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Simulating Nutrient Preferences to Inform Co-culture Design for Probiotic Manufacturing 
 
 

ABSTRACT 
 
The gut microbiome plays an important role in human health, prompting interest in using gut 
microbes in therapeutics. Next generation probiotics, also sometimes referred to as live 
biotherapeutics, are probiotics that act in a pharmaceutical capacity by shifting the gut 
microbiome to address specific needs. To bring these probiotics to market, a method for 
improving the growth of gut microbes in co-culture is needed to increase scalability and decrease 
costs during the manufacturing process. This study aims to use optimization techniques such as 
flux variability analysis (FVA) and parsimonious flux balance analysis (pFBA) to simulate 
nutrient preferences using genome scale metabolic network models from gut microbes. We 
developed a computational pipeline involving an iterative process of pFBA that can be applied to 
various probiotic strains to develop genome scale metabolic network models (GENREs) and 
nutrient preferences. These nutrient preferences were validated by Biolog data by determining 
the correlation between the nutrient ranks from the pFBA analysis and experimental results. 
Nutrient preferences were simulated for a multispecies probiotic to look at the results in context. 
There was a 20% reduction in the number of consumption-coupled nutrients per gut microbial 
species using the iterative pFBA method over FVA. The iterative pFBA method resulted in 
significantly more production-coupled nutrients overall. Determining the nutrient preferences for 
any gut microbe will allow the nutrient preferences of different microbes to be compared to 
determine if there will be competition for nutrients or if there will be a cooperative process of 
producing and consuming different nutrients. These results will help find combinations of 
species that are best suited for co-culturing. This will serve to lower costs in manufacturing by 
reducing nutrients required per batch and improve scalability by utilizing a more robust 
combination of strains to help make live biotherapeutic strategies more accessible.  
 
INTRODUCTION 
 
The gut microbiome plays a tremendous role in human health, and the amount of genomic data 
on gut microbial strains continues to increase (1).  Methodologies to study these gut microbial 
communities play a large role in furthering our understanding of the functional capacity of the 
gut microbiome and the development of targeted therapies.  
 
One strategy for harnessing the genomic data of gut microbial strains is through use of metabolic 
network models.  Genome-scale metabolic network reconstructions are used to analyze the 
metabolism of organisms using annotated genomes to reconstruct metabolic networks. These 
metabolic networks, combined with metabolomic data, provide insight on essential metabolic 
pathways and key metabolites (2).   
 
These insights can be used to inform the development of therapies that incorporate live bacteria. 
These therapies include the transfer of live gut microbes to the gut using next-generation 
probiotics. Next-generation probiotics are probiotics that act in a pharmaceutical capacity to 
address specific needs, using bacteria grown specifically for that function. To become feasible 
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for large-scale administration, new strategies must be employed to increase manufacturing yield 
of these human gut bacteria for probiotic use (3). 
 
Currently, gut microbes are manufactured individually, in a process called monoculture, and then 
mixed together in a process that is complex, costly, and not scalable. This project presents 
methods to better understand how bacterial species interact, allowing for the potential for species 
to be grown together in co-culture. Interactions between different bacterial species in co-culture 
can improve biomass yield, subsequently lowering the cost of the production. These bacterial 
communities are additionally more robust in response to environmental variations and less 
susceptible to invasions by pathogens than monocultures, resulting in increased scalability (4).  
 
Although GENRES are important tools for modeling systems level metabolic interactions in 
bacterial species, the annotated genomes that are used to build GENRES are often incomplete. 
Therefore, these draft reconstructions often require additional experimental metabolomics data 
and manual curation in order to provide a more accurate representation of organism specific 
metabolism (5). The process of manual curation can take up a significant amount of time, 
therefore, refining models through manual curation for performing metabolic analysis using 
hundreds of bacterial species would not be a good use of time. A recent study, by Moutinho et 
al., proposed a method called PROTEAN (Probabilistic Reconstruction Of constituent Anabolic 
Networks)  which used GENREs that were not well curated to provide biological insights and 
generate nutrient preferences. The study highlights the potential of using automatically generated 
GENREs without extensive curation to predict metabolic interactions in different bacterial 
species (6). Another study by Plata et al., also used automatically generated GENREs for 300 
phylogenetically diverse bacterial species to assess how phenotypic traits have evolved over time 
(7).  
 
