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Abstract

Control of the three-phase photovoltaic (PV) inverters has drawn increasing at-

tention in recent years for the development of solar energy technology. The fast

development of signal processing techniques has made advanced control methods

possible for the inverter control system. With the rapid growth of the usage of

renewable energy, there have been more performance requirements proposed for PV

inverter systems. This thesis studies the control problem for the three-phase PV

grid-connected inverters. In particular, an adaptive control method is adopted to

deal with system uncertainties in such a problem. In this research, the state-space

model of the inverter system, which considers the uncertainties of system parameters,

is established. Then two adaptive control designs to solve the control problem are

developed: a state-feedback output-tracking adaptive control design and an output-

feedback output-tracking adaptive control design. To eliminate the disturbance influ-

ence from the grid side, the adaptive controller is further designed to have the ability

to compensate such effects to achieve desired adaptive and asymptotic disturbance

rejection. Compared with a classical fixed-gain control method, the adaptive control

method is capable of efficiently handling system uncertainties and dealing with some

unknown disturbances. Analysis and simulation results have shown the effectiveness

of the proposed adaptive control schemes.
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Chapter 1

Introduction

This chapter gives a brief introduction about the photovoltaic (PV) inverter. First,

the background about renewable energy and some conventional control methods for

the inverter system are introduced. Following the PV inverter background, the liter-

ature review and the thesis outline are presented.

1.1 Research Motivation

This section gives a brief introduction about the Photovoltaic inverter system and

some conventional ways for inverter control.

1.1.1 Background of Photovoltaic Power Generation

Solar energy is the inexhaustible and eternal energy of the earth. Most of the used

energy comes directly or indirectly from the sun. Every year, about 1.8 × 1018kWh

of energy is radiated from the sun to the earth, that is about 10 thousands times

of power consumption of the earth. Being one of the most attractive renewable

energy, the use of photovoltaic (PV) power has become a trend around the world.

1
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By the end of 2015, the USA ranked 4th in the world behind China, Germany, and

Japan. As of the end of 2016, the U.S. had 40GW of installed photovoltaic capacity,

having almost doubled in capacity from the previous year [1]. In the twelve months

through January 2017, utility-scale solar power generated 35.5TWh, 0.92% of total

U.S. electricity. There are plans to build other large solar power plants in the U.S.,

and many states have set their renewable energy targets, where the usage of solar

power is included in various proportions. Governor Jerry Brown has signed legislation

requiring California’s utilities to obtain 50 percent of their electricity from renewable

energy sources by the end of 2030 [2]. All these figures show the important strategic

position of the solar energy in the field of power generation.

PV Inverter A PV inverter converts the direct current (DC) of a photovoltaic

power generation device (solar panel) into a utility frequency alternating current

(AC) that can be fed into a grid or used by an off-grid load [24]. Without a doubt,

a PV inverter is the core of any PV power generation system (grid-connected or

off-grid). Since the grid inverter is, the primary equipment of photovoltaic grid-

connected systems, the research focus is the control strategy for grid inverters. The

most important standard of the grid inverter is the quality of its output current. The

IEEE 1547 standard in the USA allows a limit of 5% for the current total harmonic

distortion (THD) factor with individual limits of 4% for each odd harmonic from 3rd

to 9th and 2% for 11th to 15th while the European standard IEC61727 suggests a

similar one [3].

Grid-Connected PV Systems A grid-connected PV system is connected to a

large public grid (owned by a utility company) and feeds power into the grid. Grid-

connected systems vary in size from residential (2-10kW) to solar power stations (1-

10MW). In the case of residential or building mounted grid-connected PV systems,
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the electricity demand of the building is met by the PV system. Only the excess is

fed into the grid when there is an excess.

The feeding of PV-generated electricity into the grid requires the transformation

of DC into AC by a grid-controlled inverter. On the AC side, the function of the

grid-connected inverter is to supply electricity in sinusoidal form, synchronized to the

grid frequency, and limit the feed-in voltage to no higher than the grid voltage. On

the DC side, because the power output of a module varies as a function of the voltage,

power generation can only be optimized by varying the system voltage to find the

“maximum power point”. Most inverters, therefore, incorporate “maximum power

point tracking” [20].

Stand-Alone PV Systems A stand-alone system does not have a connection to

the grid, and thus the generated power is stored and buffered with a battery. It is most

suitable for locations such as remote villages, mountains, islands and base stations

where it is hard to access electricity. A charge controller may be incorporated into

the system to avoid battery damage and to optimize the power production of the

cells or modules by maximum power point tracking (MPPT). In most applications,

an inverter is needed to convert the stored energy in the battery into AC electrical

power. Hence, the stand-alone PV system, in a combination of battery and inverter,

acts like a self-sufficient system that can provide independent energy supply for long

periods of time [20].

Major Problems of Current Grid Connected PV system Nowadays there

has been a lot PV systems related research dealing with the following problems.

(i) Randomness of the energy source. For renewable power source, random effect

such as temperature, environment, or light intensity can influence the output
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power of the system. Therefore, to control the PV system, the controller for the

inverter should have the ability to track an given reference signal which might

vary through time.

(ii) The output power quality. The output power quality of the PV system can

be shown by the following aspect: Harmonic pollution. For power generation

systems, the power electronic devices might cause the increase of the grid current

harmonic. A system with lower harmonic contents will be considered to have a

better power quality.

(iii) Protection function. The PV system should have the ability to detect fault

and have some protection functions such as anti-islanding protection [21]. An

islanding effect means that when the grid is powered off but the PV system did

not detect this and continue working alone. This will cause danger to customers

and workers of the power company. Other protections such as the isolation of

AC and DC units should also be applied to prevent the inverter causing damage

to the grid.

1.1.2 Conventional Control Methods and Drawbacks

Most common way to control the inverter is proportional plus integral (PI) con-

trol. At first, people used PI controllers for the inverter system. However, for the

PV inverter with an inductor-capacitor-inductor (LCL) filter, just by using a PI con-

troller may not meet the harmonic standard for the output current. Then researchers

come up with a method to combine the PI controller with a proportional resonant

controller. This approach can decrease the harmonics for the inverter system.

PI Based Control
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PI control. The proportional plus integral (PI) controller is the most widely used

method for PV inverter systems due to its easy implementation. However, the classical

PI controller can only achieve the zero steady-state error control for the fundamental

frequency of the grid, that is, for tracking constant current values. Only using the

PI controller, the current harmonic can not be reduced. These kinds of harmonics, if

connected to the grid, will cause some serious problem to the grid.

PI+PR control. Since the classical PI controller can only achieve the zero-steady

state error control for the fundamental frequency of the grid, there are some recent ap-

proaches by combining the proportional resonant (PR) controller with the traditional

PI controller to reduce the certain order of harmonic. But the controller structure

would be much more complicated for the three phase grid-connected inverter [25].

Moreover, a classical controller cannot make the output current track a time vary-

ing reference signal. This might cause some errors in the PV inverter system due to

the randomness of the renewable energy source.

Issues with System Uncertainties Another main drawback for using the classical

PI controllers is that this type of controllers cannot effectively deal with system

uncertainties, and this might influence the performance of the system. There are

mainly two uncertain situations: (a) The uncertainties of system parameters, such as

resistance or inductance. Due to the sudden connection to the grid and the change

of the output current of the photovoltaic generation device, the change of the system

current might change the value of resistance, inductance, etc. Also, the exact value of

the equivalent resistance in the system is usually hard to be measured. For example,

the equivalent resistance of the connecting wire and other measuring devices in the

system. (b) The uncertainty of the output voltage of the photovoltaic generation

device, such as solar panels. Ideally, this voltage is expected to be a constant value
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which is a parameter in the inverter system dynamic model (see Section 3.3) The

uncertainty of this parameter is due to the uncertainty from the intensity of the

sunlight.

1.1.3 Summary

From the discussion above, it can be seen that developing a reliable controller with

the ability to deal with system uncertainties and achieve signal tracking is necessary

for the grid-connected photovoltaic system. This motivated our research on using

multivariable model reference adaptive control (MRAC) methods which are capable

of dealing with uncertain system parameters and rejecting unknown disturbances.

For this type of applications, the results of this research are reported in this thesis.

In this thesis, we will study and develop some new solutions to the following

problems:

Problem I: The state feedback output tracking model reference adaptive control

(MRAC) scheme for the inverter system working in the grid-connected mode;

Problem II: The output feedback output tracking MRAC scheme for the inverter

system working in the grid-connected mode;

Problem III: The adaptive control schemes for the inverter system connected to the

polluted grid, that is, the power grid with a high content of high order harmonic

components and some unknown voltage change of the grid.

1.2 Literature Review

The control strategy for the three-phase grid connected photovoltaic system has

been a research hotspot for years. There are some amazing improvements of the
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control strategy for this system to make a better grid-connected performance, and

there has been some research developing some useful models for this control topic.

PV Inverter Systems and Control In [7], the authors eliminated the high order

harmonics of the input by applying a proportional-resonant (PR) controller operating

with the classical PI controller. The function of a PR controller is to eliminate the

harmonics in a particular frequency, in which frequency the harmonic component

cannot be reduced by the PI controller. This has been a suitable method for the grid-

connected photovoltaic system. In this research, they give a specific modeling method

to the inverter system. For the three-phase inverter system, this control structure is

rather complicated due to the complexity of the three-phase system. This method

achieved the elimination of the current harmonics and the basic control objectives of

an inverter system.

In [17], they discussed the control structure for the PV system by using an LCL

filter in the system. Since an LCL filter can improve the efficiency of filtering and also

reduce the volume of the filter, some useful control models are given for PV system

with an LCL filter. In this paper, the significance of the LCL filter is mentioned.

They used a classical control method for the inverter control problem, and they did

not consider the harmonic problem for this system. However, with this improvement

in the grid-connected PV system, the controller has become harder to design since

the order of the filter has increased.

In [19], a nonlinear control for the three-phase inverter using the derivative-free

nonlinear Kalman filter is introduced, this paper develops a nonlinear approach to

the three-phase inverter system with a Kalman filter. To make the control problem

simpler, in this research they directly control the power to track the desired reference

value which is obtained from the maximum power point tracking (MPPT) module.
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Adaptive Control In [5], [6], [18], some adaptive approaches to this control prob-

lem are given. In [18], they used an adaptive control scheme to help predict the

system parameter when the system is working under polluted environment. However,

the authors still use the PI+PR controller for the control problem of the main circuit.

In [5], an adaptive droop control is also used to help predict the system parameters.

A similar adaptive control method with the one in this research is developed in [6]

but only the off-grid case is considered, and the case where the system has an LCL

filter is not considered.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 introduces a ba-

sic information for understanding this thesis including the background of the control

systems and the background for adaptive control. Chapter 3 provides specific intro-

duction to each module of the inverter system and how the inverter system operates,

then presents the modeling of the inverter system. In Chapter 4, the state feedback

output tracking adaptive control schemes for the grid-connected inverter system as

well as the simulation results of this control scheme are presented. In Chapter 5,

the output feedback output tracking adaptive control schemes for the grid connected

inverter is proposed, and the simulation result of this control scheme follows. Finally,

in Chapter 6, the conclusions and future work for this thesis are discussed.



Chapter 2

Background

Before starting to discuss the adaptive control of three phase inverter system, some

basic background about control systems needs to be presented. In this chapter, topics

about control systems including control system modeling, system stability, classical

control and adaptive control are presented.

2.1 Control System Models

Control system models are derived from the differential equations that describe

the input-output behavior of a system.

2.1.1 Linear Systems

There are two approaches to developing control system models. The first being

what has become known as the classical approach and the second being the so-called

modern approach [8].

9
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Classical Approach to Modeling A general nth-order linear time invariant dif-

ferential equation has the form

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a0y(t) = bm

dmu(t)

dtm
+ bm−1

dm−1u(t)

dtm−1
+ b0u(t), (2.1)

where ai and bi are the system parameters. The classical approach to obtaining a

model of a system is first to find the differential equations describing the system.

Once the equations have been obtained, the Laplace transform is used to turn the

nth-order differential equations dependent on the time t into an nth-order algebraic

equation dependent on the complex variable s. At this point, it is easy to manipulate

the equation to obtain an input-output description of the system referred to as the

system transfer function [8].

Modern Approach to Modeling The current approach to modeling a system is

more commonly known as the state-space approach. The state-space model of a system

overcomes some of the limitations of the transfer function. The most important

distinctions between the two are that nonlinear, time-varying, and multiple-input-

multiple-output (MIMO) systems can be represented with a state-space model.

In general, four steps need to be taken to derive a state-space model.

Step 1 Choose the state variables. These must be picked so that the minimum number

of state variables chosen describe the state of the system completely. More

importantly, the state variables must be linearly independent of one another.

Step 2 Find n simultaneous first order differential equations regarding the state vari-

ables. These equations are known as the state equations.

Step 3 This step depends on whether knowledge of the input for t ≥ t0 and the ini-

tial condition of each state variable at an initial time t0 is available. If this
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information is available, then the state equations can be solved for the state

variables.

Step 4 Algebraically combine the state variables with the systems input to find all

other system variables for t ≥ t0. These equations are known as the output

equations.

The state equations and output equations found in Steps 2 and 4 are known collec-

tively as the state-space model of a system [8].

With the process of how to select the state variables and derive the state and

output equations given, it is important to define how a state-space model is commonly

represented. The derivative of the state variables on time is taken and placed in a

vector, ẋ(t) ∈ Rn. The state variables are taken and placed into a vector, x(t) ∈ Rn,

called the state vector. The coefficients relative to a state variable for each differential

equation are taken and placed in a matrix, A ∈ Rn×n, called the system matrix. The

coefficients relative to the input for each differential equation are placed in a matrix,

B ∈ Rn×M , called the input matrix. The input is denoted as u(t) ∈ RM . The

output is denoted as y(t) ∈ RM . The coefficients relative to any of the unsolved

for variables in the output equation are taken and placed in a matrix, C ∈ Rr×n,

called the output matrix. For some systems there is a matrix, D ∈ Rr×M , called

the feed-forward matrix that contains any feed-forward terms in the system. For this

research, the feed-forward matrix will consist entirely of zeros since there are no feed-

forward terms multiplied by the input. Altogether, the previously described vectors

and matrices form the state space representation defined as

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), t ≥ t0. (2.2)
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In this case, the state solution can be explicitly expressed as

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ, (2.3)

where eAt = L−1[(sI − A)−1].

