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Abstract

Dense wavelength-division multiplexing (DWDM) is the solution of choice for high-capacity

optical backbone networks. However, in long-haul DWDM systems with periodic dispersion

compensation and amplification, all optical communications give rise to severe physical

impairments, due to fiber dispersion and nonlinearity, together with noise due to amplified

spontaneous emission (ASE), that adversely degrade system performance. To mitigate

these physical impairments and exploit system capacity of long-haul DWDM systems, a

mathematical model that describes the input-output relationship of these systems and

characterizes various physical impairments is required to serve as the foundation of discrete-

time signal processing for fiber-optic communication systems.

This dissertation develops a model-centric approach for discrete-time signal processing for

long-haul DWDM systems and addresses the development, validation and applications of a

2D discrete-time model of physical impairments in long-haul DWDM systems with periodic

dispersion compensation and amplification.

The model development is based on the third-order Volterra series transfer function

(VSTF) method. The model overcomes the well-known triple integral problem inherent in

the original VSTF method and simplifies it to a simple integral that is easy to evaluate.

The model takes into account multichannel effects, fiber losses, frequency chirp, optical

filtering, and photodetection, which are ignored in the current literature. The model is in

discrete-time and facilitates its applications in discrete-time signal processing to improve the

system performance of long-haul DWDM systems. The model characterizes each individual
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physical impairment by introducing the corresponding impairment coefficient. The model

offers obvious advantages over the third-order VSTF method and the split-step Fourier (SSF)

method. The model is in excellent agreement with results obtained from the SSF method.

The 2D discrete-time model is applied in system analysis and system performance im-

provement of long-haul DWDM systems. In system analysis, two applications are developed.

Using the 2D discrete-time model, the effects of varying system parameters (symbol rate and

channel spacing) and pulse shape on individual physical impairments in long-haul DWDM

systems are analyzed. The concept of range of influence (RoI) of physical impairments is

proposed and the RoI of each individual physical impairment is determined to guide the

development of discrete-time signal processing. In system performance improvement, two

applications are developed. Using the 2D discrete-time model, a novel constrained code based

on the Total Impairment Extent Rank (TIER) is proposed to mitigate nonlinear physical

impairments in long-haul fiber-optic communication systems; a TIER-LDPC concatenation

scheme is proposed to combine the strength of the TIER code in effectively suppressing severe

nonlinear physical impairments and that of the LDPC code in correcting memoryless errors

due to ASE noise. A nonlinear equalizer based on the third-order inverse Volterra theory

is also proposed. Different from backpropagation which is hard to implement in hardware,

this equalizer features the most basic discrete-time signal processing device. The nonlinear

equalizer is effective in suppressing linear and nonlinear physical impairments in a long-haul

fiber-optic communication systems, particularly for high launched power levels where fiber

nonlinearity dominates.
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Chapter 1

Introduction

People in modern society are surrounded by mobile and ambient wireless communications, such

as cellular telephony and Wi-Fi. However, we cannot live without wireline communications,

particularly fiber-optic communications. An optical fiber is a dielectric wave guide that

transports light signals from one place to another [3]. Since optical fibers were suggested

by Charles Kuen Kao (2009 Nobel laureate in physics) to be the best choice for an increase

of several orders of magnitude in the bit rate-distance product (BL, where B is the bit

rate and L is the repeater spacing, is a commonly used figure of merit for communication

systems) [4], optical fibers have remained the communications medium of choice for telephone

networks, internet backbone networks, cell phone networks, CATV (Cable television), LAN

(Local Area Network) backbones, security cameras, industrial networks, utility networks,

and military platforms. Fiber-optic communication systems are optical communication

systems (also referred to as lightwave systems) that employ optical fibers for information

transmission and use high carrier frequencies (200 THz) in the visible or near-infrared region

of the electromagnetic spectrum [1]. Since 1975, fiber-optic communication systems have

revolutionized the industry of telecommunications and have played a major role in the advent

of the “information age” during the 1990s [1]. This is due to the unique advantages offered

by optical fibers: enormous potential bandwidth (as large as 2× 1013 Hz theoretically); low
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transmission losses (as low as 0.1 dB/km); immunity to electromagnetic interference; small

size and weight; ruggedness and flexibility [3].

The research and development of fiber-optic communication systems started around

1975. There has been enormous progress made since 1975, which can be grouped into five

distinct generations [1]. Each successive generation symbolizes a fundamental change in

the improvement of the system performance, operating at higher bit rates and over longer

distances.

The first generation of fiber-optic communication systems in the 1970s operated near 0.8

µm and used GaAs semiconductor lasers [1]. These systems allowed a bit rate of 45 Mb/s

and repeater spacings of up to 10 km.

The second generation of fiber-optic communication systems in the early 1980s operated

near 1.3 µm where fiber losses are below 1 dB/km and dispersion is minimum, and used

InGaAsP semiconductor lasers [1]. With the use of single-mode fibers, the bit rate increased

to 2 Gb/s from below 100 Mb/s due to dispersion in multimode fibers. However, the repeater

spacing was only 50 km, which was limited by fiber losses (typically 0.5 dB/km) at an

operating wavelength of 1.3 µm.

The third generation of fiber-optic communication systems in the late 1980s operated near

1.55 µm where fiber losses are minimum (0.2 dB/km) and the fiber dispersion is large [1]. By

using dispersion-shifted fibers in combination with lasers oscillating in a single longitudinal

mode, the bit rate increased to 10 Gb/s, but the spacing of electronic repeaters was only

60-70 km. The repeater spacing could be increased by making use of coherent detection.

The fourth generation of fiber-optic communication systems in the 1990s featured the use

of optical amplification introduced in 1989 for increasing the repeater spacing, and the use

of wavelength-division multiplexing (WDM) introduced in 1992 for increasing the bit rate

[1]. Fiber losses were compensated periodically using Erbium-doped fiber amplifiers (EDFAs)

spaced 60-80 km apart, and amplifier-based all optical fiber-optic communication systems

became feasible. A large number of submarine systems have been deployed worldwide, such
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as the 27,000-km fiber-optic link around the globe (FLAG) [5] and the 35,000-km Africa

One network [6]. In WDM systems, with the increase in the number of the channels, it

is impossible to amplify all channels using a single amplifier. New amplification schemes,

such as distributed Raman amplification, have been developed to cover the spectral region

extending from 1.45 µm to 1.62 µm. With the use of Raman amplification, a capacity of 3.2

Tb/s was achieved in 2003 with 80 channels, each transmitting 40 Gb/s.

The fifth generation of fiber-optic communication systems, after 2001, extends the wave-

length range over which a WDM system can operate simultaneously from the conventional C

band, which covers the wavelength range 1.53-1.57 µm, to the L and S bands [1]. Raman

amplification has been applied successfully on all three wavelength bands. The dry fiber with

the property that fiber losses are small over the entire wavelength region from 1.30 to 1.65

µm has been developed. Compared with the focus of the fourth generation of fiber-optic

communication systems on increasing system capacity by increasing the number of channels in

WDM systems, the focus of current fifth-generation systems shifts to increasing the spectral

efficiency of WDM systems by using advanced modulation formats in which information is

encoded using both the amplitude and phase of the optical carrier. The spectral efficiency

has increased to > 8 b/s/Hz from below 0.8 b/s/Hz for fourth generation systems [1].

1.1 Long-Haul DWDM Systems

Modern society calls for sustainable development. One part of sustainable development is

sustainable optical backbone networks, which are characterized by long-haul and high-capacity.

Long-haul high-capacity fiber-optic communication systems are the focus of this dissertation.

1.1.1 Long-Haul Systems

Fiber-optic communication systems have been developed mostly for telecommunication

applications, which can be broadly classified into two categories: long-haul and short-haul,
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depending on whether the transmission distance is larger or smaller than the typical intercity

distance (100 km) [1]. Most long-haul systems are implemented as multispan systems, for

which periodic dispersion compensation and amplification is required at the end of each span.

The span length is identical to the amplifier spacing. Fiber-optic communication systems are

very attractive for long-haul applications due to considerable increase in both the bit rate

and the repeater spacing.

1.1.2 High-Capacity Systems

High-capacity optical backbone networks are needed to support dramatically increasing de-

mand for internet data traffic. A promising solution is dense wavelength-division multiplexing

(DWDM), in which data is first time-division multiplexed (TDM) to form a channel centered

at a given wavelength and many channels at different wavelengths are then wavelength-division

multiplexed (WDM) together for transmitting high-throughput data on a single optical fiber

[7]. A total capacity of 69.1 Tb/s with 432 channels and 171 Gb/s per channel has been

demonstrated experimentally [8].

For long-haul fiber-optic communication systems serving as the backbone of telecommuni-

cation networks, the role of DWDM is simply to increase the total bit rate [9]. Fig. 1.1 shows

a typical DWDM system schematically. The output of a set of transmitters, each operating

at its own carrier wavelength, is multiplexed together. The multiplexed signal is launched

into the optical fiber for transmission to the other end, where a demultiplexer sends each

channel to its own receiver. When F channels at bit rates B1, B2, ..., BF are transmitted

simultaneously over a fiber of length L, the total bit rate-distance product, BL, becomes

BL = (B1 +B2 + ...+BF )L. For equal bit rates, the system capacity is enhanced by a factor

of F .

The ultimate capacity of a DWDM system is dependent on the channel spacing, i.e., how

closely channels are packed in the wavelength domain. The minimum channel spacing is

limited by interchannel crosstalk. It is helpful to introduce a measure of the spectral efficiency
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Figure 1.1: A Typical DWDM System. Separate transmitter-receiver pairs are used to send
and receive the signal at different wavelengths [1]

of a DWDM system as

ηs = Bi/∆νch (1.1)

where Bi is the bit rate of the ith channel and ∆νch is the channel spacing in frequency unit.

A value of ηs as large as possible is desired. For direct detection systems, ηs < 1 b/s/Hz, i.e.,

channel spacing must be larger than the bit rate B. For coherent detection systems, ηs > 1

b/s/Hz is possible. The International Telecommunication Union (ITU) has specified DWDM

channels with a channel spacing of either 100 GHz or 50 GHz.

1.1.3 Long-Haul DWDM Components

A typical long-haul DWDM system consists of the following major components: optical

fibers as a communication channel, loss management component, dispersion management

component, and WDM components. Further, WDM components include WDM transmitters

and receivers, multiplexers and demultiplexers. This section introduce these long-haul DWDM

components.

Optical Fibers
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The optical signals propagate over optical fibers. In long-haul systems with optical fibers

serving as the communication channel, fiber losses, dispersion and nonlinearities, collectively

called physical impairments, are introduced during transmission of optical signals.

Fiber losses are due to material absorption, Rayleigh scattering, bending, and scattering

of light at the core-cladding interface [2]. If P0 is the launched power at the input of a fiber

of length L, the received power PR is given by

PR = P0 exp(−αL) (1.2)

where α is the attenuation constant, a measure of total fiber losses from all sources. α is

usually expressed in units of dB/km using the relationship αdB = 4.343α [2]. Although fiber

losses are as small as 0.2 dB/km near 1.55 µm, the optical power reduces to only 1% of the

launched power after 100 km. Fiber losses affect the repeater or amplifier spacing.

Most fiber-optic communication systems use single mode fibers due to the absence of

intermodal dispersion inherent in multimode fibers. However, fiber dispersion still accompanies

single mode fibers. Fiber dispersion, also referred to as group-velocity dispersion (GVD),

or intramodal dispersion, is due to material dispersion and waveguide dispersion. Fiber

dispersion comes from different spectral components of the pulse traveling at slightly different

group velocities. Fiber dispersion is measured by the GVD parameter, β2. At 1.55 µm, β2 ≈

-20 ps2/km for standard silica fibers. Fiber dispersion leads to pulse broadening.

The response of any dielectric to light becomes nonlinear for intense electromagnetic fields.

The response of optical fibers to light introduces fiber nonlinearities due to the intensity

dependence of the refractive index and stimulated inelastic scattering. The Kerr effect, due

to nonlinear refraction, is the dominating fiber nonlinearity for long-haul DWDM systems

with periodic dispersion compensation and amplification. The Kerr effect is measured by the

nonlinear parameter γ. At 1.55 µm, γ ≈ 2 W−1km−1 for standard silica fibers. The Kerr

effect is responsible for various nonlinear physical impairments. The control of nonlinear
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physical impairments is a difficult task.

Loss Management and Dispersion Management

Loss management and dispersion management have been developed to compensate fiber

losses and fiber dispersion for long-haul systems. Fiber Losses are countered using EDFAs or

Raman amplification. Dispersion is controlled using a dispersion compensator [1]. In this

way, fiber losses and dispersion cease to be limiting factors for fiber-optic communication

systems. The performance of modern long-haul systems is typically limited by the nonlinear

physical impairments [1]. The mitigation of nonlinear physical impairments is the focus of

this dissertation.

Multiplexers and Demultiplexers

Multiplexers combine the signals from WDM transmitters and launch it into an optical

fiber. Demultiplexers separate the received signals into individual channels associated

with different WDM receivers. Demultiplexers require a wavelength-selective mechanism.

Demultiplexers can be classified into two broad categories: diffraction-based and interference-

based. Diffraction-based demultiplexers use an angularly dispersive element, such as a

diffraction grating, to disperse incident light spatially into various wavelength components.

Interference-based demultiplexers use optical filters and directional couplers. Depending on

the propagation direction, a device can be used as a multiplexer or a demultiplexer.

WDM Transmitters and Receivers

WDM transmitters convert the electrical signals into optical signals. A WDM transmitter

consists of an optical source, a modulator, and a channel coupler. The optical source, usually a

semiconductor laser or a lighting-emitting diode (LED), provides stable light within a specific,

narrow bandwidth that carries the digital data. The modulator imprints the data onto the

light. Most fiber-optic communication systems use a simple digital modulation scheme called

on-off keying (OOK) in which an electrical binary bit stream modulates the peak amplitude

(or intensity) of an optical carrier inside an optical transmitter. Advanced modulation formats

employ both the amplitude and the phase of an optical carrier. The coupler focuses the



Chapter 1 Introduction 8

optical signal on the single-mode fiber. The launched power is an important parameter of an

optical transmitter. For LEDs, the launched power is less than -10 dBm; for semiconductor

lasers, the launched power can be up to 10 dBm. A large launched power results in various

severe nonlinear physical impairments.

WDM receivers convert the demultiplexed optical signals back into the original electrical

signals. A WDM receiver consists of a coupler, a photodetector, and a demodulator. The

coupler focuses the received demultiplexed optical signal onto the photodetector. The

photodetector generates an electrical signal from the demultiplexed signal. The demodulator

is dependent on the modulation format used by the fiber-optic communication system. Most

fiber-optic communication systems use a scheme referred to as “intensity modulation with

direct detection” (IM/DD), in which a decision circuit identifies bits as 1 or 0, depending on

the amplitude of the electrical signal.

To improve the spectral efficiency of DWDM systems, advanced modulation schemes which

modulate both the amplitude and the phase of a carrier wave have been developed. In this

case, direct detection cannot be used for demodulation because all phase information is lost

during the detection. Advanced modulation schemes require advanced demodulation schemes

that convert phase information into intensity variations. Depending on the receive design,

these demodulation schemes can be classified into two categories: coherent demodulation

schemes and delay demodulation schemes [1]. In coherent demodulation schemes, the received

signal is detected using homodyne or heterodyne detection, which requires mixing with a

local oscillator [10]. In the case of differential phase-shift keying (DPSK), delay demodulation

schemes can be used. In delay demodulation schemes, the received signal is first processed

optically to transfer phase information into intensity modulations and then sent to a direct-

detection receiver [11]. To improve receiver performance, a balanced detection scheme, which

employs the difference between the outputs of two photodetectors, is used.

The performance measure of a fiber-optic communication system is the bit-error rate

(BER), which is defined as the average probability of incorrect bit identification [1]. The BER
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depends on the signal-to-noise ratio (SNR), which in turn depends on various noise sources and

physical impairments that corrupt the received signal. In addition to shot noise (or quantum

noise) and thermal noise, in long-haul systems with periodic dispersion compensation and

amplification, the use of optical amplifiers introduces amplified spontaneous emission (ASE)

noise. The ASE noise added by each amplifier is the dominating noise source for long-haul

systems with periodic dispersion compensation and amplification.

1.2 Motivation

All-optical communications eliminate the bottleneck of optical-to-electrical-to-optical (OEO)

conversion over long-haul DWDM systems. However, with periodic dispersion management

and amplification, the long lightpaths that result inevitably give rise to severe physical

impairments, which in turn adversely affect system performance [1]. These physical impair-

ments include not only linear physical impairments due to dispersion, but also nonlinear

physical impairments due to fiber nonlinearities, which further consist of both intrachannel

impairments and interchannel impairments. The performance of long haul DWDM systems

is fundamentally limited by dispersion, fiber nonlinearity, and noise [12][13][14].

Sophisticated signal processing techniques are needed to mitigate the physical impairments

and fully exploit the system capacity [15]. These techniques cannot be developed without

a mathematical model which describes the input-output relationship of long-haul DWDM

systems and characterizes the physical impairments experienced. To better explore the digital

communications potential of these systems, this model should be a discrete-time model so

that various mature digital signal processing (DSP) techniques can be applied. This model

should also consider the two dimensions (2D: time and wavelength) so that both intrachannel

and interchannel effects can be simultaneously mitigated.

The basic equation that describes the propagation of optical pulses inside single-mode

fibers (SMF) is the nonlinear Schrödinger (NLS) equation [2]. The NLS equation is a
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nonlinear partial differential equation (PDE) whose exact analytic solutions generally are

difficult to obtain except for some specific cases, such as soliton solutions in which the

inverse scattering method can be employed [16][17][18]. It is an implicit and continuous

time expression, both of which limit its usefulness for signal processing applications. A

large number of approximate analytical and numerical methods have been developed to

solve the NLS equation. Linearization is a widely used appoximate analytical approach.

Most linearization methods can be classified into two categories: the Volterra series transfer

function (VSTF) method [19] and the regular perturbation (RP) method [20].

The Volterra series is a polynomial expansion that represents the input-output relationship

of a nonlinear system with memory [21]. The VSTF method expresses the NLS equation as a

polynomial expansion in the frequency domain and retains the most significant terms (Volterra

kernels) in the resulting transfer function. Since the NLS equation was first formulated as

the Volterra series expansion form in 1997 [19], the VSTF method has been applied to

investigate system design issues [22], fiber nonlinearities [23][24][25][26], channel capacity

[27][28][29][30], dispersion compensation [31], pulse broadening [32], and filtering [33]. The

convergence of the VSTF method was also investigated in [34]. The RP method is applicable

to differential equations when the nonlinearity is weak [35]. Since 1998 the RP method has

been used to solve the NLS equation [20][36][37], investigate the channel capacity [38] and

fiber nonlinearities [39][40][41]. It has been shown that when the nonlinearities are due to

the Kerr effect alone, the n-order RP solution coincides with the 2n+ 1-order Volterra series

solution [37]. Both the third-order VSTF method and the first-order RP method result in

the same triple integral.

An alternative is to use a purely numerical method. Numerical methods can be classified

into two categories: finite-difference methods and pseudospectral methods [2]. The split-step

Fourier method (SSF) is one pseudospectral method that has been used extensively to solve

the NLS equation. This method runs much faster than most finite-difference methods due in

part to the use of the fast-Fourier-transform (FFT) algorithm [42]. The SSF method is usually
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taken as the standard of accuracy for validating other methods in the absence of experimental

data due to its well-established ability to accurately simulate the pulse propagation in fibers.

