
APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy (Computer Science)

Accepted for the School of Engineering and Applied Science:

Dean Richard W. Miksad
School of Engineering and Applied Science

This dissertation has been read and approved by the Examining Committee:

January 2000

Paul F. Reynolds, Jr. (Thesis Advisor)

Gabriel Robins (Committee Chairman)

Anita K. Jones

Worthy N. Martin

Kevin J. Sullivan

Ronald D. Williams

Anand Natrajan

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

at the

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Consistency Maintenance in
Concurrent Representations

Anand Natrajan

© Copyright by

All Rights Reserved

Anand Natrajan

January 2000

One often hears of writers that rise and swell with their subject, though it
may seem but an ordinary one. How, then, with me, writing of this Leviathan?

Unconsciously my chirography expands into placard capitals.
Give me a condor’s quill! Give me Vesuvius’ crater for an inkstand!

Friends, hold my arms! For in the mere act of penning my thoughts of this
Leviathan, they weary me, and make me faint with their out-reaching

comprehensiveness of sweep, as if to include the whole circle of the sciences,
and all the generations of whales, and men, and mastodons, past, present,

and to come, with all the revolving panoramas of empire on earth,
and throughout the whole universe, not excluding its suburbs. Such, and so

magnifying, is the virtue of a large and liberal theme! We expand to its bulk.
To produce a mighty book, you must choose a mighty theme.

No great and enduring volume can ever be written on the flea,
though many there be who have tried it.

— Herman Melville,Moby-Dick

i

Abstract

Multi-Representation Modeling (MRM) involves executing multiple models of the

same phenomenon jointly. MRM is a technique in modeling and simulation for capturing

the combined semantics of multiple models. Previous MRM approaches, such as selective

viewing and aggregation-disaggregation, have encountered problems such as chain

disaggregation, temporal inconsistency and mapping inconsistency. Eliminating these

problems has been a difficult task for MRM designers. We eliminate these problems by

showing how to achieve MRM effectively, i.e., correctly, consistently and inexpensively.

Our thesis is that MRM can be effective. Maintaining consistency among the concurrent

representations of jointly-executing models is our approach for effective MRM.

We developed a framework,UNIFY, to achieve effective MRM.UNIFY satisfies three

MRM requirements: multi-representation interaction, multi-representation consistency

and cost-effectiveness.I t enables designers to construct solutions for application-specific

multiple models.UNIFY is based on four fundamental observations that reduce the

problem of joint execution to the problem of maintaining consistency among the

representations of multiple models when dependent concurrent interactions occur.UNIFY

consists of processes and techniques such as Multiple Representation Entities (MREs),

Attribute Dependency Graphs (ADGs) and a taxonomy of interactions. An MRE

maintains concurrent representations. An ADG captures relationships among attributes in

concurrent representations. An ADG and application-specific mapping functions that

translate attributes across representations constitute a Consistency Enforcer that maintains

internal consistency within an MRE. Our taxonomy of interactions provides a way to

ii

classify interactions based on their semantic characteristics. This classification presents

policies that can be encoded in an Interaction Resolver for resolving the effects of

dependent concurrent interactions on an MRE.

UNIFY contributes to the practice of modeling and simulation. We show how

designers can apply techniques inUNIFY. We present guidelines for maintaining

consistency among concurrent representations.UNIFY is the first known general

framework for achieving effective MRM.

Acknowledgements

It is a myth that a dissertation is the soul-wrenching creation solely of its author’s time,

toil and tenacity. Many people conspired to drag this author kicking and screaming

towards his goal. I thank these people for conspiring to do so.

—— ~~~ ——

I am thankful to Paul Reynolds, my advisor and friend, for giving me guidance and

counsel, and for having faith and confidence in me. His patience in reading draft after draft

of every paper, proposal and idea I wrote up continues to amaze me. No one should be

subjected to the torture of reading my early attempts at technical writing, and thanks to

Paul, no one will. I appreciate Paul’s fine balance between giving me the freedom to

pursue what fired me and reining in my imagination when it got the better of me. I thank

him for always being willing to meet me whenever I barged into his office.

I am grateful to my committee members for their comments and suggestions. I have

benefitted greatly from their advice. I thank Worthy Martin and James French for lending

a sympathetic ear and putting my toils in perspective. It has been a pleasure working with

my colleagues, in particular, Anh Nguyen-Tuong, Rashmi Srinivasa, Sudhir Srinivasan

and Glenn Wasson. Many of the ideas in my work originated in discussions with them. I

am deeply grateful to them for investing time and energy discussing ideas with me and

tolerating my many opinionated digressions. Gabriel Ferrer, John Karro, Allison Powell

and Rashmi Srinivasa deserve credit for reading sections of my work. Their incisive

comments made me re-think how I presented my ideas. Any errors that remain in this

presentation are attributable to my negligence or stubbornness.

I thank the Defense Modeling and Simulation Office, US Army SIMTECH and Janet

Morrow for making it possible for me to do my research.

—— ~~~ ——

This dissertation would not have been possible without Rashmi Srinivasa, my wife and

friend. Her support and encouragement has seen me through tumultuous times. I thank her

for simultaneously brandishing a sword to quell the demons of my insecurities, a spoon to

bake delectable desserts and a wand to bring joy to my life in so many different ways.

I thank my parents, Subramanian and Shanta Natrajan, and brother, Arvind Natrajan,

for their unflagging belief that despite their incomprehension about what I do, I must be

saving the world. I am indebted to my parents for inculcating in me the dedication and

discipline to do whatever I undertake well. I cannot thank my brother enough for showing

me what it is to be a free spirit.

I have been fortunate to have many friends who cherish me despite my eccentricities. I

risk doing them a disservice by not mentioning all of them here, but plead paucity of

space. I thank Glenn Wasson for goading me through weight-lifting, imploring me to spike

the volleyball, teaching me about baseball and being a sink for my bile during our coffee

klatsches. I thank Anh Nguyen-Tuong for letting me ramble about programming

languages at three in the morning, putting me in my place at racquetball and being a friend

to me in my early days at UVa. I thank Suresh Balasubramaniam, Karine Boulle, Aaron

Cass, John Jones, Gopal Kumar, Sally McKee, Venkataraman Pallassana, John Regehr,

Prakash Vachaspati, Ravichandran Vancheeswaran, Murtuza Vasowalla, Aruna

Viswadoss, Soumya Viswanathan, Chenxi Wang and Jennifer Wong for many good times.

Finally, I am thankful for the many diversions I have enjoyed during my sojourn here.

Without them, crossing over to the realms of insanity would have been entirely within

reach. My various hobbies, my books, my cooking, and beautiful, beautiful Charlottesville

have connived to ensure that the road to my goal was not as bumpy as it could have been.

vi

There is a time for some things, and a time for all things;
a time for great things, and a time for small things. …

But all in good time.
— Miguel de Cervantes,Don Quixote

Table of Contents

Abstract . i

Acknowledgements. iii

Table of Contents . vi

List of Figures . xi

List of Tables . xiv

List of Symbols . xvi

Chapter 1 Introduction. 1

1.1 Background. 3

1.2 UNIFY — An Overview. 5

1.3 Requirements for Effective MRM . 8

1.4 Claims and Contributions . 9

1.5 Evaluation . 10

1.6 Outline. 12

Chapter 2 Related Work . 14

2.1 MRM Applications . 14
2.1.1 Multi-Resolution Graphical Modelling. 15
2.1.2 Hierarchical Autonomous Agents. 15
2.1.3 Blackboard Systems . 16
2.1.4 Cache Coherence . 16
2.1.5 Abstract Data Types and Object Inheritance. 16
2.1.6 Views in Databases and Integrated Environments 17

vii

2.1.7 Nested Climate Modelling . 17
2.1.8 Integrated Molecular Modelling . 18
2.1.9 Multi-Level Computer Games . 18
2.1.10 Battlefield Simulations . 19
2.1.11 MRM Applications Summary. 19

2.2 Multi-Model Execution. 20
2.2.1 Selective Viewing . 21
2.2.2 Aggregation-Disaggregation. 22

2.2.2.1 Full Disaggregation. 23
2.2.2.2 Partial Disaggregation. 23
2.2.2.3 Playboxes . 24
2.2.2.4 Pseudo-Disaggregation . 25

2.2.3 Variable Resolution Modelling . 26

2.3 Maintaining Consistency among Concurrent Representations 27

2.4 Chapter Summary . 31

Chapter 3 Foundation . 32

3.1 Model . 32

3.2 Interactions . 37

3.3 Multi-models. 41
3.3.1 Cross-model Relationships . 43
3.3.2 Mapping Functions . 43
3.3.3 Time-Steps . 44

3.4 Evaluation . 46

3.5 Assumptions and Rationale. 49

3.6 Chapter Summary . 52

Chapter 4 Fundamental Observations . 53

4.1 Problems with Aggregation-Disaggregation. 54
4.1.1 Mapping Inconsistency . 55
4.1.2 Chain Disaggregation . 56
4.1.3 Transition Latency . 56
4.1.4 Thrashing . 57
4.1.5 Network Flooding . 57
4.1.6 Cross-Level Interactions . 58
4.1.7 Summary of Problems with Aggregation-Disaggregation 58

4.2 Fundamental Observations . 59
4.2.1 Fundamental Observation 1 . 59
4.2.2 Fundamental Observation 2 . 62
4.2.3 Fundamental Observation 3 . 64

viii

4.2.4 Fundamental Observation 4 . 65

4.3 Chapter Summary . 69

Chapter 5 Multiple Representation Entities. 70

5.1 Description of an MRE . 72

5.2 Challenges. 73

5.3 Rationale . 75

5.4 Execution of an MRE . 77
5.4.1 Maintaining Consistency . 78

5.4.1.1 Temporal Consistency. 78
5.4.1.2 Mapping Consistency . 80

5.4.2 Resolving Concurrent Interactions . 81
5.4.3 Storing Attributes in a Core . 81
5.4.4 Comparing against Alternative Approaches 84

5.4.4.1 Comparing against aggregation-disaggregation 84
5.4.4.2 Comparing against selective viewing 85

5.5 Benefits of MREs . 86

5.6 Limitations of MREs . 88

5.7 Chapter Summary . 92

Chapter 6 Consistency Enforcers . 95

6.1 Constructing an Attribute Dependency Graph . 96
6.1.1 Assigning Nodes to Attributes . 99
6.1.2 Assigning Arcs to Dependencies . 100
6.1.3 Assigning Semantics to Dependencies . 101

6.1.3.1 Cumulative and Distributive Dependencies 102
6.1.3.2 Interaction and Modelling Dependencies 103
6.1.3.3 Selecting Dependencies . 103
6.1.3.4 Properties of Dependency Classes 104
6.1.3.5 Examples of Dependency Classes 105
6.1.3.6 Dependency Weights. 106
6.1.3.7 Interaction Semantics . 109

6.1.4 Summary of Attribute Dependency Graphs 109

6.2 Selecting Mapping Functions . 110

6.3 Traversing an ADG. 111
6.3.1 Algorithm for Traversing an ADG . 112
6.3.2 Cyclic Dependencies. 114
6.3.3 Unplanned Dependencies . 116
6.3.4 Traversal Path . 116

6.4 Possible Implementations of a Consistency Enforcer. 118
6.4.1 As-Is . 118

ix

6.4.2 Spreadsheets . 119
6.4.3 Attribute Grammars . 120
6.4.4 Mediators . 122
6.4.5 Constraint Solvers. 122

6.5 Chapter Summary . 124

Chapter 7 Interaction Resolvers . 125

7.1 Interactions . 126

7.2 Serialization . 127

7.3 Abandoning Isolation . 130

7.4 Switches — A Simple System . 133
7.4.1 Unconstrained System . 133
7.4.2 Constrained System . 134
7.4.3 Dependent Concurrent Interactions . 136
7.4.4 Complexity . 137

7.5 A Taxonomy of Interactions . 139
7.5.1 Properties of a Taxonomy of Interactions. 139
7.5.2 Interaction Characteristics and Classes. 141

7.5.2.1 Request and Response. 141
7.5.2.2 Certain and Uncertain . 142
7.5.2.3 Combining Characteristics . 143

7.5.3 Evaluating the Taxonomy . 143
7.5.4 Resolving Effects of Concurrent Interactions. 144
7.5.5 Policies for Resolving Effects of Interactions. 148

7.6 Constructing an Interaction Resolver . 150
7.6.1 Operation of an IR . 150
7.6.2 An Example IR . 154

7.7 Chapter Summary . 159

Chapter 8 ApplyingUNIFY: A Process. 160

8.1 Guidelines for MRM Designers . 161

8.2 UsingUNIFY with a Specification Methodology. 163

8.3 Process for Effective MRM . 166

Chapter 9 Evaluation . 170

9.1 EvaluatingUNIFY in terms of MRM Requirements 170
9.1.1 Multi-Representation Interaction . 171
9.1.2 Multi-Representation Consistency . 172
9.1.3 Cost-Effectiveness. 173

9.1.3.1 Assumptions . 174
9.1.3.2 Consistency Cost. 177

x

9.1.3.3 Simulation cost . 179
9.1.3.4 Expected Costs . 180
9.1.3.5 Experimental Costs . 180
9.1.3.6 Summary of Cost-Effectiveness 187

9.1.4 Summary of Evaluation in Terms of MRM Requirements 187

9.2 ApplyingUNIFY to Existing Models . 187
9.2.1 Military Models . 188
9.2.2 Autonomous Agent Model . 189

9.3 Limitations . 191

9.4 Chapter Summary . 193

Chapter 10 Conclusions. 194

10.1 Contributions. 195

10.2 Future Work . 199

Appendix A Examples of Multiple Representations . 201

Appendix B Joint Task Force Prototype . 216

Appendix C Joint Precision Strike Demonstration . 241

Appendix D Real-time Platform Reference. 264

Appendix E Hierarchical Autonomous Agents. 287

Indexed Glossary. 300

References . 310

xi

A foolish consistency is the hobgoblin of little minds …
— Ralph Waldo Emerson,Self-Reliance

List of Figures

Figure 1: Our Approach to MRM. 6

Figure 2: Full Disaggregation. 23

Figure 3: Partial Disaggregation. 24

Figure 4: Playbox . 25

Figure 5: Pseudo-disaggregation . 26

Figure 6: Possible compatible time-steps. 45

Figure 7: Mapping Inconsistency . 55

Figure 8: Chain Disaggregation . 56

Figure 9: Fundamental Observation 1 . 60

Figure 10: Reducing transition overheads by limiting propagation of transitions . . . 63

Figure 12: Dependency considerations . 64

Figure 11: Concurrent multi-level interactions . 64

Figure 13: Time-steps — Equal and In-phase . 66

Figure 14: Time-steps — Equal but not In-phase. 67

Figure 15: Time-steps — Unequal and not In-phase . 67

Figure 16: Compatible Time-steps . 68

Figure 17: Eliminating time-step differentials . 68

Figure 18: An MRE . 72

Figure 19: Multi-representation Interaction . 72

Figure 20: Execution of an MRE . 78

Figure 21: T-joint entity . 79

Figure 22: Core attributes. 82

xii

Figure 23: Eliminating Chain Disaggregation . 86

Figure 24: Reducing Network Flooding. 87

Figure 25: Simple ADG . 96

Figure 26: Platoon-Tanks MRE . 98

Figure 27: Nodes in the ADG for the Platoon-Tanks MRE 100

Figure 28: Dependencies in the ADG for the Platoon-Tanks MRE 101

Figure 29: Dependency Classes in the ADG for the Platoon-Tanks MRE. 106

Figure 30: Cumulative Weights . 106

Figure 31: Distributive Weights . 107

Figure 32: Mapping Value Spaces . 110

Figure 33: Mapping Changes in Values . 111

Figure 34: Algorithm for ADG Traversal. 113

Figure 35: Applying the Effects of an Interaction . 114

Figure 36: Propagation of Interaction Effects . 115

Figure 37: Clients and Server . 127

Figure 38: Switches . 133

Figure 39: State Transition Diagram . 134

Figure 40: Constrained Switches . 134

Figure 41: New States . 134

Figure 42: Constrained State Transition Diagram . 135

Figure 43: Transitions on Concurrent Interactions. 137

Figure 44: Classes of Interactions . 143

Figure 45: Concurrent Interactions Affecting Sets of Attributes 146

Figure 46: Independent Concurrent Response and Request Interactions. 146

Figure 47: Algorithm for Resolving Interactions . 153

Figure 48: Process for Effective MRM . 168

Figure 49: Entity in Synthetic Application. 177

Figure 50: AD — Consistency Cost. 178

Figure 51: SV — Consistency Cost . 178

Figure 52: UNIFY — Consistency Cost. 179

Figure 53: (Left to Right) AD, SV andUNIFY — Simulation Cost 179

Figure 54: Expected Costs . 180

Figure 55: Simulation Cost varying with Number of Interactions 184

Figure 56: Consistency Cost varying with Number of Interactions 184

Figure 57: Simulation Cost varying with Rate of Simulation 184

Figure 58: Consistency Cost varying with Rate of Simulation 185

xiii

Figure 59: Simulation Cost varying with Number of Sub-entities. 185

Figure 60: Consistency Cost varying with Number of Sub-entities. 185

Figure 61: Simulation Cost varying with Number of Levels 186

Figure 62: Consistency Cost varying with Number of Levels 186

Figure 63: AD, SV andUNIFY — Cost Comparison . 186

Figure 64: Marcus and Archway . 190

Figure 65: MRE for planner and PA system representations 190

Figure 66: Platoon-Tanks MRE . 217

Figure 67: ADG for the JTFp Platoon-Tanks MRE . 227

Figure 68: JTFp Platoon-Tanks MRE. 239

Figure 69: Platoon-Tanks MRE . 242

Figure 70: ADG for the JPSD Platoon-Tanks MRE. 251

Figure 71: JPSD Platoon-Tanks MRE . 262

Figure 72: Platoon-Tanks MRE . 265

Figure 73: ADG for the RPR Platoon-Tanks MRE . 275

Figure 74: RPR Platoon-Tanks MRE . 285

Figure 75: Marcus MRE. 288

Figure 76: ADG for the Marcus MRE . 292

Figure 77: Marcus MRE. 298

xiv

There is no excellent beauty that hath not
some strangeness in the proportion.

— Francis Bacon,Of Beauty

List of Tables

Table 1: Evaluation of Domains employing MRM. 20

Table 2: Summary of Assumptions made by MRM approaches 76

Table 3: Comparison among MRM approaches . 85

Table 4: Summary of Benefits of MREs. 88

Table 5: Summary of Limitations of MREs . 92

Table 6: Comparison among MRM approaches . 94

Table 7: Assigning Cumulative and Distributive Dependencies. 104

Table 8: Effects of an Interaction . 117

Table 9: Example Concurrent Interactions . 154

Table 10: Effects of Concurrent Interactions . 155

Table 11: Example Attribute Relationship Table . 165

Table 12: Example Concurrent Interactions Table . 166

Table 13: Cost Comparison among MRM approaches. 180

Table 14: Object Class Structure Table for JTFp . 219

Table 15: Attribute/Parameter Table for JTFp . 220

Table 16: Attributes of Platoon, Tank1 and Tank2 (JTFp) 222

Table 17: Attribute Relationship Table for Platoon-Tanks MRE in JTFp 225

Table 18: Mapping Functions for JTFp Platoon-Tanks MRE. 228

Table 19: Object Interaction Table for JTFp. 230

Table 20: Effects of Interactions for JTFp Platoon-Tanks MRE 232

Table 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE 237

Table 22: Object Class Structure Table for JPSD . 244

xv

Table 23: Attribute/Parameter Table for JPSD . 245

Table 24: Attributes of Platoon, Tank1 and Tank2 (JPSD) 248

Table 25: Attribute Relationship Table for Platoon-Tanks MRE in JPSD 252

Table 26: Mapping Functions for JPSD Platoon-Tanks MRE 253

Table 27: Object Interaction Table for JPSD . 256

Table 28: Effects of Interactions for JPSD Platoon-Tanks MRE 257

Table 29: Concurrent Interactions Table for JPSD Platoon-Tanks MRE 261

Table 30: Object Class Structure Table for RPR . 267

Table 31: Attribute/Parameter Table for RPR. 268

Table 32: Attributes of Platoon, Tank1 and Tank2 (RPR) . 270

Table 33: Attribute Relationship Table for Platoon-Tanks MRE in RPR 273

Table 34: Mapping Functions for RPR Platoon-Tanks MRE 276

Table 35: Object Interaction Table for RPR . 278

Table 36: Effects of Interactions for RPR Platoon-Tanks MRE 279

Table 37: Concurrent Interactions Table for RPR Platoon-Tanks MRE. 284

Table 38: Attributes of planner and PA (Marcus) . 290

Table 39: Attribute Relationship Table for Marcus MRE. 291

Table 40: Mapping Functions for Marcus MRE. 294

Table 41: Interactions sent and received by the Marcus MRE 296

Table 42: Concurrent Interactions Table for Marcus MRE. 297

xvi

Education that consists in learning things and not the meaning of them
is feeding upon the husks and not the corn. — Mark Twain

… the learned have the right and the duty to use an obscure language that is
comprehensible only to their fellows. — Umberto Eco,The Name of the Rose

List of Symbols

a, b, v Attribute
v0, v1, … Value for attribute
δa, δv1, δv2 Change to an attribute
<a, δa> Tuple of attributea and changeδa to a
P, Q, T, E1, E2, T1, T2, S1, S2, … Entity
P, Q, R Set of attributes
r Relationship
P → Q Relationship between attribute setsP andQ
f, g Mapping function
I, J, I1, I2, … Interaction
I.affects Effects determined by semantics of interactionI
I.affects+ Effects of interactionI determined by dependencies
I.affects∗ Effects of interactionI
E(I) Effects of interactionI
I • J Concurrent occurrence of interactionsI andJ
E(I) ◊ E(J) Applying E(I) andE(J) in some sequential order
E(I), E(J) Applying E(I) beforeE(J)
t, t´, ti, ti+1, tj, tj+1, t0, t1, … Observation time, simulation time
[ti, ti+1] Time-step
τ Duration of time-step
∆P(ti) Changes to attribute setP during time-step [ti-1, t]
T, TA, TB, TM Sequence of observation times
Rep, RepA, RepB Set of all attributes in a model
Rel, RelA, RelB Set of all relationships in a model
Int, IntA, IntB Set of all interactions in a model
Model, ModelA, ModelB Model
LevelA, LevelB Representation level
Rep(t) State of a representationRep at timet

xvii

Rel(t) Relationships inRel that hold at timet
Int(t) Set of interactions inInt sent or received at timet
Int(t)k kth interaction inInt(t)
Model(t) Model at timet
F(Rep(t), E(I)) Function that appliesE(I) to stateRep(t)
RepSeq Sequence of representation states
RelSeq Sequence of relationships that hold
IntSeq Sequence of set of interactions sent or received
RepM Set of all attributes in a multi-model
RelM Set of all relationships in a multi-model
Relcross-model Set of cross-model relationships in a multi-model
IntM Set of all interactions in a multi-model
ModelM Multi-model
⊕ Vector sum
➛ Transition in a state diagram
R(a) Read operation on attribute/variablea
W(a) Write operation on attribute/variablea
Z1, Z2, Z3 Schedule of operations

1

There are more things in heaven and earth, Horatio,
than are dreamt of in your philosophy.

— William Shakespeare,Hamlet

Chapter 1

Introduction

Integrating multiple, independently-developed models of overlapping phenomena is

the crux of multi-model design. Experience shows that this integration is a hard problem

because of semantic mismatches between the models, and because current approaches

make sub-optimal trade-offs between run-time performance and consistency of the

models. Current practice involves employing one of two basic approaches: selective

viewing, which may compromise performance for consistency, and aggregation-

disaggregation, which may compromise consistency for run-time performance. Often, the

precise conditions under which integration can be done effectively are not entirely clear.

This dissertation addresses the integration of independently-developed models in a

manner that reconciles demands for run-time performance and consistency of the models

when concurrent interactions occur.

In this dissertation, we present a new approach,UNIFY, for integrating multiple

models. The main contributions of this work are two-fold. First, we show thatUNIFY

improves on the run-time performance of selective viewing while simultaneously

2

improving on the consistency provided by aggregation-disaggregation. In other words, it

achieves a better balance of these competing concerns than either of the two approaches in

use today. Our thesis is that multiple models can be integrated such that their joint

execution is as consistent as selective viewing but with lower costs than selective viewing

or aggregation-disaggregation. An approach that satisfies our thesis achieves “effective”

joint execution. In this dissertation, we present requirements for effective joint execution,

and show how current approaches fail to satisfy them. We define concurrent

representations as the representations of jointly-executing models. We define maintaining

consistency as ensuring that the states of representations do not conflict. Effective joint

execution of multiple models can be achieved by maintaining consistency among their

representations. Consistency maintenance among concurrent representations is the

cornerstone ofUNIFY.

The second contribution of this work is identifying the conditions under which

multiple, independently-developed models can be integrated. This knowledge enables

designers to produce models that can be composed later into a multi-model. Our work

shows that existing models can be integrated only to the extent that they satisfy these

conditions. The extent to which existing models do meet these conditions is not known,

but the difficulty that designers experience in practice suggests that there is room for

improvement. We present four fundamental observations about jointly-executing models,

which form the basis of the techniques and processes that are part ofUNIFY. We apply

UNIFY to existing models and present guidelines for multi-model designers.

3

1.1 Background

Modelling is a method to study a phenomenon without involving the phenomenon

itself. A model captures essential parts of a phenomenon, such as its constituent processes

and interacting objects, which are called entities. Typically, models have representation,

which is a means of describing objects and processes within a model. Simulation is a

technique to execute models, typically on a computer. Modelling and simulation provide

the opportunity to study a phenomenon relatively inexpensively, reproducibly and, by

reducing the number of controlling factors, at a convenient level of abstraction.

Multiple models executing jointly may capture combined semantics that cannot be

captured by any one model alone. Multiple models may be constructed in order to study

different parts of a phenomenon. The multiple models together constitute a multi-model.

When the multiple models execute at overlapping times and exchange information with

one another, they are said to execute jointly. Davis and other researchers advocate jointly

executing multiple models of a phenomenon [DAVIS93]. Constructing and maintaining a

new model for every combination of semantics may involve high cost and effort on the

part of designers. In contrast, simple and well-designed models executing jointly may be

able to capture such semantics. Effective joint execution of well-designed models can lead

to a multi-model that satisfies its users’ requirements. Constructing well-designed models

is an important task; however, we restrict our work to the effectiveness of joint execution.

Multi-representation modelling (MRM) is the joint execution of multiple models of the

same phenomenon.

Currently, two basic approaches exist for executing multiple models jointly: selective

viewing and aggregation-disaggregation. We explain these approaches with a brief

4

example. Consider a chemical reaction for which two models exist: a molecular model,

ModelA, and an atomic model,ModelB. Since the reaction can be studied from both

perspectives, it may be required for the models to execute jointly. In the selective viewing

approach, the more detailed model of the two, in this caseModelB, is executed alone. The

execution ofModelA is emulated by selecting a view, i.e., filtering information, from the

state ofModelB when necessary. Since onlyModelB is executed, maintaining consistency

between the two models is straightforward. However, sinceModelB is more detailed,

executing it entails higher resource consumption thanModelA. Moreover, sinceModelA is

not executed, selective viewing does not capture the combined semantics of the two

models. In the aggregation-disaggregation approach, as far as possible, the less detailed

model of the two, in this caseModelA, is executed alone. When more detail is required, the

execution ofModelA is suspended andModelB is executed. Subsequently, when detail is

not required, the execution ofModelB may be suspended and the execution ofModelA

resumed. SinceModelA is less detailed, executing it entails lower resource consumption

cost thanModelB. Since the currently-executing model may change at different times,

maintaining consistency between the models is important for maintaining semantic

continuity. However, for reasons that we will explain in §4.1, maintaining consistency in

this manner is hard, i.e., it can be error-prone and resource-intensive. Moreover,

aggregation-disaggregation does not capture the combined semantics of the two models

because at any given time only one of the models is executed.

Both these approaches are based on sound principles; however, we show that they can

fail to achieve effective MRM in many instances [REYN97]. Selective viewing is based on

the principle that high detail is more important than performance or abstraction.

5

Aggregation-disaggregation is based on the principle that performance and abstraction can

be gained by providing high detail infrequently. Rigidly adhering to one principle or the

other has caused MRM to become ineffective in many instances. With our approach,

UNIFY, we show how to balance these competing principles, thus eliminating problems

inherent in alternative approaches.

1.2 UNIFY — An Overview

UNIFY is a framework for maintaining consistency among representations of jointly-

executing models. It is based on four fundamental observations that capture general

characteristics of jointly-executing models [REYN97]. Current MRM approaches

encounter a number of problems because they have failed to appreciate these

characteristics. The fundamental observations indicate that consistent MRM can be

achieved at a lower cost than other approaches by maintaining consistency among

multiple representations when concurrent interactions occur.

When multiple models of the same phenomenon execute jointly, significant problems

can arise if the models conflict. Eliminating or avoiding these conflicts has been a hard

problem for MRM designers. Some multi-models may satisfy their users’ requirements

despite such conflicts. However, we believe that maintaining consistency among the

representations of a multi-model is a systematic and disciplined approach for constructing

multi-models that satisfy their users’ requirements. This approach benefits multi-models

that require consistency, as we will show in the rest of this dissertation. This approach

benefits multi-models that tolerate relaxed or no consistency as well, because it shows how

other requirements for effective joint execution can be satisfied.

6

We avoid problems encountered in current approaches by making multiple

representations of an entity co-exist at all times within a Multiple Representation Entity

(MRE). For example, in Figure 1, E1 is an MRE for an entity in multiple models,ModelA

andModelB. An MRE is a contrast to selective viewing and aggregation-disaggregation,

wherein either the entity inModelA or the entity inModelB, but not both, would exist at

any given time. As we will show in §2.1, designers in many domains, such as multi-

resolution graphical models, hierarchical autonomous agents and molecular modelling

have adopted approaches similar to creating MREs. MREs, a part ofUNIFY, maintain the

representations of multiple models at all times.

An MRE permits concurrent changes to any of its representations. Changes to states of

representations occur as a result of interactions among objects and processes. Interactions

are means by which objects and processes communicate or try to influence the behaviour

of one another. Interactions may change multiple representations of objects or processes.

One challenge inUNIFY is maintaining consistency among multiple representations

when the state of any representation changes. In Figure 1, when E1 interacts with either E2

or E3, the multiple representations within E1 must be consistent. A Consistency Enforcer

E3

E2
ModelA

ModelB

Multiple Representation Entity E1

Interactions

Interactions

Interaction
Resolver

ModelA Representation

ModelB Representation

FIGURE 1: Our Approach to MRM

Consistency
Enforcer

7

(CE) maintains consistency among the multiple representations within an MRE by

capturing relationships among parts of the representations. A CE consists of an Attribute

Dependency Graph (ADG) and mapping functions. An ADG captures dependencies

among representations. When the state of a representation changes, a CE traverses an

ADG to determine how the state of other representations must change. The CE performs

the actual changes by invoking application-specific mapping functions that translate

changes in one attribute to changes in others. As part ofUNIFY, we show how to construct

an ADG, select mapping functions and construct a CE for an MRE.

Another challenge inUNIFY is ensuring that the effects of interactions that occur at

overlapping simulation times are applied correctly. For example, in Figure 1, E1’s

behaviour must be meaningful even when E2 and E3 interact with E1 concurrently.

Interactions occurring at overlapping times are called concurrent interactions. Concurrent

interactions may be dependent, i.e., have related effects, for example, precluding or

enhancing one another. Traditionally, concurrent interactions have been serialized, i.e.,

applied one after another in some arbitrary order. However, serialization can cause

incorrect behaviour because the effects of dependent concurrent interactions are not

reflected meaningfully. For example, in a model of a chemical reaction, E1 may represent

some quantity of an acid, E2 may represent a reagent and E3 a catalyst. Adding a reagent

or catalyst is an interaction in this model. When both E2 and E3 are added to E1, the rate of

the reaction may increase more than the sum of the increases caused by adding either E2 or

E3 alone. Serialization can capture the sum of the increases, but not the increase caused

when both E2 and E3 are added. Therefore, in this model, serialization produces incorrect

results. As part ofUNIFY, we present a taxonomy of interactions that captures the

8

semantic relations among concurrent interactions and presents mechanisms to resolve

them. Also, we show how to construct an Interaction Resolver (IR) for an MRE in order to

resolve the effects of dependent concurrent interactions.

MREs, ADGs, a taxonomy of interactions, and processes for constructing a CE and an

IR are part ofUNIFY. Multi-model designers can achieve consistent MRM at lower cost

than other approaches by applying these techniques and processes.

1.3 Requirements for Effective MRM

In jointly-executing models, entities in all models must interact consistently and cost-

effectively. Although these requirements seem self-evident, alternative techniques for

MRM often fail to satisfy them. We measure the success of an MRM approach by

analysing whether the approach satisfies these requirements.

Often, multi-models are unsatisfactory because they become inconsistent or expensive.

An effective MRM approach must satisfy at least the following reasonable requirements:

R1: Multi-representation Interaction : Entities in each model may initiate and

receive interactions that may cause changes to the entities concurrently.

Dependent concurrent interactions must be permitted.

R2: Multi-representation Consistency: The representations of jointly-executing

models must be consistent with one another.Temporal consistencyrequires

that two entities interacting with a third entity at overlapping simulation times

have consistent views of the third entity.Mapping consistencyrequires that

entity properties common to different models be translated such that repeated

translations in a given period do not cause abnormal behaviour in the entity

9

during that period. Multi-representation consistency is interesting only if the

multiple models are related to one another.

R3: Cost-effectiveness: The costs of simulating multiple models and maintaining

consistency among them should be lower than alternative approaches.

These requirements represent the conditions under which multiple models can be

integrated effectively. We will evaluateUNIFY and alternative MRM approaches such as

aggregation-disaggregation and selective viewing with regard to these requirements. We

will consider an MRM approach sufficient only if it satisfies all three requirements.

1.4 Claims and Contributions

UNIFY benefits the practice of modelling and simulation because it enables designers

to build consistent multi-models with lower run-time costs than other approaches. We

have examined the problem of joint execution of multiple models in detail, and created

general and useful techniques for consistency maintenance in concurrent representations.

Rather than conceiving a detailed solution for every application we analysed, we

concentrated on a process that MRM designers may modify for their applications.

We present a sufficient and practical framework for MRM. Our framework,UNIFY, is

a sufficient approach to MRM because it satisfies the three requirements for MRM: R1,

R2 and R3. Moreover,UNIFY is a practical approach to MRM because it can be applied in

conjunction with a methodology for specifying models.

The major contributions of our work are the fundamental observations, MREs, ADGs,

the taxonomy of interactions, a cost study and the guidelines for designers. All of these

contributions further the existing practice in modelling and simulation. The taxonomy of

10

interactions offers a spectrum of solution choices for resolving concurrent interactions in

any domain. We expectUNIFY to be useful in a variety of domains, such as hierarchical

autonomous agents, climate modelling and graphical modelling.

A substantial benefit of our work to multi-model designers is a set of guidelines for

consistency maintenance. The guidelines lead designers from their joint execution

requirements to the design of consistent MREs. We augment Object Model Templates — a

methodology for specifying objects and the interactions among them — with

specifications for concurrent interactions. IncorporatingUNIFY into an existing

specification methodology enables designers to understand our work in terms of

techniques already familiar to them. The guidelines provide designers with an easy

reference for incorporating consistency maintenance in their models.

Our work will benefit many modellers. Designers may incorporate consistency in their

applications by following our guidelines. Analysts may examine the justification behind

the guidelines. Our analyses of MRM approaches cautions modellers entering the field of

MRM: joint execution is neither trivial nor easy. Finally, we have laid the foundation for

future explorations and refinements.

1.5 Evaluation

In this dissertation, we show how multi-model designers can achieve consistency

similar to selective viewing but at a lower cost than either selective viewing or

aggregation-disaggregation. We show how designers can employ an ADG, mapping

functions, a taxonomy of interactions and policies for concurrent interactions in order to

maintain consistency within an MRE when concurrent interactions occur. We measure the

11

costs involved in executing multiple models jointly and show that these costs are lower in

UNIFY than in selective viewing and aggregation-disaggregation. We show howUNIFY

satisfies the requirements for effective MRM, R1, R2 and R3, while other approaches do

not even if they make similar assumptions as we do. We apply the techniques and

processes inUNIFY to four multi-models in order to provide empirical evidence that

UNIFY is a practical framework. Finally, we show howUNIFY can be applied in

conjunction with Object Model Template, a methodology for specifying multi-models.

The three MRM requirements, R1, R2 and R3, capture desirable goals for the joint

execution of multiple models. Satisfying these requirements supports our thesis that a

multi-model can be constructed in a consistent manner and with reduced run-time costs.

The requirements themselves do not outline an approach for effective MRM. In other

words, approaches other thanUNIFY for achieving effective MRM are possible. Finally,

the requirements may be part of a larger set of requirements for the joint execution of

multiple models. Identifying the members of the larger set is a topic for future work.

Our work presents a general approach for effective MRM. We do not address how

effective MRM can be achieved for specific models. However, we do present the

conditions under which such models may be executed jointly. We provide techniques and

processes that designers can employ to satisfy most of these conditions. We have been

unable to provide techniques for achieving compatible time-steps (discussed in §3.3.3).

Although this inability is a limitation of our work, we show how compatible time-steps

eliminate inconsistencies caused by time-step differentials, thus benefiting multi-model

designers. We regard our work as a preliminary step towards a detailed framework that

12

guides designers in the design of their multi-models. We expect thatUNIFY, with future

additions, will be that framework.

We envision designers routinely constructing simple models that can be integrated and

jointly executed as a multi-model. A number of issues must be resolved before this vision

becomes reality. For example, constructing models can be complex, verifying them can be

difficult and reconciling the semantic differences between them can cause problems. Our

work addresses only one of these important issues: the joint execution of the models. Our

work focusses on consistency maintenance in concurrent representations. We show that

maintaining consistent representations for multiple models that execute jointly leads to

effective MRM.

1.6 Outline

In Chapter 2, we briefly present applications that adopt the approach of maintaining

concurrent representations. Detailed discussions of these applications are in Appendix A.

We present alternative MRM approaches wherein concurrent representations are not

maintained. Also, we present work related to key concepts inUNIFY. In Chapter 3, we lay

the foundation forUNIFY by introducing and defining terms that we will use throughout

this dissertation. Also, we discuss the criteria that we will use to evaluate MRM

approaches. In Chapter 4, we present and justify some fundamental observations about

MRM. These observations arise from empirical studies of many MRM applications. Any

solution to the MRM problem must incorporate these observations. Our approach

recommends maintaining consistency among concurrent representations of multiple

models. We present our framework-based approach to MRM,UNIFY, in Chapter 5 and

13

discuss the technical challenges with such an approach. In Chapter 6, we address the first

challenge — keeping multiple representations consistent when interactions change any

representation. In Chapter 7, we address the second challenge — resolving the effects of

concurrent interactions. In Chapter 8, we present a process for applying the techniques

that are part ofUNIFY and present guidelines for designers of multi-model applications.

In Chapter 9, we evaluateUNIFY and briefly present case studies of applying it. We

present the case studies in detail in Appendices B, C, D and E. We conclude in Chapter 10

by discussing the contributions of our work to the practice of modelling and simulation

and presenting some areas for future work.

14

The vision of one man lends not its wings to another man.
— Kahlil Gibran,The Prophet

Chapter 2

Related Work

Multi-Representation Modelling (MRM) — the joint execution of different models of

the same phenomenon — has been explored in applications in a number of domains, from

multi-resolution graphics and battlefield simulations to climate models and molecular

models. In most of these domains, MRM has proven beneficial for some applications no

matter what MRM approach has been used. In §2.1, we present example applications that

employ multi-models. In §2.2, using examples from battlefield simulations, we describe

alternative MRM approaches, wherein all but one model may suspend execution. In §2.3,

we describe work that has influenced our approach.

2.1 MRM Applications

We present a sampling of domains in which MRM in some form has been employed.

For these domains, MRM has been considered beneficial for many applications. A detailed

discussion of domains employing MRM is in Appendix A along with evaluations of

whether the MRM approaches satisfy R1, R2 and R3.

15

2.1.1 Multi-Resolution Graphical Modelling

In multi-resolution graphical modelling, the system maintains multiple

representations, orlevels of detail, of an object and renders the appropriate representation

depending on the object’s distance from the viewer [CLARK76]. Coarser levels of detail for

an object employ fewer polygons, thus reducing the time required to render the object.

Moreover, coarse levels of detail depict the object satisfactorily when the perceived size of

the object relative to the viewing area is small, for example, when the object is distant

from the viewer. In multi-resolution graphical models, researchers concentrate on

generating levels of detail automatically before run-time; at run-time, an appropriate level

is selected for visually-appealing rendering [GAR95] [HECK94] [HECK97] [LUEBKE97]

[PUPPO97]. A few applications permit a user to change a level of detail at run-time, thus

requiring re-generation of other levels of detail [BERM94] [LEE98] [ZORIN97].

2.1.2 Hierarchical Autonomous Agents

Hierarchical autonomous agents jointly execute multiple layers (e.g., a deliberative

layer [SACER74] and a reactive layer [AGRE87]) in order to utilise the capabilities of each

layer [ALBUS97] [BON97] [FIRBY87] [GAT92] [HANKS90] [LAIRD91] [SIM94] [WAS98A].

Multiple layers enable an agent to pre-plan some of the steps required to fulfill its goal yet

exhibit robust behaviour when unexpected or urgent situations occur. Usually, each layer

maintains representation about the agent’s goal or surroundings [BROOKS86] [BRILL98].

Eliminating inconsistencies among dependent parts of the representations for multiple

layers is an open issue.

16

2.1.3 Blackboard Systems

In blackboard systems such asHearsay-II , many processes write to and read from

a single data structure, called a blackboard [ERMAN80]. Hearsay-II translates spoken

sentences into the corresponding alphabetic representation.Hearsay-II ’s blackboard is

a multi-model; each layer is a different model of a spoken sentence. Layers corresponding

to sentence fragments such as phonemes, words and phrases execute jointly to produce

multiple interpretations of one sentence. Each interpretation is a consistent view of the

sentence. Multiple interpretations are ranked by a credibility metric; the most credible

interpretation is the best translation of the spoken sentence. However, maintaining

multiple interpretations of a sentence is resource-intensive.

2.1.4 Cache Coherence

In a multi-processor configuration, each processor may access a fast local cache in

order to reduce accesses to slow main memory. Processors may read and modify copies of

main memory data stored in their caches. Ensuring that processors access correct versions

of cached data is the cache coherence problem [HENN96] [ARCH86]. The main memory

copy and each cache copy of a datum are concurrent representations of a variable.

Processes issue interactions in the form of read and write operations to any copy. Caches

and main memory copies bear simple relationships, such as equality, with one another.

2.1.5 Abstract Data Types and Object Inheritance

In polymorphic languages, data may have multiple types [CARD85]. Some languages

supportad hocpolymorphism, wherein a datum may be defined multiply, e.g., a union

17

[KERN88] [STROU91] or a perspective [GOLD80] [STEFIK86]. Unions and perspectives

permit one representation of a datum to be viewed in different ways. Unions and

perspectives are not expressive enough to capture relationships among multiple

representations. Object-oriented languages such as Smalltalk-80 [BORN82], Simula-67

[DAHL66] [BIRT73] and C++ [STROU91] support inclusion polymorphism, wherein a

datum may belong to different classes. The languages rely on the typing mechanism and

the contexts in which the datum is used to determine its class. Object-oriented languages

capture limited relationships, such as inheritance, among parts of representations.

2.1.6 Views in Databases and Integrated Environments

In relational database applications, data are abstracted into relations, which essentially

are tables whose rows are tuples and columns are values for members of tuples [CODD70]

[ASTRA76] [STONE76] [LINTON84]. In object-oriented databases, data are abstracted as

relationships among entities [CHEN76] [BALZER85]. A view in a database is derivative,

i.e., the view is a set of relations derived from existing relations or relationships

[CHAM75]. A view in an integrated environment is constructive, i.e., the database is

constructed from individual views [GAR87]. Changes to a view must be translated to

changes in the database [BAN81] [HOR86].

2.1.7 Nested Climate Modelling

In nested climate modelling, Limited Area Models (LAMs), which predict regional

climate, execute jointly with Global Circulation Models (GCMs), which predict wide-

ranging climate changes. The joint execution produces more accurate predictions of the

weather than either alone [GIORGI90] [GIORGI91] [RISBEY96]. Typically, GCM data for

18

large geographic areas are translated to LAM input. LAMs supplied with this input data

perform further computations to predict weather for small geographic areas. Ideally, LAM

data should be translated to GCM input as well in order to account for local factors that

may influence global climate. However, translating GCM data for LAM input is common,

but the reverse translation is an open problem.

2.1.8 Integrated Molecular Modelling

When theoretical studies on the potential energy surfaces for chemical reactions of a

large system are carried out, low-computation low-detail models, such as molecular

mechanics models, are used initially for most of the system, and high-computation high-

detail models, such as molecular orbital methods, are used subsequently for a small part of

the system [MATSU96] [SVEN96A] [HUMBEL96] [SVEN96B]. Such integrated models

enable researchers to study interesting aspects of a reaction in detail without incurring the

cost of modelling the entire reaction in detail. Integrated molecular models permit

interactions at multiple levels and are remarkably consistent with one another. Also,

reported resource consumption is low.

