𝑎𝑙 ≡ ±√𝑢𝑛𝑢𝑚2 + 𝑢𝑖𝑛𝑝𝑢𝑡
2 + 𝑢𝐷

2  (3) 

Throughout the standard’s procedure, estimates for 𝑢𝑛𝑢𝑚, 𝑢𝑖𝑛𝑝𝑢𝑡, 𝑢𝐷 , 𝛿𝑚𝑜𝑑𝑒𝑙 are determined, 

each following the ISO guidelines. Then model error is estimated to be within an interval. 

 𝛿𝑚𝑜𝑑𝑒𝑙 ∈ 𝐸 ± 𝑢𝑣𝑎𝑙  (4) 

Here, the bounds for model error are found. Additionally, the magnitudes of 𝐸 and 𝑢𝑣𝑎𝑙 will 

be compared to evaluate the codes.  
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5.2.  ANSYS Model 
The goal of this section is to estimate model error. Comparison error is the difference in 

simulation output and experimental observation. From Equation (1), the comparison error 

for leakage is shown in Table 8. 

TABLE 8 
RESULTS SUMMARY 

 

The value 𝐸 is an estimator of model error, and its magnitude and sign are certain and 

constant. 𝑢𝑣𝑎𝑙 is the uncertainty of that estimator. The uncertainty values are shown in Table 

9. 

TABLE 9 
UNCERTAINTY SUMMARY 

 

In Table 9, 𝑢𝑣𝑎𝑙 is found from Equation (3). Since |𝐸| ≤ 𝑢𝑣𝑎𝑙 , the modeling error is within the 

noise imposed by numerical, input, and experimental uncertainty. Thus, there is no clear 

opportunity for improvement of this model besides tending to each uncertainty source. 

According to Equation (4), the model error interval is shown in Table 10. 

TABLE 10 
MODEL ERROR INTERVAL ESTIMATE 

 

The model error estimates the uncertainty due to modeling assumptions. 
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5.3.  Bulk-Flow Model 
The goal of this section is to estimate model error. Comparison error is the difference in 

simulation output and experimental observation. From Equation (1), the comparison error 

for leakage is shown in Table 11. 

TABLE 11 
RESULTS SUMMARY 

 

The value 𝐸 is an estimator of model error, and its magnitude and sign are certain and 

constant. 𝑢𝑣𝑎𝑙 is the uncertainty of that estimator. The uncertainty values are shown in Table 

12. 

TABLE 12 
UNCERTAINTY SUMMARY 

 

In Table 12, 𝑢𝑣𝑎𝑙 is found from Equation (3). Since |𝐸| ≈ 𝑢𝑣𝑎𝑙 , the modeling error is well 

within the noise imposed by numerical, input, and experimental uncertainty. Thus, there is 

no clear opportunity for improvement of this model besides tending to each uncertainty 

source. According to Equation (4), the model error interval is shown in Table 13. 

TABLE 13 
MODEL ERROR INTERVAL ESTIMATE 

 

The model error estimates the uncertainty due to modeling assumptions. 
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Chapter 6:  Closing 

6.1.  Conclusion 
Chapter 1 explained the importance of validation and uncertainty for both the software 

developer and end-user. The need for improvement and standardization of validation in 

practice was demonstrated. Due to the limited availability of valuable experimental data, 

ROMAC Laboratory at the University of Virginia is interested in developing a method of 

assessing low-fidelity models with high-fidelity models, such as ANSYS models. Various 

topics were discussed targeting this pursuit, such as N-version validation and calibration. 

Additionally, the weak areas in the validation community were discussed including 

assessment criteria. ASME V&V-20 was deemed to be the first step in ROMAC efforts to 

develop its own validation process. 

In Chapter 2-5, ASME V&V-20 was thoroughly discussed. This included formally defining 

terms such as validation, verification, error, and uncertainty. The scope was also discussed: 

this procedure may only be applied to one simulation output at a time, under a specific set 

of conditions, and it requires experimental data. The methodology of quantifying numerical 

and input uncertainty was explained in great detail. This standard was found to be a very 

helpful start to ROMAC’s goals as it exposed the intricacies of validation efforts within the 

CFD field. 

Chapter 2 discusses the details of the case study.  This section explained in great detail the 

development of the ANSYS model and the careful considerations of geometry, mesh, and 

solver settings. The bulk-flow smooth seal code is an actual development in ROMAC for 

quick assessment of smooth seal behavior. The experimental setup and apparatus of a 

typical rotordynamics experiment was presented as it guided the development of the 

models. The experiment included little uncertainty analyses details but did include 

experimental uncertainty of 5% for the quantity of interest, leakage. In rotordynamics, it’s 

typical to use published experiments for validation, which often means insufficient 

information. In Chapter 3, experimental uncertainty is discussed, and the experimentalists’ 

reported value is used for the validation study.  

In Chapter 3, numerical uncertainty of leakage was estimated for each model; these 

uncertainties only pertain to the particular validation point. The numerical uncertainty was 
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estimated to be 0.1% for the ANSYS model and 0.5% for the bulk-flow model. This was also 

done for other important output variables of the bulk flow model. This resulted in an 

estimate of the error caused by the numerical solver of each model, which required a grid 

convergence study. This process was very time-consuming for the ANSYS model as it was 

difficult to prevent numerical overflow for fine meshes and difficult to satisfy Y+ 

requirements for coarse meshes. Additionally, the V&V-20 method emphasizes preserving 

the geometry of each element between meshes. This additional constraint complicated and 

lengthened the process further. The two models resulted in similar numerical uncertainty 

values, but the calculation was much smoother and more reliable for the bulk flow model 

than the ANSYS model. The process was also smooth for the other bulk flow output 

variables, where numerical uncertainty was estimated for the same grid triplet. The odd 

behavior encountered with the ANSYS model may be due to poorly behaved convergence; 

however, its predictions were consistently within 1% of one another. Unfortunately, this is not 

always well-defined or easy to fix. However, this situation did lead to model improvements 

and highlights a need for improvement in the mesh or convergence settings. This 

information is invaluable as a graphical analysis of convergence rendered it sufficient. In this 

way, the numerical uncertainty analysis demonstrated an ability to significantly improve 

insight to a model’s weaknesses.  