2.1.2 Nonlinear Systems

An nth order dynamic system can be written as one n-dimensional first-order

vector differential equation

ẋ = f(t, x, u), y = h(t, x, u), t ≥ t0, (2.4)

where x ∈ Rn is the state vector, and u ∈ RM is the input vector. The first equation

is the state equation while the second equation associated with an M -dimensional

output vector y ∈ RM . The solution for (2.4) is denoted as x(t) = x(t; t0, x0), where

x(t0) = x0 is the initial state vector. To analysis the non-linear system, one method is

to linearize the nonlinear system at an operating point (x0, u0) by Taylor expansion,

which is

δẋ = Aδx+Bδu (2.5)

δy = Cδx+Dδu, (2.6)
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for f(t, x0, u0) = 0, with

A =
∂f

∂x
|(x0,u0) =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn
∂x1

. . . ∂fn
∂xn

 |(x0,u0), B =
∂f

∂u
|(x0,u0) =


∂f1
∂u1

. . . ∂f1
∂uM

...
...

∂fn
∂u1

. . . ∂fn
∂uM

 |(x0,u0),

(2.7)

C =
∂h

∂x
|(x0,u0) =


∂h1
∂x1

. . . ∂h1
∂xn

...
...

∂hq
∂xn

. . . ∂hn
∂xn

 |(x0,u0), D =
∂h

∂u
|(x0,u0) =


∂h1
∂u1

. . . ∂h1
∂uM

...
...

∂hq
∂u1

. . . ∂hq
∂uM

 |(x0,u0).

(2.8)

As a result the linearized system is

ẋ = Ax+Bu (2.9)

y = Cx+Du. (2.10)

This process is called linearization. Such a linearization method is concerned with

the local stability of a nonlinear system. It is a formalization of the intuition that

a nonlinear system method should behave similarly to its linearized approximation

for a small range signals. Because all physical systems are inherently nonlinear,

linearization method serves as the fundamental justification of using linear control

techniques in practice. More details about the linearization method can be found in

literature [12].
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2.2 Signal Measures

To measure vector signals, signal norms are defined. Consider a vector signal

x(t) = [x1(t), . . . , xn(t)]T ∈ Rn, which is a vector function as t changes. Vector norms

are used to measure vectors at a fixed t while the signal norms can measure the

functions for all t. The norm concept is defined below:

Definition 2.1. A real-value function ‖ · ‖ on a linear space D is a norm if

(i) ‖x‖ ≥ 0 for all x ∈ D and ‖x‖ = 0 only if x = 0;

(ii) ‖αx‖ = |α|‖x‖ for all x ∈ D and any scalar α; and

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ D.

For a vector signal, the signal norm L1, L2, L∞ norms are defined as

‖x(·)‖1 =

∫ ∞
0

‖x(t)‖1dt (2.11)

‖x(·)‖2 =

√∫ ∞
0

‖x(t)‖2
2dt (2.12)

‖x(·)‖∞ = sup
t≥0
‖x(t)‖∞, (2.13)

where the vector norms are

‖x(t)‖1 = |x1(t)|+ · · ·+ |xn(t)| (2.14)

‖x(t)‖2 =
√
x2

1(t) + · · ·+ x2
n(t) (2.15)

‖x(t)‖∞ = max
1≤i≤n

|x1(t)|. (2.16)
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2.3 System Stability

The concept of stability is crucial to control system design. An unstable control

system is useless and dangerous. The methods are available to examine the poles de-

pending on the representation of the system model. If the classical approach is taken,

then the poles of the transfer function can be examined. If the modern approach is

used then the eigenvalues, which are the system poles, of the system matrix A can be

analyzed. Either approach can quickly give information on whether or not the system

is asymptotically stable, stable, or unstable.

For adaptive control systems, stability must be defined another way since knowl-

edge of the system parameters are unavailable and possibly changing. The work of

Alexander Mikhailovich Lyapunov, who presented definitions and theorems for study-

ing the stability of solutions to a broad class of differential equations, has been used

extensively to address this problem [10]. The work of Lyapunov relies on defining

an energy function, formally known as a Lyapunov function candidate, that can be

used to determine the stability of a system without having to solve for the solutions

to the system explicitly. This is the so-called Lyapunov direct method for stabil-

ity analysis. Originally, this Lyapunov function was purely the total mechanical or

electrical energy and therefore by nature positive definite. The Lyapunov indirect

method which determines system stability based on its linearized model can be found

in many textbooks about a nonlinear system like [11], [12].

Stability Definitions Since all systems to be discussed in this thesis are LTI sys-

tems, we will introduce the definition of stability for LTI systems only [13].

Definition 2.2. The response of ẋ(t) = Ax(t) is stable in the sense of Lyapunov if

every finite initial state x0 excites a bounded response. It is asymptotically stable if
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every finite state excites a bounded response which, also, approaches 0 as t→∞.

Usually, we do not use the definition to check the stability of an LTI system.

Theorem 2.1 can help us to check the stability of an LTI system quickly.

Theorem 2.1. The equation ẋ(t) = Ax(t) is stable if and only if all eigenvalues of

A have zero or negative real parts and those with zero real parts are simple roots of

the minimal polynomial of A. The equation ẋ(t) = Ax(t) is asymptotically stable if

and only if all eigenvalues of A have negative real parts.

Also in the Lyapunov sense, we can check the stability of matrix A by the Lya-

punov theorem.

Theorem 2.2. The equation ẋ(t) = Ax(t), A ∈ Rn×n, x ∈ Rn is asymptotically

stable if and only if for every positive definite Q = QT ∈ Rn×n, the Lyapunov equation

ATP + PA = −Q has a unique and positive definite solution P = P T ∈ Rn×n.

Theorem 2.1 and Theorem 2.2 are theorems which we usually use to check the

stability of the close-looped system by classical control. But for adaptive control,

Theorem 2.1 and Theorem 2.2 would not work because in adaptive control there

exist uncertainties on the dynamics model; we have no access to get a set of accurate

system parameters. So we introduce a new method called Lyapunov direct method

to help us check the system stability when applying adaptive control.

Theorem 2.3 (Lyapunov direct method). If in some ball B(h) = {x ∈ Rn : ‖x −

x0‖ ≤ h} there exists a positive definite function V (x, t) with V̇ ≤ 0, then the equi-

librium state xe = 0 of the system ẋ = f(x, t) is stable. If, in addition, V (x, t) is

decrescent, then it is uniformly stable.

Now the Barbalart lemma is introduced, which makes the adaptive control system

signal convergence analysis easier.
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Lemma 2.1 (Barbalat Lemma). If a scalar function f(t) is uniformly continuous

such that limt→∞
∫ t

0
f(τ)dτ exists and is finite, then limt→∞ f(t) = 0.

We also have the following lemma:

Lemma 2.2. If a scalar function f(t) satisfy ḟ(t) ∈ L∞, and f(t) ∈ L2, then

limt→∞ f(t) = 0.

This lemma is readily used for adaptive control system signal convergence analyze.

2.4 Classical Control

The first thing we need to know about the classical control is the feedback is

pervasive [14]. Feedback is a very crucial method to stabilize the unstable system

stable. Usually, the output y(t) is fed back and compared with the input u(t). The

block diagram of the most classical feedback control system is shown in Figure 2.1.

System transfer function can be computed by block diagrams like Figure 2.1. Remind

that in Figure 2.1, k is a constant through the whole control process. Whether the

control parameter k can be updated or not is one of a big differences between adaptive

control and classical control.

−

u(t)
k G(s)

y(t)

Figure 2.1: Block diagram of an output feedback system with a gain k [15]

.

With the state space representation it is convenient to feedback the state variables

as the components of the state vector x(t) to form the control signal u(t), instead of

the feedback of an output signal y(t). With this configuration, each state variable is
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multiplied by a comoinent of a gain vector K to give the desired closed loop poles. A

typical control system represented with the state space representation utilizing state

feedback is displayed in Figure 2.2 where double error lines represent vector signals.

+

−

r(t)
B

u(t) +

+

ẋ ∫
A

x

K

C
y(t)

Figure 2.2: Block diagram of a control system with state feedback [15].

2.5 Adaptive Control

Adaptive control provides adaptation mechanisms that adjust a controller for a

system with parametric, structural, and environmental uncertainties to achieve de-

sired system performance. Payload variation or component aging causes parametric

uncertainties. Component failure leads to structural uncertainties and the external

noises are typical environmental uncertainties. Such uncertainties often appear in au-

tomobile engines, electronic devices, and other industrial processes. Adaptive control

has experienced many successes in new challenging problems and their encouraging

solutions.

Unlike other controllers using PID, pole placement, optimal, robust or nonlinear

control methods, whose designs are based on certain knowledge of the system pa-

rameters, adaptive controllers do not need such knowledge of the system parameters;

they are adapted to parameter uncertainties by using performance error information

on-line [11]. There exist mainly two types of adaptive controllers: state feedback

controllers and output feedback controllers.
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State Feedback Design for Output Tracking Consider the linear time-invariant

system described in a state-space form as

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), t ≥ 0, (2.17)

where A ∈ Rn×n, B ∈ Rn×M are constant parameter matrixs, x(t) ∈ Rn is the

state vector, u(t) ∈ RM is the control input, and y(t) ∈ Rq is the output. With

the state variables in x(t) available for feedback, the control objective is to design

a state feedback control signal u(t) such that all signals in the closed-loop system

are bounded and asymptotic output tracking is achieved, without knowledge of the

system parameters. A typical state feedback controller structure is

u(t) = KT
1 (t)x(t) +K2(t)r(t), (2.18)

where K1(t) ∈ Rn×M and K2(t) ∈ RM×M are the estimates of some ideal controller

parameters K∗1 and K∗2 , which can be obtained with the system parameters known.

The task of adaptive control is to generate the parameter estimates K1(t) and K2(t)

without the knowledge of K∗1 and K∗2 to achieve the control objective.

Output Feedback Design for Output Tracking For the system (2.17), the

typycal output feedback adaptive controller structure is

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t), (2.19)

where ω1(t) = F (s)[u](t), ω2(t) = F (s)[y](t), F (s) = A(s)
Λ(s)

, A(s) = [Im, sIm, . . . , s
µ̄0−2IM ]

(µ̄0 is the upper bound of the observability index ofG(s) = C(sI−A)−1B), Θ1(t),Θ2(t),

Θ20(t),Θ3(t) are the estimates of the ideal controller parameters Θ∗1, Θ∗2, Θ∗20, Θ∗3,
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which can be calculated if the system parameters in G(s) are known. The adapta-

tion of the controller parameters is based on the performance error y(t)− ym(t) such

that the closed loop system adjusts itself toward an operation condition that which

the desired system performance is achieved asymptotically: limt→∞ y(t)− ym(t) = 0,

where ym(t) is the reference signal for the output y(t).

There are two approaches to adaptive control design. The first approach is known

as Direct Adaptive Control and is characterized by the ability to update the controller

parameters online through the use of an adaptive update law without initially deter-

mining the characteristics of the plant and the possible disturbances. The second

approach is known as Indirect Adaptive Control and is characterized by first estimat-

ing the parameters of the plant being controlled as well as the possible disturbances,

then updating the controller based on a design equation. Direct adaptive control

algorithms will be employed in this thesis. More information about adaptive control

methods can be found in [11], [31], [32].



Chapter 3

Three-Phase PV Inverter System

Modeling

This chapter first gives an introduction to each module of the inverter system

and an over view of the state-of-the-art for inverter control techniques. Then the

modeling of the inverter system is derived. By discussing the requirement of the

inverter system, the control problem is proposed.

3.1 System Description

The function of a three-phase inverter is to manipulate the input DC voltage/current

with switch signals to make it the desired three-phase AC current. In this section, we

will introduce how a grid connected three-phase photovoltaic (PV) inverter operate.

Figure 3.1 shows the basic structure of a typical grid connected three phase PV in-

verter, where the subscripts a, b, c in the signals da,b,c, ii,a,b,c, Uc,a,b,c etc. denote three

components of each signal.

21
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Figure 3.1: Adaptive control system for the PV inverter.

The goal for our adaptive scheme is to design a current controller to generate

control signal to control the output inverter current and make the inverter system

operating at the maximum power point P ∗. To achieve this goal, our adaptive con-

troller should correspond with each module in the inverter system. We can control

the reference signal for (current) Id the inverter output to track is generated from

the photovoltaic power generation equipment, such as solar panels. To get the maxi-

mum efficiency from the power generation device, the maximum power point tracking

(MPPT) unit is used to get the maximum power point P ∗ and thus a maximum I∗d ,

which can make the solar panel work at the maximum power point. The inverter

output current ii,a,b,c is generated by the inverter using the pulse width modulation

(PWM) control. The control signal uabc represents the duty cycles of the PWM wave-

form, which can generate switching signals to the insulated gate bipolar transistors

(IGBTs) inside te inverter. In this process, the DC side current is changed to the

desired AC output current. The output current of the inverter ii,a,b,c goes through an

LCL filter to eliminate the high order harmonics. Before connecting to the grid, the

output three-phase voltage of the inverter system needs to satisfy that the magnitude,

frequency, and phase must be the same as the grid voltage. To this end, a module
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to generate the closing signal is needed. Under the three-phase equilibrium condition

and by using the direct-quadrature-zero (DQZ) transformation Tabc/dq (defined in the

next section), we can get the circuit differential equations under a rotating coordinate

system. To make the output current have same frequency and phase with the grid, a

phase lock module (PLL) is needed. This module collects signals from the grid side

and then updates their phase and frequency to the controller. This is a necessary

process of the DQZ transformation which relies on an accurate frequency update.

The function of each module is further introduced in this section.

Maximum Power Point Tracking (MPPT) Despite the control problem of the

inverter, the MPPT module is also a crucial part of the inverter system. Figure 3.2

shows the simulated P-V characteristics of the ideal PV panels. The series of curves

show the output characteristics under different insolation conditions, which represents

the different amount of energy the sun radiates to the earth [9]. By observation we

can see that for each insolation conditions, there is a maximum power point within

the variation of the voltage. The goal of MPPT is to find the maximum power point

P ∗ which is used in the later part of the system to calculate the reference current for

the adaptive controller.
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Figure 3.2: P-V characteristics of the ideal PV panels [9].