2.1.9 Multi-Level Computer Games

In a number of commercial computer games, players control characters inhabiting a

world displayed at multiple resolutions. Usually, a player interacts at the most detailed

resolution level, with the other resolution levels existing solely to provide the player with a

wider or less-cluttered view of the game world. In a few games, the player may transition

to less-detailed resolution levels and interact at those resolution levels. Typically, players

19

can interact at only one resolution level at a time. In most games, all processing takes

place at the most detailed resolution level.

2.1.10 Battlefield Simulations

A number of battlefield simulations require the joint execution of multiple models, for

example, training models and analysis models [AMG95] [DAVIS93] [DAVIS98] [DIS93]

[DOD94] [REYN94]. Typically, battlefield simulations employ an approach called

aggregation-disaggregation to ensure that entities interact at the same representation level.

Aggregation-disaggregation enables many independently-designed simulations to execute

jointly. However, aggregation-disaggregation scales poorly with large numbers of jointly-

executing models or interacting entities; it can preclude concurrent multi-representation

interactions, give rise to inconsistencies among the multiple representations, and increase

resource consumption.

2.1.11 MRM Applications Summary

In Table 1, we evaluate the MRM approaches employed in the above domains with

regard to our MRM requirements of multi-representation interactions (R1), multi-

representation consistency (R2) and cost-effectiveness (R3). The evaluation here is

intentionally brief; it is meant to highlight shortcomings of previous work. Detailed

evaluations of these domains are in Appendix A. In Table 1, darkly-shaded cells signify

that a domain satisfies a requirement. Lightly-shaded cells signify that a domain satisfies a

requirement poorly. Unshaded cells signify that a domain does not satisfy a requirement.

An ideal MRM approach for each domain will have all three cells shaded darkly.

20

2.2 Multi-Model Execution

MRM approaches such as selective viewing and aggregation-disaggregation execute

only one model at a time. Inselective viewing, only the most detailed model is executed.

In aggregation-disaggregation, at any given time, only one model is executed; depending

on the interactions among entities, the system may change the currently-executing model

by transitioning among models. InVariable Resolution Modelling, processes are modelled

at different resolution levels. At any time, a user may choose to model processes or sub-

processes at higher or lower detail. The system transitions among multiple process models

in order to satisfy the user’s request. In the following sections, we critique each approach

briefly. Most of the examples in these sections are from battlefield simulations because of

our experience and familiarity with that domain.

TABLE 1: Evaluation of Domains employing MRM

Domain R1 R2 R3

Multi-Resolution Graphical Modelling

Hierarchical Autonomous Agents

Blackboard Systems

Cache Coherence

Abstract Data Types and Object Inheritance

Views in Databases and Integrated Environments

Nested Climate Modelling

Integrated Molecular Modelling

Multi-Level Computer Games

Battlefield Simulations

21

2.2.1 Selective Viewing

With selective viewing, only the most detailed model is executed, and all other models

are emulated by selecting information, or views, from the representation of the most

detailed model [DAVIS93]. Selective viewing is employed when modelling a phenomenon

in detail at all times is considered necessary. Low-resolution views of a multi-model are

generated from the most detailed model. While this approach may be suitable for games

because available processing resources can execute the most detailed model at near-real-

time, for more complex models, selective viewing has many disadvantages.

First, executing the most detailed model incurs the highest resource usage cost.

Proponents of selective viewing may argue that the smallest detail can affect the execution

of the complete model (e.g., a butterfly flapping its wings in Columbia can affect the

weather of Western Europe). While this argument may be valid in some cases, for most

models, most of the details can be abstracted reasonably in order to conserve resources.

Second, the most detailed model is likely to be the most complex model. One of the

main benefits of modelling is to make reasonable simplifications in order to study a

phenomenon efficiently. Executing the most detailed model adds complexity instead of

reducing it.

Third, executing the most detailed model may limit the opportunities for performing

some types of analyses. Abstract models enable a user to make high-level decisions

regarding the multi-model. These high-level decisions are likely to change the behaviour

of many entities, thus enabling broad analyses of the multi-model. Enabling equivalent

analyses in a detailed model requires making corresponding low-level decisions. These

22

low-level decisions may not exist or may be difficult to make. Thus, the equivalent

analyses in a detailed model may be impossible or infeasible.

Fourth, some multiple models may not bear hierarchical relationships with one

another, i.e., none of them is the most detailed model. Selective viewing implies that the

most detailed model is a monolithic model. For non-hierarchical models, the monolithic

model must be created by capturing all the details of all the models. Such a monolithic

model requires additional design effort and is likely to be very complex.

The philosophical question of what is the most detailed model can entrap designers

into adding ever-increasing detail to a model by refining entities in the model increasingly.

However, even assuming a designer can escape this trap eventually, selective viewing is

not suitable for the execution of a multi-model because of the above disadvantages.

2.2.2 Aggregation-Disaggregation

Inconsistencies can arise in a multi-model when a low resolution entity (LRE), e.g.,

corp, interacts with a high resolution entity (HRE), e.g., tank. A common MRM approach

is to change the resolution of an entity dynamically to match the resolution of other

interacting entities. This dynamic change is calledaggregation (HREs→ LRE) or

disaggregation(LRE → HREs). Aggregation-disaggregation ensures that entities interact

with one another at the same level by forcibly changing their representation levels

[SMITH94]. Typically, if an LRE interacts with an HRE, the LRE is disaggregated into its

constituents, which interact at the HRE level. LRE-LRE interactions would be at the LRE

level. A disaggregated LRE may be re-aggregated so that it can interact subsequently at

the LRE level. We critique the variations on aggregation-disaggregation [NAT96].

23

2.2.2.1 Full Disaggregation

Full disaggregation involves disaggregating an LRE into its constituent HREs. In

Figure 2, LREs L1 and L2 are disaggregated when they interact with an HRE. Typically,

full disaggregation occurs when an LRE establishes contact (e.g., sensor, line-of-sight)

with an HRE. Full disaggregation ensures that all entities interact at the same

representation levels. However, full disaggregation is often too aggressive — although

only some HREs that constitute an LRE may be involved in a particular interaction, all the

constituent HREs will be disaggregated. Moreover, full disaggregation leads to chain

disaggregation — cascading disaggregation of interacting LREs when one of them

interacts with an HRE (e.g., the disaggregation of LRE L3). The large number of entities

instantiated in full disaggregation may place a high demand on system resources.

Accordingly, full disaggregation is restricted to small-scale multi-models [CALD95A].

2.2.2.2 Partial Disaggregation

Partial disaggregation attempts to overcome the main limitations of full disaggregation

by disaggregating an LRE partly rather than entirely. As seen in Figure 3, a partition is

created inside LRE L2 such that only a part of L2 is disaggregated into HREs that interact

with the disaggregated constituents of LRE L1; the remaining part of L2 is left as an LRE

to interact with LRE L3. For example, in theBBS/SIMNET [HARDY94] [BURD95]

HRE LRE
LRE

LRE
LRE

LRELRE

FIGURE 2: Full Disaggregation

HRE LRE
LRE

LRE
L2L1L1 L2

L3L3

24

linkage, aBBS entity that engages aSIMNET entity is partitioned such that one part

disaggregates and fights a disaggregate-level battle in theSIMNETworld, while the other

part remains aggregated and fights aggregate-level battles in theBBS world.

As seen in Figure 3, partial disaggregation has the potential to control chain

disaggregation. This potential depends on how easily a partition can be constructed inside

an LRE. The criteria for constructing the partition must be chosen carefully to prevent

partial disaggregation from degenerating into full disaggregation.

2.2.2.3 Playboxes

A common aggregation-disaggregation variant is to demarcate a pre-determined

region of the simulated domain, called aplaybox, within which only HREs can participate

[KARR94]. Conceptually, the playbox may be defined in any domain, for example, a

spatial domain such as a simulated battlefield. Entities inside the playbox are

disaggregated while those outside remain aggregated. An LRE that crosses into the

playbox must be disaggregated; likewise, when all the disaggregated constituent entities of

an LRE leave the playbox, they are aggregated into the LRE. The playbox is typically

static in terms of location and boundaries, although it can be dynamic.

Playboxes may force entities to disaggregate unnecessarily, for example, when an

entity enters a playbox but does not interact with others in the playbox (e.g., LRE L2 in

LRE

LRE

HRE LRE
LRE

LRE
LRE

LRELRE

FIGURE 3: Partial Disaggregation

HRE LRE
LRE

LRE

L2

L1L1
L2

L3L3

25

Figure 4). Furthermore, thrashing can occur when the trajectory of an entity causes it to

enter and leave the playbox rapidly. Cross-level interactions across the boundary of the

playbox (e.g., interactions between the disaggregated L2 and LRE L3 in Figure 4) must be

addressed separately. Additionally, static playboxes artificially constrain the region in

which LREs and HREs may interact meaningfully. Projects that use playboxes are

Eagle/BDS-D [STOBER95], Abacus/ModSAF [COX95] andAIM [SEIDEL95].

2.2.2.4 Pseudo-Disaggregation

Consider a situation where an HRE requires the attributes of the constituent HREs of

an LRE but does not interact with them. For example, an Unmanned Airborne Vehicle

(UAV) may obtain aerial pictures that are processed for details of entities observed in an

area. Since LREs are a modelling abstraction, any LRE in the UAV picture must be

depicted as its constituent HREs. In this case, disaggregating the LRE is wasteful since

only a perception of the constituent HREs is required. In pseudo-disaggregation, an HRE

receives low-resolution information from LREs andinternally disaggregates the

information to obtain high-resolution information. For example, in Figure 5, the UAV is an

HRE that pseudo-disaggregates LREs L1 and L2. Pseudo-disaggregation is applicable

when the interaction is unidirectional, i.e., L1 and L2 do not interact with the UAV. The

algorithms used by the UAV to disaggregate L1 and L2 locally must be similar to the ones

HRE LRE
LRE

LRE
LRE

LRELRE

FIGURE 4: Playbox

HRE LRE
LRE

LRE

L2

L1L1
L2

L3L3

LRE

26

L1 and L2 would use to disaggregate themselves, if required. Each HRE must incorporate

rules to disaggregate every LRE in the simulation. Pseudo-disaggregation is employed by

JPSD CLCGF [CALD95B], TACSIM/CBS [SMITH95], Eagle/BDS-D [STOBER95],

ALSP [WEAT93] and others [ALLEN96].

2.2.3 Variable Resolution Modelling

In Davis’s Variable Resolution Modelling (VRM), designers construct families of

models that support dynamic changes in resolution [DAVIS92] [DAVIS93]. For example, a

coarse model of weather prediction may include season and geographical location. A

model at a finer resolution may include temperature variations, cloud patterns and wind

directions. A model at yet finer resolution may include rates of temperature changes, range

of temperatures and so on. Designing with VRM in mind facilitates the construction of

models that can execute at any desired level of resolution.

VRM involves building tunable process hierarchies, while MRM involves making

multiple models execute jointly. It is possible for a simulation to incorporate both

philosophies. For example, in a multi-resolution simulation, various aggregate-level and

disaggregate-level entities may interact with one another. Users may vary the resolution at

which the simulation proceeds. There are two aspects to this variability: one, the

interactions among entities, which is our focus, and two, the resolution of simulation

LRELRE

FIGURE 5: Pseudo-disaggregation

HRE LRE
LRE

LRE
LRE

LRELRE

LRE
LRE

LRE
LRE

HRE

L1 L2 L1 L2

27

processes, which is Davis’s focus. We address issues that arise when aggregate-level

entities interact with disaggregate-level entities. Davis addresses issues that arise when

one wishes to observe phenomena such as invasions or stratagems at variable resolution.

Designers may describe the movement of a single tank either by a very high-level process

or by low-level sub-processes that involve factors like fine-grained terrain conditions and

availability of fuel. Here, the motion of the tank is a VRM process, but the interaction of

the tank with other tanks or platoons is an MRM issue.

VRM is related to MRM because a process at multiple resolution levels is likely to

require multiple representations. Many VRM researchers argue for the existence of

multiple resolutions [DAVIS98] [HARSH92] [HILL 92A] [HILL 92B] [HORR92]. However, in

VRM, users are expected to transition among models during execution rather than execute

multiple models concurrently. VRM complements MRM; the relationships among

hierarchical resolution levels for a process are mapping functions that translate attributes

among multiple representations.

2.3 Maintaining Consistency among Concurrent

Representations

We presentUNIFY briefly in order to discuss work that has influenced our approach to

MRM. UNIFY includes the concept of a Multiple Representation Entity (MRE) which is a

technique to maintain concurrent representations based on four fundamental observations

about MRM [REYN97]. MREs are internally consistent and interact at multiple

representation levels concurrently. A Consistency Enforcer (CE) consisting of an Attribute

Dependency Graph (ADG) and application-specific mapping functions maintains

28

consistency among multiple representations in an MRE. An Interaction Resolver (IR)

based on our taxonomy of interactions resolves the effects of dependent concurrent

interactions [NAT99]. MREs reduce simulation and consistency costs [NAT97].

Determining whether a multi-model is satisfactory is ultimately a form of the Turing

test [TURING50] because only end-users can determine whether the multi-model meets

their requirements. Crucial to a multi-model is the effective joint execution of its

constituent models. We believe effective joint execution can be achieved by maintaining

consistency among concurrent representations. Consistent concurrent representations

enable consistent concurrent behaviour since behaviour is influenced by state [HOP79].

Approaches like Temporal Logic of Actions support the notion that behaviour is

influenced by state [LAM94] [ABADI95]. The definition of consistency is application-

dependent. For some applications, consistency may be bi-modal (i.e., the representations

are consistent or inconsistent), whereas for others it may be multi-modal (i.e., the

representations are consistent to some degree). For yet other applications, consistency may

be similar to determining the effectiveness of a real-time system that schedules tasks

according to their deadlines and their expected values [BURNS98].

Dependency graphs similar to our ADGs have been used to capture cause-effect

relationships in Petri Nets [PETER77] [PETRI62], dataflow models [DENNIS80] [ACK82]

[DAVIS82] [GAJSKI82] [GRIM93], object-oriented design [RUM91] [SHLAER92] and

logical time systems [LAM78]. Since attribute relationships can be viewed as constraints

[ALLEN92] [HILL 92A] [HORR92], a CE may be implemented as a constraint solver.

Typically, a constraint solver operates in the Herbrand universe [JAFFAR94] [SARAS91].

Although constraint solving in the Herbrand universe can be complex [FRÜH92A]

29

[FRÜH92B] [V AN96], constraint solving in other domains can be simplified [MARR93]

[GARCÍA93] [FREE90] [JAFFAR92] [CORMEN89]. A CE may be implemented as a set of

mediators. The relationships among attributes at multiple representation levels may be

realized by mediators, which capture behavioral relationships in complex systems

[SULL94]. A CE may be implemented as an attribute grammar, which is a means of

propagating changes among dependent attributes [KNUTH68] [KNUTH71] [REPS84]

[BESH85] [DEMERS85] [REPS86] [HOR86].

Interactions are common in many domains, for example, database transactions and

operations [ESWA76]; processor interrupts; cache operations [HENN96]; reads and writes

to shared memory in parallel processing systems; operations, events and actions in object-

oriented and process modelling [RUM91] [SHLAER92] [ALHIR98]; method invocations and

function calls in object-oriented systems; messages in distributed processing systems and

logical time systems [LAM78]; accesses to a blackboard [ERMAN80]; and exceptions in

programming languages [GOOD75] [BARNES80] [LISKOV79] [STROU91] [YEMINI85].

Resolving the effects of interactions, transactions, events or operations that overlap in time

is a well-known problem. The effects of concurrent interactions in MRM are similar to

race conditions. In both cases alaissez-faireapproach can lead to unpredictable, and often

incorrect, effects. Many synchronisation primitives have been proposed to eliminate race

conditions, such as locks, semaphores, barriers and monitors [MAD74] [SILB91]

[TANEN92] [BRINCH78]. These primitives lead to policies that resolve concurrence by

curbing it, i.e., concurrent operations are transformed into non-concurrent operations even

if they should not be transformed this way.

30

A traditional policy for resolving concurrent events, operations, transactions or

interactions is serialization — imposing an order on them [ESWA76] [HAER83].

Serialization is often a valid policy when the concurrent events or transactions are

logically independent. Traditionally, database systems serialize independent transactions

[BERN81] [PAPA86] [BRAHMA90]. Cache coherence models also serialize independent

operations on cache blocks [HENN96] [ARCH86]. Object and process modelling

techniques either require that one action execute in a state at a time or recommend

partitioning the states in which concurrent events can occur and then reflecting the effects

of those events simultaneously [ALHIR98] [RUM91] [SHLAER92]. Either approach assumes

the concurrent events are independent. In logical time systems such as Lamport time

[LAM78], virtual time [JEFF85], vector clocks [MATT89], PDES [FUJI90] and isotach

systems [WILL 93], independence is tied to a notion of concurrence, i.e., two events are

assumed independent if it cannot be determined that there exists a cause-effect

relationship among them.

The effects of some concurrent interactions may not be captured by any serial order.

For example, the semantics of one interaction may interfere with the semantics of another

interaction such that one or the other or both may be fully or partially excluded, ignored,

delayed or even enhanced. Some database schemes utilise semantic information about

transactions to reorder concurrent transactions, possibly non-serializably [BADRI92]

[BARG91] [GARCIA83] [KORTH88] [LYNCH83] [MUNSON96] [WEIHL88] [THOM98].

However, even these approaches assume that the interactions are logically independent.

Some concurrent interactions may be logically dependent, i.e, theirconcurrentoccurrence

31

is a factor in determining their effects. We classify such interactions and evaluate our

approach based on criteria for a good taxonomy [AMO94] [HOW97].

After considering specification methodologies such as DFDs, PERT charts, IDEF0-3,

UML [A LHIR98] [FOWLER97] [TEXEL97], OOA [SHLAER92] and Rumbaugh’s Object

Modelling Techniques [RUM91], we chose the High Level Architecture’s Object Model

Template (OMT) [OMT98] as a base for presenting our techniques in a manner useful to

designers of multi-models. OMT permits designers to specify object classes and

interactions [JPSD97] [JTFP97] [RPR97].

2.4 Chapter Summary

A number of domains employ some form of multi-representation modelling (MRM)

with varying degrees of success. We presented some MRM applications and summarised

their strengths and deficiencies using the metrics of multi-representation interactions (R1),

multi-representation consistency (R2) and cost-effectiveness (R3). Common approaches

for MRM involve executing the most detailed model or transitioning from one model to

another. These approaches can make the multiple models inconsistent and incur high

costs. Maintaining consistent representations of multiple models can be more effective

than alternative approaches to MRM. We explore that thought in subsequent chapters.

32

If you have built castles in the air, your work need not be lost;
that is where they should be. Now put foundations under them.

— Henry David Thoreau

Chapter 3

Foundation

Multi-Representation Modelling (MRM) is a means of capturing the combined

semantics of jointly-executing models. The joint execution of multiple models brings up

issues of conceptual and representational differences among the models. MRM involves

the resolution of such differences. MRM includes but is not restricted to models that are

executed as computer programs, called simulations. In this chapter, we lay the foundation

for discussing our framework,UNIFY, by defining key concepts such as model,

representation and interactions. We state and justify assumptions we make in our work and

describe our evaluation strategy.

3.1 Model

Modelling is a way to study a phenomenon without undertaking the phenomenon

itself. A modelcaptures the semantics of selected concepts, objects and processes of a

phenomenon in terms of other well-defined concepts, objects and processes. Objects and

processes in a phenomenon are calledentitiesin a model. Therepresentationof an entity

33

is a means of describing the entity and its properties. The representation of a model is the

union of the representations of entities. Anything that is not part of the model is part of the

model’s environment. An attribute is an element of the representation of an entity that

captures a property of the entity. Arelationshipbetween two attributes indicates how the

value of one attribute changes when the value of the other attribute changes. In a valid or

consistent model, the relationships among attributeshold, i.e, the values of attributes

change in accordance with the relationships among them. Therefore, for each relationship,

there must exist functions that translate changes in one attribute to changes in other related

attributes. At a given instant of time, the values of the attributes and the relationships

among the attributes reflect the phenomenon being modelled.

A model may change over time when the phenomenon it models changes. The state of

a model is a set of values such that each member is a well-defined value assigned to an

attribute. When the state of a model changes, the values assigned to its attributes may

change, although the relationships among attributes continue to hold. Changes in attribute

values are caused by interactions. Aninteractionis a communication between entities. An

interaction is initiated by an entity called thesender, and directed towards an entity called

the receiver. The sender and receiver may be part of the same model, in which case the

interaction is internal. Either the sender or the receiver may be part of the environment or

another model, in which case the interaction is external. We do not need to differentiate

between internal and external interactions. Theeffectsof an interaction are the changes

caused by the interaction to the sender and receiver — typically, to their attributes. We

define interactions more rigorously in §3.2.

34

The preceding informal notions are characteristic of what model designers routinely

assume. Now, we take a more formal view based on Object Modelling Technique

[RUM91], Object Oriented Analysis [SHLAER92], Object Model Template [OMT98] and

Unified Modelling Language [ALHIR98] [FOWLER97]. Let Repbe the set of all attributes

of all entities in a model. LetRelbe the set of all relationships that hold in the model. Each

relationship r ∈ Rel is a mapping between sets of attributes belonging toRep, i.e.,

r: P → Q, whereP, Q ⊆ Rep. Let Int be the set of interactions whose sender, receiver or

both are part of the model. We define a model as a tuple of representations, relationships

and interactions.

Our model is similar to an object model in Object Modelling Technique (OMTR)*. In

OMTR, the object model describes the structure of objects in the system: their identity,

attributes, mutual relationships and operations.Repcorresponds to the set of identities and

attributes of OMTR objects.Rel corresponds to the set of relationships among OMTR

objects. Int corresponds to the union of operations, events and actions as defined in

OMTR. An OMTR object operation refers to an interaction for which the receiver is the

same OMTR object that defines the operation. In OMTR, a dynamic model is a state

diagram describing those aspects of the system concerned with time and the sequencing of

operations. External stimuli that may change the model are called events in OMTR. In

other words, OMTR events are interactions for which either the sender or receiver is

* Rumbaughet al use the acronym OMT for Object Modelling Technique. To resolve a name

conflict with the High Level Architecture Object Model Template, we refer to Rumbaugh’s

Object Modelling Technique as OMTR and the HLA Object Model Template as OMT.

Model Rep Rel Int, ,〈 〉=

35

outside the model. Finally, in OMTR, a functional model describes changes within each

state of the state diagram in the dynamic model. The changes within a state are called

actions in OMTR. OMTR actions are interactions for which the sender and receiver may

not be defined in terms of OMTR objects; the sender and receiver both are the “system”.

Our model is similar to an information model in Object Oriented Analysis (OOA). In

OOA, the information model consists of objects, object attributes and relationships among

objects.Repcorresponds to the set of OOA objects and their attributes.Relcorresponds to

the set of relationships among OOA objects. An OOA state model is a state diagram in

which a transition from one state to another is caused by an OOA event. A process model

in OOA describes changes within each state of the state diagram in the state model. These

changes are called actions, and are interactions for which the sender and receiver both are

the “system”.Int corresponds to the union of events and actions as defined in OOA.

In the High Level Architecture [AMG95], models are specified using the Object

Model Template (OMT). OMT enables a designer to specify class hierarchies for objects,

attributes of classes, interactions and parameters of interactions.Repcorresponds to the

set of OMT object instances along with their attributes. OMT enables specifying

interactions for which the sender and receiver are distinct OMT object instances, but not

interactions for which either the sender or the receiver is outside the model or interactions

for which the sender and receiver are the same OMT object instance.Int includes all these

interactions, and hence is a superset of the set of OMT interactions. OMT does not include

specifications for relationships among objects.

Our model is similar to a model in Unified Modelling Language (UML). In UML, a

model consists of entities, relationships among entities and interactions among entities.

36

Repcorresponds to the set of UML objects and their attributes.Relcorresponds to the set

of links and associations among UML objects.Int corresponds to the union of scenarios,

interactions and object operations as defined in UML. A structural model in UML

describes the static behaviour of a model, whereas a behavioral model describes the

dynamic behaviour of the model.

All of the above models, including ours, assume thatRep≠ ∅. If Rep= ∅, then

Rel= ∅ as well. Rep≠ ∅ indicates that representation exists for a model. IfRep≠ ∅,

Rel= ∅ describes a model in which attributes are unrelated.

When a modelexecutes, it simulates the progress of the phenomenon being modelled,

implying the passage of time. Accordingly, when a model executes, time becomes an

integral part of the model. We define a model at a particular timet as:

As a model executes, its state and the relationships among attributes may change.

These changes may happen continuously; however, for most practical executions of

models, these changes happen at discrete times. Discretizing time is a common technique

in model execution. Accordingly, there exists a sequence of timesT = (t0, t1, t2, …), such

that at eachti, the representation and relationships inModel are defined. At other times,

i.e.,∀tj ∉ T, Model(tj) may be undefined or may be the same asModel(ti) whereti ∈ T and

ti is the largest instant inT such thatti < tj. The individual times inT may be regarded as

observation times at which the model may be verified for consistency.T is monotonically

increasing. The interval between two consecutive times is atime-step, denoted by [ti, ti+1],

where ti, ti+1 ∈ T. The durations of time-steps in a particular model may vary, i.e.,

∀ti, ti+1, tj, tj+1 ∈ T, i ≠ j, it is not guaranteed thatti+1 − ti = tj+1 − tj.

Model t() Rep t() Rel t() Int t(), ,〈 〉=

37

The execution of a model on a computer is called asimulation. A simulation is a tuple

of the representation, relationships, interactions and observation times for that model.

We define representation and relationships for model execution.RepSeqandRelSeq

are the sequences of states and relationships that hold during model execution.

Rep(t) is a set of values assigned to attributes inRepat timet, i.e.,Rep(t) is the state of

the model at timet. Rel(t) is the set of relationships that hold at timet. A relationship

r ∈ Rel, r: P → Q, P, Q ⊆ Repholds at all observation times, i.e.,∀t ∈ T, P(t) → Q(t),

whereP(t), Q(t) ⊆ Rep(t). A dependencyis an indicator of a relationship between two

attributes. Thebehaviour of a modelis the sequence of states of that model [ABADI95]

[LAM94] [HOP79]. Consider two modelsA and B that have the same representation,

relationships and interactions. If attributes inA andB have different sequences of values or

the same sequences of values but at different times, thenA and B have different

behaviours. The sequence of states for an entity is a subset of the sequence of states of a

model, i.e., thebehaviour of an entity is a subset of the behaviour of the model.

3.2 Interactions

In most models, entities and the environment exchange information with one another

or influence one another. Models do not execute in isolation; typically, stimuli from the

environment may influence behaviour of a model, and conversely, a model may generate

stimuli that affect the environment. Aninteraction is a communication that causes a

change in the behaviour of its sender or receiver or both.

Simulation Rep Rel Int T, , ,〈 〉=

RepSeq Rep t0() Rep t1() Rep t2() …, , ,()=

RelSeq Rel t0() Rel t1() Rel t2() …, , ,()=

38

Entities cause a change in the behaviour of one another by means of interactions. In

other words, interactions cause a change in the sequence of states of entities. We regard

interactions with one sender and multiple receivers as multiple instances of an interaction

from one sender to one receiver. An interaction that causes a change in the state of its

receiver changes the receiver’s behaviour. Moreover, an interaction that does not change

its receiver’s state may well cause a change in behaviour. A receiver must evaluate

whether the interaction affects it or not and apply the changes caused by the interaction if

necessary. The evaluation and consequent action of the receiver take a finite, non-zero

amount of time. Thus, the behaviour of the entity given the occurrence of an interaction is

different from the behaviour of the entity if that interaction never occurred. An interaction

that changes only the relationships in a model will cause the state of the model to change

as well because of the changed relationships. We do not differentiate between interactions

that change the state and interactions that change the relationships in a model.

Interactions may cause changes to the values of attributes. The semantics of an

interaction and the dependencies among attributes determine the effects of an interaction.

When the changes caused by an interaction are applied to individual attributes, the

interaction takes effect. For an interactionI, I.affectsis the set of tuples of attributes and

changes to values of attributes caused by the semantics ofI. If I causes only a read to an

attribute value, the attribute is not inI.affects. If I causes a write to an attribute value, the

attribute and its changes are inI.affects. I.affects+ is the set of tuples of attributes and

changes to attributes dependent on the attributes inI.affects. I.affects∗ is the set of

attributes transitively changed byI, i.e.,I.affects∗ = I.affects∪ I.affects+.

39

Concurrent interactionsare those interactions that occur during overlapping

simulation time intervals. Interactions that occur one after another, i.e., do not overlap in

time, aresequentialinteractions. In logical time systems, two interactions are concurrent if

one does not “happen-before” the other [LAM78]. However, by this definition, interactions

that occur at different times may be concurrent. In applications involving databases,

caches and shared resources, two interactions are concurrent if they occur at overlapping

times. We consider interactions as concurrent if they occur during the same time-step. Our

definition of concurrence may exclude some concurrent interactions of logical time

systems, but includes concurrent interactions in databases and caches. Interactions that

occur at the same real time are simultaneous. In practical models, time is discrete, not

continuous. Therefore, while real time-steps are of zero duration, time-steps in practical

models are of non-zero duration. Thus, many interactions that are not simultaneous but

happen to occur during the same time-step will be considered concurrent. The “false

simultaneity” introduced by concurrent interactions may be reduced by a finer granularity

of time within a model.

Concurrent interactions may be dependent. Adependent interactionis one whose

effects are predicated on the occurrence of another interaction. Anindependent interaction

is one that is not dependent on any other interaction. For example, two interactions may be

related by cause and effect, i.e., one interaction causes the other. In such a case, the former

interaction is independent of the latter, but the latter is dependent on the former.

Concurrent interactions may be dependent solely on account of their concurrence, i.e., if

the interactions were not concurrent, they would be independent.

40

With our definition of interactions, we defineIntSeq as a sequence of sets of

concurrent interactions. Each set contains interactions that occurred during one time-step.

Int(ti) is the set of interactions that occur in time-stepti. Int(ti)k is thekth interaction that

occurs in the time-stepti. No ordering is implied byk; it is used solely to distinguish one

interaction from another in that time-step.∀ti ∀k, Int(ti)k ∈ Int. Int(ti) consists ofni+1

interactions, i.e.,Int(ti) = ni+1. I • J indicates thatI andJ are concurrent interactions.

Concurrent interactions may cause concurrent changes to entities. Let the effect of an

interactionInt(ti)k on a state of a model be the changeE(Int(ti)k). E(Int(ti)k) is the set of

changes inInt(ti)k.affects∗. Applying the effect of an interaction is equivalent to computing

changes to attribute values caused by the interaction, i.e., applying the effect of interaction

Int(ti)k on the representationRep(ti) is equivalent to computing a function

F(Rep(ti), E(Int(ti)k)). Applying the combined effects of all the interactions in one time-

step results in the state of the model at the next time-step.

Applying the effects of concurrent, possibly dependent, interactions is calledresolving

the effects of the interactions. LetE(I • J) denote the concurrent effects of interactionsI

and J, and E(I) ◊ E(J) denote their sequential effects. Concurrent interactions can be

resolved in different ways including, but not limited to, applying the effects of interactions

in an arbitrary order. When interactions are independent, their effects when concurrent are

indistinguishable from their effects when sequential.

Int ti() Int ti()0 Int ti()1• …• Int ti()ni
•{ }=

IntSeq Int t0() Int t1() Int t2() …, , ,()=

Rep ti 1+() F Rep ti() E Int ti()(),()=

E Int ti()0 Int ti()1• …• Int ti()ni
•() E Int ti()0() E Int ti()1() … E Int ti()ni

()◊ ◊ ◊=

41

The effects of concurrent independent interactions can be resolved by applying the

effects of individual interactions one after another. This policy for resolving the effects of

concurrent interactions is calledserialization. If it can be determined that at all time-steps,

concurrent interactions are independent, then serialization is a valid policy for resolving

the effects of concurrent interactions. When interactions are dependent, their effects when

concurrent may not be the same as their effects when sequential. The effects of dependent

concurrent interactions may be predicated on the occurrence of one another during the

same time-step. In such cases, serialization may resolve the effects of such interactions

incorrectly; other policies for resolving the effects are necessary.

3.3 Multi-models

Multiple models of the same phenomenon may execute jointly with one another.

Simple, well-designed models executing jointly may capture all the facets required for a

particular study of a phenomenon without a designer having to construct one model that

captures exactly those facets. Given that the multiple models are simplifications of the

same phenomenon, entities common to the models must be correlated or made consistent.

However, correlating the entities can become a very significant problem if the models

make different assumptions about the processes, objects, environment, the rate of progress

of the phenomenon and the accuracy at which the phenomenon is modelled.

Inconsistencies among models may undermine the reasons for executing them jointly.

We use the termrepresentation levelto describe the level of abstraction of a model. If

some models are compositions/decompositions or abstractions/refinements of one another,

their representation levels are also calledresolution levelsor resolutions. An aggregate

42

model is a relatively low-resolution (high-abstraction, low-decomposition) model,

whereas a disaggregate model is a relatively high-resolution (low-abstraction, high-

decomposition) model. AHigh Resolution Entity(HRE) is an entity at a low level of

abstraction (high decomposition), and aLow Resolution Entity(LRE) is an entity at a high

level of abstraction (low decomposition). Classification of an entity as an HRE or LRE

depends on its resolution level relative to other relevant entities. The resolution levels form

a hierarchy, with the highest level being the most abstract or most aggregate one, and the

lowest level being the most refined or most disaggregate one.Aggregation is the

composition of a collection of HREs into a single LRE, anddisaggregationis the

decomposition of an LRE into its constituent HREs.

Multi-representation modelling(MRM) is the joint execution of multiple models of

the same phenomenon. We call the union of several models of the same phenomenon a

multi-model. A multi-model may consist of several models; however, for ease of

exposition, we will consider an example multi-model consisting of two models. IfModelA

and ModelB are two models of the same phenomenon, then a multi-modelModelM

constructed from them is defined as:

RepA andRepB are calledconcurrent representations. We constructRepM by including

all of the attributes inRepA andRepB, after disambiguating name conflicts. For an attribute

a, a ∈ RepA ∨ a ∈ RepB ≡ a ∈ RepM.

ModelM RepM RelM IntM, ,〈 〉=

RepM RepA RepB∪=

RelM RelA RelB Relcross model–∪ ∪=

IntM IntA IntB∪=

43

3.3.1 Cross-model Relationships

Relcross-modelis the set of relationships required in order to make the multiple models

consistent with one another. SinceModelA andModelB model the same phenomenon, they

may represent overlapping sets of objects or processes. In such a case,RepA and RepB

must be correlated. Correlating the representations in a multi-model is calledconsistency

maintenance. If Relcross-model= ∅, thenModelA andModelB are independent of each other

because their representations are not related to each other. Then, consistency maintenance

reduces to ensuring that the individual models are self-consistent. IfRelcross-model≠ ∅, the

representations of the models are related. A cross-model relationshipr ∈ Relcross-modelis a

mapping r: P → Q such that P ⊆ RepA ∧ Q ⊆ RepB ∨ P ⊆ RepB ∧ Q ⊆ RepA. We

constructRelM by including all of the relationships inRelA, RelB andRelcross-model, i.e., for

a relationshipr, r ∈ RelA ∨ r ∈ RelB ∨ r ∈ Relcross-model≡ r ∈ RelM.

3.3.2 Mapping Functions

A mapping functionassociated with a relationship among attributes translates the

changes in one attribute to changes in related attributes in such a manner that the

relationship continues to hold. We assume that designers can construct appropriate

mapping functions for each relationship inRelcross-model. Mapping functions encode

application-specific semantics about the relationships among representations. Mapping

functions are necessary for any MRM approach, including ours.

A requirement for mapping functions is that at every observation time, they must

ensure that a relationship holds by translating value spaces or changes in values of

attributes, as necessary.∀r ∈ Relcross-model, r: P → Q, P, Q ⊆ RepM, a mapping functionf

44

may exist such that, ifP(ti) → Q(ti) holds, thenP(ti+1) → Q(ti+1) holds. For example,f

may be of the form∀ti, ti+1, Q(ti+1) = f(Q(ti), P(ti), ∆P(ti)), where ∆P(ti) is the set of

changes to values inP(ti). Since f ensures thatr holds ∀ti ∈ TM, f must complete its

computation within a time-step. In other words, a lower-bound value for an observation

time ti+1 is the sum of the value ofti and the time taken forf to complete.

All mapping functions must becomposable. If mapping functionsf and g translate

attribute setsP to Q andQ to R respectively, invokingf andg in succession must translate

P to R. Attribute relationships are transitive, i.e.,P → Q ∧ Q → R ⇒ P → R. Composable

mapping functions capture transitive dependencies among attributes. If mapping functions

are composable, the effects of an interaction propagate to all dependent attributes.

Mapping functions must bereversible. Consider mapping functionsf and g:

∀ti, ti+1, ti+2, Q(ti+1) = f(Q(ti), P(ti), ∆P(ti)) andP(ti+2) = g(P(ti+1), Q(ti+1), ∆Q(ti+1)). If no

interactions occur during the time-steps [ti, ti+1] and [ti+1, ti+2], then invokingf andg in

succession must result inP(ti+2) = P(ti) within tolerable approximation. Reversibility is

desirable for mapping functions because it ensures that a change does not propagate back

to an attribute. Therefore, ifQ changes as a result of a change toP, then reversible

mapping functions ensure thatP does not change again as a result of the change toQ.

3.3.3 Time-Steps

We assume that the time-steps ofModelA and ModelB are compatible.Compatible

time-stepsmeans that ifTA, TB andTM are the sequences of times associated withModelA,

ModelB andModelM respectively, thenModelA andModelB are defined for all times inTM.

TM is constructed by interleavingTA andTB. Accordingly, times that are common to both

45

TA andTB (albeit labelled differently) are included inTM only once. IfTM = TA ∪ TB, then

ModelA must be defined for all times inTB andModelB must be defined for all times inTA.

If TM = TA ∩ TB, thenModelA andModelB are defined for allt ∈ TM. Figure 6 shows two

ways to constructTM.

No matter howTM is constructed, some interactions in each ofIntA andIntB must be

re-organised as if occurring in time-steps defined by times inTM. For example, let

t0
A, t1

A, t2
A ∈ TA. If t1

A ∉ TM, then interactions occurring in the time-step [t1
A, t2

A] must

be re-organised as if occurring in [t0
A, t2

A]. This re-organisation increases “false

simultaneity”. In like fashion, lett0
A, t1

A ∈ TA, and t0
B ∈ TB such thatt0

A < t0
B < t1

A. If

t0
A, t1

A, t0
B ∈ TM, then interactions occurring in [t0

A, t1
A] must be re-organised into two

sets, one occurring in [t0
A, t0

B], and the other occurring in [t0
B, t1

A]. This re-organisation

decreases “false simultaneity”. IfTM = TA = TB:

TA

FIGURE 6: Possible compatible time-steps

TB

t0
B t2

Bt1
B t3

B …

t0
A t2

At1
A t3

A …

TM = TA ∪ TB

t0
M t3

Mt1
M t4

M …

TM = TA ∩ TB

t0
M t2

Mt1
M …

RepSeqM ti TM∈∀ RepA RepB∪() ti()()=

RelSeqM ti TM∈∀ RelA ti() RelB ti()∪()()=

IntSeqM ti TM∈∀ IntA ti() IntB ti()•()()=

46

3.4 Evaluation

In this dissertation we will show howUNIFY, our approach for consistency

maintenance among concurrent representations satisfies R1, R2 and R3, our requirements

for effective MRM.

A model must satisfy its users’ requirements. Examples of user requirements are the

accuracy of the model, the detail captured by the model and the rate at which the model

progresses. The most accurate model of a phenomenon is the phenomenon itself; practical

models are simplifications that may fail to imitate the phenomenon in some respects. The

Turing test [TURING50] for a model is whether end-users are satisfied that the model

captures the facets required for study. Likewise, for a multi-model, end-users must

determine whether it meets their requirements. A multi-model can satisfy its users’

requirements if its constituent models satisfy the users’ requirements and the joint

execution of the multiple models is effective.

Satisfactory multi-model⇒ Satisfactory models+ Effective joint execution

Our work concentrates on effective joint execution of multiple models. In contrast, OMTR,

OOA and UML guide a designer in constructing a model to meet users’ requirements.

Requirements for models and multi-models must indicate how users can be satisfied.

For training models, training experts may indicate satisfaction by assessing how well the

model reflects reality. A term used often in the training community isfair fight, which

signifies an engagement in which no party can deduce and utilize information about the

training system (that they could not deduce in a real situation) to gain an unfair advantage.

For example, due to an artifact of simulation, an aircraft may be perceived for some time

after having been destroyed. This artifact could be employed to draw additional fire and

47

thus force consumption of ammunition without sustaining losses. Similarly, crews in tank

simulators have been reported to identify other tanks as being controlled by computer-

generated forces rather than by humans by tracking their movements. The fair-fight

concept is relevant to modelling since models approximate reality and there is potential to

exploit knowledge of these approximations. In MRM, where a basic theory is still

developing, arbitrary design choices may violate the fair-fight concept.

It is important to understand the difference between an unfair fight and what military

analysts call thefog of war. The fog of war refers to circumstances — typically large

numbers of concurrent events — that make it difficult to maintain a coherent picture of the

battle, leading to unexpected events. Unfair fights, on the other hand, result from

shortcomings in the design of a system and have no counterparts in a real-life

phenomenon. Often, inconsistencies in a model are assessed incorrectly as being a part of

the fog of war. While creating simulations that pass the Turing test is difficult, an

important goal of designers should be to reduce the discrepancies that cause a simulation

to fail the test [PETTY94].

Our work concentrates on the effectiveness of joint execution of multiple models. Our

approach, calledUNIFY, is meant to guide designers towards effective MRM. Whether an

MRM approach is effective or not can be evaluated on the basis of how well it meets three

requirements, listed in §1.3 and below:

• Multi-representation Interaction (R1) : The multi-model must permit concurrent

interactions at multiple representation levels.

The interactions that occur inModelM must be the interactions that could occur either

in ModelA or in ModelB, i.e., IntM must beIntA ∪ IntB. If IntM meets this condition, it

48

means that the joint execution of both models does not restrict the execution of either

model. Effective joint execution of multiple models requires that entities at different

representation levels initiate and receive interactions that may cause their behaviour to

change. Many MRM approaches do not satisfy R1. For example, in selective viewing, if

ModelB is the most detailed model, then the only interactions permitted inIntM are the

ones inIntB. In aggregation-disaggregation, in each time-step ofTM, either interactions in

IntA or interactions inIntB, but not both are permitted. In Chapter 7, we present a

taxonomy for resolving the effects of concurrent interactions in order to accommodate

multi-representation interaction.

• Multi-representation Consistency (R2): The multiple representations must be

consistent with one another.

RelM must hold at all observed times in the multi-model. Moreover, it must be the case

thatRelcross-model≠ ∅, or else consistency maintenance and joint execution are too trivial

to be interesting. In Chapter 6, we present a technique for maintaining consistency among

multi-models by showing how to constructRelcross-model. Application-specific mapping

functions associated with each relationship inRelcross-modelmust be supplied by the

designer. The mapping functions are required for consistency among multiple

representations. Consistent representations are necessary for the consistent behaviour of a

multi-model since the state of an entity influences its behaviour [LAM94]. Motivating the

choice of finite automata for designing systems, Hopcroftet al. say [HOP79]:

The state of the system summarizes the information

concerning past inputs that is needed to determine the

behaviour of the system on subsequent inputs.

49

The inputs and state of a finite automaton are interactions and representation of a

model. Since the multiple representations in a multi-model determine the behaviour of the

multi-model, maintaining consistency among the representations is required for effective

joint execution.

• Cost-effectiveness (R3): The costs of simulation and consistency maintenance

must be low.

Simulation costs and consistency costs tend to be trade-offs, as we will see in

Chapter 9. Simulation cost is the expenditure of resources in order to simulate entities,

possibly at multiple representation levels. Consistency cost is the expenditure of resources

in order to ensure that the multiple models meet consistency requirements. The resources

expended may be computational, network or memory. In selective viewing, simulation

costs are high whereas consistency costs are low since only the most detailed model is

executed at all times. In aggregation-disaggregation, simulation costs are relatively low

whereas consistency costs are high since the representations must be kept consistent when

transitioning among models. We measure simulation cost and consistency cost forUNIFY,

selective viewing and aggregation-disaggregation, and show howUNIFY reduces the total

cost of simulation and consistency maintenance.

3.5 Assumptions and Rationale

Our approach for effective MRM,UNIFY, makes some assumptions about jointly-

executing models. We have presented these assumptions in context earlier in this chapter;

we discuss them in detail here.

50

Existence of representations: A representation exists for an entity and can influence

the behaviour of the entity.

Typical models have representations; most designers consider representing entities in a

model natural and intuitive. In some contexts, researchers claim that entities must not have

a representation at all. For example, Brooks’s description of subsumptive behaviour in

autonomous agents involves agents maintaining no representation [BROOKS86]. However,

a representation is beneficial towards an agent’s operation [BRILL96]. Generally, entity

state influences entity behaviour [ABADI95] [LAM94] [HOP79]. Therefore, our assumption

about the existence and influence of representation is reasonable. We have not investigated

in any detail the consequences of eliminating this assumption. Davis’s work on variable-

resolution process models is closer to a non-representational approach than our work

[DAVIS92] [DAVIS98].

Existence of satisfactory models: Individual models meet their users’ requirements.

The problem of linking independently-designed components into a composite system

is hard enough without the additional complexity of the components falling short of

meeting their individual requirements [ALLEN98]. Simply put, a bad model cannot be

improved by jointly executing it with other models. Accordingly, we limit the scope of our

work to the joint execution of models that meet their users’ requirements.