In Chapter 4, input uncertainty of leakage was estimated for each model; these uncertainties 

only pertain to the particular validation point. This was also done for other important output 

variables of the bulk flow model. This resulted in an estimate of the error caused by the 

uncertainty of inputs to each model, which required a perturbation study. For the output 

variables of the bulk flow model, all of this was done with one perturbation study since they 

share a converged grid size. The input uncertainty was estimated to be 16% for the ANSYS 

model and 7% for the bulk-flow model. Standard uncertainties were estimated rather than 

determined from experimental data. For friction factor, this was directly estimated with 

friction factor approximation expressions and other input parameters. For both models, seal 

clearance was one of the top contributors to input uncertainty which is expected as this 

dimension has a very big impact on flow. Friction factor had a low impact on the uncertainty 

compared to expectations. The perturbation study was much smoother for the bulk flow 

model than the ANSYS model; for some input parameters, the ANSYS model had a variable 

response, rendering the choice of perturbation size quite subjective. The cause of this issue 

is not clear, but perhaps it may be due to inadequate convergence, discussed in the previous 

paragraph.  
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The ANSYS simulations took a very long time, each simulation lasting between 2 minutes 

and 6 hours. Considering about 300 simulations were needed for input uncertainty and 13 

more simulations needed for numerical uncertainty, the total runtime was about half a week, 

not accounting for redoing the process when a mistake was found or improvements were 

added. In contrast, for the Bulk-Flow model, around 400 simulations were run in less than 

10 minutes, not accounting for correcting mistakes. The post-processing time is very similar 

between models because they were both done with MATLAB.  

In Chapter 5, each models’ overall validation uncertainty and model error for leakage were 

estimated; these estimates only pertain to this particular validation point. The model error 

was estimated to be within [-21%, 13%] for the ANSYS model and within [-19%, -1%] for the 

bulk-flow model. The validation uncertainty combines experimental, numerical, and input 

uncertainty. Surprisingly, the bulk-flow model had a smaller validation uncertainty (9%) than 

the ANSYS model (17%). The validation uncertainty represents the uncertainty of the model 

error estimate, which is a comparison error. For both models, the validation uncertainty and 

comparison error were of similar magnitude, so no clear opportunities to improve model 

accuracy are apparent. Model precision may clearly be improved by reducing validation 

uncertainty. Model error is the error due to modeling assumptions and approximations. The 

estimate for ANSYS model error was -12% and 4%, and for the bulk-flow model, between -

-19% and -1%. Since quantification of the models’ agreement with reality was found, 

according to V&V-20, the leakage prediction of these models was validated at 3000 rpm. 

In the Appendices, additional resources are included. A generalized MATLAB code was 

developed for analyzing input and numerical uncertainty, which may be used for future 

analysis. This procedure was also performed on other important outputs of the bulk-flow 

model, such as stiffness and damping, shown in the Appendices. 
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6.2.  Contributions 
This work raises awareness and knowledge about validation and the need for improved 

methods in rotordynamics. Literature highlights are presented on validation and other topics 

relating to ROMAC’s end goal in validation. This work is the first formal step in building a 

standard for ROMAC validation and uncertainty quantification. There are clear opportunities 

to build upon this work. This thesis may serve as a guide and example for understanding the 

validation procedure in V&V-20 applied to rotordynamics problems. Due to the newness of 

V&V-20, this work also may contribute to the ASME V&V community’s growth and 

refinement.  

This procedure highlights where models may have weaknesses. Two formal grid 

convergence studies are demonstrated on a relatively basic problem, resulting in estimation 

of numerical uncertainty. Problems encountered in this process highlight the need for a 

more converged mesh. This method will tend to reveal such numerical weaknesses. 

Structured grid refinement was shown to be critical in finding the observed order of 

accuracy. Two formal perturbation studies were also demonstrated, resulting in input 

uncertainty of each input parameter. Selecting perturbation size carefully was shown to be 

difficult and important. This process highlights the impact of each parameter. This whole 

procedure may also be used to compare a low fidelity code to the ANSYS model of the same 

component, as was done here. The uncertainties may be compared to verify adequate 

robustness and justify assumptions. The low-fidelity model here, the bulk-flow model, was 

shown to have much higher model error than the high-fidelity model, the ANSYS model, as 

expected. This was primarily driven by input uncertainty. 

MATLAB codes and documentation are provided for others to perform a numerical and 

input uncertainty analysis with grid convergence and perturbation study results. The 

validation study results for all output variables of the bulk-flow code are also included for 

the same validation point as in the previous chapters. Code developers can perform this 

procedure on a variety of conditions where experimental data is available and analyze the 

uncertainty trends. 

Through the above points, this process can lead to code accuracy improvements. The 

demonstration of the validation process can lead users to be more careful with certain model 

inputs and resolution choices, can lead users to trust the codes more readily, and will also 

inform users of specific cases where the code has been validated so that they are aware of 

when they might be veering far from the validated conditions. 
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6.3.  Recommendations 
Considering the importance and benefits of validation, ROMAC should stay involved in 

developments in the verification and validation community and continue researching these 

topics. Methods of verification should be researched, standardized, and documented for 

ROMAC practice. More research is needed on the instability of the observed order of 

accuracy and sensitivity coefficients. In review of the validation results, assessment criteria 

would be valuable. Assessment criteria would present a clear standard that codes are 

expected to reach, providing consistent quality codes to members. An assessment criterion 

could be a review board’s approval of a validation study’s results. 

There are various specific areas which may be useful to explore. One opportunity for growth 

may be trying global methods - sampling. This may be advantageous when applied to input 

parameter uncertainty analysis rather than the local method used in this work. Consider 

using design of experiment and sampling software for developing perturbation study inputs. 

Cross validation and other calibration-validation methods may be useful for allocating 

experimental data between calibration and validation. This would be useful for estimating 

parameters such as friction factor. Algorithms could be developed for analyzing an unstable 

observed order of accuracy and unstable regions of input uncertainty.  

ROMAC has a unique goal to use ANSYS to assess in-house codes. To continue this 

endeavor, ROMAC’s terminology should be defined and agreed upon; calibration and 

validation are sometimes confused in such situations, and ASME V&V would not term code-

to-code comparison a validation since reality is not directly involved. However, ANSYS may 

certainly be used to calibrate empirical factors for in-house codes such as friction factor 

coefficient. Though not yet backed by V&V theory, a practical initiation of the end-goal 

would be: (1) build an Ansys model, (2) perform validation procedure thoroughly as per the 

most up-to-date protocol in ROMAC, (3) assess the validation results, (4) if passed 

assessment, check ROMAC code against Ansys output, perhaps following this V&V-20 

procedure (considering ANSYS output as experimental output). This fourth step could use 

the simulation uncertainty of the ANSYS model (sum of numerical, input, and model error 

estimates) as the experimental uncertainty. These steps would be a reasonable starting point 

towards the end-goal. Before commencing this, it would be wise to first research the 

aforementioned topics and refine the methods in this work to be more time effective.  

The ANSYS model’s simulations were extremely time consuming, especially for the 

perturbation study. The ANSYS total runtime could be reduced by only using the first order 
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finite difference approximation for the sensitivity coefficient. This would reduce the number 

of simulations by about 50% since perturbations would only be made in one direction. Since 

𝑢𝑖𝑛𝑝𝑢𝑡 ≫ 𝑢𝑛𝑢𝑚, a coarser grid from the ANSYS grid triplet (𝑁2 or 𝑁3 instead of 𝑁1) could 

have been used for the perturbation study. This should reduce runtime. Of course, this could 

not be known until 𝑢𝑖𝑛𝑝𝑢𝑡 is found. However, in the future, it may be wise to start with 𝑁2 for 

an initial perturbation study. Another way to reduce runtime may be to explore sampling 

methods discussed in V&V-20.  