However, the SSF method has three important drawbacks: (1) it is unable to display the

effects of varying parameters on system output analytically; (2) it is unable to isolate what

impairment is causing the most degradation; and (3)it is computationally expensive.

Both the VSTF method and the RP method have the same complexity and computational

efficiency. However, the triple integral involves massive numerical evaluation of iterated

integration. We must reduce the triple integral to a much simpler form; otherwise, there is

little computational advantage in using either the VSTF method or the RP method over the

SSF method.

Many researchers have attempted to solve the triple integral problem. However, most

attempts have failed to reach a much simpler form with the exception of a simple integral

for a simplified single-channel single-span case in which both fiber losses and pulse chirp

are ignored [7][31][32]. A common scheme that deals with the triple integral problem is to

introduce the concept of the nonlinear transfer function [43] (called the DM (dispersion-

managed) kernel in [44]) and approximate it by asymptotic approximations [45][46][47]. In

this way, the triple integral can be simplified to a double integral but at the cost of accuracy.

Three improvements of the RP method have been proposed but they apply to the single-

channel single-span case only. The first is the enhanced RP (ERP) method [37], whose

solution contains a simple integral involving a complicated Fourier transform. The second

is the multiplicative approximation method [48], whose solution includes a simple integral

of a complicated convolution. The third is a recursive method [49], which asymptotically

approaches the exact solution of the NLS equation but whose computational complexity

remains an issue.
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1.3 Research Methodology

This dissertation proposes a model-centric approach for discrete-time signal processing for

fiber-optic communications and addresses the development, validation and applications of a

general deterministic analytical model of physical impairments in long-haul DWDM systems,

specifically multichannel multipulse multispan systems with periodic dispersion management

and amplification. It is assumed that chirped Gaussian pulses are used at the transmitter

and Gaussian optical filters are used at the receiver. In this research, we extend the VSTF

method further to the general multichannel multipulse multispan case and reduce the triple

integral to a simple integral, gaining computational efficiency advantage over the SSF method

with comparable accuracy. The resulting model is a polynomial model that takes into account

fiber losses, dispersion, fiber nonlinearities, multiple channel effects, pulse chirp, and multiple

spans.

1.4 Significance

The development of a 2D discrete-time model of physical impairments in long-haul DWDM

systems is of significance to both the field of fiber-optic communication systems and modern

society.

The model has the potential to serve as the foundation of discrete-time signal processing

for fiber-optic communication systems. Compared with both the SSF method and the original

third-order VSTF model, this model offers three significant advantages. First, the model

provides significant computational savings. Second, this model has strong analytic capacity.

It can isolate the importance of any individual physical impairment while the SSF method

can report only on the total level of all physical impairments combined, and cannot provide

this valuable break-down information. Moreover, with this model, the insight into what

impact varying various parameters has on the system output analytically can be gained

easily. Third, the model has the potential to serve as the foundation of discrete-time signal
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processing for optical communications and be applied in multichannel signal processing for

intersymbol and interchannel interference mitigation, constrained coding for WDM systems,

multiuser coding, multichannel detection and path-diversity for all-optical networks. This is

the biggest benefit of this model which could not be offered by either the SSF method or the

original third-order VSTF model.

With the help of discrete-time signal processing due to the model, the performance of

fiber-optic communication systems could be improved so that sustainable optical backbone

networks become realities. People in modern society will experience faster data transmission,

lower latency, and less interference.

The previous solutions to the NLS equation could not meet the needs required by discrete-

time signal processing for fiber-optic communication systems. With the strong analytic

capacity of the model, it is possible for us to analyze the long-haul DWDM systems. The

discrete-time property of the model makes it the natural candidate for discrete-time signal

processing for fiber-optic communication systems to improve system performance. The

potentials of discrete-time signal processing and digital communications could be exploited

fully due to the model. This may lead to fiber-optic communication system throughput

and performance near its theoretical capacity limits. Applications in system analysis and

system performance improvement could not be developed before the 2D discrete-time model

is developed.

The model opens the way for signal processing experts to contribute to the improvement

of fiber-optic communication systems. They have shied away from this in the past due to the

daunting physical description of these systems.

1.5 Dissertation Organization

The dissertation is organized as follows.
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The nonlinear Schrödinger (NLS) equation is the basic equation that governs propagation

of optical pulses in single-mode fibers. In Chapter 2, background work and a literature review

for the field are given. After an introduction of the NLS equation, including its history and

derivation, existing solution methods to the NLS equation (Volterra series transfer function

method and split-step Fourier method) are presented and their drawbacks are pointed out,

justifying the need for a new solution to the NLS equation. Then various physical impairments

and ASE noise in long-haul DWDM systems that limit system performance and performance

measures used in fiber-optic communication systems are introduced. Lastly, existing signal

processing techniques, including forward error correction, predistortion/equalization, and

constrained coding, to improve system performance are reviewed.

Chapter 3 describes the development and validation of a 2D discrete-time model of

physical impairments in long-haul DWDM systems. The model development is based on the

Volterra series transfer function (VSTF) method. There are three main contributions made

in model development: (1) the model is a simple integral, compared with the triple integral

associated with the original VSTF method; (2) the model takes into account multichannel

effect, fiber losses, frequency chirp, optical filtering, and photodetection, which are ignored

in the current literature; (3) the model is a discrete-time model that characterizes various

individual physical impairments, and is easy to use to develop discrete-time signal processing

techniques to mitigate physical impairments in long-haul DWDM systems. This chapter also

discusses the complexity of the model.

In Chapter 4, the 2D discrete-time model is applied in two different ways to analyze the

system. The first application is to analyze the effects of varying two most important system

parameters (symbol rate and channel spacing) and pulse shape on the individual physical

impairments in a long-haul DWDM system. The second application is to determine the

ranges of influence (RoI) of various individual physical impairments in long-haul DWDM

systems.

In Chapter 5, the 2D discrete-time model is used to develop two signal processing
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applications to improve the system performance. The first application is to implement a novel

constrained coding scheme based on total impairment extent rank (TIER), or a TIER-LDPC

concatenation scheme. The TIER-LDPC concatenation scheme combines the strength of

the TIER code in avoiding errors due to physical impairment and that of the LDPC code in

correcting memoryless errors due to ASE noise. The TIER-LDPC concatenation scheme is

effective over the entire range of transmitter power levels and link length in suppressing both

the physical impairments and the ASE noise in long-haul fiber-optic communication systems.

The second application is to propose a nonlinear equalizer based on the inverse Volterra

theory. The nonlinear equalizer improves the system performance significantly, particularly

for high power levels where nonlinearity dominates.

Chapter 6 concludes the dissertation and proposes future avenues for research.



Chapter 2

Background

The objective of this chapter is to present the necessary background knowledge relevant to

this dissertation. Section 2.1 introduces the nonlinear Schrödinger (NLS) equation, which is

the basic equation that governs propagation of optical pulses in single-mode fibers. Section

2.2 reviews the approximate analytical methods and numerical methods used to solve the

NLS equation. The two most important factors that limit system performance of long-haul

DWDM systems, i.e., physical impairments and ASE noise, are introduced in Sections 2.3

and 2.4, respectively. Section 2.5 presents the performance measures used in fiber-optic

communication system analysis. Section 2.6 reviews various signal processing techniques

that can improve system performance of long-haul DWDM systems, including forward error

correction, constrained coding, and predistortion/equalization. Section 2.7 concludes this

chapter with a summary.

2.1 Nonlinear Schrödinger (NLS) Equation

When short optical pulses with widths ranging from a few nanoseconds down to 10 femtosec-

onds propagate inside a fiber, their shapes and spectra are influenced by both dispersive and

nonlinear effects. A basic equation that governs propagation of optical pulses in nonlinear

dispersive fibers is the nonlinear Schrödinger (NLS) equation.

16
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The NLS equation is a nonlinear version of the Schrödinger equation that was formulated

in 1925 and for which Erwin Schrödinger received the Nobel Prize in Physics in 1933. In

quantum mechanics, the Schrödinger equation is a linear partial differential equation that

describes how the quantum state of a physical system changes with time. In theoretical

physics, the NLS equation is a nonlinear partial differential equation that describes wave

propagation in a nonlinear medium [50].

Historically, the essence of the NLS equation appeared in the work of Vitaly L. Ginzburg

(2003 Nobel laureate in Physics) in his study of the theory of superconductors and superfluids

in the 1950s [51][52][53]. After the NLS equation was applied successfully to the phenomenon

of self-focusing and the conditions under which an electromagnetic beam can propagate

without spreading in nonlinear media in the 1960s [54][55], the wider physical significance of

the NLS equation became well-recognized by the scientific community. The recent additional

interest in the NLS equation is mainly due to its applications in nonlinear fiber optics [56][57]

and soft-condensed matter physics [58].

The general form of the NLS equation is [59]

i
∂ψ

∂t
+
∂2ψ

∂x2
+ f(|ψ|)ψ = 0 (2.1)

where x and t are the propagation variables, ψ(x, t) is the slowly varying complex envelope

of the complex field, f(u) is a real function of a real variable u.

The significance of the NLS equation in the physics community lies in its universal

character [60]. The NLS equation is applicable to most weakly-nonlinear, dispersive, energy-

preserving systems. It has been used to describe the nonlinear propagation of wave packets

in many physical fields, such as fluid dynamics[61], nonlinear fiber optics [2], magnetic spin

waves [62][63], and plasma physics[59]. The NLS equation provides a canonical description of

the envelope dynamics of a quasi-monocromatic plane wave propagating in a weakly nonlinear

dispersive medium [50].
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The significance of the NLS equation in the mathematics community lies in its integrability

in one transverse dimension via the inverse scattering transform, a nonlinear Fourier transform

which admits multisoliton solutions and possesses many interesting properties [50].

The NLS equation in nonlinear fiber optics was first derived by Akira Hasegawa and Fred

Tappert in 1973 [64][65]. Detailed derivations can be found in [66] and [2]. The following

description is a simplified derivation based on [2].

Starting from Maxwell’s equations and assuming the optical field to be quasi-monochromatic

and maintain its polarization along the fiber, the electric field E(r, t) can be expressed as

E(r, t) =
1

2
x̂{F (x, y)A(z, t) exp[i(β0z − ω0t)] + c.c.}, (2.2)

where E(r, t) is a slowly varying function of time t relative to the optical field and position r,

x̂ is the polarization unit vector, for a single-mode fiber F (x, y) is the modal distribution of

the fundamental fiber mode (linearly polarized in either the x or y direction) given by the

Gaussian approximation

F (x, y) ≈ exp[−x
2 + y2

w2
], (2.3)

where the width parameter w is determined by curve fitting or by following a variational

procedure. A(z, t) is the slowly varying pulse envelope, which depends on the propagation

distance z and the propagation time t, β0 is the wave number, ω0 is the center frequency of

the pulse spectrum, and the abbreviation c.c. stands for complex conjugate.

The Fourier transform Ã
.
= Ã(z, ω − ω0) of A(z, t) satisfies

∂Ã

∂z
= i[β̃(ω)− β0]Ã, (2.4)

where β̃(ω) is the eigenvalue of the Helmholtz equation satisfied by the Fourier transform of

E(r, t), depending on the frequency ω.
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Using the first-order perturbation theory, Eq. (2.4) becomes

∂Ã

∂z
= i[β(ω) + ∆β(ω)− β0]Ã, (2.5)

where β(ω) is the wave number, and ∆β(ω) is a small perturbation of β(ω). The meaning of

Eq. (2.5) is that each spectral component within the pulse envelope acquires a phase shift

whose magnitude is both frequency and intensity dependent, as it propagates down the fiber.

Because an exact functional form of β(ω) is unknown, it is necessary to expand β(ω) in a

Taylor series around the carrier frequency ω0 as

β(ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)2β2 +

1

6
(ω − ω0)3β3 + ..., (2.6)

where β0 = β(ω0) and other parameters are defined as

βm =

(
dmβ

dωm

)

ω=ω0

,m = 1, 2, ... (2.7)

Similarly, ∆β(ω) is expanded as

∆β(ω) = ∆β0 + (ω − ω0)∆β1 +
1

2
(ω − ω0)2∆β2 +

1

6
(ω − ω0)3∆β3 + ... (2.8)

If the spectral width of the pulse satisfies the condition ∆ω � ω0, the third and higher-

order terms in the expansion (2.6) are negligible; the first and higher-order terms in the

expansion (2.8) are negligible. These two approximations are consistent with the quasi-

monochromatic assumption.

By taking the inverse Fourier transform of Eq. (2.5) with the above two approximations

using

A(z, t) =
1

2π

∫ +∞

−∞
Ã(z, ω − ω0) exp[−i(ω − ω0)t]dω, (2.9)
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one can obtain the following propagation equation for A(z, t)

∂A

∂z
+ β1

∂A

∂t
+
iβ2

2

∂2A

∂t2
= i∆β0A. (2.10)

By including both the effects of fiber losses and nonlinearity in the ∆β0 term on the right

hand side of Eq. (2.10), Eq. (2.10) becomes

∂A

∂z
+ β1

∂A

∂t
+
iβ2

2

∂2A

∂t2
+
α

2
A = iγ|A|2A, (2.11)

where γ is the nonlinear parameter.

Eq. (2.11) describes propagation of picosecond optical pulses in single-mode fibers and

includes the effects of fiber losses through α, of group velocity through β1, of chromatic

dispersion through β2, and of fiber nonlinearity through γ. The pulse envelope moves at the

group velocity vg ≡ 1
β1

, while the effects of group-velocity dispersion (GVD) are governed by

β2 and the nonlinear effects due to the Kerr effect are governed by γ.

By making the transformation

t
′
= t− z

vg
= t− β1z, (2.12)

a frame of reference moving with the pulse at the group velocity vg (the so-called retarded

frame) is used and Eq. (2.11) becomes

∂A

∂z
= −α

2
A− iβ2

2

∂2A

∂t′2
+ iγ|A|2A. (2.13)

Eq. (2.13) is referred to as the NLS equation due to its resemblance to the Schrödinger

equation with a nonlinear term and a loss term. The NLS equation holds for pulses of width

T0 > 5 ps. The NLS equation is a fundamental equation of nonlinear fiber optic propagation,

which is the simplest nonlinear equation for studying the third-order nonlinear effects in
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optical fibers. If the peak power of an optical pulse is large enough, the NLS equation needs

to be modified to include the fifth and higher-order terms. Hereinafter we drop the prime

over t for notational simplicity. The three terms on the right hand side (RHS) describe,

respectively, the effects of fiber losses, dispersion, and nonlinearity on the pulses propagating

inside optical fibers.

Either dispersive or nonlinear effects dominate along the fiber, depending on the initial

width T0 and the peak power P0 of the incident pulse. It is helpful to introduce two length

scales: the dispersion length LD and the nonlinear length LNL.

Define a time scale normalized to the input pulse width T0 as [2]

τ =
t

T0

, (2.14)

and a normalized amplitude U as

U(z, τ) =
A(z, τ)√

P0 exp(−αz
2

)
. (2.15)

Also define the dispersion length LD as [2]

LD =
T 2

0

|β2|
, (2.16)

and the nonlinear length LNL as

LNL =
1

γP0

. (2.17)

The NLS equation then becomes [2]

i
∂U

∂z
=
sgn(β2)

2LD

∂2U

∂τ 2
− exp(−αz)

LNL
|U |2U, (2.18)

where sgn(β2) = ±1 depends on the sign of the GVD parameter β2. Depending on the

relative magnitude of LD, LNL, and the fiber length L, there are four different propagation
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regimes.

When the fiber length L satisfies both L � LD and L � LNL , neither dispersive nor

nonlinear effects are significant during pulse propagation.

When the fiber length L satisfies both L ∼ LD and L � LNL, the nonlinear term is

negligible compared with the dispersion term. The pulse evolution is governed by GVD and

the dispersion-dominant regime is applicable if the fiber parameters and pulse parameters

satisfy [2]

LD
LNL

=
γP0T

2
0

|β2|
� 1. (2.19)

When the fiber length L satisfies both L � LD and L ∼ LNL, the dispersion term is

negligible compared with the nonlinear term. The pulse evolution is governed by SPM and

the nonlinearity-dominant regime is applicable if the fiber parameters and pulse parameters

satisfy [2]

LD
LNL

=
γP0T

2
0

|β2|
� 1. (2.20)

When the fiber length L is longer or comparable to both LD and LNL, dispersion and

nonlinearity act together during pulse propagation. In the anomalous-dispersion regime

(β2 <0), the interplay of the GVD and SPM effects results in solitons. In the normal-dispersion

regime (β2 >0), the combined effects of GVD and SPM leads to pulse compression.

2.2 Solution to the NLS Equation

The NLS equation is a nonlinear PDE whose exact analytic solutions are difficult to obtain

[2] except for some specific cases, such as soliton solutions in which the inverse scattering

method can be employed [16][17][18]. A large number of approximate analytical and numerical

methods have been developed to solve the NLS equation. This section summarizes some

methods that have been used extensively to solve the NLS equation.
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2.2.1 Analytical methods

Most approximate analytical methods can be classified into tow categories: the Volterra series

transfer function (VSTF) method [19] and the regular perturbation (RP) method [20].

The Volterra series is a polynomial expansion that represents the input-output relationship

of a nonlinear system, similar to the Taylor series but with the ability to capture memory

effects [21]. The VSTF method expresses the NLS equation as a polynomial expansion in the

frequency domain. Retaining only the first-order and the third-order Volterra kernels (the

second-order kernel is zero due to the absence of even-order nonlinearities in an optical fiber),

the frequency-domain output of the fiber at length L is given as [19]

Ã(L, ω) ≈ H1(L, ω)Ã(0, ω) +

∫ +∞

−∞

∫ +∞

−∞
H3(L, ω1, ω2, ω − ω1 + ω2)Ã(0, ω1)Ã∗(0, ω2)

Ã(0, ω − ω1 + ω2)dω1dω2, (2.21)

where

H1(L, ω) = exp(−α
2
L+ i

β2

2
ω2L), (2.22)

H3(L, ω1, ω2, ω − ω1 + ω2)=
iγ

4π2
H1(L, ω)

∫ L

0

exp[−αz + iβ2z(ω1 − ω)(ω1 − ω2)]dz,

(2.23)

Ã(z, ω) is the Fourier transform of A(z, t), and H1(L, ω) and H3(L, ω1, ω2, ω − ω1 + ω2) are

the first-order and third-order Volterra kernels, which are the linear and nonlinear transfer

functions of an optical fiber of length L, respectively. Substituting (2.22) and (2.23) into

(2.21) yields the well-known triple integral. Returning to the time domain can result in yet

another integral.

The idea behind the RP method is that when an equation is changed by only a small

amount, the solution will often only change by a small amount. This method is applicable

to differential equations with a small nonlinear parameter and yields a series of terms of
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decreasing magnitude that approximate the solution of the original differential equation [35].

With this method, the first-order RP approximation to the output optical field has been

obtained with the result being the same triple integral as above [37][38]. Further, it is found

that the n-order RP solution coincides with the 2n+ 1 VSTF solution for any integer n [37].

In this dissertation, the development of the 2D discrete-time model of physical impairments

in long-haul DWDM systems is based on the above third-order VSTF model. The triple

integral problem is overcome and simplified to a simple integral form, which has the potential

to be applied in signal processing for fiber-optic communication systems.

2.2.2 Numerical methods

The split-step Fourier (SSF) method was developed for electromagnetic and ocean acoustic

propagation by Fred Tappert in 1973 [67].

