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I

Abstract

Model reference adaptive control (MRAC) is an important methodology to accommo-

date various system uncertainties. Traditionally, for output tracking MRAC, either

a state feedback controller or an output feedback controller is used. As an effort

to provide additional feedback capacity and design flexibility to the existing MRAC

family, this dissertation focuses on the development of partial-state feedback MRAC

framework and the application of such novel MRAC designs. For partial-state feed-

back MRAC, plant-model matching is achievable as with full-state feedback control,

while the controller structure enjoys less complexity as compared with an output feed-

back MRAC design. In this study, adaptive partial-state feedback control designs are

developed for single-input-single-output systems and multi-input-multi-output sys-

tems, respectively. Both adaptive control schemes ensure closed-loop system stability

and asymptotic output tracking. Related issues such as plant-model matching, error

model, adaptive law, and stability analysis are investigated in this dissertation.

Applications of the new partial-state feedback MRAC designs are also explored.

Based on the enhanced robustness brought by the partial-state feedback MRAC de-

signs, new sensor failure compensation control schemes for single-input-single-output

systems and multi-input-multi-output systems are developed and investigated in this

dissertation. The new adaptive sensor failure compensation schemes have the capabil-

ity of ensuring asymptotic output tracking while compensating all possible uncertain

sensor failures in the presence of the system parametric uncertainties. The new sensor-

redundancy-free compensation schemes relax some requirements of traditional fault-

tolerant control techniques. This dissertation also extends the partial-state feedback

MRAC application to the multi-agent system control area. A new adaptive output

consensus control scheme via partial-state feedback MRAC is developed which can



II

increase control design flexibility and make full use of all possible system measure-

ments for multi-agent consensus control. The new consensus control scheme is able

to achieve closed-loop signal boundedness and asymptotic output consensus in the

presence of system parameter uncertainties.

The effectiveness of the developed adaptive partial-state feedback control designs

and sensor fault compensation designs have been assessed on some high-fidelity air-

craft systems or quadrotor systems by MATLAB. The simulation results have demon-

strated the desired performance of our designs.
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Chapter 1

Introduction

Adaptive control attracted tremendous attention in the past decades due to its ca-

pacity of accommodating system uncertainties [2,17,33,37,39,40,51,53,82]. Recently,

more results have been developed such as adaptive backstepping control [11, 86, 98],

adaptive posicast control [18], adaptive sliding mode control [10], robust adaptive

control [31, 58, 61] and other adaptive control designs [5, 60, 87, 92]. Among different

design methods, model reference adaptive control (MRAC) is one of the most impor-

tant methods [14], [28]. However, although systematic research work has been con-

ducted for MRAC, some technical improvements and new designs of MRAC schemes

are still needed for completing the MRAC theory.

1.1 Background and Research Motivations

Model reference adaptive control is an essential adaptive control approach. It pro-

vides feedback controller structures and stable adaptive laws for plants to guarantee

asymptotic output or state tracking of a given reference model system and closed-

loop signal boundedness, in the presence of system uncertainties [3, 19, 24, 33, 65].

Most existing MRAC frameworks can be classified into three different types: (i) state

feedback MRAC for state tracking [33, 53, 85]; (ii) state feedback MRAC for output
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tracking [7,27]; and (iii) output feedback MRAC for output tracking [24,88,89]. The

controller structure of state feedback MRAC for state tracking is simple, but the

plant-model state matching condition is restrictive, which can only be satisfied for

system matrices in certain canonical forms. It turns out that state feedback MRAC

for output tracking is suitable for broader applications because of its simple structure

and unrestrictive matching condition [27]. However, in applications, the requirement

for a full-state vector may confine the use of state feedback MRAC. On the other hand,

output feedback MRAC for output tracking attracts interest, as its implementation

does not need the information of state variables, although its controller structure is

more complex.

From the above observations, we conclude that (i) the feedback signal of MRAC

schemes is either state vector or output signal; (ii) for the existing MRAC designs,

either the requirement for the feedback signal is hard to be satisfied or the controller

implementation complexity is high. In practice, the sensors in closed-loop systems can

be selected by users at desired locations, in other words, the number of measurable

signals in a closed-loop system could be larger than one but less than the number of

state variables, which shows the potential to improve the existing MRAC frameworks.

Thus, it is desirable to develop a new MRAC framework for output tracking which

can provides

• new feedback capacity to make full use of available system measurements; and

• new design flexibility between the required system measurements for feedback

and controller implementation complexity.

In this study, we develop such a new MRAC framework by using partial-state

vectors. The new adaptive control framework, with a general feedback signal, provides

an additional and complete control approach to guarantee asymptotic output of a



4

given reference model system and closed-loop signal boundedness, in the presence

of system uncertainties, and brings a new manageable trade-off between the required

system measurements and implementation complexity into the existing MRAC family.

One application of partial-state feedback MRAC is sensor failure compensation.

For some applications, although the full-state can be measured, the measurements

may not be accurate due to sensor failures and the control system may break down

when sensor failures happen. Inspired by the robustness of partial-state feedback

MRAC brings in, we develop sensor compensation schemes to improve the reliability

of control systems in this research. The new sensor failure compensation schemes have

the capability to achieve asymptotic output tracking and closed-loop boundedness in

the presence of parametric uncertainties and possible uncertain sensor failures.

Multi-agent system cooperative control has received tremendous attention dur-

ing the past decade due to its broad applications. To provide additional design

flexibility and feedback capacity to multi-agent MRAC systems, the newly devel-

oped partial-state feedback MRAC is applied for multi-agent consensus control. Our

works [73,74] have verified the effectiveness of state feedback MRAC designs for state

consensus control for multi-agent systems. In this research, we incorporate the de-

veloped partial-state feedback MRAC schemes to the multi-agent systems for output

consensus control.

1.2 Literature Review

In this section, we will present a brief overview of research on model reference adap-

tive control, partial-state feedback control, fault-tolerant control, and multi-agent

consensus control, which provides solid technical foundations for the studies in this

dissertation.
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1.2.1 Model Reference Adaptive Control

Considerable effort has been devoted to the development of MRAC [3, 19, 24, 33, 39,

51, 53, 59, 65, 82, 88], which plays an important role in the adaptive control family. It

provides feedback controller structures for plants to guarantee asymptotic output or

state tracking of a given reference model system and closed-loop signal boundedness

for the objective model reference control, and it adopts adaptive control method to

provide stable adaptive laws for the plants to deal with system uncertainties. The

desired closed-loop performance of a MRAC system, such as time constant, damping

ratio, natural frequency, is determined by the reference model [80]. The block diagram

of a general MRAC system is given in Fig. 1.1.

Adaptive 
laws

Adaptive 
controller

plant
Control law u(t)

Output y(t)

Feedback Signal

Calculate tracking error 
& update controller parameter

Reference 
model

Reference r(t)

Figure 1.1: Block diagram of a general MRAC system structure.

According to the different implementation scheme, there are two approaches of

MRAC designs: direct MRAC designs [27,46,53,78,85], and indirect MRAC designs

[12,36,62]. For direct MRAC designs, the adaptive controller parameters are updated

by an adaptive law directly, while for in direct MRAC design, the adaptive controller

parameters are solved from some algebraic equations related to the system parameters

which are estimated from an adaptive law.

Direct MRAC designs, further, can be classified into three types: (i) state feed-
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back MRAC for state tracking [33,53,85]; (ii) state feedback MRAC for output track-

ing [7, 27]; and (iii) output feedback MRAC for output tracking [24, 88, 89]. The

controller structure of state feedback MRAC for state tracking is simple, but the

plant-model state matching condition is restrictive, which can only be satisfied for

system matrices in certain canonical forms. It turns out that state feedback MRAC

for output tracking is suitable for a wider range of applications because of its sim-

ple structure and unrestrictive matching condition [27]. However, in applications,

the requirement for a full-state vector may confine the use of state feedback MRAC.

On the other hand, output feedback MRAC for output tracking attracts interest,

as its implementation does not need the information of state variables, although its

controller structure is more complex. To learn more details, please refer the related

textbooks [3, 24,33,37,53,82].

1.2.2 Partial-State Feedback Control

Research in partial-state feedback control has been reported. In [37], a partial-state

feedback design is developed for nonlinear systems in a canonical form to achieve

asymptotic output tracking by using a vector with a subset of state variables. In [40],

by using a full-order Luenberger-based state observer, an adaptive model reference

controller using system measurements of dimension greater than the number of in-

puts is developed for bounded output tracking of multi-input-multi-output systems

with (A,B,C,Cz) known whose dynamics may have high relative degree and are not

necessarily minimum-phase. In [52], a partial-state feedback adaptive controller for a

discrete-time system model is proposed using linear quadratic control design, which

needs to solve the computation of a matrix factorization. In [22], a backstepping

technique is utilized to construct a controller to achieve global convergence, whose

design procedure may become complex when the plant order is high. Moreover, some
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partial-state feedback control designs without adaptation for certain classes of plants

have been developed. In [4], a partial-state feedback controller is developed for an

induction motor system. In [23], the authors develop a discrete-time partial-state

feedback controller for a fourth-order wind power system for achieving closed-loop

signal boundedness. Control designs in [4] and [23] have the capability of solving

some practical problems without full-state measurements. However, a rigorous and

systematic study for partial-state feedback MRAC which has the capability of han-

dling system parametric uncertainties for general linear time-invariant (LTI) systems

is still not available in the literature.

From the above observations, a rigorous and systematic study for partial-state

feedback MRAC which has the capability of handling system parametric uncertainties

for general linear time-invariant (LTI) systems is still not available in the literature.

Thus, one of the aims of this research is to propose and study a new model reference

adaptive control framework using partial-state feedback for output tracking, which

can achieve closed-loop system stability as well as asymptotic output tracking, in the

presence of parameter uncertainties.

1.2.3 Fault-Tolerant Control

Fault-tolerant control algorithms are capable of eliminating severe consequences of

various faults and maintaining desirable system stability and performance [6, 54, 84,

94]. For systems with system sensor failures, one typical type of methods, based on

neural networks, is to detect the failed sensors and recover the correct measurement

by collecting and comparing the measurements from both faulty sensors and correct

sensors [25, 67, 96]. Such designs rely on the redundancy of sensors. Some recent

results may avoid such a requirement. In [42], an adaptive sensor failure inverse

(compensator) is developed and added into the closed-loop system to adaptively can-
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cel the effects of sensor uncertainties for output tracking. In [34], a practical case is

considered, wherein sensor bias is only present on the rate measurements but not the

position measurements. For such a special case, an observer can be constructed based

on the bias-free position measurements to estimate the actual values of the rate, in

order to achieve asymptotic state tracking. In [26], a new error model is developed

for updating the unknown parameters of a compensator and a feedback controller,

for a multivariable control system being subject to sensor failures. For those results,

fault estimates are needed, although they do not rely on sensor redundancy.

The development of fault-tolerant control methods for emerging technology ap-

plications, especially, for safety-critical applications, is essential. Quadrotor control

attracts considerable attention in the past decades, one of a main challenges for

quadrotor control for is sensor fault. Most of the control methods proposed in the

literature are full-state feedback control method. However, the accurate measure-

ment of the full state vector may not be available during the whole flight since the

sensors are sensitive to temperature and vibration. Both additive faults (bias, drift,

loss of accuracy) and one multiplicative fault (loss of effectiveness) may be existed

in quadrotor control systems. In response to the sensor faults problem, sensor fusion

techniques are widely utilized for quadrotor control applications. To make this tech-

nique function well, the quadrotor system has to equipment at least double sets of

sensors, or even triple sets of sensors, which makes a large sensor redundancy, brings

additional time delay, and increases technical difficulty for restrict stability analysis.

Hence, researchers try to find direct control schemes to guarantee tracking control in

the presence of sensor failures [1, 32, 50]. In [32], two adaptive fuzzy controllers are

developed to compensate four different types of sensor faults for quadrotor position

tracking and altitude tracking respectively. In [1], a sensor fault detection algorithm
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is proposed by building a neural network adaptive structure, with an assumption

that all the system states can be correctly measured. In [50], a nonlinear compensa-

tion scheme is presented through feedback linearization technique for compensating

a constant bias sensor measurement.

From the above observations, we conclude that failure detection and identification

or failure estimation are required procedures for most of the sensor failure tolerant

control designs. In this dissertation, we will propose new compensation schemes based

on MRAC so as to improve the art of sensor failure compensation techniques.

1.2.4 Multi-Agent Consensus Control

Cooperative control of multi-agent systems has attracted considerable attention in

recent years with the development of sensor networks [16, 20, 30, 38, 56, 57, 63, 64,

90]. Its applications, for instance, unmanned air vehicles (UAV) formation, robot

position synchronization, and satellite altitude alignment, cover broad areas. The

fundamental problem of cooperative control is to enable a group of agents to reach

consensus (to converge to a common value on their states or outputs), which can be

classified as leaderless consensus and leader-following consensus. A large number of

control algorithms are proposed for consensus of multi-agent systems to deal with

measurement noise [43, 48], time-delay [13,81] and switching topology [45,56,90].

In the past years, leader-following consensus attracts more attention. Most of the

pioneering results on leader-following consensus control are for some simple dynam-

ics [29,69,91,97]. Recently, researchers started to investigate adaptive leader-following

consensus problems for multi-agent systems where the agent dynamics are given in

general linear systems [35,41,44,46,49,93] or given in nonlinear systems [15,64,95]. For

linear time-invariant systems, efforts are dedicated to adaptive state feedback state

consensus problem. In [46], leader-following state consensus of a multi-agent system
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is achieved by a distributed adaptive state feedback disturbance compensation proto-

col. In [44, 49], state feedback adaptive control protocols are developed for identical

followers to achieve state consensus of a multi-agent system with a graph having

a spanning tree. Since state consensus requires strict matching conditions among

the leader and all the followers that is not suitable for many applications, adaptive

output consensus has been actively studied in the literature. In [35], without a sta-

bility analysis, an output feedback control protocol is presented with a distributed

adaptive law to achieve leader-following output consensus of a multi-agent system

with relative-degree-one followers where the graph has a spanning tree. In [41], a dis-

tributed adaptive protocol is presented for multi-agent systems with identical follower

agents, for leader-following consensus with a constant reference signal. In [93], a dis-

tributed adaptive output feedback control scheme is developed for output consensus

of a multi-agent system where the graph has a spanning tree.

1.3 Dissertation Outline

In this research, there are in total six MRAC problems, divided into two parts (the

structure of this dissertation is illustrated in Fig. 1.2). The first part is to build up

the technical foundation of partial-state feedback MRAC which includes

• a partial-state feedback model reference adaptive control scheme for single-input

single-output (SISO) systems;

• a partial-state feedback model reference adaptive control scheme for multi-input

multi-output (MIMO) systems; and

• an analysis on higher-order convergence properties of multivariable model ref-

erence adaptive control systems.
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The second part is to apply the design ideas of partial-state feedback MRAC to

develop

• a sensor failure compensation scheme for SISO systems;

• a sensor failure compensation scheme for MIMO systems; and

• an output consensus control scheme for multi-agent systems.

Figure 1.2: A schematic diagram for the structure of this dissertation.

The dissertation is organized as follows, where the major results have been docu-

mented and published in the journal and conference papers [71–73,75–79].

• In Chapter 2, the fundamental MRAC problem is formulated which is the main

control problem in this research, and different MRAC problems, incorporated

with partial-state feedback control, fault-tolerant control, and consensus control,

are formulated respectively.
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• In Chapter 3, the adaptive partial-state feedback MRAC scheme is developed

for SISO systems, which has the capability to make the closed-loop signals

bounded and the plant output track the reference signal asymptotically in the

presence of parameter uncertainties.

• In Chapter 4, the knowledge of the adaptive partial-state feedback control for

SISO systems is expanded to MIMO systems, where some advanced control

techniques are used to deal with the unique features of MIMO systems.

• In Chapter 5, a stronger higher-order convergence property of the multivariable

MRAC systems is shown. It is proved that under the same MRAC design

conditions, not only a tracking error component but its up to higher-order

time-derivatives converge to zero.

• In Chapter 6, a sensor failure compensation scheme is designed for SISO sys-

tems based on the robustness of the partial-state feedback MRAC scheme that

developed in Chapter 3, which can achieve asymptotic output tracking and

closed-loop signal boundedness, in the presence of uncertain sensor failures and

uncertain system parameters.

• In Chapter 7, a multivariable sensor failure compensation scheme is designed for

quadrotor systems, which can achieve asymptotic output tracking and closed-

loop signal boundedness, in the presence of uncertain sensor failures for multi-

variable plants with an non-equilibrium off-set term; and

• In Chapter 8, a distributed output consensus control scheme is developed, by

applying the partial-state feedback MRAC scheme developed in Chapter 3 to

the multi-agent systems, which guarantees output consensus and closed-loop
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signal boundedness in the multi-agent systems, and provides new additional

design flexibilities to multi-agent control systems.

• In Chapter 9, conclusions of this research are given and some future research

topics in this area are presented for discussion.



Chapter 2

Background and Problem
Statement

As the control method that to be studied and explored in this dissertation, model

reference adaptive control, with an introduction to some typical MRAC designs, is

briefly reviewed in this chapter. Then two control applications are briefly formu-

lated, where some essential background knowledge for the following control designs

is introduced.

2.1 Model Reference Adaptive Control Problem

The basic feature of MRAC is to use control adaptation to make the output or state

of an unknown plant to track that of a chosen reference model system. A brief

introduction of the basic model reference adaptive control systems is given in this

section. For completeness, a brief review of the existing MRAC designs for multi-

input multi-output (MIMO) systems is given as follows.

Plant description. Consider an M -input and M -output linear time-invariant

plant described by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (2.1.1)
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where A ∈ Rn×n, B ∈ Rn×M and C ∈ RM×n are unknown constant parameter

matrices, and x(t) ∈ Rn, u(t) ∈ RM and y(t) ∈ RM are the state, input and output

vectors, respectively. The input-output description of the plant (2.1.1) is

y(t) = G(s)[u](t), G(s) = C(sI − A)−1B. (2.1.2)

The notation, y(t) = G(s)[u](t), is used to denote the output y(t) of a system rep-

resented by a transfer function matrix G(s) with a control input signal u(t). It is a

simple notation to combine both the time domain and the frequency domain signal

operations, suitable for adaptive control system presentation.

For better understanding the control objective and the plant assumptions, we

first introduce a crucial concept for multivariable MRAC designs, as defined in the

following lemma.

Lemma 2.1.1. [82] For any M ×M strictly proper and full rank rational matrix

G(s), there exists a lower triangular polynomial matrix ξm(s), defined as the modified

left interactor (MLI) matrix of G(s), of the form

ξm(s) =


d1(s) 0 . . . . . . 0
hm21(s) d2(s) 0 . . . 0

...
...

...
...

...
hmM1(s) . . . . . . hmMM−1(s) dM(s)

 , (2.1.3)

where hmij (s), j = 1, ...,M − 1, i = 2, . . . ,M are polynomials, and di(s), i = 1, ...,M

are monic stable polynomials of degrees li > 0, such that the high-frequency gain

matrix of G(s), defined as Kp = lims→∞ ξm(s)G(s) is finite and nonsingular.

This interactor matrix ξm(s) characterizes the plant infinity zero structure of G(s),

whose property of having a stable inverse is essential for MRAC designs. To better

understand the plant infinite zero structure, we consider SISO systems here. For a

SISO system, the plant infinite zero structure is characterized by the term sn−m such

that the system high-frequency gain kp = lims→∞ s
n−mG(s) 6= 0.
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Plant assumptions. The assumptions for MRAC designs are given as follows.

(A2.1) All zeros of G(s) = C(sI − A)−1B are stable, and (A,B,C) is stabilizable

and detectable.

(A2.2) G(s) has full rank and its modified left interactor matrix ξm(s) is known.

Assumption (A2.1) is for a stable plant-model output matching, and Assump-

tion (A2.2) is for choosing a reference model system Wm(s) = ξ−1
m (s) suitable for

plant-model output matching. Note that the zeros of G(s) are defined as the system

transmission zeros (the values of s making G(s) nonsingular).

Control objective. The objective of multivariable MRAC is to construct a feed-

back control law for generating the control input signal u(t) in (2.1.1) such that all

signals in the closed-loop system are bounded and the output vector y(t) asymptoti-

cally tracks a given reference output ym(t) generated from a reference model system

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s), (2.1.4)

where r(t) ∈ RM is a bounded reference input signal, and ξm(s), defined in Lemma

2.1.1, is a modified left interactor matrix of the system transfer matrix G(s) = C(sI−

A)−1B, whose inverse matrix is stable, i.e., Wm(s) is stable. The block diagram of an

MRAC system is given in Fig. 2.1.

Typical multivariable MRAC designs. In the literature, there are two types

of multivariable MRAC designs, namely, state feedback output tracking design and

output feedback output tracking design.

(a) State feedback for output tracking. When the full state vector x(t) is available

for measurement, the following simple adaptive controller structure can be used:

u(t) = KT
1 (t)x(t) +K2(t)r(t), (2.1.5)
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Figure 2.1: Block diagram of a general MRAC system structure.

where K1(t) ∈ Rn×M and K2(t) ∈ RM×M are controller parameters to be adaptively

updated by stable adaptive laws. Such controller parameters K1(t) and K2(t) are the

adaptive estimates of the nominal controller parameters K∗1 and K∗2 satisfying the

matching condition

C(sI − A−BK∗T1 )−1BK∗2 = Wm(s), K∗−1
2 = Kp, (2.1.6)

with Kp being the system high-frequency gain matrix of G(s) for plant-model output

matching: y(t) = Wm(s)[r](t) = ym(t). The existence of the nominal controller

parameters K∗1 and K∗2 is guaranteed as long as the plant interactor matrix ξm(s) is

used for Wm(s) = ξ−1
m (s). In addition, to ensure the output tracking as well as the

system internal signal boundedness, (A,B,C) needs to be stabilizable and detectable

and all zeros of G(s) need to be stable [27].

(b) Output feedback for output tracking. In applications, when the full state vector

x(t) is not accessible, the standard output feedback adaptive controller

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t) (2.1.7)

needs to be used, where

ω1(t) =
A0(s)

Λ(s)
[u](t), ω2(t) =

A0(s)

Λ(s)
[y](t) (2.1.8)
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with A0(s) = [IM , sIM , · · · , sν̄−2IM ]T, Θ1(t) ∈ R(ν̄−1)M×M , Θ2(t) ∈ R(ν̄−1)M×M ,

Θ20(t) ∈ RM×M , Θ3(t) ∈ RM×M , ν̄ being the upper bound of the observability index

of the plant, and Λ(s) being a monic stable polynomial of degree ν̄ − 1. To ensure

the internal signal boundedness while achieving output tracking, it is needed that all

zeros of G(s) are stable and (A,B,C) needs to be stabilizable and detectable.

Remark 2.1.1. Another MRAC system is the one which makes the plant-model

state matching achievable using state feedback. The controller structure for state

feedback state tracking is the same with the one for state feedback output tracking.

The control objective is to make x(t) track xm(t) from a chosen stable reference model

system ẋm(t) = Amxm(t) + Bmr(t). However, the plant-model matching condition:

A+BK∗T1 = Am, BK
∗
2 = Bm, is restrictive for many applications, since the reference

model parameters (Am, Bm) needs to be chosen in advance. In this dissertation, we

do not consider the state tracking problem. Please refer to [82] for details. �

2.2 Partial-State Feedback MRAC Problem

In this section, the concept of partial-state signal is first clarified, and a basic partial-

state feedback MRAC problem is then formulated.

Partial-state signal for feedback control. The central idea of feedback control

is that a systems output can be measured and fed back to a controller of some kind

and used to effect the control. It has been shown that signal feedback can be used to

control a vast array of dynamic systems [21]. For a general feedback control system

shown as Fig. 2.2, a partial-state signal can be represented as

y0(t) = C0x(t). (2.2.1)

Multiple possibilities of y0(t). For systems with single-input single-output, the partial-

state signal y0(t) could be
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(i) a vector which contains the output y(t);

(ii) a vector which does not contain the output y(t); and

(iii) a scalar which is not equal to the output y(t).

For systems with multi-inputs multi-outputs, the partial-state signal y0(t) could be

(i) y0(t) is a vector containing some or all elements of y(t);

(ii) y0(t) is vector which does not contain any element of y(t);

(iii) y0(t) is a scalar as one element of y(t); and

(iv) y0(t) is a scalar not being any element of y(t).

In the studies of partial-state feedback MRAC, we assume a partial-state vector

y0(t) = C0x(t) is available for measurement with the constant matrix C0 unknown.

The multiple possibilities of y0(t) shown above confirm that the partial-state feedback

MRAC framework provides additional design flexibilities and feedback complicity.

Control Law
r(t) u(t)

ẋ = Ax+ bu

x(t)
C0

y0(t)

c
y(t)

Figure 2.2: A control system with partial-state feedback signal.

Partial-state feedback MRAC. The basic partial-state feedback control prob-

lem is to find a control law for generating the control signal u(t) in (2.1.1) by using

the partial-state signal y0(t) to ensure closed-loop signal boundedness and output

tracking, in the presence of parameter uncertainties.

The introduction of partial-state feedback signals allows the MRAC systems to

take advantage of all possible systems measurements, which makes partial-state feed-
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back MRAC provide additional possibilities for the choice of feedback signals. Also,

from control implementation points of view, the partial-state MRAC framework can

provide controller structures with

• less state information requirement than state feedback design; and

• less complex controller structure than output feedback design

From the in-depth study of the new MRAC framework to be shown next, there

exists a manageable inverse relationship between the number of system measurements

for feedback control and controller implementation complexity. In other words, be-

sides the basic function of MRAC designs, the partial-state feedback MRAC frame-

work also provides more choices, with the respective of the system measurements and

controller implementation complexity, for control applications.

2.3 Sensor Failure Compensation Problem

There are two types of failures commonly seen in control systems. The first type

is actuator failures such that the actuators will not respond to control signals. The

other is sensor failures such that the sensors will not read the actual system state

variables. In this dissertation, we will briefly investigate the compensation schemes

for sensor failures.

Sensor failures. To formulate the sensor failure, first consider a linear time-

invariant plant (2.1.1): ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t). We consider the case

when a set of sensors Si, i = 1, 2, . . . , n, is used to measure the n state variables xi(t).

In the presence of a fault at the jth sensor, the sensor output may be described as

zj = Sj(xj) =

{
xj with the healthy sensor Sj
s̄j with the failed sensor Sj

(2.3.1)

for some unknown bounded values s̄j with unknown indices j ∈ {1, 2, . . . , n}. Thus,
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for the state vector x(t) constructed by the n state variables xi, the sensor output

vector with possible uncertain state sensor failures is z(t) = [z1, z2, . . . , zn]T.

This failure model characterizes the most typical classes of sensor failures that

may occur, that is, some unknown sensor outputs are stuck at some unknown fixed

or varying values. For example, the humidity-sensitive pressure sensor may be stuck

at some unknown values due to water or moisture. In addition, the state sensor

failures investigated in this dissertation are uncertain, which means we do not know

which sensors are failed, how much the failures are and when the failures occur. Such

uncertain state sensor failures require effective adaptive compensation in the design

of a control scheme to guarantee desired system performance.

Failure patterns. For the n sensors corresponding to the n state variables xi,

i = 1, 2, . . . , n, there are different sensor failure patterns which can be represented by

a generic failure pattern matrix

σ = diag{σ1, σ2, . . . , σn} (2.3.2)

where σi = 1 if the ith sensor fails and σi = 0 if the ith sensor is healthy. With such

a matrix, we can express the sensor output vector as

z(t) = x(t)− σ(x(t)− s̄) (2.3.3)

where s̄ = [s̄1, s̄2, . . . , s̄n]T is defined as a failure vector. For each individual failure

pattern, we denote σ as σ = σ(k), for k = 0, 1, 2, . . . , N−1, whereN is the total number

of different sensor failure patterns including the no failure pattern, and correspond-

ingly, denote s̄ as s̄ = s̄(k). We use σ(0) = diag{0, 0, . . . , 0} and s̄(0) = [0, 0, . . . , 0]T to

represent the no failure case (for the k = 0 case).

Sensor failure compensation problem. The basic sensor failure compensation

control problem is to find a control law for generating the control signal u(t) in (2.1.1)
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to ensure closed-loop signal boundedness and output tracking, in the presence of

sensor failure (2.3.3).

2.4 Leader-Following Output Consensus Control

Problem

In this section, a leader-follower system is introduced, and some preliminary topology

knowledge is given for describing the information flow among the agents.

Leader-follower multi-agent systems. Consider a multi-agent system includ-

ing N followers and one virtual leader. The ith followers’ dynamic equation is

ẋi(t) = Aixi(t) + biui(t), yi(t) = bixi(t), i = 1, . . . , N, (2.4.1)

for the unknown parameter matrices Ai ∈ Rn×n, Bi ∈ Rn×1 and Ci ∈ R1×n, where

xi(t) ∈ Rn is the state vector of the ith follower, ui(t) ∈ R is the control input of

the ith follower, and yi(t) ∈ R is the output of the ith follower. The input-output

description of each follower is

yi(t) = Gi(s)[ui](t), Gi(s) = kpi
Zi(s)

Pi(s)
, i = 1, . . . , N (2.4.2)

where kpi 6= 0, Pi(s) = det(sI − Ai) = sn + p(n−1)is
n−1 · · · + p1is + p0i, and Z(s) =

sm + · · · + z1is + z0i for some m ≥ 0. The notation: y(t) = G(s)[u](t), is used to

denote the output y(t) of a LTI system represented by a transfer function G(s) with

input signal u(t).

The dynamic model of the virtual leader is given by

yl(t) = Wl(s)[r](t),Wl(s) =
1

Pl(s)
, (2.4.3)

where Pl(s) is a desired stable polynomial of degree n∗ = n−m (the followers’ relative

degree n∗ is assumed to be known), and r(t) is a bounded piecewise continuous

reference input signal.
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It is natural to model the information exchange between agents by algebraic graph

theory which is introduced next.

Graph theory. The information exchange among the N follower agents in this

dissertation is denoted by a undirected graph G = (V , E ,A) with a set of nodes

V , a set of undirected edges E ⊆ V × V , and the adjacency matrix of the graph

A = [aij] ∈ RN×N . The node vi represents the ith follower agent. An unordered edge

(vi, vj) ∈ E (or equivalently (vj, vi) ∈ E) represents that the information exchanges

between the agents vi and vj, and vi and vj are neighbors. In addition, (vi, vj) ∈ E

follows that the adjacency element aij = aji = 1. A path is a sequence of unordered

edges of the form (vi1, vi2), (vi2, vi3), . . . , in a graph, where vij ∈ V . If, for any two

nodes vi, vj ∈ V , there is a path between them, then G is called a connected graph.

To describe the information exchange from the leader to the followers, we denote

the leader as v0. Let VΣ = {V , v0} be the node set consisting of all the follower

agents and the leader. Since the leader v0 can not be affected by the followers vi, the

connection edges (vi, v0) between the leader v0 and the ith agent vi are directed which

means that the follower vi can obtain the information from v0, but not vice versa. Let

El be the edges set consisting of all edges (vi, v0). Define Ni = {vj ∈ VΣ : (vj, vi) ∈

{E
⋃
El}} as the neighborhood of the ith follower and N0 = {vj ∈ V : (vj, v0) ∈ El}

as the set of follower agents that are directly connected to the leader.

Output consensus problem. For the multi-agent system consisting of (2.4.1)

and (2.4.3), the basic output consensus control objective is to find a control protocol

for generating the control signal ui(t) in (2.4.1) for each follower such that all the

signals in the multi-agent system are bounded and the output of all followers track

the output of the given leader asymptotically.



Chapter 3

Partial-State Feedback MRAC for
SISO Systems

This chapter presents the novel MRAC scheme using partial-state feedback signal for

achieving output tracking for uncertain single-input single-output systems, where we

• develop a nominal partial-state feedback model reference control scheme;

• develop two partial-state feedback MRAC designs for relative-degree-one plants

and general plants, respectively;

• analyze plant-model matching, stability and tracking performance; and

• verify the effectiveness of the designs by simulation studies.

The developed partial-state feedback MRAC scheme has less restrictive matching

conditions, less state information requirement, and less complex controller structure

compared to an output feedback MRAC design, which can achieve closed-loop system

stability as well as asymptotic output tracking.
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3.1 Review of MRAC and Problem Statement

In this section, first, MRAC designs using state feedback or output feedback are

reviewed and their features are discussed. In order to make a full use of all possibly

available system signals, which can reduce the controller complexity and improve

system response performance, we propose to study a new MRAC scheme with partial-

state feedback for output tracking. The problem statement is given, following the

review of the existing MRAC designs.

3.1.1 Review of MRAC

The basic feature of MRAC is to use control adaptation to make the output or state

of an unknown plant to track that of a chosen reference model system. There are two

typical MRAC designs for output tracking: design using state feedback and design

using output feedback. A review of the existing MRAC designs is given as follows.

Plant description. Consider a linear time-invariant plant:

ẋ(t) = Ax(t) + bu(t), x(t) ∈ Rn, u(t) ∈ R

y(t) = cx(t), y(t) ∈ R (3.1.1)

with x(0) = x0, where A ∈ Rn×n is an unknown matrix, b ∈ Rn and c ∈ R1×n are

unknown vectors. The input-output description of the plant (3.1.1) is

P (s)[y](t) = kpZ(s)[u](t), (3.1.2)

where kp 6= 0, P (s) = det(sI − A) = sn + pn−1s
n−1 · · · + p1s + p0, and Z(s) =

sm + · · · + z1s + z0 for some m ≥ 0. We will use the notation: y(t) = G(s)[u](t), to

denote the output y(t) of a LTI system represented by a transfer function G(s) with

input signal u(t). The symbol s is a differentiation operator: s[x](t) = ẋ(t), or the
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Laplace transform variable as the case may be. It is a simple notation to combine both

time domain and frequency domain signal operations, suitable for adaptive control

system presentation.

Goal of MRAC. The goal of output tracking MRAC is to construct a feedback

control law for u(t) in (3.1.1) such that all signals in the closed-loop system are

bounded and the system output y(t) asymptotically tracks a given reference output

signal ym(t) generated from a reference model system

ym(t) = Wm(s)[r](t), Wm(s) =
1

Pm(s)
, (3.1.3)

where Pm(s) is a desired stable polynomial of degree n−m (which is assumed to be

known), and r(t) is a bounded piecewise continuous reference input signal.

State feedback for output tracking. In applications when the full-state vector

x(t) is available, a simple adaptive controller structure is

u(t) = kT
1 (t)x(t) + k2(t)r(t), (3.1.4)

where k1(t) ∈ Rn and k2(t) ∈ R are to be adaptively updated. Such an adaptive

controller with stable adaptive laws to update the controller parameter k1(t) and k2(t)

has the capability of driving the control plant output y(t) to track ym(t) generated

from the reference model (3.1.3) asymptotically. The controller parameters k1(t)

and k2(t) are the adaptive estimates of the nominal controller parameters k∗1 and k∗2

depending on the unknown system parameters (A, b, c) and satisfying

det(sI − A− bk∗T1 ) = Pm(s)Z(s)
1

kp
, k∗2 =

1

kp
, (3.1.5)

to achieve stable plant-model output matching: y(t) = Wm(s)[r](t) = ym(t), if k1(t) =

k∗1 and k2(t) = k∗2 in (3.1.4). The existence of k∗1 ans k∗2 is guaranteed by the degree

of Pm(s) being n−m and by Z(s) being a stable polynomial (a basic assumption of
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MRAC design for output tracking for internal stability) [53]. Note that Z(s) is stable

also implies that (A, b, c) is stabilizable and detectable.

Output feedback for output tracking. In applications when x(t) is not acces-

sible for measurement, we can use an output feedback adaptive controller structure:

u(t) = θT
1 (t)ω1(t) + θT

2 (t)ω2(t) + θ20(t)y(t) + θ3(t)r(t), (3.1.6)

where ω1(t) = a(s)
Λ(s)

[u](t), ω2(t) = a(s)
Λ(s)

[y](t), with a(s) = [1, s, · · · , sn−2]T, θ1(t) ∈

Rn−1, θ2(t) ∈ Rn−1, θ20(t) ∈ R, θ3(t) ∈ R, and Λ(s) is a monic stable polynomial

of degree n − 1. Adaptive controller parameters θ1(t), θ2(t), θ20(t) and θ3(t) are the

estimates of the constant nominal controller parameters θ∗1, θ
∗
2, θ
∗
20 and θ∗3 depending

on system parameters and satisfying the desired matching equation:

θ∗T1 a(s)P (s) + (θ∗T2 a(s) + θ∗20Λ(s))kpZ(s) = Λ(s)(P (s)− kpθ∗3Z(s)Pm(s)), (3.1.7)

for plant-model output matching: y(t) = Wm(s)[r](t) = ym(t). To ensure the in-

ternal signal boundedness and achieving output tracking, Z(s) needs to be a stable

polynomial.

Research motivation. In summary, stable output matching can always be

achieved with Z(s) being a stable polynomial and the relative degree of the sys-

tem n−m known. However, to implement a state feedback controller, the full-state

vector x(t) is needed which may not be practical in many applications, while for an

output feedback controller, its complexity with the filters a(s)
Λ(s)

for generating ω1(t)

and ω2(t) in (3.1.6) may be an issue of control implementation for some applications

(see Remark 3.4.1 for details).

This motivates our new research on developing partial-state feedback MRAC de-

signs whose controller structures are simpler than an output feedback control design
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and whose implementations do not need full-state measurements, to provide addi-

tional design flexibility and feedback capacity, as formulated next.

3.2 Problem Statement

For the plant (3.1.1): ẋ(t) = Ax(t) + bu(t), y(t) = cx(t), with (A, b, c) unknown and

c(sI − A)−1b = kp
Z(s)
P (s)

, the goal of this chapter is to design a partial-state feedback

MRAC scheme. We make the following basic assumptions:

(A3.1) A vector signal y0(t) = C0x(t) ∈ Rn0 is available for measurement, with

(A,C0) observable for C0 ∈ Rn0×n and rank[C0] = n0; and

(A3.2) all zeros of Z(s) are stable.

For Assumption (A3.1), the vector signal y0(t) can be a subset of components of

x(t) or a linear combination of them. Assumption (A3.2) is a basic assumption of

MRAC designs for guaranteeing internal stability while achieving output tracking.

Partial-state feedback MRAC. The objective of partial-state feedback model

reference adaptive control is to design a control law using the partial-state vector y0(t)

to generate the control signal u(t) to make all the closed-loop signals bounded and

the plant output y(t) asymptotically track a reference output signal ym(t) generated

from (3.1.3): ym(t) = Wm(s)[r](t).

Technical issues. We will solve three new technical issues for partial-state feed-

back MRAC which are described in details as follows:

Issue I: Output matching using partial-state feedback. To achieve the stated con-

trol objective, a new controller structure, capable of ensuring plant-model output

matching: y(t) = Wm(s)[r](t) for (A, b, c) known, and suitable for controller adapta-

tion for limt→∞(y(t)−ym(t)) = 0 for (A, b, c) unknown, is needed. In other words, for
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partial-state feedback MRAC, a controller structure, which is able to ensure plant-

model output matching, needs to be developed.

Issue II: Adaptation of partial-state feedback controller. To achieve desired output

tracking in the presence of parameter uncertainties, a partial-state adaptive controller

with stable adaptive laws for parameter adaptation is needed. To derive the stable

adaptive laws, it is crucial to obtain a tracking error equation based on the partial-

state vector y0(t).

Issue III: Stability analysis and performance evaluation. To prove the effectiveness

of the proposed adaptive partial-state feedback control scheme, closed-loop system

stability and tracking performance analysis is to be conducted.

Different from the state feedback and output feedback cases, the partial-state

vector y0(t) is a subset of components of x(t) or a linear combination of them so that

the formation of y0(t) has three possibilities:

(i) y0(t) being a vector which contains the output y(t);

(ii) y0(t) being a vector which does not contain the output y(t); and

(iii) y0(t) being a scalar which is not equal to the output y(t).

Remark 3.2.1. The proposed method in our work solves an adaptive output tracking

problem using the partial-state signal y0(t) = C0x(t) for general LTI systems with

parameter uncertainties. The application of such a proposed control design is broader

due to the absence of the need of an explicit state transformation, compared to the

partial-state feedback design in Section 7.4.2 of [37]. In particular, comparing the

proposed control scheme to the work shown in Section 7.4.2 of [37], it is worth noting

that the partial-state y0(t) in our work could be either a subset of the state variables

or a linear combination of them or even not contain the output y(t). �

Remark 3.2.2. The partial-state feedback adaptive control problem can also be
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illustrated for nonlinear systems, which helps to understand the problem novelty in

reducing the complexity of control laws. It is known that for a nonlinear system

ż = f(z) + g(z)u, z ∈ Rn, (3.2.1)

under certain conditions [37], there exists a state transformation x = T (z) such that

the system can be transformed into an output-feedback form

ẋi = xi+1 + ϕi0(y) +
∑qi

j=1 aijϕij(y), i = 1, . . . , ρ− 1

ẋρ = xρ+1 + ϕρ0(y) +
∑qρ

j=1 aρjϕρj(y) + bn−ρσ(y)u,

ẋi = xi+1 + ϕi0(y) +
∑qi

j=1 aijϕij(y) + bn−iσ(y)u,

i = ρ+ 1, . . . , n

y = x1 (3.2.2)

with xn+1 = 0, where aik and bj are unknown parameters, and ϕij and σ are known

nonlinear functions.

Adaptive state-feedback control of the system (3.2.1) (or its canonical forms such

as a parametric-feedback form) and adaptive output-feedback control of the system

(3.2.2), for output tracking, have been extensively studied in the literature. In partic-

ular, a full-order state observer has been used for an output feedback control design

for (3.2.2). Furthermore, a partial-state feedback control scheme is proposed in [37]

for systems of a fixed canonical form (3.2.1) of (3.2.2).