The demonstration in this work only validates one output variable at one validation point. 

No formal procedure is available for extending this process to a whole model, but the agreed 

upon approach is that this procedure should be repeated on many different validation points 

(within the model’s domain of interest) and with all pertinent output variables. Practically 

speaking, during the grid convergence study, it would be wise to identify a grid resolution 

where all output variables are converged so that the perturbation simulations do not need 

to be repeated at various grid resolutions. This would reduce runtime substantially and was 

done here for the Bulk Flow output variables in Appendix B: Additional Bulk-Flow Results. 

This is additionally useful for informing the end-user of a reliable grid resolution. After 

running this perturbation study, model form error and simulation error may be estimated 

for validation points. The resulting error estimates could be viewed as a function of their 

validation point (thus, input parameter values). This data may be viewed as points building 

an n-dimensional surface, where n is the number of input parameters. Building this surface 

would be extremely tedious. Thus, selecting which validation points (within the model’s 

domain of interest) to evaluate at may be a research project itself, but it is one of the most 

critical steps moving forward. Sampling validation points from the domain of interest may 

expedite the process. Interpolation between validation points is not backed by the statistics, 

but it may be the best way to make use of the validation results. In this case, the uncertainty, 

or error estimates, across the domain of interest may be represented by a continuous, n-

dimensional surface. In this case, uncertainty estimates may be reported to end-users.  

Until more progress is made on ROMAC validation methods, code developers in ROMAC 

should follow this method at various experimental validation points and discuss with others 

if the resulting uncertainties seem reasonable. Throughout the validation process, the code 

developer should be prepared to find weaknesses in their code which should be addressed 

before moving forward. The results of a validation study may be reported similarly to this 

thesis and be available and approachable to end-users. 
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New experimental rigs should also be designed carefully, keeping in mind the validation 

needs. Simulation inputs should be measurable, and the uncertainty of measurement 

instruments should be well documented. Experimental data should be reported with 

measurement uncertainty and validation experiment results for use in other validation 

studies. Data should be generated and, if possible, dispersed for use in the community to 

share.  Experimental data would also be useful for estimating standard uncertainties so that 

the subjectivity of input uncertainty is removed. In the meantime, estimating standard 

uncertainty with the available resources might be the best option. 

These recommendations should lead the verification, validation, uncertainty quantification, 

and calibration in ROMAC to great improvements in code development, accuracy, and 

reliability. These steps may also further the research in the V&V community and raise the 

standard for rotating machinery model developers.
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Appendices 

Appendix A:  ANSYS Mesh Parameters 
The inflation and sweeps are structured the same way. They both have a starting small 

element that increases as a geometric sequence in one dimension. If the smallest height is 

increased by a factor 𝛾 then all elements in the sweep or inflation are heightened by the 

same factor. To maintain a structured refinement, the all dimensions should be adjusted by 

the same factor. So, the smallest height in the inflations and sweeps are changed by the 

same amount. Additionally, the inflations share the same minimum height, and the sweeps 

share the same minimum height. The sweeps are in the radial directions and the inflations 

are in the radial and axial directions. The only control in the circumferential direction is the 

maximum overall element size. This is simply controlled by a setting which sets the maximum 

element size. This setting is adjusted by 𝛾 as well to maintain a structured grid refinement. 

With this method, 𝑟𝑟 ≈ 𝑟𝑧 ≈ 𝑟𝜃. Since this sector is so thin, these dimensions are effectively 

Cartesian. 

TABLE 14 
MESH PARAMETERS FOR MESH INDEPENDENCE STUDY 

 

In Table 14, the factor shown in the first column is representing the ratio each minimum 

height to the first one. In other words, 𝛾(𝑖, 1) = 𝑥𝑖/𝑥1 . 
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Appendix B:  Additional Bulk-Flow Results 
Below is a table of the output variables for which input and numerical uncertainties are 

calculated in this appendix. 

TABLE 15 
OUTPUT VARIABLES AND INDICES 

 

B.I.  NUMERICAL UNCERTAINTY 
Below are graphs of each output variable’s convergence. 

B.I.i.  Convergence Plots 

 

FIGURE 20 
CONVERGENCE OF OUTPUT VARIABLE 1 
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FIGURE 21 
CONVERGENCE OF OUTPUT VARIABLE 2 

 

FIGURE 22 
CONVERGENCE OF OUTPUT VARIABLE 3 
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FIGURE 23 
CONVERGENCE OF OUTPUT VARIABLE 4 

 

FIGURE 24 
CONVERGENCE OF OUTPUT VARIABLE 5 
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FIGURE 25 
CONVERGENCE OF OUTPUT VARIABLE 6 

 

FIGURE 26 
CONVERGENCE OF OUTPUT VARIABLE 7 
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FIGURE 27 
CONVERGENCE OF OUTPUT VARIABLE 8 

 

FIGURE 28 
CONVERGENCE OF OUTPUT VARIABLE 9 
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FIGURE 29 
CONVERGENCE OF OUTPUT VARIABLE 10 

 

 

FIGURE 30 
CONVERGENCE OF OUTPUT VARIABLE 11 

 

B.I.ii.  Observed Order of Convergence p 
Below are histograms of the observed order of accuracy across all grid triplets. Each 

histogram corresponds to an output variable. Here, the spread can be observed. Clearly, 
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they are all roughly centered around 1 which is the theoretical order of accuracy for this 

bulk-flow code. The spreads vary but are generally reasonable. 

 

FIGURE 31 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 1 

 

FIGURE 32 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 2 
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FIGURE 33 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 3 

 

 

FIGURE 34 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 4 
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FIGURE 35 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 5 

 

FIGURE 36 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 6 
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FIGURE 37 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 7 

 

FIGURE 38 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 8 
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FIGURE 39 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 9 

 

 

FIGURE 40 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 10 
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FIGURE 41 
SPREAD OF OBSERVED ORDER OF ACCURACY P FOR OUTPUT VARIABLE 11 

 

A grid triplet with N1=100 is chosen for the numerical uncertainty calculations and 

perturbation study for all output variables. This choice is reasonable because all output 

variables have p~1 where N1=100. However, other N1s also met this criterion. The output 

variables need not share the same grid triplet for validation, but this was done for simplicity. 

And practically, it makes most sense to make sure all output variables are reasonably 

converged for recommended use for an end-user. 
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B.I.iii.  Grid Triplets and Simulation Results 
Below is a zoomed in convergence plot of output variable 1 to show the grid triplet’s 

location. 