The NLS equation can be written in the form [2]

∂A

∂z
= (D̂ + N̂)A, (2.24)

where D̂ is a differential operator that takes into account fiber losses and dispersion on pulse

propagation and is given by [2]

D̂ = −α
2
− iβ2

2

∂2

∂t2
, (2.25)

and N̂ is a nonlinear operator that takes into account fiber nonlinearity on pulse propagation

and is given by [2]

N̂ = iγ|A|2. (2.26)

Generally both dispersion and nonlinearity act together during fiber propagation. The

SSF method obtains an approximate solution by assuming that the dispersive and nonlinear

effects act independently during the propagation of the optical field over a small segment of

distance h. More specifically, propagation from z to z + h is carried out in two steps: in the
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Figure 2.1: Symmetrized split-step Fourier method used for numerical simulations. Fiber
length is divided into a large number of segments of width h. The effect of nonlinearity is
included at the middle of the segment. [2]

first step, D̂ = 0, N̂ 6= 0, i.e., the nonlinearity acts alone; in the second step, N̂ = 0, D̂ 6= 0

i.e., the dispersion acts alone. Mathematically,

A(t, z + h) ≈ exp(hD̂) exp(hN̂)A(t, z). (2.27)

The exponential operator exp(hD̂) can be evaluated in the Fourier domain and the exponential

operator exp(hN̂) can be evaluated in the time domain.

A common improvement in the accuracy of the generic split-step Fourier method is a scheme

called the symmetrized split-step Fourier method [2], in which the effect of nonlinearity is

included in the middle of the segment, rather than at the segment boundary. Mathematically,

A(t, z + h) ≈ exp(
h

2
D̂) exp(hN̂) exp(

h

2
D̂)A(t, z). (2.28)

The symmetrized split-step Fourier method is schematically shown in Fig. 2.1.

The SSF method is usually taken as the standard of accuracy for validating other methods

in the absence of experimental data due to its well-established ability to accurately simulate

the pulse propagation in fibers. In this dissertation, the SSF simulation is used to validate

the accuracy of the 2D discrete-time model.
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2.3 Physical Impairments

In long-haul DWDM systems with periodic dispersion management and amplification, the

elimination of optical-to-electrical-to-optical (OEO) conversion inevitably gives rise to severe

physical impairments, which in turn adversely affect system performance [1]. These physical

impairments include not only linear impairments due to dispersion, but also nonlinear

impairments due to fiber nonlinearity, which further consist of both intrachannel impairments

and interchannel impairments. The performance of long haul DWDM systems is fundamentally

limited by dispersion, fiber nonlinearity, and ASE noise [12][13][14].

2.3.1 Linear Impairments

The main effect of GVD is to broaden an optical pulse as it propagates through the fiber.

In the multipulse case, temporal spreads of neighboring bits overlap, leading to intersymbol

interference (ISI); further, in the multichannel multipulse case, GVD, coupled with non-

linearity, also leads to interchannel interference (ICI). In addition to GVD-induced pulse

broadening, polarization-mode dispersion (PMD) leads to distortion of optical pulses due

to fiber birefringence. However, PMD is important for long-haul high-speed communication

systems near the zero-dispersion wavelength of the fiber, i.e., 1.27 µm. For standard silica

fibers at 1.55 µm, PMD-induced pulse broadening is relatively small compared with GVD

effect [2].

In long-haul systems, the problem of fiber losses can be solved by periodic optical amplifiers.

Similarly, the problem of GVD can be managed by periodic dispersion compensation. With

the use of periodic dispersion and amplification, both fiber losses and dispersion cease to be

limiting factors for long-haul fiber-optic communication systems.
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2.3.2 Nonlinear Impairments

Fiber nonlinearity can be classified into two types: Kerr effect and stimulated scattering

[68]. Stimulated scattering leads to intensity-dependent gain or loss, the most detrimental

of which is stimulated Raman scattering (SRS). The Kerr effect is due to the intensity

dependence of the refractive index and causes an intensity-dependent phase shift experienced

by an optical field during propagation in optical fibers [2]. Stimulated scattering is relatively

small compared with the Kerr effect and is ignored in this dissertation. In the case of

successive transmissions of pulses in a DWDM system, the Kerr effect leads to the nonlinear

interaction among optical pulses on the same channel (intrachannel effects), and among pulses

on neighboring channels in a DWDM system (interchannel effects). Intrachannel effects can

be further divided into three types: self-phase modulation (SPM), intrachannel cross-phase

modulation (IXPM), and intrachannel four-wave mixing (IFWM); interchannel effects can

also be further separated into two types: cross-phase modulation (XPM), and four-wave

mixing (FWM).

The field of a multipulse DWDM system can be represented as a double summation of

the fields of all individual pulses in all individual channels, A =
∑F−1

f=0

∑K−1
k=0 Afk, where

Afk = Afk(z, t) is the field representing the kth of K pulses centered at kTs located in the

fth of F channels centered at f∆ in our baseband representation, where Ts is the symbol

duration and ∆ is the channel spacing. By substituting this summation into (2.13) we obtain

F−1∑

f=0

K−1∑

k=0

(
∂Afk
∂z

+
α

2
Afk + i

β2

2

∂2Afk
∂t2

) = iγ

F−1∑

u,v,w=0

K−1∑

l,m,n=0

AulA
∗
vmAwn. (2.29)

The nonlinear terms on the RHS of (2.29) can be identified as follows: when u = v = w

and l = m = n, we have SPM; when u = v 6= w or u 6= v = w and l = m = n, it is XPM;

when u 6= v 6= w or u = w 6= v and l = m = n, it is FWM; when l = m 6= n or l 6= m = n

and u = v = w, it is IXPM; when l 6= m 6= n or l = n 6= m and u = v = w, it is IFWM. For

interchannel effects, i.e., XPM and FWM, the frequency location of the nonlinear interaction
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is given approximately by the phase-matching condition: (u−v+w)∆; for intrachannel effects,

i.e., IXPM and IFWM, the time location of the nonlinear interaction is given approximately

by (l −m + n)Ts, which is analogous to the phase-matching condition used to determine

the frequency location of interchannel effects. SPM leads to spectral broadening of optical

pulses. XPM leads to a phase distortion of one wave as a reaction to the intensity of another

and causes a frequency broadening [69]. FWM generates new waves at the phase-matching

frequencies. In the case of equally spaced frequency channels, new frequencies coincide with

existing frequencies and produce in-band crosstalk [2]. IXPM results in timing jitter. IFWM

is responsible for two effects that degrade the system performance: amplitude jitter and ghost

pulse generation [69].

In this dissertation, the 2D discrete-time model characterizes the above individual linear

and nonlinear impairments. Such a model can be used to develop signal processing applications

to mitigate physical impairments to improve system performance of long-haul DWDM systems.

2.4 ASE Noise

In long-haul fiber-optic communication systems, fiber losses must be compensated using

a chain of amplifiers that boosts the signal power periodically back to its original value.

Periodic amplification schemes can be classified into two categories: lumped amplification

and distributed amplification (or Raman amplification). Most current long-haul fiber-optic

communication systems usually use EDFAs for lumped amplification.

With lumped periodic amplification, amplified spontaneous emission (ASE) adds noise to

the signal during its amplification. Compared with the impact of dispersion and nonlinearity,

which is deterministic, the impact of ASE noise is inherently random. In long-haul fiber-optic

communication systems with lumped periodic amplification that use a chain of cascaded

lumped amplifiers, ASE accumulates to high levels with the increase in the number of

amplifiers (or spans). For low nonlinearity, this is equivalent to simply adding the ASE
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powers of all amplifiers at the end of a fiber. For strong nonlinearity, the interaction of the

ASE noise with the signal must be considered. This effect is not modelled in this dissertation

and is left for future work.

The spectral density of ASE noise is nearly constant (white noise) and can be expressed

by [1]

SASE(v0) = nsphv0(G− 1), (2.30)

where nsp is the spontaneous emission factor, h is the Planck constant, and v0 is the optical

carrier frequency of the signal being amplified.

Consider a long-haul fiber-optic communication system that consists of N spans with each

span of length L, which is the amplifier spacing. Assuming that all amplifiers are operated

with the same gain G = exp(αL), the total ASE power is given by [1]

P tot
ASE = 2NSASE∆v0, (2.31)

where the factor of 2 takes into account the unpolarized nature of ASE noise and ∆v0 is the

bandwidth of the optical filter.

In this dissertation, although ASE noise is not included in the 2D discrete-time model, it

is considered in system performance evaluation.

2.5 Demodulation and Performance Measure

The performance of a fiber-optic communication system is measured by the bit-error rate

(BER), which is defined as the average probability of incorrect bit identification by the

decision circuit of the receiver. Most fiber-optic communication systems require a BER of

10−9 − 10−15.

To calculate the BER, we need to know the input of the decision circuit, i.e., the sampled

output of the photodetector (normally photocurrent I). Depending on the demodulation
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scheme and the receiver design, the output of the photodetector varies. Let rf(t) be the

output of the WDM demultiplexer. For OOK, I is directly proportional to the incident

optical power of the photodetector. Assuming the responsivity of the photodetector to

be 1, I = |rf(t)|2. For DBPSK with optical delay demodulation with balanced detection,

I =
∣∣∣ rf (t)+rf (t−Ts)

2

∣∣∣
2

−
∣∣∣ rf (t)−rf (t−Ts)

2

∣∣∣
2

. For DQPSK with optical delay demodulation with

balanced detection, there are two photocurrents corresponding to the in-phase and quadrature

components of the received optical field. The in-phase photocurrent is identical to the

photocurrent in the case of DBPSK. Due to the introduction of a relative phase shift of π/2,

the quadrature photocurrent IQ =
∣∣∣ rf (t) exp(iπ

2
)+rf (t−Ts)

2

∣∣∣
2

−
∣∣∣ rf (t) exp(iπ

2
)−rf (t−Ts)

2

∣∣∣
2

.
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Figure 4.18: (a) Fluctuating signal generated at the receiver. (b) Gaussian probability densities
of 1 and 0 bits. The dashed region shows the probability of incorrect identification.

statistics of shot-noise contribution is in Eq. (4.4.6) is also approximately Gaussian for
p–i–n receivers although that is not the case for APDs [86]–[88]. A common approx-
imation treats is as a Gaussian random variable for both p–i–n and APD receivers but
with different variance σ 2

s given by Eqs. (4.4.5) and (4.4.17), respectively. Since the
sum of two Gaussian random variables is also a Gaussian random variable, the sam-
pled value I has a Gaussian probability density function with variance σ 2 = σ2

s +σ2
T .

However, both the average and the variance are different for 1 and 0 bits since I p in Eq.
(4.4.6) equals I1 or I0, depending on the bit received. If σ 2

1 and σ 2
0 are the correspond-

ing variances, the conditional probabilities are given by

P(0/1) =
1

σ1
√

2π

∫ ID

−∞
exp

(
− (I− I1)

2

2σ 2
1

)
dI =

1
2

erfc

(
I1 − ID

σ1
√

2

)
, (4.5.3)

P(1/0) =
1

σ0
√

2π

∫ ∞

ID
exp

(
− (I− I0)

2

2σ 2
0

)
dI =

1
2

erfc

(
ID − I0

σ0
√

2

)
, (4.5.4)

where erfc stands for the complementary error function, defined as [89]

erfc(x) =
2√
π

∫ ∞

x
exp(−y2)dy. (4.5.5)

By substituting Eqs. (4.5.3) and (4.5.4) in Eq. (4.5.2), the BER is given by

BER =
1
4

[
erfc

(
I1 − ID

σ1
√

2

)
+ erfc

(
ID − I0

σ0
√

2

)]
. (4.5.6)

Figure 2.2: Fluctuating signal generated at the receiver for OOK [1]

Fig. 2.2 shows schematically the fluctuating signal received by the decision circuit for

OOK, which is sampled at the decision instant tD determined through clock recovery [1].

Generally, the sampled value I of each bit (1 or 0) fluctuates around an average value I1 or

I0. The decision circuit compares the sampled value with a threshold value ID and identify it

as bit 1 if I > ID or bit 0 if I < ID. Due to various physical impairments and noises, there

are two types of errors: I > ID for bit 0 and I < ID for bit 1. To include these two sources
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Figure 2.3: Gaussian probability densities of 1 and 0 bits

of error, the BER is defined as

BER = p(1)P (0|1) + p(0)P (1|0) (2.32)

where p(1) and p(0) are the probabilities of transmitting bits 1 and 0, respectively, P (0|1) is

the probability of deciding 0 when 1 is transmitted, and P (1|0) is the probability of deciding

1 when 0 is transmitted. If 1 and 0 bits are equally likely to occur, i.e., p(1) = p(0) = 1
2
, the

BER becomes

BER =
1

2
[P (0|1) + P (1|0)] (2.33)

Fig. 2.3 shows how P (0|1) and P (1|0) depend on the conditional probability density

functions P (I|b) of the sampled value I for b =1 or 0. The functional form of P (I|b) depends

on the statistics of noise sources, including thermal noise and shot noise, which result in signal

fluctuations. The noise plus the many impairments that contribute to the photo current is
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often modeled as being Gaussian distributed. So the sampled value I under each transmitted

pulse can be modelled as having a Gaussian probability density function. If the mean and

the variance of the sampled value I for bit 1 are denoted as I1 and σ2
1, and the mean and

the variance of the sampled value I for bit 0 are I0 and σ2
0, respectively, the conditional

probabilities are given by [1]

P (0|1) =
1

σ1

√
2π

∫ ID

−∞
exp(−(I − I1)2

2σ2
1

)dI =
1

2
erfc(

I1 − ID
σ1

√
2

) (2.34)

and

P (1|0) =
1

σ0

√
2π

∫ ∞

ID

exp(−(I − I0)2

2σ2
0

)dI =
1

2
erfc(

ID − I0

σ0

√
2

) (2.35)

where erfc stands for the complementary error function defined as

erfc(x) =
2√
π

∫ ∞

x

exp(−y2)dy. (2.36)

Substituting Eqs. (2.34) and (2.35) in Eq. (2.33) yields

BER =
1

4

[
erfc

(
I1 − ID
σ1

√
2

)
+ erfc

(
ID − I0

σ0

√
2

)]
. (2.37)

It is obvious that the BER depends on the decision threshold ID. The minimum BER occurs

when ID satisfies

(ID − I0)2

2σ2
0

=
(I1 − ID)2

2σ2
1

+ ln(
σ1

σ0

) (2.38)

The term ln(σ1

σ0
) is usually negligible. So the optimal ID is obtained as

ID =
σ0I1 + σ1I0

σ0 + σ1

. (2.39)

Substituting Eq. (2.39) into Eq. (2.37) yields the BER with the optimal decision threshold

BER =
1

2
erfc

(
Q√

2

)
≈ exp(−Q2

2
)

Q
√

2π
, (2.40)
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where the parameter Q, called the “Q factor”, is given by

Q =
I1 − I0

σ1 + σ0

. (2.41)

There is a one-to-one correspondence between the BER and the Q factor, as shown in Fig.

2.4. For example, a BER of 10−9 corresponds to Q = 6. With the increase of the Q factor,

the BER decreases. A higher Q factor is of course desirable.
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Figure 2.4: BER versus Q factor

The above derivation is based on the assumption that the dominating noise sources are

ASE noise, thermal noise and shot noise. In high-data-rate DWDM systems, fiber nonlinearity

becomes important and the calculation of I0, I1, σ
2
0, and σ2

1 is hard. Further, in long-haul

DWDM systems, the nonlinear interaction between the ASE noise and the signal also becomes

important but its statistics is an open problem and will be addressed in future work.
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2.6 Signal Processing

Many signal processing techniques have been developed to mitigate the physical impairments

and the ASE noise. These techniques can be classified into two categories: optical techniques

and electrical techniques. Optical techniques rely on device development, whose complexity

and cost limits their use. Electrical techniques can be applied on existing optical backbone

infrastructures without any hardware change and are attracting wide attention. The main

limitation of these techniques is their implementation speeds. The signal processing techniques

of interest to us can be classified further into three categories: forward error correction (FEC),

constrained coding, and predistortion/equalization.

2.6.1 Forward Error Correction

FEC is a technique used for controlling errors in data transmission over noisy communication

channels. Its central idea is the transmitter encodes its message in a redundant way by using

an error-correcting code (ECC) [3]. The improvement in system performance due to the use

of FEC is measured by the coding gain [70]

Gc = 20 log10

(
Qc

Q

)
, (2.42)

where Qc and Q are the Q factor with and without FEC. Alternatively, the correction

capability of the FEC can be evaluated in terms of the net coding gain (NCG), which is the

sum of the code rate R (the ratio of bit rate without FEC to bit rate with FEC) and the

coding gain Gc, as defined as [71]

NCG = Gc + 10 log10R (2.43)

Although FEC appeared at the end of 1940s, FEC was first applied in fiber-optic com-

munication systems in 1987 [71]. Three generations of FEC codes have been developed for



2.6 Signal Processing 35

fiber-optic communication systems since 1987 [71].

The first generation FEC, which appeared between 1987 and 1993, is based on hard-decision

decoding (a single quantization level in bit sampling) and the representative RS(255,239),

where 239 is the size of a packet of bytes that is converted through coding into a larger packet

with 255 bytes, yields an NCG of 5.8 dB with a code rate R of 0.93.

The second-generation FEC, which were developed between 2000 and 2004, is a class

of concatenated code with hard-decision decoding. The concatenated code with the best

performance achieved an NCG of 9.4 dB with R of 0.8.

The third generation is based on soft-decision decoding. Turbo codes and low-density

parity check (LDPC) codes belong to the third generation FEC.

However, the performance of the current FEC schemes is very vulnerable to nonlinear

physical impairments in optical communications. In Section 5.1, we propose the use of

LDPC code, in conjunction with our novel constrained code, to combat both ASE noise and

nonlinearity.

2.6.2 Constrained Coding

Constrained coding, which involves the use of a code to avoid patterns (waveforms) in the

transmitted signal that will most likely be detected incorrectly, has been proved to be an

effective approach to suppress some physical impairments [72, 73, 74, 75, 76, 77, 78, 79, 80].

A communication system is said to be constrained if there are some constraints on the input

sequences that the transmitter allows. The most common constraints can be classified into

two categories: (d, k) or runlength-limited (RLL) constraint and DC-free constraint [81]. The

(d, k) constraint allows only sequences with runs of 0 having length at least d and no more

than k. The DC-free constraint allows all sequences s = ..., s−1, s0, s1, ..., si ∈ {−1,+1} for

all i, such that for all k ∣∣∣∣∣
k∑

−∞

si

∣∣∣∣∣ < D (2.44)
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where D is an appropriately chosen positive number.

Generally constrained coding requires the use of a finite state transition diagram (FSTD)

that describes the time-dependent behavior of a system and consists of allowable states and

transitions between the states. By traversing the states along the edges and reading the labels

off the edges traversed, all valid sequences can be drawn from the FSTD and represented as

paths in the FSTD. The set of all paths constitute the constrained system.

FSTD is an excellent tool to design finite-state encoders and decoders [81]. A finite-state

encoder can be constructed using the state-splitting algorithm. The decoders for constrained

codes can be classified into two categories: state-dependent decoders and sliding-block

decoders. In addition to FSTD, there are constrained codes based on table lookup, whose

encoder establishes a mapping between the input and the codewords to be used at the decoder.

This mapping satisfies the desired constraints [81].