Define the output current, output voltage and output power of the PV panel as

VPV , IPV , PPV . Figure 3.3 shows the flow chart to determine P ∗. ∆P is the step

change of the output power P , P1 is the minimum step length to find P ∗, K is a

constant with value usually between 2 and 3, and P0 is the PV output power in the

previous control period. This modified MPPT method is so called a constant step

MPPT method.
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Figure 3.3: Flow chart of the MPPT method to determine P ∗ [9].

LCL filter The conventional three-phase grid-connected inverter uses an LC filter

or just an L filter to eliminate the high order harmonics. However with the power level

of the inverter advanced to a new level, to eliminate the power loss of the inverter,

the switching frequency of the power electronic devices will become lower, this will

lead to the increase of high order harmonics of the grid side. As a result, to meet the

total harmonic distortion (THD) standard, the inductance will become very high if
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one only use the L filter. This will lead to a series of problems which will cause not

only higher cost and larger size for the system, but also the increase of the inductance

affecting the system dynamically. The replacement of the L filter by an LCL filter

has been one of the most modern solutions for the above problems recently. An LCL

filter shows better ability to suppress the high order harmonics and can achieve a

better result with a lower total inductance. However, the LCL filter is a third order

system with multi-variables, and this will lead to a higher request to the control of

this system.

Principle of PWM control [16] The main principle of the PWM (Pulse Width

Modulation) technique is: use a series of pulses with the same amplitude but different

width which is generated from the semiconductor switching devices (power electronics

devices) to replace the sinusoidal wave (SPWM) or other required waveforms. The

control signal da,b,c(t) is the duty cycle of the output waveform. With a certain rule

to modulate this duty cycle, both the output voltage and the output frequency of the

inverter can be regulated, Figure 3.4 shows the generation of SPWM waveforms.
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Figure 3.4: The generation of SPWM waveforms [16].

With the basic principle of the SPWM generation above, the analog circuit to

implement the principle above is easy to achieve, Figure.3.5 is the analog circuit to

generate a desired SPWM waveform.
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Figure 3.5: Analog scheme for SPWM implementation [16].

For three-phase inverter systems, the SPWM signals to trigger the six power

switches are generated by comparison of the three phase since waves with the same

triangular wave shown in Figure 3.6.

Figure 3.6: Three-phase SPWM waveforms [16].

The vector PWM (SVPWM) waveform is realized by the combination of different

switching modes of the inverter. In a three-phase inverter, if 1 is defined as the

positive half of the DC-bus voltage and 0 as the negative half (both are referred to
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the neutral point), there are eight switch states for the six power switches shown in

Figure 3.7. Therefore eight voltage vectors (the active vectors ~U1 ∼ ~U6, and zero

vectors ~U0, ~U7) can be correspondingly defined to form the vector space which is

divided into six sectors shown in Figure 3.8.

Figure 3.7: Eight switch states [16].

Figure 3.8: Voltage vector space [16].
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Grid-Connecting Process Before discussing the current controller for the grid

connected inverter system, the process before the inverter is connected to the grid

should be introduced. Being one of the crucial technical aspects in the inverter control

problem, the inverter system first should generate the voltage that has some related

magnitude, same frequency and same phase as the grid and then can be connected

to the grid. The grid-connecting process follows two steps:

Step 1 The inverter should first start working isolated from the grid and generate the

three phase voltage that has the same magnitude as the grid side voltage by

a transformer. The maximum tolerance error of the inverter output voltage is

10% of the rated voltage.

Step 2 With the inverter generating the same magnitude three phase voltage, the phase

tracking method is used to give the closing signal [22], [23]. The basic principle

is to connect the inverter to the grid at the moment when the inverter system

output has the same frequency and same phase as the grid.

With above steps accomplished, the inverter system can be successfully connected to

the grid. Figure 3.9 shows the block diagram of the control of the grid-connection pro-

cess. In this thesis, we will be considering mainly about the current control problem

for the grid-connected system, which is after this grid connection process is accom-

plished.
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Figure 3.9: Scheme diagram for inverter-grid connecting process.

3.2 State-of-the-Art of Inverter Control

To solve the control problem for PV inverter systems, there are many methods

in recent years. While most of the control methods use classical control design such

as PI control, there are some adaptive methods as well as other advanced methods

towards this problem.

Adaptive Droop Control Approach In [5] they come up with an adaptive droop

control method to the single-phase voltage source inverters operating in both grid-

connected and island modes. They build the droop controller to directly control

the power of P,Q the system where P represents the active output power and Q

represents the reactive power, and adaptively estimate the system parameters (phase

the signals, impedance in the circuit, frequency of the signals) from the output voltage

and current of the inverter to achieve the adaptive control objective. This is a novel

method for the inverter control problem for both grid-connected and island modes

and this method directly controls the system power, which makes the structure of

the control system more straight forward. With the adaptive estimates of the system
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parameters, an adaptive control scheme is developed. However, the limitation of this

research is that this control method is proposed for the single phase inverter and the

adaptive method to estimate the system parameters is not suitable for three-phase

problems. Moreover, they did not consider the harmonic elimination problem since

it is only a single-phase system, which cannot be ignored when we design a controller

for the three-phase systems.

Other Adaptive Control Approach In [6], they give an adaptive design for the

three-phase inverter system in island mode. This research builds up an adaptive

control scheme using a state feedback adaptive controller (a structure similar to the

one used in this thesis). This design is proved that all closed-loop signals bounded

and desired tracking error goes to zero. The adaptive control problem in this prob-

lem is a good adaptive approach towards the three-phase inverter system. However,

this design did not consider the grid-connected case, which is the main problem for

the three-phase inverter system. Also, they did not consider the elimination of the

possible higher order harmonics.

PI+PR Control Approach In [7], the study gives a control design for the three-

phase inverter system. They used three control loops: a power loop gets the reference

signal for the voltage, and last the voltage loop gets the reference signal for the

current, then the current control loop gets the desired control signal for the system,

the duty cycle signal. The combination of PI control and PR control is used in the

control loop for the current loop and voltage loop. This method can deal with both

grid-connected and island modes and meets the requirement for the Total Harmonic

Distortion (THD). However, this research did not use any novel method to overcome

the drawbacks of those control methods. They do not have the ability to make the

output current signal tracking a reference signal which might vary through time and
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this method may be too complicated for three phase systems since there will be three

control loop for each phase. Compared to the previous two methods introduced above,

the controller structure in this research is much more complicated than the previous

two.

Open Technical Issues From the discussion above, we can see that though there

are many research results to develop novel control techniques for the inverter system,

few of them are aimed at dealing with the uncertainties for the inverter system,

especially for the PV inverter system. Moreover, most researches to develop a control

scheme that used the adaptive principle for the inverter system were aimed at one

specific problem in the inverter system each time. In this thesis, a systematical study

adaptive control is conducted for the PV inverter system.

3.3 System Dynamic Equations

In this section, the state-space equation for the inverter system is derived. Figure

3.10 shows the basic structure of a typical grid-connected three-phase photovoltaic

inverter [26], [27].

Figure 3.10: Structure of a three phase inverter
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where, Lf represents the inductance of the inverter side, Lg represents the inductance

of the grid side, C is the filter capacitor and Rf , Rg, and Rc represent the Equivalent

Series Resistance (ESR) of each part. IPV /UPV is the input current/voltage for

the inverter system, and ii a,b,c is the inverter side current and ig a,b,c is the grid

side current. The control signal for the system u(t) is the duty cycle of the PWM

waveform, which was stated in Section 3.1. According to the Kirchhoff Current and

Voltage laws, we can obtain the dynamic equations of the inverter under a stationary

coordinate system as

d

dt

[ Iia
Iib
Iic

]
=

uPV√
3Lf

[
da
db
dc

]
− Rf

Lf

[ Iia
Iib
Iic

]
− Rc

Lf

[
Iia−Iga
Iib−Igb
Iic−Igc

]
− 1

Lf

[
Uac
Ubc
Ucc

]
(3.1)

d

dt

[
Iga
Igb
Igc

]
=

1

Lg

[
Uac
Ubc
Ucc

]
+
Rg

Lg

[ Iia
Iib
Iic

]
+
Rc

Lg

[
Iia−Iga
Iib−Igb
Iic−Igc

]
− 1

Lg

[ UaN
UbN
UcN

]
(3.2)

d

dt

[
Uac
Ubc
Ucc

]
= − 1

C

[
Iia−Iga
Iib−Igb
Iic−Igc

]
, (3.3)

where da, db, dc are the duty cycles of the PWM waveform, that is, the control vector

is u(t) = [da, db, dc]
T .

Coordinate Transformation equation If we directly build the state space equa-

tion base on the equations above, the system will have nine states and three outputs,

and we will need to calculate three reference signals for the system outputs. This will

make the controller more difficult to design. Moreover, for the adaptive controller,

more states will make the number of estimated parameters increase in an even faster

rate. For the analysis of three-phase synchronous systems, people tend to use the

direct-quadrature-zero (DQZ) transform to change the vectors in the a-b-c reference

frame to the d-q-o reference frame [28], [29]. For our inverter system, since there

exists no neutral line connection, the Z component is identically zero. The DQZ

transformation matrix is
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T =

√
2

3


cos(ωt) cos(ωt− 2π

3
) cos(ωt+ 2π

3
)

cos(ωt) cos(ωt− 2π
3

) cos(ωt+ 2π
3

),

1√
2

1√
2

1√
2

 , (3.4)


xd

xq

xo

 = T


xa

xb

xc

 ⇔

xa

xb

xc

 = T−1


xd

xq

xo

 , (3.5)

where TT T = I. Applying the DQZ Transformation above, we can change the

three phase equations (3.1)-(3.3) from the a-b-c reference to the d-q-o reference frame

(3.6)-(3.8). With the fact that there is no neutral line connection, the terms associates

with the axis o will become identically zero. As a result, we will obtain the new state

equations with three less states. This will make our adaptive control design simpler.

d

dt

[
Iid
Iiq

]
=

uPV√
3Lf

[
dd
dq

]
− Rf

Lf

[
Iid
Iiq

]
− Rc

Lf

[
Iid−Igd
Iiq−Igq

]
− 1

Lf

[
UPV
Uqc

]
− ω

[
−Iq
Id

]
(3.6)

d

dt

[
Igd
Igq

]
=

1

Lg

[
UPV
Uqc

]
+
Rg

Lg

[
Iid
Iiq

]
+
Rc

Lg

[
Iid−Igd
Iiq−Igq

]
− 1

Lg

[
UdN
UqN

]
− ω

[
−Igq
Igd

]
(3.7)

d

dt

[
UPV
Uqc

]
= − 1

C

[
Iid−Igd
Iiq−Igq

]
− ω

[
−Uqc

UPV

]
. (3.8)

State Space Form Dynamic Equation By Rewriting (3.6)-(3.8) in the state

space form, we have

ẋ(t) = Ax(t) +Bu(t) +Bdδ(t), y(t) = Cx(t), (3.9)
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where

x =

[
Iid Iiq Igd Igq UPV Uqc

]T
, u =

[
dd dq

]T
, (3.10)

A =



−Rf+Rc

Lf
ω Rc

Lf
0 − 1

Lf
0

−ω −Rf+Rc

Lf
0 Rc

Lf
0 − 1

Lf

Rc+Rg

Lg
0 −Rc

Lg
ω 1

Lg
0

0 Rc+Rg

Lg
−ω −Rc

Lg
0 1

Lg

1
C

0 − 1
C

0 0 ω

0 1
C

0 − 1
C
−ω 0


, (3.11)

B =

 UPV√
3Lf

0 0 0 0 0

0 UPV√
3Lf

0 0 0 0


T

, Bd =

0 0 − 1
Lg

0 0 0

0 0 0 − 1
Lg

0 0


T

, (3.12)

C =

0 0 1 0 0 0

0 0 0 1 0 0

 , d =

[
UdN UqN

]T
. (3.13)

where u(t) = [dd, dq]
T is the control signal, dd and dq are the duty cycles in the d-q

axis, and δ is the grid side voltage, in these state-space equations we consider it to

be the disturbance of the system.

Remark 3.1. Notice that this model is derived for the three-phase grid-connected

PV inverter. For the three phase PV inverter that works without grid influence, the

state space form dynamic equation is:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (3.14)

where A, B, C has the same value as the system stated in (3.9). This is the same as

the inverter system (3.9) with disturbance term d = 0 indicating that the grid side
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voltage is zero, that is, the inverter is isolated from the grid.

3.4 Control Problem Formulation

Based on the requirements for the inverter system, the control objective is formed

in this section.

Control Objectives To deal with the system uncertainties which are discussed in

Chapter 1 and characterized by unknown parameters in the matrices A,B,C and Bd,

we need to design an adaptive controller for the system (3.9) or (3.14), to achieve the

following objectives:

(i) The adaptive control signal u(t) for the system (3.9) makes y(t) track ym(t),

where

y(t) =

[
Igd(t) Igq(t)

]T
(3.15)

ym(t) =

[
I∗gd(t) 0

]T
; (3.16)

with the value of I∗gd being obtained from the inverter requirement which is

discussed in the later part of this section.

(ii) The adaptive control signal u(t) should have the ability to reject the disturbance

δ(t) in (3.11), where δ(t) has the form

δ(t) =

UdN(t)

UqN(t)

 =

Ud1N + Ud6cN cos(6ωt) + Ud6sN sin(6ωt) + ...

Uq6cN cos(6ωt) + Uq6sN sin(6ωt) + ...

 . (3.17)

This disturbance represents the grid side voltage and its harmonic components

which will have some negative effects for the inverter system.
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Inverter System Requirements These control objectives are consistent with the

goals that a PV inverter needs to achieve. A good PV grid-connected inverter needs

to meet the following requirements:

(1) The output current should have the same frequency and same phase with the

grid side voltage. This function can be achieved by obtaining the frequency

and phase of the system by the phase lock loop (PLL) module, where after the

desired output signals are obtained, apply id iq back to the inverse online DQZ

transform action. Then, we can ensure the input-output signals to have same

frequency and phase.