 

 

FIGURE 42 
CONVERGENCE OF ERROR FOR OUTPUT VARIABLE 1 

 

 

FIGURE 43 
ZOOMED CONVERGENCE OF ERROR FOR OUTPUT VARIABLE 1 
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Below are summaries for each output variable’s grid triplet simulation results. 

TABLE 16 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 1 

 

TABLE 17 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 2 

 

TABLE 18 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 3 

 

TABLE 19 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 4 

 

TABLE 20 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 5 

 

TABLE 21 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 6 
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TABLE 22 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 7 

 

TABLE 23 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 8 

 

TABLE 24 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 9 

 

TABLE 25 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 10 
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TABLE 26 
GRID TRIPLET RESULTS FOR OUTPUT VARIABLE 11 

 
 

B.I.iv.  Convergence Metrics 
Below are each output variable’s convergence metrics results. 

TABLE 27 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 1 

 

TABLE 28 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 2 

 

TABLE 29 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 3 

 

TABLE 30 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 4 

 

TABLE 31 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 5 
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TABLE 32 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 6 

 

TABLE 33 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 7 

 

TABLE 34 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 8 

 

TABLE 35 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 9 

 

TABLE 36 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 10 

 

TABLE 37 
CONVERGENCE METRICS FOR OUTPUT VARIABLE 11 
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B.I.v.  Simulation Output Summary 
Below is a summary of the accepted values of each output variable, unperturbed, at N=100. 

TABLE 38 
SIMULATION RESULTS FOR N=100 

 
 

B.II.  INPUT UNCERTAINTY 
Below are the input parameters perturbed in the perturbation study. These are the same 

parameters used for the leakage study. 

TABLE 39 
INPUT PARAMETER INDICES AND NOMINAL VALUES 
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B.II.i.  Perturbation Study Results 

 

FIGURE 44 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 1 
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FIGURE 45 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 2 
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FIGURE 46 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 3 
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FIGURE 47 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 4 
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FIGURE 48 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 5 
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FIGURE 49 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 6 
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FIGURE 50 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 7 
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FIGURE 51 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 8 
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FIGURE 52 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 9 
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FIGURE 53 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 10 



Madeline Carlisle Collins   88 

Validation and Uncertainty Quantification of CFD Smooth Seal Models: ANSYS and Bulk-Flow 

 

FIGURE 54 
PERTRBATION RESULTS FOR OUTPUT VARIABLE 11 
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B.II.ii.  Input Uncertainty Summaries 
Below are tables for each output variable’s perturbation study. The effects of each input 

parameter are detailed in each table. 

TABLE 40 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 1 

 

TABLE 41 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 2
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TABLE 42 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 3

 
 

TABLE 43 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 4 

 

TABLE 44 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 5

 
 

TABLE 45 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 6 
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TABLE 46 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 7 

 

TABLE 47 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 8 

 

TABLE 48 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 9 
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TABLE 49 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 10 

 

TABLE 50 
INPUT UNCERTAINTY SUMMARY FOR VARIABLE 11 
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B.III.  SUMMARY 
Below is a summary of the results of this study. For each output variable, the numerical and 

input uncertainties are tabulated. 

TABLE 51 
NUMERICAL AND INPUT UNCERTAINTY FOR ALL OUTPUT VARIABLES 
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Appendix C:  MATLAB Scripts 
C.I.  MESH INDEPENDENCE STUDY (EXAMPLE) 

C.I.i.  Code 
 
%% SETUP 
  
close all  
clear all  
clc  
  
Nmin=10;  
Nmax=1000;  
Nfactor=1.1;  
location= '  ---  ' ;  
  
%% nominal inputs  
rotationspeed=3000;         %speed of the rotor in rpm  
R = (71.379/2)/10^3;                  %radius of rotor in m  
viscosity=8.9*10^ - 4;              %viscosity in Pa*s  
C = .168/10^3;                 %seal radial clearance in m  
L = 60/10^3;                  %seal length in m  
rho = 997;                 %density of liquid in kg/m^3  
deltaP = 784*10^3;          %pressure differential in Pa %+DYN=881.5kPa  
  
%advanced inputs  
preswirl=       0;  %ratio of inlet circumferential velocity to rotor surface 
speed  
a=          0.0674;       %.0674;    %friction factor --  this value is 
approximately from Blasius  
  
whirlratio=    1;   %maximum whirl speed simulated as fraction of rotor speed 
--  should not impact the results unless extreme  
  
inputvector=[C           L           R           rotationspeed   rho ...  
             viscosity   deltaP      a           preswirl                ];  
  
%% 
  
n=1;  
N=Nmin;  
L=.6;  
while  N<=Nmax 
    if  N==98 
        N=100;  
    end  
    hv(n)=(L/N);  
    [outvec]=fBulk(inputvector,N);  
    for  i=1:length(outvec)  
        dat(i).val(n,:)=[N outvec(i) hv(n)];        %store leakage (row=dX, 
col=Xi)                  
    end  
    n=n+1;  
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    N=round(N*(Nfactor));  
end  
  
%% 
for  i=1:length(outvec)  
    num=flip(dat(i).val); %order h small to large  
    array2table(num, 'VariableNames' ,{ 'N'  'S'  'h' });  
    num=num2cell(num)  
    row1={ 'N' , 'S' , 'h' };  
    row2={ 'nodes' , 'U' , 'mm' };  
    txt=[row1;row2];  
    D=[txt;num];  
    filename=strcat(location, 'MISRes_Code_Bulk_' ,num2str(i), '.xlsx' );  
    writecell(D,filename);     
end  
  
%% END 
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C.II.  PERTURBATION STUDY (EXAMPLE) 

C.II.i.  Code 
 
function  [Ydat] = fPertBulk(location,dX_ND)  
  
  
%% BEGIN 
  
%% INPUT PARAMETERS 
  
%nominal inputs  
rotationspeed=3000;         %speed of the rotor in rpm  
R = (71.379/2)/10^3;                  %radius of rotor in m  
viscosity=8.9*10^ - 4;              %viscosity in Pa*s  
C = .168/10^3;                 %seal radial clearance in m  
L = 60/10^3;                  %seal length in m  
rho = 997;                 %density of liquid in kg/m^3  
deltaP = 784*10^3;          %pressure differential in Pa %+DYN=881.5kPa  
  
%advanced inputs  
preswirl=       0;  %ratio of inlet circumferential velocity to rotor surface 
speed  
a=          0.0674;       %.0674;    %friction factor --  this value is 
approximately from Blasius  
  