Being different with the partial-state feedback problem solved in [37] where the

feedback signal is a subset of state variables in x(t) or z(t), our partial-state feedback

control problem of the system (3.2.1) may be stated as: how to effectively solve an

adaptive output tracking problem without the full knowledge of z(t) but with some

partial-state knowledge of y0(t) = h0(z(t)), in addition to the knowledge of the system

output y(t) (for systems not in a canonical form)? Some technical issues are: what
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are the new conditions under which the system (3.2.1) can be transformed to one

similar but more general system than (3.2.2), with the additional knowledge of y0(t)

explicitly contained (for example, those functions ϕik(y) are replaced by ϕik(y0))?

how can the adaptive output tracking control problem be solved using a simpler

controller structure based on a partial-state observer, less complex than that used for

the system model (3.2.2) with a full-order observer.

In this thesis, we will only solve some related technical issues for adaptive partial-

state feedback model reference control of linear systems, which can be helpful for

understanding the nonlinear system case. �

3.3 Nominal Partial-State Feedback Control

This section solves the first technical issue: plant-model output matching using

partial-state feedback, by developing a partial-state observer and deriving a parametrized

nominal partial-state feedback controller. With such a nominal partial-state feedback

controller, several desired plant-model output matching properties are established.

3.3.1 Partial-State Observer

When the full-state vector x(t) is not available for measurement, the control law u(t)

is constructed with an estimate x̂(t) (generated from a state estimator or observer)

of the state vector x(t): u(t) = k∗T1 x̂(t) + k∗2r(t). In partial-state feedback control

problem, a partial-state vector y0(t) is measurable, we start the partial-state feedback

controller derivation from developing a partial-state observer using y0(t), in order to

obtain an estimate x̂(t) of the state vector x(t).

State transformation. For the state equation: ẋ(t) = Ax(t) + bu(t), as the

design in [9], introducing a transformation matrix P ∈ Rn×n such that C0P
−1 =

[In0 , 0] with n0 = rank[C0], we can transfer it to
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[
˙̄x1(t)
˙̄x2(t)

]
=

[
Ā11 Ā12

Ā21 Ā22

] [
x̄1(t)
x̄2(t)

]
+

[
b̄1

b̄2

]
u(t), (3.3.1)

where x̄(t) = Px(t) = [x̄T
1 (t), x̄T

2 (t)]T with x̄1(t) ∈ Rn0 , x̄2(t) ∈ Rn−n0 , Ā11 ∈ Rn0×n0 ,

Ā12 ∈ Rn0×(n−n0), Ā21 ∈ R(n−n0)×n0 , Ā22 ∈ R(n−n0)×(n−n0), b̄1 ∈ Rn0 and b̄2 ∈ Rn−n0 .

With such a transformation, the available vector signal y0(t) = C0x(t) = x̄1(t), and

only x̄2(t) is to be estimated.

Estimation of x̄(t). We generate an estimate ˆ̄x(t) for x̄(t) with a reduced-order

dynamic system generating an estimate ˆ̄x2(t) for x̄2(t), in the form:

ˆ̄x(t) =
[
x̄T

1 , ˆ̄xT
2

]T
=
[
yT

0 (t), (w(t) + Lry0(t))T
]T
, (3.3.2)

where Lr ∈ R(n−n0)×n0 is a constant gain matrix such that the eigenvalues of the

(n−n0)× (n−n0) matrix Ā22−LrĀ12 are stable and prespecified, and w(t) ∈ Rn−n0

is generated from the observer equation

ẇ(t) = (Ā22 − LrĀ12)w(t) + (b2 − Lrb1)u(t) + ((Ā22 − LrĀ12)Lr + Ā21 − LrĀ11)y0(t),

w(0) = w0. (3.3.3)

From (3.3.1)–(3.3.3), the estimated error ˜̄x2(t) = x̄2(t) − ˆ̄x2(t) satisfies ˙̄̃x2(t) =

(Ā22 − LrĀ12)˜̄x2(t), which decays to zero exponentially since Ā22 − LrĀ12 is stable.

Estimation of x(t). Together with ˆ̄x1 = x̄1 = y0, we have limt→∞(x̄(t) −

ˆ̄x(t)) = 0. Finally, with x̂(t) = P−1 ˆ̄x(t), it is ensured that limt→∞(x(t) − x̂(t)) =

limt→∞ P
−1(x̄(t)− ˆ̄x(t)) = 0 exponentially, at a prespecified rate, as desired.

3.3.2 Parametrized Partial-State Feedback Controller

Based on the technique in [9], the estimate x̂(t) converges to x(t) exponentially by

a partial-state observer designed in the above subsection. Hence plant-model output

matching can be achievable by the observer-based control law u(t) = k∗T1 x̂(t) +k∗2r(t)
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as a nominal control law u(t) = k∗T1 x(t) + k∗2r(t) does it. However, since x̂(t) also

depends on the unknown plant parameters, such an observer-based control law needs

to be reparameterized, for the design of an adaptive control scheme for the unknown

plant case.

We are now developing a parameterized partial-state feedback controller based on

the partial-state observer.

Reparameterization of u(t) = k∗T1 x̂(t) + k∗2r(t). We first express the partial-

state estimate w(t) in (3.3.3) as

w(t) = (sI − Ā22 + LrĀ12)−1(b̄2 − Lrb̄1)[u](t) + (sI − Ā22 + LrĀ12)−1×(
(Ā22 − LrĀ12)Lr + Ā21 − LrĀ11

)
[y0](t) + e(Ā22−LrĀ12)tw(0)

=
n1(s)

Λ(s)
[u](t) +

n2(s)

Λ(s)
[y0](t) + e(Ā22−LrĀ12)tw(0), (3.3.4)

where w(0) ∈ Rn−n0 is an estimate of Lry0(0)− x̄2(0), Λ(s) = det(sI − Ā22 + LrĀ12)

whose degree is n− n0 and stability properties can be prespecified and by assigning

the eigenvalues of Ā22 − LrĀ12 as a set of given (known) values, and n1(s) is an

(n−n0)×1 polynomial vector and n2(s) is an (n−n0)×n0 polynomial matrix, whose

maximum degrees are n− n0 − 1 or less.

Using (3.3.2) and (3.3.4), we can express k∗T1 x̂(t) as

k∗T1 x̂(t) = θ∗T1

a1(s)

Λ(s)
[u](t) + θ∗T2

A2(s)

Λ(s)
[y0](t) + ε0(t), (3.3.5)

for some exponentially decaying signal ε0(t) representing the effect of the initial con-

dition w(0), where θ∗1 ∈ Rn−n0 , θ∗2 ∈ Rn0(n−n0) and θ∗20 ∈ Rn0 , such that θ∗T20 = k∗Tp1 +

k∗Tp2 Lr, k
∗T
p2 n1(s) = θ∗T1 a1(s) and k∗Tp2 n2(s) = θ∗T2 A2(s), for k∗T1 P−1 = [k∗Tp1 , k

∗T
p2 ] with

k∗p1 ∈ Rn0 and k∗p2 ∈ Rn−n0 , and a1(s) = [1, s, . . . , sn−n0−1]T, A2(s) = [In0 , sIn0 , . . . ,

sn−n0−1In0 ]
T.



34

Then, we express the observer-based control law u(t) = k∗T1 x̂(t) + k∗2r(t) as

u(t) = θ∗T1

a1(s)

Λ(s)
[u](t) + θ∗T2

A2(s)

Λ(s)
[y0](t) + θ∗T20 y0(t) + θ∗3r(t) + ε0(t), (3.3.6)

with θ∗3 = k∗2 ∈ R.

Ignoring the decaying term ε0(t) in (3.3.6), we obtain the parametrized nominal

partial-state feedback controller:

u(t) = θ∗T1 ω1(t) + θ∗T2 ω2(t) + θ∗T20 y0(t) + θ∗3r(t), (3.3.7)

where ω1(t) = a1(s)
Λ(s)

[u](t), ω2(t) = A2(s)
Λ(s)

[y0](t).

3.3.3 Partial-State Feedback Based Output Matching

Recall that the first control problem is to achieve plant-model output matching by

partial-state feedback control. In this section, several output matching properties of

the partial-state feedback controller (3.3.7) are presented.

Theorem 3.3.1. There exist constant parameters θ∗1, θ∗2, θ∗20 satisfying (3.3.5) and

θ∗3 = k−1
p such that the controller (3.3.7) ensures that all signals in the closed-loop

system are bounded and partial-state feedback based output matching: y(t)− ym(t) =

ε(t), for some initial condition-related exponentially decaying ε(t), is achieved, where

ym(t) is the output of the reference model (3.1.3).

Proof: The proof is divided into four steps.

Step 1: Output matching by state feedback control. The transfer function of the

closed-loop system consisting of (3.1.1) and the nominal control law u(t) = k∗T1 x(t) +

k∗2r(t) becomes

Gc(s) = c(sI − A− bk∗T1 )−1bk∗2 =
k∗2Z(s)

det(sI − A− bk∗T1 )
, (3.3.8)
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such that the system output y(t) = Gc(s)[r](t). The desired output matching requires

that Gc(s) = Wm(s) where Wm(s) is the transfer function of the reference model

(3.1.3), so we need to establish

c(sI − A−Bk∗T1 )−1bk∗2 =
k∗2Z(s)

det(sI − A− bk∗T1 )
=

1

Pm(s)
= Wm(s). (3.3.9)

Let k∗2 = 1
kp

, it follows that

det(sI − A− bk∗T1 ) = Z(s)Pm(s)
1

kp
. (3.3.10)

If (A, b) is controllable, according to the linear system theory, there exists a vector

k∗T1 such that the closed-loop system eigenvalues can be placed in arbitrary locations,

which means that (3.3.10) is achievable.

If (A, b) is only stabilizable, zero-pole cancellation exists between det(sI−A) and

Z(s) for the stable uncontrollable modes of A. Letting Z(s) = Zc(s)Zc̄(s) where

the zeros of Zc(s) are the controllable modes of A and the zeros of Zc̄(s) are the

uncontrollable modes of A, with the degree of nc and nc̄ = m − nc, respectively

(nc + nc̄ = m), we have

c(sI − A− bk∗T1 )−1bk∗2 =
k∗2Zc(s)Zc̄(s)

det(sI − A− bk∗T1 )
=

1

Pm(s)
. (3.3.11)

Due to the incapability of k∗1 of moving the uncontrollable modes of A, there exists

zero-pole cancellation between det(sI − A − bk∗T1 ) and Zc(s)Zc̄(s) to cancel out the

uncontrollable modes Zc̄(s). We can express the result after zero-pole cancellation as

c(sI − A− bk∗T1 )−1bk∗2 =
k∗2Zc(s)

(s− α1) · · · (s− αn−nc)
=

1

Pm(s)
, (3.3.12)

with αi, i = 1, . . . , n−nc̄ representing some closed-loop poles which can be arbitrarily

placed. In other words, there exists a vector k∗1 to move the poles α1, . . . , αnc to match

the zeros of Zc(s)Pm(s) 1
kp

. Therefore, (3.3.10) is achievable as well even if (A, b) is

only stabilizable.



36

In summary, there exists a k∗1 ∈ Rn and a k∗2 ∈ R satisfying the matching equation

(3.3.9) to ensure the desired matching Gc(s) = Wm(s).

Step 2: Output matching by observer-based feedback control. According to the prop-

erties of the partial-state observer, we express x̂(t) as x(t) + ε1(t) with some expo-

nentially decaying ε1(t) such that the observer-based control law can be expressed

as u(t) = k∗T1 x(t) + k∗T1 ε1(t) + k∗2r(t). Substituting such a control law into the plant

(3.1.1), the output becomes

y(t) =
c adj(sI − A− bk∗T1 )bk∗T1

det(sI − A− bk∗1)
[ε1](t) +

c adj(sI − A− bk∗T1 )bk∗2
det(sI − A− bk∗1)

[r](t). (3.3.13)

Ignoring the exponentially decaying term, we conclude that the transfer function of

the closed-loop system consisting of the plant (3.1.1) and the observer-based control

law u(t) = k∗T1 x̂(t) + k∗2r(t) is the same as the one of the closed-loop system consist-

ing of (3.1.1) and the state feedback control law u(t) = k∗T1 x(t) + k∗2r(t), which is

Y (s)/R(s) = c(sI − A − bk∗T1 )−1bk∗2. Therefore, the nominal parameters k∗1 and k∗2

which make plant-model output matching achievable by state feedback control law

can also ensure output matching when used for an observer-based control law.

Step 3: Output matching by partial-state feedback control. From (3.3.6), we ob-

tain the nominal partial-state feedback control law (3.3.7) by ignoring the exponen-

tially decaying ε0(t):

u(t) = θ∗T1 ω1(t) + θ∗T2 ω2(t) + θ∗T20 y0(t) + θ∗3r(t) (3.3.14)

(to get this, we have expressed the term k∗T1 x̂(t) as shown in (3.3.5):

k∗T1 x̂(t) = θ∗T1 ω1(t) + θ∗T2 ω2(t) + θ∗T20 y0(t) + ε0(t),

which is a new parametrization of k∗T1 x̂(t)).
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Hence the existence of the constant parameters θ∗1, θ∗2, θ∗20 and θ∗3 for output

matching by the above nominal partial-state feedback control law is ensured if they

satisfy (3.3.5).

The existence of θ∗1 ∈ Rn−n0 is guaranteed for θ∗T1 a1(s) = k∗Tp2 n1(s), since the

polynomial n1(s) in (3.3.4) for has degree n − n0, with a1(s) = [1, s, . . . , sn−n0−1]T.

Similarly, the existence of θ∗2 is guaranteed for θ∗T2 A2(s) = k∗Tp2 n2(s) in (3.3.6) and

(3.3.7). With k∗T1 P−1 = [k∗Tp1 , k
∗T
p2 ] and the prespecified Lr ∈ R(n−n0)×n0 , the existence

of θ∗20 = k∗Tp1 + k∗Tp2 Lr in (3.3.7) is guaranteed.

In summary, based on the partial-state observer, there always exist constant pa-

rameters θ∗1, θ∗2, θ∗20 and θ∗3 to make (3.3.5) satisfied so that the nominal partial state

feedback control law (3.3.14) with θ∗1, θ∗2, θ∗20 and θ∗3 makes plant-model output match-

ing: y(t)− ym(t) = ε(t) achievable, for an exponentially decaying term ε(t).

Step 4: Closed-loop signal boundedness. From y(t)− ym(t) = ε(t), we have the ith

derivative as

y(i)(t) = ε(i)(t) + y(i)
m (t), i = 1, 2, . . . , n∗. (3.3.15)

Using the reference model: ym(t) = 1
Pm(s)

[r](t), we have

y(i)
m (t) = si[ym](t) =

si

Pm(s)
[r](t), (3.3.16)

which is bounded for i = 1, . . . , n∗, because si

Pm(s)
is stable and proper and r(t) ∈ L∞.

This implies that y(i)(t) ∈ L∞ for i = 1, . . . , n∗ as ε(i)(t) ∈ L∞.

For the plant (3.1.1), the input-output relationship is P (s)[y](t) = kpZ(s)[u](t).

A relationship between y0(t) and u(t) can also be obtained: P (s)[y0](t) = Z0(s)[u](t),

for a polynomial vector Z0(s). Therefore, a useful relationship between y(t) and y0(t)

can be found as

y0(t) =
1

kp
Z−1(s)Z0(s)[y](t) =

Z0(s)

kpPm(s)Z(s)
Pm(s)[y](t). (3.3.17)
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Since Pm(s)[y](t) is bounded as from (3.1.3) and Z0(s)
kpPm(s)Z(s)

is stable and proper or

strictly proper, we have y0(t) is bounded, and so is ω2(t).

Finally, using the plant, P (s)[y](t) = kpZ(s)[u](t), and ignoring the exponentially

decaying effect of the initial conditions, we have

u(t) =
P (s)

kpPm(s)Z(s)
Pm(s)[y](t), (3.3.18)

which is bounded because P (s)
kpPm(s)Z(s)

is stable and proper and Pm(s)[y](t) is bounded,

and so is ω1(t). ∇

Theorem 3.3.1 shows that when the plant parameters are known, the partial-

state feedback control law (3.3.7) with the nominal parameters θ∗1, θ∗2, θ∗20 and θ∗3

is the solution to the model reference control problem. The new features of such

a solution include: (a) the nominal partial-state feedback control law can achieve

output matching even with y0(t) ∈ R for y0(t) 6= y(t) (see Corollary 3.3.2 next); and

(b) the boundedness of y(i)(t) is guaranteed for i = 1, . . . , n∗.

With θ∗3 = k−1
p , the nominal partial-state feedback controller parameters θ∗1, θ∗2,

θ∗20 and θ∗3 whose existence are guaranteed by Theorem 3.3.1 also satisfy the matching

polynomial equation described as follows:

Corollary 3.3.1. Under Assumption (A3.1), constant parameters θ∗1 ∈ Rn−n0, θ∗2 ∈

Rn0(n−n0), θ∗20 ∈ Rn0 and θ∗3 ∈ R exist such that the output matching equation holds:

θ∗T1 a1(s)P (s) + (θ∗T2 A2(s) + θ∗T20 Λ(s))Z0(s) = Λ(s)(P (s)− kpθ∗3Z(s)Pm(s)). (3.3.19)

Proof: With the output matching parameters θ∗1, θ
∗
2, θ
∗
20 and θ∗3, we rewrite (3.3.7) as

u(t) = θ∗T1

a1(s)

Λ(s)
[u](t) + θ∗T2

A2(s)

Λ(s)
G0(s)[u](t) + θ∗T20 G0(s)[u](t) + θ∗3r(t), (3.3.20)
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with y0(t) = G0(s)[u](t). This leads the plant y(t) = G(s)[u](t) to the closed-loop

system with transfer function

Gc(s) = G(s)
(
1− θ∗T1

a1(s)

Λ(s)
− (θ∗T2

A2(s)

Λ(s)
+ θ∗T20 )G0(s)

)−1
θ∗3,

which has been made to match Wm(s). From Gc(s) = Wm(s), we obtain

1− θ∗T1

a1(s)

Λ(s)
− (θ∗T2

A2(s)

Λ(s)
+ θ∗T20 )G0(s) = θ∗3W

−1
m (s)G(s), (3.3.21)

which, for G(s) = kp
Z(s)
P (s)

and G0(s) = Z0(s)
P (s)

, can be expressed as (3.3.19). Hence,

there always exist θ∗1, θ∗2, θ∗20 and θ∗3 satisfying the matching equation (3.3.19). ∇

According to Theorem 3.3.1, desired plant-model output matching and closed-loop

stability are guaranteed no matter what components of x(t) are included in y0(t), as

long as Assumption (A3.1) is met. A particular case of interest is when y0(t) ∈ R

and y0(t) 6= y(t). For such a special case, we have the following result.

Corollary 3.3.2. There exist parameters θ∗1, θ∗2, θ∗20 and θ∗3 for nominal partial-state

feedback controller (3.3.7) to achieve the desired plant-model matching and closed-loop

signal boundedness for y0(t) = C0x(t) ∈ R and y0(t) 6= y(t), if (A,C0) is observable.

Corollary 3.3.2 shows that model reference control can be designed to make the

plant output y(t) track the reference output ym(t), using a scalar y0(t) 6= y(t).

Remark 3.3.1. According to the derivation of the partial-state feedback MRC scheme,

it is obviously that output feedback model reference control (MRC) is a special case

of partial-state feedback MRC when C0 = c. For output feedback MRC, the matching

equation (3.3.19) becomes

θ∗T1 a(s)P (s) + (θ∗T2 a(s) + θ∗20Λ(s))kpZ(s) = Λ(s)(P (s)− kpθ∗3Z(s)Pm(s)), (3.3.22)

whose existence was an interesting topic of the early development of MRAC [53]. �
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3.4 Adaptive Partial-State Feedback Control

For the plant (3.1.1) with unknown (A, b, c), nominal controller parameters θ∗1, θ∗2, θ∗20

and θ∗3 in (3.3.7) depending on system parameters (A, b, c) can not be calculated so

that the nominal partial-state feedback control design cannot be applied to the plant

(3.1.1). In this section, we will develop a general adaptive partial-state feedback

control design for general systems and a simpler adaptive design for relative-degree-

one systems, respectively, to solve the adaptive control problem.

Recall the LTI plant (3.1.1): ẋ(t) = Ax(t) + bu(t), y(t) = cx(t) with (A, b, c)

unknown. Assume that assumptions (A3.1) and (A3.2) are satisfied, that is, the

partial-state vector y0(t) = C0x(t) with (A,C0) observable is measurable and all

zeros of Z(s) are stable.

The control objective is to design an adaptive partial-state feedback controller to

generate a control signal u(t) for (A, b, c) unknown such that all closed-loop signals are

bounded and the plant output y(t) asymptotically tracks the given reference signal

ym(t) = Wm(s)[r](t).

For adaptive control, we need the following assumption:

(A3.3) the sign of the high frequency gain kp is known.

3.4.1 Controller Structure and Tracking Error Equation

In this subsection, we will propose an adaptive partial-state feedback controller struc-

ture, and derive a tracking error equation which is crucial for develop an adaptive

law for control adaptation.

Adaptive controller structure. To handle the plant (3.1.1) with (A, b, c) un-

known, we design an adaptive version of the controller (3.3.7) as

u(t) = θT
1 (t)ω1(t) + θT

2 (t)ω2(t) + θT
20(t)y0(t) + θ3(t)r(t), (3.4.1)
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where θ1(t) ∈ Rn−n0 , θ2(t) ∈ Rn0(n−n0), θ20(t) ∈ Rn0 , θ3(t) ∈ R are the adaptive

estimates of the unknown nominal parameters θ∗1, θ∗2, θ∗20, θ∗3 respectively, and

ω1(t) =
a1(s)

Λ(s)
[u](t), ω2(t) =

A2(s)

Λ(s)
[y0](t) (3.4.2)

with a1(s) = [1, s, · · · , sn−n0−1]T, A2(s) = [In0 , sIn0 , . . ., s
n−n0−1In0 ]

T and Λ(s) being

a monic stable polynomial of degree n− n0.

Remark 3.4.1. The order of the filter 1
Λ(s)

in the partial-state feedback controller

(3.4.1) is n − n0 which is less than the order n − 1 in an output feedback controller

when n0 > 1. This feature can make the signals ω1(t) and ω2(t) more responsive and

less oscillating, and can reduce the controller implementation complexity that caused

by high-order filters. �

Tracking error equation. To obtain the tracking error equation, we first operate

both sides of (3.3.19) on y(t) so that

θ∗T1 a1(s)P (s)[y](t) + (θ∗T2 A2(s) + θ∗T20 Λ(s))Z0(s)[y](t)

= Λ(s)(P (s)− kpθ∗3Z(s)Pm(s))[y](t). (3.4.3)

Recall the relationship between y0(t) and y(t) obtained in Section 3.2.3:

Z0(s)[y](t) = kpZ(s)[y0](t). (3.4.4)

Substituting (3.4.4) and the plant: P (s)[y](t) = kpZ(s)[u](t), into (3.4.3), we have

θ∗T1 a1(s)kpZ(s)[u](t) + (θ∗T2 A2(s) + θ∗T20 Λ(s))kpZ(s)[y0](t)

= Λ(s)kpZ(s)[u](t)− Λ(s)kpθ
∗
3Z(s)Pm(s))[y](t). (3.4.5)

Because Λ(s) and Z(s) are stable, (3.4.5) can be expressed as

u(t) = θ∗T1

a1(s)

Λ(s)
[u](t) + θ∗T2

A2(s)

Λ(s)
[y0](t) + θ∗T20 y0(t) + θ∗3Pm[y](t) + ε1(t) (3.4.6)
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for some initial condition-related exponentially decaying ε1(t). Substituting (3.4.6)

in (3.4.1), we have the tracking error equation

e(t) = y(t)− ym(t) =
kp

Pm(s)
[θ̃Tω](t)

= −kp(θ∗T
1

Pm(s)
[ω](t)− 1

Pm(s)
[θTω](t)), (3.4.7)

where θ∗ = [θ∗T1 , θ∗T2 , θ∗T20 , θ
∗
3]T, θ(t) = [θT

1 (t), θT
2 (t), θT

20(t), θ3(t)]T, ω(t) = [ωT
1 (t), ωT

2 (t),

yT
0 (t), r(t)]T, θ̃(t) = θ(t) − θ∗. The tracking error expression (3.4.7) is the basis for

the adaptive designs in the following subsections.

3.4.2 Adaptive Design for General Systems

In this subsection, for the plant (3.1.1) with unknown parameters and relative de-

gree n∗ ≥ 1, we will develop an adaptive law for updating the adaptive controller

parameters in (3.4.1), based on a gradient method. System stability and tracking

performance analysis is given following the control design.

Estimation error. From the tracking error equation (3.4.7), we define the esti-

mate error as

ε(t) = e(t) + ρ(t)ξ(t) (3.4.8)

for the estimates θ(t) and ρ(t) of θ∗ and ρ∗ = kp, where

ξ(t) = θT(t)ζ(t)− 1

Pm(s)
[θTω](t), ζ(t) =

1

Pm(s)
[ω](t). (3.4.9)

From (3.4.7) and (3.4.8), it follows that

ε(t) = ρ∗θ̃T(t)ζ(t) + ρ̃(t)ξ(t) (3.4.10)

with ρ̃(t) = ρ(t)− ρ∗, a desired linear form.
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3.4.2.1 Adaptive Laws

Based on the desired estimation error form (3.4.10), we choose the gradient-type

adaptive update laws for θ(t) and ρ(t) as

θ̇(t) = −sign(kp)Γε(t)ζ(t)

m2
0(t)

, ρ̇(t) = −γε(t)ξ(t)
m2

0(t)
, (3.4.11)

with an adaptation gain matrix Γ = ΓT > 0, an adaptation gain γ > 0, initial

estimates θ(0) and ρ(0) of θ∗ and ρ∗, and m0(t) =
√

1 + ζT(t)ζ(t) + ξ2(t).

3.4.2.2 Stability and Tracking Performance Analysis

For a general system, the adaptive law (3.4.11) and the control system have the

following desired properties.

Lemma 3.4.1. The adaptive law (3.4.11) guarantees that θ(t) ∈ L∞, ρ(t) ∈ L∞, and

ε(t)
m0(t)

∈ L2
⋂
L∞, θ̇(t) ∈ L2

⋂
L∞ and ρ̇(t) ∈ L2

⋂
L∞.

Proof: With (3.4.10), the time-derivative of the positive definite function V (θ̃, ρ̃) =

|ρ∗|θ̃TΓ−1θ̃ + γ−1ρ̃2 along the trajectories of (3.4.11), satisfies

V̇ =
−2ε2(t)

m2
0(t)

≤ 0. (3.4.12)

Hence, θ(t) ∈ L∞, ρ(t) ∈ L∞ and ε(t)
m0(t)

∈ L2, which, with (3.4.10) and (3.4.11), in

turn, implies ε(t)
m0(t)

∈ L∞, θ̇(t) ∈ L2
⋂
L∞ and ρ̇(t) ∈ L2

⋂
L∞. ∇

Theorem 3.4.1. The adaptive controller (3.4.1) with the adaptive law (3.4.11), ap-

plied to the plant (3.1.1) with relative degree n∗ ≥ 1, guarantees the closed-loop signal

bounded and limt→∞ e(t) = 0.

Proof: The stability proof of the developed partial-state feedback MRAC scheme is

based on a feedback structure for the closed-loop system and on a small loop gain

property of such a feedback structure.
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Step 1: introducing filtered signals for u(t) and y(t). To obtain the desired feed-

back structure, we first two fictitious signals

z0(t) =
1

s+ a0

[u](t), z(t) =
1

s+ a0

[y](t), (3.4.13)

and two fictitious filters K1(s) and K(s) as

sK1(s) = 1−K(s), K(s) =
an

∗

(s+ a)n∗ , (3.4.14)

where a0 > 0 is arbitrary and a > 0 is to be specified. From the introduced fictitious

signals and filters, we can obtain the following equality: −a0K1(s) + (s+ a0)K1(s) =

1−K(s).

From the equality, with G(s) = kp
Z(s)
P (s)

, we obtain

z0(t) + a0K1(s)[z0](t)−K1(s)[u](t) = K(s)G−1(s)[z](t). (3.4.15)

Hence, with the substitution of (3.4.13) and K1(s) operated on both sides the

controller structure (3.4.1), the following identity is obtained:

K1(s)[u](t) = K1(s)θT
1 (·)a1(s)

Λ(s)
(s+ a0)[z0](t) +K1(s)θT

2 (·)A2(s)

Λ(s)
[y0](t)

+K1(s)θT
20(·)[y0](t) +K1(s)[θ3r](t). (3.4.16)

Step 2: expressing y0(t) by the filtered signals. To cope with the new partial-state

feedback control scheme, we need the following signal transformation. According to

the state observer theory, for (A, c) detectable, we can express the system state x(t)

as

x(t) = (sI − A+ Lc)−1b[u](t) + (sI − A+ Lc)−1L[y](t)

=
G1(s)

Λ0(s)
[u](t) +

G2(s)

Λ0(s)
[y](t), (3.4.17)
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where the eigenvalues of the n × n matrix A − Lc are stable for some constant gain

vector L ∈ Rn×1, Λ0(s) = det(sI − A + Lc) whose degree is n, L is a matrix such

that and G1(s) = adj(sI − A+ Lc)b and G2(s) = adj(sI − A+ Lc)L are polynomial

vectors whose maximum degrees are n− 1. (If (A, c) is observable, the system state

vector x(t) can be expressed as (3.4.17) for some constant gain vector L for all t > 0

such that the eigenvalues of the matrix A−Lc are stable and prespecified; If (A, c) is

only detectable, the system states vector x(t) can be expressed as (3.4.17) for some

constant gain vector L such that the stable unobservable modes of A are included in

the eigenvalue set of the matrix A− Lc.)

With (3.4.17) and (3.4.13), y0(t) = C0x(t) can be expressed as

y0(t) = C0
G1(s)

Λ0(s)
[u](t) + C0

G2(s)

Λ0(s)
[y](t) (3.4.18)

= C0
G1(s)

Λ0(s)
(s+ a0)[z0](t) + C0

G2(s)

Λ0(s)
(s+ a0)[z](t).

Step 3: establishing a relationship between the filtered u(t) and the filtered y(t). Us-

ing (3.4.16) and (3.4.18), we can express K1(s)[u](t) in (3.4.16) as

K1(s)[u](t) = K1(s)θT
1 (·)a1(s)

Λ(s)
(s+ a0)[z0](t) +K1(s)θT

21(·)N1(s)

Λ1(s)
(s+ a0)[z0](t)

+K1(s)θT
22(·)N1(s)

Λ1(s)
(s+ a0)[z](t) +K1(s)θT

201(·)N2(s)

Λ0(s)
(s+ a0)[z0](t)

+K1(s)θT
202(·)N2(s)

Λ0(s)
(s+ a0)[z](t) +K1(s)[θ3r](t),

where θ21(·) ∈ R2n−n0−1, θ22(·) ∈ R2n−n0−1, θ201(·) ∈ Rn and θ202(·) ∈ Rn, such that

θT
21(·)N1(s) = θT

2 (·)A2(s)C0G1(s), θT
22(·)N1(s) = θT

2 (·)A2(s)C0G2(s), θT
201(·)N2(s) =

θT
20(·)C0G1(s) and θT

202(·)N2(s) = θT
20(·)C0G2(s), forN1(s) = [1, s, . . . , s2n−n0−2]T,N2(s) =

[1, s, . . . , sn−1]T, and Λ1(s) = Λ(s)Λ0(s) whose degree is 2n−n0. Substituting (3.4.19)

into (3.4.15) and defining

P0(s, ·) = 1 +K1(s)a0 − θT
1 (·) a(s)

Λ(s)
(s+ a0)− θT

21(·)N1(s)

Λ1(s)
(s+ a0)
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− θT
201(·)N2(s)

Λ0(s)
(s+ a0), (3.4.19)

we then obtain the desired signal expression

P0(s)[z0](t) (3.4.20)

=

(
K(s)G−1(s) +K1(s)θT

22(·)N1(s)

Λ1(s)
+K1(s)θ202(·)N2(s)

Λ0(s)

)
[z](t) +K1(s)[θ3r](t).

To further deal with the signal expression (3.4.20), we first find that the impulse

response k1(t) of K1(s) is

k1(t) = L−1[K1(s)] = e−at
n∗∑
i=1

an
∗−i

(n∗ − i)!
tn

∗−i, (3.4.21)

where L−1[·] is the inverse Laplace transform operator and whose L1 signal norm

satisfies

‖k1(·)‖1 =

∫ ∞
0

|k1(t)|dt =
n∗

a
. (3.4.22)

Hence, it is concluded that there exists a0 > 0 such that for any fixed a > a0, the

operator T0(s, ·) =
(
P0(s, ·)

)−1
is stable and proper1 [53] (similar to the case: if the

H∞ gain of G0(s) is small enough, (1 +G0(s))−1 is stable). Letting a > a0 be finite

in K(s) and K1(s), from (3.4.20), we have

z0(t) = T1(s, ·)[z](t) + b0(t), (3.4.23)

where T1(s, ·) is a time-varying stable and strictly proper operator, and b0(t) ∈ L∞.

Step 4: formulating a closed-loop inequality of the filtered y(t). For Pm(s) = sn
∗
+

an∗−1s
n∗−1 + · · ·+ a1s+ a0, we express ξ(t) in (3.4.9) as

ξ(t) =
sn

∗−1 + an∗−1s
n∗−2 + · · ·+ a2s+ a1

Pm(s)
[θ̇T 1

Pm(s)
[ω]](t)

1A linear operator T (s, t) is stable and proper if |T (s, ·)[x](t)| ≤ β
∫ T

0
e−α(t−τ)|x(τ)|dτ + γ|x(t)|

for some constants β ≥ 0, α > 0 and γ > 0, for all t ≥ 0, where T (s, ·)[x](t) denotes the convolution
of the impulse response of T (s, ·) with x(·) at t. A linear operator T (s, t) is stable and strictly proper
if it is stable with γ = 0.
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+
sn

∗−2 + an∗−1s
n∗−3 + · · ·+ a2

Pm(s)
[θ̇T s

Pm(s)
[ω]](t)

+ · · ·+ s+ an∗−1

Pm(s)
[θ̇T s

n∗−2

Pm(s)
[ω]](t) +

1

Pm(s)
[θ̇T s

n∗−1

Pm(s)
[ω]](t), (3.4.24)

with the regression signal ω = [ωT
1 (t), ωT

2 (t), yT
0 (t), r(t)]T.

Filtering both sides of (3.4.8) by 1
s+a0

, we obtain

z(t) =
1

s+ a0

[ym](t) +
1

s+ a0

[ε− ρξ](t). (3.4.25)

Then, from the inequality

|ε(t)| ≤ |ε(t)|
m0(t)

(1 + ‖ζ(t)‖1 + |ξ(t)|), (3.4.26)

the signal boundedness property shown in Lemma 4.1, and the expressions (3.4.9)

and (3.4.23)–(3.4.25), we obtain the desired feedback structure

|z(t)| ≤ x0(t) + T2(s, ·)[x1T3(s, ·)[|z|]](t) (3.4.27)

for some x0(t) ∈ L∞, x1(t) ∈ L∞ ∩L2 with x1(t) ≥ 0, some stable and strictly proper

operator T2(s, t), and some stable and proper operator T3(s, t) with a non-negative

impulse response function.

Step 5: applying Gronwall-Bellman Lemma for signal boundedness. Introducing

z1(t) = T3(s, ·)[|z|](t), operating T3(s, t) on both sides of (3.4.27), noting that T3(s, t)

has a non-negative impulse response, we have

z1(t) ≤ b1 + b2

∫ t

0

e−α(t−τ)x1(τ)z1(τ)dτ (3.4.28)

for some α, b1, b2 > 0. Applying a corollary of the Bellman-Gronwall Lemma ( see

p.64 of [82] for a proof) to (3.4.28) with x1(t) ∈ L2∩L∞, we conclude that z1(t) ∈ L∞,

and so z(t) ∈ L∞. Hence, z0(t) ∈ L∞ in (3.4.23), ξ(t) ∈ L∞ in (3.4.9), ζ(t) ∈ L∞ in

(3.4.9), ε(t) ∈ L∞ in (3.4.10), y(t) ∈ L∞ in (3.4.8), and u(t) ∈ L∞ in (3.4.1).
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From (3.4.10) we have ε̇(t) ∈ L∞, which, with ε(t) ∈ L2∩L∞, implies limt→∞ ε(t) =

0 in (3.4.10), and limt→∞ θ̇(t) = 0 in (3.4.11). From this property and θ̇(t) ∈ L2, it

follows that ξ(t) ∈ L2 and limt→∞ ξ(t) = 0 in (3.4.24). Finally, from (3.4.8), we have

e(t) = y(t)− ym(t) ∈ L2 and ė(t) ∈ L∞, so that limt→∞ e(t) = 0. ∇

In summary, the main ideas of the developed adaptive control design for general

plants are: the controller (3.4.1) with bounded parameters leads to the closed-loop

inequality (3.4.27), the adaptive law (3.4.11), through the L2 property of θ̇(t) and

ε(t)
m0(t)

, ensures that the loop gain of (3.4.27) is small so that the signal boundedness is

guaranteed, and the L2 property and signal boundedness ensure that limt→∞ e(t) = 0.

This proof unifies the stability and tracking analysis for a general MRAC framework:

the partial-state feedback design for SISO systems, the commonly seen output feed-

back design with y0(t) = y(t), and the state feedback design with y0(t) = x(t) [82,83].

3.4.3 Adaptive Design for Relative-Degree-One Systems

In this subsection, we will, in particular, develop a simpler adaptive law to update the

controller parameters in the adaptive controller (3.4.1) for the unknown plant (3.1.1)

with relative degree n∗ = 1.

Tracking error equation and adaptation law. When the system transfer

function G(s) = kp
Z(s)
P (s)

has relative degree n∗ = 1, we choose the characteristic

polynomial of the reference model as Pm(s) = s + am,am > 0. The error equation

(3.4.7) becomes

ė(t) = −ame(t) + kpθ̃
T(t)ω(t). (3.4.29)

With (3.4.29), we choose the adaptive law for θ(t) as

˙̃θ(t) = θ̇ = −sign(kp)Γω(t)e(t) (3.4.30)
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with an adaptation gain matrix Γ = ΓT > 0, and an initial estimate θ(0) of θ∗, chosen

as close as possible to θ∗.

System stability and tracking performance analysis. For showing the

closed-loop stability, we consider the positive definite function V (ec) = e2+|kp|θ̃TΓ−1θ̃

as a measure of the closed-loop system error ec(t) = [e(t), θ̃T(t)]T. The time-derivative

of V (ec) is

V̇ = −2ame
2(t) ≤ 0. (3.4.31)

From V (ec) > 0 and V̇ (ec) ≤ 0, we can conclude that V (ec) is bounded, which

in turn, implies that θ(t) ∈ L∞, e(t) ∈ L∞ and so y(t) ∈ L∞. From (3.3.17), we

have y0(t) ∈ L∞, so that ω2(t) = A2(s)
Λ(s)

[y0](t) ∈ L∞. Using (3.1.2): P (s)[y](t) =

kpZ(s)[u](t), ignoring the exponentially decaying initial conditions, we have

si

Λ(s)
[u](t) =

P (s)

kpZ(s)

si

Λ(s)
[y](t), (3.4.32)

which is bounded for i = 0, 1, · · · , n− n0 − 1, because P (s)
kpZ(s)

si

Λ(s)
is stable and proper

and y(t) ∈ L∞. This implies ω1(t) ∈ L∞, and so does u(t). From (3.4.29), we have

ė(t) ∈ L∞, and from (3.4.31), we have e(t) ∈ L2. Therefore, using Barhalat Lemma,

we can conclude that limt→∞ e(t) = 0. ∇

In summary, we have the following result.

Theorem 3.4.2. The adaptive controller (3.4.1) with the adaptive law (3.4.30), ap-

plied to the plant (3.1.1) with relative degree n∗ = 1, guarantees that all closed-loop

signals are bounded and limt→∞ e(t) = 0.

Discussion. So far, two adaptive partial-state feedback control designs are de-

veloped and the corresponding stability and tracking performances have been proved.

It is worth noting that the use of the partial state y0(t) = C0x(t) in the proposed
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partial-state feedback MRAC scheme, as compared with y(t) = Cx(t) in a traditional

output feedback MRAC design, provides new flexibilities in designing MRAC schemes

for three typical cases of y0(t) = C0x(t):

(i) y0(t) being a vector which contains the output y(t);

(ii) y0(t) being a vector which does not contain y(t); and

(iii) y0(t) being a scalar which is not equal to y(t).

In all three cases the output y(t) is ensured to track ym(t) asymptotically, by

the partial-state feedback MRAC scheme which has reduced controller complexity as

compared with a traditional output feedback MRAC scheme, and has a new MRAC

framework linking a state feedback MRAC design and an output feedback MRAC

design, as a new addition to the MRAC theory.

Remark 3.4.2. In this thesis we consider direct model reference adaptive control

with partial-state feedback: the adaptive controller parameters are updated directly

by adaptive laws. For an indirect MRAC design, system parameters are estimated first

and the controller parameters are calculated from the estimated system parameters.

For output tracking, one typical indirect MRAC design is based on an input-

output model: P (s)[y](t) = kpZ(s)[u](t). The adaptive law for estimating the system

parameters in P (s) and Z(s) is developed based on an output estimation error (see

p.303 of [5] for details). This method does not involve state nor partial-state infor-

mation for control design, so that the partial-state signal is not applicable for this

input-output model based indirect adaptive control design.