(2) The system should have some robustness to the system uncertainties and dis-

turbance. This means that the system should be able to work under some

uncertainties. For instance, the system should be able to handle some changes

of the system parameters, or the change of the grid side voltage.

(3) The quality of the output current should meet some requirement. The IEEE

1527 standard allows a limit of 5% for current total harmonic distortion (THD)

factor with individual limits of 4% for each add harmonics from 3rd to 9th and

2% for 11th to 15th while the European standard IEC61727 suggests similar.

The harmonics mainly come from the grid side. We can write the grid side

voltage with the harmonics from the grid as


UaN(t)

UbN(t)

UcN(t)

 =


Ua1N cos(ωt)− Ua5N cos(5ωt) + Ua7N cos(7ωt) + ...

Ub1N cos(ωt− 2π
3

)− Ub5N cos(5(ωt− 2π
3

)) + Ub7N cos(7(ωt− 2π
3

)) + ...

Uc1N cos(ωt+ 2π
3

)− Uc5N cos(5(ωt+ 2π
3

)) + Uc7N cos(7(ωt+ 2π
3

)) + ...

 .
(3.18)

The higher order of harmonics such as 11th, 13th and 17th and 19th ..., can be
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eliminated by the LCL filter of the system. However, as for the lower-order

harmonics, like 5th and 7th, they cannot be eliminated just by only using the

filters and will influence the system behavior. From the system state equation in

(3.9), δ(t) represents the grid side disturbance. By applying the DQZ transform,

the harmonics in the above equation can be rewritten in the rotating coordinate

form, which is the grid side disturbance:

δ(t) =

UdN(t)

UqN(t)

 =

Ud1N + Ud6cN cos(6ωt) + Ud6sN sin(6ωt) + ...

Uq6cN cos(6ωt) + Uq6sN sin(6ωt) + ...

 . (3.19)

From the control point of view, elimination of the harmonics of the output

current is equivalent to rejection of the grid side disturbance δ(t).

(4) The output only contains active power but no reactive power. The output power

of the inverter is

P =
2

3
(IgdUdN + IgqUqN) (3.20)

Q =
2

3
(IgqUdN + IgdUqN). (3.21)

Since our primary concern is to make the output current smooth, under three-

phase balance condition, we can consider all the higher order terms in (3.11)

going to zero when we calculate the output power of the system. With this

assumption, (3.12) and (3.13) can be rewritten as

P =
2

3
(IgdUdN + IgqUqN) =

2

3
IgdUd1N (3.22)

Q =
2

3
(IgqUdN + IgdUqN) =

2

3
IgqUd1N . (3.23)

From the above equations, Igq=0 is needed to achieve no reactive power. From
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the control point of view, no reactive power is equivalent to letting Igq to track

zero. Also, we want the system to work at the maximum power point, with

the MPPT module which we introduced in 2.1, where the desired active power

P ∗(t) is obtained. Thus, the reference current signal for Igd is

I∗gd(t) =
2P ∗(t)

3Ud1N

. (3.24)

As a result, the control objective stated above meets all the requirements for the three

phase inverter system. With this control objective in mind, we can start the adaptive

control design.



Chapter 4

State Feedback Adaptive Control

Scheme

In this chapter, a state feedback output tracking MRAC scheme is derived to

control the main circuit of the three-phase PV inverter. The control scheme is first

designed for the case where the PV inverter works without the grid side influence,

and then designed for the general case where the PV inverter works with the grid-

connection. Simulation results are shown at the end of the chapter to verify the

control designs.

4.1 Problem Formulation

Consider the linear model for the three phase PV inverter system

ẋ(t) = Ax(t) +Bu(t) +Bdδ(t), y(t) = Cx(t), (4.1)

where A ∈ R6×6, B ∈ R6×2, Bd ∈ R6×2, and C ∈ R2×6 are unknown constant

matrices, with x(t) ∈ R6, y(t) ∈ R2 being available for measurement. They are

41
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obtained from Section 3.3. In this model, δ(t) ∈ R2 is an unmatched disturbance of

the system because B and Bd are linearly independent, which can be written in the

form

δ(t) =

δ10 +
∑6

k=1 δ1kf1k(t)

δ20 +
∑6

k=1 δ2kf2k(t)

 (4.2)

=

UdN(t)

UqN(t)

 =

Ud1N + Ud6cN cos(6ωt) + Ud6sN sin(6ωt) + ...

Uq6cN cos(6ωt) + Uq6sN sin(6ωt) + ...

 . (4.3)

Notice that Bd 6= αB for any α ∈ R2×2, for the obtained form of B and Bd of the

three phase grid-connected PV inverter system. The physical meaning of the state

space equation (4.1) is that the dynamics of the inverter system states include the

current from the inverter side, the current from the grid side and the voltage of the

filter capacitor. The control input signal u(t) is the duty cycle that is applied to the

PWM wave generator. The disturbance δ(t) represents the grid side influence for the

inverter system. This grid side influence can either be the influence of the grid side

fundamental frequency voltage or the grid side polluted voltage which contains some

harmonic components.

The control objective for this adaptive control problem with disturbance compen-

sation is to design an adaptive controller to generate u(t) to guarantee the closed-loop

signal boundedness and to make the output signal y(t) to track a chosen reference

signal generated from a reference model:

ym(t) = Wm(s)[r](t) =

I∗gd
I∗gq

 ∈ R2, t ≥ 0, (4.4)

where Wm(s) ∈ R2×2 is a stable transfer function matrix, and r(t) ∈ R2 is the
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reference input signal which can be defined when ym(t) is chosen. For the control

problem of three phase PV inverter system, we can always obtain the desired reference

signal I∗gd and I∗gq, where I∗gq is always set to be zero, and from the discussion in Section

3.4 when the grid side is under three phase balance condition I∗gd = 2P ∗(t)
3Ud1N

, where P ∗

can be obtained from the MPPT module. Note that when the grid side is operating

under three phase unbalance situation, the state-of-art research can still obtain the

desired value of I∗gd and I∗gq for this control problem.

4.2 Basic Design Conditions

Before beginning the adaptive control design, we need to show that the three

phase PV inverter system stated in (4.1) meets the following design conditions for

multivariable adaptive disturbance rejection design.

Basic Assumptions for MRAC Before introducing the design conditions, the

definitions of the high-frequency gain matrix and interactor matrix are introduced.

Lemma 4.1. For any M ×M strictly proper rational full-rank transfer matrix, there

exists a lower-triangular polynomial matrix ξm(s), defined as the modified left inter-

actor matrix of G(s), has the form

ξm(s) =



d1(s) 0 . . . . . . 0

hm21(s) d2(s) 0 . . . 0

...
...

...
...

...

hmM1(s) hmM2(s) . . . hmMM−1(s) dM(s)


, (4.5)

where hmij (s), j = 1, 2, . . . ,M − 1, i = 2, . . . ,M , are some polynomials and di(s) are

any chosen monic stable polynomials such that the high-frequency gain matrix of G(s)
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defined as Kp = lims→∞ ξm(s)G(s) is finite and nonsingular [32].

To meet the control objective, we need to assume

Assumption 1 All zeros of G(s) = C(sI − A)−1B are stable, and (A,B,C) is

stabilizable and detectable.

Assumption 2 G(s) has a diagonal interactor matrix ξm = diag{d1(s), d2(s)}

where, di(s) = sρi + a∗iρi−1s
ρi−1 + · · · + a∗i1s + a∗i0, i = 1, 2 are stable monic poly-

nomials such that the high-frequency gain matrix

Kp = lim
s→∞

ξm(s)G(s) =

C1A
ρ1−1B

C2A
ρ2−1B

 ∈ R2∗2, (4.6)

is finite and nonsingular, where, ρi, i = 1, 2, are the relative degrees of (Ci, A,B).

To verify these assumptions for the PV inverter system, from the definition of

(A,B,C) in Section 3.3, by using Matlab we can prove that the controllability matrix

Sn and observability matrix Ln are such that

Sn =

[
B AB A2B . . . A5B

]
, rank(Sn) = 6, (4.7)

Ln =

[
CT (CA)T (CA2)T . . . (CA5)T

]T
, rank(Ln) = 6. (4.8)

This means that (A,B,C) for the three phase PV inverter system is controllable and

observable, which means that (A,B,C) is stabilizable and detectable.

For the system zeros, it is hard to obtain a generic solution to prove that all system

zeros are stable due to the high order matrices of this inverter system. As a result, a set

of system parameters is chosen for the inverter system (A,B,C). Table 4.1 in Section

4.5 gives a set of system parameters. By applying this set of parameter to the system,
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we can verify that for this system the zeros are (−5.56 + j0.0031) × 105, (−5.56 −

j0.0031)× 105, they are indeed stable. Thus the system satisfies Assumption 1.

As for Assumption 2, we can verify that for the inverter system (A,B,C) which is

stated in Section 3.3, it follows that

CB =

0 0

0 0

 (4.9)

CAB =


√

3∗UPV (Rc+Rg)

3LfLg
0

0
√

3∗UPV (Rc+Rg)

3LfLg

 . (4.10)

Since all the system parameters are nonzero, the above equation means that the three

phase PV inverter system has relative degrees ρi = 2, i = 1, 2, and Kp = CAB is a

diagonal matrix with positive diagonal elements.

With these verifications above, we can obtain the following proposition for the

three-phase inverter system.

Proposition 4.1. For the three phase inverter system with LCL filter stated in (4.1),

the high-frequency gain matrix is

Kp = lim
s→∞

ξm(s)G(s) = CAB =


√

3∗UPV (Rc+Rg)

3LfLg
0

0
√

3∗UPV (Rc+Rg)

3LfLg

 , (4.11)

and G(s) has a diagonal interactor matrix ξm = diag{d1(s), d2(s)}, where di(s) =

s2 + a∗i1s+ a∗i0 are stable monic polynomials.

This result can be used in the control design for three-phase inverter systems.
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4.3 Adaptive Control for Inverters without Dis-

turbance

Before working on the case with disturbance, we first consider the control design

for the three phase PV inverter which works without grid influence, that is, isolated

from the grid. With no grid connection, there is no disturbance δ(t) in the system,

and the system (4.1) becomes

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (4.12)

where A ∈ R6×6, B ∈ R6×2, and C ∈ R2×6 are unknown constant matrices, with

x(t) ∈ R6, y(t) ∈ R2 available for measurement. The physical meaning of this model

is, that the inverter system works isolated from the grid, which can be considered

as the operation situation before the inverter is connected to the grid. Solving this

control problem is a good start before working on the grid connected inverter system.

4.3.1 Nominal Control Design

Before starting the adaptive control design, first we will consider the case where all

the system parameters are known, that is, the state feedback output tracking model

reference control, to develop the controller structure for adaptive control.

Nominal Controller With the knowledge of system parameters, the nominal state

feedback output tracking controller is

u(t) = K∗1x(t) +K∗2r(t), (4.13)
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where K∗1 ∈ R2×6 and K∗2 ∈ R2×2 are designed for output tracking.

For the three phase PV inverter system under Assumption 1, consider the relative

degrees ρi for the system (Ci, A,B). With the form of the system shown in Section

3.2, we have ρi = 2, i = 1, 2. The system equations are

ẋ(t) = Ax(t) +Bu(t), yi(t) = Cix(t), y(t) =

y1(t)

y2(t)

 , (4.14)

and the 2th order derivative of yi(t) is

y
(2)
i (t) = CiA

2x(t) + CiABu(t) = CiA
2x(t) +Kpiu(t), (4.15)

where Kpi is given in (4.6), so that Kp = [Kp1, Kp2]T , is an inverterable matrix.

Choose the control law as

u(t) = K−1
P v(t), v(t) =

[
v1(t) v2(t)

]T
. (4.16)

Then (4.15) becomes

y
(2)
i (t) = CiA

2x(t) + vi(t). (4.17)

With the choice of

vi(t) = −CA2x(t)− a∗i1ẏi − a∗i0y(t) + ri(t), (4.18)

we have from (4.17) that

y(2)(t) + a∗i1ẏi + a∗i0y(t) = ri(t), (4.19)
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which means yi(s) = 1
di(s)

ri(s), that is,

y(t) = Wm(s)r(t). (4.20)

From discussion above, with the fact that ρi = 2 known, the signal v(t) can be

expressd as

v(t) = K0x(t) + r(t), (4.21)

where K0 = [kT01, k
T
02] with

kT0i = −CiA2 − a∗i1CiA− a∗i0Ci, i = 1, 2. (4.22)

Comparing with the definition of u(t) in (4.13), we have

u(t) = K−1
p (K0x(t) + r(t)) = K∗1x(t) +K∗2r(t), (4.23)

which leads to

K∗1 = K−1
p K0, K

∗
2 = K−1

p . (4.24)

From the derivation above, we show that there exists a state feedback control law

to achieve the desired output tracking:

y(s) = C(sI − A−BK∗T1 )−1BK∗T2 r(s) = Wm(s)r(s). (4.25)

Matching Property of K∗1 and K∗2 From (4.25), we can find the matching con-

dition to find K∗1 , K∗2

C(sI − A−BK∗T1 )−1BK∗T2 = Wm(s). (4.26)
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With the derivation above, we can propose the following proposition

Proposition 4.2. There exist K∗1 ∈ R6×2 and K∗2 ∈ R2×2 such that the matching

equation (4.26) holds if ξm(s) is the modified interactor matrix of G(s) = C(sI −

A)−1B.

With parameters satisfying the matching equation (4.26) above, in view of (4.25),

we have that the nominal controller (4.23) ensures that all signals in the closed-loop

system are bounded and limt→∞(y(t)− ym(t)) = 0

4.3.2 Adaptive Control Design

With the nonminal controller obtained, in this subsection the state feedback out-

put tracking model reference control design is developed for the inverter with unknown

parameters, working without the grid side influence.

Controller Structure The adaptive version of the nonminal controller (4.13) is

u(t) = KT
1 (t)x(t) +K2(t)r(t), (4.27)

where K1 ∈ R6×2 and K2 ∈ R2×2 are estimates of K∗1 and K∗2 .