In this study, we used optimization techniques such as FVA and pFBA to simulate nutrient 
preferences using automatically reconstructed GENREs. We introduced a method using pFBA in 
an iterative process to generate a set of nutrient preferences that can be examined to understand 
potential interactions between gut microbial species. Using the predicted nutrient preferences, we 
are able to make suggestions for co-culturing conditions and provide a better understanding of 
the metabolic interactions between various gut microbes.  
 
METHODS 
 
Generating Genome-scale Metabolic Network Reconstructions 
 
GENRES were created for gut microbial strains released from a study by Tramontano et al., 
reporting a set of 96 phylogenetically diverse gut microbial strains and another study by Poyet et 
al., reporting a comprehensive collection of multi-omics data and 3832 genome sequences 
corresponding to gut bacterial isolates, which are found in the BROAD Institute OpenBiome 
Microbiome Library (8,9). Annotated genomes of each microbial species are retrieved from the 
PATRIC database by finding the unique genome ID associated with each strain (10). Genome 
IDs for the strains reported in the Tramontano et al. study were found by manually searching 
through PATRIC. Nine strains from the study were not included in the analysis because 
annotated genomes for those strains were not found in PATRIC. Annotated genomes from the 
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Poyet et al. study were retrieved from PATRIC by using their whole genome shotgun (WGS) 
identification numbers and modifying them so that PATRIC genome IDs for these strains could 
be automatically retrieved using the PATRIC command line interface. Mackinac, a software 
package that integrates features from ModelSEED, COBRApy, and PATRIC, was used to 
automatically generate draft genome reconstructions (11). All of the metabolic reactions and 
exchange reactions corresponding to annotated genes were compiled. Missing reactions were 
then gapfilled in complete media, using the ModelSEED servers, to allow the model to consume 
any nutrient available through a transport reaction. The resulting reactions and metabolic 
byproducts are then compiled into a stoichiometric matrix which is represented using a GENRE. 
A summary of this process is outlined in Figure 1. 
 

 
Figure 1: Genome-scale metabolic network reconstruction pipeline. Genome identifiers (WGS IDs from the 
Poyet et al. study) for each gut microbe strain are used to retrieve the corresponding PATRIC genome IDs using the 
PATRIC command line tools. The PATRIC genome IDs are then used to retrieve the annotated genomes. Metabolic 
and exchange reactions corresponding to the annotated genes are compiled using features provided by the software 
package mackinac to create draft reconstructions. Missing reactions are then gapfilled in complete media using 
features from the ModelSEED servers. The resulting reactions and metabolites are then constructed into a GENRE.  
 
Flux Variability Analysis (FVA) 
 
Flux variability analysis (FVA) is used to find the minimum and maximum flux for reactions in 
the network while maintaining some state of the network, such as optimizing growth rate (12). 
Flux variability analysis was performed using the flux_variability_analysis function from the 
package COBRApy (13). The parameter for the fraction of optimum was set at 0.5. Only the 
exchange reactions were included in this analysis. 
 
Parsimonious Flux Balance Analysis (pFBA) 
 
We first used parsimonious flux balance analysis (pFBA), a variant of FBA, to determine the 
flux through each reaction at the maximal growth rate (14). pFBA is based on the assumption 
that under exponential growth, there is a selection for the fastest-growing strains and most 
efficient strains, or strains that use the lowest combined flux (14). pFBA was performed using 
the pfba function from the package COBRApy (13).  
 