The applications of constrained coding in fiber-optic communication systems involve the

use of three constraints [81]. In the first constraint, the resonant sequences “1101”, “1011”,

and “11011” are identified as the most troublesome sequences and forbidden. In the second

constraint, the zero symbol in “resonant positions” is converted into a one-symbol to make

the time matching conditions for generating ghost pulses unsatisfied. Consider a sequence of

length L, cici+1...ci+L−1; if for l,m, n ∈ [i, i+ 1) and l +m− n ∈ [i, i+ 1), cl = cm = cn=1,

then cl+m−n 6=0. In the third constraint, one can deliberately add a single pulse on the left

or right side of an “asymmetric sequence” to completely cancel out different ghost-pulse

contributors at a zero-bit “resonant position”. For example, modify the sequence 1101 to

11011.

Constrained codes for fiber-optic communication systems [73, 74, 75, 76, 77, 78, 79, 80]

share two common drawbacks: (1) they are limited to the suppression of IFWM only; (2)

their performance evaluation is performed in the absence of the ASE noise. In Section 5.1,

we propose a constrained code based on our 2D discrete-time model, and evaluate it in the

presence of ASE noise.
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2.6.3 Predistortion/equalization

Predistortion/equalization belong to a class of electronic techniques to compensate for the

physical impairments in fiber-optic communication channel [82]. This is often accomplished

by applying an inverse transfer function to the signal. When this is implemented at the

transmitter side, i.e., predistorting the signal to invert the channel, and then transmitting

the predistored waveform, it is a predistorter; when this is implemented at the receiver side,

i.e., equalizing the received signal to invert the channel, it is an equalizer. In the absence

of ASE noise, they are equivalent in the mitigation of physical impairments, including fiber

nonlinearity.

Electronic equalizers can be classified into four categories: feed-forward equalizer (FFE),

decision-feedback equalizer (DFE), maximum likelihood sequence estimation (MLSE) equalizer

[82], and backpropagation.

An FFE is a finite-impulse-response (FIR) filter, which has several stages, each consisting

of a delay element, a multiplier and an adder [82]. After every delay element, the delayed

input is multiplied with a coefficient hi and added to the signal.

A DFE is an FFE with a second FIR filter and decision device added to form a feedback

loop [82]. There are two modes of operation for a DFE: a training mode and a decision mode.

During the training mode, the tap weights hi of the equalizer are adjusted in accordance

with some adaptation rule, such as the least-mean-square (LMS) algorithm. During the

decision mode, small variations in the taps allow for compensation of time varying effects of

the channel.

An MLSE equalizer compares a segment of the noisy received signal with all the possible

noiseless waveforms of the same length that could be received and chooses the one that is

most likely to have been sent. An MLSE equalizer requires a Viterbi decoder and a channel

estimator [82]. It also requires soft decisions for decoding.

Backpropagation is an emerging approach to mitigate both linear impairments and

nonlinear impairments [83][84][85]. It is based on a simple idea: the original optical field at
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the transmitter can be recovered fully by numerical backpropagation of the received signal

through an inverse nonlinear channel. In the absence of ASE noise, the transmitted signal

can be exactly recovered by “backpropagating” the received signal through the inverse NLS

equation given by [83]:

∂A

∂z
=
α

2
A+

iβ2

2

∂2A

∂t′2
− iγ|A|2A, (2.45)

This operation is equivalent to passing the received signal through a fictitious fiber having

opposite-signed parameters. It is also possible to perform backpropagation at the transmitter

side by pre-distorting the signal to invert the channel, and then transmitting the pre-distorted

waveform. In the absence of ASE noise, both approaches are equivalent.

Both FFE and DFE can only mitigate efficiently the linear impairments, such as those

caused by GVD and PMD only. They are not sufficiently powerful to remove nonlinear

impairments, or combined effects of linear and nonlinear impairments. An MLSE equalizer

has been implemented to compensate for the linear impairments and the intrachannel

nonlinear impairments only [82]. Backpropagation is infeasible in practice due to hardware

implementation of the negative nonlinear coefficient with optical devices using DSP. It is too

computationally complex to be practical.

In Section 5.2, a nonlinear equalizer that is easy to implement has been developed to

mitigate the linear and nonlinear physical impairments in long-haul DWDM systems.

2.7 Summary

The nonlinear Schrödinger (NLS) equation is the basic equation that governs propagation of

optical pulses in single-mode fibers. This chapter first introduces the NLS equation and the

solution methods used to solve the NLS equation, including approximate analytical methods

and numerical methods. Then the two most important factors that limit system performance

of long-haul DWDM systems, i.e., physical impairments and ASE noise, are introduced.

Next performance measures of fiber-optic communication systems, namely, the BER and
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the Q factor, are presented. Last various signal processing techniques to improve system

performance of long-haul DWDM systems, including forward error correction, constrained

coding, and predistortion/equalization, are reviewed.



Chapter 3

Model Development and Validation

This dissertation proposes a model-centric approach for discrete-time signal processing for

optical communications and addresses the development, validation, and applications of a

2-D discrete-time model of physical impairments in long-haul DWDM systems. This chapter

focuses on the development and validation of the model. The applications of the model in

system analysis and system performance improvement are presented in Chapter 4 and Chapter

5, respectively. In Section 3.1, the third-order VSTF model is extended from a single-span

case to a multichannel multipulse multispan case with periodic dispersion compensation

and periodic amplification. By assuming chirped Gaussian pulses at the transmitter and

a Gaussian optical filter at the receiver, a 2D discrete-time model that features a simple

integral and characterizes each individual physical impairment in long-haul DWDM systems is

derived. The model is then extended to include photodetection for three popular modulation

formats: on-off keying (OOK), differential binary phase-shift keying (DBPSK) and differential

quadrature phase-shift keying (DQPSK). Section 3.2 presents validation results comparing

our model with SSF simulation. Section 3.3 concludes this chapter with a summary.

40
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3.1 Model Development

This section describes the development of our 2D discrete-time model of physical impairments

in long-haul DWDM systems [86]. In this dissertation, a typical long-haul DWDM system

with periodic dispersion compensation and amplification, as shown in Fig. 3.1, is considered.

The model development methodology proposed in this dissertation can easily be extended to

other fiber-optic communication systems.
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Figure 3.1: Schematic of a typical long-haul DWDM system with periodic dispersion com-
pensation and amplification

Consider a F -channel DWDM system. At the optical transmitter, a bank of laser diodes

and a WDM multiplexer convert the data of the fth channel and kth pulse to be transmitted

{afk} ∈ {0, 1} into the corresponding transmitted optical signal s(t) =
∑F−1

f=0 sf (t) and then

launches it into the optical fiber serving as the communication channel. With proper carrier

and modulation selection, sf (t) can be an amplitude-shift keyed (ASK), frequency-shift keyed

(FSK), or phase-shift keyed (PSK) signal instead. On-off keying (OOK) and differential

phase-shift keying (DPSK) are two commonly used modulation formats for DWDM systems.
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s(t) is transmitted through the fiber span by span and becomes the receiver input signal

r(t). The signal r(t) is then passed through a bank of optical filters serving as a WDM

demultiplexer, a bank of photodetectors to convert back into the electrical form yf(t), and

decision devices.

In model development, we assume that chirped Gaussian pulses are used at the transmitter

and Gaussian optical filters are used at the receiver. The ASE noise from the optical amplifiers

and the postdetection electrical filter are not considered in the model development portion of

this dissertation as we focus on nonlinear physical impairments. ASE noise is later included

in simulation results.

The model development is based on the third-order VSTF model proposed by [19]. In

this dissertation, a 7-step model development methodology is used:

Step 1: Extend the third-order VSTF model to the multispan case with periodic dispersion

compensation and amplification

Step 2: Further extend the model to the multichannel multipulse case to yield the fiber

output R(ω)

Step 3: Multiply R(ω) with the optical fiber for channel f , Hf (ω), to yield Rf (ω)

Step 4: Simplify Rf (ω) from a triple integral to a simple integral form

Step 5: Take the inverse Fourier transform of Rf(ω) to yield rf(t), the input to the pho-

todetector for channel f

Step 6: Derive the output of the photodetector, yf (t), depending on modulation format

Step 7: Sample yf (t) at tk = kTs, k = 0, ..., K − 1 to yield yf (tk), corresponding to the data

{afk}

Suppose the system under consideration consists of N spans, with each span of length L.

The output of each span after dispersion compensation and lumped amplification becomes
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the input of the next span. In the frequency domain, the combined effects of dispersion

compensation and amplification can be represented by

H−1
1 (L, ω) = exp(

α

2
L− iβ2

2
ω2L). (3.1)

Applying Eq. (2.21) followed by Eq. (3.1) span by span yields the multispan VSTF model of

a long-haul system with periodic dispersion compensation and amplification

Ã(N+1)(0, ω) ≈ Ã(1)(0, ω) +
iNγ

4π2

∫ L

0

∫ +∞

−∞

∫ +∞

−∞
exp[−αz + iβ2z(ω1 − ω)(ω1 − ω2)]

Ã(0, ω1)Ã∗(0, ω2)Ã(0, ω − ω1 + ω2)dω1dω2, (3.2)

where Ã(n)(z, ω) is the Fourier transform of A(n)(z, t), which is the slowly varying complex

envelope of the optical field at length z of the nth span. Ã(1)(0, ω) and Ã(N+1)(0, ω) correspond

to the input field and the output field of the N -span system, respectively.

To extend further the multispan VSTF model to the multichannel multipulse case, S(ω)

and R(ω) are defined as the input of the fiber and the input to the WDM demultiplexer in the

frequency domain, which correspond to s(t) and r(t) in the time domain. S(ω) = Ã(1)(0, ω)

and R(ω) = Ã(N+1)(0, ω). We model the pulse shape at the transmitter as a Gaussian function

with a chirp parameter on the pulse in the fth channel, Cf , which governs the frequency

chirp imposed on the pulse, and the half-width of the pulse in the fth channel at the 1/e

intensity point, T0f . For notational simplicity, the effective width of the pulse in the fth

channel is defined as T̃ 2
f =

T 2
0f

1+iCf
. In the case of K successive independent modulated chirped

Gaussian input pulses and F equally frequency-spaced channels, the input field to the fiber

is given as

s(t) =
F−1∑

f=0

K−1∑

k=0

afkAf exp

[
−(t− kTs)2

2T̃ 2
f

+ if∆t+ iΦfk

]
, (3.3)
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and its Fourier transform is given as

S(ω) =
√

2π
F−1∑

f=0

K−1∑

k=0

afkAf T̃f exp

[
−

(ω − f∆)2T̃ 2
f

2
− i(ω − f∆)kTs + iΦfk

]
, (3.4)

where afk is the modulating symbol of the fth channel and the kth pulse; Af =
√
Pf is the

peak amplitude of the Gaussian pulse in the fth channel, where Pf is the launched peak

power; ∆ is the channel spacing in rads/sec; Ts=
1
Rs

is the symbol period, where Rs is the

symbol rate; and Φfk is the input phase of the kth pulse in the fth channel.

Substituting Eq. (3.4) into the multispan VSTF model (Eq. (3.2)) yields the output of

the fiber R(ω) as follows

R(ω) =
√

2π
F−1∑

f=0

K−1∑

k=0

afkAf T̃f exp

[
−i(ω − f∆)kTs −

(ω − f∆)2T̃ 2
f

2
+ iΦfk

]

+
iNγ√

2π

F−1∑

u=0

F−1∑

v=0

F−1∑

w=0

K−1∑

l=0

K−1∑

m=0

K−1∑

n=0

aulavmawnAuAvAwT̃uT̃vT̃w exp [i (Φul − Φvm + Φwn)]

× exp [i∆Ts(ul − vm+ wn)− iω(l −m+ n)Ts]

× exp

[
−(ω − u∆)2T̃ 2

u

2
− (ω − v∆)2T̃ 2

v

2
− (ω − w∆)2T̃ 2

w

2

]

×
∫ L

0

exp(−αz)

∫ +∞

−∞

∫ +∞

−∞
exp (−iω1ω2β2z) exp

(
−ω

2
1T̃

2
u

2
− ω2

1T̃
2
v

2
− ω2

2T̃
2
v

2
− ω2

2T̃
2
w

2

)

× exp[−ωω1(T̃ 2
u + T̃ 2

v )− ωω2(T̃ 2
v + T̃ 2

w)− ω1ω2T̃
2
v ]

× exp(ω1u∆T̃ 2
u + ω1v∆T̃ 2

v + ω2v∆T̃ 2
v + ω2w∆T̃ 2

w)

× exp[−iω1(l −m)Ts − iω2(n−m)Ts]dω1dω2dz. (3.5)

In this dissertation, the WDM demultiplexer is modeled as a bank of optical Gaussian

filters that can either be matched to the input signal or to the channel spacing, where the
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frequency response of the fth demultiplexing filter is given by

Hf (ω) = Adf (2πT
2
df )

1
2 exp

[
−

(ω − f∆)2T 2
df

2

]
. (3.6)

Adf is the peak amplitude of the fth filter impulse response, and Tdf is the half-width of the

impulse response of the fth filter at the 1/e intensity point. If the filter is matched to the

input pulse shape, then Tdf = T ∗0 and Adf =
(1+C2

f )
1
4

(2πT 2
0f )

1
2
; if the filter is matched to the channel

spacing, Tdf = 2π/∆ and Adf = ∆

(2π)
3
2

.

To extend the model to include the WDM multiplexer, R(ω) is multiplied with Hf (ω) (i.e.,

convolve r(t) with hf (t) in the time domain) to yield the output of the WDM demultiplexer

Rf(ω). Computing Rf(ω) requires a triple integral. By simplifying the triple integral to a

simple integral, as shown in the Appendix, the output field of the WDM demultiplexer in the

frequency domain is obtained as

Rf (ω) = 2π
F−1∑

f̂=0

K−1∑

k̂=0

af̂ k̂Af̂Adf T̃f̂Tdf exp


−

(ω − f̂∆)2T̃ 2
f̂

2
−

(ω − f∆)2T 2
df

2




× exp
[
−i(ω − f̂∆)k̂Ts + iΦf̂ k̂

]

+ i2πNγ
F−1∑

u=0

F−1∑

v=0

F−1∑

w=0

K−1∑

l=0

K−1∑

m=0

K−1∑

n=0

aulavmawnAuAvAwAdf T̃uT̃vT̃wTdf

× exp[i(Φul − Φvm + Φwn)] exp

[
−

(ω − f∆)2T 2
df

2

]
Eu,v,w,l,m,n(ω)

×
∫ L

0

exp(−αz)Iu,v,w,l,m,n(ω, z)dz, (3.7)

where

Eu,v,w,l,m,n(ω) = exp [i∆Ts(ul − vm+ wn)− iω(l −m+ n)Ts]

× exp

[
−(ω − u∆)2T̃ 2

u

2
− (ω − v∆)2T̃ 2

v

2
− (ω − w∆)2T̃ 2

w

2

]
, (3.8)
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and

Iu,v,w,l,m,n(ω, z) =
exp(A+B + C)√

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

. (3.9)

The simplifying functions A, B, and C are defined in the Appendix.

Taking the inverse Fourier transform of (3.7) yields the output field of the WDM demulti-

plexer in the time domain rf (t) as

rf (t) =
√

2π
F−1∑

f̂=0

K−1∑

k̂=0

af̂ k̂Af̂Adf exp(iΦf̂ k̂)
1√

1

T̃ 2
f̂

+ 1
T 2
df

× exp





[
k̂Ts
T̃ 2
f̂

+ t
T 2
df

+ i(f̂ − f)∆

]2

2

(
1

T̃ 2
f̂

+ 1
T 2
df

) − k̂2T 2
s

2T̃ 2
f̂

− t2

2T 2
df

+ if∆t





+ iNγ
√

2π
F−1∑

u=0

F−1∑

v=0

F−1∑

w=0

K−1∑

l=0

K−1∑

m=0

K−1∑

n=0

aulavmawnAuAvAwAdf T̃uT̃vT̃w

× exp[i(Φul − Φvm + Φwn)]Eu,v,w,l,m,n(t)

∫ L

0

exp(−αz)Ju,v,w,l,m,n(t, z)dz. (3.10)

where

Eu,v,w,l,m,n(t) = exp

[
i∆Ts(ul − vm+ wn)− (u∆)2T̃ 2

u

2
− (v∆)2T̃ 2

v

2
− (w∆)2T̃ 2

w

2

]

× exp

[
− t2

2T 2
df

+ if∆t

]
, (3.11)

Ju,v,w,l,m,n(t, z) =

exp





[
(l−m+n)Ts+i(u∆T̃2

u+v∆T̃2
v+w∆T̃2

w+A1+B1)
T̃2
u+T̃2

v+T̃2
w+2A2

+ t

T2
df

−if∆

]2

2

T̃2
u+T̃2

v+T̃2
w+2A2

+ 2

T2
df

+ A0 +B0 + C





√[
(T̃ 2

u + T̃ 2
v )(T̃ 2

v + T̃ 2
w)− (T̃ 2

v + iβ2z)2
] [

1 + 1
T 2
df

(
T̃ 2
u + T̃ 2

v + T̃ 2
w + 2A2

)]

× exp





[
u∆T̃ 2

u + v∆T̃ 2
v + w∆T̃ 2

w + A1 +B1 − i(l −m+ n)Ts

]2

2
(
T̃ 2
u + T̃ 2

v + T̃ 2
w + 2A2

)




.(3.12)
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The simplifying functions A0, A1, A2, B0, B1, and C are defined in the Appendix.

For these expressions to hold, the system must use chirped Gaussian pulses at the trans-

mitter and Gaussian optical filters at the receiver. With these assumptions, the methodology

can apply to any WDM system, including advanced demodulation schemes such as those

using heterodyne detection.

Although these expressions are obtained under the assumption of chirped Gaussian pulses

at the transmitter and the results will change when non-Gaussian pulse shapes are used,

they can serve as a powerful analytical tool to get an insight into the relative comparison

of the intensities among all physical impairments for non-Gaussian pulse shapes for which

it is difficult to obtain simple integrals similar to Eqs. (3.7) and (3.10). The assumption of

Gaussian optical filters at the receiver can be easily relaxed. For any form of optical filters

Hf (ω), the output of the fiber R(ω) (in the frequency domain) can be multiplied by Hf (ω)

before the square-law operation of the photodetector. In this way, the expressions of the

output of the WDM demultiplexer specific to the given optical filters can be obtained using a

simple integral similar to Eq. (3.7) plus an integral needed to return to the time domain.

To convert the received signal rf(t) back into electrical form and recover the data

transmitted through the system, rf(t) is passed through a photodetector and sampled at

discrete times tk = kTs, k = 0, ..., K−1. The photodetector output function varies for different

modulation schemes: for OOK, the sampled output is simply yf (tk) = |rf (tk)|2, f = 0, ..., F−1;

for DBPSK, if a balanced photodetector is used, yf (tk) =
∣∣∣ rf (tk)+rf (tk−1)

2

∣∣∣
2

−
∣∣∣ rf (tk)−rf (tk−1)

2

∣∣∣
2

;

for DQPSK, if a balanced photodetector is used, the in-phase output yf(tk)|I is the same

as the output of DBPSK and the quadrature output is yf(tk)|Q =
∣∣∣ rf (tk) exp(iπ

2
)+rf (tk−1)

2

∣∣∣
2

−
∣∣∣ rf (tk) exp(iπ

2
)−rf (tk−1)

2

∣∣∣
2

1.