%setup vector of nominal input parameter values  
Xnom=[  C           L           R           rotationspeed   rho ...  
        viscosity   deltaP      a           preswirl                ];  
ux=[    0.005       0.005       0.005       100             2.5 ...           
        0.25        5           0.06        0.1                     ];  
Xnames={ 'SealClearance' , 'SealLength' , 'RotorRadius' , 'RotorSpeed' , ...   
    'De nsity' , 'DynViscosity' , 'StaticPressure' , 'FrictionFactor' , 'PreSwirl' };  
Xunit={ 'm' ,        'm' ,        'm' ,        'rpm' ,          'kg m - 3' , ...  
        'Pa s' ,     'Pa' ,       ' ' ,        ' ' };  
Xunit2={ 'mm' ,       'mm' ,       'mm' ,       'rpm' ,          'kg m - 3' , ...  
        'mPa s' ,    'kPa' ,      ' ' ,        ' '                          };  
Xnom2=[ 1000        1000        1000        1               1 ...  
        1000        1/1000      1           1                           
].*Xnom;     
  
data _vars=[Xnames, 'Leakage' , 'Power' , 'Parameter' ]; %columns of dat  
  
%% PERTURB AND STORE OUTPUT 
  
dX_ND_abs=dX_ND(dX_ND>0);  
for  ind_Xi=1:length(Xnom) %step through parameters to perturb  
    for  ind_dX=1:length(dX_ND) %step through dX for Xi  
        %INPUT PARAMETERS 
            X=Xnom;   %initially set to nominal parameter values  
            X(ind_Xi)=X(ind_Xi)*(1+dX_ND(ind_dX)); %adjust the Xi in X  
            if  X(ind_Xi)==0  
                X(ind_Xi)=dX_ND(ind_dX);  
            end  
        %OUTPUT VALUES 
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             [outvec] = fBulk(X,100);  
             for  i=1:length(outvec)  
                Ydat(i).val(ind_dX,ind_Xi)=outvec(i);        %store leakage 
(row=dX, col=Xi)                  
             end    
    end  
end  
  
for  i=1:length(outvec)  
    num=[ux;Xnom2;Ydat(i).val];  
    num=num2cell(num);  
    v=[{[ ]};{[ ]};num2cell(dX_ND')];  
    mat=[v num];  
    txt=[{ 'dX_ND' } Xnames;{ ' ' } Xunit2];  
    D=[txt;mat];  
    filename=strcat(location, 'PertRes_Code_Bulk_' ,num2str(i), '.xlsx' );  
    writecell(D,filename);  
end  
     
%% END 
  
end  
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C.III.  NUMERICAL UNCERTAINTY ANALYSIS (GENERAL) 

C.III.i.  Documentation 
 
%% NUMERICAL UNCERTAINTY GENERAL CODE 
% 
% Written by Madeline Carlisle Collins  
% 2019 - 2020  
%  
% Purpose:  
% Takes in raw data from mesh independence study. Mesh indenpendence study  
% should include various mesh sizes. The elements should change in all  
% directions. Structured refinement requires that the grid change by the  
% same factor in all directions. This code calculates the observed order of  
% accuracy, the grid convergence index, and the numerical uncertainty for  
% all combinations of 3 meshes allowable. The user chooses a specific grid  
% triplet as an input to  this function. That choice specifies the formal  
% table output of this code. However, all grid triplet outcomes are output.  
% 
% 
%EXAMPLE EXCEL SHEET 
% N             S           h  
% elements      L/s         mm  
% 1000          0.507       0.216  
% 900           0.506       0.220  
% 750           0.509       0.252  
% 500           0.511       0.273  
  
% The first row simply labels the columns.  
% The second row is the units for the columns.  
% The third row is where the numerical data begins.  
% The first column is the number of elements or nodes.  
% The second column is the simulation output at that number of nodes.  
% The third column is the representative mesh element size in one  
% dimension. This is calculated from N according to V&V20 - 2009 f ormulas.  
  
%excelfile: text string, location of excel file and file itself  
%location: text string, location path for output files to be saved  
%   (includes tables, plots, graphs)  
%nameform: text string, base name of output files  
%SimSetCho_ind: grid triplet index #, chosen from AllSets output sheet,  
%   this grid triplet is then printed out with its results  
%chotable: binary 1 or 0, 1 exports the chosen triplets results and  
%   overwrites previous one, 0 does nothing  
%options: binary 1 or 0, 1 export s the all grid triplets results onto a  
%   sheet and overwrites previous one, 0 does nothing  
%doplot: binary 1 or 0, 1 plots S vs N, 0 does nothing  
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C.III.ii.  Code 
 
function  [] = 
fNumericalVV(excelfile,location,nameform,SimSetCho_ind,chotable,options,doplo
t ,wellBehaved,structured)  
  
%% SETUP 
  
[num,text,raw]=xlsread(excelfile);     
var_names=raw(1,1:end);  
var_units=raw(2,1:end);  
dat=num;  
Nv=dat(1:end,1);  
Sv=dat(1:end,2);  
hv=dat(1:end,3);  
  
%% CALCULATIONS 
  
r_lo=1.3;  
r_hi=2;  
  
n=1;  
for  i=2:(length(hv) - 1)  
    for  j=1:(i - 1)  
        if  (hv(i)/hv(j)>=r_lo) && (hv(i)/hv(j)<=r_hi)  
            for  k=(i+1):length(hv)  
                if  (hv(k)/hv(i)>=r_lo) && (hv(k )/hv(i)<=r_hi)  
                    loc=[j i k];  
                    h=hv(loc);  
                    S=Sv(loc);  
                    N=Nv(loc);  
                    r21=h(2)/h(1);  
                    r32=h(3)/h(2);  
                    e21=S(2) - S(1);  
                    e32=S(3) - S(2);  
                  
                    sg=sign(e32/e21);  
                    q=0.1;  
                    p=(q+log(abs(e32/e21)))/log(r21);  
                    error=1;  
                    while  error>0.001  
                        q=log((r21^p - sg)/(r32^p - sg));  
                        pnew=(q+log(abs(e32/e21)))/log(r21);  
                        error=abs(pnew - p)/p;  
                        p=pnew;  
                    end  
                    if  isnan(p)==0  
  
                        if  structured==1  
                            Fs=1.25; %structured grid refinement  
                        elseif  s tructured==0  
                            Fs=3; % UN- structured  
                        end  
                        ea21=abs(e21); %changed 2/27/20  %ea21=abs(e21/S(1));  
                        GCI=Fs*ea21/(r21^p - 1);  
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                            if  wellBeh aved==1  
                                k_expansion=1.15;    
                            % POORLY behaved     
                            elseif  wellBehaved==0  
%                                 S21ext=(r21^p*S(1) - S(2))/(r21^p - 1);  
%                                 ea21ext=abs((S21ext - S(1)));  
%                                 GCI=Fs*ea21ext/(r21^p - 1);  
                                k_expansion=2;  
                            end  
                         
                        u_num=abs(GCI/k_expansion); %u_numND=abs(GCI/k); 
%u_num=u_numND*Sv(i); %changed 2/27/20  
  
