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Abstract 

In the era of Industry 4.0, smart manufacturing systems have witnessed 

unprecedented growth, ushering in a new era of productivity and flexibility. The 

integration of robots into manufacturing environments has been instrumental in 

achieving these advancements. However, the full potential of human-robot 

collaboration (HRC) is yet to be fully realized. This dissertation addresses novel 

approaches to enhance human-robot collaborative efficiency and reduce the 

burden of reprogramming through the application of reinforcement learning (RL)/ 

deep reinforcement learning (DRL) based task scheduling and robot learning from 

demonstration (LfD). 

The first part of this research focuses on the development of an intelligent task 

scheduling framework for HRC leveraging RL. Traditional scheduling techniques 

often struggle to adapt to dynamic manufacturing environments and unforeseen 

disruptions. By applying DRL, our framework dynamically allocates tasks to 

human and robot workers, taking into account real-time factors such as task 

complexity, agent availability and task preferences. Through extensive simulation 

experiments, we demonstrate significant improvements in HRC efficiency and 

adaptability. 

The second part of this dissertation explores the robot LfD in HRC. 

Reprogramming robots for new tasks has traditionally been a time-consuming and 

expert-dependent process. We propose an RL-based LfD approach that enables 

robots to learn new tasks from human demonstrations, reducing the 

reprogramming overhead. To be more specific, we develop a systematic way to 

capture kinematic features of human demonstrations, which can be further 

mapped to all semantically similar tasks. By combining LfD with RL, robots 

acquire the capability to generalize from demonstrations and adapt to variations in 



 

the manufacturing process. This not only reduces reprogramming time but also 

increases the flexibility of smart manufacturing systems. 
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Chapter 1. Introduction 

In smart manufacturing, Human-Robot Collaboration (HRC) stands as a 

pivotal frontier, driving innovation and efficiency in modern industrial systems 

[1]. As Industry 4.0 continues to shape the manufacturing landscape, the efficient 

integration of human and robot workers has garnered substantial attention, fueled 

by the promise of increased productivity and adaptability [2]. However, this 

expected HRC efficiency is often hampered by the challenges in task scheduling 

in complex and dynamic HRC environments and limitations within industrial 

robots that are predominantly pre-programmed and require expert reprogramming 

for tasks that exhibit even marginal deviations from their original tasks [3]–[7]. 

To address these challenges, two pivotal components come into focus: higher-

level task scheduling and lower-level motion planning. 

On one hand, while considerable research and applications have focused on 

task scheduling and planning in HRC systems, many of these studies have 

primarily addressed single-human-single-robot collaboration [8]–[10]. Challenges, 

particularly those related to optimal task scheduling for multiple agents with 

complicate task structures, remain largely unaddressed. Consequently, there is a 

growing trend towards multi-agent and multi-level task scheduling in HRC. 

Recent advances in reinforcement learning (RL) [11], [12] and game theory [13]  

have shown promise in addressing large-scale decision-making problems, 

particularly when modeling systems as multi-agent reinforcement learning 

(MARL) problems [14], [15]. Inspired by this progress, this dissertation 

conceptualizes the HRC assembly process as a chessboard game governed by the 

chessboard mapping rule and the game playing rule. In this approach, task 

constraints are embedded in the chessboard format. The task scheduling problem 

is formulated in a Markov Decision Process (MDP) paradigm, and a Mont Carlo 

Tree Search (MCTS) [16] and a deep MARL algorithm [17] are introduced to 

optimize assembly task completion time. These approaches are demonstrated to 



 

enable efficient task scheduling in HRC assembly, even when dealing with a 

substantial number of tasks and complex task structures. 

On the other hand, in the realm of robot motion planning, existing researches 

have been done by sampling-based methods [18], [19], optimization-based 

methods [20], [21], and reinforcement-learning (RL) based methods [22]. 

However, these methods often demand either expert knowledge in modeling the 

task or substantial data and computational resources to produce motion plans 

effectively. In recent years, the concept of learning from demonstration (LfD) has 

emerged as a promising avenue for robot motion planning within human-robot 

collaboration settings [23]–[26]. Nonetheless, contemporary LfD methods face 

significant hurdles in terms of scalability and adaptability. With the advancements 

of AI, RL/DRL are used in LfD [27]–[30]. However, most RL/DRL based 

methods lack task space understanding and require tons of demonstrations to train 

the learning policy, which incurs significant labor and computational time 

expenses. In this dissertation, a novel RL-based LfD (RL-LfD) method is 

proposed [31], which enables the robot to learn from one single or a few 

demonstrations for all semantically similar task instances. In such a method, the 

lower-level motion planner captures kinematic features of demonstrations in the 

task space and fits these features to different new tasks by a mapping function. RL 

is employed to gain insights of the higher-level task structure and identify 

appropriate demonstrations for learning purposes. This LFD technique is 

expanded to encompass a coordination scheme for the mobile manipulator. This 

coordination scheme integrates both manipulator LfD and mobile base motion 

planning, leading to enhanced execution precision and computational time savings. 

Furthermore, in order to leverage the strengths of both the task space-based 

method and the joint space-based method while mitigating their respective 

shortcomings, we introduce a hybrid motion planning approach. This approach 

combines the task space RL-LfD method with a joint space DRL method. 

Through the utilization of such a method, a significant increase in training 

efficiency is achieved, and the feasibility of the trajectory is guaranteed.  



 

Chapter 2. RL-based Task Scheduling in 

HRC Assembly  

2.1. Background 

Industrial robots have been successfully used to perform repetitive tasks with 

a high precision. However, there are tasks, such as complicated assembly works, 

that are less structured and too complex to be fully automated and thus cannot be 

totally performed by robots. Moreover, evaluation of the performance and the 

flexible adjustment by the human are sometimes necessary, which makes it 

impossible to fully replace humans with robots. Therefore, human–robot 

collaboration (HRC) systems are developed in industry to take advantages of the 

abilities of both humans and robots [32]. Unlike ordinary industrial robotics 

where the environment is structured and known, in HRC systems, the robots 

interact with humans who may potentially have very different skills and 

capabilities [33]. Over the past two decades, a significant number of researches 

has been done on the design of the HRC in manufacturing systems to improve the 

safety, quality, and efficiency of the system [3], [4], [34]–[36]. Since its 

declaration in late 1990s [37], the collaborative robots or cobots have been 

playing an increasingly significant role in the HRC in manufacturing systems as 

the assistants for humans [38],[39]. However, the traditional viewpoint has been 

mostly focused on the development of the hardware [40],[41], which results in 

machine-driven collaboration with less consideration of the function flexibility of 

the cobots. These studies are human-centralized, in which the cobots are limited 

to the scheme designed by humans and programmed based on the human domain 

knowledge, guidance or expert experience. Cobots have no self-learning 

capability, let alone the ability of self-organizing and the superhuman decision 

making that may surpass the existing models. Therefore, to explore a better 

method to accomplish a given task with the minimum workload, it is desired to 



 

develop human–robot systems in which the cobots can better cooperate with 

humans in a more autonomous way. The cobots will not be supposed to be 

regarded as only working tools anymore, but to have their own abilities to judge 

the system states with corresponding decision-making capability and are able to 

adapt themselves to various levels of the human operators. 

The assembly work in manufacturing is significantly important, which 

integrates parts and components to realize the final products. The application of 

HRC in complex, continually changing and variety-oriented assembly processes is 

still limited. One of the main challenges is that the HRC assembly environment is 

complex and dynamic. Although there might be a list of assembly tasks, the tasks 

are not necessarily in sequential order and many tasks can be performed in 

parallel, and some shared tasks can be taken by either human operators or robots. 

With the uncertainties involving human operator’s performance level and other 

random disruptions in plant floor (e.g., machine tool random failure), the decision 

on which tasks to be taken by what available resource, i.e. robots or human 

operators, and in what sequences, will have profound influence on the 

productivity of the assembly process. The current practice is mostly a manual 

process that heavily depends on human experience. The cobot is pre-programmed 

to perform repetitive tasks in limited assembly process. When assembly tasks 

change, the whole system must be reprogrammed by robotics experts, while 

operators working on the floor usually do not possess the expertise to reprogram 

the system. This requires the design of more intelligent cobot for the HRC in 

manufacturing assembly process. 

A large amount of the latest existing HRC studies on efficiency and safety of 

the system are trajectory based, focusing on the human plan recognition and the 

prediction of human motions [42], [43]. However, most of the trajectory-based 

studies are human-centralized, aiming at developing an adaptive robot assistant on 

a lower level. Although the robot can be developed very smart and sensitive to 

human behaviors, how to improve the hybrid human-robot performance on a 

system level is still illusive. Therefore, it is essential to allocate and dispatch the 



 

tasks in a systematic way combining robots’ precision, velocity and predictability 

with humans’ intelligence and skills to achieve a hybrid solution to optimize the 

system performance according to a given criterion (e.g., time and energy 

consumption). Several constraints have to be considered, such as the ability of the 

resources to perform a task, the availability of all the necessary tools, and the time 

required by each of the resource for the performing the tasks. 

In HRC assembly, real-time planning and scheduling play a key role in the 

generation of a plan and its robust execution. In order to cope with the presence of 

human in the loop, the task plan is generally constructed at an abstract, high and 

discrete level and continuously evaluated to decide how and when to execute a 

planned task, considering temporal or causal constraints, spatial constraints and 

controllable or uncontrollable activities [44]. For larger task spaces and more 

complex task structures, the application of mathematical optimization to the job 

dispatching problem will be NP hard.  

With the emerging of smart manufacturing of Industrie 4.0 in recent years, 

plenty of advanced approaches have been developed in system control and 

decision making [45], in which the application of machine learning (ML) is the 

most impressive part with increasingly powerful algorithms. For example, in 

scheduling, tons of research have been done using reinforcement learning (RL) 

[46]–[48]. In the past, the traditional RL methods are commonly limited to low-

dimension problems. In recent years, game-theoretic and RL models and 

methodologies are widely applied to the multi-agent task scheduling problems 

[49]. It is believed that the equilibrium concept in game theories and multi-agent 

training methods are highly potent in dealing with multi-constraint and multi-

agent optimization problems. For example, [50] introduces a Q-learning based 

approach for obtaining Nash equilibria in general-sum stochastic games. Although 

the proof of convergence of the algorithm is provided for games with finite game 

and action spaces, their approach is computationally infeasible for all but the 

simplest examples. Above all, existing approaches are usually applicable within a 

very small task space or restricted by prior expert's knowledge from static global 



 

point of view, which cannot appropriately describe the dynamic process of task 

scheduling in HRC. It is well noted that the multi-agent task scheduling in HRC is 

an NP-hard problem [51], therefore, it will be extremely time-consuming to yield 

an optimal working sequence through traversal-based algorithms for a large task 

space and complex task structures. 

Over the past few years, the development of deep neural networks (DNNs) 

[11] and significant advances of deep reinforcement learning (DRL) have been 

witnessed in lots of outstanding large-scale sequential decision-making problems 

[11], [12], [52], [53]. Notably, lots of successful DRL applications model the 

systems as MARL problems. Inspired by self-play algorithm of Alphago Zero 

[12], we formulate the manufacturing assembly process as a chessboard game 

with the specific assembly rules determined by the required constraints. By 

integrating RL and deep neural network, we can take up the challenge to study the 

decision making and workload scheduling for both humans and cobots in HRC 

manufacturing systems.  

2.2. Problem Description 

2.2.1. HRC Assembly Problem Description 

In the human-robot collaborative assembly system, the assembly tasks can be 

distinguished into different categories based on the evaluation of their physical 

properties and assembly characteristics [24]. To take the advantages of both 

human and robots, tasks in the human-robot collaborative assembly system can be 

categorized into three types: type I representing the tasks can be done by humans 

only, type II representing the tasks can be done by robots only, and type III 

representing the tasks can be done by either humans or robots. In this research, we 

do not focus on the task categorization and assume that the task type is given for 

specific assembly processes. For example, in a desk assembly process as shown in 

Fig. 2.1, tasks such as placing screws can be treated as type I tasks because 

humans are more flexible and faster to place screws into assembly holes. As 

robots can fasten screws much faster than humans, screwing tasks can be 



 

classified as type II tasks. Tasks like flipping and rotating are regarded as type III 

tasks as they can either be done by humans or robots. 

Typically, given a product, the plan of assembly is generated with a very 

rough assembly sequence based on physical constraints due to the product design, 

experts’ experience or just by the preference of designers. However, there are still 

many possibilities to improve the assembly efficiency such as when to assign the 

tasks to the proper agents (i.e., humans or robots) and whether a human or robot 

needs to take on a type III task. Subsequently, for HRC assembly, it is significant 

to develop an adaptive method that determines the optimal task scheduling 

policies according to real-time system states.  

In this research, the problem to solve can be described as: under a multi-agent 

HRC assembly environment, develop a method to find the optimal real-time task 

scheduling policy, such that the overall completion time for the entire assembly is 

minimized.  

 

 
Figure 2.1. Diagram of decomposing the product in the human-robot collaborative assembly into 

tasks for humans, robots or both with a rough assembly sequence 

2.2.2. Assembly Chessboard Game Framework 

First of all, to solve the HRC task scheduling problem described above, the 

task information and constraints are intended to be formatted into a matrix. Using 



 

this matrix as an input, the advanced deep learning method can be used to 

determine the optimal task sequence and task assignment, especially for type III 

tasks. Inspired by Alpha Go, the task structure of HRC assembly is formatted into 

a chessboard with three types of stones representing three types of tasks as shown 

in Fig. 2.2 (a). The relations of dependent tasks and/or concurrent tasks are 

embedded in the assembly chessboard using the chessboard mapping rules along 

with specific game playing rules, which can perfectly reflect the assembly process.  

To take advantage of the assembly chessboard, the following assumptions are 

made in this research: 

1. Each stone represents a minimum task or a subtask that can be done by 

only one agent at a time. 

2. There are no conflicts among tasks or subtasks. 

Chessboard mapping rules: 

1. The chessboard has 𝑤 × ℎ grids, where the width 𝑤 is determined by the 

number of parallel tasks at an assembly step that has the maximum parallel 

tasks among all assembly steps, and the height ℎ is determined by the 

number of sequential steps for the entire assembly. 

2. Black stones represent type I tasks. 

3. White stones represent type II tasks. 

4. Grey stones represent type III tasks. 

5. By going through each branch of the hierarchical task tree, the stones 

representing corresponding tasks are mapped into the chessboard with one 

stone occupying one grid in the chessboard. 

6. Tasks with no sequential constraints, are placed in the same row of the 

chessboard. 



 

7. Tasks with sequential constraints, i.e., tasks of on the same branch of the 

task tree, are placed in the same column with prior tasks being set in the 

lower row of the chessboard. 

8. After all tasks in the hierarchical task tree are mapped into the chessboard, 

adjacent stones representing the same task can be merged into a untied one. 

Chessboard game playing rules: 
 
1. Players can only pick corresponding stones from the bottom row of the 

chessboard when they are available. 

2. Each player can only pick one stone at a time. 

3. The stone in the bottom row can only be picked when there are no stones 

representing the same task in upper rows. 

4. Taking the stone away from the chessboard will cost the player the same 

associated time needed for the task that the stone represents. 

5. When a stone in the bottom row is taken away, all upper stones within the 

same column will fall down one grid if the stones occupy the same size of 

the grid cells. 

6. The game starts after mapping all assembly tasks into the chessboard 

with corresponding stones and ends until no stones left in the chessboard. 

 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.2. Diagrams of the format and transitions of the assembly chessboard. (a) Diagram of 

mapping the assembly process in Fig. 2.1 into the assembly chessboard based on the 

corresponding hierarchical task tree. (b) Diagram of how to merge the adjacent stones representing 

the same task in the same row into a united one. (c) The state of the assembly process and scheme 

of state transitions. (d) Task matrices of the human agent and the corresponding matrix 

transformation during the game playing. 

 

To illustrate the chessboard mapping rules and game playing rules, the desk 

assembly shown in Fig. 2.1 is taken as an example. In the first part of assembly, 

human workers are supposed to place the screw S1, S2, S3 and S4 into assembly 



 

holes so that robots can fasten them afterwards. Such placing-and-fastening tasks 

have sequential constraints. However, which screw to be assembled first has no 

specific sequential constraints. Therefore, according to the mapping rules, 𝐴1 to 

𝐴4 representing task 1 to task 4 are parallel tasks and should be placed into the 

first row of the chessboard. As sequential tasks, 𝐵1 to 𝐵4 representing task 5 to 

task 8 are placed into the corresponding columns of 𝐴1 to 𝐴4 but in the second 

row on the chessboard. After screw S1 and S2 are fastened into assembly holes, 

the left leg of the desk needs to be flipped for screw S5 and S6 on the other side 

of the leg to be assembled. As the flipping work 𝐶1 has sequential constraints with 

both 𝐵1  and 𝐵2 , based on the mapping rules, it will be placed into the same 

column of both 𝐵1 and 𝐵2. In this way, 𝐶1 occupies two grids in the third row. 

Same rules apply to 𝐶2, the parallel task of 𝐶1.  The whole pattern of assembly 

chessboard is initialized as shown in the first figure of Fig. 2.2 (c).  

After tasks are initialized in the chessboard, the HRC assembly process can be 

analogized by playing the chessboard game under the playing rules. For example, 

if the first task 𝐴1 is picked and finished by a human operator, the corresponding 

stone 𝐴1 will be removed. Consequently, the upper row stone 𝐵1 will move down 

to the bottom row as shown in the second figure of Fig. 2.2 (c). It means that at 

this moment stone 𝐵1 can be done at the same time or at the same level of other 

black stone tasks at the bottom row. Note that stone 𝐶1   and all upper stones 

cannot move down at this time, since stone 𝐶1 occupies two grid cells but only 

one stone below it falls down. Next, if stone 𝐴2  is picked, then stone 𝐵2  will 

move down one row to fill the bottom grid cell and consequently stone 𝐶1 and all 

upper stones will also move down as shown in the third figure of Fig. 2.2 (c).  

Applying the mapping rules and game playing rules above, the task structure 

at any time moment 𝑡 can be formulated into a  𝑤 × ℎ state matrix 𝑠𝑡 as shown in 

Fig. 2.2 (d). The assembly will start from the bottom row, i.e., the 5th row in Fig. 

2.2 (d). Take one human agent as an example, the positive numbers in matrices in 

Fig. 2.2 (d) represent the completion time for corresponding subtasks. To bias 

tasks that might fit better for human operator’s capability (type I tasks) or for 



 

robot’s advantages (type II tasks), the completion time of human agents for type II 

tasks are set to be a large number such as 999 minutes and the completion time of 

robot agents for type I tasks are also set to be 999 minutes. 0 in the matrix denotes 

that there is no task in corresponding position. -1 in the matrix denotes a bounding 

relation with its previous cell. For example, in Fig. 2.2 (c), stone 𝐶1 takes two 

grids. Correspondingly, in matrix 𝑠0, 𝑠0(3,1) = 2 represents that it will take the 

human agent 2 minutes to finish task 𝐶1 . 𝑠0(3,2) is set as -1 since no task is 

needed in this cell but it is bounded with the task in 𝑠0(3,1) as a precondition for 

the tasks to be performed in the next row, i.e., row 2 in the example of Fig. 2.2 (d).  

In some special cases, there exist different task dependency relations and 

mixed-logic relations for tasks across different task trees. Following the mapping 

rules, these special structures can also be mapped to chessboards, as shown in Fig. 

2.3 (a) and (b). It is noticed that, in these scenarios, stones representing the same 

task may not be put into the same row, e.g., 𝑇7  and 𝑇6 in Fig. 2.3 (a), because of 

the special task structure. In these cases, one of stones representing the same task 

may fall to the bottom row during the game process while there are still stones 

representing the same task left in upper rows. In this situation, the game playing 

rule 3 works to prevent the stone to be taken away. For example, suppose that the 

working sequence for tasks in Fig. 2.3 (b) is  𝑇1 → 𝑇2 → ⋯. As shown in Fig. 2.3 

(c), after 𝑇1  is finished and the stone representing 𝑇1  is taken away, the stone 

representing 𝑇5 in the same column falls down to the bottom row. However, from 

the hierarchical task tree we know that 𝑇5 can only be done after 𝑇1 and 𝑇3 are 

both finished. At this time, based on the game playing rule, the stone 𝑇5 in the 

bottom row cannot be picked because there is still one stone representing 𝑇5 in 

Row 3, Column 3. The same rule will be applied to 𝑇6  when the stone 

representing 𝑇2 is taken away.  

Remark 1: Using chessboard mapping rules and game playing rules, most 

common assembly processes can be modelled using this assembly chessboard. 

Although there might be some limitations in representing the task conflicts and 

other complicated task relations, the approach proposed in this research is 



 

sufficient to address most assembly problems in the real world. More importantly, 

the proposed chessboard provides a systematic way to represent largely erratic 

assembly processes in an intuitive and concise manner, which lays the foundation 

for the HRC assembly task planning based on state-of-the-art deep learning 

techniques. 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3. Mapping the tasks in the hierarchical task tree into the chessboard with (a) task 

dependency relations and (b) mixed logic relations across tasks of different hierarchical tasks trees. 

(c) Working flow of assembly tasks. 

The mathematical notations and assumptions used in this research are defined 

as the following: 

1. 𝑇𝐾𝑢 , 𝑢 = 1,2, … , 𝑈, represents the 𝑢𝑡ℎ task with a total of 𝑈 tasks.  

2. 𝐴𝑔𝑖 ,  𝑖 = 1,2, … , 𝑛 , represents the 𝑖𝑡ℎ  agent. 𝐴𝑔𝑖 =



 

{
0,  the 𝑖th agent is a robot

1, the 𝑖𝑡ℎ agent is a human
 

3. 𝑇𝑢
𝑖, represents the 𝑖𝑡ℎ agent’s average completion time on task 𝑇𝐾𝑢. 

4. 𝑑𝑇𝐾𝑢

𝑖 (𝑡), represents the remaining time for an agent 𝐴𝑔𝑖 to finish a task 

𝑇𝐾𝑢 at time 𝑡. For example, if a task 𝐴𝑖 has 𝑇𝐴𝑖
= 30 𝑚𝑖𝑛, at time 𝑡 it has 

already been done by the operator ℎ for 10 min, then 𝑑𝑇𝐾𝑢

𝑖 (𝑡) = 20 𝑚𝑖𝑛. 

5. 𝐻𝑖(𝑡) ∈ {0,1}, represents the availability of the agent  𝐴𝑔𝑖  at time 𝑡. If 

𝐴𝑔𝑖 is working on task 𝑇𝐾𝑢, then 𝐻𝑖 equals to 1. Otherwise, it is set to be 

0, i.e. 

6. 𝐻𝑖(𝑡) = {
0, 𝑑𝑇𝐾𝑢

𝑖 (𝑡) = 0

1, 𝑑𝑇𝐾𝑢

𝑖 (𝑡) > 0
 . 

7. Humans have the priority of selecting actions over robots when they are 

available simultaneously. 

8. Each agent can be assigned to only one task at a time. 

9. Each task should be finished by only one agent. 

10. At any time 𝑡, the information of each agent is transparent to all other 

agents. 

11. The time each agent takes to complete a given task is random. Agent 

𝐴𝑔𝑖’s completion time for 𝑢𝑡ℎ task 𝑇𝑢
𝑖~Pr (𝑇𝑢

𝑖 = 𝑥) follows a probability 

distribution, e.g., normal distribution. 

2.3. HRC Task Scheduling based on Single Agent RL 



 

2.3.1. MDP Formulation 

The formatting of the HRC assembly process to the assembly chessboard 

game playing provides great convenience for the task scheduling problem to 

perfectly fit the Markov Decision Process (MDP) paradigm, which is the most 

common framework for RL. The state, action and reward function of the MDP are 

defined as following. 

In our task scheduling problem, at any time  𝑡 the state of the chess game 𝑠𝑡 

consists of two parts. One is the task information on the chessboard such as the 

pattern of the chessboard and the remaining time of tasks on the chessboard, and 

the other is the availability of the human and robot. The state 𝑠𝑡 can be defined as: 

𝑠𝑡 = [𝑝1(𝑡), … , 𝑝𝑄(𝑡), 𝑑1(𝑡), … , 𝑑𝑄(𝑡), 𝐻1(𝑡), . . , 𝐻𝑀(𝑡), 𝑅1(𝑡), … , 𝑅𝑁(𝑡)] (2.1) 

where 𝑝𝑖(𝑡) = (𝑥𝑖 , 𝑦𝑖) is the position of the 𝑖𝑡ℎ  task on the chessboard; 𝑑𝑖(𝑡) ∈

(0, 𝑇𝑖] is the remaining time of the 𝑖𝑡ℎ  task; 𝐻𝑖(𝑡) ∈ [0, 𝑈] is the availability of 

the 𝑖𝑡ℎ human operator and 𝑅𝑖(𝑡) ∈ [0, 𝑈] is the availability of the 𝑖𝑡ℎ robot. 

For each state 𝑠𝑡, each available agent can either pick a task to finish or just 

wait and take no actions. Thus, the actions of agent 𝐴𝑔𝑖 at time 𝑡 can be defined 

as:

𝑎𝑡
𝑖 = {  0,     𝑖𝑓 𝐴𝑔𝑖 𝑡𝑎𝑘𝑒𝑠 𝑛𝑜 𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝐾𝑢,     𝑖𝑓 𝐴𝑔𝑖 𝑝𝑖𝑐𝑘𝑠 𝑇𝑘𝑢               
(2.2) 

In this problem, the final goal for all agents is to work cooperatively to 

minimize the overall completion time of all tasks. Therefore, the reward function 

𝑟𝑡
𝑖 for each agent 𝐴𝑔𝑖 should be directly related to the completion time 𝐶𝑇. The 

reward function is defined as: 

𝑟𝑡
𝑖 = {

0, 𝑡 < 𝐶𝑇
−𝐶𝑇, 𝑡 = 𝐶𝑇

(2.3) 

From the initial state 𝑠0 to the terminal state 𝑠𝑒𝑛𝑑, all the taken actions consist 

an action route 𝑙 denoted as 𝒂𝑙 = { 𝑎(𝑠0), … , 𝑎(𝑠𝑡), … , 𝑎(𝑠𝑒𝑛𝑑)}. Our goal is to 

find the optimal HRC policy to maximize the accumulated reward 𝑟𝑙 = ∑ 𝑟𝑡
𝑒𝑛𝑑
𝑡=0 , 

so as to minimize the total job completion time. 