Existence of mapping functions: There exist mapping functions to translate the

representation of one model to the representation of other models.

Mapping functions are application-specific methods that capture the semantics of

relationships among representations. Since capturing these semantics is essential for

consistency of a multi-model, mapping functions are necessary for any approach to MRM.

51

Since mapping functions are application-specific, instead of specifying their semantics,

we derive requirements for their use from example multi-representation models. Mapping

functions must translate attribute values and changes to attribute values from one

representation to another. Additionally, they must complete their translations in a time-

bound manner so that the multiple models appear consistent at all observed times. The

specifications of consistency and observed times depend on the application.

Existence of policies for concurrent interactions: There exist policies for resolving

the effects of dependent concurrent interactions.

Designers must resolve the intertwined semantics of interactions in order to be able to

relate them to one another. Concurrent interactions that are dependent on one another may

have effects that cannot be captured by serialization or any other straightforward policy.

Designers must decide beforehand how the effects of dependent concurrent interactions

must be resolved and subsequently applied. Without a clear understanding of the

semantics of interactions, designers cannot expect any MRM approach to be effective.

Therefore, similar policies are necessary for any approach to MRM.

Existence of compatible time-steps: The time-steps at which the models execute are

compatible.

When multiple models execute jointly, the multiple simulation times must be

compatible. Simulation time is a fundamental property of most models. Simulation time is

tied to the progress of the phenomenon being modelled. Simulation time may or may not

be real, logical, linearly-increasing, monotonic or uni-dimensional. If the multiple models

adopt the same sequences of times, they are likely to be compatible and may be expected

to execute jointly with few problems. However, the greater the variance between the

52

sequences of times among the multiple models, the greater the difficulty of ensuring

effective joint execution.

Alternative approaches, such as selective viewing and aggregation-disaggregation,

cannot guarantee effective MRM even if they make similar assumptions as above because

they continue to violate R1, R2 or R3. Therefore, we believe that our assumptions are

reasonable for a framework for effective MRM.

3.6 Chapter Summary

MRM, the joint execution of multi-models, presents users with combined semantics

that may not be captured by the independent execution of the multiple models. MRM

requires designers to invest effort to ensure that the combined semantics meet users’

expectations. In particular, ensuring that representations of multi-models are consistent

when concurrent interactions may occur is crucial for effective MRM.

UNIFY is a framework for designers who require multi-models for their applications.

Even if designers are capable of constructing individual models that meet their users’

requirements, they can find constructing multi-models difficult. Designers can construct

multi-models by ensuring that the joint execution of the multiple models is effective. An

approach for effective MRM must satisfy the requirements of multi-representation

interaction, consistency and cost-effectiveness.

In the next chapter, we identify problems with aggregation-disaggregation, a popular

approach to MRM. After analyzing why these problems occur, we make some general

observations about MRM.

53

If a man will begin with certainties, he shall end in doubts;
but if he will be content to begin with doubts, he shall end in certainties.

— Francis Bacon

Chapter 4

Fundamental Observations

We present four fundamental observations regarding Multi-Representation Modelling

(MRM). These fundamental observations are the first of their kind relating to MRM; they

support a framework for addressing MRM issues.

Often, characteristics of models make joint execution difficult. One model may be at a

lower resolution because its entities are very abstract, whereas another may be at a higher

resolution because its entities are very refined. Assumptions about objects, events,

interactions and environment may be different. The fundamental processes in the model

may have different algorithms because of differences in resolution. The models may

progress with different systems of simulation time: discrete-event, time-stepped or

continuous. Also, the time-steps at which the models progress may be vastly different.

Often, current approaches to MRM either place too many restrictions on the models or

introduce new problems. For example, selective viewing is too restrictive because it

requires that all representation, relationships and interactions be expressed at the highest

resolution level. Aggregation-disaggregation introduces many problems, as we see in §4.1.

54

In this chapter, we explore problems in current approaches, and present and

substantiate four fundamental observations about MRM. The fundamental observations

we present here are exactly that,observations. Although they are presented informally, we

present strong arguments for their existence. We arrived at these observations after

analysing the causes of ineffectiveness in many models. Our observations are fundamental

because any general solution to the MRM problemmust take them into account. They

address the general ineffectiveness of joint execution of multiple models, the necessity of

maintaining consistency among concurrent representations of the same entity, the

dependence among concurrent interactions and temporal consistency. These observations

focus the problem of joint execution to the core problem of how to maintain consistency in

the multiple representation levels of a single entity. Our framework,UNIFY, is based on

these fundamental observations.

4.1 Problems with Aggregation-Disaggregation

Aggregation-disaggregation, a common approach to MRM, ensures that entities

interact with one another at the same representation level by forcing one entity to be

transformed to the level of the other. Typically, if a Low Resolution Entity (LRE) interacts

with a High Resolution Entity (HRE), the LRE is disaggregated, i.e., decomposed into its

constituents. LRE-LRE interactions would be at the LRE level. A disaggregated LRE may

be aggregated so that it can interact subsequently at the LRE level. Aggregation-

disaggregation causes simulations to incur considerable resource costs, thus violating R3.

Problems such as chain disaggregation, network flooding and transition latency put

unacceptable burdens on the resources needed to run a simulation. Moreover, aggregation-

55

disaggregation can cause mapping inconsistencies between levels, thus violating R2

[NAT95] [NRC97]. Finally, in most variants of aggregation-disaggregation, the multiple

models do not execute truly jointly since the system transitions among models as required.

In the following sub-sections, we discuss problems with aggregation-disaggregation.

4.1.1 Mapping Inconsistency

Mapping inconsistency occurs when an entity undergoes a sequence of transitions

between representation levels resulting in a state it could not have achieved in the

simulated time spanned by that sequence. Any scheme in which entities transition between

representation levels (e.g., aggregation-disaggregation) must translate attributes between

levels consistently. The translation should not lead to incorrect or unintended changes in

the attributes. Poor translation strategies cause discontinuities or “jumps” in the state of

entities. In Figure 7, when entity L is aggregated to interact with an LRE, the positions of

its constituent HREs are lost. Subsequently, when L is disaggregated to interact with an

HRE, a standard algorithm or doctrine reconstructs the positions of the HREs [CLARK94]

[FRANCE93] [DAVIS93]. However, the reconstructed positions may result in “jumps” in the

constituents of L. In general, mapping inconsistencies arise if the translation strategies

utilise outdated, inaccurate or insufficient attribute information.

LRE
HRE

LRE

L

HRE

FIGURE 7: Mapping Inconsistency

L

56

4.1.2 Chain Disaggregation

Chain disaggregation occurs when a number of entities are forced to disaggregate

because a disaggregate-level entity interacts with an aggregate-level entity. Consider an

HRE H interacting with an LRE L. Typically, L would be disaggregated to interact with H

at the disaggregate level. However, other LREs interacting with L may have to

disaggregate, possibly leading to further disaggregations. Figure 8 illustrates the problem.

The interaction between can H and L force all LREs to disaggregate in order to be able to

interact at the same level. The forced disaggregation caused by the initial contact is called

chain disaggregation or spreading disaggregation [ALLEN96] [CALD95B] [PETTY95]

[STOBER95]. Chain disaggregation causes the number of simulated entities to increase

rapidly. The increased cost of simulating these entities translates to increased load on

processors and the network.

4.1.3 Transition Latency

Aggregation and disaggregation incur time overheads while performing the various

steps involved when entities transition between levels. Examples of these steps are set-up,

generation of disaggregate values from aggregate values and initiation of protocols to

adjust disaggregate values for specific situations. Transition latency, the time taken to

effect an aggregation or disaggregation, can be unacceptably high if these steps are

HRE LRE
LRE

LRE
LRE

LRE

H

L

HRE H

L

FIGURE 8: Chain Disaggregation

57

complex [ROBKIN92]. High transition latencies are incompatible with real-time

constraints, for example, in human-in-the-loop simulations, because they may cause

perceptual or conceptual inconsistencies. An entity that does not change position during a

transition period, and then suddenly undergoes a large displacement at the end of the

transition period causes a perceptual inconsistency. A conceptual inconsistency may be

caused when it takes so long for an entity to disaggregate in order to comply with a request

made by another entity that the request becomes obsolete.

4.1.4 Thrashing

When an entity undergoes rapid and repeated transitions from one level to another, it

thrashes. For example, an LRE, L, may disaggregate on commencing interactions with an

HRE, H. When H moves out of range, L may revert to the aggregate level. However, H’s

varying proximity to L may cause L to change levels frequently, thus incurring the

overheads associated with making a level change and raising the costs of simulation and

consistency maintenance. Thrashing depends on the policy that triggers a change of level.

Thrashing must be addressed by any MRM approach. High transition latencies compound

the problems caused by thrashing because they cause some entities to spend considerable

amounts of time just changing levels.

4.1.5 Network Flooding

The network is projected to be a bottleneck in distributed simulations, especially when

models consist of large numbers of entities [PULLEN95] [REDDY95] [HOFER95]. Network

resources may be strained by aggregation and disaggregation. Each entity created during

disaggregation could be a sender/receiver of messages, thus increasing network traffic.

58

Also, aggregation and disaggregation typically requires the exchange of many control

messages — an overhead that must be incurred every time a change of level occurs. These

messages can reduce the effective throughput of the network. Frequent changes of level

and large numbers of entities may put an unacceptable burden on the network.

4.1.6 Cross-Level Interactions

In many systems, some interactions may span multiple representation levels. For

example, two entities at different representation levels could engage in combat indirectly

(as in long-range artillery fire). Disaggregation is not triggered because of the indirect

nature of the engagement*. Therefore, the sender and receiver of the interaction are at

different representation levels. We refer to such interactions as cross-level interactions.

Since the participants in cross-level interactions are entities at different representation

levels, it is difficult to reconcile the effects of such interactions. Cross-level interactions

occur when requirement R1 is not satisfied.

4.1.7 Summary of Problems with Aggregation-Disaggregation

Often, problems with aggregation-disaggregation occur because designers make

convenient rather than correct decisions about the joint execution of multiple models.

Examples of such decisions are: permitting cross-level interactions, permitting

interactions only within a playbox and pseudo-disaggregating. When a multi-model grows

in terms of the number of its constituent models, the kinds of interactions that entities may

receive, or the different scenarios under which the models execute, such decisions can lead

* Forcing a disaggregation could lead to chain disaggregation, and is therefore undesirable.

59

to ineffective joint execution. For example, cross-level interactions are difficult to

reconcile, playboxes lead to thrashing and pseudo-disaggregation leads to a condition

where entities must be able to disaggregate all entities in the model.

An approach for joint execution of multiple models based on correct decisions is

necessary. Such an approach will avoid the pitfalls of merely convenient decisions, and

satisfy three basic requirements for MRM: multi-representation interaction, multi-

representation consistency and cost-effectiveness. This approach must be based on

fundamental characteristics of joint execution. In §4.2, we present four fundamental

observations about MRM. These observations highlight fundamental characteristics of

joint execution. In Chapter 9, we show how our framework for MRM,UNIFY, satisfies the

three basic requirements for MRM and avoids the pitfalls of other approaches.

4.2 Fundamental Observations

After analysing the causes for ineffectiveness in a number of multi-models, we made

four fundamental observations about the joint execution of multiple models. These

observations focus on entity interactions, effects of concurrent interactions, dependencies

among concurrent interactions and time-step differentials. The fundamental observations

influence our choice of the techniques that are part ofUNIFY: Multiple Representation

Entities, Attribute Dependency Graphs and a taxonomy of interactions.

4.2.1 Fundamental Observation 1

Two entities must interact at a representation level common to both so that the

semantics of their interactions are meaningful to both. Therefore, the objects and

60

processes corresponding to each entity must be modelled at all the representation levels at

which the entity can interact. When entities interact at common representation levels, they

avoid cross-level interactions.

FO-1: For effective joint execution, objects or processes should be modelled at

representation levels at which they can interact.

Consider the joint execution of two models with entities, EA and EB, at different

representation levels LA and LB respectively, as shown in Figure 9. Essentially, FO-1

states that for most applications, in order to interact with each other, either EA must be

represented at LB or EB must be represented at LA. In other words, for effective joint

execution, a combination of vertical and horizontal links must be followed.

To see why this observation is true, consider a military training simulation. Here, EA

may be a division of tanks being modelled in a low-resolution simulation while EB may be

a single, self-contained (manned) tank simulator. Typically, division-level engagements

are simulated by equations that take the relative strengths of the engaging parties into

account; actual firing of weapons and destruction of individual tanks are not simulated. In

contrast, individual tank engagements are simulated on the basis of actions taken by the

parties involved in the engagement (e.g., the human crew of the tank). These involve

simulation of detailed actions such as sighting, target acquisition, firing, detonation and

damage assessment.

EA

EB

LA

LB

FIGURE 9: Fundamental Observation 1

61

In general, models at different representation levels are designed for different purposes

and consequently, have different foci. What is relevant at one level may not be relevant at

another, therefore may not be modelled there. The crew members inside an individual tank

simulator expect to see individual targets through their sensors. Presenting them with an

aggregated view of a tank division will be ineffective (if visual fidelity of the engagement

is an effectiveness criterion).

Similar incompatibilities arise in other dimensions of resolution such as time and

space. Time-steps vary from nanoseconds to minutes. When two models with disparate

time-steps are executed jointly, the one with the smaller time-step may interpret a lack of

response from the other as inaction when in fact, the other will report its action only at the

end of its larger time-step. Likewise, terrain representation may vary between models. A

simple mathematical mapping function may suffice to translate terrain coordinates

between systems. However, sometimes such functions do not exist or are inadequate (e.g.,

when one model executes in two-dimensional space while the other executes in three-

dimensional space). Further, the difference in resolution (e.g., meters versus kilometers)

can lead to inconsistencies similar to those observed with time-step differentials.

A technique used to resolve these incompatibilities is to providebridges between

representation levels. In the two-level case of Figure 9, a bridge is a diagonal link. Such

bridges are useful only in special cases; they are not general techniques for effective joint

execution of multiple models. Pseudo-disaggregation can be such a bridge. For example, a

perceiver of an aggregate entity could apply a local translation function to obtain a

disaggregated view of the aggregate entity. This technique works well as long as

perception is the only interaction — it fails if the perceiver also engages the perceived in

62

combat since the perceived units do not respond to events (e.g., attack, defend, retreat). To

achieve a completely realistic engagement, the perceived units must respond as if they

were being modelled as individual entities themselves. Thus, while bridges may suffice for

joint execution in some cases, in general, entities must be modelled at the appropriate

representation levels to achieve the required effectiveness.

Interactions may occur at any level at any time. In order to satisfy FO-1, entities must

either (i) maintain representations at all levels at all times, or (ii) dynamically transition to

the appropriate level as required. We take the first approach. The second approach,

aggregation-disaggregation, has high associated overheads, as noted in §4.1.

4.2.2 Fundamental Observation 2

The high cost of dynamic transitions between representation levels can be reduced by

reducing (i) the cost associated with a single transition, and (ii) the number of transitions.

The cost associated with a single transition is application-specific. Here, we focus on

reducing the number of transitions. Limiting the propagation of transitions, for example,

by controlling chain disaggregation, results in significant reductions in overhead. Ideally, a

transition should be restricted to a single entity and not propagate at all. Restricting

transitions implies that entities must be able to resolve concurrent interactions (i.e.,

interactions occurring within simulated periods that overlap) at multiple levels. Resolving

concurrent interactions means that the effects of these interactions must be combined

without compromising effectiveness.

FO-2: The effects of concurrent interactions at multiple representation levels

must be combined consistently.

63

In Figure 10, entity EC must resolve concurrent interactions with entities EB and ED in

order to limit the propagation of the transition. Concurrent interactions could be serialized,

i.e., processed sequentially and atomically. This approach fails in the context of real-time

interactions whichmust appear to take effect concurrently. Serializing the interactions

removes the appearance of concurrence.

Alternatively, interactions could be processed in parallel and their results combined.

Although apparently reasonable, this approach has several pitfalls as well. The subtleties

of these pitfalls are best explained by an example. Consider the following scenario

(Figure 11): LRE1 and LRE2 are two platoons of tanks, engaged in battle. At the same

time, LRE2 is engaged by two individual tanks — HRE1 and HRE2. The battle between

LRE1 and LRE2 is simulated at the aggregate level while the battle between LRE1, HRE1

and HRE2 is simulated at the disaggregate level. During a particular time-step, LRE1

inflicts 50% attrition on LRE2. The 50% attrition may be interpreted as the destruction of

two of the four tanks in LRE2. During the same time-step, HRE1 and HRE2 destroy two

tanks in LRE2
†. How should these two results be combined? Depending on the amount of

overlap in the two interactions, the final result could be a reduction in LRE2’s strength by

50% (complete overlap), 75% (partial overlap) or 100% (no overlap). For the most part,

† Typically, platoon-level engagements are specified in terms of percentage attrition, whereas

tank-level engagements are specified in number of tanks lost.

Chain Disaggregation Eliminating Chain Disaggregation

EA EB EC

ED

EA EB

EC

ED

FIGURE 10: Reducing transition overheads by limiting propagation of transitions

64

this choice must be made arbitrarily and the result assumed to be realistic. Unfortunately,

apparently reasonable choices may lead to an unfair fight. The no-overlap choice does not

account for the case where LRE1, HRE1 and HRE2 may have fired at the same tanks in

LRE1, whereas the complete overlap choice penalises any co-ordination between LRE1,

HRE1 and HRE2 in picking targets from LRE2. As another example, consider a time-step

during which LRE2 expends 75% of its ammunition fighting LRE1. HRE1 and HRE2 also

engage LRE2 during this time-step, causing LRE2 to expend 40% of its ammunition. At

the end of the time-step, LRE2 will have expended 115% of its ammunition!

The problems above occur because the effects of an interaction are computed

assuming that the interaction is isolated, i.e., it is the only interaction that occurs in a time-

step. For some concurrent interactions, assuming they occur in isolation causes their

combined effects to be computed incorrectly, leading to ineffective joint execution.

4.2.3 Fundamental Observation 3

Often, consistency problems

arise during joint execution because

a key property of interactions is

ignored when the interactions are

isolated. That property isinteraction

LRE1

LRE2

HRE1

Aggregate

Disaggregate

FIGURE 11: Concurrent multi-level interactions

HRE2

level

level

LRE1
LRE2

HRE1

HRE2

P

FIGURE 12: Dependency considerations

65

dependence— an interaction’s existence or effects depend on another interaction.

Consider the more detailed view of Figure 11 shown in Figure 12. In a time-step duration

τ, LRE2 interacts with LRE1, reducing the ammunition of a constituent tank (P) by 25%.

In effect, P fires at LRE1 duringτ. Also, in τ, LRE2 interacts with HRE1 because P fires at

HRE1. Both interactions involve the firing of a weapon by Pin the same time-step. Clearly,

this is physically impossible (indicated in Figure 12 by tank P having two turrets). By

permitting such an outcome, the simulation permits an unfair engagement.

The problem arises because two interactions that occur at overlapping simulation

times involve a common entity, thus affecting each other’s outcome. The two interactions

of interest, the aggregate-level interaction between LRE1 and LRE2, I1, and the

disaggregate-level interaction between tank P in LRE2 and HRE1, I2, both involve tank P

firing. Since P can fire only once,I1 andI2 are dependent. Therefore, the results generated

by applying their effects independently are incorrect.

FO-3: Concurrent interactions may be dependent.

Interactions that overlap in (i) simulation time, and (ii) the set of interacting entities,

may be dependent because they can affect the outcome of one another. For example in

Figure 12, one interaction precludes the other. If two interactions that are dependent are

executed independently, effectiveness will be compromised when the results of these

interactions are combined.

4.2.4 Fundamental Observation 4

In §4.2.3, we have shown that the fundamental issue underlying consistent

combination of concurrent interactions is dependence among interactions. Time-step

66

differentials aggravate the inconsistencies created due to dependency issues. Two

interactions can be dependent if they overlap in time. The greater this overlap, the higher

the potential for inconsistency.

FO-4: Time differentials may cause inconsistencies.

We elaborate on the problem of time differentials with a simple example. Let E1 and

E2 be two entities that can change an attributev. For this discussion it does not matter

whether or not E1 and E2 are entities that describe the same object or process. During their

time-steps, E1 and E2 send interactions that causev to change; the changes may depend on

the previous value ofv. Thus, during each time-step, each entity readsv, performs some

computation and writes tov.

Let the models for E1 and E2 both execute initially with time-steps of equal duration,

i.e., TS(E1) = TS(E2) = τ. Furthermore, we synchronise the executions of E1 and E2 so that

all time-step boundaries for these entities occur at the same time. In Figure 13, each bar

represents a time-line for one of the entities. Vertical breaks in the bar denote time-step

boundaries. It is simple to ensure that E1 and E2 are temporally consistent, i.e., they have

the same view ofv. At the end of each time-step, we reconcile the changes tov by

computing some function of the effects of E1 and E2. At the start of the next time-step,

both E1 and E2 read thesame valueof v, no matter how we resolve the concurrent changes

of the previous time-step.

Now let us assume that we neglected to synchronise the time-steps of E1 and E2. The

shaded areas in Figure 14 denote times when E1 and E2 are temporally inconsistent. The

TS(E1) = τ

FIGURE 13: Time-steps — Equal and In-phase

TS(E2) = τ

67

inconsistency arises because E1 (which lags in terms of time-steps) continues to compute a

change tov based on the value read at thestart of E1’s time-step, whereas E2 may have

changedv at the end of E2’s time-step, which occurred before the end of E1’s time-step.

The implications of temporal inconsistency can be different for different applications. E1

may write a new value forv at the end of its time-step, thus causing E2’s computation to

become “stale”. E1 may discard its computation and read the new value ofv; however, E1

may be forced to do so at the end of every time-step, thus rendering it redundant.

Temporal inconsistency is exacerbated if the durations of E1 and E2’s time-steps are

different. In Figure 15, E2’s time-step duration isτ/5, whereas E1’s time-step duration

remainsτ. At the end of each of its time-steps, E2 writes tov, therefore, for most of its

time-step, E1 uses outdated values ofv. The increase in temporal inconsistency can be seen

by the increase in the length of the shaded regions.

If E1 and E2 have equal time-step durations, they can be temporally consistent.

However, this requirement unnecessarily forces the time-step duration of E2 to beτ, or the

time-step duration of E1 to be τ/5. If a difference in E1 and E2’s views of v at an

observation time changes the behaviour of neither E1 nor E2, then the temporal

inconsistency istolerable. Let δv be a tolerable variance in the value ofv during the time-

step [t0, t5] for E1 (Figure 16). At the end of each time-step [t0, t1], [t1, t2], …, [t4, t5] for

TS(E1) = τ

FIGURE 14: Time-steps — Equal but not In-phase

TS(E2) = τ

TS(E1) = τ

FIGURE 15: Time-steps — Unequal and not In-phase

TS(E2) = τ/5

68

E2, if the value ofv changes by less than±δv, then E1 and E2 are temporally consistent

with respect tov. If during all time-steps E1 and E2 are temporally consistent, then E1 and

E2 execute atcompatible time-steps.

Even if time-steps are made equal, temporal inconsistency may arise if the entities do

not read the same value ofv at the start of each time-step. Consider Figure 17, in which

some time-steps have been labelled. Suppose E1 modifiesv during the time-step between

t1 andt2 without readingv beforehand. In effect, E1 executes with the value ofv read in the

previous time-step. That value may have been changed by E2 subsequently. Therefore,

during the time-step betweent1 andt2, E1 and E2 may be temporally inconsistent.

While proper design of models can remedy temporal inconsistency caused by cases

such as the last one, temporal inconsistency caused by the previous cases may undermine

the joint execution of multiple well-designed models. When executing legacy simulations

such as AWSIM/ModSAF, Eagle/BDS-D and BBS/SIMNET jointly, time-step

differentials are common. Low-resolution simulations typically use equations with

coefficients derived from historical data aggregated over periods ranging from several

minutes to days [KARR83] [EPST85]. Hence, time-steps of several minutes to a few hours

are typical for such simulations. On the other hand, high-resolution simulations such as

TS(ModelA) = τ

FIGURE 16: Compatible Time-steps

TS(ModelB) = τ/5

t0 t2t1 t3 …t6t4 t5

TS(E1) = τ/5

FIGURE 17: Eliminating time-step differentials

TS(E2) = τ/5

t0 t2t1 t3 …

69

CCTT/SIMNET tanks execute at the millisecond time-step level [MILLER95]. Resolving

time-step differentials may be a very difficult problem, especially for legacy systems.

FO-4 indicates that we must direct future simulation efforts towards solving this problem

if we are to achieve effective multi-representation modelling.

4.3 Chapter Summary

The fundamental observations highlight the basic issues that must be addressed by any

general, scalable approach to multi-representation modelling (MRM). These observations

are a foundation for a successful approach to effective MRM. The fundamental

observations address the issue of how models may interact, how dependent concurrent

interactions may cause inconsistency and why resolving time differentials is important.

These observations arise from the experience of analysing many models and determining

why joint execution of these models becomes ineffective.

The key to multi-representation modelling is employing a holistic approach that is

designed to solve issues of consistency. In the rest of this dissertation, we present one such

approach,UNIFY, based on the fundamental observations.

70

All for one, one for all!
— Alexandre Dumas,The Three Musketeers

Chapter 5

Multiple Representation Entities

A Multiple Representation Entity(MRE) incorporates concurrent representations of

multiple models. MREs are a part ofUNIFY, our framework for effective MRM. The

viability of an MRE rests on three key assumptions: (i) the presence of mapping functions

that translate attributes from one representation to another, (ii) the presence of policies to

resolve the effects of dependent concurrent interactions and (iii) compatible time-steps.

Similar assumptions are not sufficient to make alternative approaches viable for effective

MRM because the approaches continue to violate R1, R2 and R3. We believe that our

assumptions are reasonable because without them the semantics of multi-models are not

clear, andno MRM approach can be effective.

Our thesis is that MRM can be effective. Effective MRM can be achieved by

maintaining consistency among concurrent representations. Traditional approaches to

MRM, such as aggregation-disaggregation and selective viewing, violate R1 because they

simulate only one model at any given time. Typically, attributes in the representation of the

simulated model are updated as a result of interactions, but attributes in representations of

71

other models areghosted, i.e., updated only in response to updates in the simulated model.

Ghosting violates R1 because it constrains the kinds of interactions among entities within

models by disallowing interactions with non-simulated models. Entities must be capable

of interacting at multiple levels (R1), and must be represented at all levels at which they

interact (FO-1). Therefore, for effective joint execution of multiple models, the

representation of each model must exist at all times. We call representations that exist at

all times and permit interactions at all levels concurrent representations. Maintaining

concurrent representations means preserving the representations, as opposed to discarding

or ghosting them. MREs are our technique for maintaining concurrent representations.

Maintaininginternal consistency— consistency among concurrent representations —

within an MRE when concurrent multi-representation interactions occur is a key challenge

in UNIFY. For concurrent representations to be consistent with one another, changes to

one representation must propagate to the other representations. We assume the presence of

appropriate mapping functions to translate changes from one representation to another.

The effects of concurrent multi-representation interactions must be resolved and applied to

the representations. We assume that a designer can construct policies to resolve the

intertwined semantics of such interactions. Lastly, we assume that the time-steps at which

multiple models execute are compatible. Provided a designer can satisfy these

assumptions, we show how to maintain internal consistency within an MRE.

In §5.1, we describe MREs. In §5.2, we present challenges with MREs. In §5.3, we

discuss why our assumptions are necessary and sufficient forUNIFY, but insufficient for

other MRM approaches. In §5.4, we describe the execution of an MRE broadly, deferring

72

detailed descriptions to Chapters 6 and 7. In §5.5 and §5.6, we present the benefits and

limitations of MREs. We summarise in §5.7 with a table that compares MRM approaches.

5.1 Description of an MRE

A Multiple Representation Entitymaintains

concurrent representations. The representation of

each model in a multi-model exists within an MRE

at all times. Consider a multi-model,ModelM,

consisting of two models,ModelA andModelB (Figure 18).RepM is an MRE.RepM(ti) is

the state ofModelM at timeti, i.e., it is a meaningful assignment of values to each attribute

in RepA andRepB at timeti. RepSeqM is a sequence of states forModelM.

Figure 18 shows an MRE for the representations ofModelA andModelB. Recall from

§3.1 that the representation of an entity is a subset of the complete representation of a

ModelA
MRE

Representation

FIGURE 18: An MRE

ModelB

Representation

RepM RepA RepB∪=

ti∀ TM∈ RepM ti(), RepA RepB∪() ti()=

RepSeqM RepM t0() RepM t1() RepM t2() …, , ,()=

T4T3T2T1

E2

E3

LevelA

LevelB

Multiple Representation Entity E1

P

FIGURE 19: Multi-representation Interaction

LevelB

LevelA
interactions

interactions

73

model. An MRE may maintain a subset ofRepA and RepB to describe one object or

process present in both models. For example, in Figure 19, P is an entity that describes an

object inModelA and T1-4 are entities that describe the same object inModelB. E1 is an

MRE consisting of the representations of P and T1-4, thus describing the same object at

multiple representation levels.

Each MRE either maintains or efficiently furnishes the state at all desired

representation levels. Moreover, an MRE permits interactions at all representation levels at

all times. By definition, an MRE satisfies R1. An entity in either model interacts with

another entity at a representation level common to both. Let the representation levels for

ModelA andModelB beLevelA andLevelB respectively. Let E2 be aLevelA entity and E3 be

a LevelB entity (see Figure 19). E2 and E1 interact atLevelA, which means that E2 and P

interact. Likewise, E3 and E1 interact atLevelB, which means that E3 and T1-4 interact.

MREs disallow cross-level interactions (see §4.1.6). For example, E2 cannot interact

directly with T1-4. Likewise, E3 cannot interact directly with P.

5.2 Challenges

The challenge with MREs is maintaining consistency among representations when

concurrent interactions occur (R2). This challenge can be divided into three issues:

1. How must internal consistency be maintained when a representation changes?

2. How must the changes caused by concurrent interactions be resolved?

3. How must time-step differentials be addressed?

The representations of jointly-executing models must be consistent at all observation

times. In Figure 19, for E1 to be internally consistent, any change to the representation of

74

P must affect the representations of T1-4 as well andvice versa. An interaction between E2

and E1 may result in a change to the representation of P. This change must propagate to

T1-4, i.e., the interaction must affect the representations of T1-4 as well. Likewise, an

interaction between E3 and E1 may result in changes to the representations of T1-4. These

changes must propagate to P. Propagating changes requires a technique for capturing

relations among attributes, and functions that translate changes to attributes.

An MRE must remain consistent at all observed times even when concurrent

interactions occur. In Figure 19, if E2 and E3 interact with E1 concurrently, the

representations of P and T1-4 may change concurrently. It may be extremely difficult to

reconcile these concurrent changes when they propagate to the other representation level.

For example, an interaction between E2 and E1 (or P) may preclude an interaction between

E3 and E1 (or T1-4). As another example, the effects of interactions between E2 and E1 (or

P) and between E3 and E1 (or T1-4) may be enhanced when the interactions occur

concurrently. In both these cases, the naïve solution of “adding up” the effects of these

interactions is incorrect because the interactions are dependent on one another.

Temporal inconsistency caused by time-step differentials must be eliminated. If the

time-steps forModelA and ModelB in Figure 19 are different, it becomes difficult to

determine whether two interactions at different representation levels are concurrent or not.

Consequently, the effects of these interactions are hard to resolve. While equal and in-

phase time-steps may eliminate temporal inconsistency, requiring that all jointly-executing

models progress at equal time-step durations is overly restrictive. Accordingly, we assume

that the time-steps of multiple models arecompatible, not necessarilyequal.

75

5.3 Rationale

We made three assumptions in order to overcome the challenge of consistency

maintenance among concurrent representations: (i) the presence of mapping functions, (ii)

the presence of policies for concurrent interactions and (iii) the presence of compatible

time-steps. As we show in §5.4, these assumptions are necessary and sufficient to maintain

consistency within an MRE when concurrent interactions occur. We make two arguments

for the reasonableness of these assumptions.

First, without any of these assumptions, the semantics of multi-models are not evident.

These assumptions require designers to incorporate application-specific knowledge into

the joint execution of multiple models. Alternative approaches to MRM make similar

assumptions. For instance, selective viewing requires mapping functions to translate

attributes from one representation to another. These mapping functions are invoked only

once — when constructing the representation for the most detailed level. Likewise,

aggregation-disaggregation requires mapping functions to translate attributes from one

representation to another during aggregation and disaggregation. Concurrent interactions

may be dependent whether they are at the same or different representation levels.

Therefore, selective viewing and aggregation-disaggregation require policies for resolving

the effects of dependent concurrent interactions. In selective viewing, since only the most

detailed model is executed at all times, time-steps are trivially compatible. Similarly, in

aggregation-disaggregation, only one model is executed at all times. Therefore, at any

instant, time-steps are trivially compatible.

Second, alternative approaches cannot guarantee effective MRM despite making

similar assumptions. For effective MRM, an approach must satisfy the requirements of

76

multi-representation interaction (R1), multi-representation consistency (R2) and cost-

effectiveness (R3). Despite making assumptions about the presence of mapping functions,

policies for resolving effects of interactions and compatible time-steps, selective viewing

and aggregation-disaggregation cannot guarantee effective MRM. Since selective viewing

and aggregation-disaggregation execute only one model at a time, they disallow multi-

representation interactions, thus violating R1. Selective viewing satisfies R2 trivially

because consistency must be maintained within the representation of only one model.

Aggregation-disaggregation can violate R2 because of mapping inconsistencies among the

representations of multiple models. In aggregation-disaggregation, when one model is

executed, attributes in the representations of other models are lost or ghosted. If the

attributes are lost, then transitioning representation levels may cause discontinuities in the

values of attributes even if mapping functions exist. Finally, selective viewing and

aggregation-disaggregation result in high costs. Since selective viewing involves

simulating the most detailed model at all times, simulation cost is expectedly high.

Aggregation-disaggregation reduces simulation costs by transitioning to a low-detail

model whenever possible. However, aggregation-disaggregation incurs high consistency

cost. The high costs in either case violate R3.

Table 2 summarises the assumptions made by various MRM approaches.

TABLE 2: Summary of Assumptions made by MRM approaches

Assumptions
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

Mapping functions
Required
initially

Required Required

Policies for resolving
concurrent interactions

Required Required Required

77

5.4 Execution of an MRE

An MRE permits concurrent interactions at multiple representation levels and

maintains consistency among the multiple representations. Execution of the MRE entails

applying the effects of any interaction consistently to attributes at all levels of the MRE.

Therefore, during each time-step, the effects of interactions at multiple representation

levels must be resolved and applied to the concurrent representations in an MRE.

Recalling our definitions from Chapter 3 and §5.1:

A Consistency Enforcer and an Interaction Resolver are responsible for maintaining

consistency among concurrent representations (Figure 20). AnInteraction Resolver(IR)

for an MRE is a module that determinesE(IntA(ti) • IntB(ti)), ∀ti ∈ TM, i.e., it resolves the

effects of concurrent interactions. AConsistency Enforcer(CE) for an MRE is a module

that generatesRepM(ti+1), ∀ti ∈ TM, i.e., it maps the effects of interactions from one level

to another. For example, if E1 receives concurrent interactions from E2 and E3, the IR

resolves their effects. The resolved interactions may change the representation of P or T1-4

or both subsequently. When an interaction changes attributes in one representation, the CE

changes related attributes in the other representation appropriately. Subsequently, if E2 and

E3 view E1 concurrently, they receive consistent views of E1 from the representations of P

Compatible time-steps Trivial Trivial Required

TABLE 2: Summary of Assumptions made by MRM approaches

Assumptions
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

RepM ti 1+() F RepM ti() E IntM ti()(),()=

RepM ti 1+()∴ F RepA RepB∪() ti() E IntA ti() IntB ti()•(),()=

78

and T1-4. A CE and an IR have application-specific and application-independent

components; in our work, we present the latter.

5.4.1 Maintaining Consistency

A CE maintains internal consistency in an MRE. In effect, a CE ensures that an MRE

exhibits temporal consistency and mapping consistency. In the following sub-sections, we

show how an MRE exhibits consistency.

5.4.1.1 Temporal Consistency

An MRE exhibits temporal consistency if the changes caused by interactions are

applied consistently to all representation levels. If the multiple representations within an

MRE are mutually consistent, the MRE is temporally consistent. Entities viewing a

temporally consistent MRE at overlapping times receive consistent views of the MRE.

For a valid and consistent model,∀ti ∈ TM, RelM(ti) must hold. Let there be a

relationshipr ∈ RelM(ti) such thatr: P(ti) → Q(ti), where P(ti), Q(ti) ⊆ Rep(ti). Let an

interaction IntM(ti)k occur. Suppose P(ti) ⊆ attributes in IntM(ti)k.affects∗ and

∆P(ti) ⊆ changes inIntM(ti)k.affects∗ such that applying∆P(ti) to P(ti) results inP(ti+1).

T4T3T2T1

E2

E3

Consistency Enforcer

LevelA

LevelB

Multiple Representation Entity E1

P

FIGURE 20: Execution of an MRE

LevelB

LevelAinteractions

interactions

In
te

ra
ct

io
n

R
es

ol
ve

r

79

For r to hold, mapping functions must generate∆Q(ti) such that applying∆Q(ti) results in

Q(ti+1) eventually. Consequently,r holds at observation timeti+1, i.e.,r ∈ RelM(ti+1).

Mapping functions are necessary for translating the

attributes in one representation to the attributes in

another. Translating attributes means translatingvalue

spaces, changes in valuesor typesof attributes from

one representation to another. For example, consider

the T-joint in Figure 21. One model may represent the T-joint with attributes such as

connectedness, position and orientation. Another model may represent it as a pair of

boards and a nail, each with attributes such as position and orientation. A mapping

function must translate the positions of the boards to the position of the T-joint. Likewise,

another mapping function must perform the reverse translation — from the position of the

T-joint to the positions of the boards. Such mapping functions must take the values of

some attributes and change them to the values of other attributes. Another pair of mapping

functions must translate the orientation of the T-joint to the orientations of the boards and

vice versa. These translations may be computationally less complex if the changes in

orientations rather than the values of orientations are translated. Finally, consider the

attribute of connectedness for a T-joint. Assume the system can infer that a T-joint is

connected if the positions of two boards and a nail overlap*. A mapping function that

translates the positions of the boards and nail to the connectedness of the T-joint must

* Naturally, if the boards and nail happen to lie in those positions without the boards having been

nailed, the system may infer incorrectly that the T-joint is connected. Resolving this issue is out

of the scope of our work, and for the purposes of this discussion, irrelevant.

FIGURE 21: T-joint entity

T-joint

board1

board2
nail

80

translate the types of the attributes as well as the values. Finally, translations by mapping

functions must complete before the time-step ends.

5.4.1.2 Mapping Consistency

An MRE exhibits mapping consistency if mapping functions are reversible (see

§3.3.2). An interaction initiates translations caused by mapping functions. Sequences of

interactions initiate repeated translations. Repeated translations must not cause

discontinuities or “jumps” in concurrent representations (see §4.1.1). Reversible mapping

functions ensure that repeated translations do not cause such discontinuities.

An MRE supports the design of reversible mapping functions. For the T-joint of

Figure 21, letf translate the board positions to the T-joint position, andg translate the

T-joint position to the board positions. Provided no interactions occur, iff translates the

current values of the board positions to a value for the T-joint position, theng translates

the value of the T-joint position to new values for the board positions, the new and

previous values for the board positions must be within tolerable error. If either function

could have generated a number of possible values for the resultant attributes, the previous

values of the resultant attributes may be taken into account in order to generate the new

values. For example, if the T-joint is rotated by 180o, invoking f on the values of the board

positions may result in the original T-joint position. Subsequently, invokingg may result

in board positions corresponding to no rotation, thus resulting in an intolerable change to

the board positions. In contrast, ifg took the orientation attribute or the previous values for

the board positions into account, then the new positions would correspond correctly to the

rotated T-joint position. Irrespective of the details,f andg must be reversible for the MRE

to exhibit mapping consistency.

81

5.4.2 Resolving Concurrent Interactions

Dependent concurrent interactions may occur because an approach satisfies R1. An

MRE permits concurrent interactions at multiple representation levels. Entities at any

representation level may initiate and receive interactions that change the appropriate

representation. If entities at different representation levels interact, the effects of

concurrent interactions at multiple levels must be resolved, i.e., the effects of these

interactions must be applied to all levels consistently (FO-2). However, concurrent

interactions may be dependent (FO-3). The effects of dependent concurrent interactions

must be resolved in a meaningful manner, i.e., in a manner consistent with requirements.

An IR is responsible for resolving the effects of concurrent interactions in an MRE.

We assume that designers understand the semantics of interactions in their applications

well enough to classify them and specify policies for resolving their dependent effects.

Without such an understanding, arbitrary policies such as serialization must be chosen to

resolve the effects of interactions. Arbitrary policies often fail to resolve the effects of

dependent concurrent interactions meaningfully. In Chapter 7, we show how designers can

construct an IR for an MRE.

5.4.3 Storing Attributes in a Core

Since an MRE incorporates concurrent representations, it makes a high demand on

resources such as memory to store representations. Although conceptually it is

straightforward to think of MREs as using memory for each representation, memory may

be conserved by storing a small set of attributes at all times and generating other attributes

on demand. In Figure 22, the MRE stores a set of attributes at all times from which it can

82

generate all attributes at all desired levels in a timely manner on demand. This set of

attributes, thecore setor core, may be updated on every interaction to keep the MRE

internally consistent. Attributes in the core must be chosen such that they are sufficient for

generating all the attributes in the MRE. The core set must be stored at all times in the

simulation, but the other attributes may be discarded when they are no longer necessary.

For some applications, a core set of attributes that is smaller than the set of all

attributes at all representations can exist. For example, if a molecular and atomic model of

a compound execute jointly, the position and orientation attributes in the molecular model

may determine the position attributes in the atomic model uniquely andvice versa.

Therefore, storing either the molecular position and orientation or the atomic positions in

a core may be sufficient to maintain internal consistency in an MRE for that compound.

Since the core is a subset of all the attributes at all levels, we develop criteria that identify

attributes that should be in the core. We have identified four such criteria: reversibility,

decreasing validity with time, cost ratio and frequency of access. These criteria are

independent but may conflict with one another. In such a case, appropriate weights must

be assigned to the criteria to aid selection of the core attributes.

LevelA

View

FIGURE 22: Core attributes

M
R

E

Core

Consistent
Multiple-

Representation

Attribute generation functions

Attributes for Views

LevelB

View

83

Reversibility: For many attributes, it is important that reversible mapping functions

translate the values at one level to the values at another level. However, in many cases

reversible mapping functions may be hard to find or encode. In such cases, when the

attributes require reversibility but reversible mapping functions cannot be found, the

attributes must be included at all representation levels in the core. Consider an application

for which the position attribute requires reversibility but reversible mapping functions

cannot be found. The position of the aggregate may be computed by averaging the

position of the disaggregate entities. Likewise, a doctrine or template may be applied to

the aggregate position to determine disaggregate positions. However, these translations are

relevant only when the entities are not perturbed by other interactions. If the positions of

the disaggregate entities change by small amounts because of disaggregate-level

interactions, then it is not possible to generate those new positions from the aggregate

position. Since perfectly reversible mapping functions cannot be found, the position

attributes at both levels must be stored in the core.

Decreasing validity with time: Another criterion is whether the attribute’s validity

decreases or not with time. The attribute could be stored in the core when it is useful and

when its validity goes below a threshold it could be removed from the core.

Cost ratio: Cost ratio is the ratio of the cost of maintaining the attribute to the cost of

generating it. If the cost of maintaining the attribute is measured by the amount of memory

it consumes and the cost of generating it is measured by the time it takes to generate it,

then this criterion reduces to a space-time trade-off. If the cost of maintaining the attribute

is measured by the amount of time required to change its value, the comparison lies

between the time to effect a change and the time to generate the attribute. Whether the

84

attribute should be stored in the core or not depends on the cost ratio being larger than,

smaller than or equal to one.

Frequency of access: Our fourth criterion is the frequency with which the attribute is

accessed. If the frequency is high, then it may be judicious to store the attribute in the core.

5.4.4 Comparing against Alternative Approaches

We compare the execution of an MRE against alternative MRM approaches.

5.4.4.1 Comparing against aggregation-disaggregation

Are MREs a variant of aggregation-disaggregation? During aggregation, mapping

functions translate disaggregate attributes to aggregate attributes. During disaggregation,

the translation occurs in reverse, i.e., mapping functions translate aggregate attributes to

disaggregate attributes. Similar translations occur in an MRE. The translation during

aggregation loses information that must be re-generated during disaggregation. This re-

generation is a common source of mapping inconsistency. The question is whether the

translations in an MRE can cause mapping inconsistency similarly.

MREs maintain attributes at all representation levels at all times. In aggregation-

disaggregation, attributes are either discarded or ghosted after a translation. In an MRE,

attributes atall levels are retained after a translation. Consequently, mapping functions can

utilise previous values of attributes in order to generate new values, thus avoiding mapping

inconsistency. Moreover, an MRE permits interactions at all representation levels at all

times, and incurs lower consistency costs than aggregation-disaggregation.

85

5.4.4.2 Comparing against selective viewing

Are MREs a variant of selective viewing? In selective viewing, only the most detailed

model is executed at all times. Attributes in the multiple representations within an MRE

may be construed as the attributes in the representation of the detailed model in selective

viewing. The question is whether an MRE is a modular variant of selective viewing.