                        results(n,:)= [N(1) N(2) N(3) h(1) h(2) h(3) S(1) 
S(2) S(3) ...  
                            r21 r32 e21 e32 ea21  p q GCI u_num];  
                        n=n+1;  
                    end                   
                end  
            end  
        end  
    end  
end  
  
%% NUMERICAL UNCERTAINTY CALCULATION RESULTS 
  
%SimSetCho_res=1:(n - 1);  
AllSets_ind=1:(n - 1);  
  
if  options= =1     
    AllSets_labs={ 'N1'  'N2'  'N3'  'h1'  'h2'  'h3'  'S1'  'S2'  'S3'  'r21'  'r32'  
...   
        'e21'  'e32'  'ea21'  'p'  'q'  'GCI'  'u_num' };  
  
    %TABLE WITH EVERYTHING 
    AllSets_ind=1:(n - 1);  
    AllSets_mat=[AllSets_ind' results];  
    
AllSets_table=array2table(AllSets_mat, 'VariableNames' ,[ 'set' ,AllSets_labs]);  
  
    %PRINT TO TEXT FILE  
    filename=strcat(location,nameform, '_AllSets.txt' );  
    writetable(AllSets_table, filename);  
  
    %PRINT TO EXCEL FILE  
    filename=strcat(location,nameform, '_AllSets.xlsx' );  
    AllSets_indiv=num2cell(AllSets_mat);  
    AllSets_xlsx=[[ 'set' ,AllSets_labs]; AllSets_indiv];  
    writecell(AllSets_xlsx,filename );  
end  
  
%% PLOT 
if  doplot==1  
    all_ps=results(:,15);  
    figure  
    histogram(all_ps, 'BinWidth' ,1)   
        x0=100;  
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        y0=100;  
        width=350;  
        height=250;  
        set(gcf, 'position' ,[x0,y0,width,height])  
    xlabel( '(p) observed order of accuracy' );  
    ylabel( 'frequency of p' );  
    filename=strcat(location,nameform, '_SpreadOfP.png' );  
    saveas(gcf,filename);  
     
    figure  
    plot(Nv,Sv);  
    xlabel( '(N) number of nodes/elements' );  
    ylabel( '(S) simulation results' );  
    fil ename=strcat(location,nameform, '_SimResPlot.png' );  
    saveas(gcf,filename);  
end  
  
  
%% CHOSEN SET DETAILS 
%  N, h, r, S, eps  
  
    %BUILD MATRIX 
    SimSetCho_res=results(SimSetCho_ind,:);  
    SimSetCho_indiv=cell(5,6);  
    SimSetCho_indiv(1:5,1:6)=[{ ' ' } ];  
    SimSetCho_indiv(:,1)=[{1}, { ' ' },{2},{ ' ' },{3}];  
    SimSetCho_indiv(:,2)=[{SimSetCho_res(1)},{ ' ' },{SimSetCho_res(2)},{ ' 
' },{SimSetCho_res(3)}];  
    SimSetCho_indiv(:,3)=[{SimSetCho_res(4)},{ ' ' },{SimSetCho_res(5)},{ ' 
' },{SimSetCho_res(6)}];  
    SimSetCho_indiv(:,4)=[{ ' ' },{SimSetCho_res(10)},{ ' 
' },{SimSetCho_res(11)},{ ' ' }];  
    SimSetCho_indiv(:,5)=[{SimSetCho_res(7)},{ ' ' },{SimSetCho_res(8)},{ ' 
' },{SimSetCho_res(9)}];  
    SimSetCho_indiv(:,6)=[{ ' ' },{SimSetCho_res(12)},{ ' 
' },{SimSetCho_res(13)},{ ' ' }];  
  
    %PRINT IN MATLAB  
    SimSetCho_labs={ 'Grid' , 'N' , 'h' , 'r' , 'S' , 'eps' };  
    array2table(SimSetCho_indiv, 'VariableNames' ,SimSetCho_labs)  
  
    if  chotable==1  
        %PRINT TO EXCEL FILE  
        SimSetCho_xlsx(1:7,1:7)={ ' ' };  
        SimSetCho_xlsx(2,2:end)=SimSetCho_labs;  
        SimSetCho_xlsx(3:end,2:end)=SimSetCho_indiv;  
        filename=strcat(location,nameform, '_SimSetChosen.xlsx' );  
        writecell(SimS etCho_xlsx,filename);  
    end  
  
    %BUILD MATRIX 
    pqGCI_num=[SimSetCho_res(15:17)];  
    pqGCI_labs={ 'p' , 'q' , 'GCI' };  
    pqGCI_indiv=num2cell(pqGCI_num);  
    pqGCI_table=[pqGCI_labs;pqGCI_indiv];  
  
    %PRINT IN MATLAB  
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    array2table(pqGCI_num, 'Variabl eNames' ,pqGCI_labs)  
  
    if  chotable==1  
        %PRINT TO FILE  
        pqGCI_xlsx(1:3,1:4)={ ' ' };  
        pqGCI_xlsx(2:end,2:end)=pqGCI_table;  
        filename=strcat(location,nameform, '_p,q,GCI.xlsx' );  
        writecell(pqGCI_xlsx,filename);  
    end  
     
%% 
k_expansion  
Unum=SimSetCho_res(18)  
filename=strcat(location,nameform, '_NumericalUncertainty.xls' );  
xlswrite(filename, Unum)  
  
end  
  
%% END 
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C.IV.  INPUT UNCERTAINTY ANALYSIS (GENERAL) 

C.IV.i.  Documentation 
 
%% INPUT UNCERTAINTY GENERAL CODE 
% 
% Written by Madeline Carlisle Collins  
% 2019 - 2020  
%  
% Purpose:  
% Takes in raw data from perturbation study. Perturbations study should  
% include various perturbations on various parameters in two directions.  
% This code calculates sensitivity coefficients for all perturbations and  
% parameters. Then graphs the log - log plot of normalized perturbation  
% versus sensitivity coefficient. At this point, the user should select a  
% perturbation which refle cts the most stable sensitivity coefficient.  
% Input this information. Then the code will calculate the input  
% uncertainties for each parameter along with the cummulative input  
% uncertainty.  
  