 

It is noted that for route 𝑙, there are 𝑂𝑙 = ∏ 𝑂𝑠𝑡

𝑒𝑛𝑑
𝑡=0  possible combinations of 

humans’ and robots’ actions, in which 𝑂𝑠𝑡
 is the combinations of humans’ and 

robots’ actions in state 𝑠𝑡. For the example of the desk assembly, this 𝑂𝑙 can be a 

huge number just like in the game of chess, the options of moves are around 3580. 

For more complicated assembly jobs, such as automotive assembly, this can be an 

even larger number. Therefore, the assembly-chessboard game problem has an 

ultra-high dimension. A proper algorithm has to be developed to solve this 

problem both effectively and efficiently. 

2.3.2. Monte Carlo Tree Search Convolutional Neural Network 

(MCTS-CNN) based Method for HRC Task Assembly 

Based on the problem formulation in previous section, it has quite a few 

similarities to traditional board games, e.g. the game of Go. For example, it also 

has finite moves, and one agent’s action inevitably affect the other’s situation. 

Therefore, it is possible to leverage the successful solutions to traditional board 

games to solve our assembly-chessboard problem. In this section, we present the 

MCTS-CNN algorithm used in Alphago Zero to obtain the optimal HRC policy. 

In the MCTS algorithm, the information of the system state 𝑠𝑡 defined above 

is saved in each node 𝑠𝑡 of the searching tree. For all legal actions 𝑎𝑡 ∈ 𝑎(𝑠𝑡), the 

corresponding edges (𝑠𝑡, 𝑎𝑡) are connected to the node 𝑠𝑡. The information saved 

in each state is a set as: 

{𝑁(𝑠𝑡, 𝑎𝑡), 𝑊(𝑠𝑡, 𝑎𝑡), 𝑃(𝑠𝑡, 𝑎𝑡)} (2.4) 

in which, 𝑁(𝑠𝑡, 𝑎𝑡) is the visit count of the edge, 𝑊(𝑠𝑡, 𝑎𝑡) is the total action 

value and 𝑃(𝑠𝑡, 𝑎𝑡) is the probability in searching the edge (𝑠𝑡, 𝑎𝑡). The searching 

process always starts from the root node 𝑠0 of the searching tree and ends until a 

leaf node 𝑠𝐿  is reached. And the action 𝑎 is selected in the state 𝑠𝑡  based on a 

variant of the PUCT algorithm, which can be defined as: 

𝑎 = arg max
𝑎𝑡

(𝑄(𝑠𝑡, 𝑎𝑡) + 𝑈(𝑠𝑡, 𝑎𝑡)) (2.5) 



 

in which 𝑄(𝑠𝑡, 𝑎𝑡) = 𝑊(𝑠𝑡, 𝑎𝑡) 𝑁(𝑠𝑡, 𝑎𝑡)⁄  is the state value and 𝑈(𝑠𝑡, 𝑎𝑡) =

𝑐𝑃(𝑠𝑡, 𝑎𝑡) √∑ 𝑁(𝑠𝑡, 𝑏𝑡)𝑏𝑡
(1 + 𝑁(𝑠𝑡, 𝑎𝑡))⁄  is the exploration part to balance the 

exploitation part which is 𝑄(𝑠𝑡, 𝑎𝑡), 𝑐 is a constant that determines the level of 

exploration. When the leaf node is reached, it is always expanded and evaluated. 

Then, a reward 𝑣 is backed up through each previous edge of the searching route. 

The visit count of these edges will be incremented as 𝑁(𝑠𝑡, 𝑎𝑡) = 𝑁(𝑠𝑡, 𝑎𝑡) + 1 

and the action value will be updated as 𝑊(𝑠𝑡, 𝑎𝑡) = 𝑊(𝑠𝑡, 𝑎𝑡) + 𝑣 . After a 

number of searches from the root, the agent takes an action in the root state 𝑠0 

based on the best policy 𝜋𝑜𝑝𝑡(𝑎|𝑠0) = max
𝑎𝑡

(𝑁(𝑠0, 𝑎𝑡) ∑ 𝑁(𝑠0, 𝑏𝑡)𝑏𝑡
⁄ ) 

proportional to the edge’s visit count. Then, after the action is done, the system 

will transit to a new state 𝑠1. Use this new state 𝑠1 as the new root node and the 

subtree below node 𝑠1 is retained as the new searching tree. All other parts of the 

previous searching tree are discarded. In this way, we can find the optimal policy 

for the agent scheduling in each state. 

The assembly-chessboard game has an immense state space, and therefore the 

deep neural network helps tackle the dimensional issue with its powerful 

approximation ability. In addition, when the assembly job is represented with the 

chessboard, then the spatial correlation within the board is of great significance. 

Therefore, CNN is an ideal candidate to work with MCTS to solve the assembly-

chessboard problem. 

The CNN 𝑓𝜃(∗)  takes all the information stored in the raw chessboard 

representation 𝑠 as input, and outputs both move probabilities and a state value, 

i.e. (𝑝, 𝑣) = 𝑓𝜃(𝑠). The vector of move probabilities 𝑝 represents the probability 

of selecting each action. The value 𝑣 is a scalar evaluation, estimating the task 

completion time starting from current state 𝑠. This neural network combines the 

roles of both policy network and value network into a single architecture. 

The CNN is trained with the data gained from MCTS. In each state 𝑠𝑡, the 

MCTS search outputs policies π of taking actions. The actions selected by these 

policies are usually stronger than those selected from the CNN with the raw 



 

probabilities. Therefore, MCTS can be regarded as a powerful policy 

improvement operator. The main idea of our RL algorithm is to use these search 

operators repeatedly in a policy iteration procedure, in which the neural network’s 

parameters are updated to make the move probabilities and the state value 

(𝑝, 𝑣) = 𝑓𝜃(𝑠) more closely match the improved search probabilities and the real 

task completion time; these new parameters are used in the next iteration(𝑝, 𝑣) =

𝑓𝜃(𝑠) to more closely match the improved search probabilities and the real task 

completion time. Fig. 2.4 illustrates the training pipeline. 

 

Figure 2.4. Diagram of the Monte Carlo Tree Search and the Convolutional Neural Network 
training the assembly chessboard. 

2.3.3. Numerical Case Study 

With the understanding of rules in the chessboard, we choose to assemble a 

height adjustable standing desk shown as an example. The job types are defined 

based on the following rational: 

• Matching and placing work can only be done by humans; 

• Screwing, drilling and gumming work can only be done by robots; 

• Flipping and rotating work can be done by either humans and robots. 

There are 27 robot-only tasks, 29 human-only tasks, and 4 human-or-robot 

tasks. After fitting the tasks into the chessboard according to the rough assembly 

sequence, an assembly chessboard is obtained with height ℎ = 15 and width 𝑤 =



 

8. There is one robot operator and one human operator cooperating with each 

other to complete the assembly job. The neural network architecture used in this 

case is defined as the followings: 

• Input layer with size ℎ × 𝑤 × 𝑑 = 15 × 8 × 3; 

• Convolutional layer with 10 filters of kernel size 2 × 2 with stride 1 and Relu activation; 

• Max-pooling layer with size 2 × 2; 

• Convolutional layer with 10 filters of kernel size 2 × 2 with stride 1 and Relu activation; 

• Max-pooling layer with size 2 × 2; 

• Flattening layer; 

• Dense layer of 128 units with Relu activation; 

• First output from the dense layer: classification layer of size 𝑤 with softmax activation 

function, and each indicates the probability choosing the 𝑤𝑡ℎ task; 

• Second output from the dense layer: a single regression variable predicting the state value. 

For MCTS, the maximum search depth is set to be 3 and maximum searches is 

limited to 30 times for one root node. The parameter for the UCT algorithm is 

chosen to be 𝑐 = 100. We run the program in a PC with Intel Core I5-8400, UHD 

Graphics 630 and 12G RAM. The training progress is as shown in Fig. 2.5 with 

one specific completion time for each task. We can observe that the proposed 

algorithm steadily makes progress despite of some fluctuations during the first 

few iterations. The shortest completion time is reached at the sixth iteration. After 

the sixth iteration, the completion time remains steady as 95.  

 

Figure 2.5. Diagram of the training process 



 

For comparison purpose, two other approaches are considered in this case 

study. One is the exhaustive search, in which we traverse all possible routes; 

while the other one is dynamic programming (DP). It turns out that the exhaustive 

search is not feasible since the trajectories possibilities explodes and finally 

depletes the PC memory. This situation is almost inevitable for a large-scale 

planning problem since the state space explodes exponentially with decision steps. 

The exhaustive search program abruptly stops at step 55, and 5 more steps are yet 

to be traversed. We plot the total route numbers and computing time against the 

decision steps in Fig. 2.6. 

 

Figure 2.6. The computing time before depleting memory in exhaustive search 

To make it computationally feasible, we limit the possible trajectories to 1,000 

by randomly sampling. This approach mimics the scenario when both human 

operator and robot operator randomly choose tasks without considering the goal 

of minimizing the job completion time. However, as shown in Fig. 2.7, the result 

reveals that the shortest completion time is hardly achieved as only one out of 

1,000 gives the completion time of 95. The average job completion time is 100.58, 

which is far more than the shortest completion time obtained by the proposed 

algorithm in this research. Therefore, the proposed algorithm is effective in 

optimizing the completion time and more powerful in saving computing time 

compared with exhaustive search. 
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Figure 2.7. Histogram of the completion time with 1000 trajectories in total.  

As for the other comparison approach, we compare our proposed approach 

with DP in the ability of obtaining the optimal policy in saving the completion 

time. As shown in Fig. 2.8 with one specific completion time for each task, we 

can observe that give enough computing time, both our proposed approach and 

DP will obtain the optimal policy in reducing the overall completion time of all 

tasks. While our proposed method in more efficient in achieving the best working 

sequence.  

 

Figure 2.8.  Comparison of CNN based MCTS method and DP in overall completion time under 

the scenario of one specific completion time for each task. Given enough computing time, both 

approaches will obtain the same overall completion time while the CNN based MCTS method 

performs better in saving computing time. 

To demonstrate our proposed approach in real-time decision making, we also 

change the completion time of each task to a stochastic one following the normal 

distribution with the mean of the original specific completion time and the 
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standard deviation of 1 minute. To make comparison, both DP and our CNN 

based MCTS are given the same computing time (e.g. 1 second for each move).  

As shown in Fig. 2.9 (a). the overall completion time of our proposed approach 

converges at around 95 mins after 30 iterations. Although it takes much longer for 

the approach to converge than the specific completion time scenario, our approach 

shows the self-improvement in reducing the overall completion time.  However, 

DP does not reflect the same properties as the CNN based MCTS method. We 

also investigate the completion time of both our proposed approach and DP given 

the same computing time with different size of decisions as shown in Fig. 2.9 (b). 

We can observe that our method shows more obvious advantages over DP in 

reducing the overall completion time with the increasing of the decision steps. 

Therefore, our method is demonstrated to be not only effective in real-time task 

planning under stochastic circumstances but also powerful in optimizing the 

overall completion time especially when the decision steps increase.  
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(b) 

Figure 2.9. (a) Comparison of CNN based MCTS method and DP in overall completion time 

under the scenario of stochastic completion time for each task. Given the same computing time, 

the CNN based MCTS method performs better in reducing the overall completion time. (b) 

Differences of the overall completion time between CNN based MCTS method and DP under the 

environment containing 10, 100, 200 and 300 decision steps. The positive difference in overall 

completion time denotes the overall completion time obtained by DP is more than that of CNN 

based MCTS method. 

2.4. HRC Task Scheduling based on MARL 

2.4.1. MARL Framework in HRC Assembly 

Based on the problem formulations, in the MARL framework, for every state 

𝑠𝑡, each agent will select their own actions 𝑎𝑡
1, … , 𝑎𝑡

𝑛 and receive corresponding 

rewards 𝑟𝑡
𝑖(𝑠𝑡, 𝑎𝑡

1, … , 𝑎𝑡
𝑛).  These actions form a joint action 𝒂𝒕 = (𝑎𝑡

1, … , 𝑎𝑡
𝑛), and 

consequently the state will transit to the next state 𝑠𝑡+1 according to the transition 

probability 𝑝(𝑠𝑡+1|𝑠𝑡, 𝒂𝒕) satisfying ∑ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝒂𝒕) = 1𝑠𝑡+1∈𝑆 . With the goal of 

maximizing their own discounted accumulated rewards, each agent 𝐴𝑔𝑖 select the 

action 𝑎𝑡
𝑖  under the policy 𝜋𝑡

𝑖 , which is the decision-making rule corresponding to 

the probability distribution of the agent’s actions. Let 𝜋𝑖 = (𝜋0 
𝑖 , 𝜋1 

𝑖 , … , 𝜋𝑡
𝑖 , … ) be 

the policy of agent 𝐴𝑔𝑖  for the whole game. Given an initial state 𝑠 , the 

accumulated reward with discount factor 𝛾 ∈ [0,1)  can be represented 



 

as:

𝑣𝑖(𝑠, 𝜋1, … , 𝜋𝑛) = ∑ 𝛾𝑡𝔼(𝑟𝑡
𝑖|𝜋1, … , 𝜋𝑛, 𝑠0 = 𝑠)∞

𝑡=0 (2.6) 

2.4.2. Equilibrium Strategies and Multi-agent Q-learning 

In a Markov game, the Nash equilibrium is a joint policy in which each 

agent’s policy is optimal considering the policies of other agents.  Based on [50], 

in a Markov game, a Nash equilibrium point is defined as a tuple of n policies 

(𝜋∗
1, … , 𝜋∗

𝑛) such that for all 𝑠 ∈ 𝑆 and 𝑖 = 1, … , 𝑛:  

𝑣𝑖(𝑠, 𝜋∗
1, … , 𝜋∗

𝑛) ≥ 𝑣𝑖(𝑠, 𝜋∗
1, … , 𝜋∗

𝑖−1, 𝜋𝑖 , 𝜋∗
𝑖+1, … , 𝜋∗

𝑛) for all 𝜋𝑖 ∈ 𝛱𝑖 (2.7) 

where Π𝑖 represents all available policies for agent 𝐴𝑔𝑖. 

To obtain the equilibrium policies in our HRC assembly problem, the multi-

agent Q-learning method used in [50] is applied. According to [50], a Nash Q-

value is defined as the expected accumulated discounted rewards when all agents 

follow specific Nash equilibrium policies. For agent 𝐴𝑔𝑖, the corresponding Nash 

Q-function 𝑄𝑡∗
𝑖  at state 𝑠𝑡 can be expressed as:  

 

𝑄𝑡∗
𝑖 (𝑠𝑡, 𝒂𝒕) = 𝑟𝑡

𝑖(𝑠𝑡, 𝒂𝒕) + 𝛾 ∑ 𝑝(𝑠𝑡+1|𝑠𝑡, 𝒂𝒕)𝑣𝑡
𝑖(𝑠𝑡, 𝜋∗

1, … , 𝜋∗
𝑛)

𝑠𝑡+1∈𝑆

(2.8) 

where(𝜋∗
1, … , 𝜋∗

𝑛) is the joint equilibrium policy and 𝑟𝑡
𝑖(𝑠𝑡, 𝒂𝒕) is agent 𝐴𝑔𝑖’s one 

step reward in state 𝑠𝑡 under joint action 𝒂𝒕. 

Such extended Q-learning algorithm differs from single-agent Q-learning 

method in using next state’s Q-values to updated current state’s Q-values. In the 

multi-agent Q-learning, agents update their Q-values based on future Nash 

equilibrium payoffs, while in single-agent Q-learning, agents’ Q-values are 

updated with their own payoffs. In other words, the agent has to observe its own 

reward as well as all other agents’ rewards. At 𝑡 = 0, our learning agent 𝐴𝑔𝑖 

learns its Q-value by forming an arbitrary guess, e.g., 𝑄0
𝑖 (𝑠, 𝒂) = 0 for all 𝑠 ∈ 𝑆.  



 

Then, at each time 𝑡 , agent 𝐴𝑔𝑖  updates its Q-value and calculates a Nash 

equilibrium 𝜋∗
1(𝑠𝑡+1) ⋯ 𝜋∗

𝑛(𝑠𝑡+1) for the state 𝑠𝑡+1 according to: 

𝑄𝑡+1
𝑖 (𝑠𝑡+1, 𝒂𝒕+𝟏) = (1 − 𝛼𝑡)𝑄𝑡

𝑖(𝑠𝑡, 𝒂𝒕) + 𝛼𝑡[𝑟𝑡
𝑖 + 𝛾𝑁𝑎𝑠ℎ𝑄𝑡

𝑖(𝑠𝑡+1, 𝒂𝒕+𝟏)] (2.9) 

where

𝑁𝑎𝑠ℎ𝑄𝑡
𝑖(𝑠𝑡+1, 𝒂𝒕+𝟏) = 𝜋∗

1(𝑠𝑡+1) ⋯ 𝜋∗
𝑛(𝑠𝑡+1) ∙  𝑄𝑡

𝑖(𝑠𝑡+1, 𝒂𝒕+𝟏) (2.10) 

is the payoff of agent 𝐴𝑔𝑖 in state 𝑠𝑡+1 for the selected equilibrium. 

According to the definition of the Nash equilibrium, applying the equilibrium 

policy 𝜋∗
1(𝑠𝑡+1) ⋯ 𝜋∗

𝑛(𝑠𝑡+1) , each agent 𝐴𝑔𝑖 ’s payoff will be maximized. 

Therefore, to obtain the equilibrium policy, each agent 𝐴𝑔𝑖 need to know all other 

agents’ 𝑄𝑡
𝑗(𝑠𝑡+1, 𝒂𝒕+𝟏). However, at time 𝑡, other agents’ Q-values are not given. 

Therefore, agent 𝐴𝑔𝑖  has to build its own belief about other agents’ Q-values.  

Same as updating its own Q-value, agent 𝐴𝑔𝑖 guesses 𝑄0
𝑗(𝑠, 𝒂) = 0 for all other 

agents at the beginning. With the propagation of the game, other agents’ actions 

and rewards will be observed and used to updates its belief of all other agents 

𝐴𝑔𝑗’s Q-value as: 

𝑄𝑡+1
𝑗 (𝑠𝑡+1, 𝒂𝒕+𝟏) = (1 − 𝛼𝑡)𝑄𝑡

𝑗(𝑠𝑡, 𝒂𝒕) + 𝛼𝑡[𝑟𝑡
𝑗

+ 𝛾𝑁𝑎𝑠ℎ𝑄𝑡
𝑗(𝑠𝑡+1, 𝒂𝒕+𝟏)] (2.11) 

In addition, the proof of convergence of the optimality, i.e., the convergence of 

(𝑄𝑡
1, … , 𝑄𝑡

𝑛)  to (𝑄∗
1, … , 𝑄∗

𝑛)  has been provided in [50], which will not be 

elaborated in this research. 

2.4.3. Applying DQN to Obtain Task Scheduling Policy 

According to the discussion above, to obtain the equilibrium policy 

(𝜋∗
1, … , 𝜋∗

𝑛), the agent 𝐴𝑔𝑖  has to maintain and update 𝑛 Q-values (𝑄𝑡
1, … , 𝑄𝑡

𝑛). 

Let |𝑆𝑡| represent the number of all applicable states. Suppose that each agents’ 

action space |𝐴𝑡
𝑖 | are the same, i.e., |𝐴𝑡

1| = ⋯ = |𝐴𝑡
𝑛| = |𝐴|. The total number of 

entries in 𝑄𝑡
𝑗
(𝑠𝑡, 𝒂𝒕) is |𝑆𝑡| ∙ |𝐴|𝑛. If all agents’ Q-values are saved in a Q-table, 

the total memory space requirement is 𝑛|𝑆| ∙ |𝐴|𝑛. Therefore, the naive Nash-q 

method proposed in [11] cannot be put into practice when the state space is very 



 

large. The problem with large state spaces is not just the memory needed for large 

tables, but the time needed to fill and search them accurately. 

In recent years, the emergence of DQN algorithms have well addressed the 

scalability issue in Q-learning. It is a stable and scalable approach to complex and 

ultra-high-dimensional RL problems, such as Atari video games. In DQN, the Q-

values are approximated with a neural network 𝜽 , i.e., 𝑄(𝑠, 𝑎1, … , 𝑎𝑛; 𝜽) ≈

𝑄(𝑠, 𝑎1, … , 𝑎𝑛) . Instead of filling a large table, the DQN seeks to iteratively 

update the neural network parameters, which would well approximate the Q-

values until the optimal policy (𝜋∗
1, … , 𝜋∗

𝑛) is obtained eventually. 

A critical question raised here is that can decentralized algorithms be faster 

than its centralized counterpart [25]? In this research, we combine DQN with 

MARL in Section 2.4.2 to generate a decentralized algorithm as shown in 

Algorithm 1. In the proposed DQN-MARL method, to determine the optimal joint 

actions 𝒂𝒕 for each state 𝑠𝑡 , agents are trained parallelly to learn the correlated 

policy (𝜋∗
1, … , 𝜋∗

𝑛) based on the knowledge of other agents’ rewards and actions. 

Suppose there are 𝑛 available agents and 𝑚 tasks at time 𝑡. Since all agents are 

trained parallelly, each agent only needs to consider its own possible allocations 

to tasks, which needs 𝑂(𝑛𝑚)  computational steps to go through all possible 

actions for all the agents. In the contrast, in our previous study [26], all allocations 

of agents’ actions are considered in each step and controlled in a centralized 

fashion, which can be treated as a single-agent reinforcement learning (SARL) 

method. In the DQN-SARL method, it needs 𝑂(𝑚𝑛) computational steps to go 

through all possible actions. Therefore, the DQN-MARL method can outperform 

the DQN-based SARL (DQN-SARL) method in terms of computational 

efficiency, even if the same DQN are applied to the SARL method. For an ultra-

high dimension task scheduling problem with complex task structures in an HRC 

system, both 𝑚 and 𝑛 could be a large number. Consequently, the computational 

efficiency of the DQN-MARL method can be more notably advantageous than 

that of the DQN-SARL method.  



 

 

 

After the offline training using Algorithm 1, the online playing is carried out to implement the 

DQN-MARL algorithm in practice. Given all the inputs and parameters of Algorithm 1 along with 

the chessboard simulator, the parameters 𝜽 of the neural network will be obtained through the 

offline training. Using the trained neural network 𝜽, the final decision-making process of each 

agents’ task scheduling will be launched online based on Procedure 1. Since Procedure 1 only 

contains one forward propagation, the time for one step decision-making in the real-time HRC 

assembly is significantly short (less than 1 second). 



 

2.4.4. Transferring Trained CNN to Broader Product Assembly with 

Different Task Scenarios 

Regarding the neural network 𝜽, the convolutional neural network (CNN), a 

type of neural network that is specialized in processing images or tensors, is 

adopted in the DQN-MARL algorithm. Since tasks in the task scheduling problem 

are mapped into the assembly chessboard, the usage of CNN is motivated by the 

fact that it is able to capture characteristic features (referred to as task features) 

from an image at different levels similar to a human brain. These features can also 

be reserved by CNN even if they are rotated, flipped or shifted [27]. This attribute 

of CNN is very significant in practice since structures of assembly tasks for 

various products in a workshop could be rather similar. These products are 

referred to as a product family in this research. Therefore, the trained CNN can be 

re-used for various products with similar task features to speed up the re-training 

for different product assembly involving different task scenarios. Because using 

the trained CNN, the Q-value for each state and action pair will be generated 

starting from a reasonable number rather than a random one. Consequently, the 

interaction of the task scheduling policy will be sped up to convergence with the 

pre-weighted Q-values. 

For scheduling assembly tasks for various products (or product family), we 

can use the randomly generated patterns of the chessboard to represent a more 

general task scenarios accommodating various products assembly tasks. The 

randomly generated patterns can be used to train DQN to obtain more general task 

scheduling policies to deal with the change of task structures for various products 

assembly. However, this training process could be very time consuming. 

Therefore, a trained CNN from one product assembly can be partially re-used to 

different types of products assembly through adopting the selected trained weights 

based on the understanding of the task features. Fig. 2.10 describes this procedure. 

This method can largely speed up the re-training process for new product 

assembly with different task scenarios, which will be demonstrated through a case 

study in Section 2.4.5.  



 

 

Figure 2.10. Flow chart for applying a trained CNN weights from one assembly product to the 

training process of a new assembly product. 

2.4.5. Numerical Case Study 

In order to validate the effectiveness of the proposed method, following 

numerical experiments and in-depth analysis are conducted based on the assembly 

of a height-adjustable desk shown in Fig. 2.11. The assembly chessboard 

including 29 type I tasks, 20 type II tasks and 4 type III tasks is generated 

randomly with each agent 𝐴𝑔𝑖’s completion time for task 𝑇𝐾𝑢 follows a normal 

distribution 𝒩(𝑇𝑢
𝑖 , 𝜎2)  with 𝜎 = 1 min . For comparison, the naive Nash-Q 

method, dynamic programming (DP) and DQN-SARL method are used as 

alternative ways to solve the same task scheduling problem. In addition, the 

effectiveness of the proposed method for a broader product family assembly with 

similar task instances and a generalized case are also investigated. In this case 

study, two performance metrices are considered: (1) The overall completion time 

to finish the entire assembly tasks. (2) The time that the algorithm needs to 

converge to obtain the steady task scheduling policy. From the case study, three 

significant results can be concluded: (1) The proposed DQN-MARL method is 

effective in optimizing the task scheduling; (2) The proposed DQN-MARL 

method outperforms the naive Nash-Q, DP and DQN-SARL method in terms of 

time needed to obtain the optimal task scheduling policy, and such advantages 

become more prominent when the task space and agent number increases. (3) The 

well-trained CNN from the proposed method can be beneficial to obtaining 



 

optimal task scheduling policies for a broader product family assembly with new 

task instances when task structures are similar. 