Another possible design of indirect model reference adaptive control is to first

obtain the estimates (Â, b̂) of the parameters (A, b) of a system model ẋ(t) = Ax(t)+

bu(t) by using x(t) and u(t), and then to solve the matching equation c(λI−Âb̂KT
1 )−1×

b̂K2 = Wm(s) to obtain the parameters K1 and K2, for the adaptive control law:
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u(t) = KT
1 x(t) + K2r(t), assuming c is known in the output equation: y(t) = cx(t)

(which is often the case in applications) [83]. There is a potential for this design to

be developed using a partial-state vector y0(t) = x0(t) for x(t) = [xT
0 (t), xT

1 (t)]T such

that ẋ0(t) = A11x0(t) + A12x1(t) + b1u(t), where x1(t) is not available but can be

parametrized in terms of filtered versions of y(t) and u(t). In this formulation, the

system parameters (A11, A12, b1) and some additional parameters in parametrization

of A12x1(t) (which are the total equivalent system parameters in terms of the system

signals x0(t) plus u(t) and y(t)) can be estimated. An indirect partial-state feedback

adaptive controller (of the same structure as that presented in this chapter) may be

constructed using parameters calculated from a design equation (different from that

for a state feedback or output feedback design) using the estimates of the equivalent

system parameters, for output tracking control. Development of such a new indirect

adaptive control scheme is beyond the scope of this thesis. �

3.5 Illustrative Examples

In this section, we present simulation studies on a relative-degree-two plant and a

relative-degree-one plant to evaluate the effectiveness of the proposed partial-state

feedback adaptive control designs, respectively.

3.5.1 Simulation Study of A Relative-Degree-Two Plant

In this subsection, we use the longitudinal dynamic model of a Boeing 737 airplane [84]

as the plant whose relative degree is two, for the simulation study. The proposed

partial-state feedback adaptive control design for general plants developed in Section

3.3.2 is applied.

Simulation system (longitudinal aircraft system model). For pitch angle

control, with the system state vector chosen as x = [Ub, Wb, Qb, θ0]T, the linearized
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longitudinal motion equation with the elevator angle δe(deg) as the input is


U̇b
Ẇb

Q̇b

θ̇0

 =


−0.0264 0.1269 −12.9260 −32.1690
−0.2501 −0.8017 220.5500 −0.1631
0.0002 −0.0075 −0.5510 −0.0003

0 0 1 0



Ub
Wb

Qb

θ0

+


0.0109
−0.1858
−0.0230

0

 δe,
y(t) = θ0(t). (3.5.1)

The four state variables are the axial forward velocity Ub(ft/s), vertical forward veloc-

ity Wb(ft/s), vertical pitch velocity Qb(rad/s) and axial Euler pitch angle θ0(rad) (the

notation θ0 is used to avoid possible confusion with θ(t) in the adaptive controller),

and the plant output y(t) is the pitch angle θ0. This is a relative degree 2 system

model.

Simulation results. Three cases have been studied, with the reference input

being r(t) = 0.08 sin(0.1t), to show the new features of the partial-state feedback

MRAC scheme:

Case I: the partial-state y0 is a vector which contains y = θ0: y0 = [Qb, θ0]T;

Case II: the partial-state y0 is a vector which does not contain y = θ0: y0 = [Ub,Wb]
T;

Case III: the partial-state y0 is a scalar and not equal to y = θ0: y0 = Ub.

In addition, tracking performance and the control input signal are given, when

an adaptive output feedback controller (3.1.6) is applied to (3.5.1), for showing the

capability of improving the transient response of the partial-state feedback design.

For all simulation studies, Γ = 2I, Wm(s) = 1
(s+1)2

, Λ(s) = (s + 1)4−n0 (n0 =

2, 2, 1, 1 for the above cases, respectively), y(0) = 0.01, ym(0) = 0, r(t) = 0.5 sin(0.08t),

and initial controller parameters are chosen as 90% of the nominal controller param-

eters calculated by (3.3.19).

Simulation results for Case I–Case III are shown in Fig. 3.1–Fig. 3.3, respectively,
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Figure 3.1: System response for y0(t) = [Qb(t), θ(t)]
T, y(t) = θ(t) (n∗ = 2).
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Figure 3.2: System response for y0(t) = [Ub(t), Wb(t)], y(t) = θ0(t) (n∗ = 2).
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Figure 3.3: System response for y0(t) = Qb(t), y(t) = θ0(t) (n∗ = 2).
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Figure 3.4: System response for output feedback (n∗ = 2).
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and the simulation results for output feedback design is shown in Fig. 3.4. In Fig.

3.1(a)–Fig. 3.3(a), the dashed lines represent the reference pitch angle and the solid

lines represent the aircraft outputs. The tracking performance plots in Fig.3.1(a)–Fig.

3.3(a) show that the asymptotic tracking are achieved in all three cases. Fig. 3.1(b)–

Fig. 3.3(b) and Fig.3.1(c)–Fig. 3.3(c) confirm that all control signals and their rates

stay in acceptable ranges. Also, all signals in closed-loop systems are bounded whose

plots are not shown due to the space limit. In addition, under the same conditions,

less oscillating at the beginning of the simulation can be observed from Fig. 3.1–

Fig.3.2 produced by the developed partial-state feedback control design, compared to

the simulation result of the output feedback design shown in Fig. 3.4, which verifies

that the new MRAC scheme improves system transient response.

3.5.2 Simulation Study of A Relative-Degree-One Plant

As an example, we use the lateral dynamic model of a Boeing 747 airplane [21] as

the plant to which the proposed partial-state feedback adaptive control design for

relative-degree-one systems (developed in Section 3.3.3) is applied.

Simulation system (latitudinal aircraft system model). For yaw rate con-

trol, with the system state vector chosen as x = [β, r0, p, φ]T, the linearized lateral-

perturbation motion equation with the rudder angle δr as the input is
β̇
ṙ0

ṗ

φ̇

 =


−0.0558 −0.9968 0.0802 0.0415
0.598 −0.115 −0.0318 0
−3.05 0.388 −0.4650 0

0 0.0805 1 0



β
r0

p
φ

+


0.00729
−0.475
0.153

0

 δr,
y(t) = r0(t). (3.5.2)

The four state variables are the side-slip angel β(rad), yaw rate r0(rad/s) (the notation

r0 is used to avoid possible confusion with r(t) in ym(s) = Wm(s)[r](t)), roll rate

p(rad/s) and roll angle φ(rad), and the plant output y(t) is the yaw rate. It can be
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verified that this is a relative degree 1 system model.

Simulation results. The following Case I–Case III are selected to show the

unique features of the developed MRAC scheme.

Case I: the partial-state y0 is a vector which contains y = r0: y0 = [r0, p]
T;

Case II: the partial-state y0 is a vector which does not contain y = r0: y0 = [p, φ]T;

Case III: the partial-state y0 is a scalar which is not equal to y = r0: y0 = φ.

Similar to the simulation study of relative-degree-two systems, tracking perfor-

mance and the control input signal are given, when an adaptive output feedback

controller (3.1.6) is applied to (3.5.2) for a comparative study.

For all simulation cases, Γ = 5I, Wm(s) = 1
s+3

, Λ(s) = (s + 1)4−n0 (n0 = 2, 2, 1, 1

for the above cases, respectively), y(0) = −0.05, ym(0) = 0, and r(t) = 0.5 sin(0.08t).

Initial conditions in all cases are chosen as 90% of the nominal controller parameters

respectively.

Simulation results for Case I, Case II and Case III are shown in Fig. 3.5, Fig. 3.6

and Fig. 3.7, respectively, and the simulation result for the output feedback design

is shown in Fig. 3.8. All simulation results verify the desired system performance:

the asymptotic tracking is achieved, and the control signals and their rates stay in

acceptable ranges respectively. Also, all signals in closed-loop systems are bounded

whose plots are not shown due to the space limit. In particular, simulation results

for Case II and Case III show that the asymptotic tracking can be achieved without

explicitly using the output information in the feedback controller structure, a new

feature of the developed partial-state feedback control scheme. In addition, compared

to Fig. 3.5–Fig. 3.6, larger oscillation and longer response time are observed from the

tracking performance when an output feedback controller is applied (see Fig. 3.8),

which supports that the new partial-state feedback MRAC scheme makes system
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Figure 3.5: System response for y0(t) = [r0(t), p(t)]T, y(t) = r0(t) (n∗ = 1).
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Figure 3.6: System response for y0(t) = [p(t), φ(t)]T, y(t) = r0(t) (n∗ = 1).
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Figure 3.7: System response for y0(t) = φ(t), y(t) = r0(t) (n∗ = 1).
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Figure 3.8: System response for output feedback (n∗ = 1).
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response more responsive and less oscillating, as discussed in Remark 4.1.

Summary

In this chapter, we have developed a new framework of MRAC using partial-state

feedback for output tracking, with new solutions to three technical issues: plant-

model output matching, parameterized error model, and stable adaptive law design

and analysis, for ensuring closed-loop system stability and asymptotic tracking in

the presence of plant uncertainties. We developed two adaptive control designs: one

Lyapunov type design for relative-degree-one plants, and one gradient type design

for general plants. This work has shown that partial-state feedback MRAC provides

additional design flexibilities in utilizing system signals, while using less complex

controller structures than output feedback. We presented a complete analysis of

the closed-loop system stability and tracking performance of partial-state feedback

MRAC. It has been shown that such a new MRAC framework builds a natural transi-

tion from full-state feedback MRAC to output feedback MRAC, adding new members

to the family of MRAC. We presented simulation results for different adaptive control

designs, which verify the desired adaptive control system performance, indicating that

such a new partial-state feedback MRAC technique has potential for applications.



Chapter 4

Partial-State Feedback MRAC for
MIMO Systems

This chapter develops a new model reference adaptive control (MRAC) scheme by

partial-state feedback for solving a multivariable adaptive output tracking problem.

The new proposed MRAC scheme has full capability to deal with plant uncertain-

ties for output tracking and has desired design flexibility to combine the advantages

of full-state feedback MRAC and output feedback MRAC. The new multivariable

MRAC scheme provides new features to the control system including additional de-

sign flexibility and feedback capacity. Based on the additional design flexibility it

provides, a minimum-order MRAC scheme is also proposed in this chapter, which

reduces the control adaptation complexity and relaxes the feedback information re-

quirement, compared to the existing MRAC schemes.

This main contributions of this chapter are:

• developing an adaptive multivariable MRAC scheme by using partial-state feed-

back signal which can guarantee asymptotic output tracking and closed-loop

signal boundedness in the presence of plant parameter uncertainties;

• conducting a complete analysis of plant-model output matching for the nominal

control design, and a complete analysis of stability and tracking performance
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for the adaptive control design;

• presenting a complete system computation complexity analysis of the partial-

state feedback reduced-order multivariable MRAC scheme; and

• providing a minimal-order MRAC scheme which enjoys minimum feedback sig-

nal requirement and reduces the system adaptation complexity, compared to

the other observer-based MRAC designs.

4.1 Problem Statement and Research Motivations

In this section, a brief review of the existing multivariable MRAC schemes is first

given in Section 4.1.1. Then, the multivariable MRAC problems: (a) partial-state

feedback reduced-order multivariable MRAC; and (b) minimal-order multivariable

MRAC, are formulated in Section 4.1.2.

4.1.1 Review of Multivariable MRAC Schemes

Before we formulate the new multivariable MRAC problems, it is necessary to review

the existing multivariable MRAC schemes first in this section.

Plant description. Consider an M -input and M -output linear time-invariant

plant described by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (4.1.1)

where A ∈ Rn×n, B ∈ Rn×M and C ∈ RM×n are unknown constant parameter

matrices, and x(t) ∈ Rn, u(t) ∈ RM and y(t) ∈ RM are the state, input and output

vectors, respectively. The input-output description of the plant (4.1.1) is

y(t) = G(s)[u](t), G(s) = C(sI − A)−1B. (4.1.2)



62

The notation, y(t) = G(s)[u](t), is used to denote the output y(t) of a system rep-

resented by a transfer function matrix G(s) with a control input signal u(t). It is a

simple notation to combine both the time domain and the frequency domain signal

operations, suitable for adaptive control system presentation.

Control goal and plant assumptions. The control goal of multivariable MRAC

is to construct a feedback control law by using the state vector x(t) or the output

signal y(t) for generating the control input signal u(t) in (4.1.1) such that all signals in

the closed-loop system are bounded and the output vector y(t) asymptotically tracks

a given reference output vector ym(t) generated from a reference model system

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s), (4.1.3)

where r(t) ∈ RM is a bounded reference input signal, and ξm(s) is a modified left

interactor matrix of the system transfer matrix G(s) = C(sI −A)−1B, whose inverse

matrix is stable, i.e., Wm(s) is stable.

The basic assumptions are made for achieving the control objective for multivari-

able MRAC systems:

(A4.1) All zeros of G(s) = C(sI − A)−1B are stable, and (A,B,C) is stabilizable

and detectable.

(A4.2) G(s) has full rank and its modified left interactor matrix ξm(s) is known.

Assumption (A4.1) is for a stable plant-model output matching, and Assumption

(A4.2) is for choosing a reference model system Wm(s) = ξ−1
m (s) suitable for plant-

model output matching. Note that the zeros of G(s) are defined as the system trans-

mission zeros (the values of s making G(s) nonsingular). In addition, the interactor

matrix ξm(s) does not explicitly depends on the parameters of G(s) in this case.
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Review of the existing MRAC designs. According to different types of the

feedback signal used to construct the controller, there are two multivariable MRAC

designs for output tracking in the literature.

(i) State feedback for output tracking. When the full state vector x(t) is available

for measurement, the following simple adaptive controller structure can be used:

u(t) = KT
1 (t)x(t) +K2(t)r(t), (4.1.4)

where K1(t) ∈ Rn×M and K2(t) ∈ RM×M are controller parameters to be adaptively

updated by stable adaptive laws. Such controller parameters K1(t) and K2(t) are the

adaptive estimates of the nominal controller parameters K∗1 and K∗2 satisfying the

matching condition

C(sI − A−BK∗T1 )−1BK∗2 = Wm(s), K∗−1
2 = Kp, (4.1.5)

with Kp being the system high-frequency gain matrix of G(s), for plant-model output

matching: y(t) = Wm(s)[r](t) = ym(t). The existence of the nominal controller

parameters K∗1 and K∗2 is guaranteed as long as the plant interactor matrix ξm(s) is

used for Wm(s) = ξ−1
m (s). In addition, to ensure the output tracking as well as the

system internal signal boundedness, (A,B,C) needs to be stabilizable and detectable

and all zeros of G(s) need to be stable [27].

(ii) Output feedback for output tracking. In applications, when the full state vec-

tor x(t) is not accessible for measurement, the standard output feedback adaptive

controller

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t) (4.1.6)

needs to be used, where ω1(t) = A0(s)
Λ(s)

[u](t), ω2(t) = A0(s)
Λ(s)

[y](t) with A0(s) = [IM , sIM ,

· · · , sν̄−2IM ]T, Θ1(t) ∈ R(ν̄−1)M×M , Θ2(t) ∈ R(ν̄−1)M×M , Θ20(t) ∈ RM×M , Θ3(t) ∈
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RM×M , ν̄ being the upper bound of the observability index ν of the plant, and Λ(s)

being a monic stable polynomial of degree ν̄−1. To ensure the internal signal bound-

edness while achieving output tracking, it is needed that all zeros of G(s) are stable

and (A,B,C) needs to be stabilizable and detectable.

Research motivations. In summary, stable output matching can always be

achieved with all zeros of G(s) being stable and (A,B,C) being stabilizable and de-

tectable, and the modified left interactor matrix ξm(s) being known as well. However,

the requirement of the full state vector x(t) for a state feedback controller may not

be practical in applications, and the implementation complexity of an output feed-

back controller may also be an issue. Therefore, we develop the partial-state feedback

reduced-order multivariable MRAC design, which

• increases design flexibility of multivariable MRAC systems;

• introduces a unification of multivariable MRAC schemes; and

• provides a manageable trade-off between feedback capacity and system com-

plexity;

In addition, we develop the minimal-order multivariable MRAC scheme, which

• minimizes the number of feedback signal; and

• minimizes the controller implementation complexity.

4.1.2 Partial-State Reduced-Order MRAC

In this chapter, we will investigate the partial-state feedback reduced-order multivari-

able MRAC problem. Thus, besides the assumptions (A4.1) and (A4.2), we assume
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(A4.3) a partial-state vector signal y0(t) = C0x(t) ∈ Rn0 , which is a subset of the

components of x(t) or a linear combination of them, is available for measure-

ment, with (A,C0) observable for C0 ∈ Rn0×n and rank[C0] = n0.

Problem 1: Partial-state multivariable feedback MRAC: The control ob-

jective of this problem is to construct an adaptive control law u(t) in (4.1.1) by using

the partial-state vector y0(t) such that

(i) all signals in the closed-loop system are bounded;

(ii) the output vector y(t) asymptotically tracks the given reference output

vector ym(t), i.e., limt→∞(y(t)− ym(t)) = 0.

Problem 2: Minimal-order multivariable MRAC: The control objective of

this problem is to construct an adaptive control law u(t) by using the partial-state

vector y0(t) ∈ Rn0 with a minimum n0 such that

(i) all signals in the closed-loop system are bounded;

(ii) the asymptotic M -output: limt→∞(y(t)− ym(t)) = 0, is achieved;

(iii) the number of parameters to be adaptively updated are reduced.

4.2 New Multivariable MRAC Using Partial-State

Feedback

In this section, we will first solve the partial-state feedback plant-model output match-

ing problem by developing a new controller structure with the signal y0(t) in Section

4.2.1. Such a nominal controller gives the solution to the plant-model matching prob-

lem when the system parameters are known and provides a priori knowledge to the

counterpart adaptive control problem which will be solved in Section 4.2.2.
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4.2.1 Nominal Partial-State Feedback Control

In this section, the nominal partial-state feedback controller is developed for the plant

(4.1.1) with known parameters, which provides the foundation for an adaptive control

design with unknown parameters.

4.2.1.1 Partial-State Feedback Controller Structure

In this section, we will develop a parametrized partial-state feedback controller by

the partial-state y0(t) through a virtual observer.

Partial-state observer. When the state x(t) is not accessible, an observer-based

state feedback control law:

u(t) = K∗T1 x̂(t) +K∗2r(t) (4.2.1)

can be used for plant-model matching, with a suitable state estimate x̂(t). For deriving

a parameterized partial-state feedback control law for plant-model output matching,

we first obtain a partial-state observer with the available partial-state vector y0(t) to

obtain an estimated state x̂(t) .

For the system state equation: ẋ(t) = Ax(t) + Bu(t), as the techniques shown

in [9], we introduce a transformation matrix P ∈ Rn×n such that C0P
−1 = [In0 , 0]

with n0 = rank[C0], and transfer the system state equation as[
˙̄x1(t)
˙̄x2(t)

]
=

[
Ā11 Ā12

Ā21 Ā22

] [
x̄1(t)
x̄2(t)

]
+

[
B̄1

B̄2

]
u(t), (4.2.2)

where x̄(t) = Px(t) = [x̄T
1 (t), x̄T

2 (t)]T with x̄1(t) ∈ Rn0 , x̄2(t) ∈ Rn−n0 , Ā11 ∈

Rn0×n0 , Ā12 ∈ Rn0×(n−n0), Ā21 ∈ R(n−n0)×n0 , Ā22 ∈ R(n−n0)×(n−n0), B̄1 ∈ Rn0×M and

B̄2 ∈ R(n−n0)×M .

By the techniques shown in [9], an estimate ˆ̄x(t) for x̄(t) can be generated as

ˆ̄x(t) =

[
x̄1

ˆ̄x2

]
=

[
y0(t)

w(t) + Lry0(t)

]
, (4.2.3)
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where ˆ̄x2(t) is an estimate for x̄2(t), Lr ∈ R(n−n0)×n0 is a constant gain matrix such

that the eigenvalues of the (n − n0) × (n − n0) matrix Ā22 − LrĀ12 are stable and

prespecified, and w(t) ∈ Rn−n0 is generated from the dynamic equation

ẇ(t) = (Ā22 − LrĀ12)w(t) + (B̄2 − LrB̄1)u(t) (4.2.4)

+ ((Ā22 − LrĀ12)Lr + Ā21 − LrĀ11)y0(t).

Based on the observer-based theory, we have limt→∞(x(t)−x̂(t)) = limt→∞ P
−1(x̄(t)−

ˆ̄x(t)) = 0 exponentially, with the above partial-state observer.

Partial-state feedback controller. The above result shows the estimate x̂(t)

converges to x(t) exponentially. Therefore, plant-model output matching should also

be achievable by the observer-based control law u(t) = K∗T1 x̂(t) + K∗2r(t), as the

nominal control law u(t) = K∗T1 x(t) + K∗2r(t) does it. Since x̂(t) is still parameters-

depending, further reparameterization of the observer-based control law is conducted

for the purpose of adaptive control design for the unknown plant.

First, we solve the partial-state estimate w(t) in (4.2.4) and express it as

w(t) = ε0(t) + (sI − Ā22 + LrĀ12)−1(B̄2 − LrB̄1)[u](t)

+ (sI − Ā22 + LrĀ12)−1((Ā22 − LrĀ12)Lr + Ā21 − LrĀ11)[y0](t)

=
N1(s)

Λ(s)
[u](t) +

N2(s)

Λ(s)
[y0](t) + ε0(t), (4.2.5)

where ε0(t) = e(Ā22−LrĀ12)tw(0) with w(0) being an estimate of Lry0(0)−x̄2(0), Λ(s) =

det(sI−Ā22+LrĀ12) whose degree is n−n0 and stability properties can be prespecified

by assigning the eigenvalues of Ā22 − LrĀ12 as a set of given (known) values, N1(s)

and N2(s) are some (n − n0) × M and (n − n0) × n0 polynomial matrices whose

maximum degrees are n− n0 − 1 or less.

Using (4.2.3) and (4.2.5), we can express the term K∗T1 x̂(t) as

K∗T1 x̂(t) = Θ∗T1

A1(s)

Λ(s)
[u](t) + Θ∗T2

A2(s)

Λ(s)
[y0](t) + Θ∗T20 y0(t) + ε1(t) (4.2.6)
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for ε1(t) = K∗p2e
(Ā22−LrĀ12)tw(0) representing the effect of the initial condition, where

Θ∗1 ∈ RM(n−n0)×M , Θ∗2 ∈ Rn0(n−n0)×M , Θ∗20 ∈ Rn0×M and Θ∗3 ∈ RM×M , such that

Θ∗T20 = K∗p1 +K∗p2Lr, K
∗
p2N1(s) = Θ∗T1 A1(s) and K∗p2N2(s) = Θ∗T2 A2(s), for K∗T1 P−1 =

[K∗p1, K
∗
p2] with K∗p1 ∈ RM×n0 and K∗p2 ∈ RM×(n−n0), and A1(s) = [IM , sIM , . . .,

sn−n0−1IM ]T, A2(s) = [In0 , sIn0 , . . . , s
n−n0−1In0 ]

T.

Substituting (4.2.6) into the observer-based control law u(t) = K∗T1 x̂(t) +K∗2r(t)

with Θ∗3 = K∗2 and ignoring the exponentially decaying term ε1(t), we obtain the

parametrized nominal partial-state feedback controller:

u(t) = Θ∗T1 ω1(t) + Θ∗T2 ω2(t) + Θ∗T20 y0(t) + Θ∗3r(t), (4.2.7)

where ω1(t) = A1(s)
Λ(s)

[u](t), ω2(t) = A2(s)
Λ(s)

[y0](t).

The above controller structure is the desired parameterized controller structure

with the partial-state vector y0(t). Next, the desired plant-model output matching

properties based on this controller structure are to be established.

4.2.1.2 Plant-Model Output Matching

The above derivation shows the partial-state feedback control law (4.2.7) is derived

from the observer-based control law u(t) = K∗T1 x̂(t) +K∗2r(t) which is a substitution

of the state feedback control law u(t) = K∗T1 x(t) +K∗2r(t) when the state x(t) is not

available. This fact indicates that by the partial-state feedback control law (4.2.7),

desired plant-model matching can be achieved, as the other two control laws do it.

Matching by observer-based control. It has been shown that when K∗1 and

K∗2 satisfy the matching condition (4.1.5), plant-model matching can be achieved by

the nominal state feedback control law: u(t) = K∗T1 x(t) + K∗2r(t) [27]. For the same

plant (4.1.1) and the same reference model (4.1.3), plant-model matching can be

achieved by the nominal observer-based state feedback control law: u(t) = K∗T1 x̂(t)+
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K∗2r(t), with the same nominal parameters K∗1 and K∗2 . The result is shown as follows.

Lemma 4.2.1. The observer-based state feedback controller u(t) = K∗T1 x̂(t)+K∗2r(t),

with the nominal controller parameters K∗1 and K∗2 satisfying the matching condition

(4.1.5):

C(sI − A−BK∗T1 )−1BK∗2 = Wm(s), K∗−1
2 = Kp,

ensures plant-model output matching: y(t)− ym(t) = ε(t), for some initial condition-

related exponentially decaying ε(t), where ym(t) is the output of the reference model

(4.1.3).

Proof: Representing x̂(t) = x(t) + ε2(t) with ε2(t) being an exponential decaying

term, the observer-based control law can be expressed as u(t) = K∗T1 x(t)+K∗T1 ε2(t)+

K∗2r(t). Substituting this u(t) into the plant (4.1.1), the output y(t) becomes y(t) =

C(sI −A−BK∗T1 )−1BK∗T1 [ε2](t) +C(sI −A−BK∗T1 )−1BK∗2 [r](t). From the output

matching condition: C(sI−A−BK∗T1 )−1BK∗2 = Wm(s), we have y(t)−ym(t) = ε(t),

for some ε(t) = C(sI − A−BK∗T1 )−1BK∗T1 [ε2](t). ∇

Lemma 4.2.1 confirms the existence of the nominal controller parameters K∗1 and

K∗2 of the observer-based control law u(t) = K∗T1 x̂(t) + K∗2r(t), for ensuring plant-

model matching.

Matching by partial-state feedback control. We now present the desired

output matching properties by the nominal partial-state feedback controller (4.2.7).

Theorem 4.2.1. Constant parameters Θ∗1, Θ∗2, Θ∗20 and Θ∗3 exist such that the con-

troller (4.2.7) guarantees closed-loop signal boundedness and partial-state feedback

based output matching: y(t)− ym(t) = ε(t), for some exponentially decaying ε(t).

Proof: The proof can be divided into two parts. The first part is for plant-model

output matching by the controller (4.2.7) and the controller parameters Θ∗1, Θ∗2, Θ∗20



70

and Θ∗3, which is guaranteed based on the derivation of the partial-state feedback

controller shown in Section 4.2.1.

The second part is for closed-loop signal boundedness. From the plant-model

output matching property: y(t) = ym(t) + ε(t) ∈ L∞, we have ξm(s)[y](t) ∈ L∞ since

ξm(s)[ym](t) = r(t) and ξm(s)[ε](t) are bounded (as ε(t) is exponentially decaying).

From y(t) = G(s)[u](t) with G(s) = C(sI −A)−1B having full rank, ignoring the

exponentially decaying effect of the initial conditions, we have u(t) = G−1(s)ξ−1
m (s)×

ξm(s)[y](t), which is bounded, becauseG−1(s)ξ−1
m (s) is stable and proper and ξm(s)[y](t)

is bounded.

According to the full-state observer theory, for (A,C) detectable, we can express

the system state x(t) as

x(t) = (sI − A+ LC)−1B[u](t) + (sI − A+ LC)−1L[y](t)

=
N01(s)

Λ0(s)
[u](t) +

N02(s)

Λ0(s)
[y](t), (4.2.8)

where the eigenvalues of the n× n matrix A− LC are stable for some constant gain

vector L ∈ Rn×M , Λ0(s) = det(sI − A + LC) whose degree is n, L is a matrix such

that N01(s) = adj(sI − A + LC)B and N02(s) = adj(sI − A + LC)L are n × M

polynomial matrices whose maximum degrees are n − 1. Hence, the internal state

x(t) is bounded as u(t) and y(t) are bounded, and so is y0(t) = C0x(t). Also, it turns

out the boundedness of ω1(t) = A1(s)
Λ(s)

[u](t), ω2(t) = A2(t)
Λ(t)

[y0](t). ∇

Theorem 3.1 shows that when the system parameter (A,B,C) are known, the

partial-state feedback control law (4.2.7) with the nominal controller parameters given

in (4.2.6) and Θ∗3 = K∗2 solves the nonadpative partial-state feedback model reference

adaptive control problem.

In addition, the nominal controller parameters Θ∗1,Θ
∗
2,Θ

∗
20 and Θ∗3 for output

matching can also be found through a matching polynomial equation.



71

Corollary 4.2.1. For partial-state feedback multivariable model reference control,

constant parameter matrices Θ∗1 ∈ RM(n−n0)×M , Θ∗2 ∈ Rn0(n−n0)×M , Θ∗20 ∈ Rn0×M and

Θ∗3 ∈ RM×M exist such that the output matching equation holds:

Θ∗T1 A1(s)P (s) + (Θ∗T2 A2(s) + Θ∗T20 Λ(s))Z0(s)

= Λ(s)(P (s)−Θ∗3Kpξm(s)Z(s)). (4.2.9)

Proof: With y0(t) = G0(s)[u](t) and G0(s) = C0(sI − A)−1B, the transfer function

matrix of the closed-loop system is

Gc(s) = G(s)
(
IM −Θ∗T1

A1(s)

Λ(s)
− (Θ∗T2

A2(s)

Λ(s)
+ Θ∗T20 )G0(s)

)−1
Θ∗3, (4.2.10)

which has been made to match Wm(s) = ξ−1
m (s). From Gc(s) = Wm(s), we obtain

IM −Θ∗T1

A1(s)

Λ(s)
− (Θ∗T2

A2(s)

Λ(s)
+ Θ∗T20 )G0(s) = Θ∗3W

−1
m (s)G(s), (4.2.11)

which, for G(s) = Z(s)P−1(s) and G0(s) = Z0(s)P−1(s), can be expressed as (4.2.9).

Hence, there exist Θ∗1, Θ∗2, Θ∗20 and Θ∗3 satisfying the matching equation (4.2.9). ∇

Such a matching equation is also crucial for deriving the tracking error model for

the adaptive control design in the next section.

4.2.2 Adaptive Partial-State Feedback Control

For the plant (4.1.1) with unknown (A,B,C), nominal controller parameters Θ∗1, Θ∗2,

Θ∗20 and Θ∗3 in (4.2.7) depending on system parameters (A,B,C) can not be calculated

so that the nominal partial-state feedback control law cannot be applied to the plant

(4.1.1). Thus, an adaptive partial-state feedback controller is needed to deal with the

parameter uncertainties. For adaptive control, we need the following assumption:

(A4.4) all leading principle minors ∆i, i = 1, 2, . . . ,M , of the high frequency matrix

Kp of G(s) are nonzero and their signs are known.
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4.2.2.1 Adaptive Controller and Error Model

In this subsection, we propose an adaptive partial-state feedback controller structure,

and derive a tracking error equation.

Controller structure. To handle the plant (4.1.1) with (A,B,C) unknown, we

design the adaptive version of the controller (4.2.7) as

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + ΘT
20(t)y0(t) + Θ3(t)r(t), (4.2.12)

where Θ1(t) ∈ RM(n−n0)×M , Θ2(t) ∈ Rn0(n−n0)×M , Θ20(t) ∈ Rn0×M , Θ3(t) ∈ RM×M are

the adaptive estimates of the unknown nominal parameters Θ∗1, Θ∗2, Θ∗20, Θ∗3 (defined

from (4.2.6) or (4.2.9)), respectively, and

ω1(t) =
A1(s)

Λ(s)
[u](t), ω2(t) =

A2(s)

Λ(s)
[y0](t) (4.2.13)

with A1(s) = [IM , sIM , . . . , s
n−n0−1IM ]T, A2(s) = [In0 , sIn0 , . . . , s

n−n0−1In0 ]
T, and

Λ(s) being a monic stable polynomial of degree n− n0.

Tracking error equation. Recall the equation (4.2.11):

IM −Θ∗T1

A1(s)

Λ(s)
− (Θ∗T2

A2(s)

Λ(s)
+ Θ∗T20 )G0(s) = Θ∗3W

−1
m (s)G(s).

For y(t) = G(s)[u](t) and y0(t) = G0(s)[u](t), we operate u(t) on both sides of (4.2.11),

and have the signal identity:

u(t)−Θ∗T1

A1(s)

Λ(s)
[u](t)− (Θ∗T2

A2(s)

Λ(s)
+ Θ∗T20 )[y0](t) = Θ∗3W

−1
m (s)[y](t), (4.2.14)

Such an equation leads to

u(t) = Θ∗T1

A1(s)

Λ(s)
[u](t) + (Θ∗T2

A2(s)

Λ(s)
[y0](t) + Θ∗T20 y0(t) + Θ∗3ξm(s)[y](t). (4.2.15)

Substituting (4.2.12) from (4.2.15) with r(t) = ξm(s)[ym](t), we obtain the tracking

error equation as

e(t) = y(t)− ym(t) = Wm(s)Kp[u−Θ∗Tω](t), (4.2.16)
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where Θ∗ =
[
Θ∗T1 , Θ∗T2 , Θ∗T20 , Θ∗3

]T
, ω(t) =

[
ωT

1 (t), ωT
2 (t) , yT

0 (t), rT(t)
]T

. Such an

equation can be used to develop different parameterizations for adaptive control de-

signs, using different decompositions of Kp.

LDS decomposition of Kp. Given that all principle minors of the high-frequency

gain matrixKp are non-zero, the LDS decomposition ofKp exists and can be employed

for dealing with the uncertainty of the unknown matrix Kp.

Lemma 4.2.2. [82] The high-frequency gain matrix Kp ∈ RM×M with all leading

principle minors nonzero has a non-unique decomposition: Kp = LsDsS, where S ∈

RM×M is such that S = ST > 0, Ls ∈ RM×M is a unit upper triangle matrix,

and Ds = diag{s∗1, s∗2, . . . , s∗M} = diag{sign[d∗1]γ1, . . . , sign[d∗M ]γM} with arbitrary and

chosen constant γi > 0, i = 1, 2, . . . ,M .

To employ this LDS decomposition of Kp for adaptive control, substituting Kp =

LsDsS into the tracking error equation (4.2.16), with u(t) from (4.2.12), we have

L−1
s ξm(s)[e](t) = DsSΘ̃T(t)ω(t), where Θ̃(t) = Θ(t)−Θ∗(t) with Θ(t) =

[
ΘT

1 (t), ΘT
2 (t) ,

ΘT
20(t), Θ3(t)

]T
being the estimate of Θ∗ =

[
Θ∗T1 , Θ∗T2 , Θ∗T20 , Θ∗3

]T
.

To parametrize the unknown matrix Ls, introducing a constant matrix Θ∗0 =

L−1
s − I =

{
θ∗ij
}

with θ∗ij = 0 for i = 1, 2, . . . ,M and j ≥ i, we have

ξm(s)[e](t) + Θ∗0ξm(s)[e](t) = DsSΘ̃T(t)ω(t). (4.2.17)

To parametrize this tracking error equation, choosing a filter h(s) = 1
f(s)

, where f(s)

is a stable and monic polynomial whose degree is equal to the maximum degree of

the modified interactor matrix ξm(s) and operating h(s)IM on both sides of (4.2.17),

we have

ē(t) +
[
0, θ∗T2 η2(t), θ∗T3 η3(t), . . . , θ∗TM ηM(t)

]T
= DsSh(s)[Θ̃Tω](t), (4.2.18)
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where

ē(t) = ξm(s)h(s)[e](t) = [ē1(t), . . . , ēM(t)]T,

ηi(t) = [ē1(t), . . . , ēi−1(t)]T ∈ Ri−1, i = 2, . . . ,M,

θ∗i = [θ∗i1, . . . , θii−1]T, i = 2, . . . ,M. (4.2.19)

Estimation error model based on LDS decomposition of Kp. Based on

the tracking error equation (4.2.18), we introduce the estimation error signal:

ε(t) =
[
0, θT

2 η2(t), θT
3 η3(t), . . . , θT

MηM(t)
]T

+ Ψ(t)ξ(t) + ē(t), (4.2.20)

with Ψ(t) being the estimate of Ψ∗ = DsS, and

ξ(t) = ΘT(t)ζ(t)− h(s)[ΘTω](t), ζ(t) = h(s)[ω](t). (4.2.21)

It follows from (4.2.18)–(4.2.21) that

ε(t) =
[
0, θ̃T

2 η2(t), θ̃T
3 η3(t), . . . , θ̃T

MηM(t)
]T

+DsSΘ̃T(t)ζ(t) + Ψ̃(t)ξ(t), (4.2.22)

where θ̃i(t) = θ(t)− θ∗i , i = 2, . . . ,M , and Ψ̃(t) = Ψ(t)−Ψ∗(t) are parameter errors.

Such an error equation is linear in parameter errors, which is crucial for choosing the

adaptive laws for updating the controller parameters.

4.2.2.2 Adaptive Parameter Update Law

Based on the error model (4.2.22), the adaptive laws for updating parameter estimates

are chosen as

θ̇i(t) = −Γθiεi(t)ηi(t)

m2(t)
, i = 2, 3, . . . ,M (4.2.23)

Θ̇T(t) = −Dsε(t)ζ
T(t)

m2(t)
, Ψ̇(t) = −Γε(t)ξT(t)

m2(t)
, (4.2.24)
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where ε(t) = [ε1(t), ε2(t), . . . , εM(t)]T is computed from (4.2.20), Γθi = ΓT
θi > 0, i =

2, 3, . . . ,M and Γ = ΓT > 0 are adaption gain matrices, and

m2(t) = 1 + ζT(t)ζ(t) + ξT(t)ξ(t) +
M∑
i=2

ηT
i (t)ηi(t). (4.2.25)

With the positive definition function

V =
1

2

(
M∑
i=2

θ̃T
i (t)Γ−1

θi θ̃i + tr[Ψ̃TΓ−1Ψ̃] + tr[Θ̃SΘ̃T]

)
, (4.2.26)

and its time-derivative V̇ = − εT(t)ε(t)
m2(t)

≤ 0, we conclude that (i) θi(t) ∈ L∞, i =

2, 3, . . . ,M , Θ(t) ∈ L∞, Ψ(t) ∈ L∞, ε(t)
m(t)

∈ L2 ∩ L∞, and (2) θ̇i(t) ∈ L2 ∩ L∞,

i = 2, 3, . . . ,M , Θ̇(t) ∈ L2 ∩ L∞ and Ψ̇i(t) ∈ L2 ∩ L∞. The L∞ and L2 properties of

these signals are crucial for closed-loop stability, as shown next.

4.2.2.3 System Stability and Tracking Properties

Based on the above desired properties of the adaptive law (4.2.23)–(4.2.24), the fol-

lowing desired closed-loop system properties are established.

Theorem 4.2.2. The adaptive partial-state feedback controller (4.2.12) with the adap-

tive law (4.2.23)–(4.2.24), when applied to the plant (4.1.1), guarantees the closed-loop

signal boundedness and asymptotic output tracking: limt→∞(y(t)− ym(t)) = 0.

The proof of Theorem 4.2.2 can be obtained in a similar way to that described

in [82] for output feedback design. The proof is based on a well-defined feedback

structure for the closed-loop system which has a small loop gain, leading to closed-

loop stability. A key step in such an analysis procedure is to express a filtered version

of the plant output y(t) in a feedback framework which has a small gain due to the

L2 properties of the adaptive laws. The asymptotic tracking property follows from

the complete parametrization of the error equation (4.2.20), the L2 properties, and

the signal boundedness of the closed-loop system.
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To cope with the partial-state signal y0(t) in the new partial-state feedback control

law, we need to express y0(t) in terms of the output y(t), for which a new proof

derivation is necessary. A detailed proof is shown as follows.

Proof of Theorem 4.2.2.

Step 1: introducing filtered signals for signal processing. Introduce some fictitious

filters Hi(s) and Ki(s) as

sHi(s) = 1−Ki(s), Ki(s) =
admi

(s+ ai)dm
, i = 1, 2, 3, (4.2.27)

where ai > 0 is chosen to be sufficiently large and finite for i = 1, 2, 3, and dm is the

maximum degree of the modified interactor matrix ξm(s) of G(s).

Denote hi(t) as the impulse response functions of the transfer function Hi(s),

i = 1, 2, 3. From Proposition 2.10 in [82], we have the L1 operator norms

‖hi(·)‖ =
dm
ai
, ai > 0, i = 1, 2, 3. (4.2.28)

From y(t) = G(s)[u](t) with G(s) being full rank, ω1(t) = F1(s)[u](t) = A1(s)
Λ(s)

[u](t) in

(4.2.13) and H1(s), K1(s) in (4.2.27), we obtain

F1(s)G−1(s)[y](t) = K−1
1 (s)[ω1 −H1(s)s[ω1]](t). (4.2.29)

Step 2: expressing y0(t) by u(t) and y(t). To handle the new partial-state feed-

back control scheme, we need the transformation for the partial-state signal y0(t).

First, recall the expression of internal state x(t) in (4.2.8): x(t) = N01(s)
Λ0(s)

[u](t) +

N02(s)
Λ0(s)

[y](t) where N01(s)
Λ0(s)

and N02(s)
Λ0(s)

are stable and proper.

It follows that the partial-state signal y0(t) = C0x(t) can be expressed as

y0(t) = C0
N01(s)

Λ0(s)
[u](t) + C0

N02(s)

Λ0(s)
[y](t)

= Q1(s)[u](t) +Q2(s)[y](t) (4.2.30)
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with Q1(s) = C0
N01(s)
Λ0(s)

and Q2(s) = C0
N02(s)
Λ0(s)

being stable and proper.