An MRE does not incur unnecessary simulation costs. For example, suppose a platoon

model executes jointly with a model of its constituent tanks. In selective viewing, only the

tank model executes. Platoon-level interactions must be translated to possibly many tank-

level interactions, each possibly changing the representations of the corresponding tanks.

In an MRE, platoon-level interactions change the representation of the platoon. Changes

to the platoon representation propagate to the tank representations. Therefore, as

compared to selective viewing, an MRE incurs a lower simulation cost at the expense of a

higher consistency cost. In addition, an MRE permits interactions at all representation

levels at all times.

TABLE 3: Comparison among MRM approaches

Requirements
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

R1: Multi-representation
Interaction

No No Yes

R2: Multi-representation
Consistency

Trivially Possible Possible

R3: Cost-Effectiveness
(see Chapter 9)

High Cost of
Simulation

High Cost of
Consistency

Low Costs

86

5.5 Benefits of MREs

Consistent concurrent representations can eliminate or reduce many of the problems

with other MRM approaches. In §5.4.1, we showed how MREs eliminate temporal and

mapping inconsistencies. Now, we show how MREs eliminate or reduce the remaining

MRM problems discussed in §4.1. Recall that LRE stands for a Low Resolution Entity

and HRE stands for High Resolution Entity.

Eliminating Chain Disaggregation: MREs eliminate chain disaggregation. An MRE

does not disaggregate, and does not force other entities to disaggregate. Therefore, as

Figure 23 shows, MREs do not cause chain disaggregation.

Eliminating Transition Latency : MREs eliminate transition latencies encountered in

aggregation-disaggregation. MREs do not transition among representation levels, i.e., they

do not aggregate or disaggregate. Therefore, they do not require protocols for initiating

aggregation or disaggregation. Consequently, transition latency is not an issue with MREs.

Eliminating Thrashing : MREs eliminate thrashing because they do not transition

representation levels. Thrashing occurs when an entity aggregates and disaggregates

repeatedly in a short period of time because it moves in and out of a playbox or interacts

with entities at different representation levels. Thrashing causes the entity to consume

MRE

HRE HRE

FIGURE 23: Eliminating Chain Disaggregation

LRE
LRE

LRE
LRE

87

significant processing resources just transitioning levels. Since MREs interact at different

representation levels without effecting a transition, MREs do not thrash.

Reducing Network Flooding: MREs reduce network flooding. Selective viewing

introduces a large number of entities in the simulation. Likewise, a disaggregated LRE in

aggregation-disaggregation introduces a large number of entities in the simulation. As

Figure 24 shows, increasing the number of entities in the simulation increases the number

of interactions among entities. Since interactions are implemented often as messages on a

network, aggregation-disaggregation causes network flooding. MREs capture a benefit of

aggregation — introducing fewer entities — thus reducing network flooding.

Eliminating Cross-level Interactions: MREs eliminate cross-level interactions by

permitting interactions among entities at all representation levels. With MREs, aLevelA

entity never interacts with aLevelB entity; LevelA entities interact with one another, and

LevelB entities interact with one another. Since entities interact at representation levels

common to them, MREs eliminate cross-level interactions. Entities must negotiate the

representation level at which they will interact beforehand. If entities interact at more than

one level at a time, “double-interactions” can occur. For example, if an MRE A interacts

with an MRE B atLevelA as well asLevelB, then a double-interaction occurs when A

sends two distinct sets of interactions, one at each level, for the same event. If A and B

interact at one level but not both, double-interactions are prevented.

MRE

FIGURE 24: Reducing Network Flooding

MRE

88

Summary of Benefits: Table 4 summarises the benefits of MREs by comparing how

various MRM approaches address the above issues.

5.6 Limitations of MREs

MREs are a technique for capturing the combined semantics of jointly-executing

models. An MRE does not show how to design a better model. In the context of an MRM

approach, this limitation is not serious; we show that MREs are no worse than alternative

approaches. However, without addressing this limitation, a multi-model cannot satisfy its

users’ requirements even if the MRM approach is effective. MREs can support solutions

for many of the following issues; however, MREs do not inherently resolve these issues.

Identifying Representations and Relationships: An MRE does not identify the

representation at any level nor relationships between representations. Identifying

representations and relationships are the responsibility of a designer. No approach to

MRM frees a designer of this responsibility.

TABLE 4: Summary of Benefits of MREs

Benefits
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

Temporal Inconsistency Absent Present Eliminated

Mapping Inconsistency Absent Present Eliminated

Chain Disaggregation Inherent Possible Eliminated

Transition Latency Non-existent Possible Eliminated

Thrashing Non-existent Possible Eliminated

Network Flooding High Possibly high Reduced

Cross-level Interactions Non-existent Possible Eliminated

89

Capturing Whole-Greater-than-the-Sum-of-Parts Relationships: Aggregate and

disaggregate entities bear the relationship of being whole and parts of one another. The

whole-and-parts relationship occurs frequently in battlefield simulations where a number

of tanks may be considered as parts of a platoon, or a number of regiments may be

considered as parts of a division. Likewise, in multi-resolution graphics, a number of

triangles may be considered as parts of an entire surface, or in molecular models, a

number of atoms may be considered as parts of a molecule.

A valid concern when aggregate and disaggregate models execute jointly is that the

values of some aggregate attributes may be greater than the sum of the values of

corresponding disaggregate attributes, i.e., the whole is greater than the sum of its parts.

This concern has been called emergent behaviour problem [WIM86] or the configuration

problem [HORR92]. For example, tanks may fight with greater strength when configured

as a platoon. This increase in strength may be attributable to the presence of a commander

who coordinates and guides activities (as is common in the case of military units) or any

one of many other similar reasons. As another example, weak forces in atomic models

may be ignored since their effect on the position of atoms may be negligible. However, in

molecular models, these forces may add up to influence the positions of atoms

significantly. The precise relationships between the platoon’s strength and the tanks’

strength and the atomic forces and the molecular forces must be captured by mapping

functions that translate attributes among representations.

Selective viewing does not capture whole-greater-than-the-sum-of-parts relationships.

In selective viewing, only the model for the parts is executed. Therefore, whole-greater-

than-the-sum-of-parts relationships may not be captured unless information outside the

90

attributes of each part is present. Typically, an entity maintains attributes relevant only to

its own execution. Therefore, the behaviour of an entity when it executes as part of a

whole is not distinct from its behaviour when it executes individually. Consequently,

information not present in the entity must be used to distinguish these behaviours.

Maintaining such information is tantamount to executing multiple models.

Aggregation-disaggregation captures whole-greater-than-the-sum-of-parts

relationships, but introduces mapping inconsistency because information is lost during

transitions. For example, tanks in a platoon may have manœuvred into a favorable

position, thus causing the strength of the platoon to be greater than the sum of the

strengths of the tanks. At this point, transitioning to the platoon model and back to the tank

model may cause the tanks to be placed in doctrinal formation (since the tanks’ previous

positions are lost). This placement may result in a platoon strength that is the sum of the

strengths of the tanks. Thus, the transitions reduced the strength of the platoon.

MREs aid in the construction of mapping functions that capture whole-greater-than-

the-sum-of-parts. Since an MRE incorporates concurrent representations, attributes at all

levels are present for the design of mapping functions that avoid inconsistency. Although

MREs can capture whole-greater-than-the-sum-of-parts relationships better than

alternative approaches, MREs do not aid identification of attributes that bear such

relationships. It is the responsibility of the designer to identify and encode such

relationships within mapping functions.

Resolving Conflicting Results: The multiple models in a multi-model may employ

different algorithms to compute similar effects at different representation levels. For

example, in battlefield simulations, Lanchester equations are used to compute attrition or

91

loss of strength for aggregate-level forces. These equations are differential equations

parameterised by coefficients based on historical data [KARR83]. Typically, Lanchester

equations compute the results of battles involving large forces, such as divisions, brigades

and corps. Also, the coefficients based on historical data are collected for battles lasting a

few hours. The coefficients can be “smoothed” over small time-step granularities, say of

ten minutes or so but not finer. As a result, models employing Lanchester equations must

have time-steps of at least ten minutes, or else the attrition computed by the Lanchester

equations cannot be claimed to be valid. In contrast, for battles involving disaggregate-

level forces, such as tanks and artillery, attrition is computed by applying historical hit-kill

probabilities for each engagement. Briefly, when a tank fires a shell at an enemy, the shell

has a certain probability of hitting the target. Kill probabilities are conditioned on hit

probabilities. Since attrition using hit-kill probabilities is computed on a per engagement

basis, it can be applied to simulated battles with millisecond time-steps.

A multi-model that involves models employing different algorithms encounters two

problems: temporal inconsistency and conflicting results. Temporal inconsistency may

arise if the multiple algorithms make different assumptions about time at the multiple

levels, as Lanchester equations and hit-kill probabilities do. Temporal consistency caused

by time-step differentials must be eliminated; we do so by assuming compatible time-

steps. Conflicting results arise if the algorithms predict different outcomes for the same set

of inputs. Selective viewing avoids the problem of conflicting results by executing only the

detailed model. Aggregation-disaggregation encounters the problem of conflicting results;

depending on the level at which a multi-model is executed, the results of an outcome may

vary [HILL 92B].

92

MREs do not address the problem of conflicting results. Designers of multi-models

must resolve conflicting results caused by different algorithms at multiple levels. Joint

execution of multiple models captures the combined semantics of the models, no matter

what the semantics of the individual models are.

Summary of Limitations : The limitations above are expected of any approach that

focusses on MRM alone. Designers must address these limitations in order to construct

useful multi-models. However, addressing these limitations is outside the scope of any

MRM approach, includingUNIFY. Table 5 summarises the limitations of MREs by

comparing how various MRM approaches address the above issues.

5.7 Chapter Summary

A Multiple Representation Entity is a technique for maintaining concurrent

representations in order to achieve effective MRM. A key challenge with an MRE is

maintaining consistency among its concurrent representations in the presence of

dependent concurrent interactions. We assume the existence of appropriate mapping

TABLE 5: Summary of Limitations of MREs

Limitations
Selective
Viewing

Aggregation-
Disaggregation

UNIFY

Identifying Attributes and
Dependencies in
Representations

Not
addressed

Not addressed
Not

addressed

Capturing Whole-Greater-
than-the-Sum-of-Parts
Relationships

Not
supported

Possible Possible

Resolving Conflicting
Results

Not
necessary

Required Required

93

functions for translating attributes from one representation to another, policies for

resolving the effects of dependent concurrent interactions and compatible time-steps.

These assumptions do not make MRM trivial, because alternative approaches continue to

exhibit problems even if they make similar assumptions.

MREs satisfy the MRM requirements of multi-representation interaction and

consistency among the representations. MREs eliminate many problems with previous

MRM approaches. We comparedUNIFY with alternative approaches to MRM in terms of

the requirements that each approach satisfies, the assumptions made towards satisfying

those requirements, and the benefits and limitations of each approach. We depict these

comparisons concisely in Table 6.

MREs and techniques for maintaining internal consistency among MREs constitute

UNIFY. A Consistency Enforcer and an Interaction Resolver for an MRE maintain

consistency among the concurrent representations and resolve the effects of concurrent

interactions respectively. In Chapters 6 and 7, we describe a CE and an IR in detail.

94

TABLE 6: Comparison among MRM approaches

Selective
Viewing

Aggregation-
Disaggregation

UNIFY
R

eq
ui

re
m

en
ts

R1: Multi-representation
Interaction

No No Yes

R2: Multi-representation
Consistency

Trivially Possible Possible

R3: Cost-Effectiveness
(see Chapter 9)

High Cost of
Simulation

High Cost of
Consistency

Balanced
Costs

A
ss

um
pt

io
ns

(s
ee

 §
5.

3)

Mapping functions
Required
initially

Required Required

Policies for resolving
concurrent interactions

Required Required Required

Compatible time-steps Trivial Trivial Required

B
en

efi
ts

 (
se

e
§5

.5
)

Temporal Inconsistency Absent Present Eliminated

Mapping Inconsistency Absent Present Eliminated

Chain Disaggregation Inherent Possible Eliminated

Transition Latency Non-existent Possible Eliminated

Thrashing Non-existent Possible Eliminated

Network Flooding High Possibly high Reduced

Cross-level Interactions Non-existent Possible Eliminated

Li
m

ita
tio

ns
 (

se
e

§5
.6

) Identifying Attributes and
Dependencies in
Representations

Not
addressed

Not addressed
Not

addressed

Capturing Whole-Greater-
than-the-Sum-of-Parts
Relationships

Not
supported

Possible Possible

Resolving Conflicting
Results

Not
necessary

Required Required

95

It is of course important to try to maintain consistency,
but when this effort forces you into a stupendously ugly theory,

you know something is wrong.
— Douglas Hofstadter,Gödel, Escher, Bach

Chapter 6

Consistency Enforcers

For effective MRM, jointly-executing multiple models must be consistent with one

another (requirement R2). In Chapter 5, we presented Multiple Representation Entities

(MREs) which incorporate concurrent representations of multiple models. AConsistency

Enforcer (CE) is a component of an MRE that maintains consistency among concurrent

representations. A CE consists of an Attribute Dependency Graph (ADG) that captures

dependencies among representations, and application-specific mapping functions that

translate attributes. An ADG and mapping functions ensure that the relationships in an

MRE hold at all observation times. In this chapter, we present ADGs, discuss how

mapping functions relate to them and demonstrate the construction of a CE.

When an interaction changes the value of attributes, a CE ensures that the concurrent

representations in an MRE are consistent. The operation of a CE involves traversing an

ADG and invoking mapping functions to compute the changes to relevant attributes. A CE

maintains internal consistency within an MRE. Constructing a CE involves:

1. Constructing an Attribute Dependency Graph

96

a. Assigning Nodes to Attributes

b. Assigning Arcs to Dependencies

c. Assigning Semantics to Dependencies

2. Selecting Mapping Functions

In §6.1, we describe ADGs and introduce an example in order to demonstrate step 1.

Also, we introduce four classes of dependencies: cumulative, distributive, modelling and

interaction. In §6.2, we discuss the mapping functions that designers must provide for

their multi-models (step 2). In §6.3, we describe how a CE can enforce consistency among

multiple representations by traversing an ADG and propagating the effects of an

interaction. In §6.4, we present various implementation strategies for Consistency

Enforcers such as spreadsheets, attribute grammars, mediators and constraint solvers. In

this chapter, we assume concurrent interactions are independent, i.e., their effects can be

resolved by serialization. We make this assumption in order to explain the operation of a

Consistency Enforcer alone. We address dependent concurrent interactions in Chapter 7.

6.1 Constructing an Attribute

Dependency Graph

An Attribute Dependency Graphcaptures dependencies among attributes in

concurrent representations. When multiple models execute jointly, a change to an attribute

may cause other dependent attributes to change. A dependency graph is a natural

technique to capture such cause-effect dependencies among attributes. In an ADG, nodes

correspond to attributes in a multi-model and arcs correspond to dependencies among the

attributes. In the simple ADG shown in Figure 25, the left node corresponds to an attribute

a

FIGURE 25: Simple ADG

b

97

a, and the right node corresponds to an attributeb. The arc connecting the two nodes

shows thatb depends ona, or a affectsb. If the value ofa changes, the value ofb may

change. If the value ofb changes, there is no requirement for the value ofa to change. For

the relationship in the figure,a is the independent attribute andb is the dependent attribute.

The ADG in Figure 25 does not showhow bmust change whena changes. A mapping

function must encode howb changes whena changes. Dependency graphs such as ADGs

capture cause-effect relationships in a number of contexts, for example, task execution

sequences in Petri nets [PETER77], data dependencies in dataflow models [DENNIS80],

method invocation in object-oriented design [RUM91] [SHLAER92], and causal

relationships in logical time systems [LAM78].

Let ModelA be a low-resolution model andModelB be a high-resolution model.

Recalling our definitions from Chapter 3, inUNIFY, a multi-modelModelM is:

ModelM is consistent ifRelM, and in turn,Relcross-modelhold ∀t ∈ TM. Previous MRM

approaches do not capture complex cross-model relationships that may hold at different

times. In selective viewing,∀t ∈ TM, ModelM(t) = ModelB(t) and Relcross-model= ∅. In

aggregation-disaggregation, at timeti ∈ TM, ModelM(ti) = ModelA(ti), and at timetj ∈ TM,

ti ≠ tj, ModelM(tj) = ModelB(tj). Relcross-model≠ ∅ only when a representation level is

transitioned, i.e.,ti, ti+1 ∈ TM, ModelM(ti) = ModelA(ti) ∧ ModelM(ti+1) = ModelB(ti+1) ∨

ModelM(ti) = ModelB(ti) ∧ ModelM(ti+1) = ModelA(ti+1).

In UNIFY, an ADG has a node for each attributea ∈ RepM, and an arc for each

relationshipr ∈ RelM. Recall thatRelcross-modelis defined as a set of relationships such

ModelM RepM RelM IntM, ,〈 〉=

RepM RepA RepB∪=

RelM RelA RelB Relcross model–∪ ∪=

98

that ∀r: P → Q, P ⊆ RepA ∧ Q ⊆ RepB ∨ P ⊆ RepB ∧ Q ⊆ RepA. An ADG has an arc for

every r ∈ Relcross-model becauseRelcross-model⊆ RelM. An ADG is a technique for

describing attributes in concurrent representations, relationships among those attributes

and the semantics of the relationships.

In the following sub-sections, we show how to construct an ADG for an example MRE

from jointly-executing battlefield models. Our example is derived from specifications of

actual battlefield models [JPSD97] [JTFP97] [RPR97]. The choice of models reflects our

familiarity with the domain, not a restriction on the kind of multiple models for which

ADGs are relevant. LetModelA be a platoon model,ModelB be a tank model, andModelM

be a multi-model incorporating these two models. A platoon inModelA has attributes for

position (Pos), velocity (Vel), firepower (Fire), strength (Str), appearance (App) and

formation (Form). A tank inModelB has attributes for position (Pos), velocity (Vel), hits

(Hits), ammunition (Ammo), damage status (Dam) and fuel level (Fuel). Our MRE, the

Platoon-Tanks MRE in Figure 26, is a platoon represented at two levels: the platoon level

FIGURE 26: Platoon-Tanks MRE

Platoon: App, Form, Pos, Vel, Fire, Str

Tank1: Dam1, Fuel1, Pos1, Vel1, Ammo1, Hits1

Tank2: Dam2, Fuel2, Pos2, Vel2, Ammo2, Hits2

Platoon Level

Tank Level

Platoon-Tanks MRE

99

and the tank level. Therefore, this MRE has attributes for a platoon and its constituent

tanks. For ease of exposition, we assume that our platoon can be represented at the tank

level by just two tanks. Attributes App, Form, Pos, Vel, Fire, Str∈ RelA, and attributes

Dam1, Fuel1, Pos1, Vel1, Ammo1, Hits1, Dam2, Fuel2, Pos2, Vel2, Ammo2, Hits2 ∈ RelB.

We will demonstrate the construction of an ADG for this MRE.

6.1.1 Assigning Nodes to Attributes

The first step in constructing an ADG is assigning nodes to attributes. In principle, a

designer may assign a node to any set of attributesP such thatP ⊆ RepA ∨ P ⊆ RepB. A

node can be assigned to any set of attributes that enables a designer to make

straightforward decisions about applying the effects of interactions. For example, the

designer may assign a node to the set of attributes of a tank. However, such an assignment

does not aid the designer substantially in applying the effects of interactions. In practice,

since interactions affectattributes, we expect the designer to assign nodes to attributes

such as position and appearance. In a multi-model involving atoms and molecules, nodes

could be assigned to atom-level attributes such as orientation and charge, and molecule-

level attributes, such as orientation and valence. In a hierarchical autonomous agent

model, nodes could be assigned to planner-level attributes such as absolute location and

connectedness, and perception-action-level attributes such as relative location, colour and

visibility. In our example, we assign a node in the ADG to every attribute in the concurrent

representations ofModelM, i.e., every attributea ∈ RepM. In Figure 27, we show all the

attributes as nodes labelled with unsubscripted or appropriately-subscripted names.

100

6.1.2 Assigning Arcs to Dependencies

The second step in constructing an ADG is assigning arcs to dependencies. An arc

connecting two nodes represents a dependency between attributes corresponding to the

nodes. Since a dependency between two attributes indicates that they are related, arcs in an

ADG correspond to each relationshipr ∈ RelM. In Figure 28, we show dependencies for

our Platoon-Tanks example. The platoon position depends on each tank position andvice

versa. The tank positions are unrelated because each tank may move independently. We

identify similar dependencies among platoon and tank velocities. The firepower of the

platoon depends on the ammunition levels of the tanks, and the strength of the platoon

depends on the number of hits each tank has received. Likewise, the appearance of the

platoon depends on the damage state of each tank andvice versa. The fuel level of the

individual tanks is not represented at the platoon level. Unless the platoon model bases any

decisions on the fuel level of the platoon, it is not necessary that the tank fuel levels be

FIGURE 27: Nodes in the ADG for the Platoon-Tanks MRE

Platoon-Level Representation

Tank-Level Representation

Platoon-Tanks MRE

Ammo1 Hits1Vel1Pos1Fuel1Dam1

Ammo2 Hits2Vel2Pos2Fuel2Dam2

Fire StrVelPosFormApp

101

represented at the platoon level. The platoon has a formation attribute that captures the

relative positions of the tanks. The formation depends on tank positions andvice versa.

Suppose moving out of formation may cause the platoon to appear weak. Therefore, the

formation affects the appearance of the platoon. Lastly, the current positions of the platoon

or tanks depend on the current values of the respective velocities.

6.1.3 Assigning Semantics to Dependencies

The third step in constructing an ADG is to assign semantics to dependencies.

Assigning semantics to dependencies enables the construction of appropriate mapping

functions for them. One way to assign semantics is to classify dependencies. Mapping

functions associated with classes of dependencies have common requirements.

Dependencies may be classified according to characteristics specific to an application. We

classify dependencies in an application-independent manner into four categories:

cumulative, distributive, interaction and modelling. Binary weights, fractional weights and

Platoon-Level Representation

Tank-Level Representation

Platoon-Tanks MRE

FIGURE 28: Dependencies in the ADG for the Platoon-Tanks MRE

Ammo1 Hits1Vel1Pos1Fuel1Dam1

Ammo2 Hits2Vel2Pos2Fuel2Dam2

Fire StrVelPosFormApp

102

interaction classes are other techniques for capturing semantics of dependencies.

Assigning weights to cumulative and distributive dependencies can capture how changes

to an attribute contribute or distribute to other attributes. Modelling dependencies already

capture semantic information, hence we do not associate any additional semantic

information with them. The semantics we associate with interaction dependencies are the

classes of interactions (discussed in Chapter 7). The semantics assigned to dependencies

vary with applications.

6.1.3.1 Cumulative and Distributive Dependencies

Whole-to-parts and parts-to-whole relationships are common in models, for example,

aggregation associations among objects in UML [ALHIR98] and OMTR [RUM91], and

relationships among objects such as part-whole, consists-of, composition, has-part and

contains in other modelling methodologies [FOWLER97]. These associations and

relationships usually are bidirectional, i.e., a relationship betweenP andQ implies another

relationship betweenQ andP. These associations and relationships capture whole-to-parts

and parts-to-whole relationships among objects; we capture similar relationships between

attributes with cumulative and distributive dependencies.

Cumulative and distributive dependencies capture parts-to-whole and whole-to-parts

relationships among attributes respectively.Cumulative dependenciesare dependencies in

which the value of a single attribute is influenced jointly by the value of many other

attributes. For a relationshipr ∈ RelM, r: P → Q, P, Q ⊆ RepM, whereQ = 1, ∀a ∈ P

and b ∈ Q, a cumulative dependency exists froma to b. Distributive dependenciesare

dependencies in which the value of a single attribute influences the value of many other

attributes jointly. For a relationshipr ∈ RelM, r: P → Q, P, Q ⊆ RepM, whereP = 1,

103

a ∈ P and∀b ∈ Q, a distributive dependency exists froma to b. In hierarchical models,

cumulative dependencies capture relationships from disaggregate attributes to aggregate

attributes, and distributive dependencies capture relationships from aggregate attributes to

disaggregate attributes.

6.1.3.2 Interaction and Modelling Dependencies

Interactions cause changes to attributes.Interaction dependenciesare dependencies

between the sender of an interaction and the attributes changed directly by the interaction.

An interactionI ∈ IntM, may be viewed as a relationshipr: P → Q, whereQ ⊆ RepM, but

it is not necessary thatP ⊆ RepM. An interaction dependency captures a cause-effect

relationship from attributes of a sender to attributes of a receiver.

Other relationships may exist among attributes. These relationships may be inherent in

the nature of the object or process being modelled, and may not be captured conveniently

by cumulative, distributive or interaction dependencies.Modelling dependenciesare

dependencies that are not cumulative, distributive or interaction.

6.1.3.3 Selecting Dependencies

If a pair of attributes has a cumulative dependency between them, they may have a

distributive dependency as well. A change to a part may affect the whole andvice versa.

Let attributesa, a1, a2, …, an, b, b1, b2, …, bm ∈ RepM. In Table 7, we list how

dependency classes can be assigned to combinations of whole-to-parts and parts-to-whole

relationships. The first column lists combinations of whole-to-parts and parts-to-whole

relationships. The second and third columns list the attribute dependencies and their type.

For the relationship {a} → { b}, classifying the dependency as either cumulative or

104

dependency is valid since the relationship is one-to-one. One-to-one relationships are

degenerate cases of both, whole-to-parts and parts-to-whole relationships.

If an interaction can change an attribute, an interaction dependency exists to that

attribute, i.e.,∀I ∈ IntM, if <a, δa> ∈ I.affects, whereδa is a change to attributea caused

by I, then an interaction dependency exists toa. Although many interaction types may

change an attribute, we associate only one interaction dependency with the attribute

because the identity of the independent attribute is irrelevant. Modelling dependencies

have application-dependent semantics.

6.1.3.4 Properties of Dependency Classes

Our dependency classes are complete and extensible. Cumulative and distributive

dependencies capture whole-to-parts and parts-to-whole dependencies, which are

common in models. Interaction dependencies capture dependencies from entities outside

to entities inside a model. By definition, modelling dependencies are all dependencies that

are not cumulative, distributive or interaction. Although the dependency classes are

complete, designers can extend them by identifying other classes of dependencies.

Additional classes may refine cumulative, distributive or modelling dependencies, thus

TABLE 7: Assigning Cumulative and Distributive Dependencies

Relationship Dependency Class

{ a1, a2, …, an} → { b}
ai → b Cumulative

b → ai Distributive

{ a} → { b1, b2, …, bm}
a → bj Distributive

bj → a Cumulative

{ a} → { b}
a → b Cumulative/Distributive

b → a Distributive/Cumulative

{ a1, a2, …, an} → { b1, b2, …, bm}
ai → bj Cumulative

bj → ai Distributive

105

enabling designers to specify requirements of mapping functions in greater detail. For

example, the boards of a T-joint are connected rigidly, whereas the arms of a pair of pliers

are connected non-rigidly. Therefore, the cumulative dependencies from the board

positions to the T-joint position and from the arm positions to the pliers position can be

refined into two classes: rigidly cumulative and non-rigidly cumulative. This refinement

enables a designer to specify mapping functions that translate the positions in rigidly and

non-rigidly cumulative dependencies differently.

6.1.3.5 Examples of Dependency Classes

By adding interaction dependencies to the ADG in Figure 28, we obtain the complete

ADG shown in Figure 29. Cumulative dependencies capture the relationship from the tank

positions to the platoon position. Distributive dependencies capture the converse

relationship from the platoon position to the tank positions. Likewise, cumulative

dependencies capture the relationship from the tank velocities to the platoon velocity, and

distributive dependencies capture the converse relationship from the platoon’s velocity to

the tank velocities. In the same fashion, cumulative and distributive dependencies capture

the relationships among other platoon attributes and tank attributes. Modelling

dependencies capture the relationships from the velocities of the platoon and the tanks to

the positions of the platoon and the tanks. Likewise, a modelling dependency captures the

relationship from the platoon formation to the platoon appearance. An interaction

dependency to each attribute captures the effects of interactions with other entities or

simulation actions of the platoon and the tanks.

106

6.1.3.6 Dependency Weights

Weighting dependencies with binary or fractional weights captures the semantics of

contribution. The weight on a dependency indicates how much the independent attribute

contributes to the dependent attribute. Although the assignment of weights can be

construed as part of a mapping function, we view weights as an example of assigning

semantics to dependencies prior to the construction of a mapping function.

Weights on Cumulative Dependencies: Weighting

cumulative dependencies captures the manner in which

many independent attributes affect one dependent

attribute. A cumulative dependency can be weighted

according to what fraction of the value of an

independent attribute contributes to the dependent attribute. For example, the cumulative

FIGURE 29: Dependency Classes in the ADG for the Platoon-Tanks MRE

Platoon-Level Representation

Tank-Level Representation

Platoon-Tanks MRE

Cumulative Dependency Interaction Dependency

Distributive Dependency Modelling Dependency

Ammo1 Hits1Vel1Pos1Fuel1Dam1

Ammo2 Hits2Vel2Pos2Fuel2Dam2

Fire StrVelPosFormApp

Ammo1

Ammo2

Fire

FIGURE 30: Cumulative Weights

W1 W2

107

dependencies from Hits1 and Hits2 to Str in Figure 29 could be weighted one, indicating

that all tanks contribute their hits entirely to the platoon strength. This weighting satisfies

the semantic requirement that the platoon strength is the sum of the hits of all tanks. In the

case of firepower shown in Figure 30, the cumulative dependencies may be non-unity. If a

tank, say Tank1, fights a disaggregate-level battle, then W1 = 0 indicates that Tank1

expends all its ammunition in the disaggregate battle only. If Tank1 could fire at both

levels simultaneously (a physical impossibility, but assumed for exposition), and Tank1

allocated 50% of its total ammunition for each engagement, then W1 = 0.5.

Weights on Distributive Dependencies: Weighting

distributive dependencies captures the manner in which

one independent attribute affects many dependent

attributes. A distributive dependency can be weighted

according to what fraction of the change to an

independent attribute propagates to the dependent attribute. For example, the distributive

dependencies from the tank hits to the platoon strength in Figure 29 could be weighted as

shown in Figure 31. If the platoon strength is reduced, fractions of that change propagate

to the tank hits. In order to satisfy the semantic requirement that the platoon’s strength is

the sum of the tank hits, the sum of the propagated fractions must sum to the reduction in

the platoon strength. An independent attribute may not affect all its dependent attributes

uniformly. For example, either W1 or W2 (but not both) may be zero, meaning that a

change to Str does not change the corresponding Hits. This weight could reflect a scenario

in which the unaffected tank is shielded from the firepower of the enemy because of

barriers, entrenchments or good defensive position.

Hits1

Hits2

Str

W1 W2

FIGURE 31: Distributive Weights

108

Assignment of Weights: The weights on cumulative and distributive dependencies

may change during a simulation. For a battlefield simulation, weights may be assigned per

engagement. Thus, strength reductions from different enemies may propagate with

different sets of weights because of the nature of the enemies’ firepower or their positions.

In indiscriminate firing situations, weights may be assigned randomly to reflect the fog of

war (see §3.4). Alternatively, weights may be assigned depending on the properties of the

constituents. For example, boolean attributes signifying the visibilities of disaggregate

entities are not fractions of a boolean attribute signifying the visibility of the

corresponding aggregate entity. In such cases, boolean weights for distributive

dependencies are more appropriate, and the product, rather than the sum, of the

distributive weights must be one.

Interlinked Dependency Weights: The weights on distributive and cumulative

dependencies are dependent on one another. The weights on these dependencies must be

assigned with due consideration to the meaning of the combination of weights. For

example, suppose a designer specifies that a tank, say Tank1, does not fire in a platoon-

level battle. Therefore, Ammo1 does not contribute to Fire. Refining the specification

further, we can say: If Ammo1 does not contribute to Fire, then a change to Fire does not

change Ammo1. For the refined specification, a weight of zero on the cumulative

dependency from Ammo1 to Fire captures theif-part, and a weight of zero on the

distributive dependency from Fire to Ammo1 captures thethen-part. Therefore, the

specification above can be re-stated as: A zero-weight cumulative dependency from

Ammo1 to Fire ⇒ a zero-weight distributive dependency from Fire to Ammo1. If the

distributive dependency is zero and the cumulative dependency is non-zero it just means

109

that Tank1 contributed some of Ammo1 to Platoon, but Platoon did not use Ammo1 in this

engagement. Other combinations of weights for the cumulative and distributive

dependencies are possible for other attributes.

6.1.3.7 Interaction Semantics

Whether a change to an attribute occurs as a result of another entity’s interaction or as

a result of simulation activities performed by the MRE, the change originates from

interaction dependencies. Since different interactions may change an attribute, a change to

an attribute because of an interaction dependency can have different semantics. Although

we associate only one interaction dependency per attribute, we say that the semantics of an

interaction dependency change with the semantics of interactions. We discuss interaction

semantics in Chapter 7.

6.1.4 Summary of Attribute Dependency Graphs

ADGs capture relationships among attributes in concurrent representations. Designers

construct an ADG by assigning nodes and arcs to attributes and relationships inRelM.

Next, they classify dependencies and assign semantics to them. In Figure 29, a cumulative

or distributive dependency exists∀r ∈ Relcross-modeland a modelling dependency exists

∀r ∈ RelA and∀r ∈ RelB. SinceRelM = RelA ∪ RelB ∪ Relcross-model, a dependency exists

in the ADG∀r ∈ RelM. For other MREs,RelA, RelB andRelcross-modelmay contain other

combinations of cumulative, distributive and modelling dependencies.

In addition to the relationships inRelM, the ADG captures interaction dependencies.

Interaction dependencies are a starting point for applying the effects of interactions. We

discuss applying the effects of interactions in §6.3. After the ADG is constructed, the

110

designer must choose appropriate mapping functions to perform the actual translations

among attributes for each dependency. Next, we show how to select these functions.

6.2 Selecting Mapping Functions

Mapping functions translate value spaces or changes to values of attributes. An ADG

indicateswhich attributes must change when an interaction occurs. Mapping functions

along with an ADG indicatehowthe attributes must change. Mapping functions determine

whether a relationship holds, i.e., whether the dependent attributes are consistent with the

independent attributes. Determining whether attributes are consistent entails comparing

them. The results of the comparison may be exact or within tolerable error.

Mapping functions translate value spaces or changes in the values of attributes. When

an attribute changes as a result of an interaction, invoking appropriate mapping functions

is necessary to ensure that dependent attributes change as well. Therefore, either the new

value of an independent attribute or the change to its previous value must be translated to

new values or changes to previous values of dependent attributes.

A mapping function may translatevalue

spacesamong attributes, i.e., the function has

the form ∀ti, ti+1, Q(ti+1) = f(Q(ti), P(ti+1)),

where P(ti+1) is determined by applying the

changes∆P(ti) to P(ti). For example, a mapping

function f translates tank ammunitions to

platoon firepower. Here, Q = {Fire} and

P = {Ammo1, Ammo2}. An implementation off is shown in Figure 32. Since cumulative

FIGURE 32: Mapping Value Spaces

Ammo1

Ammo2

Fire

W1 W2

Fire = f(Ammo1, Ammo2)

Fire = W1∗Ammo1+W2∗Ammo2

111

dependencies connect the ammunitions to the firepower, a mapping function must include

the contributions of each tank ammunition to compute the platoon firepower. Accordingly,

the mapping function must utilise the weights on the cumulative dependencies.

A mapping function may translatechanges

to valuesamong attributes, i.e., the function has

the form ∀ti, ∆Q(ti) = f(Q(ti), ∆P(ti)), where

Q(ti+1) is determined by applying the changes

∆Q(ti) to Q(ti). For example, a mapping

function g translates a change in platoon

strength to changes in tank hits. Here,

Q = {Hits1, Hits2} and P = {Str}. An implementation ofg is shown in Figure 33. Since

distributive dependencies connect the strength to the hits, a mapping function must

distribute the change in the platoon strength to changes in each tank hits. Accordingly, the

mapping function must utilise the weights on the distributive dependencies.

6.3 Traversing an ADG

After an ADG has been constructed and mapping functions selected, a CE can

maintain consistency within an MRE by traversing the ADG and invoking the appropriate

mapping functions. An interactionI may change the values of any attributes. These

changes must propagate to dependent attributes. By traversing an ADG, a CE propagates

I.affects via interaction dependencies, andI.affects+ via cumulative, distributive and

modelling dependencies. For each arc traversed, a mapping function computes the change

to a dependent attribute as a result of a change to an independent attribute.

∆Hits1 = ∆Str∗W1÷(W1+W2)

(∆Hits1, ∆Hits2) = g(∆Str)

FIGURE 33: Mapping Changes in Values

∆Hits2 = ∆Str∗W2÷(W1+W2)

Hits1

Hits2

Str

W1 W2

112

6.3.1 Algorithm for Traversing an ADG

Ensuring internal consistency within an MRE involves traversing an ADG when a

change to any attribute occurs. The effects of an interaction can be applied by traversing

an ADG and invoking appropriate mapping functions. In OMTR, a similar concept is

called propagation [RUM91]. Initially, an MRE is internally consistent; all relationships in

RelM hold. When an interactionI occurs, a CE traverses an ADG starting from the nodes

corresponding to the attributes inI.affects. I.affectsis computed from semantic knowledge

about the interaction. After the changes inI.affectsare applied, the MRE is temporarily

inconsistent. In order to regain the consistency of the MRE, its ADG must be traversed

beginning from the nodes corresponding to the attributes inI.affects. For each arc

traversed, a mapping function must be invoked to change dependent attributes.

In Figure 34, we present an algorithm for ADG traversal. The outer loop in the

algorithm implicitly assumes that interactions are serialized. The first step in the loop

initialises a set,S, which will contain the effects of an interactionI. The first inner loop

includesI.affectsin S. These effects can be represented by tuples, each consisting of an

attribute and a change to it. The change to an attribute depends on the semantics of the

interaction. Finally, in the second inner loop, for each unvisited element inS, the change

to an attribute is applied, and the change to dependent attributes is computed and included

in S. Marking an attribute as visited ensures that the effects of an interaction are not re-

applied to the attribute. The change to an attribute,a, as a result of the interaction depends

on the semantics of the attribute. Attributes dependent ona can be determined from the

ADG. For each dependent attribute, a mapping function translates the change to the value

113

of the attribute. If a dependent attribute changes, a tuple consisting of the attribute and its

change is included inS to account forI.affects+.

We step through the algorithm in Figure 34 with an example. Let a tank in our example

MRE receive amoveinteraction. This interaction changes the position of the tank, say

Pos2. Therefore, a tuple consisting of Pos2 and a change to Pos2 is included inS. When the

change to Pos2 is applied, the MRE is temporarily inconsistent. In order to regain the

consistency of the MRE, a CE must traverse the ADG beginning from the node

corresponding to Pos2. The attributes that depend on Pos2 are: Pos, Pos1, Pos2, Form, App,

Dam1 and Dam2. Figure 35 shows a sub-graph of the ADG with only the nodes

corresponding to attributes connected transitively to Pos2. A CE must invoke mapping

functions to translate changes to each of these attributes. For example, the change to Pos

may be computed as the centroid of Pos1 and Pos2. If the change to Pos is non-zero, then a

tuple consisting of Pos and its change is included inS. In like fashion, the CE propagates

the effects of the interaction to each dependent attribute. Figure 36 shows a partial tree

corresponding to the propagation of the change to Pos2 to dependent attributes.

FIGURE 34: Algorithm for ADG Traversal

For each interaction I
Set S ← ∅
For each attribute a in I.affects

S ← S + <a, δa> // interaction effect
For each unvisited element <a, δa> in S

mark <a, δa> visited
a ← function of a, δa // attribute semantics
For each attribute d dependent on a in ADG

δd ← function of a, δa, d // mapping function
If δd ≠ 0 // or non-negligible

S ← S + <d, δd>

114

The algorithm in Figure 34 includes but intentionally does not make apparent intricate

issues in ADG traversal, for example, cyclic dependencies and traversal path. We address

these issues next.

6.3.2 Cyclic Dependencies

Cyclic dependencies among attributes may cause traversal of an ADG to never

terminate. For example, when an interaction changes Pos2, a CE changes Pos because of

the cumulative dependency from Pos2 to Pos. The CE propagates the change to Pos to

Pos1 and Pos2 because of distributive dependencies. Since Pos2 has already changed

because of this interaction, the CE must stop the propagation of effects from Pos. If the CE

does not stop the propagation of effects, the MRE may never reach a state at which

consistency can be evaluated. Although an ADG may have cycles, the propagation of

effects must be non-cyclic. It is reasonable for attributes to be mutually dependent.

However, cycles should not prevent the graph traversal from terminating.

FIGURE 35: Applying the Effects of an Interaction

Platoon-Level Representation

Tank-Level Representation

Platoon-Tanks MRE

Pos1Dam1

Pos2Dam2

PosFormApp

115

Reversible mapping functions break cycles in ADG traversal. If reversible mapping

functions translate attributes, then the change to some attributes may be null, which breaks

the cyclic traversal between them. In case of attributes for which reversible mapping

functions cannot ensure zero change, the final condition in Figure 34 should be modified

such that a tuple is included inS only when a non-negligible change occurs. Reversible

mapping functions ensure that a change to Pos due to an initial change to Pos2 does not

affect Pos2 again. Let mapping functionsf andg translate Pos2 to Pos and Pos to Pos2

respectively. Ifg(f(Pos2)) = Pos2, thenf andg are reversible. When an interaction changes

Pos2, f changes Pos, andg ensures that a subsequent change to Pos2 will be zero. In

Figure 34, effects are included inS only if necessary. Therefore, the zero change to Pos2 is

not included inS, breaking a cyclic traversal. When all cyclic traversals are broken, the

traversal of an ADG can terminate. If ADG traversal terminates, an MRE can be

consistent before the next observation point.

FIGURE 36: Propagation of Interaction Effects

Pos2

Pos Form

AppPos1 Pos2 Pos1 Pos2

Dam1 Dam2Pos

Pos1 Pos2 App App

116

6.3.3 Unplanned Dependencies

ADGs enable designers to identify and capture combined semantics of multiple

models. Unplanned dependencies are an example of the combined semantics of jointly-

executing models. An ADG captures attribute dependencies that may not have been

planned by designers of the individual models. For example, the designer of the tank

model may not have expected Pos2 and Dam1 to be dependent. However, because of

transitive dependencies, these attributes are related, as seen from Figure 36.

6.3.4 Traversal Path

An issue with ADG traversal is the order in which a CE propagates the effects of

interactions. When an interaction changes an attribute, a CE may change other attributes

subsequently. For example, in Figure 36, if an interaction changes Pos2, a CE must change

Pos and Form. Suppose the CE changes Pos first. Next, it must change Form (because of

the original change to Pos2) and Pos1 (because of the change to Pos). Changing Form first

implies a breadth-first traversal of the ADG, whereas changing Pos1 first implies a depth-

first traversal. Other traversal orders are possible as well. Ideally, all traversal orders

finally must propagate the effects in the same manner. Practically, because of errors

accumulated during attribute translation, or because attribute translations are not

commutative, different traversal orders may produce different results.

A breadth-first traversal is well-suited for propagating the effects of interactions. For

distributive dependencies, the nature of the dependencies requires that effects propagate

breadth-first. Moreover, when the comparison for consistency among attributes is inexact,

i.e., they are consistent within tolerance, longer paths may accumulate errors that cause

117

reversibility to fail. With breadth-first traversal, a CE chooses the shortest paths between

the initial attribute and dependent attributes [CORMEN89]. Intuitively, when an interaction

changes an attribute, dependent attributes that are “closer” to the attribute in the ADG, i.e.,

reachable by fewer arcs, are affected more immediately by the interaction. Therefore, a

CE should change those attributes earlier.

The algorithm in Figure 34 can be refined to mandate breadth-first traversal.S should

be changed to a queue so that tuples are pushed the end of a queue. When selecting

attributes dependent on the current attributea, only attributes connected directly toa must

be included. Including only directly-connected attributes and makingS a queue ensure

that the effects of an interaction are applied breadth-first.

For our example MRE, we show how a CE propagates the effects of amoveinteraction

to attributes. We indicate the cause of each attribute change as well. Table 8 shows the

effects of this interaction. The first column lists the attributes changed by the interaction.

The second, third and fourth columns list the change to an attribute, the dependency that

caused the change and the interaction or independent attribute for that change. The order

in which we list changes to attributes corresponds to a breadth-first traversal of an ADG

for our MRE, i.e., a breadth-first traversal of the graph in Figure 36.

TABLE 8: Effects of an Interaction

Attribute Change Dependency From Comment

Pos2 δP2
1 Interaction move Direct effect of interaction

Pos δP1 Cumulative Pos2

Form δF1 Cumulative Pos2

Pos1 δP1
1 Distributive Pos δP1

1 = 0 — Pos2 is unrelated to Pos1

Pos2 δP2
2 Distributive Pos δP2

2 = 0 — reversible mapping functions

Pos1 δP1
2 Distributive Form

118

6.4 Possible Implementations of a Consistency Enforcer

Constructing a CE for an MRE is a reasonably straightforward task. A module for a

CE may be implemented in a number of ways, as we show in the following sub-sections.

We discuss broad implementation details in order to show that the CE is not a “black box”

that magically solves consistency maintenance — one of the hardest problems in MRM.

6.4.1 As-Is

The most straightforward implementation of a CE is “as-is”; the ADG is instantiated

as a graph data structure and mapping functions are function calls associated with each arc

in the data structure. This implementation is effort-intensive for the designer but not as

naïve as it first seems since it gives the designer the freedom to hand-craft relationships,

mapping functions and traversal strategies that are best-suited for an application.