For demonstration purpose, it is assumed that the average completion time of 

all human workers are identical and the same assumption works for all robots. To 

distinguish type I tasks from type II and type III tasks, the completion time of 

human agent for type II tasks is set as 999 minutes and robot agent for type I tasks 

as 999 minutes. Given the task parameters, all 53 assembly tasks are mapped into 

an 8 × 15 chessboard as shown in Fig. 2.11.  Using this task structure, the 

completion time of each agent can be easily formatted into a completion time 

matrix and stack all matrices to form a 𝑛𝑡ℎ order tensor as the input layer of the 

CNN in the proposed method. The CNN architecture used in the case study is 

defined as followings: 

• 15 × 8 × n input layer; 

• Convolutional layer with 10 filters of kernel size 2 × 2 ; 

• 2 × 2 Max-pooling layer; 

• Convolutional layer with 10 filters of kernel size 2 × 2 ; 

• 2 × 2 Max-pooling layer; 

• Flattening layer; 

• Dense layer with 128 units and ReLu activation; 

• First output from the dense layer; 

• Second output from the dense layer; 

The capacity of the replay memory 𝑁𝑚𝑒𝑚 is 5,000. The training batch size is 

𝑏 = 32 . The target network replacement frequency 𝐶  is 2,000 episodes. The 

reward discount rate 𝛾 = 0.95. The parameter for 𝜖-greedy is at first set to be 0.8 

and linearly diminished to 0.1 when it reaches 30,000 episodes and fixed to 0.1 

for all subsequent episodes. The proposed algorithm is trained using TensorFlow 



 

with 4 GPUs and 4 CPUs. The training time 𝑡𝑡𝑟𝑎𝑖𝑛  is limited to 𝑇𝑏𝑜𝑢𝑛𝑑 =1200 

minutes. 

 

Figure 2.11. Diagram of tasks mapped into the chessboard. The red cells denote type I tasks. The 

yellow striped cells denote type II tasks. The green gridded cells denote type III tasks. 

To evaluate the effectiveness of the proposed method in obtaining optimal 

HRC task planning policy, three other methods are considered: DQN-SARL 

method, naive Nash-Q learning method, and dynamic programming (DP) method, 

a commonly used value iteration algorithm in dealing with MDP problems. For 

DQN-SARL method, all allocations of human and robot workers are controlled by 

one agent, e.g., at each state 𝑠𝑡, the action 𝑎𝑡 includes all the combinations and 

allocations of the available agents to the tasks in the bottom row of the chessboard. 

The corresponding reward 𝑄𝑡(𝑠𝑡, 𝑎𝑡)  is generated by a CNN with the same 

parameters as that for DQN-MARL method. For naive Nash-Q leaning method, as 

we mentioned in Section 2.4.2, the Q-values of each agent are saved in a Q table. 

For DP method, all possible actions of agents for each state are considered and 

evaluated in a centralized manner. The actions are optimized by backing up 

estimates of the optimally evaluated state values, which are always saved by 

updating the evaluation function.  

In this section’s case study, 100 chessboards are randomly generated with 

different initial completion time of the first 36 and the entire 53 tasks. Although 

the initial task structure of the chessboard is not changed, the completion time of 



 

an agent to finish the task is randomly generated following the normal distribution 

𝒩(𝑇𝑢
𝑖 , 𝜎2) . After certain training periods, the entire completion time for 

assembling the desk tends to be stable for each individual algorithm. Therefore, 

the policy is considered to be obtained for each algorithm, and will be used for 

online task scheduling on additional randomly constructed 100 chessboards. 

First, four aforementioned algorithms are compared in the task scheduling for 

the first 36 tasks and the entire 53 tasks given 3 humans and 3 robots. The 

completion time during the training process for the four algorithms are shown in 

Figs. 2.12 (a) and (c). After the training periods, the trained policies are used for 

online implementation of the first 36 tasks and the entire 53 tasks for the four 

algorithms, as shown in Figs. 2.12  (b) and (d). From Figs. 2.12  (a) and (b), it is 

clear that DQN-based algorithms (i.e., DQN-SARL and DQN-MARL methods) 

outperform the naive Nash-Q method and the DP method in terms of both the 

computational efficiency during the training period and the optimal completion 

time during the online task scheduling. Although there is an obvious difference in 

the effective convergent time between DQN-SARL and DQN-MARL during the 

training period, the difference of the online completion time is not significant 

between the two methods. However, with the number of tasks increasing to 53 as 

shown in Figs. 2.12  (c) and (d), the DQN-MARL method clearly outperforms the 

DQN-SARL method in terms of both the training period needed in reaching a 

steady result and the optimal completion time during the online scheduling.  

Therefore, the proposed DQN-MARL method outperforms other three methods in 

both computational efficiency and the effectiveness for online optimizing the task 

scheduling, and this advantage becomes more notable with the increasing number 

of tasks. 



 

 

Figures 2.12. Diagrams of the offline training (a), (c), (e) and corresponding online 

implementation process (b), (d), (f) with 3 humans and 3robots for the first 18, 36 and the whole 

53 tasks using dynamic programing (square dot red line) naive Nash-Q (long dashed orange line), 

DQN-based SARL (solid blue line) and DQN-based MARL (dashed green line) method.  

Next, we compare the four algorithms with different number of robot agents. 

Fig. 2.13 illustrates the training period of the entire 53 tasks with 1 human and an 

increasing number of robots from 1 to 4. It can be seen that more time is needed 

to find an optimal task scheduling policy with increasing number of agents. The 

proposed DQN-MARL method can still find an optimal policy in a shorter time 

comparing with the other three methods. Since an optimal task scheduling policy 

for any algorithm will take full advantage of agents’ working time, fewer agents 

may lead to a scenario close to that of single agent due to the full utilization of 

agents. When the number of agents increases, the advantage of the DQN-MARL 

becomes more significant, as shown in Figs. 2.13  (a)-(d). It is noted that when 

                                (a)                                                                                                           (b) 

                                (c)                                                                                                           (d) 



 

number of agents 𝑛 = 4 and 𝑛 = 5, it is hard for the non-DQN-based method to 

find an optimal scheduling policy. Moreover, it can be seen that the proposed 

DQN-MARL method is more effective and computationally efficient than the 

DQN-SARL method with the increasing number of 

agents.

 

Figure 2.13. Training process of four methods with (a) one-human-one-robot, (b) one-human-two-

robots, (c) one-human-three-robots and (d) one-human-four-robots. 

In addition, we investigate the agent’s utilization by implementing the trained 

DQN-MARL policy for increasing number of robot agents from 1 to 4. As shown 

in Figs. 2.14 (a) and (b), with the increasing number of robot agents, both the 

overall completion time and the Robot 1’s utilization decrease as expected. It is 

also noticed that the completion time and the Robot 1’s utilization of the one-

human-three-robot scenario are nearly the same as that for the one-human-four-

robot scenario. Therefore, for this product assembly, one-human-three-robot is the 

                                (a)                                                                                                           (b) 

                                (c)                                                                                                           (d) 



 

most efficient setting to complete the entire assembly tasks with minimum time. 

Additional robots are not necessary and costly. 

 

Figure 2.14. (a) Completion time of 100 online implementations under one-human-one-robot 

(1h1r), one-human-two-robot (1h2), one-human-three-robot (1h3r) and one-human-four-robot 

(1h4r) scenarios using DQN-MARL method. (b) utilization of the 100 online implementations 

using DQN-MARL method. 

It is worth noting that previous experiments are based on the assembly of a 

real height-adjustable desk with simple task relations among tasks. One main 

concern is the effectiveness of the proposed method in a more general case 

especially for the aforementioned tasks with mixed logic relations. Therefore, we 

extend the case study with a chessboard containing 81 tasks generated randomly 

with various position and size of three types of tasks as shown in Fig. 2.15 (a). 

Agents are set to be 1 human and 2 robots. We compare the training process with 

and without the trained CNN obtained from previous case study with entire 53 

tasks. From the training process shown in Fig. 2.15 (b), we can conclude that the 

DQN-MARL method is still effective in obtaining the optimal task scheduling 

policy for a general case with complex task structures.  

                                (a)                                                                                          (b) 



 

 

                   (a)                                                                                                          (b) 

Figure 2.15. Training process of the first 18 tasks (a) and the first 36 tasks (b) with the trained 

CNN (red dotted line) and the initial CNN (blue line). 

After the effectiveness of the DQN-MARL method is demonstrated given a 

general case, the effectiveness of the proposed method for similar products 

assembly are further explored. First, as shown in Fig. 2.16 (a) the chessboards of 

two products that contain similar task structures are constructed with the first 18 

and 36 tasks. For the training process, 100 chessboards are randomly generated 

with different initial completion time of both Product 1 and Product 2. Following 

the flow chart in Fig. 2.10, after the training process of Product 1, the trained 

CNN is used for the training process of Product 2. In comparison, a CNN with all 

initial parameters is used for the training from random scratch of Product 2. From 

the result shown in Fig. 2.16 (b), one can find that by using parameters trained 

with Product 1, the time of reaching a steady task scheduling policy can be greatly 

reduced for the training of Product 2. Therefore, we can conclude that the 

proposed method is effective in obtaining the optimal task scheduling policy 

dealing with similar products. 



 

  

                                 (a)                                                                                                             (b) 

Figure. 2.16. (a) Diagram of the randomly generated chessboard with mixed task relations. (b) 

Training process with initial CNN and trained CNN. 

To summarize, we can conclude that the proposed DQN-MARL method 

outperforms DQN-SARL, naive Nash-Q and DP method not only in terms of the 

computational efficiency of obtaining optimal task scheduling policies during the 

training period but also in the effectiveness of online optimizing the task 

scheduling, especially in the scenarios with large number of tasks and agents. In 

addition, the proposed DQN-MARL method can also be generalized to a fit the 

tasks with similar task structure or a completely different tasks with complicated 

task structures. 

2.5. Summary 

This research aims to solve task scheduling problems in the HRC environment. 

The HRC assembly is formatted as an assembly chessboard game by defining the 

task mapping rules and game playing rules. A CNN-MCTS method and a DQN-

MARL method that is capable of obtaining correlated equilibrium solutions of 

task scheduling are developed. It is demonstrated that the proposed methods are 

effective in obtaining optimal task scheduling policies for complicated task 

structures and can be generalized to broader similar products assembly. Through 

extensive case studies, it becomes evident that the proposed Multi-Agent 

Reinforcement Learning (MARL) approach outperforms alternative machine 



 

learning algorithms, including deep SARL, MARL, and baseline RL, especially 

when handling a large number of tasks involving multiple humans and robots. 

2.6. Related Work 

Part of the results presented in this chapter have been published in [16], [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3. RL-based robot Learning from 

Demonstration (LfD) 

3.1. Background 

With the development of Industry 4.0, there is an increasing demand for 

robots to work adaptively and smartly with humans in industrial settings [54]. 

However, currently, motions of industrial robots are still largely preprogrammed 

to perform certain repetitive tasks. When tasks sightly change, robots need to be 

reprogrammed, which often requires considerable robotic expertise and time. This 

would significantly impair the efficiency of industrial robots that constantly 

encounter new tasks, and hence limit their use in quite a few industrial scenarios, 

e.g., small-batch manufacturing that processes highly customized products [55], 

[56]. Therefore, how to enable robots to collaborate with non-expert personnel 

and automatically plan adaptive motions for different tasks is a nontrivial and 

challenging research problem in today’s robotics research [5]–[7]. In this research, 

our goal is to develop a scalable and adaptive motion planning method to 

automatically generate motion plans for new robotic manipulation tasks without 

manually reprogramming robots. To achieve this goal, we propose to represent a 

task by a sequence of critical constraints, and combine human demonstrations 

with motion planning algorithms to generate motion plans to fulfill those 

constraints. 

In general, techniques for motion planning and robot control can be divided 

into Joint-space based approaches and Task-space based approaches [57], [58]. 

Joint space-based motion planning approaches handle the planning problem and 

compute the motion directly in the joint space of the robot. The strength of joint 

space methods lies in finding feasible paths that avoid obstacles [59]. However, 

handling task constraints in joint-space based planning approaches is quite 



 

complicated [60] because they lead to nonlinear constraints in joint angles.Task 

space based planning approach is historically older than joint-space based 

approaches and rose out of the resolved motion rate control (RMRC) in [61]. 

Related to the task space based planning approaches are the operational space 

based control approaches [62], where the redundancy resolution may be done at 

either the velocity level or acceleration level. 

In literatures, the use of human demonstration to teach a robot is often referred 

to as Learning from Demonstration (LfD). An important question in LfD is how 

to acquire demonstrations for learning, e.g., using vision-based sensors, 

kinesthetic, and data gloves or master-slave systems [30], [63]. In this research, 

we opt to use kinesthetic demonstrations for the following considerations. On one 

hand, for kinesthetic demonstrations, there is no correspondence issue between 

the kinematic structure of the demonstrating system and the follower robot. On 

the other hand, learning from kinesthetic demonstrations can potentially benefit 

from a large variety of existing approaches in learning motion from data, which 

can be classified as follows: (a) demonstrated trajectory decomposition [64], [65], 

(b) nonlinear regression techniques [7], [24], [66], and (c) dynamical systems 

based approach [67]–[69] 

Specifically, the trajectory decomposition approaches [64], [65] use spline 

functions to decompose the trajectories. These methods ignore the noises in the 

demonstration, which may be nontrivial especially when the motion information 

is obtained through vision or teleoperation. Nonlinear regression techniques use 

statistical techniques to incorporate the uncertainty of sensing in the estimation 

[66]. However, these statistical approaches require multiple demonstrations. 

Furthermore, neither the statistical approaches nor the spline decomposition takes 

the kinetic transformations of the underlying task space, i.e., 𝑆𝐸(3), into account. 

The dynamical systems-based approach, or dynamical motion primitives (DMPs), 

on the other hand, can learn from single examples [67]. However, in these settings, 

most works assume that there is a dynamical system modeling each degree-of-

freedom (DoF) of the end effector. The generalization of DMPs is predicated on 



 

the region of attraction of the dynamical system used. In the case of orientations, 

there is no clear characterization of the region of attraction of the dynamical 

system on the group of rigid body rotations, i.e., 𝑆𝑂(3).  

In this research, we develop a motion planning method that can enable the 

robot to learn from one or even multiple human demonstrations to generate 

adaptive motion plans for new manipulation tasks in a certain manufacturing 

environment. First, we define a syntax to specify the manipulation task in an 

assembly and loading/unloading scenario considering both explicit task 

constraints, e.g., critical configurations of the end-effector, and environment 

constraints, e.g., dimension and location of the obstacle. Next, we build a library 

to store human demonstrated features which are embedded in screw 

transformation throughout demonstrations. The same method can also be applied 

to abstract features of the manipulation task. A criterion to identify semantical 

similarity of a human demonstration and certain part of the manipulation task is 

defined. Based on this criterion, the appropriate features of human demonstrations 

will be mapped to the manipulation task. Therefore, to generate a motion plan for 

the manipulator to satisfy both explicit and implicit task constraints is equivalent 

to mapping appropriate features in the library to corresponding parts of the 

manipulation task. In this work, we formulate the motion planning problem in 

𝑆𝐸(3) into a Markov Decision Process (MDP) framework and use the Q-learning 

method to train a general motion planning policy to generate adaptive motion 

plans in 𝑆𝐸(3) for different tasks in the same assembly and loading/unloading 

environment. Finally, inverse kinematics (IK) is used to calculate corresponding 

motion plans in the joint space to control the robot to execute learned motion 

plans. 

3.2. Problem Description 

In this research, a robot is required to do manipulation tasks with explicit and 

implicit constraints on end-effector configurations during a motion. We assume 

that the robot has basic capability to move its end-effector from one configuration 



 

to another in the absence of any constraints. Our goal is to develop a method to 

enable the robot to use human demonstrations from a few common tasks stored in 

a scenario specific library and to plan point-to-point motions for other new tasks. 

The human demonstration library can be formed for each specific working 

scenarios, such as desk assembly library, warehouse sorting library etc. On human 

demonstrations, we take (one-time) kinaesthetic demonstration for one type of 

tasks and the information is observed by the screw transformation throughout the 

trajectory. Using such screw transformation, the feature of the manipulation task 

can be abstracted in the task space. To select the appropriate human 

demonstration to be learnt from for the manipulation task, criteria are built by 

comparing the screw transformation of the human demonstration and 

corresponding screw transformation of a few critical configurations of the task. 

Following the criteria, features of appropriate human demonstrations can be 

mapped to the new manipulation task in task space. 

3.2.1. Mathematical Background 

In this research, the joint space or configuration space is represented by 𝒥, 

which is the set of all joint angles of the robot manipulator. 𝑆𝐸(3) denotes the 

Special Euclidean group of 3, which represents the task space contains all rigid 

body motions (i.e., rotations and translations) [70]. To describe configurations of 

the end-effector, we adopt dual quaternions since they can encode both rotation 

and translation in rigid body transformation. A dual quaternion 𝑫 is defined as 

[70]: 

𝑫 = 𝒅𝑟 +
1

2
𝜖𝒅𝑡⨂𝒅𝑟 (3.1) 

where 𝜖 ≠ 0, but 𝜖2 = 0. In this definition, the pure translation of the rigid body 

is represented by the quaternion 𝒅𝑡 which is denoted as: 

 𝒅𝑡 = (0, 𝒕̂) (3.2) 

where 𝒕̂ = 𝑡𝑥 𝒊̂ + 𝑡𝑦𝒋̂ + 𝑡𝑧𝒌̂ is the translation vector in 𝑆𝐸(3). The unit quaternion 

𝒅𝑟 representing the pure rotation of the rigid body can also be expressed as: 



 

𝒅𝑟 = cos (
𝜙

2
) + 𝒏̂ sin (

𝜙

2
) (3.3) 

where 𝒏̂ = 𝑛𝑥 𝒊̂ + 𝑛𝑦𝒋̂ + 𝑛𝑧𝒌̂ is a unit vector in 𝑆𝐸(3) representing the rotation 

axis, and 𝜙 is the rotation angle. Using this 𝒅𝑟, any vector 𝑣 can be rotated an 

angle 𝜙 about the axis 𝒏̂ by using the quaternion sandwich 𝒅𝑟𝑣𝒅𝑟
∗ , and 𝒅𝑟

∗  is the 

conjugate of 𝒅𝑟. For more quaternion manipulations, we refer readers to [71]. 

3.2.2. Specify Manipulation Tasks for the Robot 

First of all, the manipulation task comprehensible to the robot needs to be 

specified. Some research [72], [73] describes a task, e.g., “open the door”, using a 

symbolic vocabulary based on the high-level Planning and Domain Definition 

Language (PDDL), e.g., {preposition of the door, precondition: door closed, 

effect: door open}, to build a task library. These high-level commands lack 

detailed kinematics information and cannot be directly translated to actionable 

information for the lower-level robot manipulation. [74] sample reasonable modes 

for motions of a humanoid robot by specifying the manipulation as the starting 

and goal configurations, together with detailed transition configurations during 

the entire task in the task space. However, for a general manipulation task in 

practice, the specific transition from one configuration to another in both 𝑆𝐸(3) 

and 𝒥 is not known to the robot. Therefore, in this research, the manipulation task 

is specified as a set of critical positions obtained from the known constraints 

based on task requirements (e.g., a specific goal position) and the environment 

constraints (e.g., the location of an obstacle), and the associated orientation 

tolerance for the end effector represented in 𝑆𝐸(3) at these positions. 

Starting from an initial configuration of the end-effector, a manipulation task 

𝑻𝑲 is defined as a sequence of 𝑛 critical configurations: 

𝑻𝑲 = {𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛} (3.4) 

where 𝑐𝑜𝑛𝑖 , 𝑖 = 1, … , 𝑛,  is a tuple of two < 𝑷𝑖, 𝜽𝑖 > . In this tuple, 𝑷𝑖 =

[𝑥𝑖 , 𝑦𝑖, 𝑧𝑖]𝑇  is a vector in 𝑆𝐸(3)  that specifies the position of 𝑐𝑜𝑛𝑖 , 𝜽𝑖 =

[𝜃𝑖1, 𝜃𝑖2, 𝜃𝑖3]𝑇 , 𝜃𝑙1 ≤ 𝜃𝑖1 ≤ 𝜃𝑢1, 𝜃𝑙2 ≤ 𝜃𝑖2 ≤ 𝜃𝑢2, 𝜃𝑙3 ≤ 𝜃𝑖3 ≤ 𝜃𝑢3, is a unit vector 



 

in 𝑆𝐸(3) that defines Euler angles of 𝑐𝑜𝑛𝑖, and 𝜃𝑙1, 𝜃𝑙2, 𝜃𝑙3, 𝜃𝑢1, 𝜃𝑢2, 𝜃𝑢3 are the 

lower and upper bounds for corresponding Euler angles. For this task 

specification, only a few task-related explicit requirements are given. However, 

there might be implicit task constraints (e.g., maintain a certain orientation from 

one configuration to another) need to be complied by the robot. Our goal is to find 

a motion plan to satisfy all the task requirements.  

For example, a task 𝑻𝑲 of transferring a cup of water shown in Fig. 3.1 can be 

specified by four critical configurations, 𝑐𝑜𝑛1, 𝑐𝑜𝑛2, 𝑐𝑜𝑛3, 𝑐𝑜𝑛4, as summarized 

in Table 3.1. In this task, the end-effector is required to move a cup of water from 

the starting configuration 𝑐𝑜𝑛1 to the goal configuration 𝑐𝑜𝑛4 while maintaining 

the cup upward. It is noted that, to move the cup without spilling water out, the 

pitch and roll angles of the end-effector need to be constrained within a certain 

range while the yaw angle does not need to be constrained. Therefore, 𝛾 in Table 

3.1 can be any number from −2𝜋 to 2𝜋, and 𝜃𝑖1 and 𝜃𝑖2 for each 𝜽𝑖 are set to be 0 

for simplicity. Furthermore, if the orientation of the end effector is required to 

remain the same during the entire transferring, then 𝛾 can be also specified to be 0.  

 

Figure 3.1. Critical configurations of a transferring task. The position of the end-effector is 

represented by the black dot and the orientation of the end-effector is represented by the triad.  

Table 3.1. Critical Configurations of 𝑻𝑲 

 



 

In this research, we only provide a syntax, i.e., Eqn. (3.4), on how to specify a 

manipulation task. Note that the syntax can help us to automatically translate task 

requirements to quantitative specifications as shown in Table 3.1. The practical 

task specification is typically provided by outside sources and is quite a heuristic 

practice. If the user has sufficient knowledge on the requirements of a new task 

and the corresponding environment constraints, one may better define the critical 

positions and the associated end effector orientations. This will help the robot 

better understand the new task and facilitates a more effective learning in 

performing the new task.  

3.2.3. Build the Library of Human Demonstrated Features 

To facilitate the learning from human demonstration, we want to build a 

library to include primitive or common tasks for specific working scenarios. For 

example, for a workshop that works on assembling height-adjustable desks, the 

tasks of twisting screws clockwise and placing screws into assembly holes are 

common or primitive tasks and can be included in the library for this workshop or 

working scenario. To demonstrate these primitive tasks, the human operator can 

physically hold and move the robot’s end-effector from the initial configuration to 

the goal configuration. Throughout the transformation trajectory, the explicit and 

implicit task constraints embedded in this kinesthetic demonstration can be 

recorded by many commercial robots such as UR robots in the joint space 𝒥 as a 

time sequence of joint angles 𝝋𝑟𝑒𝑐 as: 

𝝋𝑟𝑒𝑐 = {𝝋(1), 𝝋(2), … , 𝝋(𝑚)} (3.5) 

where each  𝝋(𝑖) = [𝜑1(𝑖), 𝜑2(𝑖), … , 𝜑𝑟(𝑖)]𝑇 , 𝑖 = 1,2, … , 𝑚  is the vector 

representing joint angles of the manipulator,  𝑟 is the degrees of freedom (DOF) 

of the manipulator, the order of  𝑖  is the time sequence of the configurations 

reached during the motion. Using the forward kinematics mapping ℱ𝒦: 𝒥 →

𝑆𝐸(3), the corresponding human demonstration in the task space will be obtained 

as 𝑫𝑷 = {𝑫1, 𝑫2, … , 𝑫𝑚}, in which each 𝑫𝑗 is a dual quaternion denoted as 𝑫𝑗 =



 

𝒅𝑟𝑗 +
1

2
𝜖𝒅𝑡𝑗⨂𝒅𝑟𝑗 , 𝑗 = 1,2, … , 𝑚,  according to Eqn. (3.1). Therefore, 𝑫𝑷 

represents the sequence of configurations of how a task is performed in 𝑆𝐸(3).  