Iterative pFBA Method 
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The steps of the method can be seen in Figure 2. In our method, we included only the reactions 
corresponding to constituents of the medium. After performing pFBA an initial time, this method 
then modifies a copy of the model of each microbial species and excludes one metabolite at a 
time from the medium. The first metabolite excluded is the metabolite that had the highest flux 
in the initial pFBA results. These results were obtained using cobrapy. pFBA is run again to 
determine the impact of each metabolite on growth. If the new growth rate drops below 50% of 
the original growth rate when a metabolite is removed, the organism is considered auxotrophic 
for that metabolite and the metabolite is left in the media for future steps. If the new growth rate 
is above this threshold, the metabolite with the next highest flux will be excluded. This process 
will repeat until no more metabolites can be dropped from the model without decreasing growth 
beyond the arbitrary threshold used to establish auxotrophic metabolites. This will result in a list 
of fluxes for the metabolites that together result in a growth level of above 50% of the original 
growth rate. .  
 

 
Figure 2: Iterative pFBA Method. pFBA was applied in an iterative process following the deletion of one 
metabolite at a time from the medium. The threshold for growth was set at 50% of the original growth rate. 
 
Experimental Comparison of Nutrient Preferences 
 
To compare simulated nutrient preferences to experimentally determined preferences Biolog data 
from Plata et al. was used. In Plata et al., the authors maintain a collection of 40 different 
microbial species that are picked to represent a phylogenetically diverse group (7). The authors 
collected data on each species’ ability to metabolize 62 different carbon sources, using Biolog 
GENIII Phenotype microarrays. Biolog GENIII Phenotype microarrays help to describe the 
usage of nutrient sources using a tetrazolium dye to assess metabolic activity. The Biolog data 
provides experimental growth profiles for 62 nutrients across all 40 strains.    
 
The 40 strains in the Plata et al. paper have been previously identified in PATRIC by Medlock 
and Papin (15). The genomes were relayed to Mackinac by their PATRIC identification numbers 
to generate draft reconstructions using modelSEED and COBRApy. Using the FVA and iterative 
pFBA methods as described above, nutrient preferences were determined for these 40 strains.  
 
To compare experimental and simulated results, the intersection between the metabolites 
represented in the Biolog data and the metabolites from simulated nutrient preferences was found 
for each species. These nutrients were then ranked from least to most preferred, with Biolog 
nutrients with the highest metabolic activity and simulated nutrients most highly consumption-
coupled as most preferred. These rankings were then compared using Spearman correlation. The 
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Spearman correlation coefficient for each species was then averaged together for a representative 
correlation metric between simulated and experimental nutrient preferences.  
 
RESULTS 
 
Predicted Nutrient Preferences Using FVA and Iterative pFBA Method 
 
A.             B. 

 
Figure 3: Simulated Nutrient Preferences. The red represents production-coupled nutrients. The blue represents 
production-coupled nutrients. A. The nutrient preferences were generated for 87 gut microbial strains using FVA 
with a threshold of 0.5 resulting including 81 nutrients. B. The nutrient preferences were generated through an 
iterative process using parsimonious FBA to determine the impact of each metabolite on growth for 87 gut microbial 
strains including 69 nutrients. 
 
Nutrient preferences were simulated using FVA and the iterative pFBA method, described in the 
Methods section and shown in Figure 2, for 87 of the 96 strains referenced in the paper by 
Tramontano et al. (8). We were unable to find a genome ID for the other nine strains on 
PATRIC. The preferences as a result of FVA can be seen in Figure 3A, while the preferences 
using the iterative pFBA method can be seen in Figure 3B. The nutrients with fluxes less than 
5% of the maximal flux were removed before displaying. The results of using FVA for 87 gut 
microbial strains included 81 nutrients overall, whereas the results of using the iterative pFBA 
method included 69 nutrients overall. There was a 20% reduction in the number of consumption-
coupled nutrients per gut microbial species using the iterative pFBA method over FVA. The 
iterative pFBA method resulted in significantly more production-coupled nutrients as can be seen 
in Figure 3B. However, FVA remains more consistent than the iterative method with a lower 
variance for the number of nutrients for each species. The iterative method contained an outlier 
that had 47 nutrients for a single species. In addition to comparing the flux variability analysis, 
we compared some of the iterative pFBA results to what is known about microbial consumption 
and production. CO2 is produced by the majority of the species included in the analysis as 
expected. Glycerol has long been known to be produced by microbes, and the results match this 
with 35 species producing glycerol (16). Overall, the iterative method was successful in 
generating nutrient preferences for the gut microbes to better understand species interactions.  
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Experimental Comparison of Simulated Nutrient Preferences 
 