Pos2 δP2
3 Distributive Form δP2

3 = 0 — reversible mapping functions

App δA1 Modelling Form

Pos δP1 Cumulative Pos1

Dam1 δD1
1 Distributive App

Dam2 δD2
1 Distributive App

Pos1 δP1
2 Distributive Pos δP1

2 = 0 — reversible mapping functions

Pos2 δP2
4 Distributive Pos δP2

4 = 0 — Pos1 is unrelated to Pos2

App δA2 Cumulative Dam1 δA2 = 0 — reversible mapping functions

App δA3 Cumulative Dam2 δA2 = 0 — reversible mapping functions

TABLE 8: Effects of an Interaction

Attribute Change Dependency From Comment

119

6.4.2 Spreadsheets

In a spreadsheet, data are organised as tables. Each spreadsheet element is addressed

uniquely by row and column number. Each element may consist of a data value or a

function. In the latter case, the value of the element is computed by invoking the function

on data values or elements specified along with the function.

A CE can be implemented as a spreadsheet that has an element for each attribute in the

ADG. The strict organisation of a spreadsheet as rows and columns is inconvenient but not

restrictive. Mapping functions are specified by making some elements of the spreadsheet

functions of other elements. However, typical spreadsheet functions are awkward for

mapping functions. In typical spreadsheets, the function used to compute an element is

indistinguishable from the value of the element, i.e., the function and the value for element

change jointly. Therefore, if we change the value of an element, we automatically change

the function that computes the element as well. Changing a function changes the

relationship among elements in the spreadsheet, thus changing the relationship among

attributes in the MRE. Changing the relationship may not have been part of the semantics

of the interaction. A work-around for this problem involves using multiple elements for an

attribute: one for the value and one for each relationship in which this attribute depends on

other attributes. Not only is this work-around inelegant, but it also leads to circular

references, i.e., elements that refer to one another. Spreadsheets such asExcel* permit

circular functions. Typically, such functions are invoked iteratively. In the first iteration,

the values of elements are computed left-to-right top-to-bottom with initial values for the

* Excel is a registered trademark of Microsoft.

120

elements. In the next iteration, the values of the elements are re-computed left-to-right

with values from the previous iteration. This process is continued until the number of

specified iterations is exhausted. At the end of any iteration, including the final one, the

values of some elements may not satisfy all relationships. Therefore, some related

attributes may be inconsistent. Cyclic dependencies in an ADG increase the number of

circular references in a spreadsheet. Finally, the traversal strategy in a spreadsheet is left-

to-right and top-to-bottom, not the desired breadth-first strategy.

A spreadsheet implementation for a CE is suited only for very simple ADGs wherein

cyclic dependencies are limited and left-to-right top-to-bottom traversal is sufficient to

approximate breadth-first traversal.

6.4.3 Attribute Grammars

An attribute grammar enables specifying meaning to a string derived from a context-

free grammar [KNUTH68] [KNUTH71]. Properties† associated with non-terminals, and

functions associated with productions define the semantic meaning of strings.Synthesised

properties are defined solely in terms of the descendents of the corresponding non-

terminal symbol, i.e., in terms of the properties of the symbols on the right-hand side of a

production. Inherited properties are defined solely in terms of the ancestors of the

corresponding non-terminal symbol, i.e., in terms of the properties of the symbols on the

left-hand side of a production. Synthesised and inherited properties are duals; synthesised

† Meaning is assigned to a non-terminal in an attribute grammar by associating anattributewith

it. To avoid any confusion with our definition of an attribute — a part of a representation — we

use the termproperty to mean an attribute of a non-terminal in attribute grammars.

121

properties alone are sufficient for attribute grammars. Attribute grammars have been used

to design language-specific editing environments [HOR86]. Attribute grammars have been

extended to include context-sensitive languages [REPS84].

A CE can be implemented as an attribute grammar that has a non-terminal for each

attribute in the ADG. The property associated with each attribute is its value.

Relationships among attributes are specified as productions in the grammar. Functions

associated with each production compute the inherited properties of the non-terminals on

the right-hand side of the production. A string derived according to this grammar

corresponds to the effects of an interaction.

A number of factors make attribute grammars somewhat awkward for the design of a

CE. First, a grammar in which all attributes are non-terminals will never terminate because

there are no terminals. Second, attribute grammars disallow cyclic dependencies since

such dependencies lead to infinite invocations of productions in a grammar. Third, the

traversal strategy in attribute grammars is depth-first. All of these factors can be resolved

by having separate grammars for each attribute. In other words, a separate grammar for

each attribute in the ADG must specify how a change to the attribute affects dependent

attributes. The non-terminal for each attribute is the start symbol for its own grammar. The

terminals in each grammar serve merely to break dependency cycles among attributes.

Thus attribute grammars can accommodate cyclic dependencies (by having separate

grammars for each attribute) yet propagate effects of an interaction non-cyclically (since

each grammar has no cycles).

Although the specification of mapping functions and a traversal strategy is non-

intuitive, attribute grammars can be used to implement CEs.

122

6.4.4 Mediators

A mediator captures behavioral relationships in complex systems [SULL94]. A

mediator is a first-class implementation object that realises behaviours external to an

Abstract Behavioral Type (ABT). An ABT characterizes a class of objects in terms of its

data, operations on data and events that trigger other behaviours.

A CE can be implemented as a number of ABTs whose relationships are realised by

mediators. Each attribute in the ADG is an ABT. The value of the attribute is the datum of

the ABT. Reading and writing the datum are operations on the ABT. The only event

generated by the ABT is when the value of the datum changes. Mediators capture the

behavioral relationships among ABTs, i.e., mediators encode the mapping functions

among attributes. When an attribute ABT announces an event signifying that its datum has

changed, mediators invoke the appropriate operations to ensure that relationships among

all attribute ABTs hold.

The benefit of using mediators to design CEs is that consistency maintenance is

decoupled from the design of the representation. Mediators, which are instantiated solely

for ensuring that relationships among attributes hold at all times, free designers of

representations from the concerns of consistency maintenance. Mediators must be

designed carefully to ensure that the desired graph traversal strategy is realised by the

appropriate attribute ABT events.

6.4.5 Constraint Solvers

Dependencies among attributes may be viewed as constraints [ALLEN92] [HILL 92A]

[HORR92]. A constraint restricts the range of a dependent attribute. In the absence of any

123

constraint, the range of a dependent attribute encompasses all values permitted by the type

of the attribute. In the presence of a constraint, the range of a dependent attribute is limited

by the relationship between the dependent and independent attributes.

A CE can be implemented as a constraint solver. The attributes in an ADG can be the

symbols in a constraint-solving system. Mapping functions can be implemented using

unification. Constraints define relationships among attributes as well as legal ranges for

values of attributes. Many constraint-solving systems solve constraints among boolean or

even numerical variables. Constraint solving in the Herbrand universe, which is the union

of all symbols in a system, can be complex [FRÜH92A] [FRÜH92B] [JAFFAR94] [VAN96].

However, constraint systems can be simplified in many ways, such as incorporating

optimizations [MARR93], exploiting constraint independence [GARCÍA93], using

incremental constraints [FREE90], and building linear systems of equations that can be

solved in polynomial time for numerical variables [JAFFAR92] [CORMEN89].

A general constraint solver may be too powerful for the relationships among attributes.

We expect the relationships among attributes in a multi-representation model to be simple

relationships. Since the multiple models represent the same object or process, typically,

the relationships are those of equality (within tolerable error), whole-to-parts or parts-to-

whole. Accordingly, the constraints within an MRE may be solved relatively simply.

Therefore, a constraint solver specific to the domain of the attributes of the multiple

representations would be suited for the design of a CE.

124

6.5 Chapter Summary

A Consistency Enforcer (CE) maintains internal consistency within an MRE. A CE

consists of an Attribute Dependency Graph (ADG) and mapping functions. A CE may be

implemented in a number of ways, such as spreadsheets, mediators and constraint solvers.

An ADG captures dependencies among attributes in concurrent representations.

Individual attributes and the dependencies among them are the nodes and arcs in an ADG.

We classify dependencies into four categories: cumulative, distributive, interaction and

modelling. Semantics associated with dependencies capture semantics of relationships

among attributes. Classifying dependencies and assigning semantics to them aids the

construction of appropriate mapping functions that translate attributes. Traversing the

ADG propagates the effects of an interaction to all dependent attributes. When an

interaction changes the value of any attribute, traversing the graph and invoking the

mapping functions associated with each arc can make the MRE consistent again.

Mapping functions encode application-specific translations of values and changes to

values among attributes. Mapping functions must translate attributes and changes to

attributes. Also, mapping functions must be composable and reversible and must complete

their translations before the next observation point.

As long as single interactions occur or concurrent interactions are always serialized,

ADGs and mapping functions maintain consistency in an MRE. In the next chapter, we

show the design of an Interaction Resolver to resolve the effects of concurrent

interactions. When concurrent interactions occur, we utilise semantic information about

the interactions in order to resolve any dependencies among them. The CE applies the

effects of the resolved concurrent interactions.

125

Let no act be done at haphazard, nor otherwise
than according to the finished rules that govern its kind.

— Marcus Aurelius Antonius

Chapter 7

Interaction Resolvers

For effective MRM, the effects of dependent concurrent interactions must be resolved

in accordance with model requirements. Often, concurrent interactions may have

dependent effects, for example, precluding or enhancing the effects of one another.

Traditionally, the effects of concurrent interactions have been resolved by serialization, in

which the interactions are ordered arbitrarily. However, serialization is often inappropriate

because it isolates even those interactions whose effects must be applied concurrently.

Other policies, such as combining or ignoring some or all interactions, do not isolate the

interactions and may be more suitable for resolving dependent effects.

In Chapter 5, we presented Multiple Representation Entities (MREs). AnInteraction

Resolver(IR) is a component of an MRE that encodes policies for resolving the effects of

concurrent interactions. Since specifying policies for all possible concurrent interactions

can be complex, we present a taxonomy consisting of classes of interactions. We assume

that designers of multi-models understand the semantics of interactions in their

application well enough to classify interactions and formulate policies for resolving

126

concurrent instances of classes of interactions. We present example policies for resolving

classes of concurrent interactions. Our taxonomy enables a designer to choose appropriate

policies for resolving concurrent interactions.

We describe interactions in §7.1. In §7.2, we discuss serialization and its alternatives.

In §7.3, we motivate the need for policies other than serialization. In §7.4, we explore the

problem of dependent concurrent interactions by means of an abstract application. We

start with a simple system, add one dependency among its components, and study the

effect of single, and subsequently, multiple interactions. We show how resolving the

effects of concurrent interactions can be a complex design issue. In §7.5, we present a

taxonomy to classify interactions based on intrinsic characteristics of interactions we

encountered often in models. These characteristics lead naturally to policies for classes of

interactions. We present example policies in §7.5. We describe the operation of an

Interaction Resolver for an example MRE in §7.6.

7.1 Interactions

Entities communicate with one another or influence one another by means of

interactions. As described in §3.2, an entity changes its own or another entity’s behaviour

by means of an interaction. Interactions are a fundamental part of any useful model

because they connect the model to its environment. We regard a communication between

any two entities as an interaction.

Interactions are ubiquitous — they may be physical occurrences such as movement, a

temperature increase or an explosion, or some sort of communication, such as a television

broadcast, a dissertation submission or an order received from a superior. Examples of

127

interactions are database transactions and operations [ESWA76]; processor interrupts;

cache operations [HENN96]; reads and writes to shared memory in parallel processing

systems; operations, events and actions in object-oriented and process modelling [RUM91]

[SHLAER92] [ALHIR98]; method invocations and function calls in object-oriented systems;

messages in distributed processing systems and logical time systems [LAM78]; accesses to

a blackboard [ERMAN80]; and exceptions in programming languages [GOOD75]. We

include all of these interactions as well as changes an entity makes to its own state in our

definition of interactions. Since we are concerned only with the effects of interactions, we

consider specific techniques for implementing interactions to be irrelevant to our work.

A model that permits concurrent interactions requires a policy to resolve any

dependencies among interactions and a mechanism to implement the policy. The

traditional policy for resolving the effects of concurrent interactions is serialization.

7.2 Serialization

Serialization, the traditional policy for resolving the effects of concurrent interactions,

involves applying those effects in sequential order, i.e., one after another. Serialization is a

valid policy for resolving the effects of concurrent interactions in many domains, for

example, databases. Consider the clients and server in the system in Figure 37.

Transactions from a client to the server are interactions, indicated by arrows. If only one

client interacts with the server at any given time, the server returns to a valid state trivially

FIGURE 37: Clients and Server

ServerClient1 Client2

128

at the end of each interaction. If multiple clients interact with the server concurrently,

ensuring that the server returns to a valid state is non-trivial.

Consider two interactions,I and J, independently issued to Server by Client1 and

Client2 respectively.I andJ each consists of operations, i.e., reads and writes, to variables

a andb, denoted byR(a) , R(b) , W(a) andW(b) .

I: R(a)W(a)R(b)

J: R(b)W(b)W(a)

Server’s state will be as if Client1 issuedI to Server and whenI completed, Client2 issued

J to Server, or the other way around. Each client may not be aware of the other’s presence

since the system guarantees that its behaviour will be as if each client is the only client

interacting with the server. This property of the system’s behaviour, calledisolation, is one

of the ACID properties for database transactions [HAER83].

The actual order in which operations occur on Server is called aschedule. In a serial

schedule, interactions are ordered one after another [PAPA86]. A serial schedule ensures

that clients interact with the server in isolation.Z1 andZ2 below are serial schedules forI

andJ. For clarity, we underlineI’s operations in every schedule.

Z1: R(a)W(a)R(b)R(b)W(b)W(a)

Z2: R(b)W(b)W(a) R(a)W(a)R(b)

When I and J occur concurrently, the system must control how these interactions

change Server. SinceI andJ are concurrent, their operations may interleave. A possible

interleaved schedule forI andJ is Z3 below*. Z3 is not a serial schedule becauseI andJ are

not ordered one after another.

* We assume that the individual operations, i.e., reads and writes, are indivisible and atomic.

129

Z3: R(a)R(b) W(a)W(b)W(a) R(b)

A schedule isserializableif it is equivalent to a serial schedule for some definition of

equivalence [ESWA76]. If Z3 is equivalent toZ1 or Z2, Z3 is a serializable schedule.

Serialization is a policy that resolves concurrence by permitting only serializable

schedules, i.e., by ordering or interleaving concurrent interactions appropriately.

Concurrency control mechanisms, such as locking and time-stamp ordering are used to

implement serialization.

Serialization has been chosen as a policy for resolving interactions in database systems

because it satisfies clients’ expectations of isolation yet permits concurrence [PAPA86]

[BERN87]. Isolation assumes that client interactions are not predicated on one another, i.e.,

they are independent of one another. Serialization isolates client interactions.

Some researchers have recognised that serialization can be too strict for many

concurrent interactions. In advanced databases, serialization can reduce concurrence

significantly. Accordingly, researchers have proposed alternative policies that relax or

extend serialization yet maintain isolation. These policies utilize varying levels of

semantic information about transactions in order to increase concurrence yet maintain

database consistency. Semantic information has been utilized for scheduling long and

short transactions [BRAHMA90]; extending and relaxing serialization [BARG91]; applying

counter-transactions [GARCIA83]; commuting interpreted operations on abstract data types

[WEIHL88]; aborting conflicting transactions [BARG91]; and recovering database states

[BADRI92]†. In general, serialization is considered correct but too strict, and alternative

criteria relax or extend serialization in order to permit increased concurrence [BERN81]

[LYNCH83] [MUNSON96] [KORTH88] [THOM98]. Moreover, isolation of transactions is

130

considered a desirable property of database systems. Next, we discuss situations where

isolation may be undesirable.

7.3 Abandoning Isolation

For some applications, the system must not isolate concurrent interactions since they

may be dependent on one another. Serialization and alternative policies that relax or

extend serialization isolate interactions. Therefore, they cannot be correct policies for

resolving the effects of dependent concurrent interactions. Correct policies for these

interactions must provide alternatives for isolating the interactions.

In the following examples,not isolating concurrent interactions, i.e., abandoning

isolation, enables resolving their dependent effects correctly. Consider entities E1 and E2

that concurrently write to an attributev with the interactions E1.W(v, …) and E2.W(v, …).

The ellipses denote other interaction parameters. A sequential order for these interactions

could be E1.W(v, …) followed by E2.W(v, …) or E2.W(v, …) followed by E1.W(v, …).

In a model of a billiards table, E1 and E2 could be ball entities andv could be the

velocity of a ball. The two interactions could be E1.W(v, δv1) and E2.W(v, δv2), whereδv1 is

a change inv caused by E1 andδv2 is a change inv caused by E2. The correct policy to

resolve these two interactions is to changev by the vector addition ofδv1 and δv2.

Serializing these interactions may be incorrect for a number of reasons as discussed below.

† A detailed analysis of each correctness criterion and policy presented for databases would take

up too much time and space. Over 100,000 pages of new material are published every year in

databases alone [DATE95].

131

Let ⊕ denote vector addition.v1, v2 andv3 are three possible outcomes of addingδv1 and

δv2 to the original valuev0 of the velocityv.

v1 = (v0 ⊕ δv1) ⊕ δv2

v2 = (v0 ⊕ δv2) ⊕ δv1

v3 = v0 ⊕ (δv1 ⊕ δv2)

The parentheses show the order in which the interactions take effect.v1 and v2 are

computed by serializing the two interactions. In contrast,v3 is computed by combining the

two interactions before applying them tov. Mathematically,v1 = v2 = v3. However, when

executing a model, the results of these orderings can differ. For example,δv1 andδv2 may

be so small that adding them tov0 individually does not change the velocityv. However,

δv1 and δv2 combined may be sufficient to changev. In such a case,v1 = v2 ≠ v3. This

thresholding anomaly may occur because of low precision in the representation ofv.

Another instance of thresholding could be thatδv1 andδv2 can overcome the inertia of the

entity with velocityv when combined, but not individually. As another example, suppose

an entity E3 continuously plots the trajectory of the ball with velocityv. If v changes tov1

or v2, E3 will plot two changes, whereas ifv changes tov3, E3 will plot only one change.

This example is an instance of temporal inconsistency.v1 and v2 are computed by

serialization, whereasv3 is computed by combination. For this model, combination is a

more meaningful policy than serialization.

In a model of an autonomous agent, E1 could be a planner that pre-determines the

steps to fulfill the agent’s goal, E2 could be a perception-action (PA) system that observes

and acts on the agent’s environment, andv could be the visibility of an obstacle. The two

interactions could be E1.W(v, yes) and E2.W(v, no), implying that the planner reports that

132

the obstacle can be seen, whereas the PA system reports that the obstacle is hidden.

Serializing these interactions causes the final value ofv to be eitheryes or no arbitrarily.

However, applying E2’s interaction and ignoring E1’s interaction may be a more

reasonable, if pessimistic, policy to resolve these interactions. Alternatively, applying E1’s

interaction and ignoring E2’s interaction may also be a reasonable, if optimistic, policy.

Another reasonable policy may be to construct a belief system that assigns weights to the

two interactions for a final value ofv that is not bi-modal. Ignoring one or the other or

weighting both interactions are policies that ensure meaningful behaviour when these

interactions occur concurrently.

In a model of a chemical reaction, E1 could be an acid entity, E2 could be a catalyst

entity, andv could be the volume of a by-product retrieved at the end of the reaction. The

two interactions could be E1.W(v, δv1) and E2.W(v, δv2), whereδv1 andδv2 are increases in

the value ofv when E1 and E2 are added. In chemical reactions, it is well-known that

adding a catalyst can increase the rate of a reaction tremendously. As a result, the final

change inv may be more thanδv1 + δv2. Serializing the interactions does not capture the

cooperative nature of these interactions. If the interactions are serialized, then either the

model’s representation must be augmented with an attribute that keeps track of whether

the acid or catalyst has been added previously, or the model must capture the effects of

adding a catalyst — an increase in the surface area of the reaction — at a finer level of

detail. Alternatively, a special policy can be formulated to increasev appropriately if these

concurrent interactions occur.

In the above examples, serializing concurrent interactions produces unintended

effects. Isolating them from one another produces effects that are semantically incorrect.

133

Since serialization and alternative policies that relax or extend serialization isolate

interactions, none of them is a correct policy for resolving them. These interactions are

dependent particularly because they are concurrent. Therefore, they require correctness

criteria that abandon isolation. The correctness criteria for dependent concurrent

interactions are application-specific. Next, with the help of an abstract application, we

show how resolving the effects of dependent concurrent interactions by abandoning

isolation makes the design of a system complex.

7.4 Switches — A Simple System

We use a simple system of switches as an abstraction for models with concurrent

interactions. We add constraints to the initial model, explaining the effort required to

design the corresponding system. Next, we introduce dependent concurrent interactions

and show how designing such a simple system becomes complex. We argue that the

effects of dependent concurrent interactions must be resolved in an organised manner.

7.4.1 Unconstrained System

We begin with an unconstrained system. Consider

the switches SA, S1 and S2 in Figure 38, each with two

states: on (or 1) and off (or 0). A client may turn a switch on or off by an interaction

(shown by an arrow). The state of the system is an ordered triplet, individual triplet

elements being the states of SA, S1 and S2 respectively. In the state transition diagram in

Figure 39, an oval is a possible state of the system, a solid arrow is a state transition

caused by turning one switch on, and a dashed arrow is a state transition caused by turning

FIGURE 38: Switches

SA

S1 S2

134

one switch off. Transitions that cause the system to begin and end in the same state, for

example, turning S1 off in the state [0 0 0], are not shown in Figure 39 to reduce clutter.

Since the switches are independent, all possible states are present in the state diagram.

7.4.2 Constrained System

Most practical systems are constrained, i.e., there

exist relationships among components of the system.

Accordingly, we add a constraint to our switches:

If S1 and S2 are both on, then SA must be on.

This constraint can be re-written as (S1 = 1) ∧ (S2 = 1) ⇒ (SA = 1).

As a result of this constraint, the switches are no longer

independent. Figure 40 shows the new version of the switch system

with the constraint depicted by arrows between the switches. The

arrows merely depict a dependency between switches without outlining the nature of the

dependency. The new set of valid states for the system is a subset of the old set of valid

states. Figure 41 shows the new set of valid states. The crossed-out state does not exist in

the new system.

FIGURE 39: State Transition Diagram

0 0 0

0 0 10 1 01 0 0

0 1 11 1 01 0 1

1 1 1

FIGURE 40: Constrained

SA

S1 S2

FIGURE 41: New

SA S1 S2

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

135

Usually, constraints reduce the possible states of a system, i.e., some states in the

unconstrained state transition diagram become unreachable. All transitions going into

those states must be redirected elsewhere. The implications of the reduction in the set of

valid states on the state transition diagram are shown in Figure 42. The oval corresponding

to the state [0 1 1] has been removed since that state can never be reached. The outward

arrows from that state have been removed since transitions from an unreachable state are

meaningless (unless error recovery is desired). The arrows from the states [0 1 0] and

[0 0 1] to [0 1 1] have been redirected to [1 1 1] in accordance with the constraint.

However, the constraint does not indicate which state to transition from [1 1 1] if only SA

is turned off. In theory, it is possible to transition to any of the seven states (or even a

hitherto absent state) in such a situation. However, let us abide by the constraint as far as

possible. The following are re-statements of the constraint.

(S1 = 1) ∧ (S2 = 1) ⇒ (SA = 1)

¬((S1 = 1) ∧ (S2 = 1)) ∨ (SA = 1) [Implication rule]

¬(S1 = 1) ∨ ¬(S2 = 1) ∨ (SA = 1) [DeMorgan’s laws]

(S1 = 0) ∨ (S2 = 0) ∨ (SA = 1) [Switch states]

(SA = 1) ∨ (S1 = 0) ∨ (S2 = 0) [Re-arrangement]

¬(SA = 1) ⇒ (S1 = 0) ∨ (S2 = 0) [Implication rule]

1 1 0

FIGURE 42: Constrained State Transition Diagram

0 0 0

0 0 10 1 01 0 0

1 0 1

1 1 1

136

(SA = 0) ⇒ (S1 = 0) ∨ (S2 = 0) [Switch states]

The last statement suggests what to do when SA is turned off while S1 and S2 are on. In

order to keep transitions deterministic, we choose [0 0 1] arbitrarily as the state to

transition from [1 1 1] in case SA is turned off, i.e., we turn S1 off.

State transition diagrams describe a model effectively when sequences of interactions

occur. The effects of each interaction are captured by appropriate transitions. Since a state

transition diagram can never put the system in an inconsistent state, every interaction can

take effect without violating any constraint. Concurrent interactions, whether dependent or

not, introduce problems with state transition diagrams, as we show next.

7.4.3 Dependent Concurrent Interactions

In order to demonstrate the effects of dependent concurrent interactions that cannot be

serialized, we add new transitions. Consider the switch system from §7.4.2, with two

concurrent interactions. Let the system be in the state [0 0 1], and let the two interactions

be turning SA off and turning S1 on. If we serialize the interactions, turning SA off before

turning S1 on results in the transitions [0 0 1]➛ [0 0 1] ➛ [1 1 1], while turning S1 on

before turning SA off results in the transitions [0 0 1]➛ [1 1 1] ➛ [0 0 1]. The order in

which the concurrent interactions are serialized determines the final state of the system. If

the final state is immaterial as long as the system stays in a valid state, i.e., a state present

in the state transition diagram, then serialization is correct but non-deterministic.

For deterministic behaviour, we add other state transitions that capture the effects of

concurrent interactions. In Figure 43, we add a transition between [0 0 1] and [0 1 0]. The

semantics of this transition could be, for example, that if SA is turned off and S1 is turned

137

on concurrentlyin the state [0 0 1], then transition directly to state [0 1 0]. The fact that

the interactions were concurrent caused this transition, and the final state of the transition

is different from that if the two interactions were serialized.

7.4.4 Complexity

We desire systems to behave predictably no matter what interactions occur and how

they occur. Accordingly, sequential interactions as well as concurrent interactions must

have predictable results. A brute-force approach to resolving the effects of all possible

concurrent interactions is exponential in complexity. Therefore, a means of encoding the

dependencies among interactions is necessary.

For the switches system in §7.4.2, given the different kinds of interactions (six kinds,

turning one of the switches on or off) and the number of different states (seven states), an

exponential number of transitions are possible on concurrent interactions. In the worst

case, the total number of transitions for the switch system is: (2number of interaction types− 1)

× number of states= (26 − 1) × 7 = 441. This calculation assumes that concurrent

interactions of the same kind can be serialized without changing their effect. In other

words, concurrent multiple occurrences of the interaction to turn S1 off, for example, can

be serialized. Nevertheless, even in our simple system, the number of transitions is large.

FIGURE 43: Transitions on Concurrent Interactions

0 0 0

0 0 10 1 01 0 0

1 1 01 0 1

1 1 1

138

Applications with more attributes, some non-Boolean, are likely to have many more states

than our simple system. Consequently, the number of transitions can grow further.

However, a number of mitigating factors can reduce the number of state transitions for a

system. In the switch system, in order to reduce the number of possible transitions, we

stipulated that multiple occurrences of the same interaction can be serialized. Another

reasonable assumption is that a switch client will not send concurrent on and off

interactions to its switches. This assumption reduces the number of transitions to the

product of the number of states and the number of all possible concurrent interactions. The

latter number is the sum of concurrent interactions occurring in all combinations of threes,

twos and ones. Therefore, the total number of transitions is: .

This number of transitions is an upper bound, because we assume that no set of concurrent

interactions is serializable.

Applications must exhibit predictable behaviour when concurrent interactions occur.

Serialization is an example of predictability. However, as we have seen in §7.3,

serialization fails to resolve dependent concurrent interactions correctly, because it

assumes that the interactions can be isolated. Another example of predictability is

commutation, wherein the effects of commutable interactions are the same regardless of

the order in which they are applied [ROSSER82]. Since commutation also assumes that

interactions can be isolated, it cannot resolve the effects of dependent concurrent

interactions correctly. When dependent concurrent interactions occur, predictability can be

achieved by encoding transitions in rigorous formulæ. In such an approach, the behaviour

of the system when any set of concurrent interactions occur must be encodeda priori.

Such an encoding is similar to specifying transitions in a state diagram for every possible

3
i 

 
i 1=

3

∑ 2i× 7× 182=

139

set of concurrent interactions. As we have shown with our simple switches system,

specifying all possible transitions can become a complex task.

We encode semantic information in interactions in our technique for predictable

behaviour when dependent concurrent interactions occur. Our technique does not isolate

interactions, and does not incur the complexity cost of specifying all transitionsa priori.

7.5 A Taxonomy of Interactions

The effects of dependent concurrent interactions are application-specific. Specifying

policies for resolving the effects of every set of interactions that may occur concurrently is

a complex design task. However, specifying policies for resolving the effects ofclassesof

interactions can be less complex. We discuss the properties of a good taxonomy of

interactions. MRM designers may classify their interactions into any taxonomy that

exhibits these properties. We present and justify one such taxonomy consisting of four

classes of interactions. Our taxonomy is based on semantic characteristics of interactions

we encountered often in models. Also, we present policies for resolving the effects of

classes of concurrent interactions.

7.5.1 Properties of a Taxonomy of Interactions

A good taxonomy exhibits the following properties [AMO94] [HOW97]:

• mutually exclusive: classes do not overlap

• exhaustive: classes jointly cover all possible members

• unambiguous: classification is independent of the classifier

• repeatable: subsequent trials lead to same classification

140

• accepted: logical and intuitive classes

• useful: must lead to insights in particular field

MRM designers may choose any taxonomy of interactions as long as it exhibits the

above properties. Traditional taxonomies of interactions, for example, readsversuswrites

or serializableversus non-serializable, may not exhibit these properties.

A straightforward classification of interactions is as reads or writes. This classification

does not exhibit the property of usefulness because there is inadequate semantic

information associated with the classes to resolve the effects of concurrent interactions.

When writes occur concurrently, we cannot determine whether the co-occurrence was a

happenstance of model execution or whether the writes are simultaneous events. In the

former case, the writes are independent and indistinguishable from their sequential

occurrence, while in the latter case, they may be dependent concurrent interactions and

must be resolved accordingly.

We rejected classifying interactions as serializableversusnon-serializable. Such a

classification does not aid us in resolving non-serializable interactions. Moreover,

serializable and non-serializable are relative classes. An interaction may be serializable

with respect to another interaction, but non-serializable with respect to yet another.

Therefore, the same interaction falls into both classes, implying that the chosen

characteristic does not partition interactions into exclusive classes. In other words, this

taxonomy does not exhibit the property of mutually exclusive classes.

In §7.5.2, we present a taxonomy of interactions. We identify four characteristics of

interactions:request, response, certainanduncertain. By combining these characteristics,

we identify four classes of interactions: Types 0, 1, 2 and 3. We were able to categorise

141

interactions encountered in a number of models into these classes. Other characteristics of

interactions may exist, and if identified, may introduce new classes of interactions, which

may lead to new policies or refinements of our policies for resolving the effects of

dependent concurrent interactions. We evaluate our taxonomy in §7.5.3.

7.5.2 Interaction Characteristics and Classes

We present four interaction characteristics and four classes of interactions that we have

defined. We show how to classify interactions based on semantic characteristics. We

identify four high-level semantic characteristics of interactions. These characteristics are

application-independent, i.e., they are not specific to any application. The characteristics

themselves are well-known; however, using them to classify interactions is novel. We

identify four interaction classes from these characteristics of interactions.

7.5.2.1 Request and Response

Interactions may be requests or responses. Request interactions are concerned with an

entity soliciting some behaviour from another entity. For example, when an entity queries

the status of another entity, the former sends the latter a request interaction. Likewise, if an

officer entity orders a soldier entity to fire, the former sends the latter a request interaction.

Response interactions are concerned with an entity responding to an action generated as

part of a model’s behaviour, for example, a request. Responses may not be solicited

explicitly, i.e., a response may not have a request associated with it. For example, a status

update is a response interaction. Likewise, billiard ball entities may send one another

response interactions generated because of a collision.

142

The distinction between request and response interactions is temporal. A request

interaction is made regarding a future action. A response interaction is made regarding an

action in the past. An interaction may be a request or a response, but not both‡.

• Request: An interaction concerned with eliciting future behaviour from an entity.

• Response: An interaction concerned with the effects of an action in the past.

7.5.2.2 Certain and Uncertain

Interactions may or may not have the desired outcomes. Certain interactions have

predictable outcomes. For example, when billiard ball entities collide, the outcome of their

interaction is predictable because of physical laws. Likewise, when an acid entity is added

to an alkali entity, the outcome of their interaction is predictable because of chemical laws.

Uncertain interactions are those whose outcomes are not predictable. For example, a

request for information may not always be satisfied, or satisfied truthfully. Likewise, a

request to perform an action is not guaranteed to be satisfied.

Uncertainty in interactions may be defined along a continuum. For example,

interactions may be distinguished on a scale with completely certain interactions at one

‡ Interactions cannot refer to actions in the present. One explanation is that the sender may not

know when an interaction may be received. Therefore, the sender cannot base the effects of an

interaction on actions that will happen precisely during the time-step that a receiver receives the

interaction. Another explanation is that we can think of a time-step as having two phases: a

send-receivephase during which interactions are sent and received and aperformphase during

which the effects of interactions are applied. If the perform phase occurs first, effects in that

phase are in the past of the send-receive phase, whereas if the perform phase occurs second,

effects in that phase are in the future of the send-receive phase.

143

end and increasingly uncertain interactions further away from that end. In such a case, the

uncertainty of an interaction is a measure of its distance from the completely-certain end

of the scale. Priorities may be viewed as an example of such a continuum. High-priority

interactions always take effect preferentially over lower-priority interactions.

• Certain: An interaction whose outcome is predictable.

• Uncertain: An interaction whose outcome is unpredictable.

7.5.2.3 Combining Characteristics

Combining these characteristics yields four

classes of interactions, which we name Types 0,

1, 2 and 3. We list the four classes below along

with the conjunction of characteristics that

defines each class. Also, we present an example

interaction for each class. We depict the four classes in Figure 44.

Type 0: Response ∧ Certain e.g., physical events

Type 1: Response ∧ Uncertain e.g., updates

Type 2: Request ∧ Certain e.g., reads

Type 3: Request ∧ Uncertain e.g., orders

7.5.3 Evaluating the Taxonomy

Our taxonomy of interactions exhibits the properties of a good taxonomy discussed in

§7.5.1. Our four interaction classes are mutually exclusive since no two of them possess

the same conjunction of characteristics. Our taxonomy is exhaustive because the four

interaction classes cover all possible combinations of the four interaction characteristics.

We believe our taxonomy is unambiguous, repeatable, intuitive and useful. Our

FIGURE 44: Classes of Interactions

Uncertain

Certain

R
es

po
ns

e

R
eq

ue
st

Type 0

Type 3

Type 2

Type 1

144

characteristics capture semantic information about interactions. An interaction can be

classified into our four classes according tosemanticinformation, (i.e., its expected effect

on its sender and receiver), rather than non-semantic information (e.g., its syntax, the

variables it reads or writes, its size, the time taken to transmit it). We assume model

designers can identify the semantics of an interaction and determine its characteristics

subsequently. Determining the class of an interaction from its characteristics is

unambiguous and repeatable. Our classes are logical combinations of orthogonal

interaction characteristics. The classes are intuitive because they are derived from well-

known characteristics of interactions. All of the interactions we have encountered exhibit

combinations of these characteristics. Next, we will demonstrate the usefulness of our

taxonomy by showing how to resolve the effects of concurrent interactions.

7.5.4 Resolving Effects of Concurrent Interactions

We show how to resolve the effects of concurrent interactions based on the two sets of

characteristics of interactions defined above: responseversusrequest and certainversus

uncertain. Independent interactions are those whose concurrent occurrence is

indistinguishable from their sequential occurrence. If we can determine that concurrent

interactions are independent, then they may be resolved by serialization. The following

properties enable designers to determine whether concurrent interactions are independent.

Property 1: If the concurrent occurrence of interactions is indistinguishable

from a sequential occurrence, the interactions are independent.

Argument: Assume the interactions are dependent. Therefore, they are related

by either cause-effect or concurrence. If they are related by cause-

effect, they cannot occur concurrently, since cause precedes effect.

145

If they are related by concurrence, no sequential occurrence of the

interactions can have the same effect as the concurrent occurrence.

Since the interactions do not depend on one another by either

cause-effect or concurrence, the initial assumption is false.

Property 2: If concurrent interactions affect disjoint sets of attributes, they are

independent.

Argument: If concurrent interactions affect disjoint sets of attributes, their

effects can be applied sequentially. Therefore, the concurrent

occurrence of these interactions is indistinguishable from their

sequential occurrence. By Property 1, they are independent.

If concurrent interactions affect disjoint sets of attributes, they are independent. If they

do not, theyinterfere, but cannot be determined to be dependent yet. For interactionsI1

andI2, if in terms of attributes,I1.affects∗ ∩ I2.affects∗ = ∅ thenI1 andI2 are independent,

else they interfere. Figure 45 shows a number of interactions that occur during a time-step.

Each interaction is shown as a labeled node in a graph. An arc between two nodes

indicates that the corresponding interactions affect non-disjoint sets of attributes. For

example, the arc between nodes labeledI2 and I3 indicates that in terms of attributes,

I2.affects∗ ∩ I3.affects∗ ≠ ∅. The nodes that transitively affect non-disjoint sets of

attributes form isolated sub-graphs. The interactions corresponding to nodes in a sub-

graph are independent of the interactions corresponding to nodes in another sub-graph.

For example, each ofI2, I3 andI4 is independent of each ofI1, I5, I6, I7 andI8. The set of

interactions corresponding to nodes in a sub-graph may be serialized with respect to the

set of interactions corresponding to nodes in another sub-graph. Therefore, the sets of

interactions {I2, I3, I4}, { I1} and {I5, I6, I7, I8} can be serialized with one another.

146

Property 3: Concurrent response and request interactions are independent.

Argument: Consider the interactions occurring during a time-step [ti, ti+1] (see

Figure 46). Response interactions received during this time-step

refer to behaviour prior to timeti. Request interactions received

during this time-step refer to behaviour after timeti+1. Let there be

a timet´ such thatti < t´ < ti+1. Re-arrange the interactions such that

all response interactions occur during the time-step [ti, t´], and all

request interactions occur during the time-step [t´, ti+1]. This re-

arrangement does not alter the semantics of any interaction because

all of the response interactions continue to refer to behaviour prior

to time ti and all of the request interactions continue to refer to

behaviour after timeti+1. All of the response interactions can occur

before all of the request interactions. Therefore, the concurrent

occurrence of response and request interactions is indistinguishable

from a sequential occurrence, namely, responses before requests.

By Property 1, responses and requests are independent.

FIGURE 45: Concurrent Interactions Affecting Sets of

I4

I2

I3 I8
I7

I5
I6

I1

[ti, ti+1]

FIGURE 46: Independent Concurrent Response and Request Interactions

[ti, t´], [t´, ti+1]

ti ti+1

ti ti+1

Response

Request

t´

147

When two interactions interfere, but one of them has a certain outcome and the other

has an uncertain outcome, then the former takes effect preferentially over the latter.

Interactions with certain outcomemust take effect, whereas interactions with uncertain

outcome may be ignored, delayed or permitted to take partial effect. A partial effect for an

interaction is its effect on some attributes but not others, or its fractional effect as opposed

to its complete effect. If certainty or uncertainty of interaction outcomes is multi-modal

(e.g., as in priorities), then interactions with higher degrees of certainty take effect

preferentially over those with lower degrees of certainty.

When two interactions are resolved, either one of them takes effect preferentially over

another, or they are combined. In the former case, the preferred interaction retains its type.

In the latter case, the resultant interaction has the same type as the original interactions. If

interactions of the same type interfere, they can be resolved by application-specific

policies. For example, if two Type 0 interactions interfere, then they can be combined by a

policy that reflects domain-specific laws. If they cannot be combined, then the model must

be re-designed to avoid such paradoxical interactions. When concurrent interactions are

combined, they may have cooperative or competitive effects. When the effect of combined

interactions is “greater” than the combined effects of the individual interactions, the

interactions arecooperative. When the effect of combined interactions is “less” than the

combined effects of the individual interactions, the interactions arecompetitive.

Determining “greater” and “less” is application-specific. If cooperative or competitive

effects exist and the original interactions are serialized, new interactions can be added to

account for these effects.

148

7.5.5 Policies for Resolving Effects of Interactions

In order to resolve the effects of dependent concurrent interactions, we present policies

based on the characteristics of interactions, and our definitions of a model and interactions

from §3.2. Designers of multi-models may choose from these policies to resolve the

effects of dependent concurrent interactions. Recall that the effect of an interactionInt(ti)k

on a state of the model is the changeE(Int(ti)k), and applying the effect of that interaction

on the representationRep(ti) is equivalent to computing a functionF(Rep(ti), E(Int(ti)k))
** .

Applying the resolved effects of all of the interactions in one time-step results in the state

of the model at the next time-step.

Serializing: If interactions are independent, their concurrent effects are

indistinguishable from their sequential effects (Property 1). Independent interactions may

be serialized in an arbitrary order, and permitted to take effect one after another. The

combined effect of concurrent interactionsI andJ is E(I • J). If I andJ are independent,

their serialized effects areE(I) ◊ E(J). If the effects ofI are applied before the effects ofJ,

we denote the combined effects asE(I), E(J). The effect ofI andJ on the representation

Rep(ti) can be applied by computingF(Rep(ti), (E(I), E(J))). Applying their serialized

effects is equivalent to computing the functionF recursively:F(F(Rep(ti), E(I)), E(J)).

** We will use sets and individual elements of a set of interactions interchangeably as parameters

for F andE in order to avoid digressing into more formalisms. Distinguishing the “overloaded”

uses ofF andE will be clear from context.

Int Int t0() Int t1() Int t2() …, , ,()=

Int ti() Int ti()0 Int ti()1• …• Int ti()ni
•()=

Rep ti 1+() F Rep ti() E Int ti()(),()=

Rep ti 1+() F F F F Rep ti() E Int ti()0(),() E Int ti()1(),() …,() E Int ti()ni
(),()=

149

Since no ordering is implied for the interactions within a time-step, the interactions

may be ordered arbitrarily. If the representation at timeti+1, Rep(ti+1), is the same no

matter how the interactions are ordered, then the interactions are commutative, i.e., the

order in which their effects are applied does not change their combined effects.

Response interactions are independent of request interactions because they are

temporally disjoint. Accordingly, if the firstk interactions in the setInt(ti) are responses

and all of the remaining interactions are requests, then they can be resolved as below:

Ignoring : The effects of some sets of dependent concurrent interactions can be

resolved meaningfully by ignoring some of them. For example, if uncertain interactions

interfere with certain interactions, the former may be ignored. If the interactions inInt(ti)

are sorted such that the firstk interactions take effect while the rest are ignored, then:

Delaying: The effects of some sets of dependent concurrent interactions can be

resolved meaningfully by delaying some of them. For example, uncertain request

interactions may be delayed if the receiver cannot resolve their effects within the current

time-step. If the interactions inInt(ti) are sorted such that the firstk interactions take effect

during the time-step [ti, ti+1], while the rest are delayed to a future time-step [tj, tj+1], then:

E Int ti()0 Int ti()1• …• Int ti()ni
•() E Int ti()0() E Int ti()1() … E Int ti()ni

()◊ ◊ ◊=

E Int ti()0 Int ti()1• …• Int ti()ni
•()∴ E Int ti()0() E Int ti()1() … E Int ti()ni

(), , ,=

E Int ti()0 Int ti()1• …• Int ti()ni
•() E Int ti()ni

() E Int ti()1() E Int ti()0() …, , ,=

Rep ti 1+() F F F F Rep ti() E Int ti()ni
(),() E Int ti()1(),() E Int ti()0(),() …,()=

E Int ti()() E Int ti()0() … E Int ti()k 1–()◊ ◊() E Int ti()k() … E Int ti()ni
()◊ ◊(),=

Rep ti 1+()

F F Rep ti() E Int ti()0() … E Int ti()k 1–()◊ ◊,() E Int ti()k() … E Int ti()ni
()◊ ◊,()=

E Int ti()0 Int ti()1• …• Int ti()ni
•() E Int ti()0 Int ti()1• …• Int ti()k 1–•()=

Rep ti 1+() F Rep ti() E Int ti()0 Int ti()1• …• Int ti()k 1–•(),()=

150

Combining Cooperatively or Competitively: Resolving the effects of some

dependent concurrent interactions may result in enhancing or diminishing the effects of

the individual interactions. If the effects are enhanced, the interactions have cooperative

effects, whereas if the effects are diminished, the interactions have competitive effects.

The effects of such interactions may be resolved by applying the effects of the individual

interactions as well as compensatory interactions that account for the cooperative or

competitive effects. Let two interactions inInt(ti) have cooperative or competitive effects.

Let the compensatory interaction be denoted byInt(ti)0, 1. The effect ofInt(ti) is:

7.6 Constructing an Interaction Resolver

An Interaction Resolver (IR) resolves the effects of concurrent interactions received by

an MRE. This process involves determining the class of each interaction, determining if

interactions of the same type interfere, propagating the effects of interactions and

resolving the effects on each attribute using application-specific policies. The IR may be a

single component or a number of components distributed over the attributes in an ADG for

the MRE. Conceptually, the distinction is unimportant; during implementation, the

distributed view may be more efficient.

7.6.1 Operation of an IR

The operation of an IR involves implementing policies for resolving the effects of

classes or types of dependent concurrent interactions.