From the human demonstration 𝑫𝑷 = {𝑫1, 𝑫2, … , 𝑫𝑚} , we compute the 

relative motion with respect to the final end effector configuration. Using the dual 

quaternion representation, the transformation 𝛿𝑗  between the final configuration 

(denoted by 𝑫𝑚) and every other configuration 𝑫𝑖 is: 

𝛿𝑗 = 𝑫𝑗
∗ ⊗ 𝑫𝑚  , 𝑖 = 1,2, … , 𝑚 − 1 (3.6) 

where 𝑫𝑗
∗  is the conjugate dual quaternion of 𝑫𝑗  and ⊗ is the dual quaternion 

product. It is noticed that all implicit task constraints are embedded in the 

sequence of 𝛿𝑗 during the motion, which is referred to as the feature of the human 

demonstration. As such, the feature of the 𝑘𝑡ℎ human demonstration in the task 

space can then be described as: 

𝑯𝑫𝑘
𝛿 = {𝛿1

𝐻𝐷𝑘 , 𝛿2
𝐻𝐷𝑘 , … , 𝛿𝑚−1

𝐻𝐷𝑘 } (3.7) 

Therefore, the library consisting of ℎ human demonstrated features in the task 

space can be denoted as: 

𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿} (3.8) 

Based on the definition of the manipulation task and the library of human 

demonstrations, the problem studied in this research can be described as follows: 

Given a library of human demonstrations 𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿} and a new 

task 𝑻𝑲 = {𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛} in the task space 𝑆𝐸(3), develop a method to 

find motion plan 𝑴𝑷  in the joint space 𝒥  for the new task by learning from 

human demonstrated features in 𝑳𝑩 such that the explicit task space constraints 

specified in each 𝑐𝑜𝑛𝑖 in 𝑻𝑲 is satisfied. If no 𝑴𝑷 can be found, then a request 

for additional human demonstrations is made to satisfy all task-relevant 

constraints in 𝑻𝑲. 



 

3.2.4. Build criteria for selecting appropriate human demonstration 

for the new task 

In a previous work [75], we demonstrate a method of learning by 

demonstration, where the robot is shown the exact demonstration that needs to be 

learned from. In this research, we use a more advanced and realistic scenario that 

the human demonstrations are abstracted by features 𝑯𝑫𝑘
𝛿 and stored in a library 

𝑳𝑩. Therefore, when performing a task specified by 𝑻𝑲, we first need to identify 

the appropriate one or more 𝑯𝑫𝑘
𝛿 to be learned from.  

Let 𝒕𝒌𝑠 ⊆ 𝑻𝑲 be a subset or the entire new task 𝑻𝑲 as: 

𝒕𝒌𝑠 = {𝑐𝑜𝑛𝑖 , 𝑐𝑜𝑛𝑖+1, … , 𝑐𝑜𝑛𝑤},   𝑖 ≥ 1, 𝑖 ≤ 𝑤 ≤ 𝑛 (3.9) 

We need to determine a criterion that can facilitate the comparison of 𝒕𝒌𝑠 and a 

human demonstration 𝑯𝑫𝑘
𝛿 . Since 𝑯𝑫𝑘

𝛿  represents the relative motion with 

respect to the final end effector configuration, in order to compare 𝑯𝑫𝑘
𝛿 with 𝒕𝒌𝑠, 

the relative motion with respect to the final configuration in task 𝒕𝒌𝑠 needs to be 

obtained in a similar way to that of 𝑯𝑫𝑘
𝛿 . Based on Eqn. (3.1), the 𝑖𝑡ℎ 

configuration of the task 𝒕𝒌𝑠 can be written as: 

𝑫𝑖 = 𝒅𝑟𝑖 +
1

2
𝜖𝒅𝑡𝑖⨂𝒅𝑟𝑖  , 𝑖 = 1,2, … , 𝑛 (3.10) 

where 𝒅𝑡𝑖 = (0, 𝑷𝑖), 𝑷𝑖  is the position of the 𝑖𝑡ℎ  critical configuration, 𝒅𝑟𝑖  is a 

unit quaternion that can be expressed as: 

𝒅𝑟𝑖 =

cos (
𝜃𝑖3

2
) cos (

𝜃𝑖2

2
) cos (

𝜃𝑖1

2
) + sin (

𝜃𝑖3

2
) sin (

𝜃𝑖2

2
) sin (

𝜃𝑖1

2
) +

(sin (
𝜃𝑖3

2
) cos (

𝜃𝑖2

2
) cos (

𝜃𝑖1

2
) − cos (

𝜃𝑖3

2
) sin (

𝜃𝑖2

2
) sin (

𝜃𝑖1

2
)) 𝒊̂ +

(cos (
𝜃𝑖3

2
) sin (

𝜃𝑖2

2
) cos (

𝜃𝑖1

2
) + sin (

𝜃𝑖3

2
) cos (

𝜃𝑖2

2
) sin (

𝜃𝑖1

2
)) 𝒋̂ +

(cos (
𝜃𝑖3

2
) cos (

𝜃𝑖2

2
) sin (

𝜃𝑖1

2
) − sin (

𝜃𝑖3

2
) sin (

𝜃𝑖2

2
) cos (

𝜃𝑖1

2
)) 𝒌̂

(3.11) 



 

where 𝜽𝑖 = (𝜃𝑖1, 𝜃𝑖2, 𝜃𝑖3) is the orientation of the 𝑖𝑡ℎ critical configuration of the 

end-effector. Therefore, the transformation, 𝛿𝑖
𝑡𝑘𝑠 , between the last critical 

configuration 𝑐𝑜𝑛𝑛 and any other critical configuration 𝑐𝑜𝑛𝑖 is defined as: 

𝛿𝑖
𝑡𝑘𝑠 = 𝑫𝑖

∗ ⊗ 𝑫𝑛, 𝑖 = 1, … , 𝑛 − 1 (3.12) 

As such, the feature of the task 𝒕𝒌𝑠  can be represented as 𝒕𝒌𝑠
𝛿 =

{𝛿1
𝑡𝑘𝑠 , 𝛿2

𝑡𝑘𝑠 , … , 𝛿𝑛−1
𝑡𝑘𝑠 }.  

Based on Eqn. (3.1), using dual quaternions 𝒖𝑗 and 𝒗𝑖 to represent 𝛿𝑗
𝐻𝐷𝑘 and 

𝛿𝑖
𝑡𝑘𝑠, the similarities between them are evaluated by the closeness/difference with 

respect to both rotation and translation. The closeness of their rotation can be 

evaluated using Euclidean distance as: 

𝛼(𝒖𝑗 , 𝒗𝑖 ) = min{‖𝒅𝑟

𝒖𝑗 − 𝒅𝑟
𝒗𝑖  ‖, ‖𝒅𝑟

𝒖𝑗 + 𝒅𝑟
𝒗𝑖  ‖} (3.13) 

The difference between the translation direction of the 𝛿𝑖 and 𝛿𝑗
𝑡𝑘𝑠  is evaluated 

as the dot product of the normalized translation vector as: 

𝛽(𝒖𝑗 , 𝒗𝑖 ) =
𝒅𝑡

𝒖𝑗

|𝒅𝑡

𝒖𝑗|
⋅

𝒅𝑡
𝒗𝑖

|𝒅𝑡
𝒗𝑖|

(3.14) 

Given tolerances ∆𝛼 and ∆𝛽 , if 𝛼(𝒖𝑗, 𝒗𝑖 ) ≤ ∆𝛼  and 𝛽(𝒖𝑗 , 𝒗𝑖  ) ≥ ∆𝛽 , then these 

two transformations are referred to as being “semantically similar”.  

According to a previous work [75], if two transformations are sufficiently 

close within a certain tolerance (the practical value is about 10 degrees according 

to [75]) in the task space, the corresponding solutions in the joint space using 

inverse kinematics can be uniquely determined by a small increment in joint 

angles. Since the human demonstration guarantees the feasible solution in the 

joint space without violating any joint limits, if the new task is “semantically 

similar” to a certain human demonstration based on Eqn. (3.13) and Eqn. (3.14), 

by learning from that human demonstration, the solution in the joint space can be 



 

ensured. Therefore, a criterion of semantic similarity between a task and a 

demonstration can be defined. 

Definition 1. Let 𝑝 be the number of critical configurations in a task feature 

𝒕𝒌𝑠
𝛿 , the task feature 𝒕𝒌𝑠

𝛿   and a human demonstrated feature  𝑯𝑫𝑘
𝛿  are 

semantically similar, denoted as 𝒕𝒌𝑠
𝛿 ∝ 𝑯𝑫𝑘

𝛿 , if the same number of 𝑝 

configurations on 𝑯𝑫𝑘
𝛿  can be allocated such that the following criterion is 

satisfied: 

∀𝒗𝑖 ∈ 𝒕𝒌𝑠
𝛿 , 𝑖 = 1, … , 𝑝, ∃𝛿𝑙 ∈ 𝑯𝑫𝑘

𝛿  → 𝛼(𝒖𝑗, 𝒗𝑖 ) ≤ ∆𝛼 and 𝛽(𝒖𝑗 , 𝒗𝑖 ) ≥ ∆𝛽(3.15) 

where 𝑙 = 𝑖, … , 𝑚 and 𝑚 is the last configuration in 𝑯𝑫𝑘
𝛿.  

For example, for the same task 𝑻𝑲  shown in Fig. 3.1, four critical 

configurations can be specified in Table 3.2 and corresponding features can be 

derived in Table 3.3 using Eqn. (3.12). Suppose there exists a library 𝑳𝑩 that 

includes features 𝑯𝑫1
𝛿 and 𝑯𝑫2

𝛿 summarized in Table 3.4, we want to compare 

these features with the feature of the task 𝑻𝑲. From Table 3.3 and Table 3.4, we 

find that, for each 𝛿𝑖
𝑻𝑲, 𝑖 = 1,2, we can find a 𝛿𝑗 in 𝑯𝑫1

𝛿, such that 𝛼(𝒖𝑗, 𝒗𝑖  ) = 0 

and 𝛽(𝒖𝑗 , 𝒗𝑖) ≥ 0. For 𝛿3
𝑻𝑲 , we find 𝛿1   in 𝑯𝑫2

𝛿 , such that 𝛼(𝒖𝑗, 𝒗𝑖  ) = 0 and 

𝛽(𝒖𝑗, 𝒗𝑖  ) ≥ 0. Given ∆𝛼= 0.5 and ∆𝛽= 0, based on Definition 1, the feature of 

the segment between 𝑐𝑜𝑛1 and 𝑐𝑜𝑛3 for task 𝑻𝑲 is semantically similar to that of 

𝑯𝑫1  and the feature of the segment between 𝑐𝑜𝑛3  and 𝑐𝑜𝑛4  for task 𝑻𝑲  is 

semantically similar to that of 𝑯𝑫2.  

Table 3.2. Critical Configurations of 𝑻𝑲 

 

Table 3.3. Features of 𝑻𝑲 

 



 

Table 3.4. Features of Human Demonstrations  

 

3.2.5. Map the feature of the selected human demonstration to the 

new task 

In a previous work [75], to generate the point-to-point motion plan for similar 

task instances, an imitated path is built by transmitting the human demonstration 

in the task space to the new goal position and the ScLERP [76] is used to blend 

any current configuration of the end-effector into the imitated path. However, this 

method only considers the goal position of the new task instance as the explicit 

new task constraints and the implicit task constraints may not be satisfied during 

the blend in motion. Therefore, the method has the limit in performing similar 

tasks in close adjacent areas of human demonstrations. In this research, we adopt 

a different approach by using the selected feature 𝑯𝑫𝑘
𝛿 based on the criterion in 

Eqn. (3.15), and mapping the feature to a new task or a segment of the new task. 

Suppose 𝑯𝑫𝑘 and a new task 𝒕𝒌𝑠 are semantically similar based on Definition 

1, i.e., 𝒕𝒌𝑠 ∝ 𝑯𝑫𝑘, we will use mapping 𝒎𝒑𝑘
𝑠 : 𝑯𝑫𝑘 → 𝒕𝒌𝑠 , such that to finish 

the new task 𝒕𝒌𝑠, the robot can learn from 𝑯𝑫𝑘
𝛿. Let 𝑯𝑫𝑘

𝛿 = {𝒖1, 𝒖2, … , 𝒖𝑚−1}, 

𝒕𝒌𝑠
𝛿 = { 𝒗1, 𝒗2, … , 𝒗𝑛−1}, the first step is to align the translation vector 𝒅𝑡

𝒖1  in 

𝑯𝑫𝑘
𝛿 to the translation vector 𝒅𝑡

𝒗1 in 𝒕𝒌𝑠
𝛿. Based on Eqn. (3.3), a unit quaternion 

𝑸 representing rotating the vector 𝒅𝑡
𝒖1 to the vector 𝒅𝑡

𝒗1 is defined as: 

𝑸 = cos (
𝜙𝑸

2
) + 𝒏̂𝑸 sin (

𝜙𝑸

2
) (3.16) 

where 𝒏̂𝑸 =
𝒖1×𝒗1

|𝒖1×𝒗1|
 and 𝜙𝑸 = cos−1 𝒖1⋅𝒗1

|𝒖1||𝒗1|
. Since 𝑯𝑫𝑘  and 𝒕𝒌𝑠  are semantically 

similar, each 𝒅𝑡
𝒖1  of 𝛿𝑗  in 𝑯𝑫𝑘, 𝑗 = 1,2, … , 𝑚 − 1  can be rotated using the 



 

quaternion sandwich 𝑸𝒅𝑡
𝒖1𝑸∗. Based on Eqn. (3.16), we can align end-effector’s 

translation encoded in the human demonstrated feature to that of the new task. 

Then, we can scale the vector 𝑸𝒅𝑡
𝒖1𝑸∗ with 

|𝒅𝑡
𝒖1|

|𝒅𝑡
𝒗1|

. The final quaternion 𝒅𝑡𝑗
𝒎𝒑𝑘𝑠 that 

maps each end-effector’s translation 𝒅𝑡

𝒖𝑗
 in 𝑯𝑫𝑘 to 𝒕𝒌𝑠 can be obtained as: 

𝒅𝑡𝑗
𝒎𝒑𝑘𝑠 = (0,

|𝒅𝑡
𝒖1|

|𝒅𝑡
𝒗1|

𝑸𝒅𝑡

𝒖𝒋𝑸∗) , 𝑗 = 1,2, … . , 𝑚 − 1 (3.17) 

Since the detailed transformation between 𝑐𝑜𝑛𝑖  and 𝑐𝑜𝑛𝑖+1  of the new task 

are unknown and unspecified, and more importantly, due to the rational in 

Remark 2, we can just use all the intermediate transformation in 𝛿𝑖  for the 

transformation between 𝑐𝑜𝑛𝑖  and 𝑐𝑜𝑛𝑖+1 . Let 𝒅𝑟𝑗
𝒎𝒑𝑘𝑠 = 𝒅𝑟

𝒖𝑗 , 𝑗 = 1,2, … . , 𝑚 − 1 , 

the mapping 𝒎𝒑𝑘𝑠 can finally be derived as: 

𝒎𝒑𝑘𝑠 = 𝒅𝒓
𝒎𝒑𝑘𝑠 +

1

2
𝒅𝒕

𝒎𝒑𝑘𝑠 ⊗ 𝒅𝒓
𝒎𝒑𝑘𝑠 (3.18) 

where 𝒅𝒓
𝒎𝒑𝑘𝑠 = {𝒅𝑟1

𝒎𝒑𝑘𝑠 , 𝒅𝑟2
𝒎𝒑𝑘𝑠 , … , 𝒅𝑟𝑚−1

𝒎𝒑𝑘𝑠 } , 𝒅𝒕
𝒎𝒑𝑘𝑠 = {𝒅𝑡1

𝒎𝒑𝑘𝑠 , 𝒅𝑡2
𝒎𝒑𝑘𝑠 , … , 𝒅𝑡𝑚−1

𝒎𝒑𝑘𝑠 } . 

Let 𝑻𝑲 = {𝑡𝑘1, 𝑡𝑘2, … , 𝑡𝑘𝑝}, the final motion plan 𝑴𝑷 in task space for 𝑻𝑲 can 

be determined by 

𝑴𝑷 = 𝑫𝑛 ⊗ 𝒎𝒑𝑘𝑠
∗ , 𝑠 = 1,2, … , 𝑝 (3.19) 

If the requirements of all 𝒕𝒌𝑠 of a new task 𝑻𝑲 can be covered by features of 

human demonstrations in 𝑳𝑩, then it is theoretically possible that there exists a set 

{𝑯𝑫𝒊
𝜹, … , 𝑯𝑫𝒍

𝜹}  ⊆ 𝑳𝑩 , from which the robot can learn to finish 𝑻𝑲 by using 

mapping. This is made more rigorous in Theorem 1.  

Theorem 1. Given a library of human demonstrations 𝑳𝑩 =

{𝑯𝑫𝟏
𝜹, 𝑯𝑫𝟐

𝜹, … , 𝑯𝑫𝒉
𝜹}  and a new task 𝑻𝑲 = {𝒕𝒌1, 𝒕𝒌2, , … , 𝒕𝒌𝑝}  in SE(3), it is 

always possible to find a set 𝑯𝑫𝜹 = {𝑯𝑫𝑖
𝛿 , … , 𝑯𝑫𝑙

𝛿}  ⊆ 𝑳𝑩 such that ∀ 𝒕𝒌𝑠 ⊆

𝑻𝑲, 𝑠 = 1,2, … , 𝑝, ∃𝑯𝑫𝑘
𝛿 ∈ 𝑯𝑫𝜹  such that 𝒕𝒌𝒔 ∝ 𝑯𝑫𝒌

𝜹 , if and only if  ∀ 𝒕𝒌𝑠 ⊆

𝑻𝑲, 𝑠 = 1,2, … , 𝑝, ∃𝑯𝑫𝑗
𝛿 ∈ 𝑳𝑩 such that 𝒕𝒌𝒔 ∝ 𝑯𝑫𝑗

𝛿   



 

Proof  

If ∀ 𝒕𝒌𝑠 ⊆ 𝑻𝑲, 𝑠 = 1,2, … , 𝑝, ∃𝑯𝑫𝑗
𝛿 ∈ 𝑳𝑩 such that 𝒕𝒌𝑠 ∝ 𝑯𝑫𝑗

𝛿, then we can 

always find a set that includes 𝑯𝑫𝑗
𝛿 , i.e., 𝑯𝑫𝜹 = {𝑯𝑫𝑖

𝛿 , … , 𝑯𝑫𝑙
𝛿}  ⊆ 𝑳𝑩  that 

satisfy the above condition. To prove the sufficiency, suppose we can find a a set 

𝑯𝑫𝜹 = {𝑯𝑫𝑖
𝛿 , … , 𝑯𝑫𝑙

𝛿}  ⊆ 𝑳𝑩 , that ∀ 𝒕𝒌𝑠 ⊆ 𝑻𝑲, 𝑠 = 1,2, … , 𝑝 , ∃𝑯𝑫𝑘
𝛿 ∈ 𝑯𝑫𝜹 

such that 𝒕𝒌𝒔 ∝ 𝑯𝑫𝑘
𝛿 . Since 𝑯𝑫𝑘 ∈ 𝑯𝑫𝜹 = {𝑯𝑫𝑖

𝛿 , … , 𝑯𝑫𝑙
𝛿}  ⊆ 𝑳𝑩 , then 

sufficient condition must be true. ∎  

In the next section, we will discuss how to find a set 𝑯𝑫𝜹 = {𝑯𝑫𝑖
𝛿 , … , 𝑯𝑫𝑙

𝛿}, 

meaning find the motion planning by learning from 𝑯𝑫 in the task space. This 

problem is formulated into a Markov Decision Process (MDP) problem and 

solved with Q-learning. 

3.3. Obtaining the Optimal Motion Plan Trough Reinforcement 

Learning 

To find a set of appropriate features in 𝑳𝑩 that can satisfy all task-relevant 

constraints in 𝑻𝑲 , one has to go through all subsets 𝒕𝒌𝑠 of 𝑻𝑲 and evaluate each 

𝑯𝑫𝑘
𝛿 in the library 𝑳𝑩, which is an NP-hard problem [77]. Assume that there are 

𝑥  features stored in the library 𝑳𝑩  and 𝑦  subsets of the new task 𝑇𝐾 , the 

computational complexity for searching exhaustively is 𝑂(𝑥𝑦), which would be 

huge if the number of human demonstrations and the constraints of the new task is 

large. For example, the library of “Assemble a height-adjustable desk” have 10 

features including flipping, twisting, passing, etc. A new task “Place the screw 

into the assembly hole and fasten the screw” can have 20 subsets (such as passing 

horizontally to certain position, then change direction to another position, etc.). In 

this case, the computational complexity for exhaustive search is 𝑂(1020) . 

Therefore, we formulate the problem into an MDP and solve the problem using a 

model-free reinforcement learning (RL) algorithm. 



 

3.3.1. MDP Formulation of the Problem 

The most common framework for RL is MDP, which is a stochastic process 

that models the sequential decision making in uncertain environments. There are 

three components in an MDP, including state 𝑠, action 𝑎 and reward function 𝑟. In 

a RL framework, an agent’s objective is to find a policy 𝜋 so as to maximize the 

sum of discounted expected rewards  

𝑣(𝑠, 𝜋) = ∑ 𝛾𝑡𝐸(𝑟𝑡|𝜋, 𝑠0 = 𝑠)

𝑇

𝑡=0

(3.20) 

where 𝑣(𝑠, 𝜋) is the value for state 𝑠 under the policy 𝜋. Here 𝜋 = (𝜋0, … , 𝜋𝑡 , … ) 

is defined over the entire process. The standard solution to the problem above is 

through the 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 equation: 

𝑣(𝑠, 𝜋∗) = max
𝑎

[𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑣(𝑠′, 𝜋∗)

𝑠′

] (3.21) 

where 𝑟(𝑠, 𝑎) is the reward for taking action 𝑎 at state 𝑠, 𝑠′ is the next state, and 

𝑝(𝑠′|𝑠, 𝑎) is the probability of transiting to state 𝑠′ after taking action 𝑎 in state 𝑠. 

A solution 𝜋∗  that satisfies the above equation is guaranteed to be an optimal 

policy. Before we can apply RL algorithms to obtaining the ultimate motion 

planning policy 𝜋∗, we need to first properly define the three key components 𝑠𝑡, 

𝑎𝑡 and 𝑟𝑡 at time step 𝑡. 

For a state space 𝒮(𝑡), that contains the current configuration of the end-

effector and all task segments, the state 𝑠𝑡 ∈ 𝒮(𝑡),  is defined as: 

𝑠𝑡 = [𝑪𝑭𝑡, 𝒕𝒌𝑡] (3.22) 

 

where  𝑪𝑭𝑡  is the current configuration of the end-effector at 𝑡 , 𝒕𝒌𝑡 =

{𝑐𝑜𝑛𝑗 , 𝑐𝑜𝑛𝑗+1, … , 𝑐𝑜𝑛𝑛} is the subset of 𝑻𝑲 containing task constraints that the 

robot is going to satisfy. 



 

Given a state 𝑠𝑡 , all legal actions of identifying semantical similarities 

between human demonstrations and task segments form an action space 𝒜(𝑠𝑡). 

The action 𝑎𝑡 ∈ 𝒜(𝑠𝑡)  can be defined as: 

𝑎𝑡 = [𝑎1(𝑡), 𝑎2(𝑡), … , 𝑎ℎ(𝑡)] (3.23) 

where each 𝑎𝑖(𝑡)  is to identify a subsequent critical point 𝑐𝑜𝑛𝑘  that 𝒕𝒌𝑡
′ =

{𝑐𝑜𝑛𝑗 , … , 𝑐𝑜𝑛𝑘} ⊆ {𝑐𝑜𝑛𝑗 , 𝑐𝑜𝑛𝑗+1, … , 𝑐𝑜𝑛𝑛} , such that  𝒕𝒌𝑡
′ ∝ 𝑯𝑫𝑖 . Then 𝑎𝑖(𝑡) 

will take the index value of 𝑘. Therefore, 𝑎𝑖(𝑡) is defined as: 

𝑎𝑖(𝑡) = {
 𝑘,      if 𝒕𝒌𝑡

′ ∝ 𝑯𝑫𝑖 
0,       otherwise    

(3.24) 

To evaluate the action at 𝑡, we apply the semantical similarity criteria defined 

in Section 3.2. The reward function 𝑟𝑡 is defined as: 

𝑟𝑡 = {
− ∑ 𝛼 (𝛿𝑖, 𝛿𝑙

𝒕𝒌𝑡
′

 )

𝑘

𝑙=𝑗

,          if  𝒕𝒌𝑡
′ ∝ 𝑯𝑫𝒊                              

−∞,                                    otherwise                                     

(3.25) 

where  𝛿𝑙
𝒕𝒌𝑡

′

 is the 𝑙𝑡ℎ  feature of the task segment 𝒕𝒌𝑡
′ . It is noted that after 

mapping, end-effector translation encoded in human demonstrated features will be 

aligned to the task segment while end-effector rotational features of 

demonstrations are preserved. Therefore, we only calculate the difference in end 

effector rotation between the selected human demonstration and the task segment 

to reward semantic similar demonstrations. 

3.3.2. Applying Q-learning to Obtain the Optimal Motion Planning 

Policy 

In order to obtain the optimal policy 𝜋∗ , various algorithms have been 

proposed in the past, among which Q-learning is one of the most widely used 

algorithms [78]. The basic idea of Q-learning is that we can define a function 𝑄: 

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑣(𝑠′, 𝜋)

𝑠′∈𝑆

(3.26) 



 

such that 𝑣(𝑠, 𝜋∗) = max
𝑎

𝑄∗(𝑠, 𝑎). If we know 𝑄∗(𝑠, 𝑎), then the optimal policy 

𝜋∗ can be found by simply identifying the action that maximizes 𝑄∗(𝑠, 𝑎) under 

the state 𝑠. Starting with arbitrary initial values of 𝑄(𝑠, 𝑎), the updating procedure 

of Q-learning is: 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼𝑡)𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡[𝑟𝑡 + 𝛾 max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡)] (3.27) 

where 𝛼𝑡 ∈ [0,1) is the learning rate and 𝛾 ∈ (0,1) is the discount factor. The 

training process is shown in Algorithm 3.1. After the training, the ultimate policy 

𝜋∗ is determined as: 

𝜋∗(𝑎|𝑠) = {
1, if 𝑎 = arg max

𝑎′∈𝐴(𝑠)
{𝑄(𝑠, 𝑎′)}

0, otherwise
(3.28) 

where 𝐴(𝑠) is the set of all legal actions at state 𝑠 in the Q-table 𝑄(𝑠, 𝑎). The final 

motion plan 𝑴𝑷 is generated following the Algorithm 3.2. The overall framework 

of robot motion planning based on Q-learning by learning from human 

demonstrations is illustrated in Fig. 3.2.  