Step 3: establishing a relationship between u(t) and a filtered y(t). Let ω1(s) = F1(s)[u](t)

have a controllable realization (Ac, Bc):

ω̇1(t) = Acω1(t) +Bcu(t), (4.2.31)

where Ac is a stable matrix. From (4.2.12), (4.2.29), (4.2.30), (4.2.31) and ω2(t) =

F2(s)[y0](t) = A2(s)
Λ(s)

[y0](t) in (4.2.13) we obtain

ω1(t) = K1(s)F1(s)G−1(s)[y](t) +H1(s)[ω̇1](t)

= K1(s)F1(s)G−1(s)[y](t) +H1(s)[Acω1](t) +H1(s)Bc[Θ
T
1 ω1 + ΘT

2 F2(s)Q1(s)[u]

+ ΘT
2 F2(s)Q2(s)[y] + ΘT

20Q1(s)[u] + ΘT
20Q2(s)[y] + Θ3r](t). (4.2.32)

Since H1(s) satisfies (4.2.28) and Θ1(t) is bounded, there exists a0
1 > 0 such that

(I − H1(s)(Ac + BcΘ
T
1 (t)))−1 is a stable and proper operator with a finite gain for

any finite a1 > a0
1. The above fact can be proved similarly to the proof of Lemma 2.5

in [82]. For 0 < a0
1 < a1, it follows from (4.2.32) that

ω1(t) = G1(s, ·)[u](t) +G2(s, ·)[y](t) +G3(s, ·)[r](t), (4.2.33)

where for T1(s, t) , (I −H1(s)(Ac +BcΘ
T
1 (t)))−1,

G1(s, t) = T1(s, t)(H1(s)BcΘ
T
2 (t)F2(s)Q1(s) +H1(s)BcΘ

T
20(t)Q1(s))

G2(s, t) = T1(s, t)(K1(s)F1(s)G−1(s) +H1(s)BcΘ
T
2 (t)F2(s)Q2(s) +H1(s)BcΘ

T
20(t)Q2(s))

G3(s, t) = T1(s, t)H1(s)BcΘ
T
3 (t) (4.2.34)

are stable and proper operators with finite gains1. It follows from (4.2.33) with

ω1(t) = F1(s)[u](t), ω2(t) = F2(s)[y0](t) and ω(t) =
[
ωT

1 (t), ωT
2 (t) , yT

0 (t), rT(t)
]T

,

1A linear operator T (s, t) is stable and proper if |T (s, ·)[x](t)| ≤ β
∫ T

0
e−α(t−τ)|x(τ)|dτ + γ|x(t)|

for some constants β ≥ 0, α > 0 and γ > 0, for all t ≥ 0, where T (s, ·)[x](t) denotes the convolution
of the impulse response of T (s, ·) with x(·) at t. A linear operator T (s, t) is stable and strictly proper
if it is stable with γ = 0.
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that

ω(t) = G4(s, ·)[u](t) +G5(s, ·)[y](t) +G6(s, ·)[r](t), (4.2.35)

where

G4(s, t) = [G1(s, t), F1(s)Q1(s), Q1(s), 0]T,

G5(s, t) = [G2(s, t), F2(s)Q2(s), Q2(s), 0]T,

G6(s, t) = [G3(s, t), 0, 0, I]T. (4.2.36)

From (4.2.16), we have

ẏ(t) = ẏm(t) + sWm(s)Θ∗−1
3 [Θ̃Tω](t). (4.2.37)

Operating H2(s) on both sides of (4.2.37) and noting that sH2(s) = 1 − K2(s), we

have

y(t) = K2(s)h−1(s)[ȳ](t) +H2(s)sWm(s)[r](t) +H2(s)sWm(s)Θ∗−1
3 Θ̃T[G4(s, ·)[u]

+G5(s, ·)[y] +G6(s, ·)[r]](t) (4.2.38)

with ȳ(t) , h(s)[y](t). Similar to the operator T1(s, t), (I−H2(s)sWm(s)Θ∗−1
3 Θ̃TG5(s, t))−1

can be proved to be a stable and proper operator with a finite gain for any finite

a2 > a0
2 and some a0

2 > 0. For 0 < a0
2 < a2, it follows from (4.2.38) that

y(t) = G7(s, ·)[u](t) +G8(s, ·)[ȳ](t) +G9(s, ·)[r](t), (4.2.39)

where for T2(s, t) , (I −H2(s)sWm(s)Θ∗−1
3 Θ̃TG5(s, t))−1,

G7(s, t) = T2(s, t)H2(s)sWm(s)Θ∗−1
3 Θ̃TG4(s, ·)

G8(s, t) = T2(s, t)K2(s)h−1(s)

G9(s, t) = T2(s, t)H2(s)sWm(s)(I + Θ∗−1
3 Θ̃TG6(s, ·)) (4.2.40)
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are stable and proper operators with finite gains. It follows from (4.2.35) and (4.2.39)

that

ω(t) = (G4(s, ·) +G5(s, ·)G7(s, ·))[u](t) +G5(s, ·)G8(s, ·)[ȳ](t) + (G5(s, ·)G9(s, ·)

+G6(s, ·))[r](t). (4.2.41)

From (4.2.20), we express

ȳ(t) = ȳm(t) +Wm(s)[ε−Ψξ − χ](t) (4.2.42)

with ȳm(t) = h(s)[ym](t) and χ =
[
0, θT

2 η2(t), θT
3 η3(t) , . . . , θT

MηM(t)
]T

. From (4.2.12)

and (4.2.41), we obtain

u(t) = ΘT(t)(G4(s, ·) +G5(s, ·)G7(s, ·))[u](t) + ΘT(t)G5(s, ·)G8(s, ·)[ȳ](t)

+ ΘT(t)(G6(s, ·) +G5(s, ·)G9(s, ·))[r](t). (4.2.43)

From (4.2.43), it follows that

u(t) = G10(s, ·)ΘT(t)G5(s, ·)G8(s, ·)[ȳ](t) (4.2.44)

+G10(s, ·)ΘT(t)(G6(s, ·) +G5(s, ·)G9(s, ·))[r](t)

where G10(s, t) = (I −ΘT(t)(G4(s, ·) +G5(s, ·)G7(s, ·)))−1 is stable and proper oper-

ators with finite gains.

Step 4: formulating a closed-loop inequality of the filtered y(t). From (4.2.21), we

denote ξ(t) = [ξ1(t), . . . , ξM(t)]T, Θ(t) = [θ̄T
1 (t), . . . , θ̄T

M(t)]T with θ̄i(t) ∈ R(n0+M)(n−n0+1),

i = 1, . . . ,M and f(s) = sdm + âdms
dm−1 + . . . + â1s + â0. Then ξi(t) = θ̄T

i (t)ζ(t) −
1

f(s)
[θ̄T
i ω](t), i = 1, . . . ,M can be expressed as

ξi(t) =
sdm−1 + âdm−1s

dm−2 + · · ·+ â2s+ â1

f(s)
[ ˙̄θT
i

1

f(s)
[ω]](t)

+
sdm−2 + âdm−1s

dm−3 + · · ·+ â2

f(s)
[ ˙̄θT
i

s

f(s)
[ω]](t)
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+ · · ·+ s+ âdm−1

f(s)
[ ˙̄θT
i

sdm−2

f(s)
[ω]](t) +

1

f(s)
[ ˙̄θT
i

sdm−1

f(s)
[ω]](t). (4.2.45)

Since r(t) ∈ L∞, from (4.2.39), (4.2.42), (4.2.44) and (4.2.45), we have

‖ȳ(t)‖ ≤ x0 + T3(s, ·)[x1T4(s, ·)[‖ȳ(t)‖](t) (4.2.46)

for some x0(t) ∈ L∞, x1(t) ∈ L∞ ∩L2 with x1(t) ≥ 0, some stable and strictly proper

operator T3(s, t), and some stable and proper operator T4(s, t) with a non-negative

impulse response function. It follows that

‖ȳ(t)‖ ≤ x0(t) + β1

∫ T

0

e−α1(t−τ)x1(τ)(

∫ τ

0

e−α2(τ−ω) ‖ȳ(ω)‖ dω)dτ (4.2.47)

for some β1, α1, α2 > 0.

Step 5: applying Gronwall-Bellman Lemma for signal boundedness. Applying the

Small Gain Lemma (Lemma 2.3 in [82]) on (4.2.47), we conclude that ȳ(t) is bounded,

so are u(t) in (4.2.44) and y(t) in (4.2.39). We can also obtain that ω(t) ∈ L∞ in

(4.2.41), x(t) ∈ L∞ in (4.2.8), y0(t) ∈ L∞ in (4.2.30), ζ(t) ∈ L∞ in (4.2.21), ξ(t) ∈ L∞

in (4.2.21), ē(t) ∈ L∞ in (4.2.19), ηi(t) ∈ L∞ in (4.2.19), m(t) ∈ L∞ in (4.2.25) and

ε(t) ∈ L∞ in (4.2.20).

For ē(t) = ξm(s)h(s)[e](t), we have

e(t) = Wm(s)Θ∗−1
3 [Θ̃Tω](t) (4.2.48)

= H3(s)sWm(s)Θ∗−1
3 [Θ̃Tω](t) +Wm(s)K3(s)h−1(s)[ē](t)

where

lim
t→∞

Wm(s)K3(s)h−1(s)[ē](t) = 0 (4.2.49)

for a finite a3 > 0 in K3(s), and sWm(s)Θ∗−1
3 [Θ̃Tω](t) ∈ L∞. From (4.2.48) and

(4.2.49), we get

‖e(t)‖ ≤ c3 ‖h3(t)‖1 + z1(t) ≤ c4

a3

+ z1(t) (4.2.50)
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where c3, c4 > 0 and limt→∞ z1(t) = 0. Since a3 > 0 in H3(s) can be set arbitrarily

large, from (4.2.50), we can conclude that limt→∞ e(t) = 0. ∇

This new partial-state feedback multivariable MRAC scheme has never been re-

ported in the literature, it has several unique features that will be discussed in the

next section.

4.3 Features of Partial-State Feedback Multivari-

able MRAC Framework

In this section, we discuss some advantages and unique features of the newly developed

partial-state feedback adaptive control framework.

4.3.1 Unification of Multivariable MRAC

As we have mentioned before, the use of the partial-state y0(t) = C0x(t) provides new

flexibilities in designing MRAC schemes for four typical cases of y0(t) = C0x(t):

(1) y0(t) is a vector containing some or all elements of y(t);

(2) y0(t) is vector which does not contain any element of y(t);

(3) y0(t) is a scalar as one element of y(t); and

(4) y0(t) is a scalar not being any element of y(t).

Among the four cases listed above, case (3) is a special case of the case (1) when

y0(t) ∈ R, and the case (4) is a special case of the case (2) when y0(t) ∈ R. In

addition, two more extreme cases are considered:

(5) y0(t) is the output y(t), and
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(6) y0(t) is the state x(t).

Case (5) makes the partial-state feedback scheme become to a pure output feedback

MRAC scheme, and case (6) makes the partial-state feedback MRAC scheme become

to a pure state feedback MRAC scheme.

The above six cases cover all kinds of possible feedback control signals one may

have for output tracking, which shows the design flexibility and application signif-

icance of partial-state feedback MRAC. In other words, the partial-state feedback

MRAC scheme provides a unified control scheme that bridges the state feedback con-

trol and output feedback control together. It is the unified solution to all multivariable

MRAC problems for output tracking, and adds new design possibilities to the MRAC

family.

With the help of using the partial-state signal y0(t), this partial-state feedback

multivariable MRAC schemes combines the advantages of the state feedback control

design and the output feedback control design. It provides a manageable trade-off

between the two existing schemes.

4.3.2 Reduction of Adaptive System Complexity

When n0 satisfies some certain conditions, the developed partial-state feedback MRAC

scheme reduces the adaptation complexity, compared to an output feedback MRAC

scheme. In this chapter, we use the number of updated parameters and the number

of first-order integrator to measure the system adaptation complexity.

Number of updated parameters. According to the adaptive law (4.2.23)–

(4.2.24), the total number of parameters to be updated in the partial-state feedback

adaptive law (4.2.23)–(4.2.24) is

Nps =
M2 −M

2
+ (n− n0)M2 + (n− n0)Mn0 +Mn0 +M2 +M2. (4.3.1)
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On the other hand, the total number of parameters to be updated in an output

feedback for output tracking adaptive law is

No =
M2 −M

2
+ 2(ν̄ − 1)M2 + 2M2 +M2 (4.3.2)

with ν̄ being the upper bound of the observability index. According to [82], the

range of the observability index ν is n
M
≤ ν ≤ n − M + 1. Thus, we have No =

M2−M
2

+ 2(n−M)M2 + 2M2 +M2 = M2−M
2
− 2M3 + (2n+ 2)M2 +M2. Therefore,

whenever the following inequality:

Nps −No = −n2
0 + (n+ 1−M)n0 − nM −M + 2M2 < 0, (4.3.3)

is satisfied, the number of parameters to be updated is reduced by the new control

scheme, compared to the output feedback control scheme. By solving the inequality

(4.3.3), we conclude that for the systems with n > 3M − 1, when n0 < M or n0 >

n − 2M + 1, the number of parameters to be updated is reduced by the developed

partial-state feedback scheme, and for the systems with n < 3M − 1, when n0 > M ,

the number of parameters to be updated is reduced by the developed partial-state

feedback MRAC scheme.

Number of first-order integrator. For the partial-state feedback multivariable

MRAC scheme, the number of first-order integrators for constructing the filtered

signals ζ(t) and ξ(t) is n∗h((M + n0)(n − n0 + 1) + M) with n∗h being the degree

of the polynomial f(s), and the number of first-order integrators for constructing

ē(t) is n∗e with n∗e being related to the filter ξm(s)h(s). Therefore, the total first-

order integrators used for partial-state feedback control adaptation is N ′ps = n∗h((M +

n0)(n − n0 + 1) + M) + n∗e. Similarly, the number of first-order integrators used for

output feedback control adaptation is N ′o = n∗h(2ν̄M +M) + n∗e with ν̄ = n−M + 1.
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Therefore, whenever the following inequality:

N ′ps −N ′o = n∗h(−n2
0 + (n+ 1−M)n0 − nM −M + 2M2) < 0, (4.3.4)

is satisfied, the number of first-order integrators used for control adaptation is reduced

by the partial-state control scheme. By solving the inequality (4.3.4), we conclude

that for the systems with n > 3M−1, when n0 < M or n0 > n−2M +1, the number

of first-order filters is reduced by the developed partial-state feedback scheme, and

for the systems with n < 3M − 1, when n0 > M , the number of first-order filters is

reduced by the developed partial-state feedback scheme.

Summarizing the above results, we could make the following conclusion.

Proposition 4.3.1. For a plant in the form of (4.1.1) with n > 3M − 1, the adap-

tation complexity is reduced by the partial-state feedback multivariable MRAC scheme

using the partial-state y0(t) ∈ Rn0 with the condition n0 < M or n0 > n − 2M + 1;

For a plant in the form of (4.1.1) with n < 3M − 1, the adaptation complexity is re-

duced by the partial-state feedback multivariable MRAC scheme using the partial-state

y0(t) ∈ Rn0 with the condition n0 > M .

4.4 Observer-Based Minimal-Order Multivariable

MRAC

In this section, we will present an observer-based minimal-order multivariable MRAC

scheme, which allows the least number of feedback signals for multivariable feed-

back control and significantly reduces the system complexity compared to an output

feedback control scheme.
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4.4.1 Minimization of the Number of Feedback Signals

Recall the six feedback possibilities we have mentioned in Section 4.3.1. When apply

case (3) and (4) to the developed partial-state feedback MRAC scheme, we can obtain

a controller structure as follows.

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + ΘT
20(t)y0(t) + Θ3(t)r(t), (4.4.1)

where Θ1(t) ∈ RM(n−1)×M , Θ2(t) ∈ R(n−1)×M , Θ20(t) ∈ R1×M , Θ3(t) ∈ RM×M are

the adaptive estimates of the unknown nominal parameters Θ∗1, Θ∗2, Θ∗20, Θ∗3 (de-

fined from (4.2.6)), respectively, and ω1(t), ω2(t) are in the form of (4.2.13) with

A1(s) = [IM , sIM , . . . , s
n−2IM ]T, A2(s) = [1, s, . . . , sn−2]T, and Λ(s) being a monic

stable polynomial of degree n− 1.

From Theorem 4.2.2, the controller structure (4.4.1), with the feedback signal

y0(t) being a scalar, guarantees M -output tracking for a multivariable plant. Such

an adaptive control scheme, when applied to the case (3), shows that it is sufficient

for the controller to only use one component of y(t) for feedback control to achieve

M -output tracking; and when applied to the case (4), it shows that the controller

can only use a scalar signal y0(t) (which is not even from the components of y(t)) for

feedback control to achieve M -output tracking. Such a result has never been seen in

the literature and is believed to be a novel concept in adaptive control and can be

summarized as follows.

Corollary 4.4.1. For partial-state feedback multivariable MRAC, it is sufficient to

use a partial-state signal y0(t) = C0x(t) with (A,C0) observable to construct the

adaptive feedback controller (4.4.1) to achieve the desired performance: closed-loop

signal boundedness and asymptotic output tracking: limt→∞(y(t) − ym(t)) = 0 for

y(t) ∈ RM . In particular, y0(t) can be a scalar and not be a component of y(t).
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The controller (4.4.1) only uses a scalar signal (y0(t) ∈ R) from the controlled

system for feedback to guarantee an M -output tracking, which minimizes the amount

of feedback signals for constructing the adaptive controller.

4.4.2 Reduction of Adaptation Complexity

In this section, we will show that the minimal-order controller (4.4.1), without the

requirement of the full-state vector, reduces the order of control to cover more control

applications.

Substituting the condition n0 = 1 into the inequality (4.3.3) and (4.3.4), we obtain

an equivalent inequality: n −M − nM −M + 2M2 < 0, for finding the condition

that makes the adaptation complexity of the minimal-order multivariable control less

than the one of the output feedback multivariable control. Solving this inequality, we

can readily conclude that the inequalities hold when M < n
2
. Such a result means

that for MIMO systems (M ≥ 2), the system adaptation complexity (i.e., the number

of updated control parameters and the number of first-order integrator) are reduced

by the controller structure (4.4.1), when the output dimension M is less than the

half of the state dimension n. Such an adaptation complexity reduction condition

is often the case of real multivariable control systems, such as the aircraft control

system shown in Section 4.5.

In addition, we could also conclude that when M = n+2
4

, the function f(M) =

n − M − nM − M + 2M2 has the minimal value: f(M) = −1
8
(n − 2)2. In other

words, compared to the output feedback output tracking scheme, the number of

parameters to be adaptively updated and the number of first-order integrators used in

the adaptive control system can be reduced by −1
8
(n−2)2, when the output dimension

M is chosen as n+2
4

, by using the minimal-order multivariable control scheme. Such

a result is also helpful for the choice of system output.
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Proposition 4.4.1. For multivariable model reference adaptive control systems, as

long as the dimension M of the plant output y(t) is less than n
2
, the system adaptation

complexity is reduced by the minimal-order controller (4.4.1). In particular, for the

control system with y0(t) ∈ R, when M = n+2
4

, the system adaptation complexity is

minimized, which is −1
8
(n − 2)2 less than the output feedback multivariable MRAC

system.

So far, we have confirmed the two features of the minimal-order multivariable

controller (4.4.1): (a) the amount of feedback signal used for constructing the feedback

controller is minimum; and (b) the system adaptation complexity can be reduced.

4.5 Simulation Study

In this section, we present a simulation study to evaluate the effectiveness of the

proposed partial-state feedback adaptive control designs.

4.5.1 Simulation System

The NASA GTM model [47] is chosen as the plant, which the proposed partial-state

feedback adaptive control design is applied on.

Plant dynamics. The linearized NASA GTM model is in the form of (4.1.1):

ẋ = Ax+Bu, y = Cx. The system state vector is x = [ub, wb, qb, θ, vb, rb, pb, φ]T with

ub, vb, wb being the body-axis velocity components of origin of body-axis frame, pb, qb

and rb being the body-axis components of angular velocity and θ, φ being the pitch

and roll angle. The control inputs are the elevator angular δe and the aileron angular

δa, and the plant outputs are chosen as the pitch angle θ and the roll angle φ. The

system parameter matrices are shown in (4.5.1).
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A =



−0.019 0.1364 −9.7778 −32.0829 −0.0018 −0.0004 0 0
−0.2804 −2.7567 120.1968 −2.42 −0.0001 0 0.0004 −0.0061
0.0205 −0.3106 −3.5393 0 0.007 0.0328 −0.0014 0

0 0 1 0 0 −0.0002 0 0.0002
0 −0.0027 0 −0.0005 −0.5765 −125.9974 10.4690 32.0829
0 0 −0.0255 0 0.2245 −1.4053 −0.2794 0
0 0 0.0018 0 −0.629 1.9689 −5.4759 0
0 0 0 −0.0002 0 0.0754 1 0


,

B =



0.0056 −0.0423
−0.6119 0.1579
−0.7486 0.0859

0 0
0 −0.0223
0 −0.0223
0 −0.7657
0 0


, C =

[
0 0 0 1 0 0 0
0 0 0 0 0 0 1

]
. (4.5.1)

Verification of design conditions. For the aircraft model (A,B,C) in (4.5.1),

it can be verified that the transfer function G(s) = C(sI − A)−1B has stable zeros:

s1,2 = −1.0059 ± 5.5340i, s3 = −2.4867 and s4 = −0.035, and G(s) is strictly

proper and full rank. The modified interactor matrix ξm(s) can be chosen as ξm(s) =

diag {(s+ 2)2, (s+ 2)2} so that

Kp = lim
s→∞

ξm(s)G(s) =

[
−0.7486 0.0859
−0.00001 −0.7675

]
(4.5.2)

is finite and non-singular. From (4.5.2), the design condition that the signs of leading

principle minors of Kp are positive can also be verified.

Reference model. Since the modified interactor matrix ξm(s) is chosen as

diag {(s+ 2)2, (s+ 2)2}, the transfer function of the chosen reference model (4.1.3) is

Wm(s) = ξ−1
m (s) = diag

{
1

(s+ 2)2
,

1

(s+ 2)2

}
, (4.5.3)

which is proper and stable. The reference inputs are chosen as r(t) = [−40π/180 sin(0.1t)−

15π/180 sin(0.1t)]T.
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(a) Plant output θ(t) (solid) and reference output θ
m

(t) (dotted) vs. time (sec)
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(b) Plant output φ(t) (solid) and reference output φ
m

(t) (dotted) vs. time (sec)
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Figure 4.1: Plant Output: pitch angle θ and roll angle φ in Case I.

(a) Control input δ
e
(t) vs. time (sec)
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(b) Control input δ
a
(t) vs. time (sec)
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Figure 4.2: Control input signal: elevator angle δe and aileron angle δa in Case I.
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(a) Plant output θ(t) (solid) and reference output θ
m

(t) (dotted) vs. time (sec)
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(b) Plant output φ(t) (solid) and reference output φ
m

(t) (dotted) vs. time (sec)
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Figure 4.3: Plant output: pitch angle θ and roll angle φ in Case II.

(a) Control input δ
e
(t) vs. time (sec)

0 50 100 150 200 250 300 350 400

d
e
g

-4

-2

0

2

4

6

8
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Figure 4.4: Control input signal: elevator angle δe and aileron angle δa in Case II.
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(a) Plant output θ
b
(t) (solid) and reference output θ

bm
(t) (dotted) vs. time (sec)
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(b) Plant output φ
b
(t) (solid) and reference output φ

bm
(t) (dotted) vs. time (sec)
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Figure 4.5: Plant output: pitch angle θ and roll angle φ in Case III.

(a) Control input δ
e
(t) vs. time (sec)

0 50 100 150 200 250 300 350 400

d
e

g

-4

-2

0

2

4

6

8
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(t) vs. time (sec)
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Figure 4.6: Control input signal: elevator angle δe and aileron angle δa in Case III.
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(a) Plant output θ(t) (solid) and reference output θ
m

(t) (dotted) vs. time (sec)
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(b) Plant output φ(t) (solid) and reference output φ
m

(t) (dotted) vs. time (sec)
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Figure 4.7: Plant output: pitch angle θ and roll angle φ in Case IV.

(a) Control input δ
e
(t) vs. time (sec)

0 50 100 150 200 250 300 350 400

d
e
g

-4

-2

0

2

4

6

8

(b) Control input δ
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(t) vs. time (sec)
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Figure 4.8: Control input signal: elevator angle δe and aileron angle δa in Case IV.
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4.5.2 Simulation Results

Four cases have been systematically studied to show the new features of the partial-

state feedback MRAC scheme.

Case I: y0(t) = [qb(t), θ(t), pb(t)]
T is a vector containing one element of y = [θ(t), φ(t)]T;

Case II: y0(t) = [qb(t), rb(t), pb(t)]
T is vector which does not contain any element of

y = [θ(t), φ(t)]T;

Case III: y0(t) = φ(t) is a scalar as one element of y(t) = [θ(t), φ(t)]T; and

Case IV: y0(t) = rb(t) is a scalar not being any element of y(t) = [θ(t), φ(t)]T.

For all simulation cases, the adaptation gains are chosen as Γ = 5I, Γθ = 5, and

the initial condition are chosen as y(0) = [−0.01,−0.01]T, ym(0) = [0, 0]T. Case I and

II tests the plant output tracking performance when the partial-state feedback signal

y0(t) are vectors, and Case III and IV tests the tracking performance when the partial-

state feedback signal y0(t) are scalars. The plant output tracking performances of Case

I – Case IV are shown in Fig. 4.1, Fig. 4.3, Fig. 4.5 and Fig. 4.7, respectively, in

which the dotted lines represent the reference pitch angle and roll angle and the solid

lines represent the aircraft outputs. The tracking performance plots show that the

asymptotic tracking are achieved in all four cases, in particular, the one for Case III

and IV confirms the result in Corollary 4.4.1 that, for partial-state feedback MRAC,

a scalar feedback signal is sufficient for constructing an adaptive controller to make

the M output tracking achievable.

Also, for Case III and IV, adaptive controllers are constructed based on (4.4.1)

whose parameter order is 48. While for the same plant, if a standard output feedback

controller (4.1.6) is constructed, the controller parameter order would be 56, since
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the upper bound of the plant observability index ν̄ is 7, which supports that results

in Proposition 4.4.1.

Moreover, Fig. 4.2, Fig. 4.4, Fig. 4.6 and Fig. 4.8 show the control input

signals of Case I – Case IV, respectively, which confirm that all control signals stay

in acceptable ranges. In addition, signals in closed-loop systems for all four cases are

bounded whose plots are not shown due to the space limit.

Summary

In this chapter, we have developed a new framework of multivariable MRAC using

partial-state feedback for output tracking, with new solutions to three technical issues:

plant-model output matching, parameterized error model based on LDS decomposi-

tion, and stable adaptive law design and analysis, for ensuring closed-loop system

stability and asymptotic tracking in the presence of plant uncertainties. This work

has shown that partial-state feedback MRAC provides additional design flexibilities

in utilizing system signals, while using less complex controller structures than out-

put feedback. We presented a complete analysis of the closed-loop system stability

and tracking performance of partial-state feedback MRAC. It has been shown that

such a new MRAC framework builds a natural transition from full state feedback

MRAC to output feedback MRAC, adding new members to the family of MRAC.

Moreover, we conclude that for the partial-state feedback MRAC scheme, asymptotic

tracking for M (M ≥ 1) output is achievable by the adaptive controller constructed

by some scalar feedback signals, and provide a observer-based minimal-order MRAC

scheme based on which. We presented simulation results for different adaptive control

designs, which verify the desired adaptive control system performance.



Chapter 5

Higher-Order Convergence
Properties of MRAC Systems

For a general multi-input multi-output linear time-invariant system with unknown

parameters, a multivariable model reference adaptive control (MRAC) scheme guar-

antees asymptotic output tracking, under some design conditions. This chapter fur-

ther shows a stronger higher-order convergence property for the signal components of

the tracking error e(t) = [e1(t), e2(t), . . . , eM(t)]T.

It is proved that under the same MRAC design conditions, not only a tracking

error component ei(t) but its up to qith-order time-derivatives converge to zero, where

qi is related to system’s infinite zero structure characterized by the system interactor

matrix ξm(s).

Both cases of a diagonal ξm(s) and a non-diagonal ξm(s) are studied in this chapter,

and the new MRAC tracking property is proved for different forms of the modified

interactor matrix. Simulation study is conducted on a transport aircraft model, whose

results verify the higher-order error convergence property.
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5.1 Review of Multivariable MRAC and Research

Motivations

In this section, we first give a brief review of MRAC systems to make the chapter

self-contained, and then discuss the research motivations of this chapter.

5.1.1 Multivariable MRAC System

Consider a MIMO linear time-invariant plant

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (5.1.1)

for some unknown system parameter matrices A ∈ Rn×n, B ∈ Rn×M and C ∈ RM×n,

with x(t) ∈ Rn bing the state, u(t) ∈ RM being the input vector, and y(t) ∈ RM being

the output vector, respectively. The input-output description of the plant (5.1.1) is

y(t) = G(s)[u](t), G(s) = C(sI − A)−1B. (5.1.2)

The notation, y(t) = G(s)[u](t), is to denote the output y(t) of a system repre-

sented by G(s) with a control input signal u(t). The plant infinite zero structure is

characterized by a modified left interactor (MLI) matrix ξm(s) such that the system

high-frequency gain matrix Kp = lims→∞ ξm(s)G(s) is finite and nonsingular.

Control objective. The control objective of MRAC is to design a feedback

control law for u(t) in (5.1.1) to ensure that all the closed-loop signal are bounded

and the output y(t) asymptotically tracks the reference signal

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s), (5.1.3)

with r(t) ∈ RM being a bounded reference input signal and ξm(s) being a MLI matrix

of the G(s) and having a stable inverse (i.e., Wm(s) is stable).

Design conditions. The following standard assumptions are made as design

conditions for the control objective to be achieved:
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(A5.1) All zeros of G(s) = C(sI − A)−1B are stable, and (A,B,C) is stabilizable

and detectable.

(A5.2) G(s) has full rank and its MLI matrix ξm(s) is known.

(A5.3) An upper bound ν̄ of the observability index ν of G(s) is known.

Assumptions (A5.1)–(A5.3) are standard assumptions for MRAC output tracking.

Assumption (A5.1) is for stable plant-model output matching, Assumption (A5.2) is

for choosing a reference model systemWm(s) = ξ−1
m (s) suitable for plant-model output

matching, Assumption (A5.3) is for constructing an output feedback controller.

Controller structure. The output feedback model reference adaptive controller

structure is

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + Θ20(t)y(t) + Θ3(t)r(t), (5.1.4)

where ω1(t) = A(s)
Λ(s)

[u](t), ω2(t) = A(s)
Λ(s)

[y](t) with Λ(s) being a monic stable polyno-

mial of degree ν̄ − 1 and A(s) = [IM , sIM , · · · , sν̄−2IM ]T, and Θ1(t) ∈ R(ν̄−1)M×M ,

Θ2(t) ∈ R(ν̄−1)M×M , Θ20(t) ∈ RM×M , Θ3(t) ∈ RM×M are controller parameters to

be adaptively updated by stable adaptive laws. Such controller parameters are the

adaptive estimates of the nominal controller parameters Θ∗1, Θ∗2, Θ∗20 and Θ∗3. It has

been shown in [19, 53, 65] that for G(s) = Z(s)P−1(s) and Θ∗3 = K−1
p , there exist

constant nominal controller parameters such that

Θ∗T1 A(s)P (s) + (Θ∗T2 A(s) + Θ∗20Λ(s))Z(s) = Λ(s)(P (s)−Θ∗3ξm(s)Z(s)) (5.1.5)

for output matching: y(t) = ξ−1
m (s)[r](t) = ym(t).

Nominal control performance. When the system parameters are known, the

nominal controller parameters Θ∗1, Θ∗2, Θ∗20 and Θ∗3 can be calculated according to



98

output matching polynomial (5.1.5). From (5.1.5), we can obtain

Θ∗T1 A(s)Z(s)[u](t) + (Θ∗T2 A(s) + Θ∗20Λ(s))Z(s)[y](t)

= Λ(s)Z(s)[u](t)− Λ(s)Θ∗3ξm(s)Z(s)[y](t), (5.1.6)

by using the plant equation: P (s)[y](t) = Z(s)[u](t).

Since Λ(s) is a stable filter and Z(s) is stable polynomial matrix, the signal match-

ing equation (5.1.6) can be derived as

u(t) = Θ∗T1

A(s)

Λ(s)
[u](t) + Θ∗T2

A(s)

Λ(s)
[y](t) + Θ∗20y(t) + Θ∗3ξm(s)[y](t) + ε1(t) (5.1.7)

with the initial-condition related term ε1(t) being exponentially decaying.

Substituting (5.1.7) into the nominal controller u(t) = Θ∗T1 ω1(t) + Θ∗T2 ω2(t) +

Θ∗20y(t) + Θ∗3r(t) with r(t) = ξ−1
m (s)[ym](t), we obtain

Θ∗3ξm(s)[y − ym](t) + ε1(t) = 0. (5.1.8)

which implies that y(t) is bounded, and limt→∞ e(t) = 0 for e(t) = y(t)− ym(t).

Adaptive control performance. For plants with unknown parameters, an

adaptive law for updating the adaptive controller parameters Θ1(t), Θ2(t), Θ20(t)

and Θ3(t) is needed. Ignoring the exponentially decaying term ε1(t), we derive the

tracking error equation as

e(t) = y(t)− ym(t) = Wm(s)Kp[Θ̃
Tω](t), (5.1.9)

using (5.1.4) and (5.1.7), for the purpose of choosing the stable adaptive law, where

Θ̃(t) = Θ(t)−Θ∗ with Θ∗ =
[
Θ∗T1 ,Θ∗T2 ,Θ∗20,Θ

∗
3

]T
, Θ(t) =

[
ΘT

1 (t),ΘT
2 (t),Θ20(t),Θ3(t)

]T
,

and the regressor ω(t) =
[
ωT

1 (t), ωT
2 (t), yT(t), rT(t)

]T
.

Let f(s) be a stable polynomial and h(s) = 1
f(s)

such that h(s)ξm(s) is proper,

filter both sides of (5.1.9) with h(s), and define ē(t) = h(s)ξm(s)[e](t). Then, we

obtain the following filtered error equation: ē(t) = Kph(s)[Θ̃Tω](t).
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To update the controller parameters adaptively, based on the filter error equa-

tion, the estimation error is defined as ε(t) = KpΘ̃
Tζ(t) + Ψ̃(t)ξ(t), where ξ(t) =

ΘT(t)ζ(t)−h(s)[ΘTω](t), ζ(t) = h(s)[ω](t), and Θ̃ = Θ(t)−Θ∗ and Ψ̃(t) = Ψ(t)−Ψ∗

are parameter errors, with Ψ(t) being the estimation of Ψ∗ = Kp.

Then, based on the gradient algorithm, the controller parameter adaptation laws

are chosen as:

Θ̇T(t) = −Spε(t)ζ
T(t)

m2(t)
, Ψ̇(t) = −Γε(t)ξT(t)

m2(t)
, (5.1.10)

where Sp is known such that KpSp = (KpSp)
T > 0, Γ = ΓT > 0 is an adaption gain

matrix, and m2(t) = 1 + ζT(t)ζ(t) + ξT(t)ξ(t).

Such a closed-loop adaptive control system has the desired stability and tracking

properties, shown as follows.

Theorem 5.1.1. The adaptive output feedback controller (5.1.4) with the adaptive law

(5.1.10), when applied to the plant (5.1.1), guarantees the closed-loop signal bounded-

ness and asymptotic output tracking: limt→∞(y(t)− ym(t)) = 0.

The proof of Theorem 5.1.1 can be found in [82]. Such a tracking performance

result of multivariable MRAC systems has been established for decades. For improv-

ing the understanding of multivariable MRAC systems and for guaranteeing extra

performance of MRAC applications, in this chapter, we will further investigate the

higher-order tracking performance of multivariable MRAC systems.

5.1.2 Research Motivations

The convergence property derivation in this chapter provides new insights into mul-

tivariable MRAC and benefits MRAC system applications as well.

Theory development. Although the established results of MRAC systems guar-

antee asymptotic output tracking, there are open questions to be answered for fully
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understanding the tracking performance of multivariable MRAC systems. In this

chapter, we will derive the higher-order tracking properties of multivariable MRAC

systems which has not been reported in the literature, to further mature the theoret-

ical systems of multivariable MRAC.

Application significance. Consider a linearized NASA GTM model [47] in the

form of (5.1.1): ẋ = Ax+Bu, y = Cx, with

A =



−0.019 0.1364 −9.7778 −32.0829 −0.0018 −0.0004 0 0
−0.2804 −2.7567 120.1968 −2.42 −0.0001 0 0.0004 −0.0061
0.0205 −0.3106 −3.5393 0 0.007 0.0328 −0.0014 0

0 0 1 0 0 −0.0002 0 0.0002
0 −0.0027 0 −0.0005 −0.5765 −125.9974 10.4690 32.0829
0 0 −0.0255 0 0.2245 −1.4053 −0.2794 0
0 0 0.0018 0 −0.629 1.9689 −5.4759 0
0 0 0 −0.0002 0 0.0754 1 0


,

B =



0.0056 −0.0423
−0.6119 0.1579
−0.7486 0.0859

0 0
0 −0.0223
0 −0.0223
0 −0.7657
0 0


, C =

[
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

]
.

The system state vector is x = [ub, wb, qb, θ, vb, rb, pb, φ]T with ub, vb, wb being the

body-axis velocity components of origin of body-axis frame, pb, qb and rb being the

body-axis components of angular velocity and θ, φ being the pitch and roll angles.

The plant outputs are chosen as the pitch angle θb and the roll angle φb.

For the aircraft model, all the design conditions are satisfied. The MLI matrix

ξm(s) can be chosen as ξm(s) = diag {(s+ 2)2, (s+ 2)2} so that Kp is finite and non-

singular. Based on the existing MRAC results, asymptotic tracking is guaranteed

when a standard output model reference adaptive controller (5.1.4) is applied with

the stable adaptive law (5.1.10), that is, limt→∞(θ(t)− θm(t)) = 0 and limt→∞(φ(t)−
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φm(t)) = 0, with θm(t) being the desired pitch angle and φm(t) being the desired roll

angle generated from the reference model (5.1.3).

However, from the existing multivariable MRAC results, the tracking perfor-

mances of pitch rate dθ(t)
dt

and roll rate dφ(t)
dt

are not clear yet. The properties:

limt→∞(dφ(t)
dt
− dφm(t)

dt
) = 0 and limt→∞(dφ(t)

dt
− dφm(t)

dt
) = 0, are desired, for avoid-

ing some extreme (nonsmooth) oscillations which are harmful to the vehicle. Such

desired properties imply that the pitch angle and the roll angle converge to the de-

sired values in a smooth manner. In fact, besides having a desired smooth position,

having a smooth velocity and a smooth acceleration are also crucial to extend service

life of a vehicle and to improve the passengers experiences. Thus, it is also desired to

investigate the higher-order tracking performance of MRAC systems.

5.2 Main Results

Nominal control design is used when the system parameters (A,B,C) are known.

It provides priori knowledge for adaptive control design. Thus, in this chapter, we

first clarify the high-order convergence properties of the nominal model reference

control (MRC) systems, and then show the desired higher-order tracking properties

for adaptive control systems.

5.2.1 Nominal Control System Performance

When the system parameters are known, recall the tracking error e(t) = y(t)− ym(t)

shown in (5.1.8):

Θ∗3ξm(s)[e](t) + ε1(t) = 0. (5.2.1)

Next, we will first analyze the nominal higher-order convergence performance

of the MRC system when the MLI matrix ξm(s) is diagonal, and then extend the
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discussion to general cases as ξm(s) being non-diagonal.

5.2.1.1 Case I: The MLI Matrix ξm(s) Is Diagonal

From (5.2.1) and Θ∗3 = K−1
p , we have

ξm(s)[e](t) = ε̄1(t), (5.2.2)

with ε̄1(t) = −Kpε1(t) being an exponentially decaying term. With this equation and

a diagonal MLI matrix:

ξm(s) = diag {d1(s), d2(s), . . . , dM(s)} , (5.2.3)

for each tracking error component ei(t) = yi(t)−ymi(t) with yi(t) being the ith element

of the output vector signal y(t) and ymi(t) being the ith element of the reference signal

ym(t), we obtain

di(s)[ei](t) = ε̄1i(t), i = 1, 2, . . . ,M, (5.2.4)

where ε̄1i(t) is the ith element of ε̄1(t). Since di(s) is a stable polynomial of degree

li ≥ 1, (5.2.4) indicates the following new nominal tracking properties for each ei(t),

i = 1, 2, . . . ,M :

lim
t→∞

dqiei(t)

dtqi
= 0 exponentially, qi = 0, . . . , li − 1. (5.2.5)

The above equation shows that, for multivariable MRC systems, up to (li − 1)th

derivatives of the tracking error component ei(t) converge to zero exponentially.

5.2.1.2 Case II: The MLI Matrix ξm(s) Is Non-Diagonal

Ignoring the exponentially decaying term related to the initial conditions e(0), from

(5.2.1), we have

e(t) = ξ−1
m (s)Kp[ε1](t) = Wm(s)Kp[ε1](t). (5.2.6)
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When the MLI matrix ξm(s) is non-diagonal, the inverse of the MLI matrix: Wm(s) =

ξ−1
m (s), is expressed as

Wm(s) =


1

d1(s)
0 . . . . . . 0

w21(s) 1
d2(s)

0 . . . 0
...

...
...

...
...

wM1(s) . . . . . . wMM−1(s) 1
dM (s)

 , (5.2.7)

with wik(s), i = 2, . . . ,M , k = 1, . . . , i− 1 being some stable polynomials of relative

degree lik > 0.

Based on (5.2.7), the tracking error component between the plant output and the

desired output in each channel is

ei(t) = −
i−1∑
k=1

M∑
j=1

wik(s)kpkj[ε1j](t)−
M∑
j=1

kpij
di(s)

[ε1j](t), i = 1, 2, . . . ,M (5.2.8)

with kpkj being the (k, j)th element of the high-frequency gain matrix Kp and ε1j(t)

is the jth element of the exponentially decaying term ε1(t).