To characterize each individual physical impairment, we define the impairment character-

istic coefficients, including ρSigf,k , ρISIf,k , ρICIf,k , ρSPMf,k , ρIXPMf,k , ρIFWM
f,k , ρXPMf,k , and ρFWM

f,k , used in

1Without loss of generality, the responsivity of the photodetector is taken to be unity.
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the DEMUX output, as follows

ρSigf,k = ρL
f̂,k̂
|(f̂=f)

⋂
(k̂=k) . (3.13)

ρISIf,k = ρL
f̂,k̂
|(f̂=f)

⋂
(k̂ 6=k) . (3.14)

ρICIf,k = ρL
f̂,k̂
|f̂ 6=f . (3.15)

ρSPMf,k = ρNLf,k |(u=v=w=f)
⋂

(l=m=n=k) . (3.16)

ρIXPMf,k = ρNLf,k |(u=v=w=f)
⋂

(l−m+n=k)
⋂

((l=m6=n)
⋃

(l 6=m=n)) . (3.17)

ρIFWM
f,k = ρNLf,k |(u=v=w=f)

⋂
(l−m+n=k)

⋂
((l 6=m6=n)

⋃
(l=n6=m)) . (3.18)

ρXPMf,k = ρNLf,k |(l=m=n=k)
⋂

(u−v+w=f)
⋂

((u=v 6=w)
⋃

(u6=v=w)) . (3.19)

ρFWM
f,k = ρNLf,k |(l=m=n=k)

⋂
(u−v+w=f)

⋂
((u6=v 6=w)

⋃
(u=w 6=v)) . (3.20)

where

ρL
f̂,k̂

=

√√√√ 2π
1

T̃ 2
f̂

+ 1
T 2
df

exp





[
k̂Ts
T̃ 2
f̂

+ kTs
T 2
df

+ i(f̂ − f)∆

]2

2

(
1

T̃ 2
f̂

+ 1
T 2
df

)





× exp


− k̂

2T 2
s

2T̃ 2
f̂

− k2T 2
s

2T 2
df

+ if∆kTs


 , (3.21)

and

ρNLf,k = iγ
√

2πEu,v,w,l,m,n(kTs)

∫ L

0

exp(−αz)Ju,v,w,l,m,n(kTs, z)dz. (3.22)

The demultiplexer output rf (tk) from Eq. (3.10), required for all three modulation formats,

is rewritten in Eq. (3.23) in terms of impairment coefficients. This forms a part of our 2D

discrete-time model of physical impairments in long-haul DWDM systems.
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rf (tk) = afkAfAdf exp(iΦfk)ρ
Sig
f,k +

K−1∑

k̂=0;k̂ 6=k

afk̂AfAdf exp(iΦfk̂)ρ
ISI
f,k

+
F−1∑

f̂=0;f̂ 6=f

K−1∑

k̂=0

af̂ k̂Af̂Adf̂ exp(iΦf̂ k̂)ρ
ICI
f,k + a3

fkA
3
fAdf T̃

3
f exp(iΦul)ρ

SPM
f,k

+
K−1∑

l=0

K−1∑

m=0

K−1∑

n=0

aflafmafnA
3
fAdf T̃

3
f exp[i(Φfl − Φfm + Φfn)]

(
ρIXPMf,k + ρIFWM

f,k

)

+
F−1∑

u=0

F−1∑

v=0

F−1∑

w=0

aukavkawkAuAvAwAdf T̃uT̃vT̃w exp[i(Φuk − Φvk + Φwk)]
(
ρXPMf,k + ρFWM

f,k

)
.

(3.23)

where the impairment coefficients, ρSigf,k , ρISIf,k , ρICIf,k , ρIXPMf,k , ρIFWM
f,k , ρXPMf,k , and ρFWM

f,k , are

defined in the Appendix.

The sampled photodetector outputs for OOK, DBPSK and DQPSK are summarized in

Tables 3.1, 3.2 and 3.3. The definitions of the simplifying functions, including rSig(f, k),

rISI(f, k), rICI(f, k), and rNL(f, k), used in the photodetector output for OOK modulation,

are defined as follows

rSig(f, k) = afkAfAdf exp(iΦfk)ρ
Sig
f,k . (3.24)

rISI(f, k) =
K−1∑

k̂=0;k̂ 6=k

afk̂AfAdf exp(iΦfk̂)ρ
ISI
f,k̂
. (3.25)

rICI(f, k) =
F−1∑

f̂=0;f̂ 6=f

K−1∑

k̂=0

af̂ k̂Af̂Adf̂ exp(iΦf̂ k̂)ρ
ICI
f̂ ,k̂

. (3.26)

rNL(f, k) =
F−1∑

u,v,w=0

K−1∑

l,m,n=0

aulavmawnAuAvAwAdf (3.27)

× T̃uT̃vT̃w exp[i(Φul − Φvm + Φwn)]ρNLsumf,k . (3.28)
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where

ρNLsumf,k = ISPMρSPMf,k + IIXPMρIXPMf,k + IIFWMρIFWM
f,k + IXPMρXPMf,k + IFWMρFWM

f,k .

(3.29)

The indicator functions ISPM , IIXPM , IIFWM , IXPM , and IFWM are defined as

ISPM =

{
1, if u, v, w, l,m, n satisfy (u = v = w = f) and (l = m = n = k) ;
0, otherwise.

IIXPM =

{
1, if l,m, n satisfy (u = v = w = f) and (l −m+ n = k) and (l = m 6= n | l 6= m = n) ;
0, otherwise.

IIFWM =

{
1, if l,m, n satisfy (u = v = w = f) and (l −m+ n = k) and (l 6= m 6= n | l = n 6= m) ;
0, otherwise.

IXPM =

{
1, if u, v, w satisfy (l = m = n = k) and (u− v + w = f) and (u = v 6= w | u 6= v = w) ;
0, otherwise.

IFWM =

{
1, if u, v, w satisfy (l = m = n = k) and (u− v + w = f) and (u 6= v 6= w | u = w 6= v) ;
0, otherwise.

The Appendix contains the definitions of the simplifying functions used in Tables 3.2

and 3.3, including rSig±(f, k), rISI±(f, k), rICI±(f, k), rNL±(f, k), rSig±Q (f, k), rISI±Q (f, k),

rICI±Q (f, k), and rNL±Q (f, k). One common aspect of these three modulation formats is that

the sampled photodetector output consists of seven terms: the contribution of the original

transmitted bit, followed by ISI, ICI, the interaction between the targeted bit and the ISI,

the interaction between the targeted bit and the ICI, the interaction between the ISI and the

ICI, and, lastly, the nonlinear effects. The latter can be further separated into five different

effects: SPM, IXPM, IFWM, XPM, and FWM.
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Table 3.1: The Photodetector Output for OOK

Type OOK : yOOKf (tk) ≈
Signal |rSig(f, k)|2

ISI +|rISI(f, k)|2

ICI +|rICI(f, k)|2

Signal × ISI +2Re
{
rSig(f, k)[rISI(f, k)]∗

}

Signal × ICI +2Re
{
rSig(f, k)[rICI(f, k)]∗

}

ISI × ICI +2Re
{
rISI(f, k)[rICI(f, k)]∗

}

Nonlinear +2NRe
{
rSig(f, k)[rNL(f, k)]∗

}
+N2|rNL(f, k)|2

Table 3.2: The Photodetector Output for DBPSK

Type DBPSK : yDBPSKf (tk) ≈

Signal
1

4

(
|rSig+(f, k)|2 − |rSig−(f, k)|2

)

ISI +
1

4

(
|rISI+(f, k)|2 − |rISI−(f, k)|2

)

ICI +
1

4

(
|rICI+(f, k)|2 − |rICI−(f, k)|2

)

Signal × ISI +
1

2
Re
{
rSig+(f, k)[rISI+(f, k)]∗

}
− 1

2
Re
{
rSig−(f, k)[rISI−(f, k)]∗

}

Signal × ICI +
1

2
Re
{
rSig+(f, k)[rICI+(f, k)]∗

}
− 1

2
Re
{
rSig−(f, k)[rICI−(f, k)]∗

}

ISI × ICI +
1

2
Re
{
rISI+(f, k)[rICI+(f, k)]∗

}
− 1

2
Re
{
rISI−(f, k)[rICI−(f, k)]∗

}

Nonlinear +
1

2
NRe

{
rSig+(f, k)[rNL+(f, k)]∗

}
− 1

2
NRe

{
rSig−(f, k)[rNL−(f, k)]∗

}

In this way, we establish a mapping from the input {afk} to the sampled photodetector

output {yf(tk)} via the impairment characteristic coefficients: ρISI , ρICI , ρSPM , ρIXPM ,

ρIFWM , ρXPM , and ρFWM defined in the Appendix. For a certain modulation format and

a set of system parameters (F,∆, Ts, L), these coefficients are uniquely determined by fiber

parameters (α, β2, γ), and pulse parameters (K,T0f , Cf ,Φfk) and can be precomputed. With

these impairment characteristic coefficients, given an input matrix [afk]F×K , we only need
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Table 3.3: The Photodetector Output for Quadrature Channel of DQPSK

Type Q− channel : yQf (tk) ≈

Signal
1

4

(
|rSig+Q (f, k)|2 − |rSig−Q (f, k)|2

)

ISI +
1

4

(
|rISI+Q (f, k)|2 − |rISI−Q (f, k)|2

)

ICI +
1

4

(
|rICI+Q (f, k)|2 − |rICI−Q (f, k)|2

)

Signal × ISI +
1

2
Re
{
rSig+Q (f, k)[rISI+Q (f, k)]∗

}
− 1

2
Re
{
rSig−Q (f, k)[rISI−Q (f, k)]∗

}

Signal × ICI +
1

2
Re
{
rSig+Q (f, k)[rICI+Q (f, k)]∗

}
− 1

2
Re
{
rSig−Q (f, k)[rICI−Q (f, k)]∗

}

ISI × ICI +
1

2
Re
{
rISI+Q (f, k)[rICI+Q (f, k)]∗

}
− 1

2
Re
{
rISI−Q (f, k)[rICI−Q (f, k)]∗

}

Nonlinear +
1

2
NRe

{
rSig+Q (f, k)[rNL+

Q (f, k)]∗
}
− 1

2
NRe

{
rSig−Q (f, k)[rNL−Q (f, k)]∗

}

to know the launched power in channel f , Pf , and the number of spans, N , to calculate

the corresponding sampled photodetector output, without the need for time-consuming SSF

simulation.

The above model can be easily extended to a coherent receiver. For a balanced coherent

BPSK receiver, if a local oscillator (LO) is given by ELO = ALO exp[−i(ωLOt+ φLO)], where

ALO, ωLO, and φLO represent the amplitude, frequency, and phase of the local oscillator, re-

spectively, the photodetector output yf (tk) =
∣∣∣ rf (tk)+ELO

2

∣∣∣
2

−
∣∣∣ rf (tk)−ELO

2

∣∣∣
2

. Similar expressions

as in Table 3.2 can be derived.

The VSTF method can be extended to polarization-division multiplexing (PDM) systems

in which the frequency-domain output of the fiber for each polarization is expressed as the

sum of one linear term and two triple integrals. These four triple integrals in PDM systems are

of the same form as the triple integral in this dissertation. With the technique of simplifying

the triple integral to a simple integral in this dissertation, we can easily simplify each triple

integral to a simple integral. Analysis of the resulting physical impairments in PDM systems

is left for future work.
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There are three major contributions unified within our 2D discrete-time model. First,

the model features a simple integral that is easy to evaluate, rather than the triple integral,

which is difficult to evaluate. Second, the model takes into account multichannel effects, fiber

losses, frequency chirp, optical filtering, and photodetection, which are ignored in the current

literature. Third, the model is in discrete-time and thus facilitates the application of discrete-

time signal processing to improve the system performance of long-haul DWDM systems,

such as nonlinear equalization, constrained coding, multiuser coding and path-diversity for

all-optical networks.

The 2D discrete-time model offers obvious advantages over the third-order VSTF method

and the SSF method in the following aspects. First, compared with the third-order VSTF

method and the SSF method, the model provides significant computational savings, which

is discussed further in Section 3.2.2. Second, compared with the SSF method, the model

can isolate the importance of any individual physical impairment while the SSF method can

report only on the total level of all physical impairments combined, and cannot provide this

valuable break-down information. Third, compared with the third-order VSTF method and

the SSF method, the model has strong analytical capability. Insight into what impact varying

the different parameters has on the sampled photodetector output can be gained from the

model analytically. These parameters include fiber parameters (α, β2, γ), pulse parameters

(K,Af , T0f , Cf ,Φfk), and system parameters (F,∆, Ts, L,N).

3.2 Model Validation

This sections presents validation results of our model compared with SSF simulation and

discusses the computational complexity of the model compared with the third-order VSTF

model and the SSF method.
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3.2.1 Model Accuracy

To validate the accuracy of our model, consider the transmission of 40-Gb/s OOK signals

over a 16-span standard single-mode fiber for the following two scenarios: a 5-channel 5-pulse

case and a 31-channel 31-pulse case. The parameters used are given in Table 3.4.

Table 3.4: Typical Parameter Values

Symbols Typical Value Description
α 0.2 dB/km attenuation constant, a measure of total

power loss during transmission of optical
signals inside the fiber

β2 −20 ps2/km group-velocity dispersion (GVD) parameter,
a measure of chromatic dispersion

γ 2 W−1km−1 nonlinear parameter
F 5 and 31 number of channels
K 5 and 31 number of pulses
N 1-16 number of spans
L 100 km span length
Cf 0 chirp parameter on the pulse in the fth

channel, which governs the frequency chirp
imposed on the pulse

T0f 7.51 ps half-width of the pulse in the fth channel
at the 1/e intensity point

afk {0,1} modulating symbol of the fth channel and
the kth pulse

Pf 1-10 mW launched peak power in the fth channel
Af

√
Pf peak amplitude of the Gaussian pulse in

the fth channel
∆ 2π × 50 GHz channel spacing in rads/sec
Rs 40 Gsps symbol rate
Ts

1
Rs

symbol period

Φfk 0 phase of the kth pulse in the fth channel

We compare the filtered output fields for the center channel and the center pulse calculated

by our model and obtained by the SSF simulation by using the normalized squared deviation

(NSD) as a measure of the difference between the output fields. The NSD between the output
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fields after N spans, defined as

NSD(N) =

∫ K+1
2
Ts

K
2
Ts

∣∣∣r(Model)
F+1

2

(t)− r(SSF )
F+1

2

(t)
∣∣∣
2

dt

∫ K+1
2
Ts

K
2
Ts

∣∣∣r(SSF )
F+1

2

(t)
∣∣∣
2

dt
, (3.30)

is plotted in Fig. 3.2. The pulse width T0f is chosen so that the full-width half-maximum

point is Ts/2. The initial phases are set to zeros for all the channels and all the pulses. The

power levels are the same for all the channels. The output calculated by the model is in

excellent agreement with that from the SSF method, even for high launched power levels.

The NSD can be further reduced if the higher-order Volterra kernels are included. However

a higher-order VSTF model entails the simplification of a higher-order integral. For example,

the simplification of a quintuple integral is required for a fifth-order VSTF model. Although

any higher order integral obtained from the VSTF method can be simplified to a simple

integral using the derivations similar to that in the Appendix, the simplification is analytically

demanding.

3.2.2 Computational Complexity

The SSF method is a recursive method and its computational complexity for K symbols and

F channels is O(NL
h
FKM log2 FKM), where h is the step size in z, and M is the number of

samples per symbol.

The third-order VSTF method is a nonrecursive method in which the computation is

a one-shot process involving in general a triple integral. The numerical evaluation of the

double integral with respect to ω1 and ω2 using a trapezoidal rule dominates the computation

with complexity of order of W 2, where W is the number of frequency steps needed; the

evaluation of the simple integral with respect to z is proportional to L
ht

, where ht is the step

size used in the trapezoidal rule. Therefore the computational complexity of the third-order

VSTF method for a WDM system is O( L
ht
FKF̃ 2K̃2W 2), where F̃ × K̃ is the number of other

symbols interacting with any given symbol, i.e., the number of terms needed in the triple
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Figure 3.2: Normalized squared deviation of the output fields obtained by our proposed
model and the SSF simulation

summations in Eq. (3.23). The values of F̃ and K̃ needed so that all significant physical

impairments are included have been determined in [87]: at Rs =40 Gs/s, for IXPM, K̃ ≈ 19;

for IFWM, K̃ ≈ 65; at ∆ = 2π×50 GHz, for XPM, F̃ ≈ 3; for FWM, F̃ ≈ 4. The complexity

becomes O( L
ht
FKW 2) since F̃ and K̃ are constants independent of F and K.

In this dissertation, the double integral with respect to ω1 and ω2 given by Eq. (A.2) in the

Appendix has been solved and its closed-form solution, Eq. (3.9), is a simple fraction easily

evaluated. In this way, the need to evaluate numerically the double integral is eliminated

and the triple integral is simplified to a simple integral with respect to z. The computational

complexity is only O( L
ht
FK).

For a multichannel multipulse multispan system, our model is computationally more

efficient than both the VSTF method and the SSF method.
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3.3 Summary

This chapter presents the development and validation of a 2D discrete-time model of physical

impairments in long-haul DWDM systems. The model development is based on the third-order

VSTF model. The model features a simple integral that is easy to evaluate and takes into

account multichannel effects, fiber losses, frequency chirp, optical filtering, and photodetection,

which are ignored in the current literature. The model has the potential to serve as the

foundation of discrete-time signal processing for long-haul DWDM systems. Compared with

the third-order VSTF method and the SSF method, the model offers significant computational

savings and strong impairment separation capability and analytical capability. Chapter 4 and

Chapter 5 present the applications of the model in system analysis and system performance

improvement, respectively.



Chapter 4

Model Applications in System

Analysis

This chapter presents two applications of the 2D discrete-time model in system analysis.

These applications cannot be developed without the model. In Section 4.1, the model is

applied to analyze the effect of varying system parameters and pulse shape on individual

physical impairments in long-haul DWDM systems. In Section 4.2, the model is applied to

determine the range of influence of each individual physical impairment. Section 4.3 concludes

this chapter with a summary.

4.1 Effect of System Parameters and Pulse Shape

In this section the 2D discrete-time model is applied to analyze the average impact of varying

certain system parameters on the individual physical impairments in a long-haul DWDM

system. The two most important system parameters for long-haul DWDM systems are

the symbol rate and the channel spacing. For a DWDM system with F channels and K

pulses, there are 2(FK) possible input matrices. We calculate the impairment characteristic

coefficients using the definitions in the Appendix, and substitute these coefficients into

the 2D discrete-time model in Tables 3.1 and 3.2 to obtain the various individual physical

58
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impairments for each input matrices. Then we take the average over the input matrix for

each individual impairment. In this section, Pf = 1 mW. In addition, we analyze the effect

of pulse shape on the individual physical impairments.

4.1.1 Effect of Symbol Rate

We choose a 3-channel system with 7 pulses each channel to investigate how the individual

physical impairments affecting the symbol located on the center time slot change when the

symbol rate changes, by averaging them over the 221 possible input matrices. Figs. 4.1 and

4.2 show the level of the various physical impairments when the system operates at symbol

rates of 10 Gb/s and 40 Gb/s for OOK and DBPSK, both for a matched optical filter and a

filter set to a channel spacing of 100 GHz. For a 3-channel system, the intrachannel physical

impairments, i.e., ISI, signal-ISI beat term, IXPM, and IFWM, vary with the symbol rate.

ISI is independent of symbol rate and remains unchanged if using an optical matched filter.

At higher symbol rates, a fixed optical filter causes the temporal overlap from neighboring

symbols to worsen, thus causing stronger ISI and signal-ISI beat term. The intrachannel

nonlinear impairments, i.e., IXPM and IFWM, are generally worsened by the decrease in the

symbol period.