Algorithm 3.1 Training of the RL-based Motion Planner in 𝑺𝑬(𝟑) 

Procedure 1 Mapping Features of the Human Demonstration to the New Task 

Input: 𝒕𝒌𝑠, 𝑯𝑫𝑘 

Output: 𝒎𝒑𝑘𝑠 

Initialize 𝒎𝒑𝑘𝑠 with zeros 

Compute each 𝒗𝑖 using Eqn. (3.12)  

Compute the rotation quaternion 𝑸 using Eqn. (3.16) 

For 𝑘 = 1,2, … , 𝑚 − 1 do 

     Update each 𝒅𝑡𝑗
𝒎𝒑𝑘𝑠 

 using Eqn. (3.17) 

       𝒅𝑟𝑗
𝒎𝒑𝑘𝑠 ← 𝒅𝑟

𝒖𝑗
 

End For 

Compute 𝒎𝒑𝑘𝑠 using Eqn. (3.18) 

Output 𝒎𝒑𝑘𝑠 

End Procedure 

Procedure 2 Training Process of Q-learning 

Input: 𝑻𝑲, 𝑳𝑩, 𝜖, 𝛾 

Output: 𝑄(𝑠, 𝑎) 

Initialize 𝑄(𝑠, 𝑎) randomly 

Initialize 𝑡 = 0 



 

Initialize 𝑠0 with 𝑪𝑭0 = 𝑫1
𝑡𝑘1 and 𝒕𝒌0 = 𝑻𝑲 

For 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 0,1, … ,100 do 

        While the last 𝑐𝑜𝑛𝑛 of 𝑻𝑲 is not reached do 

                 Choose 𝑎𝑡 using policy derived from 𝑄(𝑠, 𝑎) (e.g., 𝜖-greedy) 

                 Take action 𝑎𝑡, observe 𝑟𝑡 

                 If 𝒕𝒌𝑡
′ ∝ 𝑯𝑫𝒊 based on Definition 1 

                        𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

                        𝑖 ← index of the non-zero term of 𝑎𝑡 

                        Invoke Procedure 1 with 𝑯𝑫𝑖 and 𝒕𝒌𝑡
′  as inputs 

                        𝑪𝑭𝑡+1 ← 𝑫𝑛
𝑡𝑘𝑡

′

 

                        𝒕𝒌𝑡+1 ← {𝑐𝑜𝑛𝑎𝑖(𝑡), … , 𝑐𝑜𝑛𝑛} 

                        𝑠𝑡 ← 𝑠𝑡+1 

                        𝑡 ← 𝑡 + 1 

                 Else 

                        𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾 max
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

                       Break 

                 End if 

        End While 

End For 

Output 𝑄(𝑠, 𝑎) 

End Procedure 

 

Algorithm 3.2 Generating Motion Plan in 𝑺𝑬(𝟑)  

Input: 𝑻𝑲, 𝑳𝑩, 𝜖, 𝛾, 𝑄(𝑠, 𝑎) 

Output: 𝑴𝑷 

Initialize 𝑠0 with 𝑪𝑭0 = 𝑫1
𝑡𝑘1and 𝒕𝒌0 = 𝑻𝑲  

For 𝑡 = 0,1, … , 𝑇 do 

     Find legal action list 𝐴(𝑠𝑡) from 𝑄(𝑠𝑡, 𝑎) → 𝑎 ∈ 𝐴(𝑠𝑡)  

     Find the optimal action as 𝑎𝑡 = arg max
𝑎∈𝐴(𝑠𝑡)

𝑄(𝑠𝑡, 𝑎)  

     Map 𝑯𝑫𝑖 to 𝒕𝒌𝑡
′  according to 𝑎𝑡 

    𝑀𝑃𝑡 ← 𝑫𝑛 ⊗ 𝒎𝒑
𝑘𝑠
∗  according to Eqn. (3.19) 

End For 

𝑴𝑷 ← {𝑀𝑃0, 𝑀𝑃1, … , 𝑀𝑃𝑇}  

     Output  𝑴𝑷 



 

 

 

Figure 3.2. Framework of the RL based user-guided motion planning. 

 

3.3.3.  Computing the Motion Plan in the Joint Space 

After the motion plan 𝑴𝑷 in the task space is generated, the corresponding 

motion plan in the joint space needs to be calculated through inverse kinematics. 

Based on a previous work [75], to calculate the sequence of joint angles in the 

joint space is to solve the equation 

𝒒̇ = (𝐉𝑠)𝑇(𝐉𝑠(𝐉𝑠)𝑇)−1𝐉2 [
𝒑̇
𝒓̇

] (3.29) 

where 𝒒̇ is the joint rate vector, 𝒑 is the position of the end-effector, 𝒓 is the 

quaternion representing the orientation of the end-effector, 𝐉𝑠  is the spatial 

Jacobian and 𝐉2 = [
𝐈3×3 2𝒑𝐉1

𝟎3×3 2𝐉1
]  where 𝐉1  is the matrix transformation of the 

spatial angular velocity of the rigid body. Let 𝜸̇ = [𝒑̇ 𝒓̇]𝑇  and 𝑩 =

(𝐉𝑠)𝑇(𝐉𝑠(𝐉𝑠)𝑇)−1𝐉2, Eqn. (3.29) can also be written as:  

𝒒̇ = 𝑩𝜸̇ (3.30) 

Using Euler time-step to discretize this equation where ℎ is a small time step, 

𝒒(𝑡 + ℎ) − 𝒒(𝑡)

ℎ
= 𝑩

𝜸(𝑡 + ℎ) − 𝜸(𝑡)

ℎ
(3.31) 



 

or 

𝛿𝒒 = 𝑩(𝜸(𝑡 + ℎ) − 𝜸(𝑡)) (3.32) 

In such way, for two consecutive configurations of the end-effector 𝜸(𝑡) and 

𝜸(𝑡 + ℎ), the value of 𝛿𝒒 is determined. Therefore, starting from  𝒒(0), the joint 

angles 𝒒(𝑡) at any time step 𝑡 can be obtained. 

In practice, an unavoidable problem when executing motion plans in the joint 

space is the joint limits. In previous studies, researchers usually handle joint limits 

with optimization or Nullspace of the Jacobian [79]. However, in this research, 

we still have limitations in handling joint limits because task constraints in 𝑆𝐸(3) 

always have the higher priority than joint limit constraints in 𝒥. Since we map the 

feature of the normalized human demonstration to the new task in the task space, 

the motion plan obtained by Q-learning in 𝑆𝐸(3)  cannot guarantee feasible 

solutions in 𝒥 that do not violate joint limits. There’re also some other methods in 

handling joint limits [80], we will explore these options in our future work. 

3.4. Experiments and Validation 

In order to validate effectiveness of the proposed method in generating motion 

plans for new tasks, multiple experiments are conducted on the UR5e platform. 

Our experiments consist of four steps: (1) Build an illustrative library of features 

of human demonstrations; (2) Specify new tasks in 𝑆𝐸(3); (3) Offline train the 

RL-based Motion Planner in 𝑆𝐸(3) and obtain motion plans in 𝒥; (4) Execute 

motion plans in 𝒥. In this case study, two performance metrices are considered: (1) 

The accumulated reward of the motion plan in 𝑆𝐸(3); (2) The successful rate of 

applying the motion plan in 𝒥 for new tasks. From the case study, two significant 

results can be concluded: (1) The proposed RL-based user-guided motion 

planning method can benefit from sufficient knowledge in the proposed task 

specification scheme; (2) The proposed method is effective in combining different 

features of human demonstrations to generate motion plans for the new task; (3) 



 

The proposed method is effective in requesting additional human demonstrations 

if no features in the library are semantically similar to the new task.  

3.4.1. Setting up a Library of Features of User Demonstrations 

To build a library including some common features in certain assembly and 

loading/unloading environment, we start with five illustrative tasks as shown in 

Fig. 3.3. The tasks are recorded in joint space 𝒥  through kinesthetic 

demonstrations, including: 

1) Screwing Task 1: Twist a screw driver 90 degrees clockwise; 

2) Screwing Task 2: Twist a screw driver 90 degrees anti-clockwise; 

3) Filling Task: Hold a cup horizontally and then turn down 90 degrees 

(representing certain orientation constraints); 

4) Pouring Task: Hold a cup vertically and then turn up 90 degrees 

(representing certain orientation constraints); 

5) Stacking Task: Stack one block from an initial location to a goal location; 



 

Figure 3.3. Kinesthetic demonstrations of 5 most common tasks. (a) Screwing Task 1: The end-

effector is required to twisting the screw driver 90 degrees clockwise while moving straight 

forward to the goal position. (b) Screwing Task 2: The end-effector is required to twisting the 

screw driver 90 degrees anti-clockwise while moving straight forward to the goal position. (c) 

Pouring Task: The end-effector is required to hold the cup horizontally at first, then turn down 90 

degrees. (d) Filling Task: The end-effector is required to hold the cup vertical to the ground at 

first, then turn up 90 degrees. (e) Stacking Task: The end-effector is required to stack the small 

block up the big block. The orientation of the small block should be kept upward during the 

stacking. 

 

 

(a)                                                                                                            (b) 

(c)                                                                                                            (d) 

(e) 



 

 

 

 

Figure 3.4. Human demonstrations in 𝑆𝐸(3). (a) Screwing task 1. (b) Screwing task 2. (c) Pouring 

task. (d) Filling task. (e) Stacking task. 

 

Using forward kinematics, corresponding configurations of end-effector in 

𝑆𝐸(3) are shown in Fig. 3.4. Using Eqn. (3.8), features of human demonstrations 

are saved as 𝑳𝑩 = {𝑯𝑫1, 𝑯𝑫2, … , 𝑯𝑫5} in the library shown in Table 3.5. 

 

(a)                                                                                                            (b) 

(c)                                                                                                            (d) 

(e) 



 

Table 3.5. Library of human demonstrated features 

 

3.4.2. Training the RL-based Motion Planner in SE(3) 

In order to obtain a general motion planning policy in 𝑆𝐸(3) for the assemble 

and loading/unloading scenario with the features library, we implement Algorithm 

3.1 to train a Q-table initialized with random Q values in Matlab using a 4-core 

4.0GHz Intel Core i7 processor. Parameters for training are listed in Table 3.6. 20 

new tasks are used during the training, each of which has four critical 

configurations. Positions of these critical configurations are randomly generated 

within a 50 × 50 × 50 𝑐𝑚3  workspace. Corresponding Euler angles of each 

critical configuration are also randomly selected from a set {−𝜋, −
𝜋

2
, 0,

𝜋

2
, 𝜋}. The 

total training episode for each new task is set to be 100. The total computation 

time is 1927.42 seconds.  

To monitor the training process, accumulated rewards for each new task are 

recorded every two iterations. The average accumulated reward for all 20 new 

tasks is shown in Fig. 3.5. Although the training rewards are noisy before 50 

episodes, the underlying trend is that the rewards are increasing with training 

episodes. It can be observed that the reward reaches a steady level after around 50 

episodes. This indicates that a steady motion planning policy in 𝑆𝐸(3) that can 

map appropriate features of human demonstrations to new tasks with semantically 

similar features is generated for the assemble and loading/unloading scenario. 

Table 3.6. Parameters for Training 



 

 

 

 

 

 

 

Figure 3.5. Training process for motion plans in 𝑆𝐸(3)  

3.4.3. Evaluation of the Trained Motion Planning Policy 

To evaluate the performance of the trained motion plan policy in 𝑆𝐸(3) for 

the assemble and loading/unloading scenario, three new tasks, namely, a 

transferring task, a filling-and-pouring task, and an assembling task, are used as 

examples to demonstrate the method. The trained Q-table is used as the input to 

Algorithm 3.2 to generate motion plans for new unseen tasks in 𝑆𝐸(3) . The 

inverse kinematics is used to calculate the final motion plan in joint space ℐ.  For 

each task, 20 experiment trials are conducted to evaluate the successful executions. 

Transferring Task: In this task, the end-effector is required to transfer a cup of 

water while avoiding an obstacle shown as red cube in Fig. 3.6. The dimension of 

the obstacle is 20 × 20 × 20 𝑐𝑚3  and the position of its center is 

(−0.3, −0.1, 0.2). To avoid this obstacle, a safety protocol is assumed given as a 

40 × 40 × 40 𝑐𝑚3 safety shell (shown as transparent purple cube in Fig. 3.6 with 

the same center position as the cubic obstacle) that the manipulator cannot 

penetrate through. Knowing these environment constraints and the task 

requirement on moving the cup of water from the starting position to the goal 

position, a sample of user defined critical configurations, 𝑐𝑜𝑛1, 𝑐𝑜𝑛2, 𝑐𝑜𝑛3, 𝑐𝑜𝑛4 



 

are summarized in Table 3.7, where 0.1 ≤ 𝑧 ≤ 0.5 . In these critical 

configurations, 𝑐𝑜𝑛1 and 𝑐𝑜𝑛4  describe the end-effector starting and the ending 

positions and orientations, 𝑐𝑜𝑛2  and 𝑐𝑜𝑛3  are two intermediate critical 

configurations selected on edges of the safety shell. Note that different users may 

have different task specifications depending on their understandings of the task 

and environment constraints.  

The result shows that all 20 trials are successfully executed, where each of the 

20 feasible motion plans (shown as the path composed of the small triads) 

complies with the task requirement that the end-effector maintains the same 

orientation of (0, −𝜋/2,0) to prevent the spill out. One of the 20 motion plans are 

demonstrated as the yellow line in Fig. 3.6 (a), where the orientations of the small 

triads along each path represent the orientations of the end-effector. Execution of 

the corresponding motion plan in the joint space is shown in Fig. 3.6 (b). It is 

noticed that the feature of the human demonstrated stacking task is learned and 

mapped for this transferring task. In this experiment, both explicit task constraints 

(position and orientation constraints of critical configurations) and implicit task 

constraints (keeping the orientation of the end-effector) are satisfied. This 

experiment demonstration the effectiveness of the trained motion plan policy, 

which can be used as motion plans to avoid the obstacles in 𝑆𝐸(3) if users have 

sufficient knowledge about the task and the environment and can properly infuse 

the knowledge in task specification based on the syntax we defined. 

Table 3.7. Critical configurations of Task 3 

 



 

 

Figure 3.6. Motion plans for the transferring task. (a) The motion plan in 𝑆𝐸(3). (b) Execution the 

motion plan in 𝒥. 

 

Filling-and-Pouring Task: As shown in Fig. 3.7 (a), in this task, the end-

effector is required to fill water to Cup 1, then go through another two critical 

positions, and reach a goal position above Cup 2, and finally pour water to Cup 2. 

The location of Cup 2 is on the surface of a desk within a workspace of 20 ×

20 𝑐𝑚2. We can specify 5 critical configurations based on the described task. 

Sample critical configurations from 𝑐𝑜𝑛1  to 𝑐𝑜𝑛5  are presented in Table 3.8, 

where −𝜋 ≤ 𝛾 ≤ 𝜋, −0.5 ≤ 𝑥 ≤ 0.7, −0.2 ≤ 𝑦 ≤ 0. It is noted that, in this task, 

only the orientation of the initial configuration and goal configuration are 

specified with specific Euler angles. When moving the cup from 𝑐𝑜𝑛2 to 𝑐𝑜𝑛4, 

the end-effector is only required upward without any specific constraints in the 

yaw angle. 

Table 3.8. Critical configurations of 𝑇𝐾 

 

(a)                                                                                        (b)    



 

 

Figure 3.7. Generate motion plans for the filling-and-pouring task. (a) The motion plan in 𝑆𝐸(3) 

(b) The final execution of the motion plan in 𝒥. 

 

For 20 experiment trials with various locations of Cup 2, all experiments are 

successfully performed in ℐ. We use the motion plan in ℐ and 𝑆𝐸(3) for one trial 

as an example as shown in Fig. 3.7 (a) and (b) to illustrate the result. It is noticed 

that the feature of 3 human demonstrated tasks, namely filling, stacking, and 

twisting, are learned and mapped to the segment between 𝑐𝑜𝑛1  and 𝑐𝑜𝑛2 , the 

segment between 𝑐𝑜𝑛2  and 𝑐𝑜𝑛4 , and the segment between 𝑐𝑜𝑛4  and 𝑐𝑜𝑛5 , 

respectively. In this experiment, the proposed method can identify and compose 

the appropriate features in the human demonstration library to perform a new task. 

(a) 

(b) 



 

Assembling Task: In this task, the end-effector needs to disassemble a screw 

from Assembly Hole 1, then place the screw into Assembly Hole 2, and finally 

fasten the screw. The location of Assembly Hole 1 and Assembly Hole 2 are 

(0, 0.5, 0.6) and (0.5, 0, 0.6) as shown in Fig. 3.8 (a). To transfer the screw from 

Assembly Hole 1 to Assembly Hole 2, the end-effector is required to hold the 

screw horizontally and turn 90 degrees anti-clockwise. Based on the task 

requirement, the critical configurations can be specified in Table 3.9. 

Table 3.9. Critical configurations of the assembling task 

 

 

 

 

 



 

 

Figure 3.8 Generate motion plans for the assembling task after the feature of a new human 

demonstration is added to the library. (a) Critical configurations and the motion plan in 𝒥 for the 

assembling task after an additional human demonstration is provided. (b) Additional human 

demonstration for picking up a span. (c) The training process of the assembling task after the 

feature of a new human demonstration is added. (d) Motion plan in 𝑆𝐸(3).  

 

By applying the same trained general motion plan policy, no successful 

motion plan can be generated, which indicates additional human demonstrations 

are needed. A closer examination reveals that none of the five features saved in 

the library is semantically similar to the feature of the task segment between 𝑐𝑜𝑛2 

and 𝑐𝑜𝑛3 , which requires a 90-degree rotation about its body-fixed x-axis 

clockwise. Therefore, additional human demonstration is requested for this 

feature.  

With this additional human demonstration shown in Fig. 3.8 (b) added in the 

library, the motion planning policy is retrained using Algorithm 3.1. As shown in 

(a)                                                                                                       (b) 

(c)                                                                                                       (d) 



 

Fig. 3.8 (c), the accumulated reward reaches a steady value after around 10 

iterations. Then by applying the newly trained policy, the motion plan in 𝑆𝐸(3) is 

generated as shown in Fig. 3.8 (d). The result shows that the features of the 

human demonstrated twisting task 1 and task 2 are learned and mapped to the task 

segment between 𝑐𝑜𝑛1  and 𝑐𝑜𝑛2 , and the segment between 𝑐𝑜𝑛3  and 𝑐𝑜𝑛4 , 

respectively. The feature of the newly added human demonstration is learned and 

mapped to the task segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3. Corresponding motion plan 

in 𝒥 is shown in Fig. 3.8 (a). 

To summarize, the case study results demonstrate the effectiveness of the 

proposed RL-based user-guided motion planning method in learning and mapping 

appropriate features of human demonstrations to new tasks and generating motion 

plans in the joint space for semantically similar tasks. The proposed method can 

also request additional human demonstrations when new task features cannot be 

found in the human demonstration library. 

3.5. Summary 

In this research, we present a novel method for robot learning from human 

demonstrations based on RL-based motion planning. A task specification scheme 

is first developed for users to provide necessary kinematic information about task 

and environment constraints. A human demonstration library for specific working 

scenarios is built  through recording and storing the common actions by utilizing 

the existing recording capability for modern robots. By abstracting features from 

human demonstrations and tasks, the task-space RL-based motion planner can 

effectively identify, learn, and compose the appropriate demonstrated features to 

perform new tasks that comply with the task requirements and environment 

constraints. Followed by inverse kinematics, motion plans in joint space can be 

obtained. 

3.6. Related Work 

Part of the results presented in this chapter have been published in [31] 



 

Chapter 4. Motion Planning and Task-

Oriented Coordination Scheme for Mobile 

Manipulators 

4.1. Background 

Over the past decade, the mobile manipulator - a system created by integrating 

a robot manipulator onto a mobile base - has garnered considerable interest in the 

realm of industry [81]. As smart manufacturing continues to advance, there is an 

increasing expectation for robots to operate in dynamic, complex environments in 

close proximity to humans [82]. Nevertheless, the majority of current industrial 

mobile manipulators are designed to function solely in structured environments 

and lack autonomous capabilities [83]. To tackle this limitation, a significant 

amount of work have been conducted on motion planning of the manipulator 

[18]–[22] and the mobile base [84], [85]. However, due to the challenges in 

manipulator motion planning, precise localization of the mobile base and 

coordination between the mobile base and the manipulator, the implementation of 

these prevailing methods on mobile manipulators are yet to be fully explored [86]. 

For robot manipulator motion planning, current works can be categorized into 

sampling-based methods [18], [19], optimization-based methods [20], [21], and 

reinforcement-learning (RL) based methods [22]. However, these methods often 

require expert knowledge or a significant amount of data and computation to 

generate motion plans. In recent years, learning from demonstration (LfD) has 

become a promising approach for robot motion planning in human-robot 

collaboration environments [23]–[26]. However, scalability and adaptivity remain 

major challenges in current LfD methods. A scalable LfD technique has been 

proposed by the authors, enabling robots to generate adaptive motion plans from a 

single human demonstration [87]. However, most LfD methods are developed for 



 

fixed-base manipulators, and joint limits can add further challenges when tasks 

exceed the manipulator's reachable range. 

To handle joint limits of the manipulator, mobile manipulators often use a 

mobile base to mount the manipulator, which creates kinematic redundancy due to 

high degrees of freedom (DOF). While this flexibility is useful in complex 

environments, it complicates the motion planning process. Some existing methods 

treat the mobile manipulator as a redundant manipulator and calculate inverse 

kinematics (IK) for both the mobile base and manipulator simultaneously to track 

the desired end-effector trajectory [88], [89]. Nevertheless, as the DOF of the 

redundant manipulator increases, determining the exact IK solutions becomes 

more challenging and time-consuming [90], [91]. Other methods plan the motion 

of the mobile base and the manipulator separately [92]–[94]. However, how to 

maintain task constraints while moving the mobile base remains a challenging and 

unresolved issue. 

In addition, due to the kinematics and dynamics of the wheels or other 

locomotion mechanism, the mobile base cannot move in any arbitrary direction 

and is subject to certain constraints on its movement. This non-holonomic nature 

limits the possible velocities and accelerations of the mobile base, which makes it 

difficult to achieve some types of motions, such as rotations or sideways 

movements [95]. Existing motion planning methods do not typically account for 

the notable disparity in accuracy between the mobile base and the manipulator in 

practical applications. This can create considerable challenges in end-effector 

locomotion and affect the execution of the task trajectory, especially in a sensor-

less environment [86]. 

To address the aforementioned challenges, this research makes two primary 

contributions: Firstly, in joint space, a unique task-oriented manipulability is 

developed, which allows the manipulator's manipulability to be biased in 

accordance with task constraints (e.g., manufacturing task requirements on 

specific position). Secondly, a novel joint space coordination scheme for the 

mobile base and manipulator is developed, which is based on the task-oriented 



 

manipulability and reachability of the manipulator. This coordination scheme not 

only handles the joint limits of our previous LfD method [87] but also enhances 

the accuracy of tracking the task end-effector trajectory by avoiding solving high 

DOF inverse kinematics and optimizing the movement of the mobile base, which 

is now well addressed in existing works.   

4.2. Problem Description 

In this research, a mobile manipulator that combines a robot manipulator and 

a mobile base is employed to finish tasks in a manufacturing environment. The 

task can be specified as a sequence of 𝑛 critical configurations in the task space: 

𝑻𝑲 = {𝒄𝒐𝒏𝟏, 𝒄𝒐𝒏𝟐, … , 𝒄𝒐𝒏𝒏} (4.1) 

where 𝒄𝒐𝒏𝒊 is the 𝑖𝑡ℎ critical configuration that represents task requirements 

on both the position and orientation of the robot’s end-effector. Taking advantage 

of the authors’ previous work [87], the task end-effector trajectory 𝑻𝒓𝒂𝒋 =

{𝑫1
′ , 𝑫2

′ , … , 𝑫𝑚
′ } can be obtained in the task space by learning from a semantically 

similar human demonstration 𝑫𝑷 = {𝑫1, 𝑫2, … , 𝑫𝑚}, where 𝑫𝑗  and 𝑫𝑗
′  are dual 

quaternions that encode both the position and orientation of the end-effector.  

During the execution of 𝑻𝒓𝒂𝒋 in the joint space, manipulator's joint limits can 

pose a significant challenge, as the manipulator may not be able to reach 

configurations beyond its reachable range. To tackle this issue, existing methods 

usually consider the mobile manipulator as a redundant manipulator and calculate 

inverse kinematics, 𝐼𝐾: 𝑫𝑗
′ →< 𝜽𝑗 , 𝑩𝑗 >, where 𝑩𝑗 is the joint space configuration 

of the mobile base, for the entire system. However, since the complexity of the IK 

equations increases with the DOF of the manipulator, the numerical methods used 

to solve 𝐼𝐾 can become less accurate and more time-consuming [90], [91]. This 

can negatively impact task execution precision. Additionally, the non-holonomic 

nature of the mobile base can cause errors in end-effector locomotion when 

simultaneously moving the manipulator and the mobile base to reach the 

configuration < 𝜽𝑗 , 𝑩𝑗 > [95]. 



 

Considering both task execution accuracy and computational efficiency, the 

goal of this research is to develop a coordination scheme for the mobile base and 

the manipulator, such that the trajectory obtained from and the movement of the 

mobile base, 𝑴𝑩 = {𝑩1, 𝑩2, … }  within a workspace 𝓦  can be optimized to 

compensate for the manipulator’s joint limits. Using the 𝝑  to denote the 

manipulator joint limits and 𝑨𝑬 = ∑ |𝑫𝑗𝑟𝑒𝑎𝑙
′ − 𝑫𝑗

′|𝑚
𝑗=1 , where 𝑫𝑗𝑟𝑒𝑎𝑙

′  is the real 

configuration of the end-effector, to denote the accumulated error during the task 

execution, the problem studied in this research can be described as follows: Given 

a new task specification and task end effector trajectory 𝑻𝒓𝒂𝒋, develop a mobile 

manipulator coordination scheme to achieve the given new task with the highest 

accuracy, i.e., 

< 𝜽∗, 𝑴𝑩∗ >= arg min
𝑴𝑩∈𝓦

𝑨𝑬    𝑠. 𝑡. 𝜽 ∈ 𝝑 (4.2) 

where 𝜽∗ and 𝑴𝑩∗ are the optimized manipulator and mobile base trajectories 

obtained by the coordination scheme. 