Tracking Error Equation Apply the adaptive controller to the plant (4.12), we

can obtain the following closed-loop system

ẋ(t) = (A+BK∗T1 )x(t) +BK∗2r(t) +B(KT
1 −K∗T1 )x(t) +B(K2 −K∗2)r(t) (4.28)

y(t) = Cx(t). (4.29)

From the definition of the reference signal (4.4), the parameter matching condition

(4.26), and this obtained closed-loop system, we can derive the output tracking error
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equation as

e(t) = y(t)− ym(t) (4.30)

= Wm(s)K∗−1
2 [Θ̃Tω](t) + Ce(A+BK∗T

1 )tx(t), (4.31)

where

Θ∗T = [K∗T1 , K∗2 ] (4.32)

ω(t) = [xT (t), rT (t)]T (4.33)

ΘT (t) = [KT
1 (t), K2(t)] (4.34)

Θ̃(t) = Θ(t)−Θ∗. (4.35)

The term Ce(A+BK∗T
1 )tx(t) converge to zero exponentially fast due to the stability of

A+BK∗T1 . As a result we can just write the output tracking error as

e(t) = y(t)− ym(t) = Wm(s)K∗−1
2 [Θ̃Tω](t). (4.36)

Estimation Error Equation To develop adaptive law to update controller pa-

rameter Θ(t), we need further define the estimation error. First choose the filter

h(s) = 1
f(s)

, where f(s) is a stable polynomial f(s) = s2 + f1s+ f0 of degree 2. Then

we can define the estimation error as

ε(t) = ξm(s)h(s)[y − ym](t) +Kp(t)ξ(t) = ξm(s)h(s)[e](t) +Kp(t)ξ(t). (4.37)
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Here Kp(t) is the estimate of the high-frequency gain matrix K∗p in Assumption 2,

ξm(t) is the diagonal interactor matrix ξm(s) = diag{d1(s), d2(s)}, and

ξ(t) = ΘT (t)ζ(t)− h(s)[u](t) (4.38)

ζ(t) = h(s)[ω](t). (4.39)

With the output tracking error equation (4.36), we can rewrite the estimation error

as

ε(t) = K∗pΘ̃(t)ζ(t) + K̃p(t)ξ(t), K̃p(t) = Kp(t)−K∗p . (4.40)

Adaptive Laws Based on the estimation error equation (4.40), the adaptive pa-

rameter update laws are chosen as

Θ̇T (t) = −Γ1ε(t)ζ
T (t)

m2(t)
(4.41)

K̇p(t) = −Γ2ε(t)ξ
T (t)

m2(t)
, (4.42)

where Γi = ΓTi > 0 i = 1, 2, m2(t) = 1 + ζT (t)ζ(t) + ξT (t)ξ(t).

Stability Analysis With the adaptive control design above, we can prove that the

following lemma is true for our parameter adaptive law.

Lemma 4.2. The adaptive laws (4.41)-(4.42) guarantee that

(i) Θ(t) ∈ L∞, Kp(t) ∈ L∞, ε(t)
m(t)
∈ L2 ∩ L∞;

(ii) Θ̇(t) ∈ L∞ ∩ L2, K̇p(t) ∈ L∞ ∩ L2.

Proof. Choose the positive definite function

V =
1

2

(
tr[K̃p

TΓ−1
2 K̃p] + tr[Θ̃TΓ−1

1 Θ̃]

)
. (4.43)
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With the adaptive laws (4.41), (4.42), the time derivative of V can be derived as

V̇ = −ε
T (t)ε(t)

m2(t)
≤ 0. (4.44)

Thus, we can conclude that Θ(t) ∈ L∞, Kp(t) ∈ L∞, ε(t)
m(t)
∈ L2∩L∞, Θ̇(t) ∈ L∞∩L2,

K̇p(t) ∈ L∞ ∩ L2.

Based on this lemma, one can prove that the closed-loop system has the following

desired properties.

Theorem 4.1. For the plant (4.12) with uncertainties for the system parameter under

Assumption 1 and 2 and the reference model (4.4), the adaptive controller (4.27)

with the adaptive update laws (4.41), (4.42) can guarantee all signals in the closed-

loop system are bounded and the output tracking error e(t) = y(t) − ym(t) satisfies

limt→∞ e(t) = 0.

With this theorem, the performance of the adaptive controller designed in this

section can achieve output tracking of the given signal ym.

4.4 Adaptive Control for Grid-Connected PV In-

verter

For the PV inverter that works grid-connected, we consider the grid side voltage

as the disturbance for our system. As a result, the three-phase grid connected PV

inverter control problem is the adaptive disturbance rejection control problem. In

this section, the state feedback output tracking MRAC control scheme with adap-

tive disturbance rejection ability is designed in comparison with the nominal state

feedback design with disturbance rejection. The state-space equation for the inverter
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system with grid-connection is

ẋ = Ax+Bu+Bdd, y = Cx, (4.45)

where A,B,C and Bd are the same as stated in Section 3.3.

4.4.1 Nominal Control Design

Similar to the previous section, before starting the adaptive control design, a

nominal model reference controller is designed first.

Nominal Controller With the knowledge of system parameters and disturbance

parameters, the nominal state feedback output tracking controller is

u(t) = K∗1x(t) +K∗2r(t) +K∗3(t), (4.46)

where K∗1 ∈ R2×6 and K∗2 ∈ R2×2 are designed for output tracking and K∗3(t) ∈ R2 is

for canceling the effect of the disturbance term δ(t) in the system.

For the three phase PV inverter system under Assumptions 1 and 2, consider the

relative degree υi for the disturbance system (Ci, A,Bd) and the relative degree ρi for

the control system (Ci, A,B). With the form of the system shown in Section 2.2, we

have ρi = 2, i = 1, 2, and υi = 1, i = 1, 2, ρi > υi.

The system equations are

ẋ(t) = Ax(t) +Bu(t) +Bdδ(t), yi(t) = Cix(t), y(t) =

y1(t)

y2(t)

 . (4.47)
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The 2nd order derivative of yi(t) is

y
(2)
i (t) = CiA

2x(t) + CiABu(t) + CiABdδ(t) + CiBdδ̇(t). (4.48)

For Kp = [Kp1, Kp2]T , where Kpi is from (4.6), Kp is an invertible matrix. Choose

the control law as

u(t) = K−1
P v(t), v(t) =

[
v1(t) v2(t)

]T
. (4.49)

Then (4.48) becomes

y(2)(t) = CiA
2x(t) + vi(t) + CiABdδ(t) + CiBdδ̇(t). (4.50)

Choosing vi(t) as

vi(t) = −CA2x(t)− a∗i1ẏi − a∗i0y(t) + ri(t)− CiABdδ(t)− CiBdδ̇(t) (4.51)

and applying this vi(t) back to (4.50), we have

y
(2)
i (t) + a∗i1ẏi + a∗i0y(t) = ri(t) (4.52)

yi(s) =
1

di(s)
ri(s), (4.53)

that is, we have

y(t) = Wm(s)r(t). (4.54)

From discussion above, with the fact that ρi − υi = 1 known, we will need the
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knowledge of δ̇(t) to design the controller. The signal v(t) can be expressd as

v(t) = K0x(t) + r(t) +Kdδ(t) +Kd1δ̇(t), (4.55)

where

K0 = [kT01, k
T
02]T , kT0i = −CiA2 − a∗i1CiA− a∗i0Ci (4.56)

Kd = [kTd1, k
T
d2]T , kdi = −CiABd (4.57)

Kd1 = [kTd11, k
T
d12]T , kd1i = −CiBd. (4.58)

From the definition of u(t) in (4.49), we have

u(t) = K−1
p (K0x(t) + r(t) +Kdδ(t) +Kd1δ̇(t)) = K∗1x(t) +K∗2r(t) +K∗3(t), (4.59)

that is,

K∗1 = K−1
p K0, K

∗
2 = K−1

p , K∗3 = K−1
p Kd1. (4.60)

With the derivation above, the following theorem is obtained.

Theorem 4.2. For the MIMO system under Assumptions 1 and 2, with relative

degree conditions ρi > υi, there exist a state feedback control law to achieve disturbance

rejection and output tracking: y(t) = Wm(s)r(t) if the knowledge of the (ρi − υi)th

derivative of the disturbance signal δ(t) is known.

Remark 4.1. When the relative degrees ρi < υi for all i = 1, 2, ...,M , then no

disturbance rejection is needed because all the disturbance terms CAρi−1Bdδ(t) will

becomes zero and this will make K∗3 = 0 as Kd = 0. As a result the controller will

becomes u(t) = K∗1x(t) +K∗2r(t).
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Matching Properties for K∗1 , K∗2 , K∗3(t) From (4.25), we can find the matching

properties K∗1 , K∗2 and K∗3 :

C(sI − A−BK∗T1 )−1BK∗T2 = Wm(s) (4.61)

Wm(s)K∗−1
2 K∗3(s) + C(sI − A−BK∗T1 )−1Bdd(s) = 0. (4.62)

There exist constant matrices K∗1 ∈ R6×2 and K∗2 ∈ R2×2, and a nonsingular matrix

function K∗3(t) ∈ R22× 2 that satisfy the matching equations above.

With parameters satisfying the matching condition above, substituting the match-

ing equations to (4.54), we have that the nominal controller (4.59) ensures that all

signals in the closed-loop system are bounded and limt→∞(y(t)− ym(t)) = 0

Parameterlization of K∗3(t) Before the adaptive control design, futher linear pa-

rameterization for the term K∗3(t) is needed. For the disturbance discribed in (4.2),

the elements in δj(t) can be characterized as

δj(t) = δj0 +

q∑
k=1

δjkfjk(t), j = 1, 2, (4.63)

where δj0 and δjk are unknown constants and

fj(t) = [cos(6ωt), sin(6ωt), cos(12ωt), sin(12ωt)], j = 1, 2, (4.64)

are some known sinucoidal signals. With the property of the derivative of sinucoidal

signals, we have that the derivative of the disturbance δ(t) will have the same form

with (4.63), that is

δ̇j(t) = δ′j0 +

q∑
k=1

δ′jkfjk(t), j = 1, 2, (4.65)
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where δ′j0, δ
′
jk are unknown constants and fj(t) stays the same. Since the disturbance

and its derivative have the same form. We have

K∗3(t) = K−1
p (Kdδ(t) +Kd1δ̇(t)) (4.66)

= K−1
p (KdΦ

∗f(t) +Kd1Φ′∗f(t)) = K∗3ff(t), (4.67)

where

δ(t) = Φ∗Tf(t), (4.68)

f(t) = [1, cos(6ωt), sin(6ωt), cos(12ωt), sin(12ωt), (4.69)

1, cos(6ωt), sin(6ωt), cos(12ωt), sin(12ωt)]T ∈ R10, (4.70)

Φ∗ =

φ∗T1 0T(5)

0T(5) φT∗2

 ∈ R2×10, (4.71)

φi = [δi0, . . . , δi5] ∈ R5 (4.72)

δ̇(t) = Φ̃∗Tf(t), (4.73)

Φ′∗ =

φ′∗T1 0T(5)

0T(5) φ′T∗2

 ∈ R2×10, (4.74)

φ′i = [δ′i0, . . . , δ
′
i5] ∈ R5 (4.75)

K∗3f = K−1
p (KdΦ

∗ +Kd1Φ′∗). (4.76)

With the derivation above, we can propose the following proposition

Proposition 4.3. The disturbance signal δ(t) in (4.63) being the summation of si-

nusoidal signals, the disturbance related control parameter K∗3(t) = K−1
p (Kdδ(t) +

Kd1δ̇(t)) can be parameterized to the form K∗3ff(t), where f(t) contains all the fun-

damental sinusoidal signals.
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Next, the adaptive version of the control scheme is studied for systems witout the

knowledge of system and disturbance parameters.

4.4.2 Adaptive Disturbance Rejection Design

Based the nominal controller with disturbance rejection obtained from the previ-

ous section, in this subsection a state feedback output tracking MRAC scheme with

disturbance rejection, for the three-phase PV inverter working in the grid-connected

mode, is proposed.

Controller Structure The adaptive controller has the same structure as the non-

minal controller (4.13):

u(t) = KT
1 (t)x(t) +K2(t)r(t) +K3(t), (4.77)

where K1 ∈ R6×2, K2 ∈ R2×2 and K3(t) ∈ R2 are estimates of K∗1 , K∗2 and K∗3(t). In

view of (4.46), we use

K3(t) = K3f (t)f(t), (4.78)

where K3f (t) is the estimate of K∗3f in (4.76).

Tracking Error Equation Apply the adaptive controller to the plant (4.1), we

can obtain the following closed-loop system

ẋ(t) = (A+BK∗T1 )x(t) +BK∗2r(t) +BK∗3(t) +Bdδ(t) +B(KT
1 −K∗T1 )x(t) (4.79)

+B(K2 −K∗2)r(t) +B[K3(t)−K∗3(t)] (4.80)

y(t) = Cx(t). (4.81)



59

From the definition of the reference signal (4.4), the parameter matching properties

(4.61)-(4.62), and this obtained closed-loop system, we can obtain the output tracking

error equation as

e(t) = y(t)− ym(t) (4.82)

= Wm(s)K∗−1
2 [Θ̃Tω](t) + Ce(A+BK∗T

1 )tx(t), (4.83)

where

Θ∗T = [K∗T1 , K∗2 , K
∗
3f ] ∈ R2×13 (4.84)

ω(t) = [xT (t), rT (t), fT (t)]T ∈ R13 (4.85)

ΘT (t) = [KT
1 (t), K2(t), KT

3f ] ∈ R2×13 (4.86)

Θ̃(t) = Θ(t)−Θ∗. (4.87)

The term Ce(A+BK∗T
1 )tx(t) converge to zero exponentially fast due to the stability of

A+BK∗T1 . As a result we can just write the output tracking error as

e(t) = y(t)− ym(t) = Wm(s)K∗−1
2 [Θ̃Tω](t). (4.88)

Estimation Error In order to develop the adaptive laws to update the controller

parameter Θ(t), we need further define the estimation error. First choose the filter

h(s) = 1
f(s)

, where f(s) is a stable polynomial f(s) = s2 + f1s+ f0 of degree 2. Then

we can define the estimation error as

ε(t) = ξm(s)Λ(s)[y − ym](t) +Kp(t)ξ(t) = ξm(s)Λ(s)[e](t) +Kp(t)ξ(t). (4.89)
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There Kp(t) is the estimate of the high-frequency gain matrix K∗p in Assumption 2,

ξm(s) is the diagonal interactor matrix ξm(s) = diag{d1(s), d2(s)}, and

ξ(t) = ΘT (t)ζ(t)− h(s)[u](t) (4.90)

ζ(t) = h(s)[ω](t). (4.91)

With the output tracking error equation (4.82), we can rewrite the estimation error

as

ε(t) = K∗pΘ̃(t)ζ(t) + K̃p(t)ξ(t), K̃p(t) = Kp(t)−K∗p . (4.92)

Adaptive Laws Based on the estimation error equation (4.92), the adaptive pa-

rameter update laws are chosen as

Θ̇T (t) = −Γ1ε(t)ζ
T (t)

m2(t)
(4.93)

K̇p(t) = −Γ2ε(t)ξ
T (t)

m2(t)
, (4.94)

where Γi = ΓTi > 0 i = 1, 2, and m2(t) = 1 + ζT (t)ζ(t) + ξT (t)ξ(t).