4.1.2 Effect of Channel Spacing

Similarly, we choose a 3-pulse WDM system with 7 channels to investigate how the individual

physical impairments imposed on the symbol located on the center channel change when the

channel spacing changes. Figs. 4.3 and 4.4 show the level of the various physical impairments

when the system operates at channel spacings of 100 GHz and 200 GHz for 40 Gb/s OOK

and DBPSK, for both optical filter types. For a 3-pulse WDM system, when the channel

spacing changes, the interchannel physical impairments change. At larger channel spacings,

the impact from neighboring channels weakens for both linear impairments and nonlinear
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Figure 4.1: Effect of symbol rate on individual physical impairments for OOK (F=3, K=7)
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Figure 4.2: Effect of symbol rate on individual physical impairments for DBPSK (F=3, K=7)

impairments, i.e., smaller ICI, signal-ICI beat term, XPM and FWM. In general both linear

and nonlinear effects are weaker for DBPSK than for OOK.
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Figure 4.3: Effect of channel spacing on individual physical impairments for OOK (F=7,
K=3)
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Figure 4.4: Effect of channel spacing on individual physical impairments for DBPSK (F=7,
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4.1.3 Effect of Pulse Shape

To see the effect that the pulse shape has on individual physical impairments, we compare the

individual physical impairments from our analytical model for chirped Gaussian pulses with

those from the third-order VSTF method for some non-Gaussian pulse shapes used in fiber-

optic communication systems. In this study, non-Gaussian pulse shapes under consideration

include the hyberbolic secant pulses and super-Gaussian pulses. The hyberbolic secant pulses

are used to model the pulse shape emitted from some mode-locked lasers and optical solitons

[2]. Super-Gaussian pulses usually model the effects of steep leading and trailing edges on

dispersion-induced pulse broadening [2].

The hyperbolic secant pulses are given as [2]

A(0, t) = sech

(
t

T0

)
exp

(
−iCt

2

2T 2
0

)
(4.1)

where C is the chirp parameter that controls the initial chirp.

The super-Gaussian pulses are given as [2]

A(0, t) = exp

[
−1 + iC

2

(
t

T0

)2m
]

(4.2)

where m is the parameter that controls the degree of edge sharpness. For m=1, super-

Gaussian pulses degenerate to chirped Gaussian pulses. For m >1, super-Gaussian pulses

become square shaped with sharper leading and trailing edges.

The evaluation of the third-order VSTF method involves numerical integration of the

triple integral, which is computationally intensive. The results for the worst case, i.e., a

7-channel 7-pulse WDM system with input symbols being all ones, are shown in Fig. 4.5.

The figure shows that the interchannel effects for all pulse shapes are similar, while the

intrachannel effects vary significantly, especially for pulse shapes not resembling a Gaussian

pulse.
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Figure 4.5: Effect of pulse shape on individual physical impairments for OOK (F=7, K=7,
Rs=10 Gsps, ∆=100 GHz, m is the edge sharpness parameter of the super-Gaussian pulses
[2])

4.2 Range of Influence of Physical Impairments

The physical impairments acting on a symbol in a WDM system are caused by other symbols

located in neighboring channels and neighboring time slots. If two symbols are close to

each other in time and/or wavelength, there are strong physical impairments imposed on

one another. If two symbols are far enough from each other in time and/or wavelength,

these impairments all weaken. Therefore, there exists a range of influence (RoI) for physical

impairments that must be carefully determined to reduce the complexity of signal processing

techniques, such as electrical equalization and constrained coding. This section determines

the RoIs for various physical impairments.

To our knowledge, this is the first work to identify the RoI of physical impairments in

WDM systems. In addition to point-to-point links, the technique proposed in this dissertation

can be used on all-optical networks to predict the crosstalk due to switched lightpaths sharing
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a fiber.

To improve the applicability of the RoIs, we seek RoIs independent of modulation formats

and type of WDM demultiplexer. These RoIs are determined by assuming only chirped

Gaussian pulses at the transmitter, with the assumption of Gaussian optical filters at the

receiver removed.

Taking the inverse Fourier transform of Eq. (3.5), i.e., R(ω), yields the output field of the

fiber in the time domain as follows

r(t) =
F−1∑

f=0

K−1∑

k=0

afkAf exp

[
−(t− kTs)2

2T̃ 2
f

+ if∆t+ iΦfk

]

+ iNγ
F−1∑

u=0

F−1∑

v=0

F−1∑

w=0

K−1∑

l=0

K−1∑

m=0

K−1∑

n=0

aulavmawnAuAvAwT̃uT̃vT̃w

× exp[i(Φul − Φvm + Φwn)]E(t)

∫ L

0

exp(−αz)J(t, z)dz, (4.3)

where

E(t) = exp

[
i∆Ts(ul − vm+ wn)− (u∆)2T̃ 2

u

2
− (v∆)2T̃ 2

v

2
− (w∆)2T̃ 2

w

2

]
, (4.4)

and

J(t, z) =

exp

{
{u∆T̃ 2

u+v∆T̃ 2
v+w∆T̃ 2

w+A1+B1+i[t−(l−m+n)T ]}2

2(T̃ 2
u+T̃ 2

v+T̃ 2
w+2A2)

+ A0 +B0 + C

}

√[(
T̃ 2
u + T̃ 2

v

)(
T̃ 2
v + T̃ 2

w

)
−
(
T̃ 2
v + iβ2z

)2
](

T̃ 2
u + T̃ 2

v + T̃ 2
w + 2A2

) . (4.5)

The definitions of the simplifying functions A0, A1, A2, B0, B1 and C are the same as those

in Chapter 3, and are given explicitly in the Appendix.

To quantify the impact of the various impairments on the fiber output, the following

impairment characteristic coefficients are introduced, defined somewhat differently than the

coefficients presented in Chapter 3, since optical filtering has been omitted:
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ISI coefficient:

ρISI
k,k̂

= exp

[
−(k̂ − k)2T 2

s

2T̃ 2
f

]
. (4.6)

SPM, IXPM, and IFWM coefficients:

ρintra
f,k,l,m,n = iγEintra

l,m,n

∫ L

0

exp(−αz)J intra
l,m,ndz, intra ∈ {SPM, IXPM, IFWM} (4.7)

where

Eintra
l,m,n = exp

[
i∆Ts(l −m+ n)−

3(f∆)2T̃ 2
f

2

]
, (4.8)

and

J intra
l,m,n =

exp

[
(3f∆T̃ 2

f+A1+B1)
2

2(3T̃ 2
f+2A2)

+ A0 +B0 + C

]

√(
3T̃ 2

f + iβ2z
)(

T̃ 2
f − iβ2z

)(
3T̃ 2

f + 2A2

) . (4.9)

XPM and FWM coefficients:

ρinter
f,k,u,v,w = iγE inter

u,v,w

∫ L

0

exp(−αz)J inter
u,v,wdz, inter ∈ {XPM,FWM} (4.10)

where

Einter
u,v,w = exp

[
i∆Ts(u− v + w)− (u∆)2T̃ 2

u

2
− (v∆)2T̃ 2

v

2
− (w∆)2T̃ 2

w

2

]
, (4.11)
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and

J inter
u,v,w =

exp

[
(u∆T̃ 2

u+v∆T̃ 2
v+w∆T̃ 2

w+A1+B1)
2

2(T̃ 2
u+T̃ 2

v+T̃ 2
w+2A2)

+ A0 +B0 + C

]

√[(
T̃ 2
u + T̃ 2

v

)(
T̃ 2
v + T̃ 2

w

)
−
(
T̃ 2
v + iβ2z

)2
](

T̃ 2
u + T̃ 2

v + T̃ 2
w + 2A2

) . (4.12)

Note that normally a WDM demultiplexer is required to obtain the output field of the

fth channel rf (t), but it is not necessary for characterizing physical impairments. Without

loss of generality, the WDM demultiplexer is not considered in this application for notational

simplicity and model generality. With the above coefficients, the output field on the fth

channel at discrete times kTs is given by

rf (kTs) = afkAfe
(if∆kTs+iΦfk) +

K−1∑

k̂=0;k̂ 6=k

afk̂Afe
(if∆kTs+iΦfk̂)ρISI

k,k̂
+Na3

fkA
3
f T̃

3
f e

(if∆kTs+iΦfk)ρSPM

+ N
K−1∑

l,m,n=0

aflafmafnA
3
f T̃

3
f e

(if∆kTs)e[i(Φfl−Φfm+Φfn)]
[
ρIXPMf,k,l,m,n + ρIFWM

f,k,l,m,n

]

+ N
F−1∑

u,v,w=0

aukavkawkAuAvAwT̃uT̃vT̃we
(if∆kTs)e[i(Φuk−Φvk+Φwk)]

[
ρXPMf,k,u,v,w + ρFWM

f,k,u,v,w

]

+
F−1∑

f̂=0;f̂ 6=f

K−1∑

k̂=0

af̂ k̂Af̂e
(if∆kTs+iΦf̂ k̂)e

− (k̂−k)2T2
s

2T̃2
f̂ (4.13)

The last term in Eq. (4.13) is due to the overlap of other channels on the channel

on interest, f . Once optical filtering is added to the model, the linear adjacent channel

interference experienced by the signal could be computed from the last term. Without optical

filtering, this interference cannot be isolated, and is therefore removed from the model.

The key to use this discrete-time model is to find the index combinations that meet the

requirements for various nonlinear physical impairments, i.e., SPM, IXPM, IFWM, XPM, and

FWM, and to calculate the impairment coefficients corresponding to these index combinations.
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The index combinations must satisfy the following conditions: for SPM, u = v = w = f

and l = m = n = k; for IXPM, l = m 6= n or l 6= m = n and u = v = w = f ; for IFWM,

l 6= m 6= n or l = n 6= m and u = v = w = f ; for XPM, u = v 6= w or u 6= v = w and

l = m = n = k; for FWM, u 6= v 6= w or u = w 6= v and l = m = n = k. In addition, for

interchannel effects, i.e., XPM and FWM, the frequency location of the nonlinear interaction

satisfies the phase-matching condition: (u − v + w)∆ = f∆; for intrachannel effects, i.e.,

IXPM and IFWM, the time location of the nonlinear interaction satisfies (l−m+n)Ts = kTs.

For example, consider a 3-pulse case (K = 3). There are 33 = 27 index triplets [lmn]

and 7 possible time locations because −2 ≤ (l −m+ n) ≤ 4, e.g., the output field at t = Ts

(k = 1) is affected by 7 different triplets. The triplet [111] contributes to the SPM impairment.

The IXPM impairment is caused by [001], [221], [100], and [122], whereas the triplets for

IFWM impairment are [012], and [210]. The type and location of the intrachannel nonlinear

impairments generated by a pulse triple located at t = 0, Ts and 2Ts are summarized in

Table 4.1. When the following parameters are used: α = 0.2 dB/km, β2 = −20 ps2/km,

γ = 2 W−1km−1, L = 100 km, T0 = 7.51 ps, Ts = 25 ps and C = 0, the absolute values of

the corresponding intrachannel impairment coefficients are summarized in Table 4.2. Due to

space limitation, only 5 valid time locations are presented.

Table 4.1: Index Triplets [lmn] for a Triple Pulse Case

Nonlinearity Time Location l −m+ n
0 1 2 3 4

SPM 000 111 222
IXPM 011 001 002

022 221 112
110 100 200
220 122 211

IFWM 121 012 101 102 202
210 201

212
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Table 4.2: Intrachannel Coefficients for a Triple Pulse Case

Nonlinearity Time Location l −m+ n
0 1 2 3 4

SPM 0.0165 0.0165 0.0165
IXPM 0.0070 0.0070 0.0036

0.0036 0.0070 0.0070
0.0070 0.0070 0.0036
0.0036 0.0070 0.0070

IFWM 0.0024 0.0024 0.0024 0.0010 0.0003
0.0024 0.0010

0.0024

Similarly, consider a 3-channel case (F = 3). The type and location of the interchannel

nonlinear impairments generated by a channel triple located at f = 0, 1, and 2 are summarized

in Table 4.3. When ∆ = 2π × 50 GHz and other parameters take the same values as above,

the absolute values of the corresponding interchannel impairment coefficients are summarized

in Table 4.4. Due to space limitation, only 5 valid frequency locations are presented.

Table 4.3: Index Triplets [uvw] for a Triple Channel Case

Nonlinearity Frequency Location u− v + w
0 1 2 3 4

XPM 011 001 002
022 221 112
110 100 200
220 122 211

FWM 121 012 101 102 202
210 201

212

The definition of the RoI differs for different physical impairments. For ISI, IXPM, and

IFWM, the RoI is defined as the number of adjacent symbols causing a significant effect. For

XPM and FWM, the RoI is defined as the number of channels causing notable degradation.

The concept of RoI is shown schematically in Fig. 4.6.
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Table 4.4: Interchannel Coefficients for a Triple Channel Case

Nonlinearity Frequency Location u− v + w
0 1 2 3 4

XPM 0.0159 0.0159 0.0144
0.0144 0.0159 0.0159
0.0159 0.0159 0.0144
0.0144 0.0159 0.0159

FWM 0.0158 0.0150 0.0158 0.0146 0.0139
0.0150 0.0146

0.0158
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Figure 4.6: Concept of RoI

In this dissertation, for ISI, the RoI is defined as k̄ if k̄ is the smallest integer such that

the worst-case cumulative ISI degradation

DISI(k̄) =
k+k̄∑

k̂=k+1

∣∣∣ρISI
k,k̂

∣∣∣ (4.14)
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is practically unchanged. In this research, the tolerance level of cumulative impairment

degradation is defined as 0.0001%. When the increase in the cumulative degradation is less

than the tolerance, we say that the cumulative degradation is practically unchanged. This

definition applies to RoIs of all physical impairments.

For IXPM (IFWM), the RoI is k̄ if k̄ is the smallest integer such that the worst-case

cumulative IXPM (IFWM) degradation

DIXPM(IFWM)(k̄) =
k+k̄∑

l,m,n=k+1

∣∣∣ρIXPM(IFWM)
f,k,l,m,n

∣∣∣ (4.15)

is practically unchanged; intrachannel effects depend on the symbol rate Rs but are indepen-

dent of channel spacing ∆.

For XPM (FWM), the RoI is f̄ if f̄ is the smallest integer such that the worst-case

cumulative XPM (FWM) degradation

DXPM(FWM)(f̄) =

f+f̄∑

u,v,w=f+1

∣∣∣ρXPM(FWM)
f,k,u,v,w

∣∣∣ (4.16)

is practically unchanged; interchannel effects depend on the channel spacing but not the

symbol rate.

The SPM coefficient is a constant, unaffected by the symbol rate or the channel spacing.

There is no RoI for SPM. For the above parameters,
∣∣ρSPM

∣∣ = 0.0165 mW−1ps−3.

4.2.1 RoI of ISI

The definition of the ISI coefficient ρISI in Eq. (4.6) suggests that the severity of ISI is

determined by |k̂ − k|. The cumulative ISI degradation DISI(k̄) as the number of adjacent

symbols k̄ varies is given in Fig. 4.7. The change in DISI(k̄) remains below the tolerance

level of 0.0001% when k̄ ≥ 1; therefore, the RoI of ISI is 1 for both 40 Gs/s and 100 Gs/s.
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This result has been verified using the split-step Fourier method by varying the number of

pulses and ignoring nonlinearity.
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Figure 4.7: Computation of cumulative degradation due to ISI for SMF fiber operating at
1.55 µm for various symbol rates

4.2.2 RoI of Intrachannel Nonlinear Impairments

The changes in DIXPM(k̄) and DIFWM(k̄) with varying k̄ are given in Figs. 4.8 and 4.9,

respectively. From Fig. 4.8, at a symbol rate of 40 Gs/s, the change in DIXPM(k̄) remains

below the tolerance level of 0.0001% when k̄ ≥ 19; at a symbol rate of 100 Gs/s, DIXPM(k̄)

remains unchanged when k̄ ≥ 185. Therefore, the RoIs of IXPM are 19 and 185, respectively,

for 40 Gs/s and 100 Gs/s. Similarly, from Fig. 4.9, we can verify that the RoIs of IFWM are

65 and around 300, respectively, for 40 Gs/s and 100 Gs/s.

When the symbol rate increases, the symbol interval reduces and the RoIs of IXPM and

IFWM increase. Note that the phase term e[i(Φfl−Φfm+Φfn)] is not included in our definition

of ρIFWM
f,k,l,m,n in Eq. (4.7). When we take the phase information into account, the IFWM
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impairment is significantly reduced on average. The IFWM impairment can be reduced by

manipulating the input phases [24].
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Figure 4.8: Computation of cumulative degradation due to IXPM for SMF fiber operating at
1.55 µm for various symbol rates

The RoIs of intrachannel nonlinear impairments, including IXPM and IFWM are large.

In practice, we must consider the neighbouring symbols in the time domain that fall in

these RoIs. A tradeoff between the accuracy and the complexity of the RoIs is desired.

Sometimes we are interested in the RoIs for which a given percent of the worst-case cumulative

impairment degradation is achieved. Tables. 4.5 and 4.6 give the RoIs of intrachannel nonlinear

impairments for three percentages of the total impairment (80%, 90%, and 100%) at 40 and

100 Gs/s, respectively. The RoIs for 100% correspond to the above original definitions of

RoIs.
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Figure 4.9: Computation of cumulative degradation due to IFWM for SMF fiber operating
at 1.55 µm for various symbol rates

Table 4.5: RoIs of Intrachannel Nonlinear Impairments at 40 Gs/s

RoI 80% 90% 100%
IXPM 4 7 19
IFWM 8 13 65

Table 4.6: RoIs of Intrachannel Nonlinear Impairments at 100 Gs/s

RoI 80% 90% 100%
IXPM 23 37 185
IFWM 110 155 300

4.2.3 RoI of Interchannel Nonlinear Impairments

The changes in DXPM (f̄) and DFWM (f̄) with varying number of channels f̄ are given in Figs.

4.10 and 4.11, respectively. At a channel spacing of 50 GHz, the change in DXPM (f̄) remains

below the tolerance level of 0.0001% when f̄ ≥ 3; at a channel spacing of 100 GHz, the
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change in DXPM (f̄) remains below the tolerance level of 0.0001% when f̄ ≥ 2. Therefore, the

RoIs of XPM are 3 and 2, respectively, for 50 GHz and 100 GHz channel spacing. Similarly,

from Fig. 4.11, the RoIs of FWM are 4 and 3, respectively, for 50 GHz and 100 GHz. When

channel spacing increases, the RoIs of XPM and FWM decrease.
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Figure 4.10: Computation of cumulative degradation due to XPM for SMF fiber operating at
1.55 µm for various channel spacings

4.3 Summary

This chapter presents two applications of the 2D discrete-time model in system analysis. The

first application is to analyze the effect of varying system parameters and pulse shape on

individual physical impairments in long-haul DWDM systems. The 2D discrete-time model

can capture the effect of varying symbol rate on intrachannel effects and the effect of varying

channel spacing on interchannel effects. The second application is to determine the RoIs of

various individual physical impairments. These RoIs are of great value to the development of
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Figure 4.11: Computation of cumulative degradation due to FWM for SMF fiber operating
at 1.55 µm for various channel spacings

physical impairment mitigation techniques and other signal processing techniques for optical

communications.



Chapter 5

Model Applications in System

Performance Improvement

This chapter presents two signal processing applications of the 2D discrete-time model in

improving system performance. Section 5.1 develops a novel concatenation scheme with the

inner code being a constrained code based on Total Impairment Extent Rank (TIER) and the

outer code being a low-density parity-check (LDPC) code. Section 5.2 develops a nonlinear

equalizer based on third-order inverse Volterra theory. Section 5.3 concludes this chapter

with a summary.