From (5.2.8), we conclude that the higher-order performance of each ei(t), i =

1, 2, . . . ,M , is

lim
t→∞

dqiei(t)

dtqi
= 0 exponentially, qi = 1, . . . , l̄i − 1, (5.2.9)

for l̄i = min{li, li1, . . . , li(i−1)}.

The above equation shows that, for multivariable MRC systems, up to (l̄i − 1)th

derivatives, for l̄i = min{li, li1, . . . , li(i−1)}, of tracking error component ei(t) converge

to zero exponentially.

In summary, for nonadaptive model reference control, in addition to the basic

tracking error convergence property: limt→∞ ei(t) = 0, certain higher-oder derivatives

of ei(t) are also go to zero exponentially, i = 1, 2, . . . ,M . The results are summarized

as follows.
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Theorem 5.2.1. For model reference control systems with a trigonal MLI matrix

ξm(s) whose inverse matrix is shown in (5.2.7), the ith element of the tracking error

e(t) satisfies

lim
t→∞

dqiei(t)

dtqi
= 0 exponentailly, i = 1, . . . ,M, (5.2.10)

for qi = 0, 1, . . . , l̄i − 1 with l̄i = min{li, li1, . . . , li(i−1)}. In particular, when the MLI

matrix ξm(s) is diagonal as shown in (5.2.3), the ith element of the tracking error

e(t) satisfies (5.2.10) for qi = 0, 1, . . . , li − 1.

The above theorem provides new tracking properties for model reference control

systems, that is, the properties for the case when the system parameters (A,B,C) are

known. However, for practical applications, accurate system parameters are usually

unobtainable. Although the current established MRAC results guarantee asymptotic

output tracking, the higher-order tracking performance is not clear yet. So a natural

question is: does a MRAC system, under the case of parametric uncertainties, also

enjoy a similar high-order tracking performance? A firm and rigorous answer to such

a question will be derived in the next section.

5.2.2 Adaptive Control System Performance

When the system parameters (A,B,C) are unknown, control adaptation is needed.

For model reference adaptive control systems, we first recall the tracking error equa-

tion shown in (5.1.9):

e(t) = Wm(s)Kp[Θ̃
Tω](t), (5.2.11)

where Wm(s) = ξ−1
m (s) is a stable polynomial matrix, Θ̃(t) = Θ(t)−Θ∗ is the parame-

ter error matrix, and ω(t) is the regressor vector. Next, we will analyze the high-order

convergence property based on different forms of ξm(s).
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Next, to analyze the higher-order property, we recall the following definition for

signal convergence.

Definition 5.2.1. For a function f(t) defined on [0,∞], limt→∞ f(t) = 0 if for every

η > 0, there exists a T = T (η) > 0 such that |f(t)| < η, for ∀t > T .

This definition can also be used as a necessary and sufficient condition to prove

signal convergence: limt→∞ f(t) = 0. In this definition, η can be arbitrarily small but

cannot equal to zero so that 1/η is finite.

5.2.2.1 Case I: The MLI Matrix ξm(s) Is Diagonal

To demonstrate the idea of investigating high-order tracking error performance, next,

we will first give a brief higher-order convergence analysis for the NASA GTM control

system shown in Section 5.1.2, and then extend the proof to general MRAC systems.

Example 5.2.1. Convergence study for the NASA GTM MRAC system.

Recall the NASA GTM model we have given in Section 5.1.2. We have shown that the

MLI matrix ξm(s) of the linearized NASA GTM model is diagonal, and we choose it

as ξm(s) = diag {(s+ 2)2, (s+ 2)2}. Thus, when an output feedback controller (5.1.4)

is applied with the adaptive laws (5.1.10), we have

e1(t) =
kp11

d1(s)
[θ̃T1 ω](t) +

kp12

d1(s)
[θ̃T2 ω](t),

e2(t) =
kp21

d2(s)
[θ̃T1 ω](t) +

kp22

d2(s)
[θ̃T2 ω](t), (5.2.12)

for e1(t) = θ(t)− θm(t) and e2(t) = φ(t)−φm(t), where d1(s) = d2(s) = (s+ 2)2, θ̃1(t)

and θ̃2(t) are the first and second column of the parameter error matrix Θ̃(t), and

kpij, for i = 1, 2 and j = 1, 2, is the (i, j)th element of the high-frequency gain Kp.

For the tracking error component e1(t), we introduce two fictitious filters: K1(s) =

a21
(s+a1)2

and sH1(s) = 1 −K1(s). In the term of K1(s), we express the virtual filter
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H1(s) as

H1(s) =
1

s
(1−K1(s)) =

1

s

(s+ a1)2 − a2
1

(s+ a1)2
, (5.2.13)

which is strictly proper and stable and whose impulse response function is h1(t) =

L−1[H1(s)] = a1te
−a1t + e−a1t, with its L1 signal norm being ‖h1(·)‖ =

∫∞
0
|h1(t)|dt =

2
a1

.

By using the equality: 1 = sH1(s)+K1(s), we decompose the first-order derivative

signal ė1(t) as

ė1(t) =
kp11s

d1(s)
[θ̃T1 ω](t) +

kp12s

d1(s)
[θ̃T2 ω](t)

= H1(s)
kp11s

2

d1(s)
[θ̃T1 ω](t) +H1(s)

kp12s
2

d1(s)
[θ̃T2 ω](t) + sK1(s)[e1](t), (5.2.14)

where the terms H1(s)
kp1js

2

d1(s)
[θ̃Tj ω](t), j = 1, 2 are to be shown small enough and the

term sK1(s)[e1](t) is to be shown converging to zero asymptotically when time goes

to infinity.

On one hand, for each term of H1(s)
kp1js

2

d1(s)
[θ̃Tj ω](t), j = 1, 2, since θ̃Tj (t)ω(t) is

bounded and
kp1js

2

d1(s)
is stable and proper, we have

kp1js
2

d1(s)
[θ̃Tj ω](t) being bounded. Thus,

we can further obtain ∣∣∣∣H1(s)
kp1js

2

d1(s)
[θ̃Tj ω](t)

∣∣∣∣ ≤ c1j

a1

, j = 1, 2, (5.2.15)

for any t ≥ 0 and some constant c1j > 0 independent of a1 > 0, which follows from

the above L1 signal norm expression of H1(s): ‖h1(·)‖1 = 2
a1

.

On the other hand, due to the established convergence property: limt→∞ e1(t) = 0,

and the property of sK1(s) being stable and strictly proper, we have limt→∞ sK1(s)[e1](t)

= 0, for any finite a1 > 0 in K1(s).

Next, to show that the signal convergence of ė1(t), it is desired to show that, for

every η1 > 0, there exists a T1 > 0 such that |ė1(t)| < η1 for ∀t > T1, according
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to Definition 5.2.1. On one hand, we set a1 = a1(η1) ≥ max{4c11
η1
, 4c12
η1
} for the

fictitious (virtual) filter H1(s) in (5.2.13) so that c11
a1
≤ η1

4
and c12

a1
≤ η1

4
in (5.2.15),

respectively. On the other hand, we let T1 = Ta1(a1(η1), η1)
4
= T1(η1) > 0 such

that |sK1(s)[e1](t)| < η1
2

for all t ≥ T1. Since the time response of |sK1(s)[e1](t)|

depends on the parameter a1 = a1(η1), the above time instant T1 = Ta1(a1(η1), η1)

also depends on a1 = a1(η1). Then, following (5.2.14) and (5.2.15), we obtain

|ė1(t)| < 2 · η1

4
+
η1

2
= η1, ∀t > T1, (5.2.16)

which implies that limt→∞ ė1(t) = 0.

By using the same decomposition technique for the time derivative of tracking

error component e2(t) with K2(s) =
a22

(s+a2)2
and sH2(s) = 1 − K2(s), a2 > 0, the

desired first-order derivative convergence performance: limt→∞ ė2(t) = 0, can also be

guaranteed. From the above analysis, we confirm that dθ(t)
dt

and dφ(t)
dt

track the desired

pitch rate and roll rate asymptotically, as we expected.

General converge properties. Next, we will generalize the above analysis to

give a rigorous proof to show the higher-order convergence property of multivariable

MRAC systems when ξm(s) is diagonal.

In general, for the qith-order time derivative dqiei(t)
dtqi

of ei(t), i = 1, 2, . . . ,M , we

introduce two virtual filters:

Ki(s) =
alii

(s+ ai)li
, sHi(s) = 1−Ki(s). (5.2.17)

for decomposing the time derivative signal dqiei(t)
dtqi

, where ai > 0 is a parameter to be

specified, and the filter Hi(s) is given as

Hi(s) =
1

s
(1−Ki(s)) =

1

s

(s+ ai)
li − ali

(s+ ai)li
. (5.2.18)
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The stable filter Hi(s) is strictly proper of relative degree one and its impulse response

function is

hi(t) = L−1[Hi(s)] = e−ait
li∑
i=1

ali−i

(li − i)!
tli−i. (5.2.19)

It can be verified [65] that the L1 signal norm of hi(t) is

‖hi(·)‖1 =

∫ ∞
0

|h(t)| dt =
li

ai
. (5.2.20)

From e(t) = ξ−1
m (s)Kp[Θ̃

Tω](t) and a diagonal MLI matrix ξm(s) = diag{d1(s),

d2(s), . . . , dM(s)}, we express the tracking error component in each channel as

ei(t) = yi(t)− ymi(t) =
M∑
j=1

kpij
di(s)

[θ̃Tj ω](t), (5.2.21)

where θ̃j(t) is the jth column of the parameter error matrix Θ̃(t), and kpij is the

(i, j)th element of Kp.

By operating the equality: 1 = sHi(s)+Ki(s), on dqiei(t)
dtqi

, we express the qith-order

time derivative dqiei(t)
dtqi

of ei(t) as

dqiei(t)

dtqi
=

M∑
j=1

Hi(s)
kpijs

qi+1

di(s)
[θ̃Tj ω](t) + sqiKi(s)[ei](t). (5.2.22)

Since θ̃Tj (t)ω(t) for each j = 1, 2 . . . ,M is bounded, and
kpijs

qi+1

di(s)
is stable and

proper for each qi = 1, 2, . . . , li − 1 (strictly proper for qi = 1, 2, . . . , li − 2), we have

|Hi(s)
kpijs

qi+1

di(s)
[θ̃Tj ω](t)| ≤ cij

ai
, j = 1, 2, . . . ,M, (5.2.23)

with some cij > 0 being independent of the parameter ai.

In addition, since sqiKi(s) is stable and strictly proper for each qi = 1, 2, . . . , li−1,

with the established property: limt→∞ ei(t) = 0, we have limt→∞ s
qiKi(s)[ei](t) = 0.

Hence, with the use of the parameter ai > 0 in Hi(s) and Ki(s), it can be shown

that (a)
cij
ai
≤ ηi

2M
in (5.2.23) for all i, j = 1, 2, . . . ,M , similar to the analysis before



109

(5.2.16); and (b) |sqiKi(s)[ei](t)| < ηi
2

for all t > Ti with Ti = Tai(ai(ηi), ηi). Thus, it

follows that ∣∣∣∣dqiei(t)dtqi

∣∣∣∣ < ηi
2

+
ηi
2

= ηi, for all t > Ti, (5.2.24)

which shows lim→∞
dqiei(t)

dtqi
= 0, for qi = 1, . . . , li − 1. ∇

Theorem 5.2.2. In multivariable MRAC systems with a diagonal MLI matrix ξm(s) =

diag{d1(s), d2(s), . . . , dM(s)}, each tracking error signal ei(t) = yi(t) − ymi(t) for

i = 1, 2, . . . ,M , satisfies:

lim
t→∞

dqiei(t)

dtqi
= 0, qi = 0, 1, . . . , li − 1, (5.2.25)

with li being the degree of di(s).

Thus far, we have derived a stronger tracking property of multivariable MRAC

systems with the MLI matrix being diagonal, compared to the existing results in the

literature.

5.2.2.2 Case II: The MLI Matrix ξm(s) Is Non-Diagonal

Consider a system (5.1.1) with the inverse of the MLI matrix: Wm(s), given in (5.2.7).

From e(t) = ξ−1
m (s)Kp[Θ̃

Tω](t), we express the ith element of the output tracking error

e(t) as

ei(t) =
i−1∑
k=1

M∑
j=1

wik(s)kpkj[θ̃
T
j ω](t) +

M∑
j=1

kpij
di(s)

[θ̃Tj ω](t), i = 1, 2, . . . ,M (5.2.26)

General convergence properties. Based on (5.2.26), we first obtain the qi-th

order derivative of ei(t), i = 1, 2, . . . ,M as

dqiei(t)

dtqi
=

i−1∑
k=1

M∑
j=1

sqiwik(s)kpkj[θ̃
T
j ω](t) +

M∑
j=1

sqikpij
di(s)

[θ̃Tj ω](t). (5.2.27)
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For the qith-order time derivative dqiei(t)
dtqi

given in (5.2.27), we introduce the virtual

filters Ki(s) and Hi(s) as shown in (5.2.17), with a parameter ai > 0.

Operating the equality: 1 = sHi(s) + Ki(s), on (5.2.27), we decompose the qith-

order time derivative dqiei(t)
dtqi

of ei(t) as

dqiei(t)

dtqi
=

i−1∑
k=1

M∑
j=1

Hi(s)s
qi+1wik(s)kpkj[θ̃

T
j ω](t) +

M∑
j=1

Hi(s)
kpijs

qi+1

di(s)
[θ̃Tj ω](t)

+ sqiKi(s)[ei](t). (5.2.28)

In (5.2.28), for each term of Hi(s)s
qi+1wik(s)kpkj[θ̃

T
j ω](t), k = 1, 2, . . . , i − 1,

j = 1, 2, . . . ,M , since θ̃Tj (t)ω(t) is bounded and sqi+1wik(s) is stable and proper

for each qi = 1, 2, . . . , l̄i − 1 with l̄i = min{li, li1, . . . , li(i−1)}, (strictly proper for

qi = 1, 2, . . . , l̄i − 2), we have

|Hi(s)s
qi+1wik(s)kpkj[θ̃

T
j ω](t)| ≤ bikj

ai
(5.2.29)

with some bikj > 0 being independent of the parameter ai.

Similarly, in (5.2.28), for each of Hi(s)
kpijs

qi+1

di(s)
[θ̃Tj ω](t), j = 1, . . . ,M we have

|Hi(s)
kpijs

qi+1

di(s)
[θ̃Tj ω](t)| ≤ cij

ai
. (5.2.30)

with some cij > 0 being independent of the parameter ai.

Also, since sqiKi(s) is stable and strictly proper for each qi = 1, 2, . . . , l̄i − 1, and

limt→∞ ei(t) = 0, we have limt→∞ s
qiKi(s)[ei](t) = 0.

Hence, with the use of the parameter ai > 0 in Hi(s) and Ki(s), it is shown that

for every ηi > 0, there exists a Ti = Ti(ηi) > 0 such that
∣∣∣dqiei(t)dtqi

∣∣∣ < ηi for all t > Ti,

so that lim→∞
dqiei(t)

dtqi
= 0, for qi = 1, . . . , l̄i − 1 with l̄i = min{li, li1, . . . , li(i−1)}. ∇

In summary, a new tracking error property is obtained based on the above analysis,

which is summarized as follows.
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Theorem 5.2.3. In multivariable MRAC systems with a non-diagonal MLI matrix

whose inverse is shown as in (5.2.7), each tracking error component ei(t) = yi(t) −

ymi(t) for i = 1, 2, . . . ,M , satisfies:

lim
t→∞

dqiei(t)

dtqi
= 0, qi = 0, 1, . . . , l̄i − 1, (5.2.31)

with l̄i = min{li, li1, . . . , li(i−1)}.

Theorem 5.2.3 guarantees a stronger tracking property of multivariable model

reference adaptive control systems with an non-diagonal MLI matrix, which has not

been reported in the literature yet.

Remark 5.2.1. It is worth noting here that the higher-order tracking convergence

properties given in Theorems 5.2.1, 5.2.2 and 5.2.3 are inherent properties of MRAC

systems. Although the MLI matrix of the plant is not unique, the structure of MLI

matrix is determined by the unique interactor matrix. As the theorems show, the

higher-order convergence performance of a system depends on the structure of the

MLI matrix rather than its parameters. Thus, the higher-order convergence properties

are inherent properties of the MRAC systems. �

Next, we will use an quadrotor MRAC system to briefly demonstrate the technique

used above.

Example 5.2.2. Higher-order convergence study for a quadrotor MRAC

system. Consider a twelve-th order linearized quadrotor system in the form of

(5.1.1): ẋ = Ax+Bu, y = Cx. The system state vector is x = [xE, yE, zE, ẋE, ẏE, żE,

φ, θ, ψ, p, q, r]T with xE, yE, xE being the quadrotor positions in the earth frame,

φ, θ, ψ being the attitude angles in the earth frame, and p, q, r being the angular

velocities in the body frame. The control inputs are the lifting force Fz and the three

torques Tx, Ty and Tz, and the plant outputs are chosen as the positions xE, yE, zE
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and the yaw angle ψ. With the modified left interactor matrix of the quadrotor sys-

tem chosen in [68] (under the cruise condition with θ ≈ π/60 rad), we obtain the

inverse of modified left interactor matrix as

ξ−1
m (s) =


1

(s+1)2
0 0 0

0 1
(s+1)4

0 0
0.05

(s+1)2
0 1

(s+1)4
0

0 0 0 1
(s+1)2

 . (5.2.32)

According to the results shown in Theorem 5.2.3, in addition to limt→∞ ei(t) =

0 for i = 1, 2, 3, 4, we also have limt→∞ ė1(t) = 0, limt→∞ ė2(t) = limt→∞ ë2(t) =

limt→∞
d3e2(t)

dt3
= 0, limt→∞ ė3(t) = 0, and limt→∞ ė4(t) = 0. The analysis of the time

derivatives of e1(t), e2(t) and e4(t) is straightforward, so we omit it and focus on the

convergence analysis of ė3(t) next.

For e3(t), from the inverse modified left interactor matrix (5.2.32), we have

e3(t) =
0.05kp11

(s+ 1)2
[θ̃T1 ω](t) +

0.05kp12

(s+ 1)2
[θ̃T2 ω](t) +

0.05kp13

(s+ 1)2
[θ̃T3 ω](t) +

0.05kp14

(s+ 1)2
[θ̃T4 ω](t)

+
kp31

(s+ 1)4
[θ̃T1 ω](t) +

kp32

(s+ 1)4
[θ̃T2 ω](t) +

kp33

(s+ 1)4
[θ̃T3 ω](t) +

kp34

(s+ 1)4
[θ̃T4 ω](t).

(5.2.33)

Operating 1 = sH3(s)+K3(s) to ė3(t), with the introduced virtual filters: K3(s) =

a43
(s+a3)4

, H3(s) = 1
s

(s+a3)4−a43
(s+a3)4

, we have

ė3(t) = H3(s)
0.05kp11s

2

(s+ 1)2
[θ̃T1 ω](t) +H3(s)

0.05kp12s
2

(s+ 1)2
[θ̃T2 ω](t) +H3(s)

0.05kp13s
2

(s+ 1)2
[θ̃T3 ω](t)

+H3(s)
0.05kp14s

2

(s+ 1)2
[θ̃T4 ω](t) +H3(s)

kp31s
2

(s+ 1)4
[θ̃T1 ω](t) +H3(s)

kp32s
2

(s+ 1)4
[θ̃T2 ω](t)

+H3(s)
kp33s

2

(s+ 1)4
[θ̃T3 ω](t) +H3(s)

kp34s
2

(s+ 1)4
[θ̃T4 ω](t) + sK(s)[e3](t). (5.2.34)

From
0.05kp1js

2

(s+1)2
being stable and proper,

0.05kp3js
2

(s+1)4
being stable and strictly proper,

and ‖h3(·)‖ = 4
a3

, we have∣∣∣∣H3(s)
0.05kp1js

2

(s+ 1)2
[θ̃jω](t)

∣∣∣∣ ≤ b31j

a3

, j = 1, 2, 3, 4, (5.2.35)
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for some b31j > 0 being independent of a3 and∣∣∣∣H3(s)
0.05kp3js

2

(s+ 1)4
[θ̃jω](t)

∣∣∣∣ ≤ c3j

a3

, j = 1, 2, 3, 4, (5.2.36)

for some c3j > 0 being independent of a3.

Hence, with the parameter a3 ≥ max{16b31j
η3

,
16c3j
η3
}, so that

b31j
a1
≤ η3

16
and

c3j
a3
≤ η3

16

in (5.2.15), for all j = 1, 2, 3, 4. In addition, we let T3 = T3(η3) > 0 such that

|sK3(s)[e3](t)| < η3
2

for all t ≥ T3, since limt→∞ sK3[e3](t) = 0. Then, it follows that

|ė3(t)| < 8 · η3

16
+
η3

2
= η3, ∀t > T3. (5.2.37)

Hence, we verify that limt→∞ ė3(t) = 0.

In summary, for this quadrotor MRAC system, we confirm that the standard

output feedback MRAC scheme guarantees asymptotic tracking for

• the position of xE, yE and zE axes;

• the velocity on xE, yE and zE axes;

• the acceleration and the jerk on yE axes; and

• the yaw angle and the yaw rate.

Such a stronger result helps the researchers to choose the reference signals more

suitable in the future.

5.3 Simulation Study

In this subsection, we study the response of the NASA GTM MRAC system shown

in Section 5.1.2 and 5.2.2, to verify the desired tracking error convergence properties

we derived in Theorem 5.2.2.
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Simulation system. The linearized NASA GTM model [47]in the form of (5.1.1):

ẋ = Ax+Bu, y = Cx, with

A =



−0.019 0.1364 −9.7778 −32.0829 −0.0018 −0.0004 0 0
−0.2804 −2.7567 120.1968 −2.42 −0.0001 0 0.0004 −0.0061
0.0205 −0.3106 −3.5393 0 0.007 0.0328 −0.0014 0

0 0 1 0 0 −0.0002 0 0.0002
0 −0.0027 0 −0.0005 −0.5765 −125.9974 10.4690 32.0829
0 0 −0.0255 0 0.2245 −1.4053 −0.2794 0
0 0 0.0018 0 −0.629 1.9689 −5.4759 0
0 0 0 −0.0002 0 0.0754 1 0


,

B =



0.0056 −0.0423
−0.6119 0.1579
−0.7486 0.0859

0 0
0 −0.0223
0 −0.0223
0 −0.7657
0 0


, C =

[
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

]
.

The modified interactor matrix ξm(s) is chosen as diag {(s+ 2)2 , (s+ 2)2}, the

transfer function of the chosen reference model (5.1.3) isWm(s) = diag
{

1
(s+2)2

, 1
(s+2)2

}
,

which is proper and stable. The reference inputs are chosen as r(t) = [−40π
180

sin(0.1t),

−15π
180

sin(0.1t)]T.

Simulation results. For simulation, the adaptation gains are chosen as Γ = 5I,

Γθ = 5, and the initial condition are chosen as y(0) = [−0.01,−0.01]T, ym(0) = [0, 0]T.

The performances of the pitch angle θ(t) and the pitch rate θ̇(t) are shown in Fig.5.1(a)

and Fig. 5.1(b), respectively, in which the dotted lines represent the reference pitch

angle/rate and the solid lines represent the actual pitch angle/rate. The performances

of the roll angle φ(t) and the roll rate φ̇(t) are shown in Fig. 5.2(a) and Fig.5.2(b),

respectively, in which the dotted lines represent the reference roll angle/rate and

the solid lines represent the actual roll angle/rate. The simulation results verify the

desired system tracking performance.
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(a) Pitch angle θ(t) (solid) and desired pitch angle θ
m

(t) (dotted) vs. time (sec)
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(b) Pitch rate dθ(t)/dt and desired pitch rate dθ
m

(t)/dt
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Figure 5.1: Pitch angle θ(t) and its derivative.
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(a) Roll angle φ(t) (solid) and desired roll angle φ
m

(t) (dotted) vs. time (sec)
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(b) Roll rate dφ(t)/dt and desired roll rate dφ
m

(t)/dt
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Figure 5.2: Roll angle φ(t) and its derivative.
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Summary

In this chapter, compared to the existing MRAC result in the literature, we have de-

rived a stronger higher-order tracking property of multivariable MRAC systems: not

only the tracking error component ei(t), i = 1, 2, . . . ,M but its up to qith derivatives

converge to zero asymptotically, with qi related to the system MLI matrix. Such a

new convergence property avoids certain undesirable oscillations, brings the MRAC

system performance closer to that of a nominal control system, and benefits for prac-

tical applications. The convergence analysis on the NASA GTM system illustrates

the derivation techniques and show the engineering signification of the derived results.



Chapter 6

Sensor Failure Compensation for
SISO Systems

This chapter addresses a new adaptive output tracking problem in the presence of

uncertain plant dynamics and uncertain sensor failures. A new unified nominal state

feedback control law is developed to deal with various sensor failures, which is di-

rectly constructed by state sensor outputs. Such a new state feedback compensation

control law is able to ensure the desired plant-model matching properties under dif-

ferent failure patterns. Based on the nominal compensation control design, a new

adaptive compensation control scheme is proposed, which guarantees closed-loop sig-

nal boundedness and asymptotic output tracking. The new adaptive compensation

scheme not only expands the sensor failures types that the system could tolerate, but

avoids some signal processing procedures that the traditional fault-tolerant control

techniques are forced to encounter. A complete stability analysis and a representative

simulation study are conducted to evaluate the effectiveness of the proposed adaptive

compensation control scheme.
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6.1 Problem Statement

In this section, a state sensor failure model is first established, and a new MRAC

problem, namely, adaptive tracking control in the presence of uncertain state sensor

failures, is formulated.

6.1.1 Plant Model and State Sensor Failures

Before we establish the state sensor failure model in this subsection, we will first

introduce the plant model, and discuss the main advantages of state feedback control

and issues with possible state sensor failures.

Plant model. Consider a linear time-invariant plant:

ẋ(t) = Ax(t) + bu(t), x(t) ∈ Rn, u(t) ∈ R

y(t) = cx(t), y(t) ∈ R (6.1.1)

where A ∈ Rn×n is an unknown matrix, b ∈ Rn and c ∈ R1×n are unknown vectors.

The input-output description of the plant (6.1.1) is

y(t) = G(s)[u](t) = kp
Z(s)

P (s)
[u](t), (6.1.2)

where kp 6= 0, P (s) = det(sI − A) = sn + pn−1s
n−1 · · · + p1s + p0 and Z(s) =

sm+ · · ·+z1s+z0 for some m ≥ 0. The notation: y(t) = G(s)[u](t), is used to denote

the output y(t) of a LTI system represented by a transfer function G(s) with input

signal u(t). The symbol s is a differentiation operator: s[x](t) = ẋ(t), or the Laplace

transform variable as the case may be. It is a simple notation to combine both the

time domain and the frequency domain signal operations, suitable for adaptive control

system presentation.

State feedback control. A state feedback controller has the form:

u(t) = kT1 x(t) + k2r(t), (6.1.3)
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where r(t) is a reference signal. For feedback control applications where the state x(t)

is accessible, compared to an output feedback controller structure, such a controller

structure is a more preferred choice, because

• the state feedback controller structure is much simpler, which leads to easier

controller implementation with reduced computation especially in the adaptive

control case;

• the state feedback controller structure carries more state information, which

results in a better transient performance; and

• the state feedback controller structure has certain redundant capacity for achiev-

ing desired control system performance, which is desirable for tolerating uncer-

tain sensor faults.

In particular for MRAC (model reference adaptive control), the state feedback

controller structure (6.1.3) is a natural choice when the full state vector x(t) is avail-

able, because it enjoys the least dimension regressor in parameter adaptation laws

which are used to update adaptive controller parameters. Compared to an output

feedback MRAC design where the dimension of the regressor is 2n, the dimension

of the regressor in the state feedback MRAC design is n + 1 (in both designs, such

a regressor will be processed by a filter whose order is n∗, the plant relative degree,

further indicating the advantage of a state feedback adaptive control design). This

also confirms that the state feedback control design significantly reduces the controller

implementation and computing complexities, compared to an output feedback control

design, as we have mentioned above.

It is worthwhile to note that for implementing the state feedback controller struc-

ture (6.1.3), a crucial precondition is to obtain the precisely measured state vector
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x(t). However, in practice, state sensors may be subject to some uncertain failures

so that the desired system performance may not be ensured unless effective sensor

failure tolerance is provided, which is possible with the state feedback design.

State sensor failure model. In this study, we consider the case when a set of

sensors Si, i = 1, . . . , n, is used to measure the n state variables xi(t). In the presence

of a unrecoverable fault at the jth sensor, the sensor output may be described as

zj = Sj(xj) =

{
xj with the healthy sensor Sj
s̄j with the failed sensor Sj

(6.1.4)

for some unknown bounded values s̄j with unknown indices j ∈ {1, 2, . . . , n}. Thus,

for the state vector x(t) constructed by the n state variables xi, the sensor output

vector with possible uncertain state sensor failures is z(t) = [z1, . . . , zn]T . Such a

sensor output vector z(t) is the actual signal feeding for control implementation:

u = kT1 z(t)+k2r(t) (see Fig. 6.1), which results in destruction of the feedback control

system.

This failure model characterizes the most typical classes of sensor failures that

may occur, that is, some unknown sensor outputs are stuck at some unknown fixed

or varying values. For example, the humidity-sensitive pressure sensor may be stuck

at some unknown values due to water or moisture.

Discussion on issues and problems with failures. In general, state sensor

failures result in invalidation of control laws. For example, without the precisely mea-

sured state variables, a pole placement control design cannot position the closed-loop

poles; a state matching control design cannot guarantee plant-model state match-

ing; and an adaptive control design with state feedback cannot achieve asymptotic

tracking. Thus, effective compensation of such state sensor failures is necessary.

In addition, the state sensor failures investigated in this chapter are uncertain,

which means we do not know which sensors are failed, how much the failures are and
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Control Law
r(t) u(t)

ẋ = Ax+ bu

x(t)
Sensor

z(t)

c
y(t)

Figure 6.1: Control system under possible uncertain sensor failures.

when the failures occur. Such uncertain state sensor failures require effective adaptive

compensation control scheme to guarantee desired system performance.

6.1.2 State Sensor Failure Compensation Problem

In this subsection, we formulate the new adaptive control problem for state sensor fail-

ure compensation to control the unknown linear time-invariant (LTI) systems (6.1.1)

with uncertain sensor failures (6.1.4), for achieving asymptotic output tracking.

6.1.2.1 Control Objective

The control objective of the state sensor failure compensation problem is to construct

a feedback control law u(t) in the unknown plant (6.1.1) with the sensor output vector

z(t) being subject to the uncertain state sensor failures (6.1.4) such that all signals in

the closed-loop system are bounded and the system output y(t) asymptotically tracks

a given reference output signal ym(t) generated from a reference model system

ym(t) = Wm(s)[r](t), Wm(s) =
1

Pm(s)
(6.1.5)

where Pm(s) is a monic stable polynomial with the plant relative degree n∗ = n−m

and r(t) is a bounded piecewise continuous reference input signal.

Desired features of a sensor failure compensation controller. A new state

feedback control design, which can guarantee desired system performance for the case
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of no sensor failures (that is, z(t) = x(t) in Fig. 6.1) and for the case of uncertain

state sensor failures (that is, z(t) 6= x(t) in Fig. 6.1), is expected. In this chapter,

we propose to develop an adaptive state sensor failure compensation scheme, whose

controller structure has a form as close as possible to the state feedback controller

structure for dealing with the possible uncertain state sensor failures. For our new

state sensor failure compensation problem, we directly use the sensor output vector

z(t) without additional signal processing often used in some literature, to maintain

a similar controller structure close to a state feedback control design using the full

state vector x(t).

6.1.2.2 Failure Pattern and Failure Pattern Set

In this subsection, we specify the class of sensor failures to be compensated by our

adaptive control scheme, and define a failure pattern set for which an adaptive control

design is developed to handle all its elements (failures).

Failure pattern. For the n sensors corresponding to the n state variables xi,

i = 1, 2, . . . , n, there are different sensor failure patterns which can be represented by

a generic failure pattern matrix

σ = diag{σ1, σ2, . . . , σn} (6.1.6)

where σi = 1 if the ith sensor fails and σi = 0 if the ith sensor is healthy. With such

a matrix, we can express the sensor output vector as

z(t) = x(t)− σ(x(t)− s̄) (6.1.7)

where s̄ = [s̄1, s̄2, . . . , s̄n]T is defined as a failure vector which can either be a constant

vector or a scalar vector. For each individual failure pattern, we denote σ as σ = σ(k),

for k = 0, 1, 2, . . . , N − 1, where N is the total number of different sensor failure
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patterns including the no failure pattern, and correspondingly, denote s̄ as s̄ = s̄(k).

We use σ(0) = diag{0, 0, . . . , 0} and s̄(0) = [0, 0, . . . , 0]T to represent the no failure

case (for the k = 0 case).

Failure pattern set. To specify all possible sensor failures to be dealt with by

an adaptive control design, we define the sensor failure pattern set as

Σ = {σ | σ = σ(k), k = 0, 1, 2, . . . , N − 1}. (6.1.8)

Such a failure pattern set includes N failure patterns caused by up to n − n0 failed

sensors for some n0 ∈ {1, 2, . . . , n} with n0 representing the number of healthy sensors.

The total number N of failure patterns depends on the problem of interest, and in

terms of n0, N may be between 1 and N0 =
∑n−n0

i=0

(
n
i

)
. The maximum number N0

represents the problem wherein all the possible failure patterns that can be caused

by up to n − n0 failed state sensors are to be considered. The reason that the total

number N of failure patterns in the failure pattern set Σ may be less than N0 is

because, in practice, some sensors may be more vulnerable to failure than some other

sensors, thus there may be no need to consider all possible cases caused by up to

n− n0 failed state sensors but just some particular cases.

The case of no failure is always be considered. In other words, N = 2 represents

the problem wherein there are two failure patterns: either all sensors are healthy

(when z(t) = x(t), with the failure pattern σ(0) and the failure vector s̄(0)), or a

particular group of n−n0 sensors are failed (when z(t) = x(t)−σ(1)(x(t)− s̄(1)), with

a specific failure pattern matrix σ(1) and a specific failure vector s̄(1)). For a particular

application, all failure patterns of interest belong to a specific failure pattern set Σ.

It is valuable to notice that in this problem, it is uncertain what is the value of σ

during the system operation, and a desired control design should be able to handle

such an uncertainty, which is a nontrivial control problem.
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From the number-of-failed-sensors point of view, we classify all the sensor failure

patterns in a failure pattern set of interest that we mentioned before into two groups:

(1) failure patterns caused by exactly n − n0 failed sensors which are the worst

cases; and

(2) failure patterns caused by n − n̄0 failed sensors with some n − n̄0 < n − n0,

which represents all the other non-worst cases.

While our adaptive failure compensation scheme to be developed is able to deal with

all the sensor failure patterns in a failure pattern set of interest either in case (1) or

case (2), the information of n0 will be used to construct a unified controller structure.

6.1.2.3 Technical Goals

In the procedure of solving this state sensor compensation problem, we will

• build a nominal controller structure with the direct state sensor output z(t),

which is capable of achieving plant-model output matching: y(t) = Wm(s)[r](t),

for (A, b, c) known for all possible failure patterns in the failure pattern set of

interest in Section 6.2 (such a controller structure is necessary and suitable

for control adaptation to achieve limt→∞(y(t) − ym(t)) = 0 in Section 6.3, for

(A, b, c) unknown);

• develop an adaptive compensation scheme with stable parameter update laws,

which is capable of achieving output tracking in the presence of all possible

uncertain sensor failures and system parameter uncertainties; and

• conduct a closed-loop system stability analysis to verify the effectiveness of the

proposed adaptive state sensor failure compensation scheme.
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6.2 Nominal Sensor Failure Compensation Scheme

In this section, for the case of the system parameters (A, b, c) and the failure pattern

σ(k) being known, we propose a nominal controller structure to compensate all possible

sensor failures in a failure pattern set Σ in Section 6.2.1, which provides a key a priori

knowledge for the adaptive control design to be developed, and we show that for all

possible failure patterns in a failure pattern set Σ the desired plant-model output

matching properties can be achieved by the proposed compensation controller in

Section 6.2.2.

A basic assumption. To meet the control objective, we first give a basic assump-

tion before the control design. For the state sensor failure compensation problem, we

assume that for each sensor failure pattern σ(k) of all N possible sensor failure pat-

terns in a chosen failure pattern set Σ of interest, the vector z(k)(t), consisting of all

precisely measured state variables zi = xi(t) from at least n0 healthy sensors, exist

and is state-observable. Such an assumption is described mathematically as

(A6.1) For each failure pattern σ(k) in a chosen failure pattern set Σ, the correspond-

ing healthy sensor vector z(k)(t) = C(k)x(t) ∈ Rn(k) exists for some matrix C(k) ∈

Rn(k)×n and n(k) ≥ n0, such that (A,C(k)) is observable, k = 0, 1, 2, . . . , N − 1.

Based on Assumption (A6.1), the healthy sensor vectors z(k)(t) collecting n0 pre-

cisely measured state variables can be uniformly denoted as zn0(t) = Cn0x(t) ∈ Rn0

with (A,Cn0) being observable for a generic Cn0 ∈ Rn0×n which may take different

forms for different cases. With the above definition, the sensor output measurements

z(t) can be expressed as

z(t) = P−1[zTn0
(t), z̄Tn0

(t)]T (6.2.1)

with P ∈ Rn×n being an nonsingular matrix such that Cn0P
−1 = [In0 , 0] and z̄n0(t)
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being the corresponding failed sensor output vector (the transformation matrix P will

be discussed in details in Section 6.2.1).

Remark 6.2.1. It is worth noting that zn0(t) or Cn0 may not be unique as there may

be different cases with n0 healthy sensors, and that although zn0(t) may have effect

in an applied control law, it is actually uncertain to the control law what components

of x(t) are contained in such a healthy sensor output vector zn0(t). It is also the case

for the vectors z(k)(t): it is unknown what components of x(t) are in such a vector

z(k)(t) which influences a feedback control law. �

General idea. Besides the properties of the state feedback controller (6.1.3) that

we have discussed before, the state feedback controller (6.1.3) is also able to ensure

plant-model output matching: y(t) = ym(t) = Wm(s)[r](t), as long as the matching

equation

det(sI − A− bk∗T1 ) = Pm(s)Z(s)
1

kp
, k∗2 =

1

kp
, (6.2.2)

is satisfied [82]. In practice when the actual system state x(t) cannot be obtained, an

alternative controller:

u(t) = k∗T1 x̂(t) + k∗2r(t), (6.2.3)

could be used to achieve plant-model matching, where the state estimation x̂(t) is

produced by an observer/state estimator. The controller (6.2.3) is called the observer-

based state feedback controller which inherits the desired plant-model output match-

ing properties from the state feedback controller as long as the state estimate x̂(t)

converges to the state x(t) exponentially.

Although the observer-based state feedback controller becomes ineffectual either

for the problem with uncertain system parameters and uncertain state sensor failures

in this chapter, we could bridge the gap between the state feedback controller (6.1.3)
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and the sensor failure compensation controller to be proposed through the observer-

based state feedback controller.

In the rest of this section, we will first derive a parameterizable controller structure

for the worst cases (the failure patterns caused by n − n0 failed sensors) in Section

6.2.1 through (6.2.3), and then establish the desired plant-model output matching

properties of the new compensation controller structure under worst and non-worst

cases in Section 6.2.2 by utilizing the plant-model output matching properties of the

observer-based state feedback controller structure.

6.2.1 Nominal Controller Structure

In this subsection, a unified controller structure, with the capability of handling all

the possible failures in the failure set Σ is to be proposed. To derive the state sensor

failure compensation controller structure, the following three steps are performed.

Step 1: Worst case observer with the healthy sensor vector zn0(t). For

the state equation: ẋ(t) = Ax(t) + bu(t), and the transformation matrix P ∈ Rn×n

such that Cn0P
−1 = [In0 , 0] with n0 = rank[C0] (P is also used in (6.2.1)), we can

first transfer it to [
˙̄x1(t)
˙̄x2(t)

]
=

[
Ā11 Ā12

Ā21 Ā22

] [
x̄1(t)
x̄2(t)

]
+

[
b̄1

b̄2

]
u(t), (6.2.4)

where x̄(t) = Px(t) = [x̄T1 (t), x̄T2 (t)]T with x̄1(t) ∈ Rn0 , x̄2(t) ∈ Rn−n0 , Ā11 ∈ Rn0×n0 ,

Ā12 ∈ Rn0×(n−n0), Ā21 ∈ R(n−n0)×n0 , Ā22 ∈ R(n−n0)×(n−n0), b̄1 ∈ Rn0 and b̄2 ∈ Rn−n0 .

For such a transformed state equation with the transformation matrix P , the n0

state variables in x̄1(t) are the n0 precisely measured state variables from the healthy

sensors, that is, zn0(t) = x̄1(t). Thus, x̄2(t) is to be estimated to obtain the state

estimate ˆ̄x(t) = [x̄T1 (t), ˆ̄xT2 (t)] = [zTn0
(t), ˆ̄xT2 (t)]T .
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Then, we generate an estimate ˆ̄x(t) for x̄(t) with a reduced-order dynamic system

generating an estimate ˆ̄x2(t) for x̄2(t), in the form:

ˆ̄x(t) =
[
x̄1 ˆ̄x2

]T
=
[
zn0(t) w(t) + Lrzn0(t)

]T
, (6.2.5)

where Lr ∈ R(n−n0)×n0 is a constant gain matrix such that the eigenvalues of the

(n−n0)× (n−n0) matrix Ā22−LrĀ12 are stable and prespecified, and w(t) ∈ Rn−n0

is generated from the dynamic equation

ẇ(t) = (Ā22 − LrĀ12)w(t) + (b̄2 − Lrb̄1)u(t)

+ ((Ā22 − LrĀ12)Lr + Ā21 − LrĀ11)zn0(t), w(0) = w0. (6.2.6)

with w(0) ∈ Rn−n0 being an estimate of Lrzn0(0)− x̄2(0).