 
Figure 4: Correlation of experimental and pFBA nutrient preference rankings. The average Spearman 
correlation between rankings was -0.08, indicating little to no correlation between experimental and simulated 
nutrient preferences. Data is clustered at the bottom left due to the limited number of common nutrients and 
subsequent smaller list of rankings per species. 
The number of metabolites in common ranged from 0-2 nutrients for FVA and 0-9 nutrients for 
pFBA, and thus there were not enough common nutrients to adequately compare nutrient 
preference rankings for FVA. The resulting ranking correlation for pFBA can be seen in Figure 
4. The average Spearman correlation among all species for iterative pFBA was -0.08, 
demonstrating no strong correlation between experimental and simulated nutrient preferences. 
This can be attributed primarily to the limited number of common metabolites. Future analysis 
with specific nutrient preferences data for the 150 metabolites identified from pFBA would 
provide more substantial evidence on whether pFBA is a good predictor of nutrient preferences.  
 
Application of Simulating Nutrient Preferences for Similac Strains 
 
Nutrient preferences were simulated using the FVA method and iterative pFBA method for 3 
strains present in Similac, a multispecies probiotic for treating necrotizing enterocolitis in 
preterm infants (17). The predicted nutrients using FVA and iterative pFBA are shown in Figure 
5. The FVA method produced 23 total nutrients and the iterative pFBA produced 20 total 
nutrients, which illustrates the ability of using the iterative pFBA method for limiting total 
nutrients and reactions. In the resulting nutrient preferences using FVA, Xanthine was the only 
metabolite where there was an overlap in consumption-coupled growth and production-coupled 
growth between two species (Bifidobacterium lactis, Streptococcus thermophilus), suggesting 
potential metabolic cooperation. Octadecanoate and sulfate were associated with consumption-
coupled growth for both Streptococcus thermophilus and Bifidobacterium lactis, suggesting 
potential competition between species. In the predicted nutrient preferences using pFBA, there 



 7 

were 3 metabolites (CO2, NH3, and N-acetyl-D-glucosamine) where there was an overlap 
between consumption-coupled growth and production-coupled growth between two of the 
species. Two metabolites (cellobiose, glutamate) were associated with consumption-coupled 
growth between two of the species. In total, there were more incidences of metabolic cooperation 
and competition interactions in the predicted nutrient preferences using iterative pFBA procedure 
than FVA. There were more consumption-coupled metabolites for S. thermophilus in the 
simulated nutrient preferences using FVA than using the iterative pFBA method. However, the 
consumption-coupled metabolites in the simulated nutrient preferences using FVA were not 
considered to be auxotrophic in the simulated nutrient preferences using pFBA. This suggests 
that the metabolites that produce the highest flux in Streptococcus thermophilus are primarily 
consumption-coupled, but they are not necessarily the metabolites that are the most essential for 
the growth of Streptococcus thermophilus. 
  

 
Figure 5: Simulated nutrient preferences for Similac strains. The top heatmap shows the simulated nutrient 
preferences using FVA. The bottom heatmap shows the simulated nutrient preferences using the iterative pFBA 
method. Metabolites shown in red are associated with production-coupled growth, metabolites shown in blue are 
associated with consumption-coupled growth, and metabolites in white have no association to growth. 
 