5.1 TIER-LDPC Concatenation Scheme

This section develops a novel concatenation scheme with the inner code being a constrained

code based on Total Impairment Extent Rank (TIER) and the outer code being a low-density

parity-check (LDPC) code for long-haul fiber-optic communication systems [88]. The TIER

constrained code is based on a the 2D discrete-time model of physical impairments in long-

haul DWDM systems. LDPC codes have attracted great interest due to their remarkable

performance under iterative decoding. When properly designed, LDPC codes are capable of

closely approaching the fundamental Shannon limit in the presence of channel noise. The

76



5.1 TIER-LDPC Concatenation Scheme 77

concatenation of TIER and LDPC codes can arguably improve the decoding performance in

both ASE and nonlinearity dominant regions.

The extent of the physical impairments depends on the bit patterns, as seen in Section 4.2.

For a bit pattern of a given block length, using our 2D discrete-time model, we calculate all

the physical impairments imposed on any bit and sum over all bits in the word, resulting in a

metric we refer to as the Total Impairment Extent (TIE). Then we rank these bit patterns in

increasing order of their TIEs and use this metric to define a code that avoids bit sequences

leading to high TIEs. At the receiver, we use a maximum a-posteriori probability (MAP)

decoder to produce the soft information required for the LDPC decoder.

The proposed TIER code is superior to current constrained codes [73, 74, 75, 76, 77,

78, 79, 80] because it can not only suppress more physical impairments, including linear

effects and nonlinear effects, but it also offers system designers great flexibility in selecting

which impairment to suppress, selecting the code rate arbitrarily, and selecting the message

length, which determines the complexity of the decoder. Further, it can be easily extended

to wavelength-division multiplexed (WDM) systems to mitigate both intrachannel effects

and interchannel effects.

We compare the BER performance of the TIER-LDPC concatenation scheme to that of

the LDPC code alone. The performance of the TIER-LDPC concatenation scheme is better

than the LDPC coding scheme over the entire range of transmitted power levels, particularly

for high power levels. Compared with the LDPC alone, which is effective in the suppression

of the amplified spontaneous emission (ASE) noise only, the TIER-LDPC concatenation

scheme is effective in the suppression of both the nonlinear impairments and the ASE noise

because it combines the strength of the TIER code in suppressing severe nonlinear physical

impairments effectively and that of LDPC code in correcting memoryless errors due to ASE

noise. The TIER-LDPC concatenation scheme overcomes the weakness of the LDPC code,

i.e., its vulnerability to nonlinear impairments.

The performance of other constrained coding schemes in the literature was evaluated in



Chapter 5 Model Applications in System Performance Improvement 78

the absence of ASE noise. In this section we evaluate the performance of our TIER-LDPC

concatenation coding scheme through split-step Fourier simulation in the presence of ASE

noise.

5.1.1 TIER-LDPC Concatenation Scheme

LDPC
Encoder

Optical 
Filter Photodetector Electrical

Filter
TIER

Decoder
Decision 
Device

Information 
Bits

all-optical light path

LDPC
Decoder

TIER 
Encoder

Figure 5.1: Schematic of TIER-LDPC Concatenation Scheme

In this section we propose a novel TIER-LDPC concatenated coding scheme to combat

both the physical impairments and the ASE noise in long-haul fiber-optic communication

systems. In this scheme, the inner code is a constrained code based on Total Impairment

Extent Rank (TIER) and the outer code is a LDPC code, as shown in Fig. 5.1.

Consider a long-haul single-channel fiber-optic communication system. In the absence of

ASE noise, the output optical field of the fiber at discrete times kTs is given as

r(kTs) = akA0e
(iΦk) +

K−1∑

k̂=0;k̂ 6=k

ak̂Afe
(iΦk̂)ρISI

k,k̂
+Nsa

3
kA

3
0T̃

3e(iΦk)ρSPM

+ Ns

K−1∑

l,m,n=0

alamanA
3
0T̃

3e[i(Φl−Φm+Φn)]
[
ρIXPMk,l,m,n + ρIFWM

k,l,m,n

]
(5.1)

From Eq. (5.1), we can see that r(kTs) consists of the contribution of the transmitted

bit ak and all physical impairments imposed on the transmitted bit ak. These physical

impairments include the linear impairment (ISI) and the nonlinear impairments, i.e., SPM,

IXPM, and IFWM. In this section, we define the sum of these physical impairments over all

bits of a bit pattern of length K as the Total Impairment Extent (TIE):

TIE =
K−1∑

k=0

∣∣r(kTs)− rSig(kTs)
∣∣ (5.2)



5.1 TIER-LDPC Concatenation Scheme 79

where rSig(kTs) = akA0e
(iΦk) is the desired part of r(kTs). Alternatively, TIE can be defined

as

TIE =
K−1∑

k=0

∣∣y(tk)− ySig(tk)
∣∣ (5.3)

or

TIE = min
k∈[0,K−1]

∣∣y(tk)− ySig(tk)
∣∣ (5.4)

where ySig(tk) =
∣∣rSig(kTs)

∣∣2 is the desired part of y(tk). In our analysis, we use Eq. (5.2).

The other two definitions yield quite similar results. The TIE depends on what bit pattern is

sent. There are 2N different bit patterns for a given codeword of block length N .

The idea of the rate-R, R = K
N

, TIER constrained code is as follows. First, by applying

the definition of the TIE above, we calculate the TIEs for all possible bit patterns of length

N . Next, we rank these bit patterns and select the best 2K bit patterns of length N with

smallest TIEs out of all 2N bit patterns. Then we establish a one-to-one mapping between

all bit patterns of length K and these best bit patterns of length N . In this way, we have a

look-up table to be used at the transmitter that maps the bit patterns of length K to bit

patterns of length N . At the receiver, for each given received output sequence of length N ,

we use a MAP decoder to obtain the a-posteriori probabilities for 0 and 1 of each symbol of

the corresponding bit pattern of length K. With these two a-posteriori probabilities for 0

and 1 of each symbol, we calculate the likelihood ratio of each symbol as the input of the

LDPC decoder. In this way the TIER-LDPC decoder maps each sequence of length N back

to the corresponding bit pattern of length K.

The TIER code is flexible in selecting any physical impairment or any combination of

impairments to be mitigated with tiny modification of the definition of TIE. For example, in

a single channel long-haul fiber-optic communication system, if the linear impairments are

negligible compared with the nonlinear impairments, or if a powerful linear equalizer is to

be used, we are interested in suppressing the nonlinear physical impairments only. In this

case, we can modify the definition of the model to TIEL =
∑K−1

k=0

∣∣[r(kTs)− rSignal − rISI
]∣∣,
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where rISI =
∑K−1

k̂=0;k̂ 6=k ak̂A0e
(iΦk̂)ρISI

k,k̂
, which is the linear part of r(kTs).

5.1.2 Performance Evaluation

In this section we present the BER performance results for four cases: the uncoded case;

the TIER-only coding case; the TIER-LDPC concatenated coding case; and the LDPC-only

coding case.

We consider 40-Gb/s on-off keyed (OOK) signals transmitting through a single-channel

fiber-optic communication system with the number of spans being 40, 50, or 60. In the

TIER-LDPC concatenation case, we set K = 7 and N = 8 for the TIER code and K=504 and

N=1008 for the LDPC code, i.e., the code rate of the concatenated case is (7/8)∗(504/1008) =

7/16. For comparison purposes, the code rate of the LDPC-only coding case is also 7/16.

Correspondingly the symbol rate becomes 40/(7/16) Gs/s.

Fig. 5.1 presents a schematic of the TIER-LDPC concatenation scheme. If we remove

both the TIER encoder and the TIER decoder from Fig. 5.1, we have the schematic of the

LDPC-only coding scheme. Similarly, if instead both the LDPC encoder and the LDPC

decoder are removed, this becomes the TIER-only coding scheme. All schemes operate at

the same bit rate for fair comparison. At the transmitter, information bits are encoded by a

LDPC encoder and a TIER encoder and launched into the optical fiber. We use the split-step

Fourier method to simulate the propagation of optical waves through the fiber and to obtain

the received signal statistics needed for decoding. Periodic dispersion compensation and

amplification are assumed.

At the receiver, the output of the fiber passes through an optical filter, a square-law

photodetector and an electrical filter. The filtered output vector is denoted by y. In the

TIER-LDPC concatenation scheme, we use the MAP rule to calculate P (bi = 0|y) and

P (bi = 1|y) assuming y is a jointly Gaussian vector with its mean based on the split-step

Fourier simulation in the absence of ASE noise. The covariance matrix is assumed diagonal

and also based on a noiseless SSF simulation. Then we can calculate the log likelihood ratio
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(LLR): LLR((i)) = log(P (bi = 0|y)/P (bi = 1|y)), which is used by the LDPC decoder. In

the LDPC-only coding scheme, in order to be able to calculate the 1st-order statistics of

the channel output, we use the Monte-Carlo method to estimate P (y|0) and P (y|1) and

calculate the log likelihood ratio (LLR): LLR(y) = log(P (y|0)/P (y|1)), which is used by the

LDPC-only coding decoder. In the TIER-only coding scheme, the decoder uses the ML rule

based on the above Gaussian vector.

For the rate-1/2 LDPC code, MacKay’s (1008, 504) regular {3, 6} LDPC code is used.

For the rate-7/16 LDPC code we choose all variable nodes (VNs) to have degree 3, then

a (1008, 441) code is built using the Progressive Edge-Growth (PEG) algorithm; among

567 check nodes (CNs), 378 have degree 5 and 189 have degree 6.1 When decoding, the

sum-product algorithm [89] is used and the maximum number of iterations is set to 50. Finally,

it is worth noting that the optical channel is asymmetric so the all-zero codeword assumption

[89] is no longer valid. In the simulation LDPC codewords are randomly generated and

decoded. The LLR from the histograms generated through the split-step Fourier simulation

is used in decoding. Fig. 5.2 shows the histograms when the launched power is 2 mW.

Figs. 5.3, 5.4 and 5.5 show the BER performance results when the launched power P0

varies from 0.1 mW to 10 mW for a code rate of 7/16 when the number of spans is 40, 50,

and 60, respectively. In this section, the bit rate is held constant and the symbol rate varies

as the code rate changes. We can see that the performance of the TIER-LDPC concatenation

scheme is much better than the corresponding uncoded case. Nonlinear impairments increase

when the launched power becomes large. The performance of the TIER-LDPC concatenation

scheme is better than both the LDPC-only coding scheme and the TIER-only coding scheme

over the entire range of transmitted power levels. For low power levels where the ASE noise

dominates and the nonlinear impairments are small, the LDPC code is effective; for high

power levels, the TIER-LDPC scheme works better than the LDPC code because nonlinear

impairments dominate and the ASE noise is small compared with the nonlinear impairments

1We gratefully acknowledge the help of Tingjun Xie who designed both the rate-1/2 LDPC code and the
rate-7/16 LDPC code for this dissertation.
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Figure 5.2: Histograms obtained from split-step Fourier simulation (P0=2 mW)

in this region. When the number of spans is 50 or 60, the LDPC-only code almost loses

its error correcting capability because the nonlinearity becomes severe with the increase in

the number of spans. In this case we have to resort to the TIER code. The TIER-LDPC

concatenation scheme combines the strength of the TIER code in correcting errors due to

physical impairments and that of the LDPC code in correcting errors due to ASE noise.

For a rate-K
N

TIER scheme, its complexity is only O(2K). So the complexity of the

TIER-LDPC concatenation coding scheme is acceptable for small values of K compared

with that of the LDPC-only coding scheme. The performance of the TIER-LDPC scheme

works best for high power levels where nonlinearity dominates. In fact, the performance of

the TIER could be improved further by using longer code words, since the RoIs of physical

impairments, determined in Section 4.2 and [87], are much larger than the current length of

code words. The above rate-7/16 avoids about 90% of IXPM and less than 80% of IFWM.
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Figure 5.3: Performance evaluation of the TIER-LDPC concatenation scheme, the TIER-only
scheme, and the LDPC-only scheme (40 spans)

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P0(dBm)

B
E

R

 

 

Uncoded
TIER
LDPC
TIER−LDPC

Figure 5.4: Performance evaluation of the TIER-LDPC concatenation scheme, the TIER-only
scheme, and the LDPC-only scheme (50 spans)
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Figure 5.5: Performance evaluation of the TIER-LDPC concatenation scheme, the TIER-only
scheme, and the LDPC-only scheme (60 spans)

5.2 Nonlinear Equalization

This section develops a nonlinear equalizer to improve the system performance of long-haul

DWDM systems.

According to the pth-order inverse Volterra theory [90], for a nonlinear system expressed

as the Volterra series

y(t) = H[x(t)] =
∞∑

n=1

Hn[x(t)], (5.5)

where H is the system operator, and Hn, n = 1, 2, ...,∞, is the nth-order Volterra operator.

If and only if the inverse of the linear operator H1 is stable and causal, there exists a stable

and causal pth-order inverse system, K(p), such that the overall system Z formed by tandem

connection of K(p) and H satisfies the conditions given by

Z[x(t)] = K(p)[y(t)]) = x(t) +
∞∑

n=p+1

Zn[x(t)], (5.6)
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where Zn is the nth-order Volterra operator of the system Z. Further, the pth-order pre-inverse

of a system H is identical to its pth-order post-inverse.

5.2.1 Nonlinear Equalizer

The schematic of the nonlinear equalization is shown in Fig. 5.6.
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DEMUX Equalizer Decision 

Device

Information 
Bits

all-optical light path

WDM
MUX

( )ts ( )tr ( )trf ( )kf tr ( )kf te

Sample at 
time 

tk=kTs

Figure 5.6: Nonlinear Equalization

The 2D discrete-time model developed in Chapter 3 is based on the third-order VSTF

method. Let S(ω) and R(ω) be the output of the WDM multiplexer and the input of the

WDM demultiplexer, the input-output relationship can be expressed as

R(ω) ≈ H1(L, ω)S(ω) +

∫ +∞

−∞

∫ +∞

−∞
H3(L, ω1, ω2, ω − ω1 + ω2)S(ω1)S∗(ω2)

S(ω − ω1 + ω2)dω1dω2, (5.7)

where

H1(L, ω) = 1, (5.8)

and

H3(L, ω1, ω2, ω − ω1 + ω2)=
iNγ

4π2
H1(L, ω)

∫ L

0

exp[−αz + iβ2z(ω1 − ω)(ω1 − ω2)]dz.(5.9)

According to the third-order inverse Volterra theory, the nonlinearity in the third-order

Volterra system can be compensated up to the third-order by another third-order Volterra

system referred to as the third-order inverse system [90]. The nonlinear equalizer based on
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the third-order inverse system is

Ef (ω) ≈ K1(L, ω)Rf (ω) +

∫ +∞

−∞

∫ +∞

−∞
K3(L, ω1, ω2, ω − ω1 + ω2)Rf (ω1)R∗f (ω2)

Rf (ω − ω1 + ω2)dω1dω2, (5.10)

with the first- and third-order operator of the third-order inverse filter defined as follows [90]:

K1(L, ω) = H1(L, ω)−1 = 1, (5.11)

and

K3(L, ω1, ω2, ω − ω1 + ω2)=−K1(L, ω)H3(L, ω1, ω2, ω − ω1 + ω2)K1(L, ω)

= − iNγ

4π2

∫ L

0

exp[−αz + iβ2z(ω1 − ω)(ω1 − ω2)]dz. (5.12)

In practice, for a long-haul DWDM system, an equalizer should be designed to mitigate

nonlinearity introduced by the photodetector, in addition to the mitigation of the physical

impairments and the ASE noise. The nonlinearity introduced by the photodetector is ignored

here to highlight the effectiveness of the nonlinear equalizer based on the inverse Volterra

theory in the mitigation of the nonlinear physical impairments due to Kerr effect and the

ASE noise. The nonlinearity introduced by the photodetector is hard to suppress and left

for future work. In its current form, our nonlinear equalizer is therefore applicable only to

coherent detection systems.

Similar to the derivation of the 2D discrete-time model, simplifying Eq. (5.10) to a

simple integral and taking its inverse Fourier transform yields the discrete-time output of the
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nonlinear equalizer

ef (tk) ≈ rf (tk)−
K−1∑

k̂=0;k̂ 6=k

rf (tk̂)AfAdf exp(iΦfk̂)ρ
ISI
f,k

−
F−1∑

f̂=0;f̂ 6=f

K−1∑

k̂=0

rf̂ (tk̂)Af̂Adf̂ exp(iΦf̂ k̂)ρ
ICI
f,k − rf (tk)3A3

fAdf T̃
3
f exp(iΦul)ρ

SPM
f,k

−
K−1∑

l=0

K−1∑

m=0

K−1∑

n=0

rf (tl)rf (tm)rf (tn)A3
fAdf T̃

3
f exp[i(Φfl − Φfm + Φfn)]

(
ρIXPMf,k + ρIFWM

f,k

)

−
F−1∑

u=0

F−1∑

v=0

F−1∑

w=0

ru(tk)rv(tk)rw(tk)AuAvAwAdf T̃uT̃vT̃w exp[i(Φuk − Φvk + Φwk)]
(
ρXPMf,k + ρFWM

f,k

)
.

(5.13)

where the impairment coefficients, ρSigf,k , ρISIf,k , ρICIf,k , ρIXPMf,k , ρIFWM
f,k , ρXPMf,k , and ρFWM

f,k , are

used in Chapter 3 and defined in the Appendix.

Eq. (5.13) is the discrete-time expression of the nonlinear equalizer. If the fifth and

higher order terms are ignored, the output of the equalizer ef(tk) approximately equals its

input rf (tk) minus various linear and nonlinear physical impairments. Given F and K, these

physical impairments can be easily calculated by using the impairment coefficients and pulse

parameters. Therefore the nonlinear equalizer is easy to implement using the most basic

DSP device. This advantage is due to the 2D discrete-time model of physical impairments in

long-haul DWDM systems. Without the explicit expression of the 2D discrete-time model,

it is impossible to design a nonlinear equalizer which is easy to implement using hardware.

Although the nonlinear equalizer is similar to backpropagation, the biggest difference between

them is that the nonlinear equalizer can be implemented in practice but the backpropagation

approach [84][85] is of theoretical significance only.

If we compare Eq. (5.13) with Eq. (3.23), we can find the following relationship between

the output of the equalizer ef (tk) and the input symbol afk:

ef (tk) = afkAfAdf exp(iΦfk)ρ
Sig
f,k +H.O.T., (5.14)
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where the abbreviation H.O.T stands for higher order terms. The output of the equalizer only

retains the desired symbol modified by the optical filter. All third order nonlinear physical

impairments are mitigated by the nonlinear equalizer.

5.2.2 Performance Evaluation

To evaluate the effectiveness of the above nonlinear equalizer, we present the BER performance

results for five cases: the unequalized case; the equalized case; the backpropagation case;

the equalized case without ASE noise (i.e., nonlinearity only); the equalized case without

nonlinearity (i.e., ASE noise only). We use the SSF method to simulate the propagation

of optical waves for the unequalized case and the backpropagation case. For the equalized

cases, we use the SSF method to simulate the propagation of optical waves till the WDM

demultiplexer and then use the above discrete-time nonlinear equalizer with K=20 to obtain

the output of the nonlinear equalizer.