The solution of (6.2.6) can be expressed as

w(t) = e(Ā22−LrĀ12)tw(0) + (sI − Ā22 + LrĀ12)−1(b̄2 − Lrb̄1)[u](t)

+ (sI − Ā22 + LrĀ12)−1
(
(Ā22 − LrĀ12)Lr + Ā21 − LrĀ11

)
[zn0 ](t)

=
n1(s)

Λ(s)
[u](t) +

n2(s)

Λ(s)
[zn0 ](t) + e(Ā22−LrĀ12)tw(0), (6.2.7)

where Λ(s) = det(sI − Ā22 + LrĀ12) whose degree is n− n0 and stability properties

can be prespecified and by assigning the eigenvalues of Ā22 − LrĀ12 as a set of given

(known) values, and n1(s) is an (n − n0) × 1 polynomial vector and n2(s) is an

(n− n0)× n0 polynomial matrix, whose maximum degrees are n− n0 − 1 or less.

From (6.2.4)–(6.2.6), it can be verified that the estimated error ˜̄x2(t) = x̄2(t)−ˆ̄x2(t)

satisfies ˙̄̃x2(t) = (Ā22 − LrĀ12)˜̄x2(t), which decays to zero exponentially since the

matrix Ā22 − LrĀ12 is stable.

Step 2: Controller structure with the healthy sensor output zn0(t). From

the observer shown in Step 1, we are able to obtain a state estimate x̂(t) with



129

limt→∞(x̂(t) − x(t)) = 0. To obtain a parameterized controller structure which does

not depend on the system parameters, we reparameterize the observer-based con-

troller structure u(t) = k∗T1 x̂(t) + k∗2r(t) by using (6.2.5), (6.2.7) and the relationship

x̂(t) = P−1 ˆ̄x(t), and have a controller structure with the healthy sensor output zn0(t),

in the form of

u(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ̄∗T21

A21(s)

Λ(s)
[zn0 ](t) + θ̄∗T201zn0(t) + θ∗3r(t) + ε0(t), (6.2.8)

for an exponentially decaying signal ε0(t) = k∗Tp2 e
(Ā22−LrĀ12)tw(0) representing the

effect of the initial condition w(0), where θ∗1 ∈ Rn−n0 , θ̄∗21 ∈ Rn0(n−n0), θ̄∗201 ∈ Rn0 and

θ∗3 ∈ R, such that θ̄∗T201 = k∗Tp1 + k∗Tp2 Lr, k
∗T
p2 n1(s) = θ∗T1 a(s) and k∗Tp2 n2(s) = θ̄∗T21 A21(s),

for k∗T1 P−1 = [k∗Tp1 , k
∗T
p2 ] with k∗p1 ∈ Rn0 and k∗p2 ∈ Rn−n0 , and

a(s) = [1, s, . . . , sn−n0−1]T , A21(s) = [In0 , sIn0 , . . . , s
n−n0−1In0 ]

T . (6.2.9)

Step 3: Compensation controller structure with the sensor output z(t).

To achieve the first technical goal of this chapter which is to develop a state feedback

controller structure using the sensor output z(t) directly for dealing with the uncertain

state sensor failures, we first express the relationship between the healthy sensor

output vector zn0(t) and the sensor output measurement z(t) as

zn0(t) = Cn0z(t), (6.2.10)

with z(t) = P−1[zTn0
(t), z̄Tn0

(t)]T . Then, we parameterize the controller structure

(6.2.8) constructed with the healthy sensor output zn0(t) in terms of z(t), and obtain

the nominal state sensor failure compensation controller structure in the form:

u(t) = θ∗T1 ω1(t) + θ∗T2 ω2(t) + θ∗T20 z(t) + θ∗3r(t), (6.2.11)

for some controller parameters θ∗1 ∈ Rn−n0 , θ∗2 ∈ Rn(n−n0), θ∗20 ∈ Rn, θ∗3 ∈ R, and the
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regressors

ω1(t) =
a(s)

Λ(s)
[u](t), ω2(t) =

A(s)

Λ(s)
[z](t) (6.2.12)

with a(s) = [1, s, . . . , sn−n0−1]T , A(s) = [In, sIn, . . . , s
n−n0−1In]T , and Λ(s) is a stable

and monic polynomial of degree n − n0. As a MRAC problem, to guarantee the

stability of the internal signals, we assume: (A6.2) All zeros of Z(s) are stable.

Remark 6.2.2. In fact, based on the relationship: z(t) = P−1[zTn0
(t), z̄Tn0

(t)]T , the

nominal controller structure (6.2.11) can also be expressed in terms of zn0(t) and

z̄n0(t) as

u(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ̄∗T21

A21(s)

Λ(s)
[zn0 ](t) + θ̄∗T201zn0(t) + θ∗3r(t)

+ θ̄∗T22

A22(s)

Λ(s)
[z̄n0 ](t) + θ̄∗T202z̄n0(t) (6.2.13)

with θ̄∗22 = 0(n−n0)(n−n0)×1, θ̄∗202 = 0(n−n0)×1, and A22(s) = [In−n0 , . . . , s
n−n0−1In−n0 ]

T .

Such an extended form of the controller (6.2.11) shows the essence of the nominal

controller. The nominal controller parameters θ∗1, θ̄
∗
21, θ̄

∗
201 and θ∗3 associating with

the healthy sensor output zn0(t) are for plant-model matching , and the nominal

parameters θ̄∗22 and θ̄∗202 associating with the failed sensor output z̄n0(t) are for failure

compensation. This extended structure will be used for the proof of plant-model

output matching in Section 6.2.2, for the derivation of tracking error equation and for

the analysis of closed-loop stability in Section 6.3. The relationship θ∗T2 A(s)[z](t) =

θ̄∗T21 A21(s)[zn0 ](t) + θ̄∗T22 A22(s)[z̄n0 ](t) for θ∗T2 A(s)P−1 = [θ̄∗T21 A21(s), θ̄∗T22 A22(s)] and the

relationship θ∗T20 z(t) = θ̄∗T201zn0(t) + θ̄∗T202z̄n0(t) for θ∗T20 P
−1 = [θ̄∗T201, θ̄

∗T
202] can be verified

by the definition of A21(s) and A22(s) and z(t) = P−1[zTn0
(t), z̄Tn0

(t)]T . �

So far, we have obtained the parameterized nominal state sensor failure compen-

sation controller structure (6.2.11) which is constructed by the sensor output z(t)
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observer-based state feedback controller (6.2.3)

reparametrizion of (6.2.3) with x̂(t) procuded by an observer

controller structure (6.2.8) with zn0(t)

reparameterization of (6.2.8) by (6.2.10)

failure compensation controller structure (6.2.11) with z(t)

Figure 6.2: Design procedure of the compensation controller structure (6.2.11).

directly. The design procedure is summarized as Fig. 6.2 shows. Corresponding to

the first technical goal, there are two design logic chains: (a) keeping finding param-

eterized controller structures which make control adaptation realizable (as shown in

Section 6.2.1); and (b) keeping finding controllers that can guarantee the plant-model

output matching properties inherited from the state feedback controller structure (to

be shown in Section 6.2.2), until the technical goal is achieved.

Remark 6.2.3. It is worth noting that although the nominal controller structure

(6.2.11) is able to achieve plant-model matching for all failure patterns, including

the worst and the general cases, in a chosen failure pattern set Σ of interest (to be

proved in the next subsection), for each different failure pattern σ(k) the values of

the corresponding constant nominal controller parameters θ∗1, θ∗2, θ∗20 are different. In

other words, each special failure pattern σ(k) corresponds to a special set of controller

parameters θ∗1(k), θ
∗
2(k), θ

∗
20(k). The actual controller parameters θ∗1(k), θ

∗
2(k), θ

∗
20(k) for

each different failure pattern σ(k) are denoted as θ∗1, θ∗2, θ∗20, due to the use of the

vector zn0(t). �
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6.2.2 Plant-Model Output Matching

As we discussed in Section 6.1.2.2, all N possible sensor failures in a chosen failure

pattern set Σ of interest can be classified into two groups: (1) failure patterns caused

by exactly n − n0 failed sensors which are the worst cases; and (2) failure patterns

caused by n−n̄0 failed sensors with some n−n̄0 < n−n0. Although the compensation

controller structure (6.2.11) is designed for the worst case of n−n0 sensor failures, it

should also be able to make the output of the plant match the one of the reference

model for less than n−n0 failures. In other words, the compensation controller struc-

ture (6.2.11) should be capable of ensuring output matching for all possible failure

patterns under a failure pattern set Σ. In this subsection, we will establish the de-

sired plant-model output matching properties of the nominal compensation controller

structure (6.2.11) under the worst cases and the non-worst cases, respectively.

6.2.2.1 Output Matching for n− n0 Failures

Under the situation of n−n0 sensor failures, plant-model output matching properties

of the nominal controller structure (6.2.11) can be summarized as below.

Theorem 6.2.1. There exist constant parameters θ∗1 ∈ Rn−n0 , θ∗2 ∈ Rn(n−n0), θ∗20 ∈

Rn, θ∗3 ∈ R such that the controller structure (6.2.11) ensures closed-loop signal bound-

edness and plant-model output matching: y(t)− ym(t) = ε(t), for some exponentially

decaying ε(t) and ym(t) being the output of reference model (6.1.5), in the presence

of n− n0 failed sensors.

Proof: In the proof, we will first show the plant-model matching properties, and

then show closed-loop signal boundedness. The proof can be divided into four steps.

Step 1: Output matching by observer-based state feedback control. Since the state

estimate error x̂(t) − x(t) can be expressed as x̂(t) − x(t) = [0, εT1 (t)]T with ε1(t) =
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P12e
(Ā22−LrĀ12)t(x̄2(0) − ˆ̄x2(0)) for P12 = P−1[0(n−n0)×n0 , In−n0 ]

T ∈ Rn×(n−n0), we ex-

press the observer-based control law as u(t) = k∗T1 x(t)+k∗T1 ε1(t)+k∗2r(t). Substituting

such a control law into the plant (6.1.1) and ignoring the exponentially decaying term,

we have the plant output expression:

y(t) = c(sI − A− bk∗T1 )−1bk∗2[r](t) + c(sI − A− bk∗T1 )−1bk∗1[ε1](t). (6.2.14)

Choosing the same controller parameters k∗1 and k∗2 to make the matching equation

(6.2.2) of state feedback control be satisfied and ignoring the exponentially decaying

term, we obtain the output matching equation

y(t) = c(sI − A− bk∗T1 )−1bk∗2[r](t) = Gc(s)[r](t) = Wm(s)[r](t), (6.2.15)

with Gc(s) representing the closed-loop transfer function. It is verified that with the

same controller parameters k∗1 and k∗2, the observer-based state feedback controller

structure u(t) = k∗T1 x̂(t)+k∗2r(t) has the equivalent capability of ensuring plant-model

matching, as the state feedback controller u(t) = k∗T1 x(t) + k∗2r(t) does.

Step 2: Output matching by control with the healthy sensor output zn0(t). from the

derivation of (6.2.8), we have obtained θ∗3 = k∗2 and

k∗T1 x̂(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ̄∗T21

A21(s)

Λ(s)
[zn0 ](t) + θ̄∗T201zn0(t) + ε0(t). (6.2.16)

Thus, to prove plant-model output matching by (6.2.8), we only need to prove the

existence of the constant parameters θ∗1, θ̄
∗
21, θ̄

∗
201 which satisfy (6.2.16), since the ex-

istence of k∗1 and k∗2 to guarantee plant-model output matching have been ensured in

the last step.

The existence of θ∗1 ∈ Rn−n0 is guaranteed for θ∗T1 a(s) = k∗Tp2 n1(s), since the

polynomial n1(s) in (6.2.7) for has degree n − n0 with a(s) = [1, s, . . . , sn−n0−1]T .

Similarly, the existence of θ̄∗21 is guaranteed for θ̄∗T21 A21(s) = k∗Tp2 n2(s). With k∗T1 P−1 =
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[k∗Tp1 , k
∗T
p2 ] and the prespecified Lr ∈ R(n−n0)×n0 , the existence of θ∗20 = k∗Tp1 + k∗Tp2 Lr in

(6.2.8) is guaranteed.

Step 3: Output matching by the nominal failure compensation control. As we have

discussed before, we will use the the equation (6.2.13), the extended version of the

nominal controller structure (6.2.11), to prove plant-model output matching. By uti-

lizing the transformation matrix P in (6.2.1), the relationship between the constant

controller parameters θ∗2 in (6.2.11) and the constant parameters θ̄∗21, θ̄∗22 in (6.2.13)

can shown as

θ∗2 = P [θ̄∗T21 , θ̄
∗T
22 ]T (6.2.17)

with θ̄∗22 = 0(n−n0)(n−n0)×1, and

P =


P11 0 0 0 | P12 0 0 0
0 P11 0 0 | 0 P12 0 0

0 0
. . . 0 | 0 0

. . . 0
0 0 0 P11 | 0 0 0 P12

 ∈ Rn(n−n0)×n(n−n0), (6.2.18)

for P11 = P−1[In0 , 0n0×(n−n0)]
T ∈ Rn×n0 and P12 = P−1[0(n−n0)×n0 , In−n0 ]

T ∈ Rn×(n−n0).

Similarly, the relationship between the constant controller parameters θ∗20 in (6.2.11)

and the parameters θ̄∗201, θ̄∗202 in (6.2.13) is shown as

θ∗20 = P−1[θ̄∗T201, θ̄
∗T
202]T (6.2.19)

with θ̄∗202 = 0(n−n0)×1.

Based on (6.2.17) and (6.2.19), the existence of the constant parameters θ∗2 and

θ∗20 in (6.2.11) can be verified. Furthermore, thanks to the zero value of θ̄∗22 and

θ̄∗202, the plant-model matching properties have not been changed by the additional

two terms θ̄∗T22
A22(s)
Λ(s)

[z̄n0 ](t) and θ̄∗T202z̄n0(t). In other words, output matching by the

nominal compensation controller (6.2.11) is also guaranteed by some existing constant

controller parameters θ∗1, θ∗2, θ∗20 and θ∗3.



135

So far, we have proved that despite the imprecisely measurement state variables in

z(t), the capability of guaranteeing plant-model output matching: y(t)−ym(t) = ε(t)

is retained by the nominal compensation controller (6.2.11) which has the closet form

of the state feedback controller, with the constant controller parameters θ∗1, θ
∗
2, θ
∗
20, θ∗3.

Step 4: Closed-loop signal boundedness. From y(t)− ym(t) = ε(t), we have the ith

derivative as y(i)(t) = ε(i)(t) + y
(i)
m (t), i = 1, 2, . . . , n∗. Using the reference model:

ym(t) = 1
Pm(s)

[r](t), we have

y(i)
m (t) = si[ym](t) =

si

Pm(s)
[r](t). (6.2.20)

which is bounded for i = 1, . . . , n∗, because si

Pm(s)
is stable and proper and r(t) ∈ L∞.

This implies that y(i)(t) ∈ L∞ for i = 1, . . . , n∗ as ε(i)(t) ∈ L∞.

For the plant (6.1.1), the input-output relationship is P (s)[y](t) = kpZ(s)[u](t). A

relationship between zn0(t) and u(t) can also be obtained: P (s)[zn0 ](t) = Z0(s)[u](t),

for a polynomial vector Z0(s). Therefore, a useful relationship between y(t) and zn0(t)

can be found as

zn0(t) =
1

kp
Z−1(s)Z0(s)[y](t) =

Z0(s)

kpPm(s)Z(s)
Pm(s)[y](t). (6.2.21)

Since Pm(s)[y](t) is bounded as from (6.1.5) and Z0(s)
kpPm(s)Z(s)

is stable and proper or

strictly proper, we have zn0(t) is bounded. Then, the sensor output vector z(t) is

bounded due to the boundedness of z̄n0(t), and so is ω2(t).

Finally, using the plant, P (s)[y](t) = kpZ(s)[u](t), and ignoring the exponentially

decaying effect of the initial conditions, we have

u(t) =
P (s)

kpPm(s)Z(s)
Pm(s)[y](t), (6.2.22)

which is bounded because P (s)
kpPm(s)Z(s)

is stable and proper and Pm(s)[y](t) is bounded,

and so is ω1(t). ∇
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So far, desired output matching for the worst case scenarios have been established.

Next, we will show that the same desired matching properties can be obtained by the

same nominal compensation controller (6.2.11) when there are less than n−n0 failed

sensors, i.e., the general failure cases.

Plant-model matching equation. With the output matching parameters θ∗1, θ
∗
2, θ
∗
20

and θ∗3, we rewrite (6.2.8) as

u(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ̄∗T21

A21(s)

Λ(s)
Gn0(s)[u](t) + θ̄∗T201Gn0(s)[u](t) + θ∗3r(t), (6.2.23)

with zn0(t) = Gn0(s)[u](t). This leads the plant y(t) = G(s)[u](t) to the closed-loop

system with transfer function

Gc(s) = G(s)(1− θ∗T1

a(s)

Λ(s)
− (θ̄∗T21

A21(s)

Λ(s)
+ θ̄∗T201)Gn0(s))

−1θ∗3 (6.2.24)

which has been made to match Wm(s). From Gc(s) = Wm(s), we obtain

1− θ∗T1

a(s)

Λ(s)
− (θ̄∗T21

A21(s)

Λ(s)
+ θ̄∗T201)Gn0(s) = θ∗3W

−1
m (s)G(s), (6.2.25)

which, for G(s) = kp
Z(s)
P (s)

and Gn0(s) = Z0(s)
P (s)

, can be expressed as

θ∗T1 a(s)P (s) + (θ̄∗T21 A21(s) + θ̄∗T201Λ(s))Z0(s) = Λ(s)(P (s)− kpθ∗3Z(s)Pm(s)).
(6.2.26)

The matching equation (6.2.26) is another approach to obtain the constant con-

troller parameter θ∗1, θ
∗
2, θ
∗
20 and θ∗3 ensuring plant-model output matching. The result

is summarized as follows.

Corollary 6.2.1. Constant parameter matrices θ∗1 ∈ Rn−n0, θ∗21 ∈ Rn0(n−n0), θ∗201 ∈

Rn0 and θ∗3 ∈ R exist such that the output matching equation (6.2.26) holds.
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6.2.2.2 Output Matching for n− n̄0 (n− n̄0 < n− n0) Failures

When there are n− n̄0 sensor failures, we have total n̄0 (n̄0 > n0) precisely measured

sensor signals. To handle the matching for the cases of n − n̄0 (n − n̄0 < n − n0)

failures, one extreme method is to use arbitrary n0 precisely measured sensor signals

for plant-model matching with the corresponding controller parameters θ̄∗21 and θ̄∗201

used in the previous subsection, and compensate the other n−n0 sensor output signals

whether they are imprecisely measured or not. This method indicates that all the

rest of extra n̄0 − n0 precisely measured sensor output signals are treated as failed

sensor output signals which are canceled in the control law by the corresponding zero

controller parameters in (6.2.13).

However, as we all know, the more precisely measured sensor output signals we

use, the better closed-loop system performance we may obtain. Thus, the above-

mentioned method is obviously inefficient. So the natural question here is: does the

nominal control law (6.2.11) still have the capability of ensuring plant-model output

matching while utilizing all the precisely measured sensor output signals to obtain a

better performance? The answer is yes, and the affirmative answer is shown as below.

Theorem 6.2.2. There exist constant parameters θ∗1 ∈ Rn−n0 , θ∗2 ∈ Rn(n−n0), θ∗20 ∈

Rn, θ∗3 ∈ R such that the controller structure (6.2.11) ensures closed-loop signal bound-

edness and plant-model output matching: y(t)− ym(t) = ε(t), for some exponentially

decaying ε(t) and ym(t) being the output of reference model (6.1.5), when there are

n− n̄0 (n− n̄0 < n− n0) sensors being failed.

Pre-proof discussion. Recall the four steps in the proof of Theorem 6.2.1. In

fact, Step 1, Step 3 and Step 4 in the proof of Theorem 6.2.1 are also applicable to the

proof of output matching under the non-worst cases with n−n̄0 failures. The essential
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difference between output matching under the worst cases and output matching under

the general cases is Equation (6.2.16) (in the second step of the previous proof):

k∗T1 x̂(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ̄∗T21

A21(s)

Λ(s)
[zn0 ](t) + θ̄∗T201zn0(t) + ε0(t).

Such an equation implies that only n0 precisely measured signals are involved to

ensure plant-model matching due to zn0(t) ∈ Rn0 . Thus, to prove output matching

by utilizing all n̄0(n̄0 > n0) precisely measured signals so as to obtain better transient

performance for the non-worst cases with n̄0 being precisely measured signals, it is

necessary to establish

k∗T1 x̂(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ̄∗T21

Ā21(s)

Λ(s)
[zn̄0 ](t) + θ̄∗T201zn̄0(t), (6.2.27)

where θ∗1 ∈ Rn−n0 , θ̄∗21 ∈ Rn̄0(n−n̄0), θ̄∗21 ∈ Rn̄0 , Ā21(s) = [In̄0 , sIn̄0 , . . . , s
n−n̄0−1In̄0 ]

T ,

and the healthy sensor output zn̄0(t) ∈ Rn̄0 collecting all n̄0 precisely measured state

variables is state-observable. Here, since the cases with n− n0 failures and the cases

with n− n̄0 are exclusive, we keep using the same notations for the controller param-

eters for simplicity.

Proof of Theorem 6.2.2. The proof of output matching for n− n̄0 failures can

also be divided into four steps. As we discussed before, all the steps in the proof of

Theorem 6.2.1, except Step 2, are applicable for proving output matching with n− n̄0

failures.

Step 1: Output matching by observer-based state feedback control. For the sake of

brevity, the technical details for this step will be omitted here, which can be found

on Page 132.

Step 2: Output matching by control with the healthy sensor output zn̄0(t). We start

the proof from the left hand side of (6.2.27), and introduce a weighted average esti-

mate x̂(t) which is different from the state estimate in (6.2.5).
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Step 2(a): weighted average estimate x̂(t). To make (6.2.27) satisfied, we first in-

troduce a weighted average estimate x̂(t) which is generated by using all the n̄0

precisely measured signals.

For the non-worst cases there are n̄0 precisely measured signals, which implies

that there are up to
(
n̄0

n0

)
of different healthy sensor output vectors zn0(i)(t) ∈ Rn0 ,

i = 1, 2, . . . , p with some constant p ≤ Cn0
n̄0

. For each of zn0(i)(t), there may be

an individual estimate x̂(i)(t) of x(t) generated from a corresponding n − n0th state

observer. The weighted average estimate x̂(t) is defined as a linear combination of

all the p individual state estimates x̂(i)(t). Such a state estimate x̂(t) is in the most

general form, and can be proved to converge to the state x(t) exponentially as time

goes to infinity.

Proposition 6.2.1. Assume there are p state estimates x̂(i)(t) generating by p differ-

ent n − n0th reduced-order observers, respectively, such that limt→∞[x̂(i)(t) − x(t)] =

0, i = 1, 2, . . . , p. Then,

x̂(t) = α1x̂(1)(t) + α2x̂(2)(t) + . . .+ αpx̂(p)(t), (6.2.28)

with α1 + α2 + . . . + αp = 1, is an estimate of the state x(t) in a general form such

that limt→∞[x̂(t)− x(t)] = 0.

Proof: According to the well-known observer theory [9], for each individual esti-

mate x̂(i)(t) of x(t), we have

x̂(i)(t)− x(t) = ε̄i(t), i = 1, 2, . . . , p, (6.2.29)

with some initial-condition related exponentially decaying terms ε̄i(t).

Adding the p weighted estimates up with the corresponding parameters αi, we

obtain
p∑
i=1

αix̂(i)(t)−
p∑
i=1

αix(t) =

p∑
i=1

αiε̄i(t). (6.2.30)
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Figure 6.3: Schematic diagram of the weighted average estimate x̂(t).

From x̂(t) = α1x̂(1)(t) +α2x̂(2)(t) + . . .+αpx̂(p)(t) =
∑p

i=1 αix̂(i)(t) and
∑p

i=1 αix(t) =

x(t) with α1 + α2 + . . . + αp = 1, we have x̂(t) − x(t) = ε̄(t), for an exponentially

decaying term ε̄(t) =
∑p

i=1 αiε̄i(t), that is, limt→∞[x̂(t)− x(t)] = 0.

The equation shows that the weighted average estimate x̂(t) will converge to the

state x(t) exponentially as time goes to infinity. ∇

It is worth noting here that although each estimate x̂(i)(t) is produced by an

n − n0th order observer constructing by only n0 precisely measured state variables,

the general estimate x̂(t) is an estimate generating based on all the n̄0 precisely

measured state variables, as Fig. 6.3 shows.

Step 2(b): parametrization of k∗T1 x̂(i)(t). Using the weighted average estimate x̂(t),

we first express the term k∗T1 x̂(t) by (6.2.28) as

k∗T1 x̂(t) = k∗T1

p∑
i=1

αix̂(i)(t) =

p∑
i=1

αi(k
∗T
1 x̂(i)(t)). (6.2.31)

To further process, with P(i) ∈ Rn×n being a corresponding transformation matrix,

we express the ith individual state estimate x̂(i)(t), i = 1, 2, . . . , p, based on the
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observer theory [9], as

x̂(i)(t) = P(i)

[
zn0(i)(t) w(i)(t) + Lr(i)zn0(i)(t)

]T
, (6.2.32)

where

w(i)(t) =
n1(i)(s)

Λ(s)
[u](t) +

n2(i)(s)

Λ(s)
[zn0(i)](t) + ε̄0(i)(t) (6.2.33)

with Λ(s) being a stable polynomial of degree n − n0 whose stability properties are

prespcified by a corresponding constant matrix Lr(i) ∈ R(n−n0)×n0 , n1(i)(s) being an

(n − n0) × 1 polynomial vector, n2(i)(s) being an (n − n0) × n0 polynomial matrix

whose maximum degrees are n − n0 − 1 or less, and ε̄0(i)(t) being an exponentially

decaying term representing the effect of the initial condition w(i)(0).

Using (6.2.32) and (6.2.33) and ignoring the exponentially decaying term, we can

express k∗T1 x̂(i)(t) as

k∗T1 x̂(i)(t) = θ∗T1(i)

a(s)

Λ(s)
[u](t) + θ̄∗T21(i)

A21(s)

Λ(s)
[zn0(i)](t) + θ̄∗T201(i)zn0(i)(t), (6.2.34)

where θ∗1(i) ∈ Rn−n0 , θ̄∗21(i) ∈ Rn0(n−n0) and θ̄∗201(i) ∈ Rn0 , such that θ̄∗T201(i) = k∗Tp1(i) +

k∗Tp2(i)Lr(i), k
∗T
p2(i)n1(i)(s) = θ∗T1(i)a(s) and k∗Tp2(i)n2(i)(s) = θ̄∗T21(i)A21(s), for k∗T1 P−1

(i) =

[k∗Tp1(i), k
∗T
p2(i)] with k∗p1(i) ∈ Rn0 and k∗p2(i) ∈ Rn−n0 , and a1(s) = [1, s, . . . , sn−n0−1]T , A21(s)

= [In0 , sIn0 , . . . , s
n−n0−1In0 ]

T .

Step 2(c): parametrization of k∗T1 x̂(t). Thus, from (6.2.31) and (6.2.34), the term

k∗T1 x̂(t) in u(t) = k∗T1 x̂(t) + k∗2r(t) with x̂(t) being the weighted average estimate of

the state x(t) becomes

k∗T1 x̂(t) =

p∑
i=1

αi(k
∗T
1 x̂(i)(t))

=

p∑
i=1

αi(θ
∗T
1(i)

a(s)

Λ(s)
)[u](t) +

p∑
i=1

αi(θ̄
∗T
21(i)

A21(s)

Λ(s)
[zn0(i)](t)) +

p∑
i=1

αi(θ̄
∗T
201(i)zn0(i)(t)).

(6.2.35)
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It is worth noting that the total number of the sensor outputs including in p different

signals zn0(i)(t) is n̄0 (n̄0 > n0). Thus, reparameterizing (6.2.35), we have

k∗T1 x̂(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ̄∗T21

Ā21(s)

Λ(s)
[zn̄0 ](t) + θ̄∗T201zn̄0(t) (6.2.36)

with θ∗1 ∈ Rn−n0 , θ̄∗21 ∈ Rn̄0(n−n̄0), θ̄∗201 ∈ Rn̄0 and Ā21(s) = [In̄0 , sIn̄0 , . . . , s
n−n̄0−1In̄0 ]

T .

So far, the desired equation (6.2.27) has been established, that is, output matching

by the control law u(t), which is in the form of

u(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ̄∗T21

Ā21(s)

Λ(s)
[zn̄0 ](t) + θ̄∗T201zn̄0(t) + θ∗3r(t) (6.2.37)

with θ̄∗21 ∈ Rn̄0(n−n̄0), θ̄∗201 ∈ Rn̄0 , has been proved.

Step 3: Output matching by the nominal failure compensation control. For the sake

of brevity, the technical details for this step will be omitted here, which can be found

on Page 134.

Step 4: closed-loop signal boundedness. For the sake of brevity, the technical de-

tails for this step will be omitted here, which can be found on Page 135. 6.2.1. ∇

Matching parameters flexibility. From the above proof, we also conclude

that the nominal compensation control law (6.2.11) provides p degree-of-freedom for

choosing the nominal controller parameters θ∗1, θ∗2 and θ∗20, since there are p of αi to be

chosen arbitrarily as long as the requirement
∑p

i=1 αi = 1 is satisfied. Furthermore,

there exist infinite groups of the nominal controller parameters θ∗1, θ∗2 and θ∗20, since

the choices of αi, i = 1, 2, . . . , p are infinite.

Remark 6.2.4. By the same approach of deriving the plant-model matching equation

under the worst cases of n− n0 failures, the matching equation under the non-worst

cases of n− n̄0 failures can also be obtained. �
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6.2.2.3 Summary on Plant-Model Output Matching

From Theorem 6.2.1 and 6.2.2, we conclude that for the plant with a known failure

pattern set and known system parameters, the nominal compensation control law

(6.2.11), which is the compact version of (6.2.13),

• is able to achieve output matching (by the nominal controller parameters θ∗1, θ̄
∗
21, θ̄

∗
201

and θ∗3) as long as there are up to n− n0 failed sensors; and

• is able to compensate all the possible sensor failures of interest (by the nominal

parameters θ̄∗22 and θ̄∗202) without using extra additional signal processing.

In addition, it is worth noting here although the existence of nominal constant

parameters are guaranteed as long as there are up to n−n0 sensor failures, the values

of the controller parameters for different failure pattern σ(k), k = 0, 1, . . . , N − 1, are

different. See Remark 6.2.3 in Section 6.2.1.

Comparative advantages of the controller structure (6.2.11). Compared

with an output feedback design for MRAC, the controller structure (6.2.11) with state

sensor output feedback has the following comparative advantages:

• the order of the filter 1
Λ(s)

is n− n0 which is less than the order of n− 1 in an

output feedback controller when n0 > 1, which makes the signals ω1(t) and ω2(t)

more responsive and less oscillating, and reduces the control implementation

complexity caused by high-order filters.

• at least n0 (or even n̄0) precisely measured state variables are used for plant-

model matching, which may help to obtain a better tracking performance.

These desired features, being important for some applications in practice, are inher-

ited from the state feedback controller (6.1.3), which confirm our research motivations

from the technical point view.
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6.3 Adaptive Compensation Control Scheme

In this section, the adaptive state sensor failure compensation scheme is developed

for the case of the unknown plant parameters and the unknown state sensor failures

(6.1.7). We will give an adaptive controller structure, chose a parameter adaption law

for updating the controller parameters, and show the stability properties and tracking

performance of the closed-loop system. For adaptive control, we assume: (A6.3) the

sign of the high frequency gain kp is known, for parameter adaptation; and (A6.4)

the failed sensor measurements are bounded.

To handle the plant (6.1.1) with unknown (A, b, c) and unknown sensor failures

pattern σ(k), we design the adaptive version of the controller structure (6.2.11) as

u(t) = θT1 (t)ω1(t) + θT2 (t)ω2(t) + θT20(t)z(t) + θ3(t)r(t), (6.3.1)

where θ1(t) ∈ Rn−n0 , θ2(t) ∈ Rn(n−n0), θ20(t) ∈ Rn, θ3(t) ∈ R are the adaptive

estimates of the unknown controller parameters θ∗1, θ∗2, θ∗20, θ∗3, respectively, and

ω1(t) =
a(s)

Λ(s)
[u](t), ω2(t) =

A(s)

Λ(s)
[z](t) (6.3.2)

with a(s) = [1, s, · · · , sn−n0−1]T , A(s) = [In, sIn, . . . , s
n−n0−1In]T , and Λ(s) being a

monic stable polynomial of degree n− n0.

6.3.1 Tracking Error Equation and Parameter Adaptation

In this subsection, we first derive the tracking error equation, and then chose an

adaptive law to deal with the parameter uncertainties by making use of the tracking

error equation to be developed.

6.3.1.1 Tracking Error Equation

In order to obtain the tracking error equation which is crucial for developing a stable

adaptive law for updating the controller parameters θ1(t), θ2(t), θ20(t) and θ3(t), we
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first operate both sides of (6.2.26) on y(t) so that

θ∗T1 a(s)P (s)[y](t) + (θ̄∗T21 A21(s) + θ̄∗T201Λ(s))Z0(s)[y](t)

= Λ(s)(P (s)− kpθ∗3Z(s)Pm(s))[y](t). (6.3.3)

Recall the relationship between zn0(t) and y(t) obtained in Section 6.2.2.1:

Z0(s)[y](t) = kpZ(s)[zn0 ](t). (6.3.4)

Substituting (6.3.4) and the plant: P (s)[y](t) = kpZ(s)[u](t), into (6.3.3), we have

θ∗T1 a(s)kpZ(s)[u](t) + (θ̄∗T21 A21(s) + θ̄∗T201Λ(s))kpZ(s)[zn0 ](t)

= Λ(s)kpZ(s)[u](t)− Λ(s)kpθ
∗
3Z(s)Pm(s))[y](t). (6.3.5)

Because Λ(s) and Z(s) are stable, (6.3.5) can be expressed as

u(t) = θ∗T1

a1(s)

Λ(s)
[u](t) + θ̄∗T21

A21(s)

Λ(s)
[zn0 ](t) + θ̄∗T201zn0(t) + θ∗3Pm[y](t) + ε2(t) (6.3.6)

for some initial condition-related exponentially decaying ε2(t).

With θ̄∗22 and θ̄∗202 in (6.2.13) being zero, we rewrite (6.3.6) as

u(t) = θ∗T1

a1(s)

Λ(s)
[u](t) + θ̄∗T21

A21(s)

Λ(s)
[zn0 ](t) + θ̄∗T22

A22(s)

Λ(s)
[z̄n0 ](t)

+ θ̄∗T201zn0(t) + θ̄∗T202z̄n0(t) + θ∗3Pm(s)[y](t) + ε2(t) (6.3.7)

Reorganizing (6.3.7) and Ignoring the exponentially decaying term, we rewrite

(6.3.7) as

u(t) = θ∗T1

a(s)

Λ(s)
[u](t) + θ∗T2

A(s)

Λ(s)
[z](t) + θ∗T20 z(t) + θ∗3Pm(s)[y](t). (6.3.8)

Substituting the expression (6.3.8) of u(t), which is derived from the matching

condition, into the controller structure (6.3.1), we have the tracking error equation:

e(t) = y(t)− ym(t) =
kp

Pm(s)
[θ̃Tω](t) (6.3.9)
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where θ∗ = [θ∗T1 , θ∗T2 , θ∗T20 , θ
∗
3]T , θ(t) = [θT1 (t), θT2 (t), θT20(t), θ3(t)]T , ω(t) = [ωT1 (t), ωT2 (t),

zT (t), r(t)]T , θ̃(t) = θ(t)− θ∗.

The tracking error (6.3.9) is in a desired linear and parameterized form which

makes the design of parameter adaptation possible.

6.3.1.2 Parameter Adaptation

In this subsection, the estimation error model is derived, with which the parameter

adaptation law is chosen based on the gradient method.

Estimation error. From the tracking error equation (6.3.9), we define the esti-

mate error,

ε(t) = e(t) + ρ(t)ξ(t) (6.3.10)

for the estimates θ(t) and ρ(t) of θ∗ and ρ∗ = kp, where

ξ(t) = θT (t)ζ(t)− 1

Pm(s)
[θTω](t), ζ(t) =

1

Pm(s)
[ω](t). (6.3.11)

From (6.3.9) and (6.3.10), it follows that

ε(t) = ρ∗θ̃T (t)ζ(t) + ρ̃(t)ξ(t) (6.3.12)

with ρ̃(t) = ρ(t)− ρ∗, which is in a desired linear form.

Adaptive law. Based on the desired estimation error form (6.3.12), we choose

the gradient-type adaptive update laws for θ(t) and ρ(t) as

θ̇(t) = −sign(kp)Γε(t)ζ(t)

m2
0(t)

, (6.3.13)

ρ̇(t) = −γε(t)ξ(t)
m2

0(t)
, (6.3.14)

with an adaptation gain matrix Γ = ΓT > 0, an adaptation gain γ > 0, initial

estimates θ(0) and ρ(0) of θ∗ and ρ∗, and m0(t) =
√

1 + ζT (t)ζ(t) + ξ2(t).
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6.3.2 Stability and Tracking Properties

The adaptive laws and the feedback control system have the following properties.

Lemma 6.3.1. The adaptive law (6.3.13)–(6.3.14) guarantees that θ(t) ∈ L∞, ρ(t) ∈

L∞, and ε(t)
m0(t)

∈ L2
⋂
L∞, θ̇(t) ∈ L2

⋂
L∞ and ρ̇(t) ∈ L2

⋂
L∞.

Proof: With (6.3.12), the time-derivative of the positive definite function

V (θ̃, ρ̃) = |ρ∗|θ̃TΓ−1θ̃ + γ−1ρ̃2 (6.3.15)

along the trajectories of (6.3.13) and (6.3.14), satisfies V̇ (t) = −2ε2(t)

m2
0(t)
≤ 0. Hence,

θ(t) ∈ L∞, ρ(t) ∈ L∞ and ε(t)
m0(t)

∈ L2, which, with (6.3.12), (6.3.13) and (6.3.14), in

turn, implies ε(t)
m0(t)

∈ L∞, θ̇(t) ∈ L2
⋂
L∞ and ρ̇(t) ∈ L2

⋂
L∞. ∇

Based on Lemma 6.3.1, the stability and tracking performance is guaranteed by

the following theorem.

Theorem 6.3.1. The adaptive controller (6.3.1) with the adaptive laws (6.3.13) and

(6.3.14), applied to the plant (6.1.1), guarantees the closed-loop signal boundedness

and output tracking: limt→∞ e(t) = limt→∞(y(t)− ym(t)) = 0.

Proof: Step 1: introducing filtered signals for u(t) and y(t). Introducing two ficti-

tious signals

η0(t) =
1

s+ a0

[u](t), η(t) =
1

s+ a0

[y](t), (6.3.16)

and two fictitious filters K1(s) and K(s) as

sK1(s) = 1−K(s), K(s) =
an

∗

(s+ a)n∗ , (6.3.17)

where a0 > 0 is arbitrary and a > 0 is to be specified, with G(s) = kp
Z(s)
P (s)

, using the

equality: −a0K1(s) + (s+ a0)K1(s) = 1−K(s), we obtain

η0(t) + a0K1(s)[η0](t)−K1(s)[u](t) = K(s)G−1(s)[η](t). (6.3.18)
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For proving boundedness of the control signal u(t) generated from the adaptive

control law (6.3.1), we first rewrite the adaptive controller structure as

u(t) = θT1 (t)
a(s)

Λ(s)
+ θ̄T21(t)

A21(s)

Λ(s)
[zn0 ](t) + θ̄T201(t)zn0(t) + θ3(t)r(t)

+ θ̄T22(t)
A22(s)

Λ(s)
[z̄n0 ](t) + θ̄T202(t)z̄n0(t), (6.3.19)

through the relationship θ2(t) = P [θ̄T21(t), θ̄T22(t)]T for θ̄21(t) ∈ Rn0 , θ̄22(t) ∈ Rn−n0 and

the relationship θ20(t) = P−1[θ̄T201(t), θ̄T202(t)]T for θ̄201(t) ∈ Rn0 and θ̄202(t) ∈ Rn−n0

with the non-singular transfer matrices P and P used in Section 3.