Comparison of Predicted Nutrient Preferences to Current Media Conditions for Similac Strains 
 
We also compared the predicted nutrient preferences generated by these optimization methods 
with current defined media conditions used to culture these three strains. The three strains are 
most commonly grown in milk mediums (18–20). Due to the prevalence of bifidobacterium 
species in the intestinal microbiota of breastfed infants, multiple studies have shown that culture 
mediums containing human milk oligosaccharides (HMOs) promote increased growth of 
bifidobacterium species (21,22). Since N-acetyl-D-glucosamine is one of the major constituents 
of HMOs, it could explain the potential synergistic behaviour between the production-coupled 
growth of Streptococcus thermophilus and the consumption-coupled growth of Bifidobacterium 
infantis with N-acetyl-D-glucosamine (22). Streptococcus thermophilus grown in milk mediums 
supplemented with yeast extract and peptone has also been shown to produce exopolysaccharides 
composed of N-acetyl-D-glucosamine (23).  
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A study by Letort and Julliard, proposed an optimal minimal chemically defined medium for 
Streptococcus thermophilus growth (24). The medium consisted of 20 components, which 
included one carbohydrate source, four buffer compounds, urea, two metal ions, six vitamins, 
and six amino acids. In addition, they also showed that most strains of Streptococcus 
thermophilus were able to grow in mediums without any branch-chained amino acids. One 
parallel between the predicted nutrient preferences using the iterative pFBA method and the 
medium proposed by Letort and Julliard, is the production of ammonia which is a byproduct of 
urea metabolism. The only amino acid present in the predicted nutrient preferences using the 
iterative pFBA method for Streptococcus thermophilus was glutamate, suggesting that amino 
acids may not be the most essential nutrient for the growth of Streptococcus thermophilus. 
Another study by Oliveira et al. grew Streptococcus thermophilus and Bifidobacterium lactis in 
co-culture using milk mediums supplemented with inulin (18). They showed that growing 
Streptococcus thermophilus and Bifidobacterium lactis in co-culture increased biomass of both 
species relative to their respective monocultures demonstrating a strong case of mutualism 
between the two species rather than enhanced yield via competition avoidance. One of the 
potential causes of  synergistic effects between the two species is the formation of free amino 
acids by lactic acid bacteria which has been shown to increase growth in lactobacilli and 
bifidobacteria strains (18). In addition, the increased viscosity due to the release of 
exopolysaccharides could provide additional protection to the two strains when grown in co-
culture (18). In the simulated nutrient preferences using FVA and iterative pFBA, Streptococcus 
thermophilus and Bifidobacterium lactis had no incidences of potential competition for shared 
nutrients, suggesting potential synergistic effects when grown together. In addition, 
Streptococcus thermophilus and Bifidobacterium lactis have been administered in clinical studies 
as a synbiotic blend to improve gut function and sepsis in critically ill patients, and reduce 
antibiotic-associated diarrhea in infants (25,26).  

  
DISCUSSION 
 
We developed a computational pipeline involving an iterative process of pFBA that can be 
applied to various probiotic strains to develop genome scale metabolic network models 
(GENREs) and nutrient preferences. The iterative pFBA method is able to predict relative 
nutrient preferences for any microbe that has an available genome on PATRIC or the genome 
can be collected and added to PATRIC. This pipeline to determine the nutrient preferences for 
any gut microbe will allow the preferences of different microbes to be compared to predict if 
there will be competition for nutrients or if there will be a cooperative process of producing and 
consuming different nutrients. This knowledge will allow a determination to be made as to 
whether these different microbial species are likely to grow successfully together in co-culture. 
This will also provide the ideal media components for the co-culture for both or all species to 
achieve growth.  
 
The iterative pFBA method was better suited for our goals than FVA. FVA has been previously 
used for classifying strains based on their differences, exploring alternate solutions, and showing 
the potential consumption patterns of different species (27–29). The increased number of  
production-coupled nutrients as a result of the iterative pFBA method suggests this method will 
be able to determine which microbial species may cooperate in co-culture by producing nutrients 
that are required for growth by other species. In addition, there was an average reduction in 
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consumption-coupled nutrients per species with the iterative method.  These predictions will 
allow for the finding of species with reduced rates of competition for nutrients and reduced costs 
due to less components needed in the media. However, FVA consistently returns a more similar 
number of nutrients required while the iterative pFBA process results in a greater range of 
nutrients depending on the species. This suggests that, while on average there is a reduction in 
the number of nutrients required with the iterative method, FVA may still be better suited for use 
on some species. 
 