Stability Analysis With the adaptive law design above, we can prove the following

lemma is true for our adaptive laws.

Lemma 4.3. The adaptive laws (4.93), and (4.94) guarantee that

(i) Θ(t) ∈ L∞, Kp(t) ∈ L∞, ε(t)
m(t)
∈ L2 ∩ L∞;

(ii) Θ̇(t) ∈ L∞ ∩ L2, K̇p(t) ∈ L∞ ∩ L2.

Proof. Choose the positive definite function

V =
1

2

(
tr[K̃p

TΓ−1
2 K̃p] + tr[Θ̃TΓ−1

1 Θ̃]

)
. (4.95)
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With the adaptive laws (4.93), (4.94), the time derivetive of V can be derived as

V̇ = −ε
T (t)ε(t)

m2(t)
≤ 0. (4.96)

Thus, we can conclude that Θ(t) ∈ L∞, Kp(t) ∈ L∞, ε(t)
m(t)
∈ L2∩L∞, Θ̇(t) ∈ L∞∩L2,

K̇p(t) ∈ L∞ ∩ L2.

Based on Lemma 4.3, one can ensure that the closed-loop system has the desired

properties.

Theorem 4.3. For the plant (4.1) with uncertain system parameters and under

Assumptions 1 and 2 and the reference model (4.4), the adaptive controller (4.77)

with the adaptive update laws (4.93), and (4.94) guarantee all signals in the closed-

loop system are bounded and the output tracking error e(t) = y(t) − ym(t) satisfies

limt→∞ e(t) = 0.

With this theorem, the performance of the adaptive controller designed in this sec-

tion can achieve output tracking of the given signal ym. The physical meaning of this

statement is, the output current can track a reference current signal asymptotically.

4.5 Simulation Results

In this section, the simulation results are presented for state feedback output

tracking control schemes for inverters working without grid influence and with grid-

connection respectively.
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4.5.1 Inverter System Operating without Disturbance

For the inverter system working without disturbance, the system state space equa-

tion is

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (4.97)

where

x(t) =

[
Iid Iiq Igd Igq UPV Uqc

]T
, u(t) =

[
dd dq

]
, (4.98)

A =



−88.89 314.16 33.33 0 −1111.11 0

−314.16 −88.89 0 33.33 0 −1111.11

111.11 0 −55.56 314.16 1851.85 0

0 111.11 −314.16 −55.56 0 1851.85

33333.33 0 −33333.33 0 0 314.16

0 33333.33 0 −33333.33 −314.16 0


,

(4.99)

B =

5.13× 105 0 0 0 0 0

0 5.13× 105 0 0 0 0

 , (4.100)

C =

0 0 1 0 0 0

0 0 0 1 0 0

 . (4.101)

These nominal values are obtained by applying the system parameters in Table 4.1

to the system matrix (A,B,C) in (3.11)-(3.13). This linear model can be treated as

a test bed to do simulations systematically to verify the effectiveness of our proposed

adaptive control scheme.
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Table 4.1: Simulation study parameter [17], [30]

Parameter Unit Value
Inductor Lf (mH) 0.9
Capacitor C (µF) 30
Inductor Lg (mH) 0.54
Resistance Rf (mΩ) 0.05
Resistance Rg (mΩ) 0.03
Resistance Rc (mΩ) 0.05
Line-to-line grid voltage Ua,b,c (V) 380
Grid frequency ω (rad/s) 314.15
Input voltage UPV (V) 750-820

Adaptive Control Design For the inverter system (4.104), it can be verified that

the transfer matrix G(s) = C(sI −A)−1B has stable zeros: z1 = (−5.56− j0.0031)×

105, z2 = (−5.56 + j0.0031) × 105. Also, this transfer matrix is strictly proper and

full rank. Choosing the interactor matrix as ξm(s) = diag{(s + 1)2, (s + 1)2}, such

that the high-frequency gain matrix is

Kp = lim
s→∞

ξm(s)G(s) =

5.7022× 107 0

0 5.7022× 107

 , (4.102)

which is positive finite and nonsingular. Then the reference model is chosen as

Wm(s) = ξ−1
m (s) = diag

{
1

(s+ 1)2
,

1

(s+ 1)2

}
. (4.103)

We also choose f(s) = (s+ 1)2 and h(s) = 1
(s+1)2

for MRAC design.

Simulation Results Choose the initial control parameters 0.8 times of their true

nominal values. Choose Γ1 = Γ2 = 0.1I. There are two cases of simulation results.

In Case 1, the system tracks a constant output ym = [I∗gd, I
∗
gq]

T , where I∗gd = 2P ∗

3UdN
=

17A, Igq = 0. In Case 2, the system tracks ym(t) which initially has the same value
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as in Case 1 and then increases as time goes.

Case 1: Choose r(t) = [17, 0]T , ym(0) = [17, 0]T . In this way, ym is just constant signal.

Figure 4.1b shows the output current and the tracking error in the d-q axis. We

can see that the system achieved desired tracking after 0.1 seconds. Figure 4.1a

shows the three phase output currents, from which we can see that the system

output current tracks ym(t) asymptotically.

Case 2: Choose r(t) = [17, 0]T t ≤ 1, r(t) = [20, 0]T , t > 1, this way, ym changes

smoothly. Figure 4.2a shows the desired tracking signal ym(t) which is a slowly

increasing signal. Figure. 4.2b show the output current and the tracking er-

ror in d-q axis. This result shows that if ym(t) is a time variant signal, the

adaptive controller designed for this situation can still achieve tracking. This is

something that a classic controller cannot do.

The inverter system works with no grid influence is a simulation for the case where

the inverter system have not been connected to the grid yet. This is a good start and

practice design before considering the case where the inverter is actually connected

in grid. The simulation results for these cases shows the good performance of the

adaptive controller for the electrical circuit systems.
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(a) The output current in the a-b-c reference frame.

(b) The output current and tracking error of Igd, Igq.

Figure 4.1: System response for Case 1.
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(a) The reference signal ym(t).

(b) The output current and tracking error of Igd, Igq.

Figure 4.2: System response for Case 2.
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4.5.2 Inverter System Grid-Connected

For the inverter system working grid-connected, the system state space equation

is

ẋ(t) = Ax(t) +Bu(t) +Bdδ(t), y(t) = Cx(t), (4.104)

where A,B,C and the definitions of x(t) and u(t) are stated in Section 4.5.1. and

Bd =

0 0 −1.28× 104 0 0 0

0 0 0 −1.28× 104 0 0


T

, (4.105)

δ(t) =

UdN(t)

UqN(t)

 . (4.106)

Adaptive Control Design For the inverter system (4.104), it can be verified that

the transfer matrix G(s) = C(sI −A)−1B has stable zeros: z1 = (−5.56− j0.0031)×

105, z2 = (−5.56 + j0.0031) × 105. Also, this transfer matrix is strictly proper and

full rank. Choosing the interactor matrix as ξm(s) = diag{(s + 1)2, (s + 1)2}, such

that the high-frequency gain matrix is

Kp = lim
s→∞

ξm(s)G(s) =

5.7022× 107 0

0 5.7022× 107

 , (4.107)

being positive finite and nonsingular and the matrix

Kd = lim
s→∞

ξm(s)Gd(s) =

−1.8519× 103 0

0 −1.8519× 103

 , (4.108)
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is finite. Then the reference model is chosen as

Wm(s) = ξ−1
m (s) = diag

{
1

(s+ 1)2
,

1

(s+ 1)2

}
. (4.109)

We also choose f(s) = (s+ 1)2 and h(s) = 1
(s+1)2

for MRAC design.

Simulation Results Choose Γ1 = Γ2 = 0.1I. There are three cases of simulation

results presented. Case 3 shows the inverter system working in a standard grid which

means δ(t) = [310, 0]T , for this case the ability of the adaptive controller to work

normally in the grid is tested (with initial parameters equal to the true nominal

parameters). Case 4 shows the inverter working in the standard grid with system

parameters unknown (choosing the initial control parameters 0.8 times of their true

nominal values), this will test the ability to deal with system uncertainties for the

adaptive controller. Case 5 shows the inverter working in a polluted grid, i.e., the grid

side voltage have some harmonic components. This case will show the disturbance

rejection ability of the controller to work under unknown harmonic disturbance.

Case 3: Choose r(t) = [17, 0]T , ym(0) = [17, 0]T , δ(t) = [310, 0]T . Figure 4.3b shows

the output current and the tracking error in the d-q axis, from which we can

see that for the inverter system works normally in the grid, the output grid

side current can track the desired output current value. Figure 4.3a shows the

three-phase output currents, from which we can see that the system achieved

the desired output current. Figure 4.4 shows the fast Fourier transformation

(FFT) analysis of the three-phase output current, where the sampling interval

for the FFT analysis is 5× 10−5. We can see that by using our control method,

the THD is 0.01% in this case.
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(a) The output current in the a-b-c reference frame.

(b) The output current and tracking error of Igd, Igq.

Figure 4.3: System response for Case 3.
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Figure 4.4: FFT analysis for the output current Iga for Case 3.

Case 4: Choose r(t) = [17, 0]T , ym(0) = [17, 0]T , δ(t) = [310, 0]T , all initial control

parameters are 0.8 times of their true nominal values. Figure 4.5b shows the

output current and the tracking error in the d-q axis, from which we can see

that the system achieved desired tracking and disturbance rejection before 0.1

seconds. Figure 4.5a shows the three phase output current, from which we can

see that the system achieved the desired output current. Figure 4.6 shows the

FFT analysis of the output current, with the sampling interval 5 × 10−5s. We

can see that by using our control method, the THD in this case is 0.26%.
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(a) The output current in the a-b-c reference frame.

(b) The output current and tracking error of Igd, Igq.

Figure 4.5: System response for Case 4.
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Figure 4.6: FFT analysis for the output current Iga for Case 3.

Case 5: Choose r(t) = [17, 0]T , ym(0) = [17, 0]T . The polluted grid is considered as the

disturbance

δ(t) =

310 + 10 cos(6ωt) + 10 sin(6ωt) + 5 cos(12ωt) + 5 sin(12ωt)

10 cos(6ωt) + 10 sin(6ωt) + 5 cos(12ωt) + 5 sin(12ωt)

 . (4.110)

The THD of the grid side voltage is 6.2%. Figure 4.7b shows the output current

and the tracking error in the d-q axis. Figure 4.7a shows the three phase output

current. We can see that the system achieved the desired output current. Figure

4.8 shows the FFT analysis of the output current, with the sampling interval

5× 10−5s. We can see that by using our control method, the THD, in this case,

is 3.9%, less than the grid side THD.
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(a) The output current in the a-b-c reference frame.

(b) The output current and tracking error of Igd, Igq.

Figure 4.7: System response for Case 5.
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Figure 4.8: FFT analysis for the output current Iga for Case 5.

4.6 Summary

In this chapter, the state feedback adaptive control schemes for the three-phase

inverter system working without grid influence and with grid-connected are designed

respectively. Simulation results are presented to verify our designs. From the sim-

ulation result, we can conclude that the control objective is achieved. Firstly, our

controller can normally work in a grid when there is no parameter uncertainty. Sec-

ondly, our controller can deal with the case where the system parameters and the

disturbance parameters are unknown, and our controller can handle the tracking for

the case where the reference signal is changing. As a comparison, a classical PI con-

troller cannot handle a varying reference signal. Being able to track a time variant

signal is useful in the control problem in the photovoltaic inverter systems due to the

uncertainties of the system parameters for the photovoltaic power generation devices.



Chapter 5

Output Feedback Adaptive Control

Scheme

In this chapter, a output feedback output tracking MRAC scheme is derived to

control the main circuit of the three-phase PV inverter. Similarly, the control scheme

for the case where the PV inverter working without the grid influence, and then

designed for the general case where the PV inverter works with the grid-connection.

Simulation results are shown at the end of the chapter to verify the control designs.

5.1 Problem Formulation

The system model has been derived in Chapter 3 and its restated here. Consider

the linear model for the three-phase PV inverter system:

ẋ(t) = Ax(t) +Bu(t) +Bdδ(t), y(t) = Cx(t), (5.1)

where A ∈ R6×6, B ∈ R6×2, Bd ∈ R6×2, and C ∈ R2×6 are unknown constant

matrices, with x(t) ∈ R6, y(t) ∈ R2 being available for measurement. They are

75
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obtained from Section 3.3. In this model, δ(t) ∈ R2 is an unmatched disturbance of

the system because B and Bd are linearly independent, which can be written in the

form

δ(t) =

δ10 +
∑6

k=1 δ1kf1k(t)

δ20 +
∑6

k=1 δ2kf2k(t)

 (5.2)

=

UdN(t)

UqN(t)

 =

Ud1N + Ud6cN cos(6ωt) + Ud6sN sin(6ωt) + ...

Uq6cN cos(6ωt) + Uq6sN sin(6ωt) + ...

 . (5.3)

Notice that Bd 6= αB for any α ∈ R2∗2, for the obtained form of B and Bd of the

three-phase grid-connected PV inverter system.