Hence the regrouped controller structure (6.3.19), operated by K1(s) on both

sides, with the substitution of (6.3.16), gives the identity

K1(s)[u](t)

= K1(s)θT1 (·) a(s)

Λ(s)
(s+ a0)[η0](t) +K1(s)θ̄T21(·)A21(s)

Λ(s)
[zn0 ](t) +K1(s)θ̄T201(·)zn0(t)

+K1(s)[θ3r](t) +K1(s)θ̄T22(·)A22(s)

Λ(s)
[z̄n0 ](t) +K1(s)θ̄T202(t)z̄n0(t). (6.3.20)

Step 2: expressing zn0(t) by the filtered signals. In order to process the healthy

sensor output zn0(t), we can first express the system state x(t), according to the

state observer theory, for (A, c) detectable, as

x(t) = (sI − A+ Lc)−1b[u](t) + (sI − A+ Lc)−1L[y](t) (6.3.21)

=
G1(s)

Λ0(s)
[u](t) +

G2(s)

Λ0(s)
[y](t),

where the eigenvalues of the n × n matrix A − Lc are stable for some constant gain

vector L ∈ Rn×1, Λ0(s) = det(sI − A + Lc) whose degree is n, L is a matrix such

that and G1(s) = adj(sI −A+ Lc)b and G2(s) = adj(sI −A+ Lc)L are polynomial

vectors whose maximum degrees are n− 1.
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With (6.3.21) and (6.3.16), zn0(t) = C0x(t) can be expressed as

zn0(t) = C0
G1(s)

Λ0(s)
[u](t) + C0

G2(s)

Λ0(s)
[y](t)

= C0
G1(s)

Λ0(s)
(s+ a0)[η0](t) + C0

G2(s)

Λ0(s)
(s+ a0)[η](t). (6.3.22)

Step 3: establishing a relationship between the filtered u(t) and the filtered y(t). Us-

ing (6.3.20) and (6.3.22), we can express K1(s)[u](t) in (6.3.20) as

K1(s)[u](t)

= K1(s)θT1 (·) a(s)

Λ(s)
(s+ a0)[η0](t) +K1(s)θ̄T21(·)A21(s)C0G1(s)

Λ(s)Λ0(s)
(s+ a0)[η0](t)

+K1(s)θ̄T21(·)A21(s)C0G2(s)

Λ(s)Λ0(s)
(s+ a0)[η](t) +K1(s)θ̄T201(·)C0G1(s)

Λ0(s)
(s+ a0)[η0](t)

+K1(s)θ̄T201(·)C0G2(s)

Λ0(s)
(s+ a0)[η](t) +K1(s)[θ3r](t)

+K1(s)θ̄T22(·)A22(s)

Λ(s)
[z̄n0 ](t) +K1(s)θ̄T202(t)z̄n0(t). (6.3.23)

Substituting (6.3.23) into (6.3.18) and defining

P0(s, ·) = 1 +K1(s)

(
a0 − θT1 (·) a(s)

Λ(s)
(s+ a0)− θ̄T21(·)A21(s)C0G1(s)

Λ(s)Λ0(s)
(s+ a0)

−θ̄T201(·)C0G1(s)

Λ0(s)
(s+ a0)

)
, (6.3.24)

we obtain

P0(s)[η0](t)

=

(
K(s)G−1(s) +K1(s)θ̄T21(·)A21(s)C0G2(s)

Λ(s)Λ0(s)
(s+ a0) + θ̄T201(·)C0G2(s)

Λ0(s)
(s+ a0)

)
[η](t)

+K1(s)[θ3r](t) + b1(t), (6.3.25)

where b1(t) = K1(s)θ̄T22(·)A22(s)
Λ(s)

[z̄n0 ](t) + K1(s)θ̄T202(·)[z̄n0 ](t) ∈ L∞, based on Lemma

6.3.1, z̄n0(t) ∈ L∞and an equivalent expression of K1(s):

K1(s) =
a

s+ a

(
1 +

a

s+ a
+ · · ·+ an

∗−1

(s+ a)an
∗−1

)
. (6.3.26)
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Notice the impulse response k1(t) of K1(s) is

k1(t) = L−1[K1(s)] = e−at
n∗∑
i=1

an
∗−i

(n∗ − i)!
tn

∗−i, (6.3.27)

where L−1[·] is the inverse Laplace transform operator, which satisfies

‖k1(·)‖1 =

∫ ∞
0

|k1(t)|dt =
n∗

a
. (6.3.28)

Hence there exists a0 > 0 such that for any fixed a > a0, the operator

T0(s, ·) = (P0(s, ·))−1 (6.3.29)

is stable and proper.

Let a > a0 be finite in K(s) and K1(s) so (6.3.25) implies that

η0(t) = T1(s, ·)[η](t) + b0(t), (6.3.30)

where T1(s, ·) is a stable and strictly proper operator, and b0(t) ∈ L∞ due to r(t) ∈ L∞

and b1(t) ∈ L∞.

Step 4: formulating a closed-loop inequality of the filtered y(t). Filtering both sides

of (6.3.10) by 1
s+a0

, we obtain

η(t) =
1

s+ a0

[ym](t) +
1

s+ a0

[ε− ρξ](t)

≤ 1

s+ a0

[|ym|](t) +
1

s+ a0

[|ε|](t) +
1

s+ a0

[|ρξ|](t). (6.3.31)

Using the inequality that m0(t) ≤ 1 + ‖ζ(t)‖1 + |ξ(t)|, we obtain

|ε(t)| ≤ |ε(t)|
m0(t)

(1 + ‖ζ(t)‖1 + |ξ(t)|). (6.3.32)

From (6.3.31) and (6.3.32), we have

η(t) ≤ 1

s+ a0

[|ym|](t) +
1

s+ a0

[|ρξ|](t) +
1

s+ a0

[
|ε|
m0

]
(t) +

1

s+ a0

[
|ε|‖ζ‖
m0

]
(t)
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+
1

s+ a0

[
|ε||ξ|
m0

]
(t). (6.3.33)

Based on Lemma 4.1, we collect the bounded terms in (6.3.33) and express (6.3.33)

as

η(t) ≤ x0(t) +
1

s+ a0

[|ρξ|](t) +
1

s+ a0

[
|ε|‖ζ‖
m0

]
(t) +

1

s+ a0

[
|ε||ξ|
m0

]
(t) (6.3.34)

with x0(t) = 1
s+a0

[|ym|](t) + 1
s+a0

[
|ε|
m0

]
(t).

For the second term of the right hand side of the inequality (6.3.34), we had

ζ(t) = 1
Pm(s)

[ω](t) and ω(t) = [ω1(t), ω2(t), z(t), r(t)] with ω1(t) = a(s)
Λ(s)

[u](t) and

ω2(t) = A(s)
Λ(s)

[z](t). Since r(t) is bounded, we could conclude the boundedness of

ζ(t) depends on the boundedness of 1
s+a0

[|u|](t) and the boundedness of 1
s+a0

[|z|](t),

that is, the boundedness of |η(t)| and the boundedness |η0(t)| based on (6.3.16) and

(6.3.22). Furthermore, from (6.3.30), we conclude the boundedness of |ζ(t)| depends

on the boundedness of |η(t)| = 1
s+a0

[|y|](t), which is crucial for the closed-loop stability

proof.

For the second and the last term of (6.3.34), denoting Pm(s) = sn
∗

+an∗−1s
n∗−1 +

· · ·+ a1s+ a0, we express ξ(t) in (6.3.11) as

ξ(t) =
sn

∗−1 + an∗−1s
n∗−2 + · · ·+ a2s+ a1

Pm(s)

[
θ̇T

1

Pm(s)
[ω]

]
(t) (6.3.35)

+
sn

∗−2 + an∗−1s
n∗−3 + · · ·+ a2

Pm(s)

[
θ̇T

s

Pm(s)
[ω]

]
(t) + · · ·

+
s+ an∗−1

Pm(s)

[
θ̇T

sn
∗−2

Pm(s)
[ω]

]
(t) +

1

Pm(s)

[
θ̇T

sn
∗−1

Pm(s)
[ω]

]
(t),

which shows the boundedness of ξ(t) only depends on the boundedness of ω(t), that

is, depends on the boundedness of |η(t)|.

Thus, Lemma 6.3.1, (6.3.30), (6.3.34) and (6.3.35), imply that

|η(t)| ≤ x0(t) + T2(s, ·)[x1T3(s, ·)[|η|]](t) (6.3.36)
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for some x0(t) ∈ L∞, x1(t) ∈ L∞ ∩L2 with x1(t) ≥ 0 (which depends on |ε|(t)
m0(t)

), some

stable and strictly proper operator T2(s, t), and some stable and proper operator

T3(s, t) with a non-negative impulse response.

Step 5: applying Gronwall-Bellman Lemma for signal boundedness. Introducing

η1(t) = T3(s, ·)[|η|](t), operating T3(s, t) on both sides of (6.3.36), noting that T3(s, t)

has a non-negative impulse response, we have

η1(t) ≤ b1 + b2

∫ t

0

e−α(t−τ)x1(τ)η1(τ)dτ (6.3.37)

for some α, b1, b2 > 0. This inequality represents a feedback loop where x2(t) ∈ L∞,

leading to a small-gain structure. Applying the Gronwall Lemma to (6.3.37) with

x1(t) ∈ L2 ∩ L∞, we conclude that η1(t) ∈ L∞, and so η(t) ∈ L∞ in (6.3.36). Hence,

η0(t) ∈ L∞ in (6.3.30), ξ(t) ∈ L∞ in (6.3.11), ζ(t) ∈ L∞ in (6.3.11), ε(t) ∈ L∞ in

(6.3.12), y(t) ∈ L∞ in (6.3.10), z(t) ∈ L∞ in (6.2.21), and u(t) ∈ L∞ in (6.3.1).

From (6.3.12) we have ε̇(t) ∈ L∞, which, with ε(t) ∈ L2∩L∞, implies limt→∞ ε(t) =

0 in (6.3.12), and limt→∞ θ̇(t) = 0 in (6.3.13). From this property and θ̇(t) ∈ L2, it

follows that ξ(t) ∈ L2 and limt→∞ ξ(t) = 0 in (6.3.35). Finally, from (6.3.10), we have

e(t) = y(t)− ym(t) ∈ L2 and ė(t) ∈ L∞, so that limt→∞ e(t) = 0. ∇

In summary, the main ideas of the developed adaptive control scheme for general

plants are: the controller (6.3.1) with bounded parameters leads to the closed-loop

inequality (6.3.36), the adaptive law (6.3.13)–(6.3.14), through the L2 property of

θ̇(t) and ε(t)
m0(t)

, ensures that the loop gain of (6.3.36) is small so that the signal

boundedness is guaranteed, and the L2 property and signal boundedness ensure that

limt→∞ e(t) = 0.

Discussion: an application example of the adaptive control scheme.

The proposed adaptive control scheme does not only has theoretical value, but also
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Figure 6.4: An indoor UAV feedback control system using multi-camera as sensors.

has practical significance. Consider an indoor UAV feedback control system using

multiple cameras for state sensors measurements as Fig. 6.4 shows, referring to [55].

Such a control system includes a multi-camera system and a ground computer. When

the flight begins, the image of the entire environment including the UAV taken by the

multi-camera system is transmitted into the ground computer [55]. By analyzing the

obtained images, the computer finds the position, the velocity and the attitude of the

UAV through image processing. For a such system, when MRAC is employed, the

calculation of the adaptive laws should be done by the ground computer since its needs

high computing performance. In order to reduce the computation cost and burden,

the adaptive controller is preferred to be implemented by the microcontroller on

the UAV, using the state information that sent from the ground computer. However,

errors may occur during data transmission because of attenuation, distortion or noise,

etc. Such errors may lead the situation that zi(t) = Si(xi) as shown in (6.1.7). Under

such a situation, the traditional output feedback MRAC design is invalid, and even
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cause a break down of the control system. However, by using the proposed adaptive

sensor failure compensation scheme in chapter, the desired stability and asymptotic

tracking performance can still be achieved.

Remark 6.3.1. The results of Theorems 5.3.1, 5.3.2 and 5.4.1 can also be extended

to systems with multiple inputs and multiple outputs. For multivariable systems,

the system interactor matrix ξ(s) represents the system infinite zero structure whose

knowledge is used to construct a reference model system to generate the reference out-

put signal ym(t). Associated with ξ(s), the high-frequency gain matrix Kp is defined

which is unknown due to the system uncertainties. To generate suitable reference

models and ensure plant-model output tracking in the presence of system uncertain-

ties and failure uncertainties in MIMO systems, special techniques for multivariable

control systems are needed. �

6.4 Simulation Study

In this section, we apply the adaptive state failure compensation design proposed in

Section 4.1 to a linearized aircraft longitudinal dynamic model [84] for pitch angle

control for verifying the effectiveness of the proposed control design.

6.4.1 Simulation System

For pitch angle control, the linearized longitudinal motion equation under landing

scenario is:
U̇b
Ẇb

Q̇b

θ̇0

 =


−0.0264 0.1269 −12.9260 −32.1690
−0.2501 −0.8017 220.5500 −0.1631
0.0002 −0.0075 −0.5510 −0.0003

0 0 1 0



Ub
Wb

Qb

θ0

+


0.0109
−0.1858
−0.0230

0

 δe
y(t) = Cx(t) =

[
0 0 0 1

]
x(t) = θ0(t). (6.4.1)
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Figure 6.5: System response of Case I without the adaptive compensation scheme.
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Figure 6.6: System response of Case I with adaptive compensation scheme.
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Figure 6.7: System response of Case II without adaptive compensation scheme.
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Figure 6.8: System response of Case II with adaptive compensation scheme.
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Figure 6.9: System response of Case III without adaptive compensation scheme.
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Figure 6.10: System response of Case III with adaptive compensation scheme.
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Figure 6.11: Sensor reading of the vertical velocity and the pitch rate in Case IV.
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Figure 6.12: System response of Case IV with adaptive compensation scheme.
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The four state variables are the forward velocity Ub (ft/s), vertical velocity Wb (ft/s),

pitch rate Qb (rad/s) and pitch angle θ0 (rad) (the notation θ0 is used to avoid possible

confusion with θ(t) in the adaptive controller), the plant output y(t) is the pitch angle

θ0, and the control input u(t) is the elevator angle position δe (degrees).

In the following simulation study, we use three cases to assess the validation of

the adaptive control design.

Case I: Constant reference signal and constant sensor failures. The

reference input signal r(t) is chosen as a constant signal. The sensor for measuring

the vertical velocity is stuck at 11 ft/s after 240s and the sensor for measuring the

pitch rate is stuck at 2 rad/s after 900s, that is, r(t) = 0.1, z2 = S2(Wb) = s̄2 = 11 ft/s

for t ≥ 240s, and z3 = S3(Qb) = s̄3 = 2 rad/s for t ≥ 900s.

Case II: Time-varying reference signal and constant sensor failures. The

reference input signal r(t) is chosen as a time varying signal. The sensor for measuring

the vertical velocity is stuck at 4 ft/s after 420s and the sensor for measuring the pitch

rate is stuck at 1 rad/s after 800s, that is, r(t) = 0.1 sin(0.015t), z2 = S2(Wb) = s̄2 =

4 ft/s for t ≥ 420s, and z3 = S3(Qb) = s̄3 = 1 rad/s for t ≥ 800s.

Case III: Time-varying reference signal and time-varying sensor failures.

The reference input signal r(t) is chosen as a time varying signal. The sensor for mea-

suring the pitch rate is stuck at 2 rad/s with some oscillation after 340s, and the sensor

for measuring the vertical velocity is stuck around 5 ft/s with some oscillation after

870s and , that is, r(t) = 0.1 sin(0.015t), z3 = S3(Qb) = s̄3 = 2 + 0.5 sin(0.01t) rad/s

for t ≥ 340s, and z2 = S2(Wb) = s̄2 = 5 + 0.2 cos(0.1t) ft/s for t ≥ 870s.

Case IV: Constant reference signal and sensor noises. The reference input

signal: r(t) = 0.1, is chosen as a constant signal. The state sensors for the vertical

velocity and the pitch rate have additive white Gaussian noise. The sensor-noise-ratio
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is 10dB (the sensor output signals of the vertical velocity and the pitch rate, with

white Gaussian noises, are shown in Fig. 6.11).

In this simulation study, we assume the failure values are different from the state

values as the failures occur. In addition, all the other state variables that do not

mentioned are measured correctly.

6.4.2 Simulation Results

For all the adaptive control cases shown below, the adaptive controllers are imple-

mented by (6.3.1) with the adaptive laws (6.3.13)–(6.3.14).

Simulation conditions. For simulation of Case I, Γ = 7I, γ = 7, Wm(s) =

1/s2 + 3s+ 2, Λ(s) = s2 + s+ 2, y(0) = 0.01, ym(0) = 0. The initial conditions of the

controller parameters are θ1(0) = [1.28, −6.27]T , θ2(0) = [4.58, −1.28, 0, 0.11, −4.06,

1.24, 0, 0.01]T , θ20(0) = [−2.67, 1.13, 0.19, 2.69]T , and θ3(0) = −40.98. Simulation

results of Case I, without and with adaptive compensation, are shown in Fig. 6.5 and

Fig. 6.6, respectively.

For simulation of Case II and Case III, Γ = 20I, γ = 20, Wm(s) = 1/s2 + 0.7s+ 1,

Λ(s) = s2 + 2s+ 1, y(0) = 0.04, ym(0) = 0. The initial controller parameters are cho-

sen as θ1(0) = [0.03, 0.62]T , θ2(0) = [0.75, −0.64, 0.29, 0.63, 0, 0.37, −0.03, 0.34]T ,

θ20(0) = [−0.77, 0.41, 0.23, 1.34]T , and θ3(0) = −26.56. Simulation results of Case

II, without and with adaptive compensation, are shown in Fig. 6.7 and Fig. 6.8, re-

spectively. Simulation results of Case III, with and without adaptive compensation,

are shown in Fig. 6.9 and Fig. 6.10, respectively.

System performance analysis. In Fig. 6.6(a), Fig. 6.8(a), Fig. 6.10(a) and

Fig. 6.12, the dashed lines represent the reference pitch angle and the solid lines

represent the aircraft outputs. The four figures verify the effectiveness of our adaptive
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state sensor failure compensation scheme. In addition, compared the plots in Fig.

6.6(a), Fig. 6.8(a) and Fig. 6.10(a) generated with adaptation compensation to

the plots in Fig. 6.5(a), Fig. 6.7(a) and Fig. 6.9(a) generated without adaptation

compensation, it is obvious that the adaptive sensor failure compensation scheme has

the capability to significantly improve tracking performance. All plots in Fig. 6.6(b),

Fig. 6.8(b), Fig. 6.10(b) and Fig. 6.12 illustrate that the corresponding control

signals stay in an acceptable range (less than 30 degree). Also, all signals in the

closed-loop system are bounded whose plots are not shown due to the space limit.

Summary

In this chapter, we have investigated a new model reference adaptive control problem

for output tracking with parametric uncertainties and sensor failure uncertainties. For

the nominal control design, we proposed a new unified sensor failure compensation

controller using the state sensor output directly, and proved the desired plant-model

matching properties of the unified controller structure under different failure patterns.

During the process, we developed a new approach for output matching proof based

on the observer theory. The new approach provides additional degree-of-freedom to

the controller parameters, which has not been reported before. For the adaptive con-

trol design, we derived a parameterized tracking error model, designed a parameter

adaptation law, and conducted a complete stability analysis. It has been proved that

without explicit fault diagnosis and isolation and additional fault estimation, such an

adaptive sensor failure compensation scheme guarantees closed-loop signal bounded-

ness as well as output tracking in the presence of bounded sensor failures. This works

also reveals that the desired capacities of the proposed state sensor failure compen-

sation controller are attributed to its similarity to state feedback controller which
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provides the redundant capacity for achieving desired control system performance.

In addition, the effectiveness of the proposed adaptive sensor failure compensation

scheme has been verified by a linearized airplane model.



Chapter 7

Sensor Failure Compensation for
MIMO Systems With Application
to UAVs

This chapter develops a multivariable model reference adaptive control (MRAC)

scheme for sensor fault compensation with application to UAVs. A multivariable

nominal controller structure for sensor fault compensation is proposed which is di-

rectly constructed by the state sensor output that may be subject to some sensor

faults. A new adaptive control scheme is developed which guarantees asymptotic

output tracking and closed-loop signal boundedness, in the presence of multiple kinds

of uncertainties. The main technical contributions of this chapter include

• Development of a nonadaptive feedback controller structure with an offset com-

pensation term, which ensures plant-model output matching, while the feedback

signal may be subject to some sensor faults, for quadrotor systems working at

non-equilibrium point;

• Development of a multivariable full-state feedback adaptive compensation scheme

which ensures system output tracking in the presence of parameter uncertainties

and sensor fault uncertainties, for quadrotor systems working at non-equilibrium
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point; and

• Verification of the effectiveness of the adaptive sensor fault compensation de-

signs by a simulation study.

7.1 Problem Statement

In this section, the linearized quadrotor model for control design is introduced first.

With the knowledge of the quadrotor model, technical issues for quadrotor design are

discussed. Then, the control problem is formulated regarding to the technical issues.

7.1.1 Description of An UAV System

As shown in Fig. 7.1, we investigate a standard quadrotor system in this chapter.

The quadrotor system has four arms and each arm has a rotor attached at the end.

For system analysis, two coordinate systems are defined in Fig. 7.1. One is the body

frame (oB, xB, yB, zB) and the other one is the earth frame (oE, xE, yE, zE). The origin

of the body frame oB is at the geometry center of the quadrotor which is assumed to

be coincident with the mass center of the quadrotor. The xB and yB axes are set on

the arms with rotor 1 and 2, and the zB axis is determined by the right hand rule.

Nonlinear model of the quadrotor system. The dynamics of the quadrotor

shown in Fig. 7.1 can be represented by the following differential equations:

ẍE = [(SφSψ + CφSΘCψ)Fz − ctẋE]/m

ÿE = [(CφSΘSψ − SφCψ)Fz − ctẏE]/m

z̈E = [CφCΘFz − ctżE]/m− g

ṗ = [qr(Jy − Jz)− crp+ Tx]/Jx

q̇ = [pr(Jz − Jx)− crq + Ty]/Jy
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Figure 7.1: The structure and coordinate frames of a quadrotor.

ṙ = [pq(Jx − Jy)− crr + Tz]/Jz

φ̇ = p+ qSφTΘ + rCφTΘ

Θ̇ = qCφ − rSφ

ψ̇ = [qSφ + rCφ]/CΘ, (7.1.1)

with xE, yE, zE representing the positions of the quadrotor along the x, y and z

directions in the earth frame respectively, φ,Θ, ψ representing the roll angle, the

pitch angle, and the yaw angle in the earth frame respectively, p, q, r representing

the angular velocities of the quadrotor around xB, yB and zB axes in the body frame

respectively, T∗ representing the torque generated by the rotors on an axis in body

frame, Fz representing the lifting force on the zB axis, and C∗ and S∗ representing

the cosine and sine function for certain attitude angle respectively.

Rewriting the differential equations into the state-space form, we obtain a nonlin-

ear quadrotor model in the following form:

ẋ(t) = f(x(t), u(t)) (7.1.2)

where the state vector x(t) = [xE, yE, zE, ẋE, ẏE, żE, φ,Θ, ψ, p, q, r]
T, the control input
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signal u(t) = [Fz, Tx, Ty, Tz]
T, and f()̇ is ****.

Linearized model at an operating point. Considering an operating point

(xo, uo) of the quadrotor system and applying the linearization method on the non-

linear quadrotor dynamics model (7.1.2) around the operating point, we have the

linearized model of the quadrotor system, around the operating point (xo, uo), as

∆ẋ(t) = A∆x(t) +B∆u(t) + f(xo, uo) +H.O.T., (7.1.3)

where ∆x(t) = x(t) − xo, ∆u(t) = u(t) − uo, f(xo, uo) is the non-equilibrium point

offset of the system at the operating point (xo, uo), the constant parameters A and B

are

A =
∂f

∂x

∣∣∣
(xo,uo)

=


03×3 I3×3 03×3 03×3

03×3 −ctI3×3 At 03×3

03×3 03×3 As Aw
03×3 03×3 03×3 Ar

 , B =
∂f

∂u

∣∣∣
(xo,uo)

=


03×1 03×3

Bt 03×3

03×1 03×3

03×1 Br

 ,
with the submatrices

At =

CφSψ − SφSΘCψ CφCΘCψ SφCψ − CφSΘSψ
−CΘCψ − SφSΘSψ CφCΘSψ SφSψ + CφSΘCψ

−SφCΘ −CφSΘ 0

Fz
m
,

Ar =


− cr
Jx

r

(
Jy − Jz
Jx

)
q

(
Jy − Jz
Jx

)
r

(
Jz − Jx
Jy

)
− cr
Jy

p

(
Jz − Jx
Jy

)
q

(
Jx − Jy
Jz

)
p

(
Jx − Jy
Jz

)
− cr
Jz

 ,

As =


qCφTΘ − rSφTΘ

qSφ + rCφ
C2

Θ

0

−qSφ − rCφ 0 0
qCφ − rSφ

CΘ

SΘ

C2
Θ

(qSφ + rCφ) 0

 ,

Aw =

 1 SφTΘ CφTΘ

0 Cφ −Sφ
0

Sφ
CΘ

Cφ
CΘ

 , Bt =

 SφSψ + CφSΘCψ
−SφCψ + CφSΘSψ

CφCΘ

 1

m
,
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Br = diag

{
1

Jx

1

Jy

1

Jz

}
, (7.1.4)

respectively.

Based on the different control objective, the output matrix C in the output equa-

tion: y(t) = Cx(t) can be chosen accordingly, as long as the detectability assump-

tion of the system is satisfied. In the simulation study that shown in Section 7.5,

we study yaw-position tracking, thus, the output vector y(t) = Cx(t) is chosen as

y(t) = [zE, yE, xE, ψ]T with the output matrix

C =

[
Ct 03×3 03×3 03×3

01×3 01×3 Cr 01×3

]
, Ct =

 0 0 1
0 1 0
1 0 0

 , Cr =
[

0 0 1
]
. (7.1.5)

7.1.2 Technical Issues with Quadrotor Control

Regarding to the quadrotor model that has been introduced, two technical issues for

quadrotor control are described in this section.

(a) Uncertain sensor faults. In practice, state feedback control design: u(t) =

KT
1 (t)x(t) +K2(t)r(t), is extensively used for quadrotor design. However, as we have

mentioned in Section 1, due to inevitable temperature variation and vibrations, the

sensor measurements of a quadrotor may be inaccurate.

Assume a quadrotor equips n sensors Si, i = 1, 2, . . . , n, which are used to measure

the n state variables xi(t), receptively. In the presence of an unrecoverable fault at

the jth sensor, the sensor output is described as

zj = Sj(xj) =

{
xj with the healthy sensor Sj
s̄j with the failed sensor Sj

(7.1.6)

for some unknown bounded values s̄j with unknown indices j ∈ {1, 2, . . . , n}. That

is to say, only when the state sensor Si(·) is healthy, zj(t) = xj(t), otherwise, zj(t) 6=
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xj(t). In addition, for the state vector x(t) = [x1, x2, . . . , xn]T, the sensor output

vector with possible uncertain state sensor failures is z(t) = [z1, z2, . . . , zn]T . Only

when all the n state sensors Si(·) are healthy, z(t) = x(t), otherwise, z(t) 6= x(t).

Consequently, the sensor output vector z(t) is the actual signal feeding back for

implementing the control signal: u = KT
1 (t)z(t) +K2(t)r(t) (see Fig. 7.2). Thus, the

traditional control feedback design will result in destruction of the feedback control

system, if there exist unexpected sensor faults.

It is worth noting that the state sensor failures investigated in this chapter are

uncertain, which means we do not know which sensors are failed, how much the

failures are, and when the failures occur. Such uncertain state sensor failures require

effective adaptive compensation in the design of a control scheme to guarantee desired

system performance.

Control Law
r(t) u(t)

ẋ = Ax+Bu+ f0

x(t)
Sensor S(·)

z(t)

C
y(t)

Figure 7.2: Control system under possible uncertain sensor failures.

(b) Uncertain dynamics off-set. Another technical challenge coming from the

non-equilibrium off-set fo(xo, uo) in (7.1.3). Ignoring the H.O.T. and rewriting the

linearized model given in (7.1.3), we have

ẋ(t) = Ax(t) +Bu(t) + fo, y(t) = Cx(t), (7.1.7)

where A ∈ Rn×n, B ∈ Rn×M and C ∈ RM×n are constant parameter matrices, and

fo ∈ Rn is the non-equilibrium offset constant term. The input-output description of
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the system is

y(t) = G(s)[u](t) + L−1[Gf (s)
fo
s

] = G(s)[u](t) + yf (t), (7.1.8)

where G(s) = C(sI − A)−1B and Gf = C(sI − A)−1 and yf (t) = L−1[Gf (s)
fo
s

].

Due to the model inaccuracy and dynamics change, the parameters (A,B,C) and

the non-equilibrium off-set term fo are unknown. In addition, the non-equilibrium

off-set term may also change during the flight. Thus, to make the plant-model output

matching achievable in the presence of the system parameter uncertainties and the

non-equilibrium off-set uncertainty, a new adaptive controller structure is needed for

guaranteeing output tracking.

7.1.3 Control Problem

The control objective is to construct a feedback control law u(t), in the unknown

linearized plant (7.1.7) with the non-equilibrium off-set term fo, by using the sensor

output z(t) being subject to the uncertain state sensor faults (2.3.1), such that all

signals in the closed-loop system are bounded and the system output y(t) asymptot-

ically tracks a given reference output signal ym(t) generated from a reference model

system

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s) (7.1.9)

where r(t) ∈ RM is a bounded reference input signal, and ξm(s), defined in Lemma

1, is a modified left interactor matrix of the system transfer matrix G(s) = C(sI −

A)−1B, whose inverse matrix is stable, i.e., Wm(s) is stable.

Plant assumptions. To achieve the control objectives, the following standard

assumptions are assumed to be satisfied.

(A7.1) All zeros of G(s) = C(sI − A)−1B are stable, and (A,B,C) is stabilizable

and detectable.
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(A7.2) G(s) has full rank and its modified left interactor matrix ξm(s) is known.

Assumption (A7.1) is for a stable plant-model output matching, and Assumption

(A7.2) is for choosing a reference model system Wm(s) = ξ−1
m (s) suitable for plant-

model output matching.

7.2 Nominal Compensation Design

In this section, we will address the plant-model output matching problem in the

presence of sensor fault, for the case of known system parameters. Such a nominal

compensation solution will provide a solid foundation for the adaptive compensation

scheme to deal with both uncertain sensor faults for the case of unknown system

parameters.

To achieve output tracking in the presence of some uncertain state sensor faults,

we assume that

(A7.3) There exists a vector signal zn0(t) = Cn0x(t) ∈ Rn0 being available for mea-

surement from n0 healthy sensors, with (A,Cn0) observable for Cn0 ∈ Rn0×n

and rank[Cn0 ] = n0.

In order to achieve the control objective, it is obvious that at least one sensor

measurement is correct, i.e., n0 ≥ 1. The relationship between the healthy sensor

output zn0(t) and the control input signal u(t) can be expressed as

zn0(t) = Gn0(s)[u](t) + L−1[
fo
s
Gfn0

(s)] = Gn0(s)[u](t) + yfo(t), (7.2.1)

withGn0(s) = Cn0(sI−A)−1B andGfn0
(s) = Cn0(sI−A)−1 and yfo(t) = L−1[Gfn0

(s)fo
s

].
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7.2.1 Sensor Failure Compensation With Healthy Sensors
zn0(t)

When the system parameters and the sensor faults are known, plant-model output

matching can be achieved by a controller structure using only the healthy sensor

output vector zn0(t). Such a controller structure is in the form of

u(t) = Θ∗T1 ω1(t) + Θ̄∗T21 ω2(t) + Θ̄∗T201zn0(t) + Θ∗3r(t) + Θ∗4, (7.2.2)

where Θ∗1 ∈ RM(n−n0)×M , Θ̄∗21 ∈ Rn0(n−n0)×M , Θ̄∗201 ∈ Rn0×M , Θ∗3 ∈ RM×M are the

constant nominal controller parameters , Θ∗4 ∈ RM is the constant compensation

term to deal with the non-equilibrium off-set term fo, and

ω1(t) =
A1(s)

Λ(s)
[u](t), ω2(t) =

A21(s)

Λ(s)
[zn0 ](t), (7.2.3)

with A1(s) = [1, s, . . . , sn−n0−1]T, A21(s) = [In0 , sIn0 , . . . , s
n−n0−1In0 ]

T, and Λ(s) being

the polynomial is a stable polynomial with degree n− n0.

Output matching analysis. For plant-model output matching analysis, one of

the keys is the following equation (7.2.4).

Lemma 7.2.1. [79] Constants Θ∗1, Θ̄∗21, Θ̄∗201 and Θ∗3 exist such that

Θ∗T1 A1(s)P (s) + (Θ̄∗T21A21(s) + Θ̄∗T201Λ(s))Zn0(s)

= Λ(s)(P (s)−KpΘ
∗
3Z(s)Pm(s)), (7.2.4)

for some polynomial vector Zn0(s) such that P (s)[zn0(t)] = Zn0(s)[u](t).

The proof of this lemma can be found in our previous result [79], as the nominal

solution to a partial-state feedback MRAC problem.
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Next, we will present an analysis for showing the capability of the nominal con-

troller structure with the correct measurement zn0(t) in (7.2.2) for plant-output match-

ing, in the presence of the non-equilibrium off-set term fo.

Substituting (7.2.1) into the nominal controller structure (7.2.2), we have

u(t) = Θ∗T1 F1(s)[u](t) + Θ̄∗T21 F2(s)Gn0(s)[u](t) + Θ̄∗T21 F2(s)[yfo ](t) + Θ̄∗T201Gn0(s)[u](t)

+ Θ∗T201yfo(t) + Θ∗3r(t) + Θ∗4, (7.2.5)

with F1(s) = A1(s)
Λ(s)

and F2(s) = A21(s)
Λ(s)

. This controller structure can be further

expressed as

u(t) = (I −Θ∗T1 F1(s)− Θ̄∗T21 F2(s)Gn0(s)− Θ̄∗T201Gn0(s))
−1

× (Θ̄∗T21 F2(s)[yfo ](t) + Θ̄∗T201yfo(t) + Θ∗3r(t) + Θ∗4). (7.2.6)

Hence, we could express the closed-loop signal y(t) as

y(t) = G(s)(I −Θ∗T1 F1(s)− Θ̄∗T21 F2(s)Gn0(s)− Θ̄∗T201Gn0(s))
−1

× (Θ̄∗T2 F2(s)[yfo ](t) + Θ̄∗T201yfo(t) + Θ∗3r(t) + Θ∗4) + yf (t).

From Lemma 7.2.1, we can have the plant-model matching equation:

I −Θ∗T1 F1(s)− Θ̄∗T21 F2(s)Gn0(s)− Θ̄∗T20Gn0(s) = Θ∗3W
−1
m (s)G(s). (7.2.7)

Thus, the closed-loop system becomes

y(t)

= G(s)[Θ∗3W
−1
m (s)G(s)]−1(Θ̄∗T21 F2(s)[yfo ](t) + Θ̄∗T201yfo(t) + Θ∗3r(t) + Θ∗4) + yf (t)

= Wm(s)[r](t) +Wm(s)Θ∗−1
3 [Θ̄∗T21 F2(s)[yfo ](t) + Θ̄∗T201yfo(t) + Θ∗3W

−1
m (s)[yf ](t) + Θ∗4](t)

= ym(t) + δ(t) (7.2.8)

with δ(t) = Wm(s)Θ∗−1
3 [Θ̄∗T21 F2(s)[yfo ](t) + Θ̄∗T201yfo(t) + Θ∗3W

−1
m (s)[yf ](t) + Θ∗4](t).
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Expressing δ(t) in the s-domain, we have

δ(s) = Wm(s)KpΘ̄
∗T
21 F2(s)Gfn0

(s)
fo
s

+ Θ̄∗T201Gfn0
(s)

fo
s

+ Θ∗3W
−1
m (s)Gf (s)

fo
s

+
Θ∗4
s
. (7.2.9)

Thus, applying the final value theorem, we have

lim
t→∞

(y(t)− ym(t)) = lim
t→∞

δ(t) = lim
s→0

sδ(s)

= lim
s→0

(Wm(s)KpΘ̄
∗T
21 F2(s)Gfn0

(s) + Θ̄∗T201Gfn0
(s) + Θ∗3W

−1
m (s)Gfn0

(s))fo + Θ∗4.

Hence, in order to make the plant-model output matching: y(t) = ym(t), the nominal

value of Θ∗4 is chosen as

Θ∗4 = Dfo (7.2.10)

with D = − lims→0Wm(s)KpΘ
∗T
2 F2(s)Gfn0

(s) + Θ∗T201Gfn0
(s) + Θ∗3W

−1
m (s)Gf (s).

Summarizing the result we have derived, we present the desired plant-model

matching property as follows.

Proposition 7.2.1. Constant parameters Θ∗1, Θ̄∗21, Θ̄∗201, Θ∗3 satisfying (7.2.4) and

Θ∗4 satisfying (7.2.10) exist such that the nominal compensation controller (7.2.2)

ensures plant-model output matching: y(t) − ym(t) = δ(t), when the healthy sensor

output zn0(t) exists and satisfies the assumption (A7.3).

Proposition 7.2.1 shows that when the plant parameters and the healthy sensor

output zn0(t) are known, the nominal parameters Θ∗1, Θ∗2, Θ∗20, Θ∗3 and Θ∗4 exist for

the nominal control law (7.2.2) to solve the MRAC problem in the presence of sensor

faults.

Remark 7.2.1. Relative to the plant output y(t), the healthy sensor output zn0(t)

in (7.2.2) has four possibilities (cases):
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(1) zn0 is a vector containing some or all elements of y;

(2) zn0 is a vector which does not contain any element of y;

(3) zn0 is a scalar as one element of y; and

(4) zn0 is a scalar not being any element of y.

It is worth noting that from Proposition 7.2.1, it is sufficient to use a scalar feedback

signal zn0(t) ∈ Rn0(n0 = 1) for constructing the nominal compensation controller to

make the M -output vector y(t) ∈ RM (M ≥ 1) to match the desired output. In

other words, as long as there is only one state sensor measurement zi(t) is correct,

the multivariable plant-model output matching is achievable. �

7.2.2 Sensor Failure Compensation With Direct Sensor Out-
put z(t)

In practice, the sensor faults are usually uncertain, in other words, we do not know

which sensors are failed, how much the failures are, and when the failures occur. Thus,

the controller structure (7.2.2) becomes ineffective, because of the unavailability of

the healthy sensor output vector zn0(t).

In this section, we will derive a new controller structure constructed by the direct

sensor output signal z(t) which can guarantee output matching in the presence of pos-

sible sensor faults. We denote the sensor output vector as z(t) = P−1[zTn0
(t), z̄Tn0

(t)]T

with P ∈ Rn×n being a transformation matrix such that Cn0P
−1 = [In0 , 0]. Without

loss of generality, in the following nominal control design, we consider the case when

P = In due to the space limit (state transformation techniques are used for a general

analysis).



175

Controller structure. We first extend (7.2.2) as

u(t) = Θ∗T1

A1(s)

ω1(t)
+ Θ̄∗T21

A21(s)

ω2(t)
+ Θ̄∗T201zn0(t) + Θ∗3r(t) + Θ∗4

+ Θ̄∗T22

A22(s)

Λ(s)
[z̄n0 ](t) + Θ̄∗T202z̄n0(t), (7.2.11)

where the controller parameters Θ̄∗22 ∈ R(n−n0)(n−n0)×M , Θ̄∗202 ∈ Rn−n0×M are uniquely

chosen as zero: Θ̄22 = 0, Θ̄∗202 = 0, with A22(s) = [In−n0 , sIn−n0 , . . . , s
n−n0−1In−n0 ]

T.

The controller parameters Θ∗1, Θ̄
∗
21, Θ̄

∗
201 and Θ∗3, associating with the healthy sen-

sor output zn0(t), satisfy the plant-model matching equation (7.2.4) to ensure plant-

model output matching, the controller parameters Θ∗4 satisfy the compensation condi-

tion (7.2.10), and the controller parameters Θ̄∗22 and Θ̄∗202, associating with the failed

sensor output z̄n0 , are set as zero to compensate the undesired effect from the failed

sensor output.

Based on the relationship z(t) = [zT
n0(t), z̄

T
n0

(t)]T, we re-organize (7.2.11) and obtain

the nominal sensor failure compensation controller constructed by z(t), in the form:

u(t) = Θ∗T1 ω1(t) + Θ∗T2 ω2(t) + Θ∗T20 z(t) + Θ∗3r(t) + Θ∗4, (7.2.12)

where Θ∗1 ∈ RM(n−n0)×M , Θ∗2 = [Θ̄∗T21 , Θ̄
∗T
22 ]T ∈ Rn(n−n0)×M , Θ∗20 = [Θ̄∗T201, Θ̄

∗T
202]T ∈

Rn×M , Θ∗3 ∈ RM×M , Θ∗4 ∈ RM , and the regressors

ω1(t) =
A1(s)

Λ(s)
[u](t), ω2(t) =

A2(s)

Λ(s)
[z](t), (7.2.13)

with

A1(s) = [IM , sIM , . . . , s
n−n0−1IM ]T, A2(s) = [In, sIn, . . . , s

n−n0−1In]T, (7.2.14)

and Λ(s) is a stable and monic polynomial of degree n− n0.

Remark 7.2.2. Recall the four possibilities of zn0(t) we have listed in Section 7.2.1.

and consider the development of the nominal controller structure (7.2.12) with z(t).
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It turns out that for guaranteeing the plant-model output matching, the correct mea-

surement containing in z(t) could be

(1) a vector containing some or all correct measurements of y;

(2) a vector which does not contain any element of y;

(3) a scalar as one element of y; and

(4) a scalar not being any element of y.

From case (3) and case (4), we can conclude that by using the proposed nominal

compensation controller structure (7.2.12), the system can tolerant at most n − 1

sensor faults. Such a result has not been reported in any literature yet. �

Zero nominal controller parameters Θ̄∗22 and ¯Θ∗202. In general, for guarantee-

ing that a basic MRAC problem is solvable, we need to find a set of constant controller

parameters being used in a nominal controller structure for the purpose of making

plant-model matching achievable. As long as such constant controller parameters

exist, the adaptive system could use the estimation of such controller parameters,

with the help of parameter adaption law, for achieving output tracking for the case

of unknown system parameters.