Rep ti 1+() F Rep ti() E Int ti()0 Int ti()1• …• Int ti()k 1–•(),()=

Rep tj 1+() F Rep tj() E Int t j() I• nt ti()k Int ti()k 1+• …• Int ti()ni
•(),()=

E Int ti()0 Int ti()1•() E Int ti()0() E Int ti()1() E Int ti()0 1,()◊ ◊=

151

At design time, a designer encodes the type or characteristics of each interaction.

Encoding the type or characteristics enables an IR to classify interactions. Also, at design

time, the designer encodes policies in the IR for resolving types of concurrent interactions.

For example, if Type 1 and Type 0 interactions interfere, the former can be discarded. The

designer must specify a policy for discarding the Type 1 interactions. Examples of such a

policy are ignoring or delaying the interactions (see §7.5.5). If choice of policies varies

during run-time, the designer must specify conditions under which a policy is chosen.

At run-time, an MRE sends and receives concurrent interactions during a time-step.

The IR groups the interactions according to their type. Initially, the IR determines the

effect of each interaction on all attributes assuming that the interaction occurs in isolation.

The semantics of an interactionI determine howI.affectsis constructed. The ADG and

mapping functions determine howI.affects+ is constructed. The effects are not applied

immediately to the attributes since interfering effects have not been resolved yet. For each

attribute, a list of potential changes caused by the concurrent interactions is constructed.

Not all of these changes will be applied to the attribute. The IR resolves changes caused by

interactions by considering the type of interactions and policies that eliminate conflicts

among types of interactions. The IR considers the changes to each attribute in the order:

Type 0, 1, 2 and 3 to preserve dependencies among the corresponding interactions.

The first group of interactions the IR considers is the Type 0 group. Type 0 interactions

are communications about events that have already occurred. Their effects on the receiver

are certain and can be computed in accordance with model requirements. If two or more

Type 0 interactions interfere, then their effects can be combined. The IR permits each

Type 0 interaction to take effect.

152

The next group of interactions the IR considers is the Type 1 group. Type 1

interactions are communications about events that may have occurred. Their effects on the

receiver are uncertain. Type 1 interactions may interfere with one another as well as with

Type 0 interactions. Let the tuple<a, δa> denote an attribute and a change to it caused by

a Type 1 interactionI. The IR determines whetherδa conflicts semantically with any

Type 0 change. If it does, the IR marks<a, δa> as discarded. IfI is discarded entirely, the

IR marks all tuples inI.affects∗ as discarded. Thus, the interaction can take effect entirely

or not at all. If I may have partial effects, then not all of the tuples inaffects∗ need be

discarded. When the only Type 1 changes remaining are the ones that do not conflict with

the Type 0 changes, the Type 1 changes are checked for conflicts among themselves. If

there are conflicts, the IR selects a set of non-conflicting interactions among them based

on appropriate policies.

Next, the IR considers interactions in the Type 2 group. Type 2 interactions are

communications about events that will occur. Type 2 interactions may be reads of attribute

values, in which case, they do not interfere with any other interactions and can take effect

immediately. Some Type 2 interactions may not be just reads. For example, a particular

Type 2 interaction may read an attribute and have the side-effect of writing to another

attribute, such as a counter. As another example, a Type 2 interaction may be a

communication about an event that is certain to happen, such as a collision between two

entities within the current time-step. Although Type 2 interactions occur during the same

time-step as Type 0 or Type 1 interactions, Type 2 interactions are serialized with respect

to Type 0 and Type 1 interactions. If Type 2 interactions interfere with one another, they

can be combined in the same manner as Type 0 interactions.

153

Finally, the IR considers interactions in the Type 3 group. Type 3 interactions are

communications about events that may occur. Type 3 interactions may be requests, orders

or commands that may not be satisfied. Type 3 can be serialized with respect to Type 0 and

Type 1 interactions. Type 3 interactions are resolved with respect to Type 2 interactions in

the same way as Type 1 interactions are resolved with respect to Type 0 interactions.

Although the actual policies may differ, Type 1 and Type 3 interactions may be discarded

in favour of interactions in the other two classes.

In Figure 47, we present an algorithm for an IR. The IR determines the effects of all

concurrent interactions by referring to policies encoded by the designer. The fourth step in

the algorithm refers to an algorithm similar to the one we presented in Figure 34 in which

we applied the effects of interactions as soon as they were determined. In Figure 47, we

apply the effects of interactions after all dependent interactions have been resolved.

FIGURE 47: Algorithm for Resolving Interactions

For each time-step
List L = sort interactions by type
For each interaction I in L

Determine effects of I on each attribute in ADG
For each attribute a in ADG

If cooperative/competitive effects exist
Insert compensatory effects in L

If Type 0 and Type 1 interactions interfere
Discard Type 1 changes

If Type 2 and Type 3 interactions interfere
Discard Type 3 changes

For each attribute a in ADG
Apply remaining changes

154

7.6.2 An Example IR

We demonstrate the operation of an IR with the example MRE described in Chapter 6.

Let the interactions in Table 9 be received concurrently by the MRE. The class of each

interaction is listed in the column headed “Type”. The setsaffectsandaffects+ have been

shown in the last two columns. The semantics of the various interactions are as below:

• Move_Tank1: Tank1 moves in the current time-step.

• Move_Platoon: Platoon moves in the current time-step.

• Collide_Tank2: Tank2 suffers a collision in the current time-step.

• See_Tank1: An entity requests the values of some attributes of Tank1.

• Refill_Tank1: Tank1 is refuelled and repaired in the current time-step.

• Fire_Platoon: Platoon fires in the current time-step.

• Detonation: Platoon is in the path of a detonation in the current time-step.

At design-time, a designer encodes the type of each interaction and policies for

resolving types of concurrent interactions. The encoded types of the interactions appear in

Table 9. Suppose the encoded policies are:

TABLE 9: Example Concurrent Interactions

Interaction Type affects affects+

Move_Tank1 3 Pos1 Pos, Pos2, Form, App, Dam1, Dam2

Move_Platoon 3 Pos Pos1, Pos2, Form, App, Dam1, Dam2

Collide_Tank2 0 Vel2, Pos2 Vel, Pos, Form, Vel1, Pos1, App, Dam1, Dam2

See_Tank1 2 ∅ ∅

Refill_Tank1 1 Ammo1, Fuel1 Fire, Ammo2

Fire_Platoon 3 Fire Ammo1, Ammo2

Detonation 0 App Dam1, Dam2

155

L1: If Move_Platoon occurs concurrently with Move_Tank1 or Move_Tank2,

then Move_Platoon takes effect preferentially.

L2: If Detonation occurs concurrently with Collide_Tank1 or Collide_Tank2, the

interactions have competitive effects.

L3: If a change caused by an interaction is discarded, the interaction is discarded

entirely, i.e., no partial effects of interactions are permitted.

At run-time, the IR resolves the effects of concurrent instances of the interactions in

Table 9. Accordingly, the IR constructs a table similar to Table 10 for these interactions.

The first column lists the name of the attribute. The second column lists the interactions

affecting that attribute. The rows for which the second column reads “competitive” refer to

a compensatory interaction added by the IR to enforce L2. The third column lists the type

of each interaction. The fourth column lists changes to that attribute caused by a

corresponding interaction. These changes are computed by permitting each interaction to

take effect in isolation initially, determining the changes to attributes caused directly by

the interaction, traversing the ADG and invoking the appropriate mapping functions to

determine the changes to attributes caused indirectly by the interaction. In Chapter 6 we

explained a similar procedure in detail for singly-occurring interactions.

TABLE 10: Effects of Concurrent Interactions

Attribute Interaction Type Change

Pos

Collide_Tank2 0 δP1

Move_Platoon 3 δP2

Move_Tank1 3 δP3

Pos1

Collide_Tank2 0 δP1
1

Move_Tank1 3 δP1
2

Move_Platoon 3 δP1
3

156

Pos2

Collide_Tank2 0 δP2
1

Move_Tank1 3 δP2
2

Move_Platoon 3 δP2
3

Vel Collide_Tank2 0 δV1

Vel1 Collide_Tank2 0 δV1
1

Vel2 Collide_Tank2 0 δV2
1

Form

Collide_Tank2 0 δF1

Move_Platoon 3 δF2

Move_Tank1 3 δF3

App

Detonation 0 δA1

Collide_Tank2 0 δA2

competitive 0 δA3

Move_Platoon 3 δA4

Move_Tank1 3 δA5

Dam1

Detonation 0 δD1
1

Collide_Tank2 0 δD1
2

competitive 0 δD1
3

Move_Platoon 3 δD1
4

Move_Tank1 3 δD1
5

Dam2

Detonation 0 δD2
1

Collide_Tank2 0 δD2
2

competitive 0 δD2
3

Move_Platoon 3 δD2
4

Move_Tank1 3 δD2
5

Fire
Refill_Tank1 1 δR1

Fire_Platoon 3 δR2

Ammo1

Refill_Tank1 1 δA1
1

Fire_Platoon 3 δA1
2

TABLE 10: Effects of Concurrent Interactions

Attribute Interaction Type Change

157

For each attribute, the IR resolves the changes caused by different interactions. The

order in which attributes are chosen is unimportant. Interactions that do not change any

attributes, i.e., whoseaffects∗ = ∅, cannot cause any inconsistencies among the multiple

representations. If such interactions are reads, the values returned may be the values of

attributes before any changes are applied or after all changes have been applied. We show

how to resolve concurrent changes for all of the attributes in our example.

• Pos: The concurrent changes areδP1, δP2 andδP3. δP1 is a Type 0 change and can

be applied.δP2 andδP3 are Type 3 changes that conflict with each other, but are

independent ofδP1 which is a Type 0 change. By L1,δP2 is applied andδP3 is

discarded. By L3, Move_Tank1 is discarded entirely, and the IR discardsδP1
2,

δP2
2, δF3, δA5, δD1

5 andδD2
5 — the changes caused by this interaction to each

attribute in Move_Tank1.affects∗.

• Pos1: The concurrent changes remaining areδP1
1 andδP1

3. δP1
1 can be applied

since it is a Type 0 change. In practice, we expectδP1
1 = 0 since a collision

involving Tank2 will not affect Tank1. However, this is an artifact of the particular

interactions we have chosen, hence it does not factor into the decision about which

changes are applied.δP1
3 does not conflict withδP1

1 because of the types of these

changes. The IR has discardedδP1
2 already.

• Pos2: The concurrent changes remaining areδP2
1 andδP2

3. δP2
1 can be applied

Ammo2

Refill_Tank1 1 δA2
1

Fire_Platoon 3 δA2
2

Fuel1 Refill_Tank1 1 δU1

TABLE 10: Effects of Concurrent Interactions

Attribute Interaction Type Change

158

since it is a Type 0 change.δP2
3 can be applied since it does not conflict withδP2

1

because of the types of these changes.δP2
2 has been discarded already.

• Vel: δV1 can be applied.

• Vel1: δV1
1 can be applied.

• Vel2: δV2
1 can be applied.

• Form: Both the remaining changes,δF1 andδF3, can be applied.

• App: δA1, δA2 and δA3 can be applied because they are Type 0.δA3 is a

competitive change caused by the compensatory interaction added by the IR. Since

δA3 is a compensation for two Type 0 interactions, it is also Type 0. After the

Type 0 interactions are applied, the Type 3 changes are applied. SinceδA5 has

been discarded, onlyδA4 can be applied.

• Dam1: δD1
1, δD1

2 and δD1
3 can be applied because they are Type 0.δD1

4 is

applied subsequently.

• Dam2: δD2
1, δD2

2 and δD2
3 can be applied because they are Type 0.δD2

4 is

applied subsequently.

• Fire: The potential changes areδR1 andδR2. δR1 is a Type 1 change. Since there

are no previously-applied changes, it can be applied.δR2 can be applied as well

since Type 3 interactions do not conflict with Type 1 interactions.

• Ammo1: δA1
1 andδA1

2 can be applied.

• Ammo2: δA2
1 andδA2

2 can be applied.

• Fuel:δU1 can be applied.

When all of these changes have been applied, the MRE will be consistent. The IR

enforces policies L1, L2 and L3 specified for this application. Since the specified policies

159

for dependent concurrent interactions do not isolate the interactions, the effects of these

interactions can be resolved in a manner meaningful to the application. Consequently, the

MRE interacts at multiple representation levels concurrently and consistently.

7.7 Chapter Summary

Concurrent interactions may have effects that are dependent on one another. Resolving

the effects of such interactions by serializing them is incorrect since serialization isolates

the interactions. Dependent concurrent interactions can be resolved efficiently by

classifying them and formulating policies for resolving classes of interactions. We present

four characteristics of interactions — request, response, certain and uncertain — and four

classes of interactions based on combinations of these characteristics — Types 0, 1, 2 and

3. The classes distinguish semantic types of interactions encountered in models. Based on

these classes of interactions, we presented policies for resolving the effects of their

concurrent occurrence. We showed how to construct an Interaction Resolver (IR) for an

MRE. An IR resolves the effects of types of interactions at run-time. By designing a

Consistency Enforcer and an Interaction Resolver, a designer can ensure that an MRE

interacts at multiple representation levels concurrently. Next, we present a process for

applying our framework,UNIFY, to jointly-executing models.

160

Woe to the author who always wants to teach;
The secret of being a bore is to tell everything.

— Voltaire,De la Nature de l’Homme

Chapter 8

Applying UNIFY: A Process

In this chapter, we present guidelines and a process for applying our techniques to

achieve effective MRM. Designers can applyUNIFY by reading this chapter first and

referring to preceding chapters when necessary. We presented Multiple Representation

Entities (MREs) as a means of maintaining concurrent representations (Chapter 5). A

Consistency Enforcer (CE) maintains internal consistency within an MRE (Chapter 6). An

Interaction Resolver (IR) resolves the effects of dependent concurrent interactions on an

MRE (Chapter 7). Here, we present a process for applying the techniques inUNIFY. By

following these steps, designers can achieve effective MRM in their applications:

1. Construct an MRE from the representations of jointly-executing models.

2. Capture dependencies among the attributes with an ADG.

3. Select mapping functions for each dependency.

4. Classify interactions according to a taxonomy.

5. Select policies for resolving the effects of concurrent interactions.

6. Construct a CE and an IR for the MRE.

161

We expect designers to construct solutions for their MRM applications based on

general guidelines. In §8.1, we justify each guideline briefly. SinceUNIFY is intended to

aid designers of multi-models, in §8.2 we show howUNIFY can be used in conjunction

with a familiar modelling methodology. In §8.3, we explain how to apply the techniques in

UNIFY with the example application employed in previous chapters.

8.1 Guidelines for MRM Designers

We present guidelines for achieving effective MRM usingUNIFY. We justify each

guideline briefly and refer to earlier sections in this dissertation for detailed explanations.

We assume that a designer desires to construct a multi-model from models that meet their

users’ requirements. For each model, the designer must identify the representation of

entities, relationships among attributes and interactions that change the state of entities.

We assume the designer can identify the cross-model relationships in the multi-model, can

understand the intertwined semantics of interactions and can make time-steps in the multi-

model compatible.

G1: Represent entities at levels at which they can interact.

This guideline arises from FO-1 in §4.2. For effective MRM, entities should

interact at a representation level at which their semantics are compatible (see

Figure 9 in Chapter 4).

G2: Maintain concurrent representations for jointly-executing models.

Maintaining concurrent representations means preserving them at all times and

permitting interactions to change them. MREs maintain concurrent

representations (see Chapter 5). Designing MREs can ensure that entities

interact at levels at which their semantics are compatible.

162

G3: Make the time-steps of the multiple models compatible.

If jointly-executing models have compatible time-steps, neither violates any

assumptions made by another during any time-step. Achieving compatible

time-steps may involve executing some models at finer or coarser time-steps

(see §3.3.3). Accordingly, the attributes in the models may be augmented with

tolerance values, which determine acceptable variances in the values of the

attributes at overlapping simulation times (see §4.2.4).

G4: Capture cross-model relationships.

Capturing relationships among representations involves determining the

semantics of attributes that are part of the representations. Attributes with

overlapping semantics are likely to be related to one another. Relationships

among models can be captured by Attribute Dependency Graphs and mapping

functions (see Chapter 6).

G5: Propagate the effects of an interaction to all representation levels.

An interaction affects the attributes at its own representation level as well as

related attributes at other representation levels (see FO-2 in §4.2.2).

Propagating the effects of interactions to all relevant attributes ensures that

multiple representations are consistent.

G6: Select mapping functions for each relationship between representations.

These functions translate value spaces or changes in values among related

attributes. Mapping functions must satisfy the properties time-bounded

completion, composability and reversibility (see §6.2).

G7: Identify semantics characteristics of interactions.

In §7.5, we presented a taxonomy of interactions, consisting of four classes, in

order to reduce the complexity of resolving concurrent interactions. Alternative

taxonomies are possible. Classifying an interaction involves understanding its

semantics, i.e., its effects on its sender and receiver.

G8: Select policies for resolving the effects of dependent concurrent interactions.

The effects of concurrent interactions may depend on one another (see FO-3,

§4.2.3, §7.3). In §7.5.4, we presented example policies for resolving the effects

163

of dependent concurrent interactions. Specifying policies for resolving

interactions involves capturing the semantics of their concurrent occurrence.

By following these guidelines, designers can incorporate effective MRM into their

applications. A multi-model can satisfy its users’ requirements if MRM is effective.

8.2 UsingUNIFY with a Specification Methodology

We expect designers of multi-models to achieve effective MRM by employingUNIFY

in conjunction with a specification methodology. We augment an existing specification

methodology so that designers can build on familiar modelling techniques when they

apply UNIFY. Specification methodologies such as OMTR [RUM91], OOA [SHLAER92]

and UML [ALHIR98] support specifying model representations and relationships, but not

the effects of interactions. In contrast, OMT [OMT98] supports specifying the effects of

an interaction in terms of its parameters, its sender, its receiver and the attributes it affects.

Since resolving the effects of concurrent interactions is one of the hardest problems in

MRM, we regard the support for interactions in OMT suitable for MRM. We augment

OMT by permitting designers to specify attribute relationships, interaction types and

policies for resolving concurrent interactions.

In the Department of Defense’s High Level Architecture (HLA) initiative, multiple

models may execute together in a “plug-and-play” fashion. Individual models and multi-

models are specified using a methodology called the Object Model Template (OMT). In

OMT, individual models, or federates, are specified by tables describing their interface.

These tables together are called the Federate Object Model (FOM) for that federate. The

FOM for a particular model has the following tables:

• Object Class Structure Table (OCST) shows the class hierarchy along with

164

information for whether each class is publishable (shareable with other models),

subscribable (interesting to the current model) or both.

• Attribute/Parameter Table (APT) lists object attributes and interaction parameters

along with their data type, cardinality, units, resolution, accuracy, accuracy

condition, update type and update condition.

• Object Interaction Table (OIT) lists each interaction, its sender, its receiver, the

attributes it affects and whether a model initiates, senses or reacts to it.

• Enumerated Data Table (EDT) lists the values of all enumerations.

• Complex Data Table (CDT) lists the definitions of all structured data types.

• Object Class Definitions (OCD) describes the role of each entity.

• Object Interaction Definitions (OID) describes each interaction.

• Attribute/Parameter Definitions (APD) describes each object attribute and

interaction parameter.

The OCST and the APT enable a designer to construct the representations for a multi-

model. The APT and the OIT enable the designer to describe the interactions for the multi-

model. In OMT, the only relationships that can be determined are those of base class and

derived class [STROU91]. These relationships capture neither attribute relationships nor

complex entity relationships. Furthermore, although in OMT a designer can specify the

effects of an interaction, the designer cannot specify effects ofconcurrent interactions.

We augment OMT with tables that permit a designer to capture relationships among

attributes and specify policies for resolving the effects of concurrent interactions. The

inability to express entity relationships is a serious shortcoming in OMT. The class

hierarchy captured by the OCST captures static entity relationships such as inheritance,

165

but not the dynamic relationships among entities, for example, relationships of

configuration. Therefore, we augment OMT with an Attribute Relationship Table (ART).

This table lists each attribute dependency, its class and specifications for its associated

mapping function. In OMT, the OIT and APT permit interactions to be specified in detail.

We augment the OIT in OMT with a column for specifying the class for each interaction.

Once the class for an interaction has been specified, policies for resolving the effects of

concurrent interactions can be formulated. We augment OMT with a table, the Concurrent

Interactions Table (CIT), which permits a designer to specify such policies. The CIT

permits a designer to specify policies in terms of combinations of classes of interactions or

individual interactions. Table 11 is an ART and Table 12 is a CIT for the example

application developed in Chapters 6 and 7. With these additions, designers can employ

OMT andUNIFY to incorporate MRM into their applications.

TABLE 11: Example Attribute Relationship Table

Dependency Type Specification

Hits1 → Str Cumulative Str is the weighted sum of Hits1 and Hits2.
Changes to Str are distributed to Hits1 and Hits2
according to weights on the dependencies.

Hits2 → Str Cumulative

Str → Hits1 Distributive

Str → Hits2 Distributive

Ammo1 → Fire Cumulative Fire is the weighted sum of Ammo1 and Ammo2.
Changes to Fire are distributed to Ammo1 and
Ammo2 according to weights on the dependencies.

Ammo2 → Fire Cumulative

Fire → Ammo1 Distributive

Fire → Ammo2 Distributive

Pos1 → Pos Cumulative Pos is the centroid of Pos1 and Pos2.

Pos2 → Pos Cumulative

Pos→ Pos1 Distributive

Pos→ Pos2 Distributive

Vel → Pos Modelling Position Pos changes with Velocity Vel according
to physical laws.Vel1 → Pos1 Modelling

Vel2 → Pos2 Modelling

166

8.3 Process for Effective MRM

UNIFY can be summarised by the process diagram in Figure 48. The unshaded boxes

represent steps in the process of applyingUNIFY, whereas the shaded boxes represent

steps in the design of models or a multi-model. The dashed arrows represent feedback in

the process. We view designing models, constructing a multi-model and achieving MRM

as iterative processes. We employed a running example of a Platoon-Tanks MRE in

Chapters 6 and 7 in order to explain our techniques for effective MRM. Here, we present

the process of applying those techniques.

UNIFY does not address the design of individual models. However, the steps in

UNIFY depend on the successful completion of steps in the design of individual models.

For example, constructing an MRE requires that the designer identify the representations

of jointly-executing models, ModelA and ModelB. Conversely, constructing an MRE may

provide insights into identifying representations of the models. Likewise, constructing an

ADG and selecting mapping functions for an MRE requires that the designer identify the

TABLE 12: Example Concurrent Interactions Table

Concurrent Interactions Condition Policy

Move_Platoon, any combination
of (Move_Tank1, Move_Tank2)

All received Ignore all except Move_Platoon

Detonation, any combination of
(Collide_Tank1, Collide_Tank2)

All received Add compensatory interaction for
competitive effects to Dam1 or Dam2;
actual damage less than sum of
damages

Type 0, Type 1 All received Ignore Type 1

Type 2, Type 3 All received Ignore Type 3

Any Interaction Ignored or
Delayed

Ignored or Delayed entirely, i.e., no
partial effects permitted

167

relationships within and among jointly-executing models. In the design of a model,

identifying relationships can be carried out in parallel with identifying interactions. In like

fashion, inUNIFY, constructing an ADG and selecting mapping functions can be carried

out in parallel with classifying interactions and selecting policies for resolving concurrent

interactions. In practice, these steps may be carried out sequentially; however, their

relative order is unimportant.

Verification and validation (V&V) is an important step in the design of models. V&V

is undertaken to ensure that a model is effective, i.e., meets its users’ requirements. V&V

for a multi-model depends on V&V for constituent models as well as V&V for MRM.

V&V for constituent models is outside the scope of our work. V&V for MRM involves

ensuring that jointly-executing models satisfy MRM requirements: multi-representation

interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3). The

MRE approach satisfies R3. If R1 and R2 are not satisfied, a designer must iterate through

the process of achieving MRM. In turn, the designer may have to re-examine the

construction of jointly-executing models.

We list the steps inUNIFY for the Platoon-Tanks MRE from Chapters 6 and 7. The

Platoon-Tanks multi-model captured the combined semantics of a Platoon model and a

Tank model. We employedUNIFY in order to achieve effective joint execution of the

Platoon and Tank models. The steps we undertook in the process of employing techniques

in UNIFY are listed below along with the sections in which we performed each step.

1. Construct an MRE for the jointly-executing models: §6.1. The Platoon-Tanks

MRE captured the concurrent representations of a Platoon and two Tanks. The

MRE could interact at either or both representation levels at any time.

168

FIGURE 48: Process for Effective MRM

UNIFY

Construct MRE

Construct ADG

Select Mapping
Functions

Classify

Select Policies

Construct CE & IR

Verify & Validate
MRM

Specify Model

Implement Model

Verify & Validate
Model

Determine Model
Requirements

Identify Model
Representation

Id
en

tif
y

M
od

el
R

el
at

io
ns

hi
ps

Id
en

tif
y

M
od

el
In

te
ra

ct
io

ns

Verify & Validate
Multi-Model

R1? R2?

R1?

R1?

R2?

R2?

ModelA
M

od
el

B

Interactions

169

2. Capture dependencies among the attributes in the MRE: §6.1. An ADG captured

the dependencies among Platoon and Tank representations. By classifying and

weighting dependencies, we captured their static and dynamic semantics.

3. Select mapping functions for each dependency: §6.2. We selected mapping

functions to translate values or changes in values among Platoon and Tank

attributes. These mapping functions ensured that the Platoon-Tanks MRE was

internally consistent at all observation times.

4. Classify interactions: §7.6.2. We classified the interactions in the Platoon and

Tank models according to our taxonomy. This classification enabled us to

capture the semantics of interactions.

5. Select policies for resolving concurrent interactions: §7.6.2. We selected policies

for capturing the dependencies among concurrent interactions. These policies

resolved the effects of dependent concurrent interactions.

6. Construct a CE and an IR for the MRE: §6.3 and §7.6.2. A CE consists of an

ADG and application-specific mapping functions, whereas an IR consists of

policies for resolving the effects of interactions. We presented processes for the

operation of a CE and IR for the Platoon-Tanks MRE. A CE and IR maintain

internal consistency within an MRE when concurrent interactions occur.

The above steps constitute a process for achieving effective MRM for an application.

The process and the techniques employed in each step are part ofUNIFY, our approach for

effective MRM. We demonstrated how to applyUNIFY to a multi-model application. We

present our experience in applying the above process to several models in the appendices.

Next, we evaluateUNIFY.

170

The purpose of computing is insight, not numbers.
— Richard Hamming

Chapter 9

Evaluation

Our framework, UNIFY, is a sufficient and practical approach for effective MRM.

UNIFY is sufficient because it satisfies three requirements for MRM: multi-representation

interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3). We

described these requirements in §1.3 and §3.4.UNIFY is practical because it offers

techniques and processes for designing a multi-model. Designers can applyUNIFY in

conjunction with a model specification methodology such as OMT to construct effective

multi-models. In §9.1, we evaluateUNIFY in terms of the MRM requirements. In §9.2, we

discuss briefly howUNIFY can be applied to existing applications to achieve effective

MRM. In §9.3, we present limitations of our work.

9.1 EvaluatingUNIFY in terms of MRM Requirements

We evaluateUNIFY with regard to our three sufficiency requirements R1, R2 and R3:

multi-representation interaction, multi-representation consistency and cost-effectiveness.

Since the joint execution of multiple models is intended to capture their combined

171

semantics, an MRM approach must permit the execution of the individual models.

Therefore, the MRM approach must permit entities at all representation levels to interact.

An MRM approach must maintain consistency among the representations of jointly-

executing models. If the representations of jointly-executing models are consistent, the

behaviours of the models can be consistent, thus leading to effectiveness of the multi-

model. Consistency can be maintained among multiple representations by propagating

changes from one representation to another. Lastly, an MRM approach must keep

simulation and consistency costs low. We reiterate the definitions of R1, R2 and R3 here.

• Multi-representation Interaction (R1) : Entities in each jointly-executing model

may initiate and receive interactions concurrently.

• Multi-representation Consistency (R2): The multiple models must be consistent

with one another, i.e., cross-model relationships must hold.

• Cost-Effectiveness (R3): The total cost of simulating multiple models and

maintaining consistency among them should be low.

UNIFY satisfies these requirements. In the following sub-sections we evaluateUNIFY

and alternative MRM approaches such as selective viewing and aggregation-

disaggregation in terms of these requirements.

9.1.1 Multi-Representation Interaction

UNIFY satisfies R1 by permitting interactions to occur at all representation levels. Let

ModelM be a multi-model constructed from low-resolution model,ModelA, and a high-

resolution model,ModelB. Recall from Chapter 3 that .ModelM RepM RelM IntM, ,〈 〉=

172

Alternative approaches, such as selective viewing and aggregation-disaggregation, do

not satisfy R1. In selective viewing, interactions at only the most detailed representation

level are permitted. In other words, in selective viewing,IntM = IntB at all times.

Therefore, selective viewing does not satisfy R1. In aggregation-disaggregation,

interactions at different representation levels are permitted, but at only one level at a given

time. In other words, at timeti ∈ TM, IntM(ti) = IntA(ti) but at some timetj ∈ TM, tj ≠ ti,

IntM(tj) = IntB(tj). Since at any given time, interactions at only one level are permitted,

aggregation-disaggregation does not satisfy R1.

In contrast with selective viewing and aggregation-disaggregation,UNIFY permits

concurrent interactions at multiple representation levels. InUNIFY, IntM = IntA ∪ IntB.

Since interactions at all representation levels can occur at all times,UNIFY satisfies R1.

9.1.2 Multi-Representation Consistency

UNIFY satisfies R2 by maintaining consistency among jointly-executing models. A

Consistency Enforcer (CE) maintains consistency among the concurrent representations

within an MRE. A CE propagates a change caused by an interaction to all dependent

attributes. A CE consists of an Attribute Dependency Graph (ADG) and application-

specific mapping functions. An ADG captures dependencies among attributes at different

representation levels. Mapping functions translate changes to attributes before the next

observation time occurs. Consequently, an MRE is always internally consistent.

In alternative MRM approaches, such as aggregation-disaggregation and selective

viewing, multi-representation consistency is not satisfied because cross-model

relationships do not hold at all times. For a valid model, ,RelModel Rep Rel Int, ,〈 〉=

173

must hold at all observed times. For a multi-model,ModelM = ModelA ∪ ModelB,

RelM = RelA ∪ RelB ∪ Relcross-model. If the models,ModelA andModelB, are not related to

one another,Relcross-model= ∅, i.e., cross-model relationships are null. In such a case,

cross-model relationships hold at all observation times for any approach, including

UNIFY. However, for typical jointly-executing models,Relcross-model≠ ∅. Selective

viewing forces Relcross-model to be null, since only one representation level exists.

Likewise, aggregation-disaggregation forcesRelcross-model to be null except during

transitions from one representation level to another. Forcing cross-model relationships to

be null ensures that they hold trivially, but does not capture relationships among jointly-

executing models at all observed times. Therefore, selective viewing and aggregation-

disaggregation satisfy R2 partially only.

In UNIFY, Relcross-modelholds at all observation times. ADGs and mapping functions

capture Relcross-model completely. A CE, which consists of an ADG and mapping

functions, ensures that changes to attributes of an MRE propagate to all dependent

attributes before the next observation time. Consequently, no two entities can receive

inconsistent views of an MRE at overlapping simulation times. Therefore, an MRE

exhibits temporal consistency. Mapping functions ensure that attributes in an MRE do not

change in a manner inconsistent with model requirements. As a result, the MRE exhibits

mapping consistency. Since an MRE is always internally consistent,UNIFY satisfies R2.

9.1.3 Cost-Effectiveness

UNIFY satisfies R3 by reducing the total cost of executing a model. A sufficient

approach to MRM must achieve multi-representation interaction and multi-representation

174

cost-effectively.Simulation costis the cost of executing multiple models.Consistency cost

is the cost of maintaining consistency among concurrent representations. Together,

simulation and consistency costs constitute the total cost of executing a model. Simulation

and consistency costs can be translated to resource consumption costs. For example,

simulation cost can be translated to the amount of processing required to apply the

primary effects of interactions. In other words, when an interaction occurs, the processing

required to change the values of attributes affected directly by the interaction is a

simulation cost. Likewise, consistency cost can be translated to the processing cost

incurred in order to keep entities consistent. In other words, when an interaction occurs,

the processing required to apply the secondary effects of the interaction is a consistency

cost. Simulation and consistency costs tend to be trade-offs, i.e., an approach with low

simulation cost tends to have high consistency cost andvice versa. UNIFY enables

reducing the two costs, i.e., their sum is lower whenUNIFY rather than aggregation-

disaggregation or selective viewing is the MRM approach.UNIFY satisfies R3 by

reducing simulation and consistency costs.

We compare simulation and consistency costs for selective viewing, aggregation-

disaggregation andUNIFY. It is hard, if not impossible, to change the MRM approach

dynamically for an application in order to measure costs fairly. Hence, we construct a

synthetic application for which we can change the MRM approach. We present the

assumptions we make in our cost comparison.

9.1.3.1 Assumptions

The semantics of our synthetic application are unimportant; we merely count

simulation and consistency actions undertaken by the application. Each action reflects a

175

processing or communication operation with an associated application-specific resource

cost. For a fair comparison, each approach should permit interactions at all levels.

However, aggregation-disaggregation and selective viewing do not permit interactions at

non-simulated levels, whereasUNIFY permits interactions at all levels. Accordingly, we

compareUNIFY with hypothetical variants of aggregation-disaggregation and selective

viewing that permit interactions at non-simulated levels. ComparingUNIFY with these

variants does not bias our cost analyses because the variants have the same remaining

characteristics as their corresponding original approaches.

In our hypothetical aggregation-disaggregation approach (AD), an entity is simulated

at its lowest resolution or most aggregate level. As long as interactions occur at this level,

the entity is represented at this level alone. However, when an interaction at a higher

resolution occurs, the entity is disaggregated into sub-entities at the level of the

interaction. After the effects of the interaction have been applied to the appropriate sub-

entity, all sub-entities are aggregated back to the lowest resolution. AD can be improved;

partial disaggregation and pseudo-disaggregation are improvements over AD (see §2.2.2).

However, as it stands, AD captures the essence of the aggregation-disaggregation

approach. AD has low simulation cost since only a few entities are simulated.

In our hypothetical selective viewing approach (SV), an entity is simulated at the

highest resolution level. The entity is disaggregated initially into its sub-entities at the

highest resolution. Each sub-entity exists throughout the duration of the simulation. When

lower-resolution interactions occur, they are translated into their highest-resolution

equivalents. If a low-level interaction affects a single low-resolution entity, we translate

176

the interaction to many high-resolution interactions that affect a corresponding number of

high-resolution entities. SV has low consistency cost since only one level is simulated.

In UNIFY, an MRE is constructed for an entity at multiple resolution levels. In our

synthetic application, we maintain attributes at all resolution levels at all times. The effects

of an interaction are applied at the appropriate resolution level and propagated to other

resolution levels. Computing simulation costs for an MRE simulated at all resolution

levels would bias our analysis againstUNIFY unfairly. An MRE simulated at all levels

permitsconcurrentinteractions at different levels, which none of AD, SV, aggregation-

disaggregation and selective viewing permit. Therefore, for our analyses, we simulate an

MRE at any one of its levels at a given time. Simulating the lowest resolution level would

incur low simulation cost. However, we choose the simulated level uniform-randomly to

reflect the capability of an MRE to be simulated at any level.

The model for our synthetic application consists of one entity (shown in Figure 49)

represented at multiple resolution levels. The entity may interact at any level. In order to

satisfy R2, the representations of the entity at all resolution levels must be consistent with

one another. We make some assumptions about our model for our analyses:

• There areL resolution levels, level 0 being the lowest (most aggregate) and level

L−1 being the highest (most disaggregate).

• A sub-entity at a resolution levelj consists ofN identical sub-entities at levelj+1 if

0 ≤ j < L−1, and zero sub-entities ifj = L−1. We refer toN as the fan-out.

• All sub-entities at all levels have exactlya attributes. All of the attributes of a sub-

entity at a particular level are modified by every interaction at that level.

• Interactions may occur at any resolution level.

177

• All interactions are independent of one another. Therefore, concurrent interactions

are serialized.

• An entity executesprogress interactions to advance in the simulation. These

interactions do not change attributes, but involve processing on the part of the

entity. An entity receivesR interactions before receiving a progress interaction.

We defineΨ as a function onX andY such that: . If

an entity is represented atL resolution levels with a fan-out ofN, it has Ψ(N, L) sub-

entities. In AD, an entity may be disaggregated down to levelL−1, thus requiring

Ο(Ψ(N, L)) memory. In SV, only levelL−1 sub-entities are simulated, thus requiring

Ο(NL-1). In UNIFY, all sub-entities at all levels are present, thus requiringΟ(Ψ(N, L))

memory. The memory consumption for all three approaches is of the orderΟ(NL-1).

9.1.3.2 Consistency Cost

Consistency Cost (CC) reflects the number of actions required to maintain consistency

when interactions at different resolution levels occur.

Aggregation-disaggregation: In AD, an entity is always simulated at level 0. If an

entity receives an interaction at levelr (0 < r < L), the entity disaggregates to levelr,

FIGURE 49: Entity in Synthetic Application

…

…

…

…

…

…

…

…

L levels

{

N

N fan-out

a
at

tr
ib

ut
es

interactions

{

Ψ X Y,() Xi

i 0=

Y 1–∑ XY 1–
X 1–
---------------= =

178

applies the effects of the interaction at levelr and re-aggregates to level 0. Aggregation

and disaggregation maintains consistency among the multiple representations because the

effects of an interaction propagate to attributes at the simulated level. In order to

disaggregate to levelr from the current level 0, or aggregate from level 0 to levelr, the

costs incurred areΟ(a × Ψ(N, r)). Thus, CCAD (Figure 50)= Ο(2a × Ψ(N, r)).

Selective Viewing: In SV, an entity is always simulated at levelL−1. There exists only

one level of resolution, namely, the highest. Consistency is maintained only within one

level. All interactions occur at levelL−1, where L = 1. Therefore, CCSV

(Figure 51)= Ο(a).

UNIFY: In an MRE, an entity is represented consistently at all levels of resolution. If

an interaction occurs at levelr (0 ≤ r < L), the entity applies the effects of the interaction at

FIGURE 50: AD — Consistency Cost

…

…

…

…

…

…

…

…

Interaction at
level r

Ο
(a

×
Ψ

(N
,r

))

FIGURE 51: SV — Consistency Cost

…

…

…

…

…

…

…

… Interaction at
levelL−1Ο

(a
)

179

level r and propagates the effects to all other levels. In order to propagate the effects to

higher resolution levels, the cost incurred isΟ(a × Ψ(N, L−r)). The cost incurred in

propagating the effects to lower resolution levels isΟ(ra). Thus, CCUNIFY

(Figure 52)= Ο(ra + a × Ψ(N, L−r)).

9.1.3.3 Simulation cost

Simulation Cost (SC) reflects the number of actions required to simulate an entity. In

AD, an entity is simulated at level 0. Therefore, SCAD = Ο(a). In SV, an entity is simulated

at level L−1. Therefore, SCSV = Ο(a × NL−1). In UNIFY, at a given time, an entity is

simulated at one of the multiple levels. If the entity is simulated at levelr (0 ≤ r < L),

SCUNIFY = Ο(a × Nr). Figure 53 shows SC for AD, SV andUNIFY.

…

…

…

FIGURE 52: UNIFY — Consistency Cost

…

…

…

…

…

Interaction at
level r

Ο
(a

×
Ψ

(N
,L

−r
))

Ο
(r

a
)

FIGURE 53: (Left to Right) AD, SV andUNIFY — Simulation Cost

…

…

…

…

…

…

…

…

Ο
(a

)

…

…

…

…

…

…

…

…

Ο
(a

×
N

L
−1

)

…

…

…

…

…

…

…

…

Ο
(a

×
N

r)

180

9.1.3.4 Expected Costs

Table 13 compares the expected costs for the different approaches. Figure 54 shows a

rough diagram of expected simulation and consistency costs for AD, SV andUNIFY.

As Figure 54 shows, simulation and consistency

costs are trade-offs. Consistency costs decrease

with approaches that execute more in the

disaggregate. However, simulation costs increase.

An approach executing mostly in the aggregate has

low simulation costs, but high consistency costs.

UNIFY lies between extremes of multi-resolution approaches, i.e.,

SCAD ≤ SCUNIFY ≤ SCSV

CCAD ≥ CCUNIFY ≥ CCSV.

Therefore,UNIFY enables reducing the sum of simulation and consistency costs.

9.1.3.5 Experimental Costs

We constructed a simulation to measure and compare SC and CC for AD, SV and

UNIFY. The simulation confirmed our predictions about how the costs grow as factors

TABLE 13: Cost Comparison among MRM approaches

CC SC

AD Ο(2a × Ψ(N, r)) Ο(a)

SV Ο(a) Ο(aNL−1)

UNIFY Ο(ra + aΨ(N, L−r)) Ο(a × Nr)

AD UNIFY SV

Consistency Sim
ul

at
io

n

FIGURE 54: Expected Costs

181

such as number of levels and fan-out grow. Also, the simulation confirmed our expectation

that the total of simulation and consistency costs can be reduced inUNIFY.

All costs were measured in terms of the number of actions. SC was the total number of

actions to execute a progress interaction (SCP) and apply the primary effects of an

interaction (SCI), i.e., SC= SCP + SCI. SCP
AD and SCIAD were one per interaction. For

each interaction, SCPSV was equal to the total number of entities at the highest resolution,

and SCISV was equal to the number of sub-entities affected by the interaction (after

translating a low-resolution interaction into high-resolution interactions). For each

interaction, SCPUNIFY was equal to the number of entities at a level chosen uniform-

randomly when a progress interaction occurred, and SCI
UNIFY was one. CCAD was the

number of times sub-entities were created and destroyed per interaction. CCSV was the

number of sub-entities created and destroyed initially. CCUNIFY was the number of actions

required to propagate the effects of each interaction to all sub-entities and to each parent.

We measured costs by varying four independent parameters one at a time:

• T: total number of interactions during the simulation. T= 10, 100, …, 100000.

• R: number of interactions between progress interactions. R= 1, 2, 3, …, 10.

• F: fan-out, or the number of sub-entities per entity. F= 1, 2, 3, …, 10.

• L: number of levels. L= 1, 2, 3, …, 10.

The canonical case was L= 3, F= 2, T = 1000, R= 5. The graphs that follow should

be interpreted for trends rather than actual numbers. The relationship between costs of

simulation and consistency and the above parameters are as follows:

1. As the number of interactions increased, primary effects on sub-entities

increased, and more progress interactions occurred (since the number of progress

182

interactions was T÷R). Therefore, SC increased with T for all approaches

(Figure 55). SCSV increased the most since all interactions were translated into

equivalent highest-resolution interactions. The translation usually resulted in

more interactions being generated since a low-resolution interaction affects

many sub-entities at higher resolution levels.

2. As the number of interactions increased, secondary effects on sub-entities

increased. Therefore, CCAD and CCUNIFY increased with T (Figure 56). No

consistency maintenance is required for SV since only one level is present.

3. As R increased, progress interactions occurred less frequently, since the number

of progress interactions was T÷R. Accordingly, SC decreased with an increase in

R for all approaches (Figure 57).

4. The increase or decrease in R did not change CC since the progress interactions

were purely simulation interactions. Accordingly, CC was unaffected by R for all

approaches (Figure 58).

5. As the number of sub-entities for each level increased, SCSV and SCUNIFY

increased polynomially. SCSV increased because an increase in the number of

sub-entities increased the number of translated interactions. SCSV and SCUNIFY,

increased because a greater number of sub-entities resulted in a greater number

of actions when progress interactions occurred. SCAD was independent of F

because the effects of all interactions were applied at level 0 (Figure 59).

6. As the number of sub-entities for each level increased, CC increased

polynomially for all approaches (Figure 60). An increase in F resulted in an

increase in CCSV because more sub-entities were created initially and destroyed

183

finally. CCAD increased with F because more sub-entities were created and

destroyed during aggregation and disaggregation. CCUNIFY increased with F

because more effects were propagated to other resolution levels.

7. As the number of levels increased, SCSV and SCUNIFY increased exponentially.

SCSV increased because the greater the number levels, the greater the number of

translated interactions. For SCSV and SVUNIFY, a greater number of levels

resulted in an greater number of actions for progress interactions. SCAD was

independent of L since the effect of all interactions, including progress

interactions, were applied at level 0 (Figure 61).

8. As the number of levels increased, CC increased exponentially for all approaches

(Figure 62). CCSV increased with L because more sub-entities were created

initially and destroyed finally at levelL−1. CCAD increased with L because more

sub-entities were created and destroyed during aggregation and disaggregation.

CCUNIFY increased with L because more effects were propagated to other

resolution levels.

In Figure 63, we plot SC, CC and Total Cost using each approach for the canonical

case (L= 3, F= 2, T = 1000, R= 5). Total Cost is a weighted sum of simulation and

consistency costs. The weights for SC and CC are application-specific; in the graph in

Figure 63 we assign equal weights to them, i.e. Total Cost= SC+CC. UNIFY incurs the

least total cost in this case. Other cases in which the values of the above parameters were

varied indicate similar trends.