We consider 40-Gs/s OOK signals transmitting through a single-channel fiber-optic

communication system. Figs. 5.7, 5.8, and 5.9 show the BER performance results when the

launched power varies from 0.1 mW to 10 mW for 40, 50, and 60 spans, respectively. The

performance of the equalized case is better than the unequalized case, particularly for large

launched power levels where nonlinearity dominates. The performance of the equalized case

is comparable to the backpropagation case. The fine difference between the equalized case

and the backpropagation case is due to the small value of K used and the unequalized fifth

and higher order terms. In Section 4.2.2, the RoIs of IXPM and IFWM at a symbol rate of

40 Gs/s are 19 and 65, respectively. The current setting of K corresponds to the suppression

of all ISI and IXPM, but only 95.3% of IFWM.

The performance of the equalized case without nonlinearity is better than that of the

unequalized case. This demonstrates that the nonlinear equalizer is effective in supressing

ASE noise. The performance of the equalized case without ASE noise is best and the BERs

are below the resolution of the split-step simulation. We were unable to determine via



5.3 Summary 89

simulation how low the BERs fall for this case, so results are not included in the figures.

This demonstrates that the nonlinear equalizer is effective in supressing nonlinear physical

impairments. Therefore the nonlinear equalizer performs well in mitigating both nonlinear

physical impairments and ASE noise. Compared with backpropagation, the nonlinear equalizer

based on the 2D discrete-time model is easy to implement using the most basic DSP device.
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Figure 5.7: BER Performance of the nonlinear equalizer (40 spans)

5.3 Summary

This chapter presents two signal processing applications of the 2D discrete-time model in

improving system performance.

The first signal processing application of the model in system performance improvement

is the development of a novel TIER (Total Impairment Extent Rank)-LDPC concatenation

scheme to combat both the deterministic physical impairments and the ASE noise in long-

haul fiber-optic communication systems. The difference between the TIER constrained code
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Figure 5.8: BER Performance of the nonlinear equalizer (50 spans)
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Figure 5.9: BER Performance of the nonlinear equalizer (60 spans)
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and the constrained coding schemes in the literature is that it can suppress more physical

impairments, including linear effects and nonlinear effects, rather than only intrachannel

effects caused by some resonant sequences. With small modifications of the definition of

TIE, the TIER code can be used to suppress any physical impairment or any combination

of impairments. The TIER code is particularly suitable to the case of severe nonlinearity

for which the LDPC code fails. The strength of the TIER code lies in its great flexibility in

selecting the code rate arbitrarily, and selecting the message length, which determines the

complexity of the decoder. Compared with the LDPC code alone, which fails at high power

levels where nonlinearity dominates, the TIER-LDPC concatenation scheme is effective over

the entire range of transmitted power levels and link length in suppressing both the physical

impairments and the ASE noise in a long-haul fiber-optic communication system.

The second signal processing application of the model in system performance improvement

is the development of a nonlinear equalizer based on the third-order inverse Volterra theory.

Using the impairment coefficients of the 2D discrete-time model of physical impairments in

long-haul DWDM systems, the hardware implementation of the nonlinear equalizer needs

only the most basic DSP device. The nonlinear equalizer is effective in the mitigation of

linear and nonlinear physical impairments. The performance of the nonlinear equalizer is

comparable to the backpropagation algorithm, which is hard to implement in hardware.



Chapter 6

Conclusions and Future Work

This chapter summarizes and concludes the dissertation and proposes future avenues for

research.

The performance of long-haul DWDM systems with periodic dispersion compensation and

amplification is fundamentally limited by physical impairments due to dispersion and fiber

nonlinearity, and by ASE noise. Sophisticated signal processing techniques are needed to

mitigate physical impairments and fully exploit the system capacity. These techniques require

a mathematical model that describes the input-output relationship of long-haul DWDM

systems and characterizes various physical impairments.

This dissertation develops a model-centric approach for discrete-time signal processing

for optical communications and addresses the development, validation and applications of a

2D discrete-time model of physical impairments in long-haul DWDM systems with periodic

dispersion compensation and amplification.

The model development is based on the third-order Volterra series transfer function

(VSTF) method. The model overcomes the well-known triple integral problem inherent in

the original VSTF method and simplifies it to a simple integral that is easy to evaluate.

The model takes into account multichannel effects, fiber losses, frequency chirp, optical

filtering, and photodetection, which are ignored in the current literature. The model is in

92
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discrete-time and facilitates its applications in discrete-time signal processing to improve the

system performance of long-haul DWDM systems. The model characterizes each individual

physical impairment by introducing the corresponding impairment coefficient. The model

offers obvious advantages over the third-order VSTF method and the split-step Fourier (SSF)

method. The model is in excellent agreement with results obtained from the SSF method.

The 2D discrete-time model is applied in system analysis and system performance im-

provement of long-haul DWDM systems. In system analysis, two applications are developed.

Using the 2D discrete-time model, the effects of varying system parameters (symbol rate and

channel spacing) and pulse shape on individual physical impairments in long-haul DWDM

systems are analyzed. The concept of range of influence (RoI) of physical impairments is

proposed and the RoI of each individual physical impairment is determined to guide the

development of discrete-time signal processing. In system performance improvement, two

applications are developed. Using the 2D discrete-time model, a novel constrained code based

on the Total Impairment Extent Rank (TIER) is proposed to mitigate the nonlinear physical

impairments in long-haul fiber-optic communication systems; a TIER-LDPC concatenation

scheme is proposed to combine the strength of the TIER code in suppressing severe nonlinear

physical impairments effectively and that of the LDPC code in correcting memoryless errors

due to ASE noise. A nonlinear equalizer based on the third-order inverse Volterra theory is

also proposed. Different from backpropagation that is hard to implement in hardware, this

equalizer features various basic discrete-time signal processing operations. The nonlinear

equalizer is effective in suppressing the physical impairments and the ASE noise in a long-haul

fiber-optic communication systems, particularly for high launched power levels where fiber

nonlinearity dominates.

To fully exploit the potential of applying the 2D discrete-time model in system analysis

and system performance improvement of long-haul DWDM systems, and the capacity of

fiber-optic communication systems, further research is recommended in the following aspects:

First, the model development methodology can be easily extended to polarization-division
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multiplexing (PDM) systems and coherent receivers. Second, the joint modeling of physical

impairments and ASE noise is the ultimate prerequisite for the most powerful discrete-time

signal processing for long-haul DWDM systems. However, determining the statistics of the

ASE noise in the highly nonlinear fiber regime remains an open problem. The joint modeling

of these two factors that limit the system performance is possible after the statistics of

the ASE noise are clearly understood by the fiber-optic communication community. Third,

although the 2D discrete-time model is designed for point-to-point long-haul DWDM systems,

it is possible for the model development methodology proposed in this dissertation to be

applied to multipoint fiber-optic communication systems, such as wide-area and metro-area

networks or multi-access WDM networks. If the model can be developed for broader fiber-

optic communication networks, discrete-time signal processing applications can be developed

for these systems to improve their performance. Fourth, the wider use of the model in discrete-

time signal processing for optical communications may require further simplification of the

2D discrete-time model. A tradeoff between the model complexity and the model accuracy

is needed, as further simplification of the model may sacrifice its accuracy in capturing the

exact propagation of the optical field over the long-haul fiber-optic communication system.

Fifth, further enhancements are possible for the nonlinear equalizer. Photodetection is not

considered in the current nonlinear equalizer. A nonlinear equalizer using the output of the

photodetector as its input is desired. It is desirable to extend the nonlinear equalizer to

multichannel equalization and evaluate the performance of the nonlinear equalizer in DWDM

systems. Sixth, using the 2D discrete-time model, more applications can be developed to

analyze the system and improve the system performance of long-haul DWDM systems. For

example, the effect of the frequency chirp on the system can be analyzed and then new

prechirping techniques can be developed.



Appendix A

Derivation of 2-D Discrete-Time

Model

This appendix presents the derivation of the 2-D discrete-time model of physical impairments

in long-haul DWDM systems, as given in Eq. (3.23). The derivations of Eq. (4.13) and Eq.

(5.13) are similar to the following derivation.

A.1 Simplification of Triple Integral

Using the third-order VSTF method, the output of the optical filter in long-haul DWWM

systems with periodic dispersion compensation and amplification is a triple integral in the

frequency domain. This section presents how this triple integral can be simplified to a simple

integral for Gaussian shaped pulses and a Gaussian optical filter.
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The output of the optical filter can be given by

Rf (ω) = 2π
F−1∑

f̂=0

K−1∑

k̂=0

af̂ k̂Af̂Adf T̃f̂Tdf exp
[
−i(ω − f̂∆)k̂Ts

]

× exp

[
−

(ω − f̂∆)2T̃ 2
f

2
−

(ω − f∆)2T 2
df

2
+ iΦf̂ k̂

]

+ iNγ
F−1∑

u=0

F−1∑

v=0

F−1∑

w=0

K−1∑

l=0

K−1∑

m=0

K−1∑

n=0

aulavmawn

× AuAvAwAdf T̃uT̃vT̃wTdf exp [i (Φul − Φvm + Φwn)]

× Eu,v,w,l,m,n(ω)

∫ L

0

exp(−αz)I(ω, z)dz, (A.1)

where

I(ω, z) =

∫ +∞

−∞

∫ +∞

−∞
exp (−iω1ω2β2z)

× exp

(
−ω

2
1T̃

2
u

2
− ω2

1T̃
2
v

2
− ω2

2T̃
2
v

2
− ω2

2T̃
2
w

2

)

× exp[−ωω1(T̃ 2
u + T̃ 2

v )− ωω2(T̃ 2
v + T̃ 2

w)− ω1ω2T̃
2
v ]

× exp(ω1u∆T̃ 2
u + ω1v∆T̃ 2

v + ω2v∆T̃ 2
v + ω2w∆T̃ 2

w)

× exp[−iω1(l −m)Ts − iω2(n−m)Ts]dω1dω2. (A.2)

By solving the double integral I(ω, z), the triple integral can be simplified to a simple

integral.

We first separate all terms containing ω1 from I(ω, z):

I(ω, z) =

∫ +∞

−∞
exp

[
−(ω2

2 + 2ωω2)(T̃ 2
v + T̃ 2

w)

2

]

×
{∫ +∞

−∞
exp

[
−(T̃ 2

u + T̃ 2
v )ω2

1

2
+ b1ω1

]
dω1

}

× exp
[
ω2∆(vT̃ 2

v + wT̃ 2
w)− iω2(n−m)Ts

]
dω2, (A.3)
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where

b1 = −ω2T̃
2
v − ω(T̃ 2

u + T̃ 2
v ) + ∆(uT̃ 2

u + vT̃ 2
v )− i[(l −m)Ts + ω2β2]. (A.4)

We solve the integral in ω1 by applying the generalized Gaussian integral formula [35] and

I(ω, z) becomes a simple integral

I(ω, z) =

∫ +∞

−∞
exp

[
−(ω2

2 + 2ωω2)(T̃ 2
v + T̃ 2

w)

2

]
exp

[
ω2∆(vT̃ 2

v + wT̃ 2
w)− iω2(n−m)Ts

]

×
√

2π

T̃ 2
u + T̃ 2

v

exp

[
b2

1

2(T̃ 2
u + T̃ 2

v )

]
dω2. (A.5)

We rearrange I(ω, z) to a generalized Gaussian integral in ω2 as follows:

I(ω, z) =

√
2π

T̃ 2
u + T̃ 2

v

×
[∫ +∞

−∞
exp(−a2ω

2
2 + b2ω2)dω2

]
exp[P (ω)]. (A.6)

where

a2 =
(T̃ 2

v + T̃ 2
w)

2
− (T̃ 2

v + iβ2z)2

2(T̃ 2
u + T̃ 2

v )
, (A.7)

b2 = −ω(T̃ 2
v + T̃ 2

w) + ∆(vT̃ 2
v + wT̃ 2

w)− i(n−m)Ts

− [−ω(T̃ 2
u + T̃ 2

v ) + ∆(uT̃ 2
u + vT̃ 2

v )](T̃ 2
v + iβ2z)

T̃ 2
u + T̃ 2

v

+
i(l −m)T (T̃ 2

v + iβ2z)

T̃ 2
u + T̃ 2

v

, (A.8)



Appendix A Derivation of 2-D Discrete-Time Model 98

and

P (ω) =
[−ω(T̃ 2

u + T̃ 2
v ) + ∆(uT̃ 2

u + vT̃ 2
v )− i(l −m)Ts]

2

2(T̃ 2
u + T̃ 2

v )
.

(A.9)

We then solve the integral in ω2 to obtain

I(ω, z) =

√
2π

T̃ 2
u + T̃ 2

v

×
√
π

a2

exp

(
b2

2

4a2

)
× exp[P (ω)]. (A.10)

In this way, the double integral I(ω, z) is solved and the triple integral is simplified to a

simple integral.

Further, we can transform Eq. (A.10) to a symmetric form given by Eq. (3.9).

A.2 Simplifying Functions Used in Frequency Domain

Output

This section gives expressions for A, B and C used in Eq. (3.9):

A =
1

2

[T̃ 2
u (ω − u∆) + T̃ 2

v (ω − v∆)]2

T̃ 2
u + T̃ 2

v − (T̃ 2
v+iβ2z)2

T̃ 2
v+T̃ 2

w

+
1

2

[T̃ 2
v (ω − v∆) + T̃ 2

w(ω − w∆)]2

T̃ 2
v + T̃ 2

w − (T̃ 2
v+iβ2z)2

T̃ 2
u+T̃ 2

v

− [T̃ 2
u (ω − u∆) + T̃ 2

v (ω − v∆)](T̃ 2
v + iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

[T̃ 2
v (ω − v∆) + T̃ 2

w(ω − w∆)].

(A.11)
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B = i(l −m)Ts
[T̃ 2
u (ω − u∆) + T̃ 2

v (ω − v∆)](T̃ 2
w − iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

+ i(n−m)Ts
[T̃ 2
v (ω − v∆) + T̃ 2

w(ω − w∆)](T̃ 2
u − iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

. (A.12)

C = − (l − n)2T 2
s

2
[
T̃ 2
u + T̃ 2

v − (T̃ 2
v+iβ2z)2

T̃ 2
v+T̃ 2

w

] − (l −m)(n−m)T 2
s (T̃ 2

w − iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

. (A.13)

A.3 Simplifying Functions Used in Time Domain Out-

put

This section gives expressions for A0, A1, A2, B0, and B1 used in (4.12). C is defined in

Section A.2.

A0 = −(T̃ 2
uu∆ + T̃ 2

v v∆)(T̃ 2
v v∆ + T̃ 2

ww∆)(T̃ 2
v + iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

+
(T̃ 2

uu∆ + T̃ 2
v v∆)2(T̃ 2

v + T̃ 2
w)

2
[
(T̃ 2

u + T̃ 2
v )(T̃ 2

v + T̃ 2
w)− (T̃ 2

v + iβ2z)2
] .

+
(T̃ 2

v v∆ + T̃ 2
ww∆)2(T̃ 2

u + T̃ 2
v )

2
[
(T̃ 2

u + T̃ 2
v )(T̃ 2

v + T̃ 2
w)− (T̃ 2

v + iβ2z)2
] .
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A1 = −(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)(T̃ 2
uu∆ + 2T̃ 2

v v∆ + T̃ 2
ww∆)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

+
(T̃ 2

u + T̃ 2
v )(T̃ 2

v v∆ + T̃ 2
ww∆)(T̃ 2

v + iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

+
(T̃ 2

v + T̃ 2
w)(T̃ 2

uu∆ + T̃ 2
v v∆)(T̃ 2

v + iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

.

A2 = −(T̃ 2
u + T̃ 2

v )2(T̃ 2
v + T̃ 2

w) + (T̃ 2
v + T̃ 2

w)2(T̃ 2
u + T̃ 2

v )

2
[
(T̃ 2

u + T̃ 2
v )(T̃ 2

v + T̃ 2
w)− (T̃ 2

v + iβ2z)2
]

+
(T̃ 2

u + T̃ 2
v )(T̃ 2

v + T̃ 2
w)(T̃ 2

v + iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

.

B0 = −i(l −m)Ts
(T̃ 2

uu∆ + T̃ 2
v v∆)(T̃ 2

w − iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

− i(n−m)Ts
(T̃ 2

v v∆ + T̃ 2
ww∆)(T̃ 2

u − iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

.

B1 = i(l −m)Ts
(T̃ 2

u + T̃ 2
v )(T̃ 2

w − iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

+ i(n−m)Ts
(T̃ 2

v + T̃ 2
w)(T̃ 2

u − iβ2z)

(T̃ 2
u + T̃ 2

v )(T̃ 2
v + T̃ 2

w)− (T̃ 2
v + iβ2z)2

.
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A.4 Simplifying Functions and Coefficients Used in PD

Output for DBPSK

If ρSigf,k , ρISIf,k , ρICIf,k , ρSPMf,k , ρIXPMf,k , ρIFWM
f,k , ρXPMf,k , ρFWM

f,k , ρLf,k, and ρNLf,k , in Chapter 3, are

replaced by ρSig±f,k , ρISI±f,k , ρICI±f,k , ρSPM±f,k , ρIXPM±f,k , ρIFWM±
f,k , ρXPM±f,k , ρFWM±

f,k , ρL±f,k , and ρNL±f,k ,

respectively, we have the definitions of the following simplifying functions used in the

photodetector output for DBPSK modulation: rSig±(f, k), rISI±(f, k), rICI±(f, k), and

rNL±(f, k). The indicator functions ISPM , IIXPM , IIFWM , IXPM , and IFWM are defined in

Section 3.1.

For DBPSK, ρL±f,k and ρNL±f,k are defined as

ρL±
f̂ ,k̂

= ρL
f̂,k̂
± ρL

f̂,k̂
exp




(1−2k)T 2
s

T 4
df
− 2k̂T 2

s

T̃ 2
f̂
T 2
df

− i2Ts(f̂−f)∆

T 2
df

2( 1

T̃ 2
f̂

+ 1
T 2
df

)


 exp

[
(2k − 1)T 2

s

2T 2
df

− if∆Ts

]
,

ρNL±f,k = U(kTs)± U [(k − 1)Ts].

where

U(t) = iγ
√

2πEu,v,w,l,m,n(t)

∫ L

0

exp(−αz)Ju,v,w,l,m,n(t, z)dz.

A.5 Simplifying Functions and Coefficients Used in PD

Quadrature Output of DQPSK

If ρSig±f,k , ρISI±f,k , ρICI±f,k , ρSPM±f,k , ρIXPM±f,k , ρIFWM±
f,k , ρXPM±f,k , ρFWM±

f,k , ρL±f,k , and ρNL±f,k , in Sec-

tion A.4, are replaced by ρQSig±f,k , ρQISI±f,k , ρQICI±f,k , ρQSPM±f,k , ρQIXPM±f,k , ρQIFWM±
f,k , ρQXPM±f,k ,

ρQFWM±
f,k , ρQL±f,k , and ρQNL±f,k , respectively, we have the definitions of the following simplifying
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functions used in the photodetector output for DQPSK modulation: rSig±Q (f, k), rISI±Q (f, k),

rICI±Q (f, k), and rNL±Q (f, k).

For DQPSK, ρQL±f,k and ρQNL±f,k are defined as

ρQL±
f̂ ,k̂

= iρL
f̂,k̂
± ρL

f̂,k̂
exp




(1−2k)T 2
s

T 4
df
− 2k̂T 2

s

T̃ 2
f̂
T 2
df

− i2Ts(f̂−f)∆

T 2
df

2( 1

T̃ 2
f̂

+ 1
T 2
df

)


 exp

[
(2k − 1)T 2

s

2T 2
df

− if∆Ts

]
,

ρQNL±f,k = iU(kTs)± U [(k − 1)Ts].
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