Additionally, the iterative pFBA methods effectively reduced the total number of predicted 
nutrient preferences for the three Similac strains. After comparing the simulated nutrient 
preferences for the three Similac strains there was general agreement with the media components 
found in literature. Although further experimental validation needs to be done in addition to 
generating metabolomics data for these species, this comparative analysis highlights the potential 
application for using the iterative pFBA method for simulating nutrient preferences to improve 
the manufacturing of multispecies probiotics.  
 
This work utilized genomes retrieved from PATRIC for 87 different gut microbial species. The 
pipeline relies on this access, thus any genomes missing from this service will limit the ability to 
apply this process to any species. While there are currently 331,644 bacterial genomes in 
PATRIC, this does not refer to the number of individual species that are represented. For 
instance, we were unable to find the genomes for five of the original 96 species referenced in 
Tramontano et al. in the PATRIC database. In addition, when genomes are available through 
PATRIC, there are still some concerns as to the quality of the data. PATRIC has five different 
metrics that mark different aspects of the quality, although not all genomes have a value for each 
metric. These five metrics are genome quality, coarse consistency, fine consistency, CheckM 
Completeness, and CheckM Contamination. The PATRIC genomes are analyzed for quality 
automatically when using the Binning Service or Genome Annotation. Their tools determine if 
the genome looks correct based on the functional roles present. The quality is determined by 
whether or not roles occur as predicted. PATRIC uses two other tools to determine the 
completeness and contamination using an updated version of the CheckM algorithm. CheckM 
uses a broader set of marker genes specific to the position of a genome within a reference 
genome tree and information about the collocation of these genes to estimate measures of 
completeness and contamination (30). PATRIC uses another quality tool, EvalCon to determine 
the consistency of the genome (31). Only one of the genomes retrieved for our analysis was 
marked as poor quality, while the other 86 were marked as good quality. The average scores for 
coarse consistency, fine consistency, and completeness were 99, 98, and 99, respectively. There 
were also scores for contamination for 28 of the 87 genomes that averaged to 2.775. While there 
is often concern over the quality of genomes, the genomes on PATRIC that we used were largely 
of good quality. Yet, when this is applied to different species, this will still be a characteristic 
that needs to be watched as an inaccurate genome would change the results for the reconstruction 
and subsequent analyses.  
 
Finally, the number of contigs used in constructing the genome can be another problem. The 
number of contigs is often inversely related to quality (32). We aimed to pick the genomes for 
retrieval from PACTRIC that had a smaller number of contigs, but that was not always possible. 
Over the 87 genomes we used, there was an average of 67 contigs for each genome. While the 
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number of contigs does not solely determine the quality of the genome, the lack of availability of 
genomes created with a small number of contigs limits the ability to use any strain most reliably.  
 
The results are limited by the choice of threshold for both FVA and the iterative pFBA method. 
The fraction_of_optimum threshold for FVA and the threshold used to establish auxotrophic 
organisms for the iterative pFBA were both set at 0.5. These were set to equal values to compare 
the results. Beyond being equal, the thresholds were arbitrarily chosen. The nutrient preferences 
are sensitive to this value for both optimization techniques. More experimentation is needed to 
determine which threshold will achieve the most effective result for replicating the actual 
preferences of the gut microbes.  
 
Differences in the predicted nutrient preferences for the three Similac strains versus the media 
conditions found in literature could be explained by our method of using complete media to 
gapfill missing reactions in the draft reconstructions. Gap filling on complete media allows for 
any metabolite involved in any reaction to contribute to growth regardless of whether those 
metabolites are actually correlated with the growth of the species. Gapfilling these strains using 
media conditions found in literature may provide a more accurate representation of the nutrient 
preferences and metabolic capabilities of these three strains grown in co-culture.  
 
In the future, coupling these results to experimental metabolomics data could help provide a 
better representation of the nutrient preferences of these species. Additionally, adjustments to the 
threshold in the iterative pFBA analysis can also help to further refine the predicted nutrient 
preferences. The method of predicting nutrient preferences exploits metabolic capabilities of gut 
microbial species when they are cultured together, and can be used to rationally design co-
culture combinations for manufacturing multi-species probiotics.   
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