184

10 100 1000 10000 100000

T

1

10

100

1000

10000

100000

1000000

SC

L = 3, N = 5, R = 3

AD
SV
UNIFY

FIGURE 55: Simulation Cost varying with Number of Interactions

10 100 1000 10000 100000

T

1

10

100

1000

10000

100000

1000000

C
C

L = 3, N = 5, R = 3

AD
SV
UNIFY

FIGURE 56: Consistency Cost varying with Number of Interactions

1 2 3 4 5 6 7 8 9 10

R

10000

20000

30000

40000

SC

L = 3, N = 5, T = 1000

AD
SV
UNIFY

FIGURE 57: Simulation Cost varying with Rate of Simulation

185

1 2 3 4 5 6 7 8 9 10

R

1

10

100

1000

10000

C
C

L = 3, N = 5, T = 1000

AD
SV
UNIFY

FIGURE 58: Consistency Cost varying with Rate of Simulation

1 2 3 4 5 6 7 8 9 10

N

20000

40000

60000

SC

L = 3, T = 1000, R = 3

AD
SV
UNIFY

FIGURE 59: Simulation Cost varying with Number of Sub-entities

1 2 3 4 5 6 7 8 9 10

N

1

10

100

1000

10000

C
C

L = 3, T = 1000, R = 3

AD
SV
UNIFY

FIGURE 60: Consistency Cost varying with Number of Sub-entities

186

1 2 3 4 5 6 7 8 9 10

L

1000

10000

100000

1000000

10000000

100000000

1000000000

SC

N = 5, T = 1000, R = 3

AD
SV
UNIFY

FIGURE 61: Simulation Cost varying with Number of Levels

1 2 3 4 5 6 7 8 9 10

L

1

10

100

1000

10000

100000

1000000

10000000

100000000

C
C

N = 5, T = 1000, R = 3

AD
SV
UNIFY

FIGURE 62: Consistency Cost varying with Number of Levels

AD UNIFY SV

Approach

0

5000

10000

15000

20000

25000

SC
 +

 C
C

L = 3, N = 2, T = 1000, R = 3

SC
CC
Total

FIGURE 63: AD, SV andUNIFY — Cost Comparison

187

9.1.3.6 Summary of Cost-Effectiveness

UNIFY satisfies R3 by enabling reductions in the costs of simulation and consistency

maintenance. Although selective viewing incurs low consistency cost and aggregation-

disaggregation incurs low simulation cost, both approaches fare poorly when both costs

are considered. In contrast,UNIFY achieves lower total cost than either aggregation-

disaggregation or selective viewing. An approach that achieves MRM at a high cost is

ineffective because it does not satisfy R3.UNIFY enables the total of simulation and

consistency costs to be reduced, thus satisfying R3.

9.1.4 Summary of Evaluation in Terms of MRM Requirements

UNIFY satisfies our three requirements for effective MRM: multi-representation

interaction (R1), multi-representation consistency (R2) and cost-effectiveness (R3). These

requirements must be satisfied by any approach in order to achieve effective joint

execution of multiple models at reasonable cost. Alternative approaches such as

aggregation-disaggregation and selective viewing do not satisfy all of R1, R2 and R3.

Therefore, by these criteria,UNIFY is better than the popular MRM approaches.

9.2 Applying UNIFY to Existing Models

We have appliedUNIFY to four models. Three of them are military models specified

using OMT. The fourth is a hierarchical autonomous agent that is a research project at the

University of Virginia. For all four models, we constructed an MRE from attributes at

multiple representation levels. We constructed an ADG for each MRE. We classified the

interactions in each model according to our taxonomy. For each model, we assumed

188

reasonable mapping functions and policies for resolving concurrent interactions. For each

model, we worked only from specifications, since pursuing the project to implementation

would have been an unreasonably large undertaking.

9.2.1 Military Models

The three military models we considered are part of the Department of Defense’s High

Level Architecture (HLA). They are: Joint Task Force prototype (JTFp) [JTFP97], Joint

Precision Strike Demonstration (JPSD) [JPSD97] and Real-time Platform Reference

(RPR) [RPR97]. These models have been the basis of many examples that we provided in

this dissertation to explain techniques inUNIFY. The process for applying techniques in

UNIFY to these models is shown in Chapter 8:

1. Construct a Multiple Representation Entity (MRE) from the OCST.

2. Capture relationships among the attributes with an Attribute Dependency Graph

(ADG) constructed from the APT and the ART (see §8.2).

3. Select mapping functions for each dependency in the ART.

4. Determine the effects of interactions from the OIT, and classify interactions

according to our taxonomy.

5. Resolve the effects of concurrent interactions from policies specified in the CIT

(see §8.2).

6. Construct a Consistency Enforcer and an Interaction Resolver for the MRE.

The results of our experience with these models are a proof-of-concept forUNIFY.

Designers of jointly-executing battlefield models can achieve effective MRM by applying

UNIFY. For each of these models, we were able to applyUNIFY, thus avoiding pitfalls

189

encountered with alternative MRM approaches. Details of how we appliedUNIFY to

JTFp, JPSD and RPR appear in Appendices B, C and D respectively.

9.2.2 Autonomous Agent Model

We applied UNIFY to a hierarchical autonomous agent model [WAS98B]. The

autonomous agent model we considered is part of a research project undertaken by the

Vision Group at the University of Virginia. The autonomous agent, Marcus, has been

programmed to construct complex arrangements from basic building blocks. Figure 64

shows Marcus with an example arrangement, an archway.

Marcus is a hierarchical autonomous agent that has two models, one corresponding to

a planner and the other corresponding to a perception-action (PA) system. Typically, the

planner maintains long-term or abstract representation, whereas the PA system maintains

immediate and detailed representation. Each model may have its own representation of the

world in which Marcus operates. Accordingly, each model may represent building blocks,

partially-completed arrangements, obstacles, doors and pathways by a number of relevant

attributes such as position, orientation and colour. Marcus considers relationships among

blocks that are stacked or placed next to each other as an arrangement.

We constructed an MRE for Marcus’s planner and PA system and captured

dependencies among attributes with an ADG. In the current implementation of Marcus,

interactions occur only at the PA level through sensors and effectors. Planner-level

interactions originating from user directives are envisioned as future work. Therefore, we

classified interactions at only the PA level. Figure 65 shows a partial ADG for an MRE

constructed from the planner and PA representations for Marcus. The MRE contains all of

190

the objects (and their attributes) that the planner considers important for the current task,

and all of the objects (and their attributes) that the PA system senses and affects. For

brevity, we show only objects represented by the planner and PA, but not their attributes.

We show dependencies that exist among objects when Marcus constructs an arrangement.

Wasson shows how representations can be constructed for the models in Marcus and how

consistency can be maintained among the representations [WAS99].

Our experience with the hierarchical autonomous agent model indicates that the

techniques inUNIFY can be applied to multi-models in different domains. A valid

FIGURE 64: Marcus and Archway

FIGURE 65: MRE for planner and PA system representations

Planner

PA

Tower1 Tower2 Arch

Block1 Block3Block2 Block4 Block5

Distributive
Dependency

Cumulative
DependencyMRE

Interaction
Dependency

191

concern with any framework-based approach is whether the framework is general enough

to be useful to applications in many domains. ApplyingUNIFY to applications in many

domains would be a convincing, but time-consuming, argument for the applicability of

UNIFY. We chose one domain — that of hierarchical autonomous agents — to show that

UNIFY can be applied to many domains. Details of how we appliedUNIFY to a

hierarchical autonomous agent appear in Appendix E.

9.3 Limitations

A fair evaluation of any research must include the known limitations of the work. The

underlying feature of our work is a design decision to maintain concurrent representations

of jointly-executing models to enable effective MRM. In order to support this decision, we

constructed a framework,UNIFY, consisting of techniques and processes for achieving

effective MRM. However, in order to makeUNIFY a viable approach for MRM, we made

some assumptions about jointly-executing models. These assumptions are the limitations

of UNIFY. These limitations, individually and together, neither makeUNIFY unusable nor

outweigh its benefits.

UNIFY is limited to models in which representation exists for objects and processes

that are part of a model. We assume that designers can describe properties of objects and

processes in a model, i.e., they can represent a model.UNIFY is not applicable to models

wherein representation does not exist. Our assumption about representation is reasonable

because a large number of practical models represent objects and processes.

In UNIFY, we assume that individual models meet their users’ requirements.UNIFY

permits designers to capture the combined semantics of multiple models of the same

192

phenomenon. Whether the individual models meet their users’ requirements or not is an

important issue, but outside the scope of our work. Our work addresses the effectiveness

of the joint execution of multiple models alone.

In UNIFY, we assume that multi-models progress in compatible time-steps. We

discussed compatible time-steps in §5.2. We regard our assumption of compatible time-

steps as the most critical assumption inUNIFY. General techniques for achieving

compatible time-steps would be a desirable addition toUNIFY.

UNIFY requires appropriate mapping functions to translate attributes from one

representation to another and appropriate policies for resolving the effects of dependent

concurrent interactions. We do not regard our assumptions about the presence of mapping

functions and interaction policies as critical assumptions because:

1. Mapping functions and interaction policies capture semantic information about

an application. Semantic information is specific to an application and can be

provided by a designer.

2. Alternative approaches to MRM also require similar mapping functions and

interaction policies (see §5.3).

3. We guide designers in the selection of mapping functions and interaction policies

(see §6.2 and §7.6).

Despite these limitations,UNIFY is a viable approach for MRM. Its benefits outweigh

its limitations. It eliminates or reduces many problems with alternative MRM approaches

(see §5.5). It provides designers with techniques for resolving concurrent interactions (see

Chapter 7) and applying their effects consistently (see Chapter 6). It provides designers

193

with a process for achieving MRM (see Chapter 8) effectively and practically (see §9.1

and §8.2). Hence,UNIFY enables designers to achieve effective MRM.

9.4 Chapter Summary

UNIFY is a sufficient and practical approach for effective Multi-Representation

Modelling (MRM). It is the first known approach to MRM that satisfies R1, R2 and R3.

Its limitations are not serious. We have applied it to four practical applications and

established that it supports MRM exactly as we have claimed it would. Next, discuss

contributions of our work and present future directions for research.

194

Never rise to speak till you have something to say;
and when you have said it, cease. — John Witherspoon

When the effective leader is finished with his work,
the people say it happened naturally. — Lao-Tzu,Tao Te Ching

Chapter 10

Conclusions

We presented a sufficient and practical framework,UNIFY, for effective Multi-

Representation Modelling (MRM). MRM, the joint execution of multiple models, is a

significant challenge facing model designers. Previous approaches have been unsuccessful

in helping model designers overcome this challenge; these approaches they do not satisfy

all of our requirements for effective MRM. The techniques and processes that are part of

UNIFY help designers to overcome the challenge of executing multiple models jointly by

enabling consistency maintenance among the concurrent representations of the models.

UNIFY is a sufficient approach for achieving effective MRM because it satisfies the

requirements for effective MRM.UNIFY is practical because designers can apply it in

conjunction with a familiar model specification methodology.UNIFY is a significant

contribution to the practice of modelling and simulation.

Previous MRM approaches such as aggregation-disaggregation and selective viewing

can fail to achieve effective MRM for many applications because they do not satisfy

critical MRM requirements. These approaches encounter many problems such as temporal

195

inconsistency, chain disaggregation and thrashing, which render the approaches

ineffective for many applications. Our fundamental observations about jointly-executing

models address the causes of these problems. These observations indicate that maintaining

consistency among the representations of jointly-executing models can eliminate or

reduce the problems encountered in other approaches.

UNIFY, our approach for achieving effective MRM, involves maintaining consistency

among concurrent representations. The techniques and processes inUNIFY address

consistency maintenance in concurrent representations. The viability ofUNIFY rests on

the assumptions that designers can (i) select mapping functions to capture application-

specific aspects of attribute relationships, (ii) select policies to resolve the effects of

concurrent interactions by understanding their semantics, and (iii) make time-steps

compatible. These assumptions are reasonable because without them, no approach can

capture the application-specific semantics of jointly-executing models. Alternative

approaches fail to achieve effective MRM despite making similar assumptions.

UNIFY aids designers in incorporating MRM effectively in their applications.

Effective MRM leads to the design of multi-models that satisfy their users’ requirements.

We provided guidelines for designers so that they can apply our techniques and processes

to achieve effective MRM within their applications.

10.1 Contributions

Our work benefits the practice of modelling and simulation.UNIFY is the first known

framework for effective MRM. The focus ofUNIFY is to execute multiple models jointly.

UNIFY is intended for designers who desire to incorporate MRM into their applications.

196

These designers can construct MRM solutions for their applications by applying the

techniques and processes withinUNIFY.

The main contribution of our work isUNIFY — a framework for the joint execution of

multiple models. We formulated three requirements for MRM: multi-representation

interaction, multi-representation consistency and cost-effectiveness. We showed how

alternative MRM approaches do not satisfy these requirements, whileUNIFY does. The

contributions of our work are the following:

1. Fundamental Observations about MRM

2. UNIFY

a. Multiple Representation Entities (MREs)

b. Attribute Dependency Graphs (ADGs)

c. Properties and requirements of mapping functions

d. Process for constructing Consistency Enforcers (CEs)

e. A Taxonomy for Interactions

f. Process for constructing Interaction Resolvers (IRs)

3. A Cost Study of various MRM approaches

4. Guidelines for MRM designers

We presented the fundamental observations to show how problems arise in the joint

execution of multiple models [REYN97]. We made these observations after studying the

joint execution of many models. The fundamental observations address the causes of

ineffectiveness in jointly-executing models, such as inconsistency among their

representations and dependent concurrent interactions. Addressing the fundamental

observations forms the basis of any approach to effective MRM, such asUNIFY.

197

MREs are an approach for maintaining concurrent representations of jointly-executing

models [NAT95]. An MRE permits interactions at all representation levels, yet is internally

consistent. MREs eliminate or reduce many problems seen with alternative MRM

approaches, such as aggregation-disaggregation and selective viewing. MREs eliminate

chain disaggregation, temporal inconsistency, mapping inconsistency, transition latency

and thrashing, and reduce network flooding. MREs require a means of capturing the

relationships among multiple representations and policies to resolve the effects of

concurrent interactions. Provided these requirements are satisfied, MREs reduce the MRM

problem to the problem of maintaining consistency among concurrent representations

when interactions at multiple representation levels occur.

ADGs and mapping functions capture relationships among concurrent representations.

ADGs are a technique to capture dependencies among attributes in an MRE, whereas

mapping functions capture application-specific information about the dependencies.

ADGs permit designers to express how attributes in representations are dependent on one

another, and how the execution of a multi-model affects the representations of each model.

Mapping functions translate attributes from one representation level to another. ADGs and

mapping functions can be used to construct a CE for an MRE. A CE is responsible for

maintaining an MRE consistent at all observation times. When an interaction changes the

value of an attribute, a CE traverses an ADG and invokes the appropriate mapping

functions in order to maintain consistency in an MRE. We demonstrated the construction

of a CE by showing how to construct an ADG and select mapping functions for an MRE.

We showed how to assign static and dynamic semantics to dependencies captured by an

ADG by classifying dependencies into four types and weighting them. We presented

198

requirements and properties of mapping functions. We discussed how an ADG can be

traversed in order to propagate the effects of an interaction. Finally, we presented an

algorithm for the operation of a CE.

We presented one taxonomy for classifying interactions semantically and resolving

their dependent effects [NAT99]. We presented four characteristics of interactions and

showed how to classify interactions into four classes based on these characteristics. We

showed how serialization, the traditional approach for resolving the effects of concurrent

interactions, can be inappropriate for dependent concurrent interactions. Based on our

taxonomy, we presented policies for resolving the effects of classes of dependent

concurrent interactions. Our taxonomy is applicable to interactions in a variety of

modelling and simulation applications. We believe that in any application where

concurrent interactions may be dependent on another, such a taxonomy is applicable and

can be used to resolve the effects of concurrent interactions. We demonstrated the

construction of an IR and presented an algorithm for its operation.

We presented the first cost study comparing various MRM approaches [NAT97]. The

study compares simulation and consistency costs forUNIFY and alternative approaches.

We showed how simulation and consistency costs vary for the different approaches.

Lastly, we showed thatUNIFY reduces the total of simulation and consistency costs.

The fundamental observations, MREs, ADGs and our taxonomy of interactions enable

designers to incorporate effective MRM in their applications. Providing designers with

techniques and guidelines to achieve effective joint execution of multiple models is our

main contribution to modelling and simulation.

199

10.2 Future Work

In the future, we expect to eliminate a few of the assumptions we made inUNIFY and

apply UNIFY to applications in a variety of domains. Eliminating some of the

assumptions we made in our work would makeUNIFY more beneficial to model

designers. ApplyingUNIFY to more applications, would provide us with greater

experience with regard to MRM.

A critical assumption we made was that designers can make the time-steps of jointly-

executing models compatible. Jointly-executing models executing with compatible time-

steps can be temporally consistent. Application-independent guidelines for making time-

steps compatible would be a desirable addition toUNIFY. Alternatively, providing

techniques for maintaining temporal consistency among jointly-executing models that

execute with incompatible time-step would eliminate a critical assumption inUNIFY.

Another assumption was that designers can select mapping functions to translate

attributes among representations. We specified requirements and properties of mapping

functions as guidelines for selecting them. However, specifying requirements and

properties in greater detail, perhaps for classes of applications, would enable designers to

select mapping functions with greater ease.

Yet another assumption was that designers can select policies for resolving the effects

of concurrent interactions after classifying the interactions. We showed how to classify

interactions and select policies for resolving classes of interactions. Providing sub-classes

of interactions would enable designers to refine the classification of the different kinds of

interactions in various applications. Refined classification may lead to refined policies for

resolving the effects of concurrent interactions.

200

An area of future work would be applyingUNIFY to a larger variety of models.

Applying UNIFY to a wide variety of models would increase our understanding of MRM.

We would like to applyUNIFY to models in areas such as economics, weather prediction

and graphics. ApplyingUNIFY to such models would enable us to specify detailed

requirements and properties of mapping functions and to refine the classification of

interactions. Also, we would like to study the implementation of applications that employ

UNIFY to incorporate MRM. Such studies details may reveal connections between

requirements and properties of mapping functions, policies for resolving concurrent

interactions and the implementation of modules for enforcing consistency and resolving

interactions.UNIFY can gain widespread acceptability if it is applied successfully to a

large number of multi-model applications.

201

Honest disagreement is often a good sign of progress.
— Mahatma Gandhi

Appendix A

Examples of Multiple Representations

Multi-model applications in a number of domains maintain multiple representations or

views with some degree of concurrence and consistency. In §2.1, we presented these

applications briefly and evaluated whether they satisfy the MRM requirements R1, R2 and

R3 (Table 1). Here, we evaluate these applications in detail. Briefly, we discuss how an

approach based on MREs may benefit these applications.

A.1 Multi-Resolution Graphical Modelling

Multi-resolution graphical modelling involves maintaining multiple representations, or

levels of detail, of the same object [CLARK76]. For example, a lamp may be rendered in

full detail when a viewer is close to it, but as the viewer moves away, successively coarser

levels of detail are rendered. As the viewing distance increases, the lamp occupies a

smaller portion of the viewed screen space, and coarser levels of detail for the lamp are

sufficient to cover this portion. The coarser the level of detail, the fewer the polygons

required to render it. The system always maintains multiple levels of detail for all objects,

202

and selects the appropriate level of detail depending on an object’s distance from the

viewer. The challenges in graphical MRM are to generate the multiple representations

such that each captures sufficient detail as to be visually appealing, and to transition

among representations smoothly [GAR95] [HECK94] [HECK97] [LUEBKE97] [PUPPO97].

Typically, users cannot change multi-resolution graphical entities, although they may

issueview interactions, which essentially read the values of attributes such as position and

colour. Moreover, concurrent interactions to multiple levels of detail of the same object are

not supported. Since interactions cannot change entities’ representations and cannot be

concurrent, R1 is violated. R2 is satisfied trivially after the levels of detail are created

because the representations do not change. A few multi-resolution graphical models

permit a single user to change entities dynamically, but do not support concurrent multi-

representation interaction [BERM94] [LEE98] [ZORIN97]. Multi-resolution graphical

models satisfy R3 because multiple levels of detail reduce simulation cost. As long as

interactions cannot change the representations of objects, consistency cost is not an issue.

An MRE for a multi-resolution graphical model would incorporate all levels of detail.

Designers can create the multiple levels of detail using refinement or simplification

[HECK97] [LUEBKE97]. Refinement and simplification methods can be the mapping

functions among the multiple levels of detail. When changes to any levels of detail occur,

these mapping functions can ensure that the other levels of detail are changed so as to keep

the MRE consistent. Consequently, an MRE for a graphical object may interact

concurrently and consistently at multiple representation levels.

203

A.2 Hierarchical Autonomous Agents

An autonomous agent is an actual or simulated robot that attempts to fulfill a goal by

performing actions from its basic skill set. Traditionally, there have been two approaches

regarding the manner in which an agent fulfills its goal. In thedeliberativeapproach, an

agent constructs a plan to fulfill its goal by composing actions from its skill set before

beginning any action [SACER74]. The agent may form optimal or provably correct plans;

however, unexpected occurrences can sabotage any plan easily. In thereactiveapproach,

an agent forms no plan at all, relying on reactions to external stimuli to fulfill its goal

[AGRE87]. This approach leads to extremely robust behaviour in the presence of urgent or

unexpected circumstances; however, the agent may become trapped in local minima.

Multi-layered architectures for autonomous agents incorporate a deliberative layer (a

planner) and a reactive layer (a perception-action or PA layer) with some intermediate

layers. Multi-layered architectures balance varying requirements and capabilities of

different layers, e.g., level of abstraction, amount of inference, time-scale and bandwidth

[ALBUS97] [BON97] [FIRBY87] [GAT92] [LAIRD91] [HANKS90] [SIM94] [WAS98A].

Multi-layered, or hierarchical, autonomous agents satisfy R1. Such agents execute

deliberative and reactive models jointly in order to take advantage of both. The planner

and PA layer representations* are linked epistemologically, i.e., subsets of representations

encode knowledge that depends on or is derived from knowledge encoded in other subsets

[BRILL96]. Hierarchical agents do not satisfy R2 because dependencies among planner

* Although Brooks argues against representation in an agent [BROOKS86], Brill has shown that

agents with representation can be effective [BRILL98].

204

and PA layer representations can give rise to inconsistencies. For some desired agent

behaviour, the paradigm of executing both models jointly is more cost-effective than

executing only one model. Hence hierarchical agents satisfy R3.

Provided designers can agree on what must be represented at each layer of hierarchical

autonomous agents, an MRE for such agents would incorporate the representation for each

layer. Typically, we can capture dependencies between the representations by simple

relationships, such ashas-part and is-a [WAS98B]. By ensuring that the individual

relationships hold, we can maintain consistency between the representations.

A.3 Blackboard Systems

Hearsay-II is a layered system for translating spoken sentences into the

corresponding alphabetic representation. InHearsay-II , many processes access a

single data structure, called ablackboard[ERMAN80]. Processes aredata-driven, i.e., a

process activates itself whenever appropriate data appears on the blackboard. The

lowermost layer of the system interprets parts of sound waves as silence or non-silence.

The next layer interprets non-silence as phonemes and predicts the sound wave

corresponding to the next likely phoneme. The next layer composes phonemes into

syllables and predicts the next word. The hierarchy of layers continues with the topmost

layer composing phrases into sentences and predicting the next phrase.

Hearsay-II ’s blackboard is a multi-representation system; each layer is a different

model of the entire spoken sentence. R1 is satisfied because for each sentence fragment,

the interpretation of the current layer and the prediction of the layer above are multi-

representation interactions.Hearsay-II resolves conflicting interactions — different

205

predictions or interpretations of the same sentence fragment — by retaining each as a

version of the sentence. Each version is consistent — the wavelets are consistent with the

phonemes, the phonemes with the syllables, and so on — thus satisfying R2. The system

ranks all versions by a credibility metric; the version with the highest credibility is the best

translation of the sentence. However, retaining all versions may be impractical in a general

sense, since many multi-representation systems may not tolerate multiple outcomes.

Each version of a sentence inHearsay-II is similar to an MRE. However,

Hearsay-II violates R3 because it resolves conflicting interactions by creating new

MREs that subsequently execute concurrently with existing MREs. In effect, each MRE

executes in a “parallel universe” in which it is the most credible version. The greater the

number of versions, the greater the number of MREs in execution, putting a strain on

available resources. Our technique of resolving concurrent interactions within a single

MRE may miss the best possible version of a sentence when local minima occur.

However, when many objects or processes are present in a system,Hearsay-II ’s

technique of creating a new MRE for every possible outcome of conflicting concurrent

interactions can cause a combinatorial increase in consumption of resources.

A.4 Cache Coherence

In a multi-processor configuration, individual processors may access a small amount

of fast memory locally in order to reduce accesses to main memory, which tends to be

slow. The fast memory, called acache, may store copies of data items stored in main

memory. Processors may read and modify data items in their caches. Ensuring that

206

processors read correct versions of the data in their caches is known as thecache

coherence problem [HENN96].

Cache coherence is a form of the MRM problem. The main memory copy and each

cache copy of a single data item are concurrent representations of a variable. Processes

issue interactions in the form of read and write operations to the copies. Processors may

interact with cache copies as well as the main memory copy, the latter when a processor’s

cache copy is absent or stale or, in the case of write-through policies, whenever the

processor writes to the variable. Concurrent interactions at multiple representation levels

are assumed to have independent effects. Since multi-representation interactions may

occur, but dependent interactions are not supported, R1 is satisfied partially. Cache

coherence involves combining detection mechanisms such as snoopy bus or directory-

based protocols with write policies such as write-back and write-through to maintain

consistency among cache and memory copies. Although cache coherence solutions

maintain consistency, typically, the relationships among memory and cache copies are

simple relationships of equality. Therefore, cache coherence satisfies R2 partially. Various

cache coherence strategies have different costs associated with them [ARCH86]. However,

accessing caches is more cost-effective than accessing memory. Hence caches satisfy R3.

We do not forward any new solutions for cache coherence. Rather, we use the cache

coherence example to highlight the benefits of maintaining concurrent representations.

A.5 Abstract Data Types and Object Inheritance

Polymorphic languages may associate multiple types for a single data item. For any

data item, the operations that are valid on it, the contexts in which it can be used legally

207

and the manner in which it is allocated memory are determined by its type. If a data item

has multiple types, the operations valid on it and the contexts in which it can be used is the

union of the operations and contexts respectively for the individual types. Typically, the

memory allocated to the data item is such that the data item has a single representation.

Some abstract data types present multiple views of the same data item, thus exhibiting

a form of MRM. A data item defined as a union in C [KERN88] and C++ [STROU91] or as

perspectives [GOLD80] [STEFIK86] can have multiple types, thus displayingad hoc

polymorphism [CARD85]. Consider the definition of a union in C:

union {
int a;
char b;

} X;

The data itemX has two types,int and char , corresponding toX.a . and X.b

respectively.X.a and X.b are different views ofX. They occupy overlapping bytes of

memory, i.e., if anint is stored as two bytes on a particular system and achar is stored

as one byte, thenX is allocated two bytes of memory. One byte holds the value ofX.b as

well as part of the value ofX.a , while the other byte holds the remaining part of the value

of X.a . X.a andX.b are accessed jointly by any operation accessing one of them, i.e., if

an operation changes the value ofX.b , it changes the value ofX.a as well andvice versa.

A type is a representation level; therefore, operations of different types constitute multi-

representation interactions. However, these interactions are assumed to be independent of

one another. Therefore, R1 is satisfied partially. Changing the value of any type

automatically changes the value of other types for a data item. However, unions cannot

capture general relationships, such as those among attributes of an MRE. For example, a

208

union cannot present two views such that a value in one view is an accumulation of values

in another view. Hence,ad hoc polymorphism satisfies R2 partially.

Inheritance in object-oriented languages is an example of MRM, since a data item that

inherits from one or more types has multiple views. Object-oriented languages such as

Smalltalk-80 [BORN82], Simula-67 [DAHL66] [BIRT73] and C++ [STROU91] support

inclusion polymorphism [CARD85]. Consider the C++-like example below:

class Mammal { ... }
class Oviparous { ... }
class Platypus: Mammal, Oviparous { ... } Bill;

Here,MammalandOviparous are base classes for the derived classPlatypus .

Bill is an instance of the classPlatypus , and by inheritance, also an instance of the

classesMammalandOviparous . Inheritance results inBill having multiple views:

one, as an instance of a base class and two, as an instance of a derived class. One view is

subsumed by another; the view asMammal is a subset of the view asPlatypus .

Multiple inheritance results inBill having even more views. However, the views do not

subsume each other; the view ofBill as aMammalhas no relation to the view ofBill

as anOviparous . The representation forBill is the union of the representations

defined by each of the above classes, assuming name conflicts are resolved. Likewise, the

set of methods applicable toBill is the union of the set of methods defined by each class.

A class is a representation level; therefore, methods of the multiple classes constitute

multi-representation interactions. However, these interactions are assumed to be

independent of one another. Therefore, R1 is satisfied partially. Any operation that is

performed on an instance of a derived class is performed on an instance of the base class

as well. Therefore, the instance of the derived class is always self-consistent. However,

209

inheritance is only one kind of relationship among attributes of an MRE; for example,

inheritance does not capture the accumulation relationship mentioned earlier. Hence,

inclusion polymorphism satisfies R2 partially.

A.6 Views in Databases and Integrated Environments

Views, as defined for databases and integrated environments, are a form of MRM. A

view in a database is a subset of the information contained in the system.

Database views are derived from the complete database by specifying relations that

restrict the items displayed. In relational database applications, data are abstracted into

relations, which essentially are tables of tuples and their values [CODD70]. Relational

databases have been used for many applications [ASTRA76] [STONE76] and programming

environments [LINTON84]. In object-oriented databases, data are abstracted as behavioral

entity relationships [CHEN76] [BALZER85]. Hybrid approaches that maintain relations as

well as attribute relationships have been used for editing programs [HOR86]. A view is a

set of relations derived from existing relationships (in an object-oriented database) or

relations (in a relational database) [CHAM75]. Changes to a view must be translated to

changes to the database in order to maintain consistency in the database [BAN81]. Since

all views are derived from one database, this approach is a form of selective viewing,

which violates R3. Each view is constructed after the entire database has been constructed.

Users may update data in any view; however, all updates are assumed to be independent.

Hence, views in databases satisfy R1 partially. When users update data in a view, the

system updates the database automatically, thus maintaining consistency and satisfying

R2. Views in databases require the database to be the repository of all possible views, thus

210

making them unsuitable for MREs, wherein multiple representations may have been

designed independently. Moreover, relations are powerful but not intuitive for some kinds

of relationships [HOR86].

In some integrated environments, the complete database is constructed by conjoining

all the views [GAR87]. Individual tools may maintain views of their data. Users may

update data in any view as well as in the database; however, all updates are assumed to be

independent. Hence, views in databases satisfy R1 partially. Users’ updates are

interactions. The system updates the views and databases to remain consistent with one

another, thus satisfying R2. In database views, if each view is an independently-designed

model, then requiring a single database for all the models put together violates R3. In

contrast, in integrated environments, if each view is an independently-designed model,

then the complete database is just the conjoining of the models, which satisfies R3. The

latter approach is related closely to MREs. Each view may be considered a concurrent

representation and the conjoining of all the views is the MRE. Garlan’s work envisioned

the multiple views to be used by tools that change databases. In MREs, other entities,

other models and the environment change a representation.

A.7 Nested Climate Modelling

An increasingly popular approach to climate modelling is to nest the execution of

Limited Area Models (LAMs), which predict regional climate, within Global Circulation

Models (GCMs), which predict wide-ranging climate changes [GIORGI90] [GIORGI91]

[RISBEY96]. GCMs model synoptic or large-scale climate changes. The resolution of these

models is usually in the hundreds of kilometres, which means that regional climatic

211

variations are modelled poorly. LAMs model mesoscale or medium-scale climate changes.

The resolution of these models is in kilometres, hence they model local climate well but at

a huge computational cost. Of late, small sub-areas of the larger area modelled by the

GCM are taken over by LAMs which discard all the GCM modelling information except

at the edges of the sub-area modelled by each LAM. Subsequently, each LAM runs its

own computations to predict local climates. The GCM-LAM linkage produces more

accurate predictions than either a GCM alone (since the LAM usually has more detailed

topographical and orographical information) or just a LAM driven by empirical data

(which assumes that future climate will be very similar to past climate).

Nested climate models satisfy R1 but not R2. The nested models interact at multiple

representation levels since climatic data at either level is incorporated. However, while

researchers have had success translating GCM data for LAM input, the reverse is an open

problem. As a consequence, global factors such as temperature fronts, monsoons and large

mountain ranges can influence local climate models, but it is extremely hard to make local

factors such as fires, nuclear waste build-up, small mountain ranges and anthropogenic

pollution influence global climate models. Nested climate models satisfy R3 because they

are more cost-effective than executing any one model individually.

A climate model MRE would incorporate GCM and LAM representations for a

particular area. As a result, the climate of the area would be influenced by global factors as

well as local factors. Nesting the LAM within the GCM would be one way to reconcile

concurrent climate changes. However, as discussed earlier, this tends to make the

execution of the LAM dominate the execution of the GCM, particularly close to the center

of the area modelled by the LAM. In terms of accuracy of predictions, the MRE approach

212

can do no worse than nesting; the potential to do better lies in the ability of the MRE

approach to capture dependencies between the two representations that are ignored in

nesting. However, the limiting problem in either approach is the lack of techniques to

translate local factors into global factors.

A.8 Integrated Molecular Modelling

When theoretical studies on the potential energy surfaces for chemical reactions of

large systems are carried out, low-detail low-computation models, such as molecular

mechanics (MM) models, are used for most of the system and high-detail high-

computation models, such as molecular orbital (MO) methods, are used for a small part of

the system. An MM model for the entire system is usually fast but inaccurate since the

level of detail does not capture all interactions among atoms. An MO model for the entire

system is accurate but computationally expensive. Integrated models such asIMOMM

[MATSU96] andONIOM[SVEN96A] strike a balance between resource usage and accuracy.

These approaches integrate MM models, such asMM2, MM3, CHARMM, AMBERandUFF,

with MO models such as Møller-Plasset second-order perturbation (MP2) and Hartree-

Fock (HF), in order to compute potential energy surfaces. Some approaches, for example

IMOMO, integrate an high-detail MO model with a low-detail MO model [HUMBEL96]

[SVEN96B]. In all the integrations, the reported accuracy is comparable to a full-scale

high-detail model, while resource usage is markedly below such a model.

Integrated molecular models satisfy R2 and R3. The models incorporate interactions at

multiple levels of detail and are remarkably consistent. Also, reported costs are lower than

running a detailed model for the entire system. However, these models satisfy R1 partially

213

because the multiple models are executed one after another. Therefore, multi-

representation interactions are assumed to be independent of one another.

The integrated models for the reactions under study are MREs. Although experts in

molecular modelling strive for better correlation between the MM and MO models, the

high level of consistency already achieved suggests that the integrated approach is very

well-suited for applications involving models at different representation levels.

A.9 Multi-Level Computer Games

A number of commercial computer games present a player with multiple views of the

world inhabited by the characters controlled by the player. In games† like Civilization,

WarCraft, SimCity, Doom, Heretic, Hexen, Quake andDuke Nukem, a player

may view the playing area at multiple levels of resolution. In some games, the player may

control characters at any resolution, while in others, the player may control characters

only at the highest resolution level, with the game pausing when the player switches to a

lower resolution level.

Multi-level games satisfy R2 but not R1. Merely displaying information at multiple

resolutions amounts to processing read interactions that do not change the representations.

Even games that permit changes to be made at either representation rarely permit

concurrent changes, or concurrent interactions, thereby completely avoiding the hardest

† Civilization is a registered trademark of Sid Meier games.WarCraft is a registered trademark of

Blizzard. SimCity is a registered trademark of Maxis.Doom, Heretic, Hexenand Quakeare

registered trademarks of id Software.Duke Nukemis a registered trademark of 3D Realms

Entertainment.

214

problem in MRM. Most games adopt the approach of selective viewing, wherein all

processing takes place at the highest resolution level. The player may request high-

resolution information or may ask for low-resolution information. In the latter case, high-

resolution information is aggregated and presented as low-resolution information.

Selective viewing violates R3.

MREs for entities within such games would incorporate the representation at each

resolution level. Players could be permitted to interact at any resolution level, and in the

case of multi-player games, at multiple resolutions concurrently. Mapping functions that

translate changes to one resolution level to changes to other resolution levels will keep the

multiple resolution levels consistent.

A.10 Battlefield Simulations

In the domain of battlefield simulations that are used for training as well as analysis,

MRM relates to resolving conceptual and representational differences arising from

multiple levels of resolution in simulations that are joined for a common objective,

particularly where the simulations were designed and implemented independently. The

crux of the problem can be appreciated by considering what is required to simulate

accurately an objectand its constituents concurrently. For example, the abstractionconvoy

may have attributes such as position, velocity, orientation and state of repair. At a more

detailed level, the convoy may be viewed as trucks that have attributes such as position,

velocity, orientation, state of repair, fuel level, gross weight, carrying capacity and number

of occupants. If the convoy abstraction and its constituent trucks are modelled

215

concurrently, all interactions with the convoy abstraction and its constituents in

overlapping periods of time must be reflected accurately at both levels.

Many battlefield simulations satisfy none of R1, R2 or R3 fully. Typically, battlefield

simulations employ aggregation-disaggregation to force entities to interact at the same

resolution. Aggregation-disaggregation can preclude concurrent multi-representation

interaction, can give rise to inconsistencies, and incur high resource costs. MREs for

battlefield simulations would incorporate multiple representations of the same object.

Typically, the object would be a hierarchical unit such as a corps, division or platoon.

216

What your actual solution is is unimportant as long as it has Quality.
— Robert Pirsig,Zen and the Art of Motorcycle Maintenance

Appendix B

Joint Task Force Prototype

We demonstrate how designers can employUNIFY and Object Model Template

(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorporate

UNIFY in Joint Task Force prototype (JTFp) [JTFP97], a military model that is part of the

Department of Defence’s High Level Architecture (HLA). JTFp is specified using OMT

[OMT98]. From the JTFp specifications, we construct an MRE and show how to maintain

consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the JTFp

specifications. We assume that the jointly-executing models in JTFp are a Platoon model

and a Tank model. For brevity, we assume that a Platoon consists of only two Tanks, as

shown in Figure 66. From the OMT tables in the JTFp specification, we determine the

attributes in the representations of the Platoon and Tank models. Next, we capture the

relationships among attributes using an Attribute Dependency Graph (ADG) and select

mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we select

policies for resolving the effects of concurrent interactions.

217

In §B.1, we present the tables in OMT. In §B.2, we list steps for incorporatingUNIFY

in JTFp. We demonstrate each step in subsequent sections. In §B.3, we construct an MRE.

In §B.4 and §B.5, we construct an ADG and select mapping functions for attribute

dependencies in the MRE. In §B.6 and §B.7, we determine and resolve the effects of

concurrent interactions. In §B.8, we construct a CE and IR for the MRE.

B.1 OMT Tables

OMT consists of a number of tables for specifying parts of a model. They are:

1. Object Class Structure Table (OCST): Shows the class hierarchy along with

publishable/subscribable information for each class.

2. Attribute/Parameter Table (APT): Lists object attributes and interaction

parameters along their data type, cardinality, units, resolution, accuracy,

accuracy condition, update type and update condition.

3. Object Interaction Table (OIT): Lists each possible interaction and associated

information, such as its sender, its receiver and the attributes it affects.

4. Enumerated Data Table (EDT): Lists the values of all enumerations.

5. Complex Data Table (CDT): Lists the definitions of all structured data types.

Platoon

Platoon-Tanks MRE

Representation

FIGURE 66: Platoon-Tanks MRE

Tank1
Representation

Tank2
Representation

218

6. Object Class Definitions (OCD): Describes the role of each entity.

7. Object Interaction Definitions (OID): Describes each interaction.

8. Attribute/Parameter Definitions (APD): Describes each object attribute and

interaction parameter.

We augment the OIT with the class of each interaction. Also, we add two tables to

OMT to capture attribute relationships and specify policies for concurrent interactions.

9. Attribute Relationships Table (ART): Lists each attribute dependency, its type,

its mapping function and requirements and properties of the mapping function.

10. Concurrent Interactions Table (CIT): Lists policies for resolving classes and

instances of concurrent interactions.

B.2 Steps

The steps for incorporatingUNIFY in JTFp are:

1. Construct an MRE from the OCST and the APT

2. Construct an ADG from the APT and the ART

3. Select Mapping Functions for Dependencies in the ART

4. Determine the Effects of Interactions from the OIT

5. Resolve the Effects of Concurrent Interactions from the CIT

6. Construct a Consistency Enforcer and an Interaction Resolver

B.3 Construct an MRE from the OCST and the APT

We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank model

jointly. Using the OCST for JTFp (shown in Table 14), we derive a Platoon from

219

AggregateGroundPlayer, and a Tank from MobileGroundPlayer. Our Platoon-Tanks MRE

consists of the representations of a Platoon and two Tanks, Tank1 and Tank2. The PS

(publishable/subscribable) information associated with each class in Table 14 is used to

manage data transfer within the HLA.UNIFY does not require this information.

From the APT, we determine the attributes that are part of the concurrent

representations within our Platoon-Tanks MREs. For brevity, Table 15 shows only part of

the APT for JTFp. The table lists attributes only for classes or base classes of Platoon and

Tank. For each attribute, the designer may specify information such as its data type, units,

resolution, accuracy, condition under which the specified accuracy is required and update

type. The T/A and U/R information is not used inUNIFY.

From the OCST (Table 14) and APT (Table 15), we derive the attributes of a Tank and

a Platoon. Table 16 lists the attributes of Platoon, Tank1 and Tank2. For brevity, we

combine a number of attributes derived from the OCST and APT (second column) into

TABLE 14: Object Class Structure Table for JTFp

Base Class 1st Subclass 2nd Subclass

Player (S) AirPlayer (S) BallisticMissile (PS)

Aircraft (PS)

Flight (PS)

GroundPlayer (S) FixedSite (PS)

MobileGroundPlayer (PS)

AggregateGroundPlayer (PS)

AfloatPlayer (PS)

Environment Atmosphere (PS)

SurfaceCover (PS)

OpenWater (PS)

FederateStatus (PS)

220

TABLE 15: Attribute/Parameter Table for JTFp

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type
Update

Condition
T/A U/R

P
la

ye
r

entity_name string 1 perfect always static N UR

federate_id enumeration 1 perfect always static N UR

affiliation enumeration 1 perfect always static N UR

motion_type enumeration 1 perfect always static N UR

voice_nets boolean maximum TRUE, FALSE perfect always static N UR

jtids_nets boolean maximum TRUE, FALSE perfect always static N UR

trap_tre boolean 1 TRUE, FALSE perfect always static N UR

commander_type enumeration 1 perfect always static N UR

M
ob

ile
G

ro
un

dP
la

ye
r

radar_cross_section float 1 meters 0.1 meters2 0.1 meters2 always static N UR

radar_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

elint_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

comint_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

ir_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

photint_detectable boolean 1 TRUE, FALSE perfect always conditional N UR

air_to_air_engageable boolean 1 TRUE, FALSE perfect always static N UR

air_to_surf_engageable boolean 1 TRUE, FALSE perfect always static N UR

surf_to_air_engageable boolean 1 TRUE, FALSE perfect always static N UR

surf_to_surf_engageable boolean 1 TRUE, FALSE perfect always static N UR

damage_state float 1 percent 0.01 0.01 always conditional N UR

entity_type enumeration 1 perfect always static N UR

time_at_last_cse_change float 1 seconds 0.1 second 0.1 seconds always conditional TA UR

lat_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

lng_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

alt_at_last_cse_change float 1 meters 1 meter 1 meter always conditional TA UR

cse_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

hspd_at_last_cse_change float 1 meters/second 1 meter/second 1 meter/second always conditional TA UR

vspd_at_last_cse_change float 1 meters/second 1 meter/second 1 meter/second always conditional TA UR

role enumeration 1 perfect always static N UR

221

one attribute (fourth column). We combine attributes that are logically similar and that

have identical accuracy condition, update type and update condition. For example, we

combine the attributes radar_detectable, elint_detectable, comint_detectable, ir_detectable

and photint_detectable into an attribute called detectable. Likewise, we combine

entity_name, federate_id, affiliation, motion_type, voice_nets, jtids_nets, trap_tre and

commander_type into an attribute called initial_parameters. We combine such attributes

so that we can present a simple MRE, for which an ADG will be presentable and

specifying mapping functions will be manageable. Combining similar attributes is

consistent with our discussion about assigning nodes of an ADG (§6.1.1). A node can be

assigned to any subset of a representation for which a designer can specify how the effects

of interactions must be applied. In practice, we expect designers to assign nodes to

individual attributes rather than combined attributes.