Specifically, in this sensor fault compensation problem we find that with the nom-

inal controller parameters Θ̄∗22, Θ̄202 chosen as zero, the nominal controller structure

(7.2.12) with the direct sensor output z(t) becomes to the nominal controller struc-

ture (7.2.2) which is able to guarantee plant-model output matching. Such a specific

choice for the parameters Θ̄∗22 and ¯Θ∗202 prevents the failed sensor z̄n0(t) to be used

for feedback control while keeps the form of the nominal controller structure (7.2.12)

constructed with the sensor output z(t). Such a controller structure helps
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• to avoid explicit sensor failure detection and identification which requires sensor

redundancy and increase system cost; and

• to avoid sensor fault estimation which requires additional signal processing

which may cause feedback control system delay.

7.3 Adaptive Sensor Failure Compensation Design

In this section, we develop an adaptive feedback control design to deal with the plant

parameter uncertainties and sensor fault uncertainty. For adaptive control, we assume

(A7.4) all leading principle minors ∆i, i = 1, 2, . . . ,M , of the high frequency matrix

Kp of G(s) are nonzero and their signs are known.

Controller structure. To deal with the unknown (A,B,C), unknown offset

term fo in the plant (7.1.7) and the uncertain sensor fault, we design the adaptive

version of the controller (7.2.12) as

u(t) = ΘT
1 (t)ω1(t) + ΘT

2 (t)ω2(t) + ΘT
20(t)z(t) + Θ3(t)r(t) + Θ4(t), (7.3.1)

where Θ1(t) ∈ RM(n−n0)×M , Θ2(t) ∈ Rn(n−n0)×M , Θ20(t) ∈ Rn×M , Θ3(t) ∈ RM×M ,

Θ4(t) ∈ RM are the adaptive estimates of the unknown nominal parameters Θ∗1, Θ∗2,

Θ∗20, Θ∗3 and Θ∗4, respectively, and ω1(t) and ω2(t) are the filters for u(t) and z(t)

which have been given in (7.2.13).

Tracking error equation. To choose a stable adaptive law, we derive the fol-

lowing tracking error equation:

e(t) = y(t)− ym(t) = Wm(s)Kp[Θ̃
Tω](t), (7.3.2)

where Θ̃(t) = Θ(t) − Θ∗ with Θ∗ =
[
Θ∗T1 ,Θ∗T2 ,Θ∗T20 ,Θ

∗
3,Θ

∗
4

]T
, Θ(t) =

[
ΘT

1 (t),ΘT
2 (t),

ΘT
20(t,Θ3(t),Θ4(t)

]T
, and the regressor ω(t) =

[
ωT

1 (t), ωT
2 (t), zT(t), rT(t), 1

]T
.
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To deal with the uncertainty of Kp, the LDS decomposition: Kp = LsDsS, is

to be used, where S = ST > 0, Ls is a unit lower triangle matrix, and Ds =

diag{s∗1, s∗2, . . . , s∗M} = diag{sign[d∗1]γ1, . . . , sign[d∗M ]γM} with γi > 0, i = 1, 2, . . . ,M .

To proceed the output matching analysis, substituting the decomposition of Kp

into the tracking error equation (7.3.2), we have

L−1
s ξm(s)[e](t) = DsSΘ̃T(t)ω(t). (7.3.3)

To parameterize the unknown matrix Ls, we first introduce a constant matrix Θ∗0 =

L−1
s − I =

{
Θ∗ij
}

with Θ∗ij = 0 for i = 1, 2, . . . ,M and j ≥ i, then we have

ξm(s)[e](t) + Θ∗0ξm(s)[e](t) = DsSΘ̃T(t)ω(t). (7.3.4)

To parameterize this tracking error equation, choosing a filter h(s) = 1
f(s)

, where f(s)

is a stable and monic polynomial whose degree is equal to the maximum degree of

the modified interactor matrix ξm(s) and operating h(s)IM on both sides of (7.3.4),

we have

ē(t) +
[
0, Θ∗T2 η2(t), , . . . ,Θ∗TM ηM(t)

]T
= DsSh(s)[Θ̃Tω](t), (7.3.5)

where ē(t) = ξm(s)h(s)[e](t) = [ē1(t), . . . , ēM(t)]T, ηi(t) = [ē1(t), . . . , ēi−1(t)]T ∈ Ri−1,

i = 2, . . . ,M , and Θ∗i = [Θ∗i1, . . . ,Θii−1]T, i = 2, . . . ,M .

Estimation error model. Based on the tracking error equation (7.3.5), we

introduce the estimation error signal:

ε(t) =
[
0, ΘT

2 η2(t), ΘT
3 η3(t), . . . ,ΘT

MηM(t)
]T

+ Ψ(t)ξ(t) + ē(t), (7.3.6)

where Θi(t), i = 2, . . . ,M are the estimates of Θ∗i , and Ψ(t) is the estimate of Ψ∗ =

DsS, and

ξ(t) = ΘT(t)ζ(t)− h(s)[ΘTω](t), ζ(t) = h(s)[ω](t). (7.3.7)
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From (7.3.5)–(7.3.7), we derive that

ε(t) =
[
0, Θ̃T

2 η2(t), Θ̃T
3 η3(t), . . . , Θ̃T

MηM(t)
]T

+DsSΘ̃T(t)ζ(t) + Ψ̃(t)ξ(t), (7.3.8)

where Θ̃i(t) = Θi(t) − Θ∗i , i = 2, . . . ,M , and Ψ̃(t) = Ψ(t) − Ψ∗(t) are parameter

errors.

Adaptive parameter update law. Based on the error model (7.3.8) which is

linear in parameter errors, the adaptive laws are chosen as

Θ̇i(t) = −ΓΘiεi(t)ηi(t)

m2(t)
, i = 2, 3, . . . ,M (7.3.9)

Θ̇T(t) = −Dsε(t)ζ
T(t)

m2(t)
, Ψ̇(t) = −Γε(t)ξT(t)

m2(t)
, (7.3.10)

for updating parameter estimates, where the estimation error signal ε(t) = [ε1(t), ε2(t),

. . . , εM(t)]T is computed from (7.3.6), ΓΘi = ΓT
Θi > 0, i = 2, 3, . . . ,M and Γ = ΓT > 0

are adaption gain matrices, and

m2(t) = 1 + ζT(t)ζ(t) + ξT(t)ξ(t) +
M∑
i=2

ηT
i (t)ηi(t). (7.3.11)

Stability analysis and tracking performance. The adaptive law (7.3.9)–

(7.3.10) ensures that (i) Θi(t) ∈ L∞, i = 2, 3, . . . ,M , Θ(t) ∈ L∞, Ψ(t) ∈ L∞, and

ε(t)
m(t)
∈ L2 ∩ L∞; and (ii) Θ̇i(t) ∈ L2 ∩ L∞, i = 2, 3, . . . ,M , Θ̇(t) ∈ L2 ∩ L∞, and

Ψ̇i(t) ∈ L2 ∩ L∞. The result can be obtained by constructing the positive definite

function

V =
1

2
(
M∑
i=2

Θ̃T
i (t)Γ−1

Θi Θ̃i + tr[Ψ̃TΓ−1Ψ̃] + tr[Θ̃SΘ̃T]). (7.3.12)

Based on the above desired properties of the adaptive law (7.3.9)–(7.3.10), the

following desired closed-loop system properties are established.

Theorem 7.3.1. The adaptive sensor fault compensator (7.3.1) with the adaptive

law (7.3.9)–(7.3.10), when applied to the plant (7.1.7), guarantees the closed-loop
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Table 7.1: Parameter values of the quadrotor used for simulation study

Parameter Value Unit
cm 0.0025 m·s
cr 0.001 N·m·s
ct 0.25 N·m·s
d 0.2 m
g 9.8 m/s2

Jx 0.005 kg·s2

Jy 0.005 kg·s2

Jz 0.009 kg·s2

m 2 kg

signal boundedness and asymptotic output tracking: limt→∞(y(t)− ym(t)) = 0, in the

presence of possible sensor fault (7.1.6).

Together with the signal boundedness result, the proof of Theorem 7.3.1 can be

completed in a similar way to that derived in Ch. 9, [82]. This proposed MRAC-

based sensor fault compensation scheme can guarantee asymptotic output tracking

for both the cases of no sensor failures (i.e., , z(t) = x(t)) and the case of uncertain

state sensor failures (i.e., z(t) 6= x(t)).

7.4 Simulation Study

To evaluate the effectiveness of the proposed adaptive control designs, we will present

a simulation result in this section.

Simulation systems. In this simulation study, we consider a quadrotor with

system parameters given in Table 7.1, for position tacking and yaw tracking. Our

goal is to let the quadrotor fly along x-direction uniformly with a speed of 12 m/s

(with pitch angle θ = 0.19 rad) and the yaw angle changing periodically for a searching

task. so that the reference signal is chosen as r(t) = [0, 0, 12t, sin(0.1t)]T.

We linearize the quadrotor model under the high-speed cruise control condition.
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The corresponding system parameters (A,B) of the linearized model are

A =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 −0.25 0 0 0 9.8 0 0 0 0
0 0 0 0 −0.25 0 −9.8 0 0 0 0 0
0 0 0 0 0 −0.25 0 −1.5 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0.1531
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1.0116
0 0 0 0 0 0 0 0 0 −0.2 0 0
0 0 0 0 0 0 0 0 0 0 −0.2 0
0 0 0 0 0 0 0 0 0 0 0 −0.1111



,

B =



0 0 0 0
0 0 0 0
0 0 0 0

0.0756 0 0 0
0 0 0 0

0.4942 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 200.00 0 0
0 0 200.00 0
0 0 0 111.1111



. (7.4.1)

For position tracking and yaw tracking, the output parameter C is chosen as

C =


0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

 . (7.4.2)

Under this operation point, the non-equilibrium off-set term fo = [12, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0]T. For the purpose of assessing the sensor failure compensation scheme,

the measurements of velocities ẋE, ẏE and żE are set to have biases as 0.5, 0.4 and

0.6, respectively, when t > 400s.

Simulation results. For simulation, the adaptation gains are chosen as Γ =

25I4, Γθ1 = 10, Γθ2 = 10I2, Γθ3 = 10I3, and the initial condition are chosen as
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Figure 7.3: System response with the adaptive sensor failure compensation scheme.
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Figure 7.4: System response without the adaptive sensor failure compensation scheme.
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y(0) = [0.01, 0.01, 0, 0]T, ym(0) = [0, 0, 0, 0]T. The system responses, with and with-

out adaptive compensation, are shown in Fig. 7.3 and Fig. 7.4, respectively. The

simulation results support that the proposed multivariable sensor failure compensa-

tion scheme has the capability to ensure output tracking and signal boundedness in

the presence of state sensor failures.

Summary

In this chapter, we have developed a multivariable adaptive sensor fault compensation

control scheme for quadrotor systems. A nominal controller structure constructed by

the sensor output vector which may be subject to sensor faults is proposed. It has

been shown that the multivariable plant-model output matching is guaranteed by

such a nominal controller, even only one sensor measurement is correct. To deal with

uncertain sensor faults and uncertain system parameters, a new adaptive control

scheme has been developed. The adaptive controller structure, with an additional

compensation term for dealing with the non-equilibrium off-set term of the dynamics

system, has been shown the capability of ensuring asymptotic output tracking and

closed-loop signal boundedness, when applied to the control plant. The effectiveness

of the developed control scheme has been assessed by a simulation study.



Chapter 8

Output Consensus of Multi-Agent
System Using Partial-State
Feedback

This chapter solves a partial-state feedback output consensus problem for uncertain

multi-agent systems with relative degree one followers. Such a new distributed adap-

tive consensus scheme guarantees the desired leader-following output consensus and

closed-loop signal boundedness. A simulation study on a multiple-aircraft system ver-

ifies the effectiveness of the proposed adaptive multi-agent output consensus scheme.

The new technical contributions of this work are:

• clarifying the output matching condition for leader-following output consensus

of multi-agent systems;

• developing a new adaptive partial-state feedback control scheme for relative-

degree-one followers, which avoids the restrictive matching conditions and com-

plex controller structure as well; and

• analyzing system stability and consensus performance of the multi-agent system.
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8.1 Problem Statement and Preliminaries

In this section, we will formulate the leader-following consensus control problem to

be studied and give a brief introduction to graph theory which is a useful tool for

describing the connection of the multi-agent system.

8.1.1 Problem Statement

Consider a multi-agent system including N followers and one virtual leader. The ith

followers’ dynamic equation is

ẋi(t) = Aixi(t) + biui(t), yi(t) = bixi(t), i = 1, . . . , N,

for the unknown parameter matrices Ai ∈ Rn×n, Bi ∈ Rn×1 and Ci ∈ R1×n, where

xi(t) ∈ Rn is the state vector of the ith follower, ui(t) ∈ R is the control input of

the ith follower, and yi(t) ∈ R is the output of the ith follower. The input-output

description of each follower is

yi(t) = Gi(s)[ui](t), Gi(s) = kpi
Zi(s)

Pi(s)
, i = 1, . . . , N (8.1.0)

where kpi 6= 0, Pi(s) = det(sI − Ai) = sn + p(n−1)is
n−1 · · · + p1is + p0i, and Z(s) =

sm + · · · + z1is + z0i for some m ≥ 0. The notation: y(t) = G(s)[u](t), is used to

denote the output y(t) of a LTI system represented by a transfer function G(s) with

input signal u(t).

The dynamic model of the virtual leader is given by

yl(t) = Wl(s)[r](t),Wl(s) =
1

Pl(s)
, (8.1.0)

where Pl(s) is a desired stable polynomial of degree n∗ = n−m (the followers’ relative

degree n∗ is assumed to be known), and r(t) is a bounded piecewise continuous

reference input signal.
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Control objective. For the multi-agent system consisting of (8.1.1) and (8.1.1),

the control objective is to design a control protocol using the local partial-state vector

y0i(t) to generate the control signal ui(t) in (8.1.1) for each follower such that all the

signals in the multi-agent system are bounded and the output of all followers track

the output yl(t) of the given leader asymptotically, i.e.,

lim
t→∞

(yi(t)− yl(t)) = 0, i = 1, . . . , N. (8.1.0)

we first make the following basic assumptions:

(A8.1) A vector signal y0i(t) = C0ixi(t) ∈ Rn0i is available for measurement, with

(A,C0i) observable for C0i ∈ Rn0i×n and rank[C0i] = n0i; and

(A8.2) all zeros of Zi(s) are stable polynomials.

The assumption (A8.2) is for ensuring internal stability for output consensus [82].

Graph theory is used in this problem to model the information exchange between

the agents, which is introduced in the next section.

8.1.2 Preliminaries

The information exchange among the N follower agents in this chapter is denoted by

a undirected graph G = (V , E ,A) with a set of nodes V , a set of undirected edges

E ⊆ V × V , and the adjacency matrix of the graph A = [aij] ∈ RN×N . The node

vi represents the ith follower agent. An unordered edge (vi, vj) ∈ E (or equivalently

(vj, vi) ∈ E) represents that the information exchanges between the agents vi and

vj, and vi and vj are neighbors. In addition, (vi, vj) ∈ E follows that the adja-

cency element aij = aji = 1. A path is a sequence of unordered edges of the form

(vi1, vi2), (vi2, vi3), . . . , in a graph, where vij ∈ V . If, for any two nodes vi, vj ∈ V ,

there is a path between them, then G is called a connected graph.
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To describe the information exchange from the leader to the followers, we denote

the leader as v0. Let VΣ = {V , v0} be the node set consisting of all the follower

agents and the leader. Since the leader v0 can not be affected by the followers vi, the

connection edges (vi, v0) between the leader v0 and the ith agent vi are directed which

means that the follower vi can obtain the information from v0, but not vice versa. Let

El be the edges set consisting of all edges (vi, v0). Define Ni = {vj ∈ VΣ : (vj, vi) ∈

{E
⋃
El}} as the neighborhood of the ith follower and N0 = {vj ∈ V : (vj, v0) ∈ El}

as the set of follower agents that are directly connected to the leader. Note that in

this chapter, only part of the followers can connect to the leader.

For the N follower agents, the Laplacian matrix L of undirected graph G is

defined by L = D − A, where D = diag{d1, d2, . . . , dn} and di =
∑N

j=1 aij. In

addition, the connectivity between the followers and the leader is represented by

B = diag{b1, b2, . . . , bn}. If the follower vi is connected to the leader v0, then bi = 1,

otherwise, bi = 0, i = 1, 2, . . . , N .

In order to make leader-following consensus realized, we make the following two

assumptions on the graph:

(A8.3) The directed graph G is connected.

(A8.4) At least one follower connects to the leader, i.e., B 6= 0.

The satisfaction of these two assumptions leads the following lemma, which is

important to deal with our output consensus control problem.

Lemma 8.1.1. [30] For the multi-agent system including (8.1.1) and (8.1.1), if

Assumptions (A8.3) and (A8.4) hold, then L+ B > 0.

From the properties of positive definite matrices, this lemma indicates that the
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matrix L+ B is invertible as long as Assumptions (A8.3)–(A8.4) are satisfied, which

is essential for stability analysis of our control problem.

8.2 Control Designs

In this section, a distributed adaptive consensus protocol is developed for the leader-

following multi-agent system consisting of (8.1.1) and (8.1.1) for dealing with the

unknown followers’ parameters. To analyze the consensus performance, before we

start to present the control designs, we will introduce several different errors in the

multi-agent system.

8.2.1 Different Errors in Multi-Agent Systems

For consensus performance analysis, we define

ei(t) = yi(t)− yl(t), i = 1, . . . , N, (8.2.0)

for all the agents, which measures the disagreements between the leader and each

agent vi.

Also, we define

ēi,j(t) = yi(t)− yj(t), i = 1, . . . , N, vj ∈ Ni (8.2.0)

to measure the differences between any of two agents. From the definition of undi-

rected graph, we know that ēi,j(t) = −ēj,i(t).

Based on the above two definitions of ei(t) and ēi,j(t), we define the relative

consensus error εi(t) of vi as

εi(t) =
N∑

j=1,j 6=i

aij ēij(t) + biei(t) =
∑
vj∈Ni

(yi − yj).
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From the definition of L and B and the definition of the εi(t) and ei(t), we obtain

ε(t) = (L+ B)e(t) (8.2.0)

for ε(t) = [ε1(t), ε2(t), . . . , εN(t)]T and e(t) = [e1(t), e2(t), . . . , eN(t)]T = [y1(t) −

yl(t), y2(t)−yl(t), . . . , yN(t)−yl(t)]T. From Lemma 8.1.1, we conclude that as long as

the relative consensus error vector ε(t) go to zero as time goes to infinity, the output

consensus: limt→∞ e(t) = 0, will be achieved.

8.2.2 Nominal Control Design

In this section, we first present a nominal controller structure when the followers’ pa-

rameters (Ai, Bi, Ci) are known and clarify the output matching condition for output

consensus, which provides a priori knowledge for the adaptive control design shown

in Section 8.2.3.

Basic design idea. For general control systems, when the full-state xi(t) is

available for measurement, the state feedback controller: u(t) = k∗T1 x(t) + k∗2r(t)

with k∗1 and k∗2 bing the nominal controller parameters calculated by the plant-model

matching condition is usually used; and when the full-state vector x(t) is not available

for measurement, the observer-based state feedback controller: u(t) = k∗T1 x̂(t) +

k∗2r(t), with an estimate x̂(t) (generated from a state estimator or observer) of the

state vector x(t) is generally used.

In partial-state feedback consensus control problem, partial-state vectors y0i(t) are

measurable, we start the partial-state feedback controller derivation from developing

a state feedback controller structure for multi-agent consensus control.

Controller structure by using state feedback. To achieve output consen-

sus when the systems parameters (Ai, Bi, Ci) are known, we develop the distributed
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nominal control law for the ith follower as

ui(t) = k∗T1i xi(t) + k∗2ir(t), (8.2.0)

with the nominal controller parameters k∗1i ∈ Rn and k∗2i ∈ R satisfying the

det(sI − Ai −Bik
∗T
1i ) = Pl(s)Zi(s)

1

kpi
, k∗2i =

1

kpi
. (8.2.0)

This matching condition is for ensuring output matching between the followers and

the leader, which will be analyzed with details in the next part. The existence of the

parameters k∗1i and k∗2i is guaranteed by Assumption (A8.1) [82].

Follower-leader output matching. With the nominal control law (8.2.2), the

ith follower agent (8.1.1) becomes

ẋi(t) = Aixi(t) +Bik
∗T
1i xi(t) +Bik

∗
2ir(t), yi(t) = Cixi(t).

From the matching condition (8.2.2), it follows that

Ci(sI − Ai −Bik
∗T
1i )−1Bik

∗
2i =

Zi(s)k
∗
2i

det(sI − Ai −Bik∗T1i )
=

1

Pl(s)
= Wl(s).

In view of (8.1.1), (8.2.2) and (8.2.2), we have

yi(t) = Cie
(Ai+Bik

∗T
1i )txi(0) + yl(t), i = 1, 2, . . . , N

Thus, the relative consensus error εi(t) is

εi(t) =
∑
vj∈Ni

(yi − yj) = niCie
(Ai+Bik

∗T
1i )txi(0)− Cje(Aj+Bjk

∗T
1j )txj(0)

with ni representing the number of agents in the neighborhood Ni, which indicates

that limt→∞ εi(t) = 0, i = 1, 2, . . . , N . Hence, we have limt→∞ ε(t) = 0. Since Lemma

8.1.1 ensures that the matrix L + B is invertible, it follows that limt→∞ e(t) = 0,

namely, the output consensus: limt→∞(yi(t)− yl(t)) = 0, i = 1, . . . , N , is achieved.
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Controller structure by using partial-state feedback. From the partial-

state observer technique shown in Section 3.3, we could obtain an observer to generate

the state xi(t) for each follower as:

x̂i(t) =
[
yT

0i(t), (wi(t) + Lriy0i(t))
T
]T
, (8.2.0)

with

wi(t) =
n1i(s)

Λi(s)
[ui](t) +

n2i(s)

Λi(s)
[y0i](t) + εi(t),

where Lri is a constant gain matrix, Λi(s) is a stable polynomial with degree n −

n0i, n1i(s) is an (n − n0i) × 1 polynomial vector and n2i(s) is an (n − n0i) × n0i

polynomial matrix, whose maximum degrees are n−n0i−1 or less. The state estimate

x̂i(t) generated from such a partial-state observer converges to the state vector xi(t)

exponentially, as desired.

Substitute (8.2.2) into the nominal state feedback controller structure (8.2.2), a

partial-state feedback controller structure is obtained:

ui(t) = θ∗T1i ω1i(t) + θ∗T2i ω2i(t) + θ∗T20iy0i(t) + θ∗3ir(t), (8.2.0)

where

ω1i(t) =
a1i(s)

Λi(s)
[ui](t), ω2i(t) =

A2i(s)

Λi(s)
[y0i](t) (8.2.0)

with a1i(s) = [1, s, · · · , sn−n0i−1]T, A2i(s) = [In0i
, sIn0i

, . . ., sn−n0i−1In0i
]T and Λi(s)

being a monic stable polynomial of degree n−n0i, the nominal controller parameters

θ∗1i ∈ Rn−n0i , θ∗2i ∈ Rn0i×(n−n0i), θ∗20i ∈ Rn0i and θ∗3i ∈ R satisfy the plant-model

matching condition:

θ∗T1i a1i(s)Pi(s) + (θ∗T2i A2i(s) + θ∗T20iΛi(s))Z0i(s) = Λi(s)(Pi(s)− kpiθ∗3iZi(s)Pl(s)),
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for a polynomial vector Z0i(s) in the relationship between y0i(t) and ui(t): Pi(s)[y0i](t)

= Z0i(s)[ui](t).

Based on the same technique that given in Section 3.3.3 and the follower-leader

output matching result given in this section by the state feedback controller structure,

we could conclude that the follower-leader output matching can be guaranteed by the

proposed partial-state feedback controller structure (8.2.2).

Thus far, we clarify verify that the model reference control is able to solve the

leader-following output consensus problem by both state-feedback and partial-state

feedback, which provides a foundation for the following adaptive design for the case

of unknown followers’ parameters.

8.2.3 Adaptive Control Design

For the follower (8.1.1) with unknown (Ai, Bi, Ci), the nominal controller parameters

θ∗1i, θ
∗
2i, θ

∗
20i and θ∗3i in (8.2.2) depending on system parameters (Ai, Bi, Ci) can not

be calculated so that the nominal state feedback control design can not be applied.

In this section, we develop an adaptive partial-state feedback control design with

a distributed adaptive law using only the relative output information to solve the

leader-following output consensus problem, for dealing with the followers’ parameter

uncertainties. For adaptive control, we need the following assumption: (A8.4) the

signs of the high frequency gains kpi, i = 1, . . . , N , are known.

In this section, we consider the multi-agent systems with relative-degree-one fol-

lowers agents.
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8.2.3.1 Adaptive Controller Structure

To handle the parametric uncertainties of the followers (8.1.1), we design the adaptive

version of the controller (8.2.2) as

ui(t) = θT
1i(t)ω1i(t) + θT

2i(t)ω2i(t) + θT
20i(t)y0i(t) + θ3i(t)r(t), i = 1, 2, . . . , N,

where θ1i(t) ∈ Rn−n0i , θ2i(t) ∈ Rn0i×(n−n0i), θ20i(t) ∈ Rn0i and θ3i(t) ∈ R are the

adaptive estimates of the unknown constant nominal parameters θ∗1i, θ
∗
2i, θ

∗
20i and θ∗3i,

respectively, and

ω1i(t) =
a1i(s)

Λi(s)
[ui](t), ω2i(t) =

A2i(s)

Λi(s)
[y0i](t) (8.2.0)

with a1i(s) = [1, s, · · · , sn−n0i−1]T, A2i(s) = [In0i
, sIn0i

, . . ., sn−n0i−1In0i
]T.

8.2.3.2 Design of Adaptive Law

For updating the adaptive controller parameters θ1i(t), θ2i(t), θ20i(t) and θ3i(t) for

each follower, a distributed adaptive law is needed. Next, we analyze a multi-agent

system with one leader and three followers, without loss of generality, to illustrate

the complicated design process of the adaptive law.

An illustrative example. Consider the multi-agent system shown in Fig. 8.1,

whose graphic structure is descried by the matrix L+ B as

L+ B =

 2 0 −1
0 2 −1
−1 −1 2

 .
Substituting the adaptive controller (8.2.3.1), we obtain the following error signals

for the multi-agent system shown in Fig. 8.1:

e1(t) = y1(t)− yl(t) =
kp1
Pl(s)

[θ̃T
1 ω1](t),

e2(t) = y2(t)− yl(t) =
kp2
Pl(s)

[θ̃T
2 ω2](t),
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ē3,1(t) = y3(t)− y1(t) =
kp3
Pl(s)

[θ̃T
3 ω3](t)− kp1

Pl(s)
[θ̃T

1 ω1](t),

ē3,2(t) = y3(t)− y2(t) =
kp3
Pl(s)

[θ̃T
3 ω3](t)− kp2

Pl(s)
[θ̃T

2 ω2](t),

ē1,3(t) = −ē3,1(t), ē2,3(t) = −ē3,2(t),

with θi(t) = [θT
1i(t), θ

T
2i(t), θ

T
20i(t), θ3i(t)]

T, θ∗i = [θ∗T1i , θ
∗T
2i , θ

∗T
20i, θ

∗
3i]

T, ωi(t) = [ωT
1i(t), ω

T
2i(t),

yT
0i(t), r(t)]

T, and θ̃i = θi(t)− θ∗i , i = 1, 2, 3.

For the followers with relative degree n∗ = 1, we choose the characteristic polyno-

mial of the leader as Pl(s) = s+ al, al > 0, and the above error equations in (8.2.3.2)

become

ė1(t) = −a0e1(t) + kp1θ̃
T
1 (t)ω1(t),

ė2(t) = −a0e2(t) + kp2θ̃
T
2 (t)ω2(t),

˙̄e3,1(t) = −a0ē3,1(t) + kp3θ̃
T
3 (t)ω3(t)− kp1θ̃T

1 (t)ω1(t),

˙̄e3,2(t) = −a0ē3,2(t) + kp3θ̃
T
3 (t)ω3(t)− kp2θ̃T

2 (t)ω2(t),

˙̄e1,3(t) = − ˙̄e3,1(t), ˙̄e2,3(t) = − ˙̄e3,2(t).

To choose a stable adaptive law, we then choose the following positive definite

function V = V1 + V2 with

V1 = e2
1 + e2

2 +
1

2
ē2

3,1 +
1

2
ē2

3,2 +
1

2
ē2

1,3 +
1

2
ē2

2,3,

V2 = |kp1|θ̃T
1 Γ−1

1 θ̃1 + |kp2|θ̃T
2 Γ−1

2 θ̃2 + |kp3|θ̃T
3 Γ−1

3 θ̃3,

with Γi = ΓT
i > 0, i = 1, 2, 3, being a constant matrix with an appropriate dimension.

0 1

2 3

Figure 8.1: The multi-agent network with a leader v0 and three followers v1–v3.
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The time-derivative of V1 is

V̇1 = 2e1(t)ė1(t) + 2e2(t)ė2(t) + ē3,1(t) ˙̄e3,1(t) + ē3,2(t) ˙̄e3,2(t) + ē1,3(t) ˙̄e1,3(t) + ē2,3(t) ˙̄e2,3(t)

= −2a0e
2
1(t)− 2a0e

2
2(t)− 2a0ē

2
3,1(t)− 2a0ē

2
3,2(t) + 2kp1θ̃

T
1 (t)ω1(t)e1(t)

+ 2kp2θ̃
T
2 (t)ω2(t)e2(t) + 2kp3θ̃

T
3 (t)ω3(t)ē3,1(t) + 2kp1θ̃

T
1 (t)ω1(t)ē1,3(t)

+ 2kp3θ̃
T
3 (t)ω3(t)ē3,2(t) + 2kp2θ̃

T
2 (t)ω2(t)ē2,3(t),

and the time-derivative of V2 is

V̇2 = 2|kp1|θ̃T
1 (t)Γ−1

1
˙̃θ1(t) + 2|kp2|θ̃T

2 (t)Γ−1
2

˙̃θ2(t) + 2|kp3|θ̃T
3 (t)Γ−1

3
˙̃θ3(t).

To make V̇ = V̇1 + V̇2 < 0, let

2|kp1|θ̃1(t)Γ−1
1

˙̃θ1(t) = −2kp1θ̃
T
1 (t)ω1(t)e1(t)− 2kp1θ̃

T
1 (t)ω1(t)ē1,3(t),

2|kp2|θ̃2(t)Γ−1
2

˙̃θ2(t) = −2kp2θ̃
T
2 (t)ω2(t)e2(t)− 2kp2θ̃

T
2 (t)ω2(t)ē2,3(t),

2|kp3|θ̃3(t)Γ−1
3

˙̃θ3(t) = −2kp3θ̃
T
3 (t)ω3(t)ē3,1(t)− 2kp3θ̃

T
3 (t)ω3(t)ē3,2(t),

which follows that

˙̃θ1(t) = θ̇1(t) = −sign(kp1)Γ1ω1(t)(e1(t) + ē1,3(t)),

˙̃θ2(t) = θ̇2(t) = −sign(kp2)Γ2ω2(t)(e2(t) + ē2,3(t)),

˙̃θ3(t) = θ̇3(t) = −sign(kp3)Γ3ω3(t)(ē3,1(t) + ē3,2(t)).

Thus, based on the definition of the relative consensus error εi(t) in (8.2.1), we

have derived

θ̇1(t) = −sign(kp1)Γ1ω1(t)ε1(t),

θ̇2(t) = −sign(kp2)Γ2ω2(t)ε2(t),

θ̇3(t) = −sign(kp3)Γ3ω3(t)ε3(t).
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as the adaptive law for the agents v1–v3.

With the choices of θ̇i(t), i = 1, 2, 3, the time-derivative of V becomes

V̇ = −2a0e
2
1(t)− 2a0e

2
2(t)− 2a0ē

2
3,1(t)− 2a0ē

2
3,2(t) ≤ 0,

which indicates that e1(t), e2(t), ē1,3(t), ē2,3(t), ē1,3(t), ē1,3(t), θi(t), i = 1, 2, 3, in the

multi-agent system are bounded, so that all yi(t) are bounded. From the relationship:

y0i(t) = 1
kpi
Z−1
i (s)Z0i(s)[yi](t) = Z0i(s)

kpiPl(s)Zi(s)
Pl(s)[yi](t), we have y0i(t) ∈ L∞, so that

ω2i(t) = A2i(s)
Λi(s)

[y0i](t) ∈ L∞. Using the input-output relationship: Pi(s)[yi](t) =

kpiZi(s)[ui](t), we have

si

Λi(s)
[ui](t) =

Pi(s)

kpiZi(s)

si

Λi(s)
[yi](t), (8.2.-18)

which is bounded for i = 0, 1, · · · , n−n0−1, because Pi(s)
kpiZi(s)

si

Λi(s)
is stable and proper

and yi(t) ∈ L∞. This implies ω1i(t) ∈ L∞, and so does ui(t). With the signal

boundedness properties shown above, we have ė1(t) ∈ L∞, ė2(t) ∈ L∞, ˙̄e1,3(t) ∈

L∞, ˙̄e2,3(t) ∈ L∞, ˙̄e1,3(t) ∈ L∞, ˙̄e1,3(t) ∈ L∞ from (8.2.3.2). From (8.2.3.2), we

also conclude that e1(t) ∈ L2, e2(t) ∈ L2, ē1,3(t) ∈ L2, ē2,3(t) ∈ L2, ē1,3(t) ∈ L2,

ē1,3(t) ∈ L2. Therefore, using Barhalat Lemma and (8.2.1), we can conclude that

limt→∞ εi(t) = 0. Then, according to Lemma 8.1.1, we have limt→∞(yi(t)−yl(t)) = 0,

for i = 1, 2, . . . , N , which means that the leader-following output consensus of the

multi-agent system is achieved. ∇

In this part, we explained the design of adaptive law for updating the adaptive

controller parameters in details with an example. Next, we will present the adaptive

control law design for general multi-agent systems with N followers.

Adaptive laws for general cases. Generalizing the illustrative example, we

conclude that the adaptive law can be chosen as

θ̇i(t) = −sign(kpi)Γiωi(t)εi(t), i = 1, . . . , N,
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with θi(t) = [θT
1i(t), θ

T
2i(t), θ

T
20i(t), θ3i(t)]

T, for updating the adaptive estimates θ1i(t),

θ2i(t), θ20i(t) and θ3i(t) in the adaptive controller (8.2.3.1):

ui(t) = θT
1i(t)ω1i(t) + θT

2i(t)ω2i(t) + θT
20i(t)y0i(t) + θ3i(t)r(t), i = 1, 2, . . . , N,

for leader-following output consensus of the multi-agent system with relative-degree-

one followers.

Thus, for the multi-agent system including the N followers agents, the developed

partial-state feedback law (8.2.3.1) and the corresponding adaptive law (8.2.3.2), we

have the following theorem.

Theorem 8.2.1. The partial-state feedback adaptive controller (8.2.3.1) with the

adaptive laws (8.2.3.2), applied to all the N uncertain relative-degree-one followers

(8.1.1), guarantees that all the closed-loop signal in the multi-agent system are bounded

and the leader-following output consensus: limt→∞(yi(t)− yl(t)) = 0, is achieved.

In the stability proof, we take the Lyapunov candidate as

V =
∑
vi∈N0

e2
i +

1

2

∑
(vi,vj)∈E

ē2
i,j +

N∑
i=1

|kpi|θ̃T
i Γ−1

i θ̃i. (8.2.-19)

Such a Lyapunov candidate measures all the closed-loop signals in the multi-agent

system which can help us to establish the stability properties of the system. The

complete proof of this theorem can be easily obtained by generalizing the stability

analysis shown in the previous part, which is omitted here.

In the developed adaptive control scheme, the controller structure depends on the

local partial-state information, and the adaptive law only requires for the relative

output information from the neighborhood, which makes the adaptive control scheme

completely distributed.
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Remark 8.2.1. In this chapter, we solve the output consensus problem for relative-

degree-one followers by Lyapunov design. The adaptive design is inspired by the

standard model reference adaptive control method. For higher relative degree fol-

lowers, the estimation errors involving tracking error estimations and the unknown

high-frequency gain estimations are required for the model reference adaptive control

design, which challenges the corresponding adaptive control design for multi-agent

systems. The distributed adaptive output consensus scheme for higher relative de-

gree followers is currently under investigation. �

8.3 Simulation Study

In this section, we use the lateral dynamic model of a Boeing 747 airplane [21] as the

agents for verifying the effective of the developed adaptive consensus scheme.

The standard aircraft dynamic model. For yaw rate control, the linearized

lateral motion equation is given as

ẋ(t) = Ax(t) +Bu(t), y = Cx(t), (8.3.0)

with

A =


−0.0558 −0.9968 0.0802 0.0415

0.598 −0.115 −0.0318 0
−3.05 0.388 −0.4650 0

0 0.0805 1 0

 ,

B =


0.00729
−0.475
0.153

0

 , C =
[
0 1 0 0

]
,

where the system state vector is chosen as x = [β, r0, p, φ]T with β(rad) being the

side-slip angle, r0(rad/s) being the yaw rate, p(rad/s) being the roll rate and φ(rad)

being the roll angle, the control input signal u(t) is the rudder angle δr, and the
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system output y(t) is the yaw rate r0(t). It can be verified that this is a relative

degree one system model.

Multi-agent system description. In this simulation study, we study the con-

sensus performance of three follower aircraft and one virtual leader, and their asso-

ciated communication graph is shown in Fig. 8.1. It is well known that the system

parameters may change due to wear and aging. Therefore, for the purpose of simu-

lation, we choose the system parameters of the three followers, whose dynamics are

given in (8.3), as Ai = A + ∆Ai, Bi = B + ∆Bi, Ci = C, for i = 1, 2, 3, with

∆Ai and ∆Bi being some perturbation constant matrices which are omitted here

for space reasons. All the follower systems with (Ai, Bi, Ci) satisfy (A8.2) and are

of relative-degree-one. The dynamics of the leader is given as yl(t) = 1
s+3

[r](t) with

r(t) = 0.5 sin(0.08t).

Simulation results. For simulation, the adaptive control law (8.2.3.1) and the

adaptive law (8.2.3.2) are adopted with the parameters Γi = 0.5I, i = 1, 2, 3. Initial

conditions are chosen as y1(0) = 0, y2(0) = −0.01, y3(0) = 0.01, y0(0) = 0, and the

initial controller parameters are chosen as 90% of the nominal controller parameters,

respectively. The output trajectories of the leader and the followers are shown in Fig.

8.2. All the other closed-loop signals are also bounded which are omitted for brevity.

The simulation results confirm the effectiveness of the consensus scheme developed

in this chapter.

Summary

In this chapter, we have developed a new adaptive control scheme using local partial-

state feedback for guaranteeing leader-following output consensus of multi-agent sys-

tems in the presence of followers’ parametric uncertainties. The new adaptive control
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Figure 8.2: Output trajectories of the followers and the leader.

scheme combines the advantages of the state feedback output consensus designs and

the output feedback output consensus designs. This work clarifies the output match-

ing conditions for leader-following output consensus. The system stability analysis has

shown the feasibility of using model reference adaptive control for output consensus.



Chapter 9

Conclusions and Future Work

In this chapter, we give concluding remarks to this dissertation and suggest some

research topics for future study in this area.

Conclusions. Given the importance of model reference adaptive control, we have

developed a new partial-state feedback model reference adaptive control framework

and explored two kinds of applications of the new framework in this research. The

partial-state feedback MRAC schemes build up a bridge between the state feedback

MRAC designs and the output feedback MRAC designs, and provides a manageable

trade-off between the controller complexity and the number of required system mea-

surements. It has been shown that with the use of partial-state signal for feedback,

the feedback capability, the design flexibility, the system robustness of MRAC sys-

tems are increased while the controller structure keeps a relative simple form. Based

on the unique features of the new control framework, the applications of this new con-

trol framework are explored. Inspired by the enhanced robustness of the partial-state

feedback MRAC schemes, the sensor failure compensation schemes are developed.

The control systems with the developed sensor failure compensation schemes not

only enjoy the better transient performance as the traditional state feedback con-

troller, but also has redundant capacity for achieving desired performance for output
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tracking which is desirable for tolerating uncertain sensor faults. Inspired by the addi-

tional feedback capacity and design flexibility that the partial-state feedback MRAC

schemes provide, an output consensus control scheme via partial-state feedback is

developed.

There are six control problems solved in this dissertation. The solutions of the

first three control problems construct the theoretical foundation of the partial-state

feedback MRAC framework, and the solutions of the other three control problems

bring new control possibility to fault tolerant control and multi-agent control which

reveals the potential of the new partial-state feedback MRAC framework. The de-

tailed research topics are summarized as follows.

• A partial-state feedback MRAC scheme of SISO systems for output tracking

(Chapter 3).

• A multivariable partial-state feedback MRAC scheme of MIMO systems for

output tracking (Chapter 4).

• Higher-order tracking error convergence properties for multivariable model ref-

erence adaptive control systems (Chapter 5).

• An adaptive state feedback control design of SISO systems with sensor failure

compensation for asymptotic output tracking (Chapter 6).

• An adaptive state feedback control design of MIMO systems with sensor failure

compensation for asymptotic output tracking (with applications to quadrotor

systems (Chapter 7).

• A distributed adaptive partial-state feedback control scheme for output consen-

sus of multi-agent systems (Chapter 8).
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Future topics. The studies in this dissertation give some encouraging results in

using partial-state signal for model reference adaptive control. For the future study,

the following research topics are listed as some possible directions in this area:

• Given the importance of nonlinear control systems, multivariable MRAC designs

by partial-state feedback for nonlinear systems need to be studied;

• For safety-critically applications, partial-state feedback MRAC-based compen-

sation designs for actuator failures and structural damage need to be studied;

• Considering the bright application prospect, the partial-state feedback output

consensus control designs of multi-agent systems with (a) general relative degree

agents; (b) multivariable agents; and (c) switching topology, need to be studied.
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