The control objective for this adaptive control problem with disturbance compen-

sation is to design an adaptive controller to generate u(t) to guarantee the closed-loop

signal boundedness and to make the output signal y(t) to track a chosen reference

signal generated from a reference model:

ym(t) = Wm(s)[r](t) =

I∗gd
I∗gq

 ∈ R2, t ≥ 0, (5.4)

where Wm(s) ∈ R2×2 is a stable transfer function matrix, and r(t) ∈ R2 is the

reference input signal which can be defined when ym(t) is chosen. For the control

problem of three phase PV inverter system, we can always obtain the desired reference

signal I∗gd and I∗gq, where I∗gq is always set to be zero. From the discussion in Section

3.4 when the grid side is under three phase balance condition I∗gd = 2P ∗(t)
3Ud1N

, where P ∗

can be obtained from the MPPT module. Note that when the grid side is operating

under three phase unbalance situation, the state-of-art research can still obtain the

desired value of I∗gd and I∗gq for this control problem.
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5.2 Basic Design Conditions

The two design conditions in Section 4.2 for state feedback design is still needed

in output feedback design, which is restated here. They have been verified in Section

4.2.

Assumption 1 All zeros of G(s) = C(sI − A)−1B are stable, and (A,B,C) is

stabilizable and detectable.

Assumption 2 G(s) is strictly proper with full rank and has a diagonal interactor

matrix ξm = diag{d1(s), d2(s)}, where di(s) = sρi+a∗iρi−1s
ρi−1+· · ·+a∗i1s+a∗i0, i = 1, 2,

are stable monic polynomials such that the high-frequency gain matrix

Kp = lim
s→∞

ξm(s)G(s) =

C1A
ρ1−1B

C2A
ρ2−1B

 ∈ R2∗2, (5.5)

is finite and nonsingular, where ρi, i = 1, 2, are the relative degrees of (Ci, A,B).

5.3 Adaptive Control Design for Three-Phase PV

Inverter without Disturbance

In parallel with Section 4.3, in this section, we will first consider the output

feedback control problem for the three-phase inverter system working without the

influence from the grid, which is

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (5.6)
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where A ∈ R6×6, B ∈ R6×2,and C ∈ R2×6 are unknown constant matrices, with

x(t) ∈ R6, y(t) ∈ R2 available for measurement. The physical meaning of this

statement is that the inverter system works isolated from the grid, which can be

considered as the operation situation before the inverter is connected to the grid.

Solving this control problem is a good start before working on the grid-connected

inverter system.

The input-output form of the above system is obtained as

y(t) = G0(s)[u](t), (5.7)

where G0 = C(sI − A)−1B.

5.3.1 Nominal Control Design

In this subsection, the nominal control design is derived for the inverter system

working without grid influence.

Nominal Controller With the knowledge of system parameters, the output feed-

back output tracking MRAC controller is

u∗(t) = Θ∗T1 ω1(t) + Θ∗T2 ω2(t) + Θ∗20y(t) + Θ∗3r(t), (5.8)

where Θ∗1,Θ
∗
2 ∈ R2∗6,Θ∗20,Θ3 ∈ R2×2, ω1(t) = F (s)[u](t), ω2(t) = F (s)[y](t) and

F (s) = 1
A(s)

, where A(s) is a monic stable polynomial of degree 2.
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Parameter Matching Property The parameters Θ∗1, Θ∗2, Θ∗20 and Θ∗3 for the

plant (5.1) is chosen to have the following matching property

I −Θ∗T1 F (s)−Θ∗T2 F (s)G0(s)−Θ∗20G0(s) = Θ∗3W
−1
m (s)G0(s), (5.9)

where G0(s) = C(sI−A)−1B, and F (s) = 1
A(s)

is the stable filter defined above. With

this matching property, one can prove that the controller designed in this section

satisfies the following theorem.

Theorem 5.1. With parameters Θ∗1, Θ∗2, Θ∗20 and Θ∗3 satisfying the matching property

(5.9), the controller (5.8) ensures that all signals in the closed-loop system are bounded

and

lim
t→∞

(y(t)− ym(t)) = 0. (5.10)

Proof. Operating u(t) on both side of (5.9), we have

u(t)−Θ∗T1 F (s)[u](t)−Θ∗T2 F (s)G0(s)[u](t)−Θ∗20G0(s)[u](t) = Θ∗3W
−1
m G0(s)[u](t).

(5.11)

Substituting the system description (5.7): y(t) = G0(s)[u](t), we have

u(t)−Θ∗T1 F (s)[u](t)−Θ∗T2 F (s)[y](t)−Θ∗20[y](t)−Θ∗3W
−1
m [y](t) = 0. (5.12)

Applying the output feedback controller defined in (5.8) to the equation above, we

have

Θ∗3Wm(s)−1[y − ym](t) = 0. (5.13)

Since Wm(s)−1 is Hurwitz, Θ3 = K−1
p . We have y(t) ∈ L∞ and

lim
t→∞

(y(t)− ym(t)) = 0. (5.14)
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With the satisfaction of the theorem above, the nominal controller designed in

this subsection can achieve the desired tracking.

5.3.2 Output Feedback Adaptive Control design

Based on the nominal controller, in this subsection an output feedback adaptive

controller is derived for the three-phase PV inverter with unknown parameters, work-

ing isolated from the grid.

Controller Structure The adaptive version of the nonminal controller (5.8) is

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t), (5.15)

where Θ1(t), Θ2(t), Θ20(t) and Θ3(t) are estimates of the system parameters Θ∗1,Θ
∗
2,Θ

∗
20

and Θ∗3.

Tracking Error Equation From (5.12), we can obtain the following equation

u(t)−Θ∗T1 ω1(t)−Θ∗T2 ω2(t)−Θ∗20y(t)−Θ∗3r(t) = Θ∗3ξm(s)[e](t), (5.16)

where e(t) is the output tracking error e(t) = y(t)− ym(t). It follows that

ξm(s)[e](t) = Θ∗−1
3 Θ̃T (t)ω(t), (5.17)
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where we define

Θ∗ = [Θ∗T1 ,Θ∗T2 ,Θ∗20,Θ
∗
3]T (5.18)

Θ(t) = [Θ1(t),Θ2(t),Θ20(t),Θ3(t)]T (5.19)

ω(t) = [ωT1 (t), ωT2 (t), y(t), r(t)]T (5.20)

Θ̃(t) = Θ(t)−Θ∗. (5.21)

Choose the same h(s) = 1
f(s)

as the one defined in Section 4.4.2. Then define the

filtered tracking error as

ē(t) = ξm(t)h(s)[e](t). (5.22)

Then, we have

ē(t) = Θ∗−1
3 h(s)[Θ̃Tω](t). (5.23)

Estimation Error Equation Introducing an estimation error

ε(t) = ē(t) + Ψ(t)ξ(t), (5.24)

where Ψ(t) is the estimate of Θ∗−1
3 and

ξ(t) = ΘT (t)ζ(t)− h(s)[ΘTω](t), ζ(t) = h(s)[ω](t). (5.25)

Adaptive Laws The adaptive laws for parameter estimates are chosen as

Θ̇T (t) = −Γ1ε(t)ζ
T (t)

m2(t)
(5.26)

Ψ̇(t) = −Γ2ε(t)ξ(t)

m2(t)
, (5.27)

where m2(t) = 1 + ζT (t)ζ(t) + ξT (t)ξ(t), Γ1 = ΓT1 ≥ 0, Γ2 = ΓT2 ≥ 0.
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The above adaptive laws ensure the same parameter estimation properties in

Lemma 4.2. We can derive the following theorem.

Theorem 5.2. For the plant (5.6) under assumption 1 and 2 and the reference model

(5.4). The adaptive controller (5.15) with the adaptive update law (5.26)-(5.27), all

signals in the closed-loop system are bounded and the tracking error e(t) = y(t)−ym(t)

satiefies limt→∞ e(t) = 0.

Based on this theorem, we have that the adaptive controller designed in this

section can achieve desired tracking.

5.4 Adaptive Control Design for Three-Phase Grid-

connected PV Inverter

In this section, we will first consider the output feedback control problem for the

three-phase grid-connected inverter system (5.6), which is

ẋ(t) = Ax(t) +Bu(t) +Bdδ(t), y(t) = Cx(t), (5.28)

where A ∈ R6×6, B ∈ R6×2, and C ∈ R2×6 are unknown constant matrices, with

x(t) ∈ R6, y(t) ∈ R2 are some available for measurement.

The input-output form of the above system is obtained as

y(t) = G0(s)[u](t) + ȳ(t), (5.29)

where G0 = C(sI − A)−1B and ȳ(t) = Gd(s)δ(t) = C(sI − A)−1Bdδ(t) is the output

for the disturbance. Note that G0(s)[u](t) , L−1[G0(s)u(s)].
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5.4.1 Nominal Control Design

Before starting the adaptive control design, the case where all the system param-

eters are known, which is the nominal control case, is considered.

Nominal Controller Structure With the knowledge of system parameters, the

output feedback output tracking MRAC controller is

u∗(t) = Θ∗T1 ω1(t) + Θ∗T2 ω2(t) + Θ∗20y(t) + Θ∗3r(t) + Θ∗4(t), (5.30)

where Θ∗1,Θ
∗
2 ∈ R2×6, Θ∗20,Θ3 ∈ R2×2 and Θ∗4(t) ∈ R2 is used to cancel the effects of

the disturbance δ(t), ω1(t) = F (s)[u](t), ω2(t) = F (s)[y](t), F (s) = 1
A(s)

, where A(s)

is a monic stable polynomial of degree 2.

Matching Property The parameters Θ∗1, Θ∗2, Θ∗20 and Θ∗3 for the plant (5.6) are

chosen to satisfy the matching property below

I −Θ∗T1 F (s)−Θ∗T2 F (s)G0(s)−Θ∗20G0(s) = Θ∗3W
−1
m (s)G0(s), (5.31)

where G0(s) = C(sI − A)−1B, and F (s) = 1
A(s)

is the stable filter defined above.

With this matching property, substituting the controller to the plant (5.6), the

closed-loop system becomes

y(t) = G0(s)[Θ∗3Wm(s)G0(s)]−1[Θ∗T2 F (s)ȳ(t) + Θ∗20ȳ(t) + Θ∗3r(t) + Θ∗4(t)] + ȳ(t)

(5.32)

= Wm(s)[r](t) + fp(t), (5.33)
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where fp(t) is the effect of the disturbance

fp(t) = Wm(s)Θ∗−1
3 [Θ∗T2 F (s)[ȳ](t) + Θ∗20ȳ(t) + Θ∗3W

−1
m (s)[ȳ](t) + Θ∗4(t)]. (5.34)

To cancel the effect of the disturbance fp(t), we can choose Θ∗4(t) as

Θ∗4(t) = −Θ∗T2 F (s)[ȳ](t)−Θ∗20ȳ(t)−Θ∗3W
−1
m (s)[ȳ](t). (5.35)

With this choice of Θ∗4(t) we can make fp(t) = 0.

Parameterlization for Θ∗4(t) Rewrite (5.35) as

Θ∗4(t) = −Θ∗T2 F (s)Gd(s)[d](t)−Θ∗20Gd(s)[d](t)−Θ∗3W
−1
m (s)Gd(s)[d](t). (5.36)

Notice that in the term Θ∗3W
−1
m (s)Gd(s)[d](t), W−1

m (s)Gd(s) is not proper. Hence, to

parameterlize Θ∗4(t), the knowledge of δ̇(t) is needed. With the proof in [4], we have

Θ∗4(t) = Pα1(s)F (s)[d](t) +Q(s)[d](t) (5.37)

= Pα1(s)F (s)[d](t) + Pα2(s)F (s)[d](t) + Pα3(s)F (s)[ḋ](t) (5.38)

= Pα(s)F (s)[Φ∗f + Φ̃∗f ](t) (5.39)

= Pα(s)F (s)Φ̄∗f(t), (5.40)

where Pαi(s)F (s), i = 1, 2, 3 is proper, Q(s) has relative degree 1 and PαF (s) is

proper. The last two equation is due to the fact that the derivitive of δ(t) share the

same components (f(t)) with δ(t).

With the fact that Pα(s)F (s) is proper. The choice of Θ∗4(t) in (5.40) can be
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rewritten as

Θ∗4(t) = Θ∗T5 ω3(t), (5.41)

where the parameterized variables Θ∗T5 and ω3(t) are

Θ∗T5 = (ΘαΦ̄∗T )T ∈ R5×2 (5.42)

ω3(t) = [(I4F (s)[f ](t))T , f(t)T ]T ∈ R5×2, (5.43)

where I4 is the identical matrix. With the derivation above, we can propose the

following proposition.

Proposition 5.1. The disturbance signal δ(t) in (4.63) being the summation of si-

nusoidal signals, the disturbance related control parameter Θ∗4(t) = Pα1(s)F (s)[d](t)+

Q(s)[d](t) can be parameterized to the form

Θ∗4(t) = Θ∗T5 ω3(t), (5.44)

where ω3(t) = [(I4F (s)[f ](t))T , f(t)T ]T and f(t) contains all the fundamental sinu-

soidal signals.

Next, the adaptive version of the control scheme is studied for systems without

the knowledge of system and disturbance parameters.

5.4.2 Output Feedback Adaptive Control design

Based on the nominal controller obtained from the previous section, in this sub-

section the output feedback model reference adaptive control scheme for the three

phase PV inverter working in grid-connection is proposed.
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Controller Structure The adaptive controller has the same structure as the non-

minal controller (5.8)

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t) + Θ4(t), (5.45)

where Θ1(t), Θ2(t), Θ20(t), Θ3(t) and Θ4(t) are estimates of the system parameter

Θ∗1,Θ
∗
2,Θ

∗
20,Θ

∗
3 and Θ∗4(t).