%EXAMPLE EXCEL SHEET 
% 
% ------------------------------------ ---------------------  
% dX_ND         var_name_1      var_name_2      var_name_3  
%               mm              kg              mm  
%               2               0.1             1  
%               40              5               25  
%  0.1          800             750             775  
%  0.01         750             710             725  
%  0.001        705             701             704  
% - 0.1          600             655             630  
% - 0.01         645             670             660              
% - 0.001        670             690             680   
% ---------------------------------------------------------  
% 
% First row of text should be headers: dX_ND (nondimensional perturbation)  
% variable names, respectively. The second row of text should contain the  
% units, and the third row of text should contain unperturbed output.  
% First row of values should be the standard uncertainty. The second row of  
% values should be the nominal input parameter value. For example:  
%       Variable 1 is 4 0 mm when unperturbed.  
% The first column of values represents the nondimensional perturbation of  
% each parameter.  
%       Row dX_ND=0 shows the unperturbed outputs. The cell on row  
%       dX_ND=0.1 and column "var_name_1" shows the simulation output for  
%       perturbing 40mm by 0.1 (10%) or changing 40mm to 44mm while keeping  
%       all other variables constant.  
% The row should be ordered as: dX_ND=0, positive perturbations (largest to  
% smallest), negative perturbations (largest to smallest), respec tively.  
% 
%excelfile: text string, location of excel file and file itself  
%precision: integer, precision of results, ie for MATLAB, 16  
%nameform: text string, base name of output files  
%plot_one: binary 1 or 0, 1 plots each parameter's results plots  
%   individually and saves. 0 makes them not plotted  
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%groupgraph: binary 1 or 0, 1 plots multiple parameters' results plots and  
%   saves. 0 makes them not plotted  
%numpergraph: number between 1 and # of parameters, drives number of  
%   parameters per plot for  groupgraph=1  
%userOx: row vector, length=# parameters, start off with an initial guess  
%   Ox for each parameter. When Os - Ox plots are shown, choose an Ox for  
%   each parameter which represents where Os is stable. This will be used  
%   to calculate uncertainty.  
%table: binary 1 or 0, 1 prints out and saves tables of results. 0 does  
%   not. Overall input uncertainty will always be printed.  
%location: text string, location path for output files to be saved  
%   (includes tables, plots, graphs )  
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C.IV.ii.  Code 
function  [] = 
fInputVV(excelfile,precision,nameform,plot_one,groupgraph,numpergraph,userOx,
table,location)  
 
%% SETUP 
  
[num,text,raw]=xlsread(excelfile);    
  
%TEXT 
Xnames=raw(1,2:end);        %PARAMETER NAMES (Nx1)  [""]  
Xunits=raw(2,2:end);        %PARAMETER UNITS (DEFINING [u]) (Nx1)  [""]  
N=length(Xnames);           %NUMBER OF PARAMETERS 
  
%NUMERIC 
Xnom=num(2,2:end);          %NOMINAL INPUT PARAMETER VALUES (1xN)  [u]  
ux=num(1,2:end);            %NOMINAL INPUT PARAMETER VALUES (1xN)  [u]  
dX_ND=num(3:end,1);         %NON- DIMENSIONAL INPUT PERTURBATION (2Mx1) [ - ]  
Y=num(3:end,2:end);         %PERTURBED OUTPUT VALUES (2MxN) [U]  
dX_ND_abs=dX_ND(dX_ND>0);   %ABS NON- DIMENSIONAL INPUT PERTURBATION (Mx1)  [ -
]  
M=length(dX_ND_abs);        %NUMBER OF SENSITIVITY COEFFICIENTS (1x1)  [ - ]  
  
%PARAMETER NAMES VERSIONS FOR PLOTS, FIGURES, TABLES 
for  i=1:N  
    Xnames2{i}=strcat( 'X' ,num2str(i), '(' ,Xunits{i}, ')' ); %X1 (mm) 
    Xnames3{i}=char(strcat({ '(X' },num2str(i),{ ') ' },Xnames{i})); %(X1) 
Density  
    Xnames4{i}=strcat( 'X' ,num2str(i)); %X1 
end  
                             
%% FIND SENSITIVITY COEFFICIENT  
  
Y_up=Y(1:M,:);              %Y(X+dX) positive perturbation (MxN)  [ U]  
Y_lo=Y(M+1:end,:);          %Y(X- dX) negative perturbation (MxN)  [U]  
dX=dX_ND_abs*Xnom;          %DIMENSIONAL PERTURBATION VALUES (MxN)  [u]  
  
for  i=1:N                   %IF XNOM IS 0  
    if  Xnom(i)==0  
        dX(:,i)=dX_ND_abs';     %USE ND DX AS DX 
    end  
end  
  
dY_dX=abs(Y_up - Y_lo)./dX/2; %SENSITIVITY COEFFICIENT (MxN)  [U/u]  
                             
if  table==1                             
    %PRINT TO TEXT FILE  
    dY_dX_table=array2table([dX_ND_abs dY_dX], 'VariableNames' ,[ 'dX_ND_abs'  
Xnames])  
    filename=strcat(location,nameform, '_Sens_Coef_table.txt' );  
    writetable(dY_dX_table, filename);      
end  
  
%% ORDER OF NORMALIZED SENSITIVITY COEFFICIENT 
%ORDERS OF TEN FOR EFFECTIVE LOG- LOG PLOTS 
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Uinput_i=dY_dX.*ux;         %INPUT UNCERTAINTY (MxN)  [U]  
dY_dX_N=dY_dX.*Xnom;        %NORMALIZED SENSITIVITY COEFFICIENT (MxN)  [U]                             
for  i=1:N                   %IF XNOM IS 0  
    if  Xnom(i)==0  
        dY_dX_N(:,i)=dY_dX(:,i);    %USE ITS D REGULAR VALUE 
    end  
end                                                       
  
for  i=1:M                   %STEP THROUGH ROWS/PERTURBATIONS 
    Ox(i)=log10(dX_ND_abs(i));  %ORDER OF ND DX OR PERTURBATION (1xM)  
    for  j=1:N                       %STEP THROUGH COLUMNS/PARAMETERS 
        PS=10^( - (precision+1));  
    %OS -  LOG OF ORDER OF NORMALIZED SENSITIVITY COEFFICIENT     
        %Os=log(X*dS/dX)=log(dS)+log(X/dX)=log(PS) - log(dX/X)=log(PS) - Ox 
        Os(i,j)=log10(PS) - Ox(i);   %SET ORDER OF SC TO PRECISION (MxN)              
        if  dY_dX_N(i,j) ~= 0            %IF SENS COEF ISN'T ZERO  
            Os(i,j)=log10(abs(dY_dX_N(i,j)));   %FIND SC ORDER (MxN)  
        end  
    %OU -  LOG OF ORDER OF INPUT UNCERTAINTY             
        if  Uinput_i(i,j) ~= 0           %IF U_IN ISN'T ZERO  
            Ou(i,j)=log10(abs(Uinput_i(i,j)));              %FIND ORDER(MxN) 
        else                             %OTHERWISE 
            Ou(i ,j)=log10(ux(j))+log10(PS) - log10(dX(i,j));  %FIND ORDER WITH 
PRECISION LIMIT (MxN)  
        end  
    end  
end  
  
%OS -  TABLE 
    Ox_Os=[Ox' Os];             %COMBINE INTO ONE MATRIX(MxN+1) 
    if  table==1                             
        %PRINT TO TEXT FILE  
        Ovars(1)={ 'Ox' };  
        Ovars(2:N+1)=Xnames(1:N);  
        O_table=array2table(Ox_Os, 'VariableNames' ,Ovars)  
        filename=strcat(location,nameform, '_O_table.txt' );  
        writeta ble(O_table, filename);  
         