To address this challenge, we propose a mobile manipulator coordination 

scheme (introduced in Section 4.5) that seamlessly combines the scalability of the 

manipulator's LfD [87] with the flexibility of the mobile base. Within this 

coordination scheme, the high-accuracy manipulator's LfD trajectory is kept as 

much as possible, and the adjustment of the mobile base is triggered only when 

the manipulator encounters singularities, thereby optimizing the precision of task 

execution. It is worth noting that the task space LfD method not only captures 

kinematics features of one-time human demonstration but also incorporates a 

mapping function to adapt features of demonstration to all semantically similar 

tasks, which can differ in starting and goal positions. With this approach, the 

robot gains the capability to generate motion plans for numerous new task 

instances using just one demonstration. Furthermore, the robot can learn from 

demonstrations provided to other robots, even when those robots operate in 

different locations and manufacturing environments. 

4.3. Task-oriented Mobile Manipulator Coordination Scheme 



 

4.3.1. End-effector Trajectory Generation in the Task Space 

To produce adaptable end-effector trajectories 𝑻𝒓𝒂𝒋 for the task 𝑻𝑲 in the 

task space, the authors have opted for a learning from human demonstrations 

approach that was developed in their previous work [87] due to its scalability and 

flexibility. In order to make this research self-contained, the fundamental 

outcomes of the previous work on task space motion planning are presented 

without delving into technical intricacies.  

Given the human demonstration 𝑫𝑷 = {𝑫1, 𝑫2, … , 𝑫𝑚}, the transformation, 

𝜹𝑖, between the goal pose and every other pose is: 

𝜹𝑖 = 𝑫𝑖−1
∗ ⊗ 𝑫𝑚  , 𝑖 = 2, … , 𝑛 (4.3) 

where ⊗ represents dual quaternion multiplication and 𝑫∗ denotes the conjugate 

of 𝑫 . Note that all implicit task constraints in a human demonstration are 

embedded in the sequence of 𝜹𝑖  during the motion. Thus, the sequence of 𝜹𝑖 

represents a sequence of relative transformation and is referred to as a kinematic 

feature or semantics of a human demonstration: 

𝑯𝑫 = {𝜹2
𝑯𝑫, … , 𝜹𝑚

𝑯𝑫} (4.4) 

Similarly, the feature of the task can be calculated as 𝑻𝑺 = {𝜹2
𝑻𝑺, … , 𝜹𝑛

𝑻𝑺}. The 

similarity between the demonstrated 𝑫𝑷 , and the new task, 𝑻𝑲 , can then be 

calculated using similarity function, 𝜶(𝜹𝑗
𝑯𝑫, 𝜹𝑖

𝑻𝑺)  , which is defined based on 

Euclidean distance [76]. The semantic similarity criterion between the two is then 

defined as: 

∀𝜹𝑖
𝑻𝑺 ∈ 𝑻𝑺, ∃𝜹𝑗

𝑯𝑫 ∈ 𝑯𝑫 → 𝜶(𝜹𝑗
𝑯𝑫, 𝜹𝑖

𝑻𝑺) ≤ ∆𝛼 (4.5) 

where ∆𝛼  is a predefined tolerance value that can be determined based on the 

precision requirements of the specific task. If the human demonstration and the 

new task are semantically similar based on the criterion, the robot can generate a 

motion plan for the new task by using the human demonstration as a guidance. 

This is done by using a mapping function, 𝒎𝒑: 𝑯𝑫 → 𝑻𝑺 , which aligns and 

enforces the features of the human demonstration onto the new task using a 



 

quaternion sandwich operation [96]. Then, the task end-effector trajectory can be 

obtained as 𝑻𝒓𝒂𝒋 = {𝑫1
′ , 𝑫2

′ , … , 𝑫𝑚
′ } , where each 𝑫𝑖−1

′ = 𝒄𝒐𝒏𝒏 ⊗ 𝜹∗
𝑖
𝑯𝑫, 𝑖 =

2, … , 𝑚, 𝜹∗
𝑖
𝑯𝑫

 is the conjugate of 𝜹∗
𝑖
𝑯𝑫

, and 𝑫𝑚
′ = 𝒄𝒐𝒏𝒏. For detailed derivation 

and proof, reader can refer to [87]. 

4.3.2. Development of Task-oriented Manipulability for the 

Manipulator 

To solve the problem formulated in Section 4.2, in this section, a coordination 

scheme is developed, which takes advantage of the precise control of the 

manipulator and reduces the repositioning of the mobile base during the execution 

of the task. To ensure the task accuracy, the reachability of the manipulator is 

optimized to cover a maximized portion of the target end-effector trajectory. The 

mobile base is only mobilized when there is a need to compensate for the joint 

limits of the manipulator. To further improve the accuracy, a task-oriented 

manipulability that can bias the manipulability based on the task constraints is 

defined and compared with the conventional manipulability.  

First, for a given end-effector configuration 𝑫 ∈ ℝ4 and a mobile base pose 𝑩 ∈

ℝ2, reachability of the mobile manipulator can be determined by checking the 

existence of solutions to the inverse kinematics 𝐼𝐾: 𝑫 → 𝜽 𝑠. 𝑡. 𝜽 ∈ 𝝑 , which can 

be defined as: 

𝑹𝒂(𝑫, 𝑩) = {
1,             if IK solutions exist  
0,             otherwise                    

(4.6) 

Therefore, within a 2D workspace 𝓦 ∈ ℝ2, a feasible region 𝝃 can be defined 

as: 

𝝃 = {𝝃 ∈  𝓦 | ∀𝑩 ∈ 𝝃 → 𝑹𝒂(𝑫, 𝑩) = 1} (4.7) 

This feasible region 𝝃  includes all feasible mobile base poses 𝑩  that make 𝑫 

reachable for the manipulator. 

However, if only reachability constraint is considered to determine the desired 

mobile base pose, the searching space for finding a feasible solution could be 



 

large and the singularity state 𝜽∗ of the manipulator obtained by 𝐼𝐾: 𝑫 → 𝜽∗, 𝑩 

cannot be avoided. To tackle these problems, manipulability is considered as a 

second constraint. The conventional measurement of manipulability [97] is given 

as : 

𝑚𝑎𝑛(𝜽) = √det[𝑱(𝜽)𝑱𝑇(𝜽)] (4.8) 

where 𝑱(𝜽) ∈ ℝ𝑚×𝑛  is the Jacobian matrix and 𝑱𝑇(𝜽) is the transpose of 𝑱(𝜽). 

This is a metric that quantifies the distance between a manipulator state 𝜽 and a 

singularity state 𝜽∗ . Such a measurement can provide information about the 

overall movement ability of the end-effector, but it does not take into account the 

specific requirements of a task. For a specific task, the mobile manipulator is 

required to move towards the critical configuration, and the movement ability of 

the end-effector in that direction is more critical than its movement ability in other 

directions. To address this, a task-oriented manipulability can be defined which 

reflects the biased movement ability of the end-effector towards the task direction. 

Based on the critical configuration of the task, a unit vector 𝒌̂ =
𝑿𝑐𝑜𝑛∗−𝑿𝑫𝑐

|𝑿𝑐𝑜𝑛∗−𝑿𝑫𝑐|
 is 

defined, where 𝑿𝑐𝑜𝑛∗
∈ ℝ3  and 𝑿𝑫𝑐

∈ ℝ3  are positions of the target critical 

configuration of the task and the current end-effector configuration. The 

projection of end effector velocity along the 𝒌̂ direction can be written as: 

𝑒 = 𝑱(𝜽)𝜽̇ ∙  𝒌̂ (4.9) 

Considering a sphere of joint velocity 𝜽̇𝑇𝜽̇ = 1, Eqn. (4.9) can be rewritten as: 

𝑒𝑇(𝒌̂𝑇𝑱(𝜽)𝑱𝑇(𝜽)𝒌̂)
−𝟏

𝑒 = 1 (4.10) 

Let 𝐴𝑘=𝒌̂𝑇𝑱(𝜽)𝑱𝑇(𝜽)𝒌̂, then the value 𝑒 is limited to a manipulability ellipsoid 

where lengths of the principal axes are eigenvalues of 𝐴𝑘 . Similar as the 

conventional measurement in Eqn. (4.8), the task-oriented manipulability, 

𝑚𝑎𝑛′(𝜽), is defined as: 

𝑚𝑎𝑛′(𝜽) = √det(𝒌̂𝑇𝑱(𝜽)𝑱𝑇(𝜽)𝒌̂) (4.11) 



 

By considering task-oriented manipulability measure as a constraint in the 

motion planning process, it helps to ensure that the end-effector has sufficient 

movement ability in the direction required for the task, which can further improve 

the task trajectory segment covered by the manipulator.  

4.3.3. Development of Coordination Scheme of the Mobile Base 

Motion and the Manipulator Motion 

Given the task trajectory 𝑻𝒓𝒂𝒋 = {𝑫′1, 𝑫′2, … , 𝑫′𝑚} and considering both the 

reachability and manipulability of the manipulator, the positions of the mobile 

base within the feasible region 𝝃  need to be determined, such that for each 

segment of the target trajectory 𝑺𝒆𝒈𝑖 = {𝑫′
𝑗 , 𝑫′

𝑗+1, … , 𝑫′𝑗+𝜇𝑖
},  the maximum 

length from 𝑫′𝑗 to 𝑫′𝑗+𝜇𝑖
 can be covered by the manipulator. This optimization 

problem can be formulated as follows:  

arg max
𝑩∈𝝃

𝜇 , 𝜇 = 1, … , 𝜇𝑖     𝑠. 𝑡.  𝑹𝒂(𝑫𝑗+𝜇, 𝑩) = 1, 𝑚𝑎𝑛′(𝜽) >  ∆𝑚𝑎𝑛𝑘
(4.12) 

where ∆𝑚𝑎𝑛𝑘
 is the tolerance of the task-oriented manipulability. 

To solve this problem, starting from 𝑫′1 , the solution involves searching 

within 2𝑟 × 2𝑟 m2  square workspace 𝓦  with a mesh grid size of 𝑔 × 𝑔 m2 , 

where 𝑟  is the length when the manipulator is fully extended. Reachability 

𝑹𝒂(𝑫′𝑗 , 𝑩) at each grid point is determined to form the feasible region 𝝃. Within 

𝝃, only the grid points in 𝒌̂ direction are selected to evaluate for the reachability 

and task oriented manipulability of the manipulator. Once the specific position 

𝑩∗ ∈ 𝝃 is found that can maximize the segment trajectory 𝑺𝒆𝒈𝑖, the mobile base 

moves to the position 𝑩∗ while maintaining the configuration of the end-effector 

𝑫′𝑗 . After the mobile base stops, inverse kinematics is calculated for the 

manipulator to track 𝑺𝒆𝒈𝑖. When the manipulator finishes tracking the segment 

𝑺𝒆𝒈𝑖, the mobile base is repositioned to maximize the next segment  𝑺𝒆𝒈𝑖+1 until 

the goal configuration 𝑫′𝑚 is reached. The overall coordination structure is shown 

in Fig. 4.1 and the coordination algorithm is shown in Algorithm 4.1. 



 

 

Figure 4.1. Coordination scheme for the mobile base and the manipulator. 

Algorithm 4.1 Mobile Manipulator Coordination in the Joint Space 

Input: EE trajectory {𝑫′1, 𝑫′2 , … , 𝑫′𝑚} 

Output: Sequence of mobile base poses 𝑺𝒒, Sequence of joint angles 𝜽 

 𝑗 = 1 

While 𝑖 ≤ 𝑚 do 

     Mesh a workspace 𝓦 with the center of 𝑫′𝑖  using grid size 𝑔 × 𝑔 m2 

     𝝃 = ∅ 

     For 𝑩 in 𝓦  

           If 𝑹𝒂(𝑫𝒋, 𝑩) = 1 

               𝝃 = 𝝃 + 𝑩 

           End If 

     End For 

     For 𝑩 in 𝒌̂ direction of 𝝃 

           If 𝑚𝑎𝑛𝑘(𝜽) >  ∆𝑚𝑎𝑛𝑘
 do 

               𝑗 = 𝑗 + 1 

           Else 

               Break and output 𝑖 
           End If 

           𝑺𝒒 ⟵ {𝑺𝒒, 𝑩}  

     End For  

     IK: 𝑫′𝒋, 𝑩 ⟶ 𝜽𝑗 

     𝜽 ← {𝜽, 𝜽𝒋} 

     Update 𝑫𝒋 

End While  

    Output  𝑺𝒒, 𝜽 

 

4.4. Numerical Case Study 

In this section, to simulate tasks in manufacturing settings, a material handling 

task and a painting task are specified in the task space. Simulation experiments 

are performed on a UR10-Husky virtual test bed shown in Fig. 4.2. The precision 

of the mobile base locomotion is set to ± 0.1m, and the accuracy of the 

manipulator is set to ±0.001m. Three primitive actions are demonstrated by the 



 

human operator on a UR5e manipulator. The performance of the proposed method 

is evaluated using two performance metrics: (1) The computing time to obtain the 

motion plan in the joint space; (2) The accumulated distance error between the 

target configuration in the end-effector trajectory and the current configuration of 

the end-effector during the execution, which is defined as: 

𝑨𝑬 = ∑|𝑿𝑟𝑒𝑎𝑙(𝑡) − 𝑿𝑡𝑟𝑎𝑗(𝑡)|

𝑇

𝑡=0

(4.13) 

where 𝑿𝑟𝑒𝑎𝑙(𝑡) is the real-time position of the end-effector and 𝑿𝑡𝑟𝑎𝑗(𝑡) is the 

target position of the end-effector in the trajectory generated using LfD methods.  

 

Figure 4.2. UR10-Husky virtual test bed. 

In this research, three simulation experiments are conducted to evaluate the 

effectiveness and robustness of the proposed method. The first experiment 

explores the feasibility and scalability of the method with two different material 

handling tasks. The second experiment compares the performance of the proposed 

method using both conventional manipulability and task-oriented manipulability. 

The third experiment compares the performance of the proposed method with two 

other methods: (1) A duplication motion planning method that uses the 

manipulator to repeat the semantically similar primitive actions demonstrated by 

the human operator and relies on the mobile base to adjust the manipulator's 

movement to reach the desired end-effector trajectory for the new task; (2) An 

overall inverse kinematics method that considers the UR10-Husky mobile robot 

as an 8-DOF redundant manipulator and calculates inverse kinematics for this 



 

redundant manipulator during the execution of the motion plan in the joint space. 

From the case study, the following three key conclusions can be drawn: (1) The 

proposed method is effective in producing adaptive end-effector trajectories 

through learning from one semantically similar primitive action; (2) The proposed 

method that uses task-oriented manipulability yields better results in computing 

time and accuracy compared with the conventional manipulability; (3) The 

proposed method has demonstrated superior accuracy in executing joint space 

motion plans compared with the other two methods. 

4.4.1. Human Demonstrations 

To build a library including some common tasks in a certain manufacturing 

setting, we start with 3 illustrative demonstrations as shown in Fig. 4.3. The tasks 

are recorded in the joint space through kinesthetic demonstrations, including one 

screwing task, one filling task, and one stacking task. Using forward kinematics, 

ℱ𝒦, the joint space demonstrations are converted to task space trajectories, which 

are used as the input to the LfD algorithm in the simulation environment. 

 

Figure 4.3. Kinesthetic demonstrations of 3 most common tasks. (a) Screwing task. (b) Filling 

task. (c) Stacking task. 

(c) 

(a)                                                       (b) 



 

4.4.2. Task Specification and End-effector Trajectories in the Task 

Space 

In order to evaluate the performance of the execution of the motion plan in the 

joint space, a material handling task and a painting task are specified in Table 4.1 

and 2, which are common tasks in manufacturing settings. 

Material handling task: This task is designed to analogy material handling in a 

manufacturing setting, which involves short-distance movement within the 

confines of a building or between a building and a transportation vehicle. In this 

task, the end-effector is required to turn up 90 degrees from 𝒄𝒐𝒏𝟏 and 𝒄𝒐𝒏𝟐 and 

keep the orientation of the end-effector to transfer a cup of water from 𝒄𝒐𝒏𝟐 to 

𝒄𝒐𝒏𝟑 , then rotate the end-effector 90 degrees to reach 𝒄𝒐𝒏𝟒 . Based on the 

semantical similarity criteria defined in Eqn. (4.5), the feature of the filling task, 

stacking task and the twisting task will be mapped to the segment from 𝒄𝒐𝒏𝟏 to 

𝒄𝒐𝒏𝟐 , 𝒄𝒐𝒏𝟐  to 𝒄𝒐𝒏𝟑 , and 𝒄𝒐𝒏𝟑  to 𝒄𝒐𝒏𝟒  respectively. The final end-effector 

trajectory in the task space is shown in Fig. 4.4 (a). Note that this task is designed 

to mimic potential pick-and-place industrial applications such as pegging a hole, 

assembling and disassembly a screw, where the end-effector configurations are 

specified in a certain range.  

Painting task: In this task, the end-effector is required to maintain its 

orientation to paint a square by traveling from 𝒄𝒐𝒏𝟏  to 𝒄𝒐𝒏𝟓 . This task is 

designed to mimic industrial applications such as painting, cutting, or welding 

through a specific routing with specified end-effector configurations. Based on 

the semantical similarity criteria, the feature of the stacking task is mapped to the 

segment from 𝒄𝒐𝒏𝟏  to 𝒄𝒐𝒏𝟐 , 𝒄𝒐𝒏𝟐  to 𝒄𝒐𝒏𝟑 , 𝒄𝒐𝒏𝟑  to 𝒄𝒐𝒏𝟒 , and 𝒄𝒐𝒏𝟒  to 𝒄𝒐𝒏𝟓 

respectively. The final end-effector trajectory in the task space is shown in Fig. 

4.4 (b). 

Table 4.1. Critical Configurations of the Material Handling Task. 

 𝑐𝑜𝑛1 𝑐𝑜𝑛2 𝑐𝑜𝑛3 𝑐𝑜𝑛4 

𝑷 (0.2,0.2,0.4) (0.2,0.2,0.8) (6.2,0.2,0.8) (6.2,0.2,0.4) 



 

𝜽 (0,0,0) (0, −𝜋/2,0) (0, −𝜋/2,0) (𝜋/2,0, −𝜋/2) 

Table 4.2. Critical Configurations of the Painting Task. 

 𝑐𝑜𝑛1 𝑐𝑜𝑛2 𝑐𝑜𝑛3 𝑐𝑜𝑛4 𝑐𝑜𝑛5 

𝑷 (0.2,0.2,0.6) (1.4,0.2,0.6) (1.4,1.4,0.6) (0.2,1.4,0.6) (0.2,0.2,0.6) 

𝜽 (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,0) 

 

 

Figure 4.4. End-effector trajectories in the task space. (a) Material handling task; (b) Painting task. 

4.4.3. Determining the Grid Size for the Mobile Base Workspace 

Given the target end-effector trajectory for the new task, the pose of the 

mobile base can be determined by utilizing Algorithm 4.1 to search through a 

meshed workspace. To determine the ideal grid size for the workspace that strikes 

a balance between accuracy and computational efficiency, the accumulated 

distance error and the computing time for various grid sizes are compared in this 

section. The tolerance ∆𝑚𝑎𝑛𝑘
 of  task-oriented manipulability is set to be 0.5. 

Given the mesh grid size of 0.2 × 0.2 m2 ,  0.4 × 0.4 m2  and 0.8 × 0.8 m2 , 20 

trials of experiment are conducted for each grid size and the statistic results are 

summarized in Table 4.3. A single mobile base trajectory is selected to represent 

the 20 trials for each grid size, where as shown in Fig. 4.5 (a)-(c), the trajectory of 

the end effector is denoted by the purple line with the red-blue-green corrdinates, 

and the trajectory of the mobile based is denoted by the yellow line. Starting from 

the initial configuration, the target mobile base poses selected within the 

workspace are represented by the Husky mobile base in Fig. 4.5. From Table 4.3, 

(a)                                                                                      (b) 



 

it can be found that the accumulated error of the grid size 0.2 × 0.2 m2  and  

0.4 × 0.4 m2 are close, while the accumulated error of the grid size 0.8 × 0.8 m2 

is nearly 50% more than that of the grid size 0.2 × 0.2 m2 and  0.4 × 0.4 m2 . 

This happens because the grid size 0.8 × 0.8 m2 is too large for the mobile base 

to select the optimal position that can maximize reachability of the manipulator. 

To compensate for the manipulator, the mobile base has to move more frequently, 

resulting in more errors in terms of distance. This can also be observed in Fig. 4.5 

(a)-(c), where the movement of the mobile base with the grid size 0.8 × 0.8 m2 is 

three times more than that of the grid size 0.2 × 0.2 m2 and  0.4 × 0.4 m2. As for 

the computational efficiency, searching with smaller mesh grids will cost more 

time and the added movement of the mobile base can also decrease the searching 

efficiency. Considering both the accumulated distance error and the computing 

time listed in Table 4.3, the grid size 0.4 × 0.4 m2  is selected as the optimal 

balance between the accuracy and efficiency of the proposed method, which will 

be used in the following experiments.  

 

 

(a)                                                                                    (b)                                                             

(c) 



 

Figure 4.5. Trajectories of the end-effector and the manipulator for the material handling task with 

grid sizes of (a) 0.2 × 0.2 𝑚2, (b) 0.4 × 0.4 𝑚2, and (c) 0.8 × 0.8 𝑚2. 

Table 4.3. Performance of the Proposed Method on the Material Handling Task with Different 

Grid Sizes. 

Grid Size 

Accumulated Distance Error  

(95% CI) 

Computing Time 

(95% CI) 

0.2 × 0.2 m2  0.442m (0.427 − 0.457m) 2250.03s (2219.05 − 2281.01s) 

0.4 × 0.4 m2
 0.450m (0.438 − 0.462m) 871.64s (851.93-891.35s) 

0.8 × 0.8 m2
 0.684m (0.670 − 0.698m) 792.25s (772.57-807.93s) 

 

4.4.4. Evaluation of the feasibility and scalability of the Task-

oriented Motion Planning Method 

In the first experiment, to evaluate the feasibility and scalability of the 

proposed method, two different material handling tasks are specified with 

different work space, different goal configuration, and different routings as shown 

in Table 4.4 and Table 4.5. For each task, 20 trials are conducted. Results show 

the task can be successfully finished using the proposed method for each trial. As 

shown in Fig. 4.6, features of the human demonstrated stacking task (keeping the 

orientation of the end-effector) are scaled and rotated based on the requirement of 

the passing segment (𝒄𝒐𝒏𝟐 → 𝒄𝒐𝒏𝟑) of Material Handling Task 2 and Material 

Handling Task 3. Features of the human demonstrated filling and the twisting 

tasks can also be successfully learned through the mapping function to 

corresponding new task segments ( 𝒄𝒐𝒏𝟏 → 𝒄𝒐𝒏𝟐  and 𝒄𝒐𝒏𝟑 → 𝒄𝒐𝒏𝟒 ) with 

different scales and environments without requiring additional demonstrations or 

human interference.  

Table 4.4. Critical Configurations of the Material Handling Task 2. 

 𝑐𝑜𝑛1 𝑐𝑜𝑛2 𝑐𝑜𝑛3 𝑐𝑜𝑛4 

𝑷 (0.2,0.2,0.4) (0.2,0.2,0.8) (6.2,6.2,0.8) (6.2,6.2,0.4) 

𝜽 (0,0,0) (0, −𝜋/2,0) (0, −𝜋/2,0) (𝜋/2,0, −𝜋/2) 



 

Table 4.5. Critical Configurations of the Material Handling Task 3. 

 𝑐𝑜𝑛1 𝑐𝑜𝑛2 𝑐𝑜𝑛3 𝑐𝑜𝑛4 

𝑷 (0.2,0.2,0.4) (0.2,0.2,0.8) (0.8,0.2,0.8) (0.8,0.2,0.4) 

𝜽 (0,0,0) (0, −𝜋/2,0) (0, −𝜋/2,0) (𝜋/2,0, −𝜋/2) 

 

 

Figure 4.6. Trajectories of the end-effector and the manipulator for Material Handling Task 2 (left) 

and 3 (right). 

4.4.5. Examining Proposed Task-oriented Manipulability 

In the second experiment, the performance of the motion planning method is 

evaluated by comparing the results using both proposed task-oriented 

manipulability and conventional manipulability. The tolerance of both 

conventional manipulability and task-oriented manipulability are set to 0.5. As 

shown in Fig. 4.7, the number of mobile base movements using task-oriented 

manipulability is half of that using conventional manipulability. This occurs 

because conventional manipulability does not properly account for the specific 

requirements of the task and therefore considers some base poses to be more 

feasible than they actually are, leading to an underestimation of the manipulability 

score. 

For instance, during the task segment between 𝒄𝒐𝒏𝟐 and 𝒄𝒐𝒏𝟑, the optimal 

movement for maximizing reachability of the manipulator would be for the 

mobile base to move forward to 𝒄𝒐𝒏𝟑 as much as possible, while stretching the 

manipulator backward to maintain the end-effector at 𝒄𝒐𝒏𝟐. However, when the 



 

manipulator stretches backward, the conventional manipulability score drops 

sharply to zero when the manipulator reaches its limit, even though the 

manipulator can still move freely toward the critical configuration 𝒄𝒐𝒏𝟑 . This 

underestimation of manipulability using the conventional measurement causes the 

manipulator to not fully stretch, requiring the mobile base to move more 

frequently as shown in Fig. 4.7. From the statistical results in Table 4.6, it can 

also be found that the accumulated distance error is increased by involving 

additional mobile base movements and more time is consumed to calculate these 

poses. Therefore, the proposed method using task-oriented manipulability 

outperforms that of using conventional manipulability in both computational 

efficiency and accuracy.  