Tracking Error Equation From (5.9), we can obtain the following equation

u(t)−Θ∗T1 ω1(t)−Θ∗T2 ω2(t)−Θ∗20y(t)−Θ∗3r(t) = Θ∗3ξm(s)[e](t), (5.46)

where e(t) is the output tracking error e(t) = y(t)− ym(t). It follows that

ξm(s)[e](t) = Θ∗−1
3 Θ̃T (t)ω(t), (5.47)

where

Θ∗ = [Θ∗T1 ,Θ∗T2 ,Θ∗20Θ∗3,Θ
∗
5]T , (5.48)

Θ(t) = [Θ1(t),Θ2(t),Θ20(t)Θ3(t),Θ5(t)]T , (5.49)

ω(t) = [ωT1 (t), ωT2 (t), y(t), r(t)ωT3 (t)]T , (5.50)

Θ̃(t) = Θ(t)−Θ∗. (5.51)

Choose the same filter h(s) = 1
f(s)

as the one defined in Section 4.4.2. Then define

the filtered tracking error as

ē(t) = ξm(s)h(s)[e](t). (5.52)
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Then, we have

ē(t) = Θ∗−1
3 h(s)[Θ̃Tω](t). (5.53)

Estimation Error Equation Introducing an estimation error

ε(t) = ē(t) + Ψ(t)ξ(t), (5.54)

where Ψ(t) is the estimate of Θ∗−1
3 and

ξ(t) = ΘT (t)ζ(t)− h(s)[ΘTω](t), ζ(t) = h(s)[ω](t). (5.55)

Adaptive Laws The adaptive laws for parameter estimates are chosen as

Θ̇T (t) = −Γ1ε(t)ζ
T (t)

m2(t)
(5.56)

Ψ̇(t) = −Γ2ε(t)ξ(t)

m2(t)
, (5.57)

where m2(t) = 1 + ζT (t)ζ(t) + ξT (t)ξ(t), Γ1 = ΓT1 ≥ 0, Γ2 = ΓT2 ≥ 0.

The above adaptive laws ensure the same parameter estimation properties in

Lemma 3.2. And we can derive the theorem below

Theorem 5.3. For the plant (5.6) under assumption 1 and 2 and the reference model

(5.4). The adaptive controller (5.45) with the adaptive update law (5.56)-(5.57), all

signals in the closed-loop system are bounded and the tracking error e(t) = y(t)−ym(t)

satiefies limt→∞ e(t) = 0.

With this theorem, we have that the adaptive controller designed in this section

can achieve the desired tracking.
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5.5 Simulation Results

In this section, the simulation results are presented for output feedback output

tracking control schemes for inverter system. Firstly the results for the adaptive

controller inverter working without grid influence are introduced then the results for

the inverter working grid-connected are proposed.

5.5.1 Inverter System Operating without Disturbance

For the inverter system working without grid influence, the system state space

equation is

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (5.58)

where

Table 5.1: Simulation study parameter [17], [30]

Parameter Unit Value
Inductor Lf (mH) 0.9
Capacitor C (µF) 30
Inductor Lg (mH) 0.54
Resistance Rf (mΩ) 0.05
Resistance Rg (mΩ) 0.03
Resistance Rc (mΩ) 0.05
Line-to-line grid voltage Ua,b,c (V) 380
Grid frequency ω (rad/s) 314.15
Input voltage UPV (V) 750-820



89

x(t) =

[
Iid Iiq Igd Igq UPV Uqc

]T
, u(t) =

[
dd dq

]
, (5.59)

A =



−88.89 314.16 33.33 0 −1111.11 0

−314.16 −88.89 0 33.33 0 −1111.11

111.11 0 −55.56 314.16 1851.85 0

0 111.11 −314.16 −55.56 0 1851.85

33333.33 0 −33333.33 0 0 314.16

0 33333.33 0 −33333.33 −314.16 0


,

(5.60)

B =

5.13× 105 0 0 0 0 0

0 5.13× 105 0 0 0 0

 , (5.61)

C =

0 0 1 0 0 0

0 0 0 1 0 0

 . (5.62)

These nominal values are obtained by applying the system parameters in Table 5.1

to the system matrix (A,B,C) in (3.11)-(3.13).

This linear model can be treated as a test bed to do simulations systematically to

verify the effectiveness of our proposed adaptive control scheme.

Adaptive Control design For the inverter system (4.104), it can be verified that

the transfer matrix G(s) = C(sI −A)−1B has stable zeros: z1 = (−5.56− j0.0031)×

105, z2 = (−5.56 + k0.0031) × 105. Also, this transfer matrix is strictly proper and

full rank. Choosing the interactor matrix as ξm(s) = diag{(s + 1)2, (s + 1)2}, such
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that the high-frequency gain matrix is

Kp = lim
s→∞

ξm(s)G(s) =

5.7022× 107 0

0 5.7022× 107

 , (5.63)

which is positive finite and nonsingular. Then the reference model is chosen as

Wm(s) = ξ−1
m (s) = diag

{
1

(s+ 1)2
,

1

(s+ 1)2

}
. (5.64)

Choosing f(s) = (s+ 1)2 and h(s) = 1
(s+1)2

.

Simulation Results Choose the initial control parameters 0.8 times of their true

nominal values. Choose Γ1 = Γ2 = 0.1I. There two cases of simulation results. In

Case 1, the system tracks a constant output ym = [I∗gd, I
∗
gq]

T , where I∗gd = 2P ∗

3UdN
=

17A, Igq = 0. In Case 2, the system tracks ym(t) which initially has the same value

as in Case 1 and then increases as time goes.

Case 1: Choose r(t) = [17, 0]T , ym(0) = [17, 0]T . In this way, ym is just constant signal.

Figure 5.1b shows the output current and the tracking error in the d-q axis. We

can see that the system achieved desired tracking after 0.1 seconds. Figure 5.1a

shows the three-phase output current, from which we can see that the system

achieved the desired output tracking.

Case 2: Choose r(t) = [17, 0]T , t ≤ 1, r(t) = [20, 0]T , t > 1, this way ym changes

smoothly. Figure 5.2a shows the desired tracking signal ym(t) which is a slowly

increasing signal. Figure 5.2b show the output current and the tracking error

in the d-q axis. This result shows that if ym(t) is a time variant signal, the

adaptive controller designed for this situation can still achieve tracking. This is

something that a classic controller cannot do.
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(a) The output current in the a-b-c reference frame.

(b) The output current and tracking error of Igd, Igq.

Figure 5.1: System response for Case 1.
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(a) The reference signal ym(t).

(b) The output current and tracking error of Igd, Igq.

Figure 5.2: System response for Case 2.
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5.5.2 Inverter System Operating in Grid Connected Mode

For the inverter system working grid-connected, the system state space equation

is

ẋ(t) = Ax(t) +Bu(t) +Bdδ(t), y(t) = Cx(t), (5.65)

where A,B,C and the definitions of x(t), u(t) are stated in Section 4.5.2. and

Bd =

0 0 −1.28× 104 0 0 0

0 0 0 −1.28× 104 0 0


T

, (5.66)

δ(t) =

UdN(t)

UqN(t)

 . (5.67)

Adaptive Control Design For the inverter system (4.104), it can be verified that

the transfer matrix G(s) = C(sI −A)−1B has stable zeros: z1 = (−5.56− j0.0031)×

105, z2 = (−5.56 + j0.0031) × 105. Also, this transfer matrix is strictly proper and

full rank. Choosing the interactor matrix as ξm(s) = diag{(s + 1)2, (s + 1)2}, such

that the high-frequency gain matrix is

Kp = lim
s→∞

ξm(s)G(s) =

5.7022× 107 0

0 5.7022× 107

 , (5.68)

being positive finite and nonsingular and the matrix

Kd = lim
s→∞

ξm(s)Gd(s) =

−1.8519× 103 0

0 −1.8519× 103

 , (5.69)
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is finite. Then the reference model is chosen as

Wm(s) = ξ−1
m (s) = diag

{
1

(s+ 1)2
,

1

(s+ 1)2

}
. (5.70)

We also choose f(s) = (s+ 1)2 and h(s) = 1
(s+1)2

for MRAC design.

Simulation Results Choose Γ1 = Γ2 = 0.1I. There are three cases of simula-

tion results presented. Case 3 shows the inverter system working in a standard grid

which means δ(t) = [310, 0]T , for this case the ability of the adaptive controller to

work normally in the grid is tested (with initial parameters equal to the true nom-

inal parameters). Case 4 shows the inverter working the standard grid with system

parameters unknown (choosing the initial control parameters 0.8 times of their true

nominal values), this will test the ability to deal with system uncertainties for the

adaptive controller. Case 5 shows the inverter working in a polluted grid, i.e., the grid

side voltage have some harmonic components. This case will show the disturbance

rejection ability of the controller to work under unknown harmonic disturbance. Since

for case 3, our preliminary concern is to test the ability of our control system to han-

dle the disturbance rather than other uncertainties in the system, the initial control

parameters are chosen as the true values.

Case 3: Choose r(t) = [17, 0]T , ym(0) = [17, 0]T , δ(t) = [310, 0]T . Figure 5.3b shows the

output current and the tracking error in the d-q axis. Figure 5.3a shows the

three phase output current, from which we can see that the system achieved

the desired output current. Figure 5.4 shows the FFT analysis of the output

current, where the sampling interval for the FFT analysis is 5× 10−5s. We can

see that by using our control method, the THD is 0.01% in this case.
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(a) The output current in a-b-c reference.

(b) The output current and tracking error of Igd, Igq.

Figure 5.3: System response for Case 3.
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Figure 5.4: FFT analysis for the output current Iga for Case 3.

Case 4: Choose r(t) = [17, 0]T , ym(0) = [17, 0]T , δ(t) = [310, 0]T , all initial control

parameters are 0.9 times of their true nominal values. Figure 5.5 shows the

output current and the tracking error in the d-q axis, from which we can see that

if uncertainties appears in the system, an output feedback adaptive controller

have the ability to achieve desired control objective, however the convergence

rate is slower than state feedback controller. The system takes 10 seconds to

track the desired reference signal. This slow convergence rate is due to the higher

order of the output feedback controller. The calculations are more complicated

than the state feedback controller.
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Figure 5.5: The output current and tracking error of Igd, Igq for Case 4.

Case 5 Choose r(t) = [17, 0]T , ym(0) = [17, 0]T . The polluted grid is considered as the

disturbance

δ(t) =

310 + 10 cos(6ωt) + 10 sin(6ωt) + 5 cos(12ωt) + 5 sin(12ωt)

10 cos(6ωt) + 10 sin(6ωt) + 5 cos(12ωt) + 5 sin(12ωt)

 (5.71)

The THD of the grid side voltage is 6.2%. Figure 5.6b shows the output current

and the tracking error in the d-q axis. Figure 5.6a shows the three-phase output

current. We can see that the system achieved the desired output current. Figure

5.7 shows the FFT analysis of the output current with the sampling interval

5× 10−5s. We can see that by using our control method, the THD in this case

is 3.41%, less than the grid side voltage THD.
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(a) The output current in the a-b-c reference frame.

(b) The output current and tracking error of Igd, Igq.

Figure 5.6: System response for Case 5.
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Figure 5.7: FFT analysis for the output current Iga for Case 5.

5.6 Summary

In this chapter, the output feedback adaptive control schemes for the three-phase

inverter system working with and without grid-connection are designed. Simulation

results are presented to verify our designs. From the simulation result, we can con-

clude that the control objective is achieved. Comparing with the state feedback

adaptive controller in Chapter 4, in the case where there exist no disturbance, both

controllers show a similar system performance. In the grid-connected mode, how-

ever, the output controller system track the reference signal very slowly. The system

performance is not as good as the cases for the state feedback controller. Although

output feedback adaptive controller can achieve the adaptive control design by only

knowing the output signals of the inverter system, the design parameters are twice

as much as the state feedback controller, and the controller structure is more compli-



100

cated. With further experiments and changes on some control parameters, a better

system performance for the output feedback adaptive controller might be obtained.



Chapter 6

Conclusions and Future Topics

This chapter is a summary of this thesis. The main results of this thesis are stated.

Then some future works after this research are discussed.

6.1 Summary and Conclusions

In this thesis, the motivations for committing to this research topic are given,

and the state-of-the-art research related to the inverter control problem is discussed.

Following this, the basics of classical control theory, as well as adaptive control theory,

are presented, and the approach to modeling for the grid-connected inverter system

is presented. With the analysis of the needs for the grid connected inverter system,

the control objective is stated. Then both state feedback and output feedback output

tracking MRAC schemes for this control objective are derived. Simulation results

show that both schemes achieve the control objective.

From this research, we can draw the following conclusions:

(i) The control objective for the grid-connected PV inverter is achieved by both

control schemes.
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(ii) Comparing with a classical gain fixed control method, the adaptive controllers,

designed in this thesis have the ability to deal with uncertainties of the system

parameters as well as grid side influence (such as a change of the grid voltage

or the grid voltage with some harmonics).

(iii) Although both controllers meet the control objective,seen from the simulation

results, the output feedback controller has a slower system response than the

state feedback controller. This is due to the higher order complexity of the

output feedback controller. Some further tests for the controller parameters to

make the output feedback controller to achieve better performance are needed

before it can be used in reality.

6.2 Future Research Topics

The adaptive control for the three phase PV inverter with grid-connection, as

discussed and analyzed in this thesis, is a new research topic. There still have many

related issues. In this section, several possible extensions to our research are intro-

duced.

(i) The control problem for the inverter system is a practice problem, and the

control method should be reliable and tested in practical before applied to the

power supply company to avoid damage to the grid. In the further research,

experiments should be set up to verify the theoretical results in this thesis.

(ii) So far for the disturbance rejection part of this research, we consider most

disturbance and unwanted high order harmonics coming from the grid side. To

simplify the design, some nonlinearities of the system are ignored, and there

might exist some other generation of higher order harmonics. In the future
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work, the effect of these modules in the system may be discussed.

(iii) This research theoretically proved that the adaptive control method can be used

for the inverter control problem and can be used to eliminate harmonics. The

simulation result shows that the output current of the inverter meets the THD

standard in IEEE 1547 standard. However, the THD is not as small as some

other research. As a result, an optimal design of adaptive control is needed to

achieve better performance.

(iv) Theoretically, the result for this research can be used for other polluted grid

such as the three phase unbalanced grid or the frequency change of the grid. For

the three phase unbalanced grid, the inverter system should have the function

to compensate some distortion of the grid. As a result, the further derivation

of the reference current signal is needed. As for the frequency varying case, an

adaptive phase lock module is needed.

(v) Although simulation results have proved that the control objective for the three-

phase inverter system is achieved, a large amount of calculation is needed. The

reduced order adaptive control method will be studied in the future to improve

this situation.
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