        %PRINT TO EXCEL FILE  
        colNames=Xnames3;  
        num=Ox_Os; 
        num=num2cell(num);  
        Os_xlsx=[[{ ' ' } colNames];num];  
        filename=strcat(location,nameform, '_O_table.xlsx' );  
        writecell(Os_x lsx,filename);  
    end  
  
  
%OU -  TABLE 
    Ox_Ou=[Ox' Ou];             %COMBINE INTO ONE MATRIX (MxN+1)  
    if  table==1     
        %PRINT TO TEXT FILE  
        Ovars(1)={ 'Ox' };  
        Ovars(2:N+1)=Xnames(1:N);  
        Osc_table=array2table(Ox_Ou, 'VariableNames' ,Ovars);  
        filename=strcat(location,nameform, '_Ou_table.txt' );  
        writetable(Osc_table, filename);  
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    end  
  
%% PLOT EACH PARAMETER'S OS- OX GRAPH  
  
if  plot_one==1  
    for  j=1:length(Xnames)  
        figure  
        plot(Ox,Os(:,j));  
        hold on 
        xlabel( 'Ox' )  
        ylabel( 'Os' )  
        title([Xnames3{j}, ', Parameter' ,num2str(j)])  
        hold off  
        filename=strcat(location,nameform, '_Os_X' ,num2str(j), '.png' );  
        saveas(gcf,filename);  
    end  
end  
  
%% PLOT IN GROUPS 
% PLOT OX AND OU FOR ALL PARAMETERS, MULTIPLE IN ONE GRAPH  
  
if  groupgraph==1  
    maxOs=ceil(max(max(Os))); %ceil(min(max(max(Os)),5));  
    minOs=floor(min(min(Os))); %floor(max(min(min(Os)), - 5));  
    maxOu=ceil(max(max(Ou))); %ceil(min(max(max(Ou)),5));  
    minOu=floor(min(min(Ou))); %floor(max(min(min(Ou)), - 5));  
    endi=ceil(N/numpergraph);  
    for  i=1:endi  
        startnum=(i - 1)*numpergra ph+1;  
        endj=numpergraph;  
        if  i==endi  
            endj=mod(N,numpergraph);  
            if  endj==0  
                endj=numpergraph;  
            end  
        end  
    %OS -  LOG OF ORDER OF NORMALIZED SENSITIVITY COEFFICIENT     
        figure  
        hold on 
        for  j=1:endj  
            plot(Ox,Os(:,startnum+j - 1))  
            ylim([minOs,maxOs])  
            xlabel( 'Ox' )  
            ylabel( 'Os' )     
        end  
        legend(Xnames3{startnum:startnum+endj - 1}, 'Location' , 'southwest' )  
        hold off  
        filename=strcat(location,nameform, '_Os_group' ,num2str(i), '.png' );  
        saveas(gcf,filename);  
    %OU -  LOG OF ORDER OF INPUT UNCERTAINTY     
        figure  
        hold on 
        for  j=1:endj  
            plot(Ox,Ou(:,startnum+j - 1))  
            ylim([minOu,maxOu])  
            xlabel( 'Ox' )  
            ylabel( 'Ou' )     
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        end  
        legend(Xnames3 {startnum:startnum+endj - 1}, 'Location' , 'southwest' )  
        hold off  
        filename=strcat(location,nameform, '_Ou_group' ,num2str(i), '.png' );  
        saveas(gcf,filename);  
    end  
end  
  
  
%% USER CHOOSE OX VALUE FOR STABILITY 
  
%FIND VALUES FOR EACH PARAMETER 
for  i=1:N  
    [~,OxIND]=min(abs(userOx(i) - Ox));  
    Uinput_cho(i)=Uinput_i(OxIND,i);  
    dX_cho(i)=dX(OxIND,i);   
    dX_ND_cho(i)=dX_ND_abs(OxIND);   
    dY_dX_cho(i)=dY_dX(OxIND,i);     
end  
  
%% COMPREHENSIVE OUTPUT OF CHOSEN     
  
    %BUILD TABLE     
    rowNames={ 'Xnom' , 'ux' , 'dX_dN' , 'dX' , 'SC' , 'u_input' };  
    colNames=Xnames;  
    Uinput_cho_matrix=[Xnom; ux; dX_ND_cho; dX_cho; dY_dX_cho; Uinput_cho];  
     
    %PRINT TO MATLAB 
    
Uinput_cho _table=array2table(Uinput_cho_matrix, 'RowNames' ,rowNames, 'VariableN
ames' ,colNames)  
     
if  table==1     
    %PRINT TO TEXT FILE  
    filename=strcat(location,nameform, '_Uinput_cho.txt' );  
    writetable(Uinput_cho_table, filename);  
end  
  
%% CREATE DISPLAY TABLE 
  
    colNames={ 'Xnom' , 'Ux' , 'dSdX' , 'Uinput' };  
    rowNames=Xnames2;  
  
    %PRINT TO MATLAB 
    Uinput_disp_table=array2table([Xnom', ux', dY_dX_cho', 
Uinput_cho'], 'RowNames' ,rowNames, 'VariableNames' ,colNames)  
  
if  table==1  
     
    %PRINT TO TEXT FILE  
    filename=strcat(location,nameform, '_Uinput_disp.txt' );  
    writetable(Uinput_disp_table, filename);  
     
    %BUILD MATRIX 
    colNames={ 'Xnom' , 'Ux' , 'dS/dX' , 'Uinput' };  
    Uinput_disp_num=[Xnom', ux', dY_dX_cho', Uinput_cho'];  
    Uinput_disp_num=num2cell(Uinput_disp_num);  
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    colUnits={ '[u]' , '[u]' , '[U]/[u]' , '[U]' };  
    Uinput_disp_colNames=[colNames;colUnits];  
    Uinput_disp_partial=[Uinput_disp_colNames;Uinput_disp_num];  
    Uinput_disp_rowNames=[[{ ' ' };{ ' ' };Xnames4'] [{ '[u]' };{ ' ' };Xunits']];  
    Uinput_disp_indiv=[Uinput_disp_rowNames Uinput_disp_partial ];  
    for  i=size(Uinput_disp_indiv,1)+1  
        Uinput_xlsx(i,1)={ ' ' };  
    end  
    for  i=size(Uinput_disp_indiv,2)+1  
        Uinput_xlsx(1,i)={ ' ' };  
    end  
     
    %PRINT TO EXCEL FILE  
    Uinput_xlsx(2:end,2:end)=Uinput_disp_indiv;  
    filename=strcat(location,nameform, '_Uinput_disp.xlsx' );  
    writecell(Uinput_xlsx,filename)  
end  
  
Uinput_tot=sqrt(Uinput_cho*Uinput_cho')  
  
end  
 
 