 

Figure 4.7. Trajectories of the end-effector and the manipulator for the material handling task with 

proposed task-oriented manipulability (left) and conventional manipulability (right). 

Table 4.6. Comparison between Conventional Manipulability and Task-oriented Manipulability on 

the Material Handling Task. 

Manipulability Accumulated Distance Error (95% CI) Computing Time (95% CI) 

Conventional 0.871m (0.835 − 0.907m) 1987.82s (1964.15 − 2011.49s) 

Task-oriented 0.429m (0.411 − 0.447m) 864.27s (842.15 − 886.40s) 

 



 

4.4.6. Evaluation of the Efficiency and Accuracy of the Task-oriented 

Motion Planning Method  

In the third experiment, a comparison is made between the computational 

efficiency and accuracy of the proposed method on the painting task and those of 

a duplication method and an overall inverse kinematics method. The following 

describes the comparison methods. 

Duplication method: In this method, for the painting task, the motion of the 

manipulator fully duplicates the horizontal segment of the human demonstrated 

stacking task. The mobile base is used to compensate the manipulator for enabling 

the end-effector to track the target trajectory for the new task.  

Overall inverse kinematics method: In this method, the whole mobile 

manipulator is regarded as an 8DOF redundant manipulator with two prismatic 

joints from the mobile base and six revolute joints from the manipulator. During 

joint space execution, inverse kinematics for the entire mobile manipulator is 

calculated using the Levenberg-Marquardt method [98]. 



 

 

Fig. 4.8. Trajectories of the end-effector and the mobile base for the painting task using (a) the 

duplication method, (b) the overall inverse kinematics method and (c) the proposed method. 

Trajectories of the end-effector and the mobile base obtained by different 

motion planning methods are shown in Fig. 4.8. For the duplication method and 

the overall inverse kinematics method, the repositioning of the mobile base is 

represented by the circle. As shown in Fig. 4.8 (a) and (b), the end-effector 

trajectories produced by the duplication method and the overall inverse 

kinematics method deviate significantly from the desired square shape required 

for the painting task. This is due to the lack of consideration for the significant 

accuracy difference between the mobile base and the manipulator and the proper 

coordination between the mobile base and the manipulator, resulting in 

simultaneous planning of both and additional movements of the mobile base. In 

contrast, the proposed method provides a coordination scheme that optimizes the 

movement of the mobile base to limited poses. In this way, most of the target 

trajectory is kept by the manipulator and the deviation in the distance is also 

(a)                                                                                  (b) 

(c) 



 

limited to only a few repositioning points of the mobile base. As a result, the end-

effector trajectory obtained by the proposed method follows the square accurately. 

As listed in Table 4.7, compared with the duplication method and overall inverse 

kinematics method, the accumulated distance error is reduced by around 95% 

using our proposed method.  

As for computing efficiency, the duplication method is significantly faster 

than the other two methods since it does not require solving either the 

optimization problem or inverse kinematics. However, since the duplication 

method completely duplicates the human demonstration on a specific manipulator, 

such a method cannot be generalized to other manipulators with different sizes 

and DOFs. The Levenburg-Marquardt method, which is used in the overall 

inverse kinematics method, has a high time complexity that grows as the DOF 

increases, making it the most time-consuming method compared to the other two. 

As a result, due to its low accuracy and computing efficiency, using a high DOF 

motion planning method like this should be avoided in practice. 

Table 4.7. Performance of Different Motion Planning Methods on the Painting Task. 

Method Accumulated Distance Error (95% CI) Computing Time (95% CI) 

Duplication 8.828m (8.416 − 9.240m) 105.29s (99.81 − 110.77s) 

Overall IK 
9.156m (8.759 − 9.553m) 

894.33s (873.44-

915.22s) 

Proposed 0.431m (0.710 − 0.752m) 839.10s (813.27-864.93s) 

 

To sum up, the proposed scalable task-oriented motion planning method for 

mobile manipulators is effective in generating adaptive end-effector trajectories 

for new tasks by learning from human demonstrations. In addition, by utilizing a 

reasonable mesh grid size and task-oriented manipulability, the method is able to 

generate accurate motion plans in the joint space execution with high efficiency.  

4.5. Summary 



 

In this research, the we present a scalable motion planning and task-oriented 

coordination scheme for mobile manipulators. A LfD method is applied to enable 

the robot to generate adaptive end-effector trajectories in the task space. During 

the execution of the end-effector trajectory in the joint space, a coordination 

scheme is proposed to optimize the movement of the mobile base within a 

boundary based on the reachability and novel task-oriented manipulability of the 

manipulator. Case study results have validated the effectiveness of the proposed 

method in generating adaptive end-effector trajectories in the task space and 

improving accuracy in joint space execution. However, the proposed method still 

has limitations in its searching efficiency when trying to find the optimal positions 

of the mobile base.  

 

 

 

 

 

 

 

 



 

Chapter 5. Hybrid Robot Learning for 

Automatic Robot Motion Planning in Smart 

Manufacturing 

5.1. Background 

In today's manufacturing settings, there is a clear shift towards agile, 

intelligent production with an enhanced role for robots [99]. Yet, the industry 

predominantly leans on pre-programmed robots, necessitating reprogramming 

even for minimal task adjustments. The associated time and costs in 

reprogramming these robotic systems present notable challenges [96], [100].  

To address challenges in robot motion planning, researchers have developed 

two main approaches: joint space and task space planning. Joint space planning 

avoids singularities—including joint limits and obstacles—allowing precise 

control over individual joints for detailed motion planning [101], [102]. However, 

it is usually time-consuming and lacks task-level understanding, leading to 

potential inaccuracies in the end-effector's motion. Task space planning, on the 

other hand, focuses on task-centric operations. It is fast and adaptable to different 

robots but relies on inverse kinematics for joint angle calculations, posing 

challenges in avoiding singularities, collisions, and joint limits [27], [91]. Hence, 

a method combining the merits of both approaches while mitigating their 

limitations is essential. 

In recent years, with the development and advancement of AI, Deep 

Reinforcement Learning (DRL) has become crucial for robot motion planning 

[103]. For instance, the authors propose a Soft Actor Critic (SAC) based method 

[104] for self-homing in industrital robotic cell. This method assumes a pre-

sensed unknown environment, allowing for policy transfer without extra training. 



 

It employs a multi-agent training setting, enhancing state space exploration, with 

agents sharing experiences and deploying policies collectively. While DRL 

methods like Deep Q-network (DQN) [105], [106], Deep Deterministic Policy 

Gradient (DDPG) [27], [107], and Proximal Policy Optimization (PPO) [108] are 

effective for tasks like pick-and-place and assembly, these methods also face 

challenges. These challenges include difficulty learning implicit task constraints, 

requiring extensive data and time, and lacking consistent stability and accuracy. 

Modifications to work cells or tasks also demand DRL agent retraining or 

finetuning [109], highlighting the need for ongoing refinement in DRL techniques. 

Compared with modeling a task and planning the motion of a robot in the 

DRL-based robot motion planning, human operators are often more intuitive in 

performing the task. Learning from Demonstrations (LfD) offers a viable strategy 

for robots to execute similar tasks in Human-Robot Collaboration environments 

due to its intuitive nature. However, LfD methods currently face challenges with 

scalability and adaptability [23], [25]. The authors have introduced a scalable LfD 

technique, allowing robots to devise adaptive motion plans from a single 

demonstration [31]. Although this approach efficiently maps kinematic features to 

new tasks, its efficacy is limited in complex environments with varied obstacles. 

Robots often require search algorithms to navigate, making original 

demonstrations less applicable. Furthermore, task space LfD algorithms may 

encounter joint-space issues, including self-collisions, reachability, and 

manipulability limitations [29].  

This research introduces a hybrid robot motion planning method, integrating 

the task space LfD [31] and joint space DRL-based approaches [104], aiming to 

capitalize on their respective strengths while mitigating their limitations. For a 

robot working in a narrow work cell, the proposed method initiates with a 

comprehensive feasibility map calculation, considering reachability, 

manipulability, and collision avoidance. A task space trajectory is then generated 

using a Hierarchical Reinforcement Learning-based LfD (HRL-LfD) method. The 



 

infeasible segments of such a trajectory are identified via the feasibility map and 

adjusted into feasible regions using the DRL-based approach. 

5.2. Problem Description 

In this research, we delve into a 3D work cell scenario where a robotic 

manipulator is tasked with performing distinct assignments, such as material 

handling, painting, assembly, or inspection [110]. Depending on the particular 

task at hand, various constraints are typically imposed, encompassing factors like 

initial and target positions, as well as the requirement of specific orientations for 

the end effector. In manufacturing environments, work cells often exhibit intricate 

layouts comprising machines, robots, and various components. It is assumed that, 

the position and dimension of the workspace and each component in the 

workspace are observable. Also, the critical configurations of the new task are 

given. This research aims to create an effective automated motion planning 

solution for a robot manipulator, thereby mitigating the need for costly 

reprogramming when executing diverse tasks within a complex industrial 

environment.  

The authors have previously developed two approaches with the same goal. 

The task space-based robot LfD approach [31] is effective at quickly and 

accurately learning from a single demonstration but struggles in complex robot 

environments with various obstacles, requiring search algorithms for navigation. 

Additionally, it operates in task-space motion planning, potentially encountering 

issues in joint-space. In contrast, the DRL-based motion planning approach [104] 

guarantees joint-space solutions but demands substantial data for agent training, 

involves time-intensive computations, and lacks inherent task-specific constraint 

adherence. Therefore, there is a need to develop a hybrid approach that combines 

the strengths of both methods while mitigating their respective weaknesses. 

5.3. Hybrid Motion Planning Framework 



 

In order to address the significant challenge of enabling efficient robot motion 

planning within complex manufacturing environments and to overcome the 

challenges posed by both methods (i.e., task-space-based LfD and joint-space-

based DRL methods), a novel hybrid approach is introduced. This method aims to 

systematically integrate the two approaches, utilizing the LfD method for its 

scalability and task space understanding, and incorporating the DRL-based 

approach to ensure joint space feasiblity. The framework of this approach is 

shown in Fig. 5.1. 

 
Figure 5.1. Framework of the hybrid motion planning method. 

For a 3-D workspace, denoted as 𝑾𝑺, a joint-space feasibility study is carried 

out, resulting in the formation of a discrete feasibility map, 𝑪𝑴 ⊂ 𝑾𝑺, where 

each specific pose in 𝑪𝑴 denotes an end effector configuration, including both 

position and orientation. 𝑪𝑴 is divided into two primary regions, the feasible 

region, 𝑭𝑹 , and infeasible region, ¬𝑭𝑹 , which correspond to the joint-space 

analysis of each end effector configuration. For ¬𝑭𝑹 ⊂ 𝑪𝑴 , three potential 

conditions may arise: the manipulator's end effector might be unable to reach a 

position, a self-conflict or collision with workspace obstacles may occur, or the 

manipulator's manipulability [97] (a measure of how close a manipulator is to 

singularity) may fall below a certain tolerance. Therefore, 𝑭𝑹 ⊂ 𝑪𝑴 represents 

the desirable region for motion planning. 

Subsequently, the feasibility map 𝑪𝑴 is employed as a filter for the trajectory 

generated by the task-space robot HRL-LfD method (will be introduced in 

Section 5.4), referred to as 𝒕𝒓𝒂𝒋𝐿𝑓𝐷 . It is important to note that 𝒕𝒓𝒂𝒋𝐿𝑓𝐷  may 

encompass segments situated within both the feasible and infeasible regions. The 



 

feasible segments can be represented as 𝑭𝑱 ⊆ {𝒕𝒓𝒂𝒋𝐿𝑓𝐷 ∩ 𝑭𝑹} , while the 

infeasible segments can be represented as ¬𝑭𝑱 ⊈ {𝒕𝒓𝒂𝒋𝐿𝑓𝐷 ∩ 𝑭𝑹} . For the 

segments falling within 𝑭𝑱, inverse kinematics will be calculated to obtain the 

joint angles to control the robot. For segments within ¬𝑭𝑱, a DRL approach, 

which will be introduced in Section 5.5 is utilized to guide these segments into the 

𝑭𝑱 category, resulting in a feasible trajectory 𝒕𝒓𝒂𝒋𝑫𝑹𝑳.  

5.4. Task-Space HRL-Based LfD 

In manufacturing, manipulator motion planning can be complex, but human 

operators can intuitively demonstrate tasks. The authors have created a task-space 

LfD method for robot manipulators [31], enabling them to learn specific tasks like 

object grasping or relocation based on a single primitive skill. In this research, we 

expand our earlier LfD method to develop an HRL-based LfD. 

First, a local motion planner is developed by using kinematic task-space 

planning that follows the implicit geometric constraints throughout a one-time 

human demonstration of a primitive skill. Then, built upon the local motion 

planner, a global planner is established through an HRL scheme, which can 

enable robots to automatically generate their motion plan for various tasks by 

intelligently combining a set of demonstrated primitive skills.  

Local Motion Planner: The authors’ recent work [14] has developed the local 

motion planner, which is briefly introduced here without delving into technical 

details for paper’s self-containment. 

Let 𝓓𝓟 = {𝑫1, 𝑫2, … , 𝑫𝑛}  represents a demonstrated primitive skill in the 

task-space, where 𝑫𝑖 is a dual quaternion representation for the 𝑖𝑡ℎconfigurations 

in time sequence during the motion. The transformation, 𝜹𝒊, between the last pose 

and every other pose is: 

𝜹𝒊 = 𝑫𝑖−1
∗ ⊗ 𝑫𝑛  , 𝑖 = 2, … , 𝑛 (5.1) 



 

where ⊗ represents dual quaternion multiplication and 𝑫∗ denotes the conjugate 

of 𝑫. Thus, the sequence of 𝜹𝒊 represents a sequence of transformation. Note that 

all implicit task constraints in a human demonstration are embedded in the 

sequence of 𝜹𝒊  during the motion. This sequence can represent the features or 

semantics of human demonstrations. The feature of the 𝑘𝑡ℎ human demonstration 

in the task space can be represented in a time sequence can be represented as:  

𝑯𝑫𝑘 = {𝜹2
𝑯𝑫𝒌 , … , 𝜹𝑛

𝑯𝑫𝒌} (5.2) 

For a new task, 𝒕𝒌, a mapping operation,  𝒎𝒑𝑯𝑫→𝒕𝒌, is developed, which can 

align and enforce the feature of the demonstration to the task by using the 

quaternion sandwich operation [111]. The details of the mapping can be found in 

the authors’ recent work [31] and is shown in Fig. 5.2. 

 

Figure 5.2. Mapping the demonstrated skill (blue line) to the new task with the new starting and 

goal configuration 𝐷1
′  and 𝐷𝑛

′ . 

 

Global Planner: However, manufacturing tasks such as assembly tasks are 

often complicated, which may include combinations of various primitive skills. 

Therefore, a library of ℎ demonstrated primitive skills can be formed as: 

𝑳𝑩 = {𝑯𝑫1, 𝑯𝑫2, … , 𝑯𝑫ℎ} (5.3) 

For any task instance, a robot should be able to look at the library of 

demonstrations and be able to learn and combine the most suitable demonstrations 

by using the local motion planner. To do this, one may need to go through all 

possible subsets of new tasks and evaluate each 𝑯𝑫𝑘 , 𝑘 = 1, 2, … , ℎ , in the 

library 𝑳𝑩, which is an NP-hard problem. The state space of the problem would 

be huge if the constraints of new tasks and the number of demonstrated skills are 

large. The problem can be formulated as a model-free reinforcement learning (RL) 



 

problem in the Markov Decision Process (MDP) framework. In the context of the 

robot learning global planning, the RL problem is a tuple < 𝑺, 𝑨, 𝑹, 𝑺′ >, and is 

formulated as follows.  

The state space 𝑺 contains a set of system states, which include the current 

configuration of the end-effector and all possible task segments. Let 𝒔𝑡 denote the 

system state at time 𝑡,  𝒔𝑡 ∈ 𝑺, then 𝒔𝑡 is defined as 

𝒔𝑡 = 〈𝑬𝑬𝑡, 𝒕𝒂𝑡〉 (5.4) 

where 𝑬𝑬𝑡 is the current configuration of the robot’s end-effector at 𝑡, 𝒕𝒂𝑡 ⊑ 𝑻𝑲 

is the possible task segments at 𝑡. 

The action space 𝑨 is the set of action pairs for the robot learner to decide on 

how to segment a new task and what demonstrations should be selected. The 

action 𝒂𝑡 ∈ 𝑨, can be defined as 

𝒂𝑡 = < 𝒕𝒔𝑡 , 𝑯𝑫𝑡,𝑙 > (5.5) 

where 𝒕𝒔𝑡  ∈ 𝒕𝒂𝑡 and 𝑯𝑫𝑡,𝑙 ∈ 𝑳𝑩. 

The reward function is determined based on Euclidean distance between the 

feature of the demonstration, 𝜹𝑖
𝑯𝑫𝒊, and the feature of a new task, 𝜹𝑙

𝒕𝒔𝒕, as in [31]. 

Let ∆𝛽 be a predefined tolerance value, then:  

𝑟𝑡 = {
− ∑ 𝛽(𝜹𝑖

𝑯𝑫𝒊 , 𝜹𝑙
𝒕𝒔𝒕  )

𝑛

𝑙=𝑗

,          if 𝛽(𝜹𝑖
𝑯𝑫𝒊 , 𝜹𝑙

𝒕𝒔𝒕  ) ≤ ∆𝛽 

−∞,                                    otherwise                         

(5.6) 

The standard RL approach needs to simultaneously determine the action pair <

𝒕𝒔𝑡, 𝑯𝑫𝑡,𝑙 >, and the state-action space grows exponentially with the number of 

features and task-relevant constraints. To alleviate the curse of dimensionality, an 

HRL scheme is developed (see Fig. 5.3), where the agent uses a two-level 

hierarchy consisting of a task-controller and a motion-controller with two inter-

dependent networks. 



 

 

Figure 5.3. Human-in-the-loop hierarchical RL scheme. 

The task-controller is to find a policy that specifies the subgoal, 𝒕𝒔𝑡, under the 

global state 𝒔𝑡. The task-controller will determine how to segment the new task 

through estimating the value function 𝑄(𝒔𝑡, 𝒕𝒔𝑡), such that the extrinsic reward, 

𝑅𝑡, can be maximized. the 𝑄(𝒔𝑡, 𝒕𝒔𝑡) function of the task-controller is estimated 

as: 

𝑄(𝒔𝑡, 𝒕𝒔𝑡) = 𝐸𝜋𝑄
[𝑅𝑡|𝒔𝑡 = 𝒔, 𝒕𝒔𝑡 = 𝒕𝒔] (5.7) 

where 𝜋𝑄  is the global policy over subgoals, 𝑅𝑡  is the extrinsic reward for the 

meta-controller and is defined as: 

 

𝑅𝑡 = ∑ 𝑟𝑡
𝑡
𝑡′=0 (5.8) 

where 𝑟𝑡 is the intrinsic reward for the next level critic-controller. 

The objective of the task-controller is to find an optimal policy, 𝜋𝒕𝒔
∗ , such that 

𝑅𝑡 can be maximized. 𝜋𝒕𝒔
∗  can be defined as: 

𝜋𝑄
∗ (𝒕𝒔|𝒔) = {

1, if 𝒕𝒔 = arg max
𝒕𝒔𝑡⊆𝑻𝑲

{𝑄(𝒔𝑡, 𝒕𝒔𝑡)}

0, otherwise
(5.9) 

The motion-controller is to continue to determine the policy on specifying the 

action 𝑯𝑫𝑡,𝑙 under the global state 𝒔𝑡 and the current subgoal, 𝒕𝒔𝑡, that is flown 

down from the task-controller. The motion-controller will decide pertinent 

demonstrated primitive skills by estimating a value function, 𝑞(𝒔𝑡 , 𝒕𝒔𝑡, 𝑯𝑫𝑡,𝑙), so 

that the intrinsic reward, 𝑟𝑡, can be maximized. The value function can be written 

as: 



 

𝑞(𝒔𝑡, 𝒕𝒔𝑡, 𝑯𝑫𝑡,𝑙) = 𝐸𝜋[𝑟𝑡|𝒔𝑡 = 𝒔, 𝒕𝒔𝑡 = 𝒕𝒔, 𝑯𝑫𝑡,𝑙 = 𝑯𝑫𝑙] (5.10) 

where 𝒕𝒔 is the given subgoal from the task-controller in state 𝒔, and 𝜋𝑞  is the 

policy on how to select human demonstrations.  

The intrinsic reward, 𝑟𝑡, is to compare semantic similarity between the human 

demonstrations, 𝑯𝑫𝑡,𝑙, and the subgoal, 𝒕𝒔𝑡, using Eqn. (5.11). The internal critic 

checks if the subgoal is reached and provides an appropriate intrinsic reward to 

the controller. The optimal policy 𝜋𝑞
∗  of the critic-controller is defined as: 

𝜋𝑞
∗(𝑯𝑫𝑙|𝒔, 𝒕𝒔) = {

1, if 𝑯𝑫𝑙 = arg max
𝑯𝑫𝑡,𝑙∈𝑳𝑩

{𝑞(𝒔𝑡, 𝒕𝒔𝑡, 𝑯𝑫𝑡,𝑙)}

0, otherwise
(5.11) 

The algorithm of offline training and online execution of the HRL-LfD 

method is shown in Algorithm 5.1. 

Algorithm 5.1  

Procedure1 Offline Training of the HRL-LfD Method 

Input: 𝐓𝐊, 𝐋𝐁 

Initialize H(𝐬, 𝐭𝐬) and q(𝐬, 𝐭𝐬, 𝐇𝐃𝐥)randomly 

Initialize 𝐬0 with 𝐄𝐄0 and 𝐭𝐚0 

For t = 1, … , T do        

       For t′ = 1, … , τ do 

              Compute rt using Eqn. (5.6) 

              Update qt′(st, 𝐭𝐬t, 𝐇𝐃t′,l)using Eqn. (5.10) 

       End For 

       Update r̃t ⟵ ∑ rt′
t
t′=0  and update Ht(st, 𝐭𝐬𝐭)  

End For  

Output 𝐇(𝐬, 𝐭𝐚) and 𝐪(𝐬, 𝐭𝐚, 𝐇𝐃𝐥) 

 

Procedure2 Oline Execution of the HRL-LfD Method 

Input: 𝐓𝐊, 𝐋𝐁, 𝐇(𝐬, 𝐭𝐚), and 𝐪(𝐬, 𝐭𝐚, 𝐇𝐃𝐥) 

While 𝐄𝐄t is not the last configuration in 𝐓𝐊 do 

Select the task segment 𝐭𝐬 = arg max
𝐭𝐬t⊆𝐓𝐊

{Q(𝐬t, 𝐭𝐬t)} 

Select the demonstration 

    𝐇𝐃l = arg max
𝐇𝐃t,l∈𝐋𝐁

{q(𝐬t, 𝐭𝐬t, 𝐇𝐃t,l)} 

Mapping 𝐦𝐩𝐇𝐃𝐥→𝐭𝐬 to calculate 𝐭𝐫𝐚𝐣LfD 

Update 𝐄𝐄t  

End While  

Output 𝒕𝒓𝒂𝒋𝐿𝑓𝐷 

 

5.5. Joint Space DRL-Based Motion Planner 



 

As mentioned earlier, in cases where the HRL-LfD trajectory enters an 

infeasible region, three possible scenarios may unfold: the manipulator's end 

effector may fail to reach a position, encounter self-conflict or workspace 

collisions, or experience reduced manipulability below a set tolerance, which 

constitutes a joint-space failure. To address this issue, the authors build upon our 

recent work [104] by applying a Deep Reinforcement Learning (DRL) approach. 

The motion planning problem is formulated as an MDP, and soft actor-critic 

(SAC) algorithm is used in the offline training of the joint space motion planner. 

SAC belongs to the family of model-free, off-policy Deep RL algorithms, which 

outperforms prior state-of-the art RL methods in continuous state-action problem 

settings [112]. After training, this motion planner is then implemented during 

real-time execution to rectify any unfeasible segments of the LfD trajectory.  

5.5.1. MDP Formulation 

Given the workspace, the robot and the target position, the primary 

components of the MDP can be defined as follows. The state space 𝑺 includes all 

information regarding the robot and the environment conditions. The state 𝒔𝒕 ∈ 𝑺 

of the RL agent is defined as: 

𝒔𝒕 = 〈𝑱𝑷𝒕, 𝑱𝑶𝒕, 𝑳𝑽𝒕, 𝑨𝑽𝒕, 𝑻𝑷𝒕, 𝑻𝑶𝒕, 𝑹𝑳𝒕〉 (5.12) 

where 𝑱𝑷𝒕, 𝑱𝑶𝒕 ∈ ℝ3×𝑛, 𝑛 is the degree of freedom, denotes the x, y, z positions 

and Euler angles of each joint, respectively; 𝑳𝑽𝒕, 𝑨𝑽𝒕 ∈ ℝ3×𝑛 denotes the linear 

and angular velocities of each joint, respectively; 𝑻𝑷𝒕, 𝑻𝑶𝒕 ∈ ℝ3 denotes the x, y, 

z positions and Euler angles of the end-effector, respectively; 𝑹𝑳𝒕 ∈ ℝ25 denotes 

the length of the ray that generated from the end-effector to the surface of the 

environment. This ray trace can reflect the real-time environment conditions. In 

this joint space motion planner, 25 rays are generated in different angles to the 

end-effector using a Pybullet library. 

The action of the RL agent is defined as a vector of joint angles: 

𝒂𝒕 = [𝜃1𝑡, 𝜃2𝑡 , … , 𝜃𝑛𝑡] (5.13) 



 

where 𝜃𝑖𝑡 , 𝑖 ∈ 1, … , 𝑛, 𝑛  is the DOF, denotes the joint angle, which is limited 

within [-1, 1]. At every time instance 𝑡, 𝒂𝒕 depicts a robot's configuration. The 

feasibility of this configuration plays a pivotal role in determining the reward. 

Moreover, navigating the robot towards the target region requires considering the 

gap between the end-effector and the intended goal as a significant reward 

component. The position of the end-effector can be calculated using forward 

kinematics ℱ𝒦: 𝒂𝒕 → 𝑫𝒕 . Let 𝑑𝑡 represent the distance between the end effector 

and the object, and let 𝑟 signify the radius of the target region relative to the goal 

position. Consequently, the reward for the SAC agent is described as: 

𝑹𝑡 = {
0, 𝑖𝑓 𝑑𝑡 ≥ 𝑟 𝑜𝑟 𝑓𝑒𝑎(𝑫𝒕) = 0 

0.1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5.14) 

5.5.2. Offline Training and Online Execution of the Joint Space 

Motion Planner 

For offline training, to train a general joint space motion planner that can 

generate a joint space feasible trajectory, an SAC method is applied. It is noted 

that by leveraging the aforementioned HRL-LfD, the DRL method does not need 

to learn from scratch by searching the whole work space. It only needs to learn the 

infeasible segments. After training, the trained policy, 𝝅∗  (weights of neural 

networks) with the optimal average reward is used for the online execution. 

For online execution, given the infeasible segment, ¬𝑭𝑱𝑖𝑗 = {𝑫𝑖, 𝑫𝑖+1, … , 𝑫𝑗}, 

of the HRL-LfD trajectory, the starting and goal pose of the joint space motion 

planner is 𝑫𝑖−1 and 𝑫𝑗+1. Using the pair {𝑫𝑖−1, 𝑫𝑗+1} as the input, the output of 

the joint space motion planner is a feasible trajectory 𝒕𝒓𝒂𝒋𝐷𝑅𝐿  that moves the 

robot from 𝑫𝑖−1 to 𝑫𝑗+1
′ . The algorithm of offline training and online execution 

of the DRL method is shown in Algorithm 5.2.  

Algorithm 5.2 

Procedure1 Offline Training of DRL Method 

Input: 𝑾𝑺, robot, starting and goal positions, radius of the target area, 𝑟, initial neural network 

weights, 𝜽 

While the episode does not terminate do 

    Observe the state 𝑠 and select the action 𝑎~𝜋𝜃(∙ |𝑠) 

Execute 𝑎 in the environment and get the next state 𝑠′ 



 

If  𝑠′ is a feasible state 

       Calculate 𝑅𝑡 using Eqn. (5.14) 

       Store (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑𝑜𝑛𝑒) in replay buffer 𝒟 

End if 

If it is time to update the target neural network then 

   Randomly sample a batch of transitions from 𝒟 

   Compute the loss function and update the policy 

   Update the target network’s 𝜽 

End If 

End While 

Output: target network 𝜽 

               

Procedure2 Oline Execution of the DRL Method 

Input: Robot starting pose, Goal Position, Neural Network 𝜽 

While end-effector position is not in the target area 

    Execute the action 𝑎𝑡~𝜋𝜃
∗ (∙ |𝑠𝑡) 

    Append 𝑎𝑡 to 𝒕𝒓𝒂𝒋𝐷𝑅𝐿 

Update the current end-effector pose 

End While  

Output 𝒕𝒓𝒂𝒋𝐷𝑅𝐿 

 

5.6. Joint Space Feasibility Analysis 

This section presents a thorough feasibility study that combines the evaluation 

of reachability, joint limits, manipulability, and collision checking for the robot, 

resulting in the creation of a feasibility map. This map will serve as a filtering 

mechanism to streamline the process of hybrid motion planning. It will 

systematically determine whether to employ an HRL-LfD or a DRL-based 

method to automatically generate a manipulator motion plan.   

While existing studies have discussed reachability [113], manipulability [114], 

and collision checking [115], most of them focus on individual problems. This 

research develops a holistic study to integrate all aspects and provide a feasibility 

map. 

In this research, the configuration that integrates position and orientation of 

the end-effector in 𝑆𝐸(3)  is represented as a dual-quaternion 𝑫 ∈ ℝ8 , which 

is  an 8-dimensional real algebra isomorphic to the tensor product of 

the quaternions and the dual numbers [70]. Given a configuration 𝑫 and the joint 

limits 𝑩 ∈ ℝn, 𝑛 is the degrees of freedom (DOF), reachability of the manipulator 

can be determined by checking the existence of solutions to the inverse 

https://en.wikipedia.org/wiki/Algebra_over_a_field
https://en.wikipedia.org/wiki/Tensor_product
https://en.wikipedia.org/wiki/Quaternions
https://en.wikipedia.org/wiki/Dual_numbers


 

kinematics 𝐼𝐾: 𝑫 → 𝜽 𝑠. 𝑡. 𝜽 ∈ 𝑩 , where 𝜽 ∈ ℝ𝑛 is a vector of joint angles. It can 

be defined as: 

𝑹𝑯(𝑫, 𝑩) = {
1,             if IK solutions exsit  
0,             otherwise                    

(5.15) 

However, if only reachability constraint is considered some poses can be 

reached but will lose one DOF in translation or rotation. To tackle this problem, 

manipulability is considered as a second constraint. The conventional 

measurement of manipulability [97] is given as : 

𝑚𝑎𝑛(𝜽) = √det[𝑱(𝜽)𝑱𝑇(𝜽)] (5.16) 

where 𝑱(𝜽) ∈ ℝ𝑚×𝑛, 𝑚 is the DOF of the end-effector and 𝑛 is the DOF of the 

robot arm, 𝑱(𝜽) is the Jacobian matrix and 𝑱𝑇(𝜽) is the transpose of 𝑱(𝜽). This is 

a metric that quantifies the distance between a manipulator state 𝜽  and a 

singularity state 𝜽∗ . Such a measurement can provide information about the 

overall movement ability of the end-effector. By comparing the manipulability 

𝑚𝑎𝑛(𝜽) with the manipulability of the initial pose of the robot 𝑚𝑎𝑛(𝜽0), the 

normalized manipulability can be defined as: 

𝑚𝑎𝑛′(𝜽) =  
𝑚𝑎𝑛(𝜽)

𝑚𝑎𝑛(𝜽0)
(5.17) 

To evaluate the normalized manipulability, a threshold 𝛿𝑚𝑎𝑛′  is set based on 

specific task requirements, so that 𝑚𝑎𝑛′(𝜽) ≤  𝛿𝑚𝑎𝑛′. 

Furthermore, it is essential to conduct collision check especially considering a 

manipulator's potential interactions with workspace obstacles or its own 

components. In this research,  the collision detector in Pybullet [116] is utilized 

for these collision checks. In PyBullet, the Continuous Collision Detection (CCD) 

library first simplifies complex objects by decomposing them into simpler convex 

pieces, and then identifies overlaps of pieces, which furnishes detailed insights 

such as contact points, contact joint or link indices, and penetration depths. For a 

configuration 𝜽 , the collision index is denoted as 𝑪𝑶𝑳(𝜽) , using CCD, if 

𝑪𝑶𝑳(𝜽) = 1 then there is a collision identified, otherwise 𝑪𝑶𝑳(𝜽) = 0.  



 

Therefore, the feasibility measurement of a configuration that integrates 

reachability, manipulability, and collision checking can be defined as: 

𝑓𝑒𝑎(𝑫) =  {
1, 𝑖𝑓 𝑹𝑯 = 1 & 𝑚𝑎𝑛′ ≥ 𝛿𝑚𝑎𝑛& 𝐶𝑂𝐿 = 0 
0 𝑜𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒

(5.18) 

 
Figure 5.4. Schematic picture of the feasibility map. 

Within the work cell environment 𝑾, it is straightforward to define a 3-D 

workspace, 𝑾𝑺, according to task specifications, such as the precise painting of a 

component at a designated location. 𝑾𝑺 can then be discretized into small voxel, 

each with its center signifying the 𝑥, 𝑦, 𝑧 position of the end effector. Within each 

voxel position, the orientation of the end effector in terms of 𝛼, 𝛽, 𝛾 can be further 

discretized within a task specific range of [−𝜃, 𝜃] ⊑ [−𝜋, 𝜋]. Consequently, the 

discretized 𝑾𝑺  forms a tensor of rank 2, where each array corresponds to a 

unique end effector configuration. Using Eqn. (5.18), it becomes possible to 

assess the feasibility of each end effector configuration within 𝑾𝑺 . This 

discretized feasibility assessment can be analogized to a “map”, referred to as 𝑪𝑴, 

which divides the workspace 𝑾𝑺 into feasible and infeasible regions based on the 

criterion 𝑓𝑒𝑎 (𝑫) . The map 𝑪𝑴  effectively encapsulating the end effector 

configuration along with its associated joint space feasibility status. Fig. 5.2 is a 

3D illustration of a feasibility map where both feasibility and unfeasibility regions 

are color-coded. It is important to acknowledge that the “actual map” 

encompasses six dimensions, which include both position and orientation, making 

it impossible to visualize directly. Therefore, each voxel in Fig. 5.2 includes a 

specific position but includes a range of orientation that may or may not be in 



 

feasible region, which is represented by transition color between red (represent 

feasible) and blue (infeasible). 

5.7. Hybrid Motion Planning based on the Feasibility Map 

For a task 𝒕𝒌, using the HRL-LfD method, which will be introduced in the 

next section, a task space trajectory, 𝒕𝒓𝒂𝒋𝐿𝑓𝐷 = {𝑫1, 𝑫2, … , 𝑫𝑛}, can be generated. 

Starting from 𝑫1, by checking the feasibility of each configuration, the infeasible 

trajectory segment, e.g., ¬𝑭𝑱𝑖𝑗 = {𝑫𝑖 , 𝑫𝑖+1, … , 𝑫𝑗}, 𝑖, 𝑗 ∈ {2, . . , 𝑛 − 1}  can be 

determined. The DRL method [104], is used to compensate for each ¬𝑭𝑱𝑖𝑗. 

For many tasks, such as achieving a proper grip for stacking, it is more crucial 

to mimic the latter part of the 𝒕𝒓𝒂𝒋𝐿𝑓𝐷 generated through LfD, rather than the 

initial stages. This assumption ensures the utilization of DRL motion planning for 

handling the infeasible segment, ¬𝑭𝑱𝑖𝑗 , since DRL-based method excel at 

ensuring joint-space feasibility but may not adequately address task-specific 

constraints. In an effort to minimize ¬𝑭𝑱𝑖𝑗, we anticipate that the transition from 

𝒕𝒓𝒂𝒋𝐷𝑅𝐿 to 𝒕𝒓𝒂𝒋𝐿𝑓𝐷 should occur early enough to capture the relevant portion of 

the constraints in the demonstration. The process begins at 𝑫𝑖−1, where a feasible 

trajectory, 𝒕𝒓𝒂𝒋𝐷𝑅𝐿, is computed to reach a pose within close proximity to 𝑫𝑗+1. 

subsequently, screw-linear interpolation [96] is employed to seamlessly merge 

𝒕𝒓𝒂𝒋𝐷𝑅𝐿 to 𝑫𝑗+1. 

It is important to note that when learning from different demonstrations for the 

same task, 𝒕𝒌, various trajectory outcomes, 𝒕𝒓𝒂𝒋𝐿𝑓𝐷, can be achieved. To evaluate 

each 𝒕𝒓𝒂𝒋𝐿𝑓𝐷, a criterion needs to be established. Notably, the policy generated 

through the proposed DRL method is not deterministic, leading to varying 

𝒕𝒓𝒂𝒋𝐷𝑅𝐿  lengths for identical tasks. On the other hand, each 𝒕𝒓𝒂𝒋𝐿𝑓𝐷  acquired 

through learning from a specific demonstration is deterministic in nature. The 

core concept behind the suggested hybrid approach is to maximize the utilization 

of LfD motion planning due to its computational efficiency and the 

generalizability inherent in the proposed LfD method. Consequently, minimizing 



 

¬𝑭𝑱𝑖𝑗 serves as the prime criterion when selecting 𝒕𝒓𝒂𝒋𝐿𝑓𝐷, facilitating a highly 

efficient fusion of  𝒕𝒓𝒂𝒋𝐿𝑓𝐷 motion planning and 𝒕𝒓𝒂𝒋𝐷𝑅𝐿 motion planning in our 

hybrid approach.  

The HRL-LfD and DRL motion planning method can be systematically 

integrated into a hybrid motion planning approach using the feasibility map. The 

offline training and online execution of the hybrid motion planning method can be 

shown as Algorithm 5.3. It is worth noting that, in offline training, a set of tasks 

are generated randomly to train the HRL-LfD motion planning policy, and the 

data of infeasible segment ¬𝑭𝑱 for each  𝒕𝒓𝒂𝒋𝐿𝑓𝐷  can be used to train the DRL 

policy. Since the task space HRL-LfD method is a scalable and adaptive method 

for different tasks, when task changes, the hybrid method does not need to be 

retrained. In addition, the set of ¬𝑭𝑱 represents the region in the workspace where 

the infeasibility usually happens. With such knowledge obtained from HRL-LfD, 

the DRL method does not need to learn from scratch by searching the whole work 

space. This method significantly shrinks the search space and boosts training 

efficiency. In online execution, the resulting trajectory, 𝒕𝒓𝒂𝒋𝑓𝑖𝑛𝑎𝑙, derived from 

this hybrid approach represents an optimized path that not only satisfies the task 

space constraints but also feasible in the joint space.  

Algorithm 5.3  

Procedure1 Offline Training of the Hybrid Method 

Input: Demonstration Library 𝑳𝑩, 𝑾𝑺, Robot 

Calculate the feasibility map 𝑪𝑴 

Initialize a set of task 𝑻𝑲 with random starting and end positions 

     For each 𝑻𝑲 do 

            Call Procedure 1 in Algorithm 5.1 and save each ¬𝑭𝑱 

     End For 

Import all ¬𝑭𝑱 to Procedure 1 in Algorithm 3 

Output: Trained Q-table of the HRL-LfD method and trained neural network of the DRL 

method 

Procedure2 Online Execution of the Hybrid Method 

Input: New Task 𝑻𝑲, Demonstration Library 𝑳𝑩, 𝑾𝑺, Robot 

Call Algorithm 5.2 to calculate the task space trajectory 𝒕𝒓𝒂𝒋𝐿𝑓𝐷 

For the infeasible segment ¬𝑭𝑱, call Algorithm 3 to calculate the joint space trajectory 𝒕𝒓𝒂𝒋𝐷𝑅𝐿 

For the feasible segment, calculate inverse kinematics 

𝒕𝒓𝒂𝒋𝑓𝑖𝑛𝑎𝑙  ← Concatenate 𝒕𝒓𝒂𝒋𝐷𝑅𝐿 and the joint space 𝑭𝑱 

Output 𝒕𝒓𝒂𝒋𝑓𝑖𝑛𝑎𝑙  



 

5.8. Experiments and Validation 

This section presents simulated experiments conducted on a fluorescent 

penetrant inspection (FPI) task, which is the most widely used Non-Destructive 

Testing (NDT) method in the aerospace industry [117]. The performance of the 

proposed hybrid robot motion planning method is evaluated using two metrics: (1) 

computing time to achieve a steady motion planning policy in the offline training; 

(2) the success rate of the motion plan in the online execution. To assess the 

performance of the proposed method, one purely DRL-based robot motion 

planning method [104] is used for comparison. Based on the results of the case 

study, three key conclusions can be drawn: (1) the proposed hybrid robot motion 

planning method is effective in generating adaptive trajectories for different tasks; 

(2) in offline training, the proposed hybrid robot motion planning method 

outperforms the purely DRL-based method in training efficiency and generating 

feasible configurations; (3) when provided with same training time, the proposed 

hybrid robot motion planning method outperforms the purely DRL-based method 

in the success rate of achieving different tasks. 

 

(c) 

(a) 

(b) 



 

Figure 5.5. Fanuc LR Mate 200iD test bed and kinesthetic demonstrations. (a) Components in the 

FPI work cell. The simulated work cell (right) is set up in Pybullet, which is the digital twin of the 

real robotic work cell (left). (b) FPI tasks to be performed. (c) Kinesthetic demonstrations on a 

Kinova Gen3 robot. 

 

5.8.1. Environment Settings 

The experimental setup for the FPI task is depicted in Fig. 5.5(a). The task to 

be performed is shown in Fig. 5.5(c), where the Fanuc LR Mate 200iD robot is 

required to moves from the initial home configuration, 𝑐𝑜𝑛1 , to the hovering 

position, 𝑐𝑜𝑛2, above the center of the tray, and then brush one blade from 𝑐𝑜𝑛3 

(an initial configuration on a blade) to 𝑐𝑜𝑛4 (an ending configuration on a blade). 

A set of 20 fundamental skills commonly employed in FPI tasks are provided. Fig. 

5.5(b) illustrates three examples of the demonstrated skills, including rotating, 

twisting, and translating on a Kinova Gen3 robot.  

5.8.2. Offline Training of the Hybrid Motion Planning Method 

All offline training is executed on an 8-core workstation processor paired with 

an Nvidia GPU. For effective offline training, 100 FPI tasks are generated with 

randomly chosen starting and goal positions in the work cell. This diverse task set 

allows us to evaluate the system's performance across various scenarios. First, 

Algorithm 5.1 is employed to train the task space HRL-LfD motion planner. After 

training, the feasibility analysis is conducted to identify infeasible segments. 

These segments' starting and ending configurations are then utilized as input data 

to train the joint space DRL motion planner using Algorithm 5.2. For comparison, 

a purely DRL-based method is trained within the entire workspace by following 

the same task constraints. During the offline training phase, the radius of the 

target region is set to a tolerance of 25 centimeters. Under these settings, the 

DRL-based method can learn a steady policy within an acceptable time frame. 



 

 

Figure 5.6. Offline training of the HRL-LfD method (left) and the offline training of the DRL 

method (right). 

 

As shown in the left plot of Fig. 5.6, after around 100 episodes, the HRL-LfD 

motion planner can obtain a steady policy that optimizes the average accumulated 

reward. This high training efficiency is achieved as the proposed HRL-LfD 

method learns the kinematic features, which remain consistent across similar tasks 

despite variations in positions and orientations. In the right plot of Fig. 5.6, the 

learning curve of DRL in the hybrid approach reaches a stable policy after around 

1250 episodes. In contrast, the purely DRL method struggles to converge. 

Furthermore, the average accumulated reward obtained using the purely DRL 

approach is notably lower compared to the hybrid method. This discrepancy can 

be attributed to the inherent difficulty of the purely DRL method in searching for 

feasible configurations, ultimately leading to reduced rewards. The delayed 

progress in training of the purely DRL method stems from its learning from 

scratch, where it searches the feasible motion planning policy within the whole 

space to comprehend position and orientation task constraints. The hybrid 

approach, however, leverages the strengths of both task space HRL-LfD and joint 

space DRL. The trained HRL-LfD policy plans the trajectory based on the task-

level understanding and the demonstrated features of skills, which does not need 

to be retrained when tasks change. In addition, the knowledge of the infeasible 

segments transferred from the HRL-LfD method, and the feasibility map 

significantly reduces the searching space of the DRL based method and avoid 



 

learning from scratch, resulting in the high efficiency and adaptivity in the offline 

training.  

5.8.3. Online Execution of the Hybrid Motion Planning Method  

Trained policies from both the proposed hybrid method and the purely DRL-

based method are employed to execute ten distinct painting tasks on ten blades. 

For each task, a total of 100 execution trials are conducted. A trial is deemed 

successful when the robot can reach all essential configurations, covering both 

position and orientation. This includes reaching the container, as well as the initial 

and ending configurations on each blade, all within a 5-centimeter tolerance for 

positions and a 5-degree tolerance for each Euler angle in the critical orientation. 

Fig. 5.7 illustrates the success rates of both approaches, highlighting the 

significant superiority of the hybrid method in successfully completing all tasks 

compared to the DRL approach. This contrast arises from the fact that DRL-based 

training relies on a less stringent tolerance for achieving a target configuration to 

establish a relatively stable policy. Conversely, the hybrid method capitalizes on 

HRL-LfD to improve accuracy within the task space.  

 

Figure 5.7. Online execution of the proposed hybrid motion planning method and the purely DRL 

method. 

 

In conclusion, the proposed hybrid motion planning method demonstrates 

both effectiveness and efficiency in generating feasible trajectories that satisfy 

task requirements, thereby providing significant benefits over methods solely 

based on DRL. 



 

5.9. Summary 

This research presented a novel hybrid robot motion planning method that 

integrates the strengths of the task space HRL-LfD  method and the joint space 

DRL-based motion planning approach while minimizing their inherent limitations. 

Through training of the DRL-based method using identified infeasible segments 

of the HRL-LfD trajectory, the proposed methodology ensures a significant 

improvement in training efficiency and the generation of a feasible motion 

planning policy.   

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 6. Conclusion and Future Work 

Smart manufacturing systems depend on automation and robotics, whereas 

HRC contributes to increasing productivity and flexibility of today’s and future 

factories. The concept of lean and hybrid automation with balanced introduction 

of human flexibility and robot efficiency are on the rise. However, the desired 

flexibility and human-robot co-existence have led to higher total complexity of 

manufacturing systems. This dissertation addresses key challenges in the realm of 

HRC in smart manufacturing by making significant contributions in two main 

areas: task scheduling and robot motion planning. 

For task scheduling in complex HRC environments, the dissertation 

introduces a novel approach that conceptualizes the HRC assembly process as a 

chessboard game. Task constraints are embedded within this game structure, and 

advanced reinforcement learning techniques are employed to optimize assembly 

task completion. This approach demonstrates its efficiency even when dealing 

with a large number of tasks and complex task structures, showing promise for 

broader application in manufacturing systems. 

In the field of robot motion planning, the dissertation presents a 

comprehensive solution to address the scalability and adaptability challenges of 

existing methods. It introduces an innovative RL-based Learning from 

Demonstration (LfD) method, enabling robots to learn from a limited number of 

demonstrations for various task instances. Additionally, a joint space coordination 

scheme for mobile manipulators enhances execution precision and computational 

efficiency. Furthermore, a hybrid motion planning approach combines the 

strengths of task space RL-LfD and joint space DRL methods, significantly 

increasing training efficiency while ensuring trajectory feasibility. 

The dissertation makes contributions to the field of HRC in smart 

manufacturing with respect to the following aspects: 



 

(1) Development of a novel framework to format the typical HRC assembly 

process as a chessboard game with specific mapping and gameplay rules. 

Such formatting not only simplifies the task scheduling problem by 

embedding constraints within the game rules but also allows for the 

utilization of powerful RL/MARL to address complex task scheduling in 

the HRC system, which is characterized by large state and action spaces. 

(2) Development of a scalable and adaptable RL-LfD method for reducing 

reprogramming in smart manufacturing systems and collaboration with 

non-expert human operators. This approach allows for generalization 

across different initial and final configurations, task scales, and 

accommodates path disturbances while remaining adaptable to various 

robot platforms. It achieves scalability by requiring only a minimal 

number of examples from human operators and offers customization for 

diverse scenarios across manufacturing systems. 

(3) Development of a unique joint space coordination scheme for the mobile 

base and manipulator. This coordination scheme not only aligns 

manipulation constraints with task requirements but also improves end-

effector trajectory tracking accuracy while managing joint limits and 

optimizing mobile base movements based on innovative task-oriented 

manipulability. 

(4) Development of a hybrid robot motion planning method that combines a 

task space LfD and a joint space DRL approach to leverage their strengths 

while addressing their limitations. In offline training, using the feasibility 

map, data from infeasible segments of the LfD trajectory train the DRL 

policy, significantly reducing the search space, improving training 

efficiency, and enhancing adaptability to different tasks compared to pure 

DRL methods. During online execution, the final motion plan ensures both 

joint space feasibility and adherence to task constraints, providing a 

comprehensive solution for robot motion planning in constrained 

environments. 

 



 

In the era of Industry 5.0, a prominent paradigm shift emphasizes human-

centered manufacturing. There is a growing aspiration to establish Human-Robot 

Collaboration systems in smart manufacturing that are not only safer and more 

efficient but also highly adaptable, with a primary focus on mitigating human 

factors. This dissertation suggests a few potential research directions to further 

this aim: 

(1) Human Factors and Safety: 

• Investigate human-robot interaction (HRI) dynamics to design more 

intuitive and safe interfaces for non-expert human operators working 

alongside robots in complex manufacturing environments. 

• Develop safety protocols and mechanisms that ensure the physical and 

cognitive well-being of human workers in HRC settings, including 

collision avoidance, emergency stop procedures, and ergonomic 

considerations. 

• Conduct comprehensive user studies and ergonomic assessments to 

refine the robot's behavior and workspace design, optimizing both task 

efficiency and human comfort. 

(2) Multi-Robot Collaboration: 

• Extend the research to address multi-robot collaboration scenarios, 

where multiple robots collaborate on tasks while ensuring safe and 

efficient interactions between them. 

• Investigate methods for coordinating actions and task allocation 

among multiple robots in a way that maximizes overall system 

efficiency and minimizes conflicts. 

• Develop techniques for adaptive task distribution among robots based 

on dynamic changes in task requirements and environmental 

conditions. 

(3) Human-in-the-Loop Collaboration: 



 

• Explore strategies for seamless collaboration between human operators 

and robots in dynamic HRC scenarios, including methods for human 

intervention and control when needed. 

• Develop user-friendly interfaces that enable non-expert operators to 

provide high-level guidance and adjust robot behavior in real-time, 

ensuring flexibility and adaptability in changing manufacturing 

conditions. 

• Study the cognitive workload of human operators when collaborating 

with robots and design interfaces that minimize cognitive fatigue and 

enhance decision-making in time-critical situations. 
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