A
gg

re
ga

te
G

ro
un

dP
la

ye
r

radar_cross_section float unbounded meters 0.1 meters2 0.1 meters2 always static N UR

radar_detectable boolean unbounded TRUE, FALSE perfect always conditional N UR

elint_detectable boolean unbounded TRUE, FALSE perfect always conditional N UR

comint_detectable boolean unbounded TRUE, FALSE perfect always conditional N UR

ir_detectable boolean unbounded TRUE, FALSE perfect always conditional N UR

photint_detectable boolean unbounded TRUE, FALSE perfect always conditional N UR

air_to_air_engageable boolean unbounded TRUE, FALSE perfect always static N UR

air_to_surf_engageable boolean unbounded TRUE, FALSE perfect always static N UR

surf_to_air_engageable boolean unbounded TRUE, FALSE perfect always static N UR

surf_to_surf_engageable boolean unbounded TRUE, FALSE perfect always static N UR

composition enumeration unbounded perfect always conditional N UR

time_at_last_cse_change float 1 seconds 0.1 second 0.1 seconds always conditional TA UR

lat_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

lng_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

alt_at_last_cse_change float 1 meters 1 meter 1 meter always conditional TA UR

cse_at_last_cse_change float 1 degrees 1× 10-5 degrees 1× 10-5 degrees always conditional TA UR

hspd_at_last_cse_change float 1 meters/second 1 meter/second 1 meter/second always conditional TA UR

vspd_at_last_cse_change float 1 meters/second 1 meter/second 1 meter/second always conditional TA UR

orientation float 1 degrees 0.1 degree perfect always conditional N UR

depth float 1 meters 1 meter perfect always conditional N UR

front float 1 meters 1 meter perfect always conditional N UR

TABLE 15: Attribute/Parameter Table for JTFp

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type
Update

Condition
T/A U/R

222

TABLE 16: Attributes of Platoon, Tank1 and Tank2 (JTFp)

Entity Original Attributes Derived From New Attributes

Platoon entity_name Player initial_parameters

federate_id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

<none specified> GroundPlayer

radar_cross_section AggregateGroundPlayer radar_cross_section

radar_detectable detectable

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable engageable

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

composition composition

time_at_last_cse_change last_cse_change

lat_at_last_cse_change

lng_at_last_cse_change

alt_at_last_cse_change

cse_at_last_cse_change

hspd_at_last_cse_change

vspd_at_last_cse_change

depth depth

front front

orientation orientation

223

Tank1 entity_name Player initial_parameters1

federate_id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

<none specified> GroundPlayer

radar_cross_section MobileGroundPlayer radar_cross_section1

radar_detectable detectable1

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable engageable1

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

damage_state damage_state1

entity_type entity_type1
time_at_last_cse_change last_cse_change1

lat_at_last_cse_change

lng_at_last_cse_change

alt_at_last_cse_change

cse_at_last_cse_change

hspd_at_last_cse_change

vspd_at_last_cse_change

role role1

TABLE 16: Attributes of Platoon, Tank1 and Tank2 (JTFp)

Entity Original Attributes Derived From New Attributes

224

B.4 Construct an ADG from the APT and the ART

We construct an ADG for the Platoon-Tanks MRE from the APT and the ART for

JTFp. Since OMT does not support specifying relationships, we construct an example

Tank2 entity_name Player initial_parameters2

federate_id

affiliation

motion_type

voice_nets

jtids_net

trap_tre

commander_type

<none specified> GroundPlayer

radar_cross_section MobileGroundPlayer radar_cross_section2

radar_detectable detectable2

elint_detectable

comint_detectable

ir_detectable

photoint_detectable

air_to_air_engageable engageable2

air_to_surf_engageable

surf_to_air_engageable

surf_to_surf_engageable

damage_state damage_state2

entity_type entity_type2
time_at_last_cse_change last_cse_change2

lat_at_last_cse_change

lng_at_last_cse_change

alt_at_last_cse_change

cse_at_last_cse_change

hspd_at_last_cse_change

vspd_at_last_cse_change

role role2

TABLE 16: Attributes of Platoon, Tank1 and Tank2 (JTFp)

Entity Original Attributes Derived From New Attributes

225

ART for our MRE (Table 17). In practice, we expect a designer to construct an ART

specific to the models executed jointly. The specification of the relationship may be

accomplished formally; in Table 17, we present informal specifications in the last column.

We construct an ADG for the Platoon-Tanks MRE. From Table 16, which was derived

from the APT, we determine the nodes in the ADG. From the ART in Table 17, we

determine the arcs in the ADG. The ADG is shown in Figure 67. The interaction

TABLE 17: Attribute Relationship Table for Platoon-Tanks MRE in JTFp

Dependency Type Specification

detectable1 → detectable Cumulative If even one tank is
detectable, the entire platoon
is detectable. If the platoon
is detectable, each tank is
detectable.

detectable2 → detectable Cumulative

detectable→ detectable1 Distributive

detectable→ detectable2 Distributive

engageable1 → engageable Cumulative If even one tank is
engageable, the platoon is
engageable. If the platoon is
engageable, at least one tank
must be engageable.

engageable2 → engageable Cumulative

engageable→ engageable1 Distributive

engageable→ engageable2 Distributive

damage_state1 → composition Cumulative If a damage_state becomes
100%, composition reduces
by one, andvice versa.

damage_state2 → composition Cumulative

composition→ damage_state1 Distributive

composition→ damage_state2 Distributive

last_cse_change1 → last_cse_change Cumulative Elements of the course, such
as altitude, velocity and
position, are vector
quantities.

last_cse_change2 → last_cse_change Cumulative

last_cse_change→ last_cse_change1 Distributive

last_cse_change→ last_cse_change2 Distributive

radar_cross_section1 → radar_cross_section Cumulative The radar cross-section of
the platoon encompasses the
radar cross-section of its
tanks.

radar_cross_section2 → radar_cross_section Cumulative

radar_cross_section→ radar_cross_section1 Distributive

radar_cross_section→ radar_cross_section2 Distributive

composition→ depth Modelling The composition affects the
depth, front line and
orientation of the platoon.

composition→ front Modelling

composition→ orientation Modelling

226

dependencies to each attribute exist because interactions with other entities or internal

actions of the MRE may change any attribute.

Dynamic semantics of attribute relationships may be captured by weighting

dependencies. Dependency classes capture static semantics, whereas weights capture

dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to each

cumulative dependency, and equal weights to distributive dependencies that have the same

independent attribute. We select these weights in order to keep our subsequent discussion

of mapping functions simple. Other weights for these dependencies are possible.

B.5 Select Mapping Functions for Dependencies in the

ART

We select mapping functions to translate attributes among concurrent representations

within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions must

translate values or changes in values of attributes from one to another. Additionally, it is

desirable that mapping functions complete their translations in a time-bound manner, and

that they be composable and reversible.

We show mapping functions for some dependencies in Table 18. The mapping

functions are presented as pseudo-code. Error-checking has been omitted for brevity.

Pseudo-code in the second column of Table 18 implements specifications in the last

column of Table 17. If any Tank is detectable, Platoon is detectable. Likewise, if Platoon is

detectable, all Tanks are detectable. Platoon is not detectable only if both Tanks are not

detectable. If any Tank is engageable, Platoon is engageable. If Platoon is engageable, at

least one Tank is engageable. Platoon is not engageable only if both Tanks are not

227 FIGURE 67: ADG for the JTFp Platoon-Tanks MRE

radar_cross_section1

radar_cross_section2

radar_cross_section

last_cse_change1

last_cse_change2

last_cse_change

damage_state1

damage_state2

composition

engageable1

engageable2

engageable

detectable1

detectable2

detectable

orientationinitial_parameters depth front

role1

role2

initial_parameters1

initial_parameters2

entity_type1

entity_type2

Cumulative Dependency Interaction DependencyDistributive Dependency Modelling Dependency

228

engageable. If the damage_state of any Tank becomes 100%, the composition of the

Platoon is reduced by one. The damage_state of the Tank is changed to∞ to ensure that

composition is not reduced further subsequently. Likewise, if composition is reduced by

one (δcomposition= −1), a Tank whose damage_state was less than 100% previously is

selected and its damage_state changed to 100%. Similarly, mapping functions for other

dependencies can be constructed. For the last_cse_change attribute, a designer may

employ different functions for the different parts, such as lat_at_last_cse_change,

time_at_last_cse_change and hspd_at_last_cse_change. For example, the Platoon-level

position, consisting of lat_at_last_cse_change, lng_at_last_cse_change and

alt_at_last_cse_change may be defined as the centroid of the Tank-level positions.

However, the Platoon-level time, time_at_last_cse_change, may be defined as the latest of

the Tank-level times. Mapping functions such as those shown in Table 18 translate values

or changes in values of attributes.

TABLE 18: Mapping Functions for JTFp Platoon-Tanks MRE

Dependency Mapping Function

detectable1 → detectable detectable← fd(detectable1, detectable2)
fd: detectable← detectable1 ∨ detectable2detectable2 → detectable

detectable→ detectable1 (detectable1, detectable2) ← gd(detectable)
gd: detectable1 ← detectable2 ← detectabledetectable→ detectable2

engageable1 → engageable engageable← fe(engageable1, engageable2)
fe: engageable← engageable1 ∨ engageable2engageable2 → engageable

engageable→ engageable1 (engageable1, engageable2) ← ge(engageable)
ge: engageablerandom(1, 2)← engageableengageable→ engageable2

damage_state1 →
composition

composition← fc(damage_state1, damage_state2)
fc: for (i ← 1 to 2)

if (damage_statei = 100%)
{ composition−−; damage_statei ← ∞ }

damage_state2 →
composition

229

The mapping functions shown in Table 18 are composable and reversible. Moreover,

since they are simple in construction, we expect that they will complete in a time-bound

manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation times.

When an interaction changes the value of any attribute, mapping functions propagate the

change in the attribute to dependent attributes. For example, if an interaction changes the

Tank-level attribute, detectable1, the mapping functionfd changes the dependent Platoon-

level attribute, detectable. Subsequently, the mapping functiongd changes the Tank-level

attribute, detectable2. Sincefd andgd are composable, the change to detectable1 eventually

propagates to detectable2. Sincefd andgd are reversible, detectable1 does not change again

as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 67 and applying the

mapping functions in Table 18 ensures that the Platoon-Tanks MRE is consistent at all

observation times. Next, we determine and resolve the effects of concurrent interactions.

B.6 Determine the Effects of Interactions from the OIT

We determine the effects of interactions on the Platoon-Tanks MRE from the OIT. We

show an augmented OIT in Table 19. The first column lists the name of the interaction.

The next four columns list the class and affected attributes for the sender and receiver of

composition→
damage_state1

(damage_state1, damage_state2) ← gc(composition)
gc: if (δcomposition= −1)

if (damage_state1 < 100%) damage_state1 ← ∞
elsif (damage_state2 < 100%) damage_state2 ← ∞

composition→
damage_state2

…

TABLE 18: Mapping Functions for JTFp Platoon-Tanks MRE

Dependency Mapping Function

230

the interaction. We augment each interaction in the OIT with its type (see Chapter 7):

Type 0 (certain responses), Type 1 (uncertain responses), Type 2 (certain requests), and

Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information and

the parameters of an interaction inUNIFY.

The OIT lists interactions among entities, but not internal actions of an entity. For

example, the OIT does not list any interaction corresponding to our Platoon-Tanks MRE

changing its course, because such an interaction is internal to the MRE. InUNIFY, internal

actions are interactions. We add an internal action called ChangeCourse to the interactions

in the OIT (see last row in Table 19) to show thatUNIFY addresses internal actions as well

as interactions with other entities. This interaction initiates a change in the course of an

entity. The sender and receiver of ChangeCourse is the same entity. The class of that entity

is Player. The interaction affects the attribute last_cse_change.

The last column in Table 19 lists the type of an interaction. Assigning a type requires

information about the semantics of an interaction. In OMT, this information is available

from the OID. For example, the OID lists the semantics of GetSeaState as a request that

will be satisfied by an Environment entity. Hence GetSeaState is a Type 2 interaction.

ReturnSeaState is the response to a GetSeaState. ReturnSeaState could be Type 0 or

Type 1, but we assigned it to Type 1 because an entity may discard an update about the

state of the sea. For the ChangeCourse interaction, we assumed that a change in the course

of an entity is a request whose outcome is uncertain.

TABLE 19: Object Interaction Table for JTFp

Interaction Sender Class
Sender

Attributes
Receiver

Receiver
Attributes

Interaction Parameters ISR Type

TBMWarning Player none Player none send_time, comms_system,
net_number

IR 1

TBMLaunchAlert Player none Player none send_time, comms_system,
net_number, launch_lat, launch_lng

IR 1

231

We determine the interactions that our Platoon-Tanks MRE can send and receive. In

Table 20, we list the interactions that Platoon, Tank1 and Tank2 can send and receive. In

InitiateStrikeCommand Player none Player none send_time, comms_system,
net_number, strike_phase_name,
strike_phase_number

IR 3

DetectionReport Player none Player none send_time, comms_system,
net_number, report_type, entity_id,
reported_lat, reported_lng,
reported_alt, reported_cse,
reported_hspd, reported_vspd,
reported_affiliation, reported_type,
reported_raid_count, reported_damage

IR 1

RequestAirSupport Player none Player none send_time, comms_system,
net_number, requestor_id, target_id,
time_on_target, target_lat, target_lng

IR 3

SituationReport Player none Player none gfc_lat, gfc_lng, rel_to_objective,
objective_name, personnel_status,
equipment_status, effectiveness_status,
combat_intensity

IR 1

AirToDiscreteGroundEngage AirPlayer none MobileGroundPlayer damage_state launch_time, time_of_flight,
launch_lat, launch_lng, launch_alt,
weapon_type, salvo_size, aimpoint,
estimated_pk_at_launch

IR 0

AirToAggregateGroundEngage AirPlayer none AggregateGroundPlayer composition launch_time, time_of_flight,
launch_lat, launch_lng, launch_alt,
weapon_type, salvo_size,
targeted_systems,
estimated_pks_at_launch

IR 0

DiscreteGroundToAirEngage MobileGroundPlayer none AirPlayer damage_state launch_time, time_of_flight,
launch_lat, launch_lng, launch_alt,
weapon_type, salvo_size,
estimated_pk_at_launch

IR 0

AggregateGroundToAirEngage AggregateGroundPlayer none AirPlayer damage_state,c
omposition

launch_time, time_of_flight
launch_quadrant, launch_offsets,
weapon_systems, ammo_types,
salvo_sizes estimated_pks_at_launch

IR 0

DiscreteGroundToGroundEngage MobileGroundPlayer none MobileGroundPlayer damage_state launch_time, time_of_flight,
aim_pt_lat, aim_pt_lng, weapon_type,
estimated_pk_at_launch

IR 0

TroopsHitBeach Player none num_boat_sorties, num_helo_sorties,
lat_of_beach_location.
lng_of_beach_location

IR 0

GetLOSVisibility Player none Environment none observation_time, sensor_lat,
sensor_lng, sensor_alt, target_lat,
target_lng, target_alt

IR 2

ReturnLOSVisbility Environment none Player none LOS_visibility, relative_humidity,
reason, return_id

IR 1

GetAtmosphericCondition Player none Environment none time, observation_lat, observation_lng IR 2

ReturnAtmosphericCondition Environment none Player none ceiling, surface_temperature,
surface_pressure, visibility,
relative_humidity, total_cloud_cover,
cloud1_type, cloud1_height,
cloud1_amount, cloud2_type,
cloud2_height, cloud2_amount,
cloud3_type, cloud3_height,
cloud3_amount, surface_wind_speed,
surface_wind_direction,
precipitation_amount,
artificial_obscurants,
natural_obscurants

IR 1

GetSeaState Player none Environment none lat, lng IR 2

ReturnSeaState Environment none Player none state_of_sea, sea_surface_temp IR 1

ChangeCourse Player last_cse_change Player last_cse_change new_lat, new_lng, new_alt, new_hspd,
new_vspd

IR 3

TABLE 19: Object Interaction Table for JTFp

Interaction Sender Class
Sender

Attributes
Receiver

Receiver
Attributes

Interaction Parameters ISR Type

232

the first column, we list the name of an interaction as the name in the OIT along with a

suffix that indicates whether Platoon, Tank1 or Tank2 sends or receives that interaction.

For example, the interaction GetLOSVisibility can be sent by an entity of class Player.

Since Player is a base class of Platoon, Tank1 and Tank2, we distinguish the interaction

GetLOSVisibility sent by these three entities as GetLOSVisibility-P, GetLOSVisibility-T1

and GetLOSVisibility-T2 respectively. In the second column, we indicate whether the

Platoon-Tanks MRE sends (S) or receives (R) the interaction. In the third column, we list

the attributes affected by the interaction directly, i.e., we list the setaffects for the

interaction. These attributes are determined from the OIT. In the fourth column, we list the

attributes affected by the interaction indirectly, i.e., we list the setaffects+ for the

interaction. These attributes can be determined from the ADG in Figure 67. Finally, we

indicate the type of the interaction.

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects+ Type

TBMWarning-P S 1

TBMWarning-T1 S 1

TBMWarning-T2 S 1

TBMLaunchAlert-P S 1

TBMLaunchAlert-T1 S 1

TBMLaunchAlert-T2 S 1

InitiateStrikeCommand-P S 3

InitiateStrikeCommand-T1 S 3

InitiateStrikeCommand-T2 S 3

DetectionReport-P S 1

DetectionReport-T1 S 1

DetectionReport-T2 S 1

RequestAirSupport-P S 3

233

RequestAirSupport-T1 S 3

RequestAirSupport-T2 S 3

SituationReport-P S 1

SituationReport-T1 S 1

SituationReport-T2 S 1

AggregateGroundToAirEngage-P S 0

DiscreteGroundToAirEngage-T1 S 0

DiscreteGroundToAirEngage-T2 S 0

DiscreteGroundToGroundEngage-T1 S 0

DiscreteGroundToGroundEngage-T2 S 0

TroopsHitBeach-P S 0

TroopsHitBeach-T1 S 0

TroopsHitBeach-T2 S 0

GetLOSVisibility-P S 2

GetLOSVisibility-T1 S 2

GetLOSVisibility-T2 S 2

GetAtmosphericCondition-P S 2

GetAtmosphericCondition-T1 S 2

GetAtmosphericCondition-T2 S 2

GetSeaState-P S 2

GetSeaState-T1 S 2

GetSeaState-T2 S 2

ChangeCourse-P S last_cse_change last_cse_change1,
last_cse_change2,
last_cse_change

3

ChangeCourse-T1 S last_cse_change1 last_cse_change,
last_cse_change2,
last_cse_change1

3

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects+ Type

234

ChangeCourse-T2 S last_cse_change2 last_cse_change,
last_cse_change1,
last_cse_change2

3

TBMWarning-P R 1

TBMWarning-T1 R 1

TBMWarning-T2 R 1

TBMLaunchAlert-P R 1

TBMLaunchAlert-T1 R 1

TBMLaunchAlert-T2 R 1

InitiateStrikeCommand-P R 3

InitiateStrikeCommand-T1 R 3

InitiateStrikeCommand-T2 R 3

DetectionReport-P R 1

DetectionReport-T1 R 1

DetectionReport-T2 R 1

RequestAirSupport-P R 3

RequestAirSupport-T1 R 3

RequestAirSupport-T2 R 3

SituationReport-P R 1

SituationReport-T1 R 1

SituationReport-T2 R 1

AirToAggregateGroundEngage-P R composition damage_state1,
damage_state2,
depth, front,
orientation,
composition

0

AirToDiscreteGroundEngage-T1 R damage_state1 composition,
damage_state2,
depth, front,
orientation,
damage_state1

0

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects+ Type

235

Any subset of the interactions in Table 20 may occur concurrently. Next, we show how

to resolve the effects of concurrent interactions.

AirToDiscreteGroundEngage-T2 R damage_state2 composition,
damage_state1,
depth, front,
orientation,
damage_state2

0

ReturnLOSVisibility-P R 1

ReturnLOSVisibility-T1 R 1

ReturnLOSVisibility-T2 R 1

ReturnAtmosphericCondition-P R 1

ReturnAtmosphericCondition-T1 R 1

ReturnAtmosphericCondition-T2 R 1

ReturnSeaState-P R 1

ReturnSeaState-T1 R 1

ReturnSeaState-T2 R 1

ChangeCourse-P R last_cse_change last_cse_change1,
last_cse_change2,
last_cse_change

3

ChangeCourse-T1 R last_cse_change1 last_cse_change,
last_cse_change2,
last_cse_change1

3

ChangeCourse-T2 R last_cse_change2 last_cse_change,
last_cse_change1,
last_cse_change2

3

TABLE 20: Effects of Interactions for JTFp Platoon-Tanks MRE

Interaction S/R affects affects+ Type

236

B.7 Resolve the Effects of Concurrent Interactions from

the CIT

The effects of concurrent interactions can be resolved by implementing polices from

the CIT. In practice, a designer constructs a CIT specific to the application. Since a CIT is

unavailable in OMT, we construct an example CIT, shown in Table 21.

A designer specifies policies in the CIT for resolving the effects of concurrent

interactions. The CIT consists of sets of concurrent interactions with dependent effects,

policies for resolving them and conditions under which the policies are applicable.

Concurrent interactions that are independent of one another can be resolved by

serialization and are not specified in the CIT. Some interactions may be independent

because they affect disjoint sets of attributes. Other interactions may be independent

because their effects are applied in different time-steps, for example, interactions sent and

received by an entity. Yet other interactions are independent because they are request-

response pairs. Policies must be specified in the CIT for only the remaining interactions.

Policies may be specified for classes of interactions (e.g., the last two rows in Table 21) or

for instances of interactions (e.g., all the other rows in Table 21). In JTFp, many

interactions do not affect any attributes. Although such interactions can be assumed

independent, we do not make such an assumption. It is likely that the interactions affect

internal attributes in the models. Since OMT is meant to be an interface specification,

internal attributes are not listed in the APT. For consistency maintenance, a designer must

list internal attributes as well in the APT. Since internal attributes are not listed, we will

not assume that interactions that affect disjoint sets of attributes are independent. For

237

example, although InitiateStrikeCommand-P, InitiateStrikeCommand-T1 and

InitiateStrikeCommand-T2 affect no attributes, hence affecting disjoint sets of attributes,

we specify policies for resolving these interactions. An Interaction Resolver for the

Platoon-Tanks MRE applies the policies in the CIT only if the effects of concurrent

interactions conflict. If concurrent interactions do not conflict, they may be serialized.

TABLE 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE

Concurrent Interactions Condition Policy

AggregateGroundToAirEngage-P, any
combination of
(DiscreteGroundToAirEngage-T1,
DiscreteGroundToAirEngage-T2,
DiscreteGroundToGroundEngage-T1,
DiscreteGroundToGroundEngage-T2)

All sent Do not send all except
AggregateGroundToAirEngage-P

DiscreteGroundToAirEngage-Ti,
DiscreteGroundToGroundEngage-Ti

All sent Do not send
DiscreteGroundToAirEngage-Ti

InitiateStrikeCommand-P, any
combination of
(InitiateStrikeCommand-T1,
InitiateStrikeCommand-T2)

All
received

Delay all except
InitiateStrikeCommand-P by one
time-step

DetectionReport-P, any combination of
(DetectionReport-T1,
DetectionReport-T2)

All
received

Ignore DetectionReport-P

RequestAirSupport-P, any combination
of (RequestAirSupport-T1,
RequestAirSupport-T2)

All
received

Delay all except
RequestAirSupport-P by one time-
step

SituationReport-P, any combination of
(SituationReport-T1, SituationReport-
T2)

All
received

Ignore SituationReport-P

AirToAggregateGroundEngage-P,
AirToDiscreteGroundEngage-Ti

All
received

Damage to Tanki less than sum of
damages but greater than minimum
of damages; add compensatory
interaction to reduce damage

ReturnLOSVisibility-P, any
combination of (ReturnLOSVisibility-
T1, ReturnLOSVisibility-T2)

All
received

Ignore ReturnLOSVisibility-P

238

B.8 Construct a Consistency Enforcer and an Interaction

Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE maintain

consistency and resolve concurrent interactions respectively. A CE consists of an ADG

and mapping functions, whereas an IR consists of policies for resolving concurrent

interactions. Figure 68 shows a JTFp Platoon-Tanks MRE. The MRE can interact at

multiple representation levels — the Platoon and Tank levels — concurrently. Moreover,

the concurrent representations within the MRE are consistent at all observation times.

A CE consists of an ADG and application-specific mapping functions. For the

Platoon-Tanks MRE, we presented an ADG in Figure 67 and mapping functions in

Table 18. In Figure 34 (see Chapter 6), we presented an algorithm for implementing a CE.

ReturnAtmosphericCondition-P, any
combination of
(ReturnAtmosphericCondition-T1,
ReturnAtmosphericCondition-T2)

All
received

Ignore
ReturnAtmosphericCondition-P

ReturnSeaState-P, any combination of
(ReturnSeaState-T1, ReturnSeaState-
T2)

All
received

Ignore ReturnSeaState-P

ChangeCourse-P, any combination of
(ChangeCourse-T1, ChangeCourse-T2)

All
received

Ignore all except ChangeCourse-P

Type 0, Type 1 All
received

Ignore Type 1

Type 2, Type 3 All
received

Ignore Type 3

Any Interaction Ignored or
Delayed

Ignored or Delayed entirely, i.e., no
partial effects permitted

TABLE 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE

Concurrent Interactions Condition Policy

239

In §6.3, we discussed how to traverse an ADG and apply mapping functions in order to

keep an MRE internally consistent.

An IR consists of application-specific policies for resolving the effects of concurrent

interactions. For the Platoon-Tanks MRE, we presented policies for resolving concurrent

interactions in Table 21. In Figure 47 (see Chapter 7), we presented an algorithm for

implementing an IR. In §7.5, we presented a taxonomy for classifying interactions. Using

this taxonomy, we presented policies for resolving the effects of concurrent interactions.

A CE and an IR ensure that an MRE is internally consistent when concurrent

interactions occur. During a time-step, a number of concurrent interactions may occur. The

IR determines the type of each interaction. Next, the IR applies the effect of each

interaction as if the interaction occurred in isolation. In order to do so, the IR permits the

interactions to take effect one at a time. When an interaction changes an attribute, the CE

traverses an ADG and translates changes to dependent attributes by invoking the

appropriate mapping functions. The CE maintains a list of changes for each attribute as a

result of computing the effects of each interaction. Subsequently, the CE applies the

FIGURE 68: JTFp Platoon-Tanks MRE

Platoon

Tank

Platoon-Tanks MRE

Interactions

Interactions

Interaction

Resolver

Consistency
Enforcer

Platoon
Representation

Tank1
Representation

Tank2
Representation

240

effects of all the interactions on each attribute. The CE queries the IR about policies to

resolve the effects of dependent concurrent interactions whenever the CE detects conflicts

in the list of changes for an entity. If the IR contains a policy for resolving conflicting

changes, the CE applies the changes accordingly; otherwise, the CE assumes the changes

are independent and applies them in an arbitrary order. When the changes to all attributes

have been applied, the MRE is internally consistent.

241

“My dear Watson, try a little analysis yourself,”
said he, with a touch of impatience.

“You know my methods. Apply them,
and it will be instructive to compare results.”
— Arthur Conan Doyle,The Sign of the Four

Appendix C

Joint Precision Strike Demonstration

We demonstrate how designers can employUNIFY and Object Model Template

(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorporate

UNIFY in Joint Precision Strike Demonstration (JPSD) [JPSD97], a military model that is

part of the Department of Defence’s High Level Architecture (HLA). JPSD is specified

using OMT [OMT98]. From the JPSD specifications, we construct an MRE and show how

to maintain consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the JPSD

specifications. We assume that the jointly-executing models in JPSD are a Platoon model

and a Tank model. For brevity, we assume that a Platoon consists of only two Tanks, as

shown in Figure 69. From the OMT tables in the JPSD specification, we determine the

attributes in the representations of the Platoon and Tank models. Next, we capture the

relationships among attributes using an Attribute Dependency Graph (ADG) and select

mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we select

policies for resolving the effects of concurrent interactions.

242

In §C.1, we present the tables in OMT. In §C.2, we list steps for incorporatingUNIFY

in JPSD. We demonstrate each step in subsequent sections. In §C.3, we construct an MRE.

In §C.4 and §C.5, we construct an ADG and select mapping functions for attribute

dependencies in the MRE. In §C.6 and §C.7, we determine and resolve the effects of

concurrent interactions. In §C.8, we construct a CE and IR for the MRE.

C.1 OMT Tables

OMT consists of a number of tables for specifying parts of a model. They are:

1. Object Class Structure Table (OCST): Shows the class hierarchy along with

publishable/subscribable information for each class.

2. Attribute/Parameter Table (APT): Lists object attributes and interaction

parameters along their data type, cardinality, units, resolution, accuracy,

accuracy condition, update type and update condition.

3. Object Interaction Table (OIT): Lists each possible interaction and associated

information, such as its sender, its receiver and the attributes it affects.

4. Enumerated Data Table (EDT): Lists the values of all enumerations.

5. Complex Data Table (CDT): Lists the definitions of all structured data types.

Platoon

Platoon-Tanks MRE

Representation

FIGURE 69: Platoon-Tanks MRE

Tank1
Representation

Tank2
Representation

243

6. Object Class Definitions (OCD): Describes the role of each entity.

7. Object Interaction Definitions (OID): Describes each interaction.

8. Attribute/Parameter Definitions (APD): Describes each object attribute and

interaction parameter.

We augment the OIT with the class of each interaction. Also, we add two tables to

OMT to capture attribute relationships and specify policies for concurrent interactions.

9. Attribute Relationships Table (ART): Lists each attribute dependency, its type,

its mapping function and requirements and properties of the mapping function.

10. Concurrent Interactions Table (CIT): Lists policies for resolving classes and

instances of concurrent interactions.

C.2 Steps

The steps for incorporatingUNIFY in JPSD are:

1. Construct an MRE from the OCST and the APT

2. Construct an ADG from the APT and the ART

3. Select Mapping Functions for Dependencies in the ART

4. Determine the Effects of Interactions from the OIT

5. Resolve the Effects of Concurrent Interactions from the CIT

6. Construct a Consistency Enforcer and an Interaction Resolver

C.3 Construct an MRE from the OCST and the APT

We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank model

jointly. We modify the OCST for JPSD to make Aggregate a derived class of Entity so that

244

an Aggregate entity can send and receive other interactions in addition to requests to

aggregate and disaggregate. Also, we do not show specific instances of derived classes,

such as Tank or Aggregate. From the modified OCST for JPSD (shown in Table 22), we

derive a Platoon from Aggregate. Our Platoon-Tanks MRE consists of the representations

of a Platoon and two Tanks, Tank1 and Tank2.

From the APT, we determine the attributes that are part of the concurrent

representations within our Platoon-Tanks MREs. For brevity, Table 23 shows only part of

the APT for JPSD. The table lists attributes only for classes or base classes of Platoon and

Tank. For each attribute, the designer may specify information such as its data type, units,

TABLE 22: Object Class Structure Table for JPSD

Base Class 1st Subclass 2nd Subclass 3rd Subclass

Entity Aggregate

Platform

Land Tank

ArmoredFightingVehicle

SelfPropelledArtillery

SmallWheeledUtilityVehicle

Air AttackHelicopter

ElectronicWarfare

UAV

Munition AntiArmor Guided

BattlefieldSupport

System TacticalSystem

Strike

BattalionCommander

ModSafCommander

245

resolution, accuracy, condition under which the specified accuracy is required and update

type. The T/A and U/R information is not used inUNIFY.

TABLE 23: Attribute/Parameter Table for JPSD

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type Update Condition T/A U/R

E
nt

ity

Entity_ID_site short enumeration discrete perfect always static UR

Entity_ID_application short enumeration discrete perfect always static UR

Entity_ID_entity short enumeration discrete perfect always static UR

Force_ID short enumeration discrete perfect always static UR

Entity_Type_Kind short enumeration discrete perfect always static UR

Entity_Type_Domain short enumeration discrete perfect always static UR

Entity_Type_Country short enumeration discrete perfect always static UR

Entity_Type_Category short enumeration discrete perfect always static UR

Entity_Type_Subcategory short enumeration discrete perfect always static UR

Entity_Type_Specific short enumeration discrete perfect always static UR

Location_X double meters 1 10% DR* conditional time-out† TA UR

Location_Y double meters 1 10% DR conditional time-out TA UR

Location_Z double meters 1 10% DR conditional time-out TA UR

Velocity_X double meters/sec 10% DR conditional time-out TA UR

Velocity_Y double meters/sec 10% DR conditional time-out TA UR

Velocity_Z double meters/sec 10% DR conditional time-out TA UR

Orientation_Psi double radians 3 degrees DR conditional time-out TA UR

Orientation_Theta double radians 3 degrees DR conditional time-out TA UR

Orientation_Phi double radians 3 degrees DR conditional time-out TA UR

marking_text string perfect always static UR

246

From the OCST (Table 22) and APT (Table 23), we derive the attributes of a Tank and

a Platoon. Table 24 lists the attributes of Platoon, Tank1 and Tank2. For brevity, we

combine a number of attributes derived from the OCST and APT (second column) into

A
gg

re
ga

te

Aggregate_ID_site short enumeration discrete perfect always static UR

Aggregate_ID_application short enumeration discrete perfect always static UR

Aggregate_ID_entity short enumeration discrete perfect always static UR

Entity_Type_Kind short enumeration discrete perfect always static UR

Entity_Type_Domain short enumeration discrete perfect always static UR

Entity_Type_Country short enumeration discrete perfect always static UR

Entity_Type_Category short enumeration discrete perfect always static UR

Entity_Type_Subcategory short enumeration discrete perfect always static UR

Entity_Type_Specific short enumeration discrete perfect always static UR

Location_X double meters 1 10% DR periodic 0.033333333 TA UR

Location_Y double meters 1 10% DR periodic 0.033333333 TA UR

Location_Z double meters 1 10% DR periodic 0.033333333 TA UR

Velocity_X double meters/sec 10% DR periodic 0.033333333 TA UR

Velocity_Y double meters/sec 10% DR periodic 0.033333333 TA UR

Velocity_Z double meters/sec 10% DR periodic 0.033333333 TA UR

Orientation_Psi double radians 3 degrees DR periodic 0.033333333 TA UR

Orientation_Theta double radians 3 degrees DR periodic 0.033333333 TA UR

Orientation_Phi double radians 3 degrees DR periodic 0.033333333 TA UR

marking_text string perfect always static UR

Shape short enumeration discrete perfect always conditional if tasking changes set
shape

UR

Num_Entities_in_Aggregate short enumeration discrete perfect always delta UR

DisaggPermitted boolean discrete perfect always static UR

AggregateState short enumeration discrete perfect always delta UR

SubordinateList sequence discrete perfect always delta UR

P
la

tfo
rm

Appearance_Paint_Scheme short enumeration discrete perfect always delta UR

Appearance_Smoking short enumeration discrete perfect always delta UR

Appearance_Flaming short enumeration discrete perfect always delta UR

Appearance_Trailing short enumeration discrete perfect always delta UR

Appearance_Lights short enumeration discrete perfect always delta UR

Appearance_Hatch short enumeration discrete perfect always delta UR

Damage_State_Appearance short enumeration discrete perfect always delta UR

Damage_State_Mobility short enumeration discrete perfect always delta UR

Damage_State_Fire_Power short enumeration discrete perfect always delta UR

Ta
nk GunElevation double radians 0.1 DR delta TA UR

* DR refers to a dead-reckoning algorithm, listed in the JPSD APT as DR(F, P, W).

† time-out refers to the JPSD APT condition: if (!accurate) or (value has changed and 5 second

update interval passed)

TABLE 23: Attribute/Parameter Table for JPSD

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type Update Condition T/A U/R

247

one attribute (fourth column). We combine attributes that are logically similar and that

have identical accuracy condition, update type and update condition. For example, we

combine the attributes Location_X, Location_Y, and Location_Z into an attribute called

Location. Likewise, we combine Entity_ID_site, Entity_ID_application, Entity_ID_entity,

Entity_Type_Kind, Entity_Type_Domain, Entity_Type_Country, Entity_Type_Category,

Entity_Type_Subcategory, Entity_Type_Specific and marking_text into an attribute called

Initial_Parameters. We combine such attributes so that we can present a simple MRE, for

which an ADG will be presentable and specifying mapping functions will be manageable.

Combining similar attributes is consistent with our discussion about assigning nodes of an

ADG (§6.1.1). A node can be assigned to any subset of a representation for which a

designer can specify how the effects of interactions must be applied. In practice, we expect

designers to assign nodes to individual attributes rather than combined attributes.

C.4 Construct an ADG from the APT and the ART

We construct an ADG for the Platoon-Tanks MRE from the APT and the ART for

JPSD. Since OMT does not support specifying relationships, we construct an example

ART for our MRE (Table 25). In practice, we expect a designer to construct an ART

specific to the models executed jointly. The specification of the relationship may be

accomplished formally; in Table 25, we present informal specifications in the last column.

We construct an ADG for the Platoon-Tanks MRE. From Table 24, which was derived

from the APT, we determine the nodes in the ADG. From the ART in Table 25, we

determine the arcs in the ADG. The ADG is shown in Figure 70. The interaction

248

TABLE 24: Attributes of Platoon, Tank1 and Tank2 (JPSD)

Entity Original Attributes Derived From New Attributes

Platoon Aggregate_ID_site Aggregate Initial_Parameters

Aggregate_ID_application

Aggregate_ID_entity

Entity_Type_Kind

Entity_Type_Domain

Entity_Type_Country

Entity_Type_Category

Entity_Type_Subcategory

Entity_Type_Specific

marking_text

Location_X Location

Location_Y

Location_Z

Velocity_X Velocity

Velocity_Y

Velocity_Z

Orientation_Psi Orientation

Orientation_Theta

Orientation_Phi

Shape Composition

Num_Entities_in_Aggregate

DisaggPermitted

AggregateState

SubordinateList

249

Tank1 Entity_ID_site Entity Initial_Parameters1

Entity_ID_application

Entity_ID_entity

Force_ID

Entity_Type_Kind

Entity_Type_Domain

Entity_Type_Country

Entity_Type_Category

Entity_Type_Subcategory

Entity_Type_Specific

marking_text

Location_X Location1
Location_Y

Location_Z

Velocity_X Velocity1

Velocity_Y

Velocity_Z

Orientation_Psi Orientation1
Orientation_Theta

Orientation_Phi

Appearance_Paint_SchemePlatform Appearance1

Appearance_Smoking

Appearance_Flaming

Appearance_Trailing

Appearance_Lights

Appearance_Hatch

Damage_State_Appearance Damage_State1

Damage_State_Mobility

Damage_State_Fire_Power

GunElevation Tank GunElevation1

TABLE 24: Attributes of Platoon, Tank1 and Tank2 (JPSD)

Entity Original Attributes Derived From New Attributes

250

dependencies to each attribute exist because interactions with other entities or internal

actions of the MRE may change any attribute.

Tank2 Entity_ID_site Entity Initial_Parameters2

Entity_ID_application

Entity_ID_entity

Force_ID

Entity_Type_Kind

Entity_Type_Domain

Entity_Type_Country

Entity_Type_Category

Entity_Type_Subcategory

Entity_Type_Specific

marking_text

Location_X Location2
Location_Y

Location_Z

Velocity_X Velocity2

Velocity_Y

Velocity_Z

Orientation_Psi Orientation2
Orientation_Theta

Orientation_Phi

Appearance_Paint_SchemePlatform Appearance2

Appearance_Smoking

Appearance_Flaming

Appearance_Trailing

Appearance_Lights

Appearance_Hatch

Damage_State_Appearance Damage_State2

Damage_State_Mobility

Damage_State_Fire_Power

GunElevation Tank GunElevation2

TABLE 24: Attributes of Platoon, Tank1 and Tank2 (JPSD)

Entity Original Attributes Derived From New Attributes

251 FIGURE 70: ADG for the JPSD Platoon-Tanks MRE

Cumulative Dependency Interaction DependencyDistributive Dependency Modelling Dependency

Velocity1

Velocity2

Velocity

Location1

Location2

Location

Damage_State1

Damage_State2

Composition

Appearance1

Appearance2

Initial_Parameters

Orientation1

Orientation2

Orientation

Initial_Parameters1

Initial_Parameters2

GunElevation1

GunElevation2

252

Dynamic semantics of attribute relationships may be captured by weighting

dependencies. Dependency classes capture static semantics, whereas weights capture

dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to each

cumulative dependency, and equal weights to distributive dependencies that have the same

independent attribute. We select these weights in order to keep our subsequent discussion

of mapping functions simple. Other weights for these dependencies are possible.

TABLE 25: Attribute Relationship Table for Platoon-Tanks MRE in JPSD

Dependency Type Specification

Location1 → Location Cumulative The location of the platoon
is the centroid of the
location of its tanks.

Location2 → Location Cumulative

Location→ Location1 Distributive

Location→ Location2 Distributive

Velocity1 → Velocity Cumulative The velocity of the platoon
is the average of the velocity
of its tanks.

Velocity2 → Velocity Cumulative

Velocity → Velocity1 Distributive

Velocity → Velocity2 Distributive

Orientation1 → Orientation Cumulative The orientation of the
platoon is the average of the
orientations of its tanks.

Orientation2 → Orientation Cumulative

Orientation→ Orientation1 Distributive

Orientation→ Orientation2 Distributive

Damage_State1 → Composition Cumulative If a tank is fatally damaged,
Composition reduces by
one, andvice versa.

Damage_State2 → Composition Cumulative

Composition→ Damage_State1 Distributive

Composition→ Damage_State2 Distributive

Appearance1 → Composition Cumulative The appearance of each tank
determines the appearance
of the platoon.

Appearance2 → Composition Cumulative

Composition→ Appearance1 Distributive

Composition→ Appearance2 Distributive

Velocity → Location Modelling The location of a platoon or
a tank depends on its
velocity.

Velocity1 → Location1 Modelling

Velocity2 → Location2 Modelling

253

C.5 Select Mapping Functions for Dependencies in the

ART

We select mapping functions to translate attributes among concurrent representations

within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions must

translate values or changes in values of attributes from one to another. Additionally, it is

desirable that mapping functions complete their translations in a time-bound manner, and

that they be composable and reversible.

We show mapping functions for some dependencies in Table 26. The mapping

functions are presented as pseudo-code. Error-checking has been omitted for brevity.

Pseudo-code in the second column of Table 26 implements specifications in the last

column of Table 25. The location, velocity and orientation of Platoon are averages of the

location, velocity and orientation of Tank1 and Tank2. Similarly, mapping functions for

other dependencies can be constructed. Mapping functions such as those shown in

Table 26 translate values or changes in values of attributes.

TABLE 26: Mapping Functions for JPSD Platoon-Tanks MRE

Dependency Mapping Function

Location1 → Location Location← fd(Location1, Location2)
fl: Location_X← (Location1_X + Location2_X) / 2

Location_Y← (Location1_Y + Location2_Y) / 2
Location_Z← (Location1_Z + Location2_Z) / 2

Location2 → Location

Location→ Location1 (Location1, Location2) ← gd(Location)
gl: δLocation1_X ← δLocation2_X ← δLocation_X

δLocation1_Y ← δLocation2_Y ← δLocation_Y
δLocation1_Z ← δLocation2_Z ← δLocation_Z

Location→ Location2

Velocity1 → Velocity Velocity← fd(Velocity1, Velocity2)
fv: Velocity_X ← (Velocity1_X + Velocity2_X) / 2

Velocity_Y ← (Velocity1_Y + Velocity2_Y) / 2
Velocity_Z ← (Velocity1_Z + Velocity2_Z) / 2

Velocity2 → Velocity

254

The mapping functions shown in Table 26 are composable and reversible. Moreover,

since they are simple in construction, we expect that they will complete in a time-bound

manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation times.

When an interaction changes the value of any attribute, mapping functions propagate the

change in the attribute to dependent attributes. For example, if an interaction changes the

Tank-level attribute, Orientation1, the mapping functionfo changes the dependent Platoon-

level attribute, Orientation. Subsequently, the mapping functiongo changes the Tank-level

attribute, Orientation2. Since fo and go are composable, the change to Orientation1

eventually propagates to Orientation2. Sincefo andgo are reversible, Orientation1 does not

change again as a result of the same interaction.

Velocity → Velocity1 (Velocity1, Velocity2) ← gd(Velocity)
gv: δVelocity1_X ← δVelocity2_X ← δVelocity_X

δVelocity1_Y ← δVelocity2_Y ← δVelocity_Y
δVelocity1_Z ← δVelocity2_Z ← δVelocity_Z

Velocity → Velocity2

Orientation1 → Orientation Orientation← fd(Orientation1, Orientation2)
fo: Orientation_Psi←

(Orientation1_Psi+ Orientation2_Psi)/ 2
Orientation_Theta←

(Orientation1_Theta+ Orientation2_Theta)/ 2
Orientation_Phi←

(Orientation1_Phi+ Orientation2_Phi)/ 2

Orientation2 → Orientation

Orientation→ Orientation1 (Orientation1, Orientation2) ← gd(Orientation)
go: δOrientation1_Psi← δOrientation2_Psi←

δOrientation_Psi
δOrientation1_Theta← δOrientation2_Theta←

δOrientation_Theta
δOrientation1_Phi← δOrientation2_Phi←

δOrientation_Phi

Orientation→ Orientation2

…

TABLE 26: Mapping Functions for JPSD Platoon-Tanks MRE

Dependency Mapping Function

255

When an interaction occurs, traversing the ADG in Figure 70 and applying the

mapping functions in Table 26 ensures that the Platoon-Tanks MRE is consistent at all

observation times. Next, we determine and resolve the effects of concurrent interactions.

C.6 Determine the Effects of Interactions from the OIT

We determine the effects of interactions on the Platoon-Tanks MRE from the OIT. We

show an augmented OIT in Table 27. The first column lists the name of the interaction.

The next four columns list the class and affected attributes for the sender and receiver of

the interaction. We augment each interaction in the OIT with its type (see Chapter 7):

Type 0 (certain responses), Type 1 (uncertain responses), Type 2 (certain requests), and

Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information and

the parameters of an interaction inUNIFY.

The OIT lists interactions among entities, but not internal actions of an entity. For

example, the OIT does not list any interaction corresponding to our Platoon-Tanks MRE

changing its course, because such an interaction is internal to the MRE. InUNIFY, internal

actions are interactions. We add an internal action called ChangeCourse to the interactions

in the OIT (see last row in Table 27) to show thatUNIFY addresses internal actions as well

as interactions with other entities. This interaction initiates a change in the course of an

entity. The sender and receiver of ChangeCourse is the same entity. The class of that entity

is Entity. The interaction affects the attributes Location, Velocity and Orientation.

The last column in Table 27 lists the type of an interaction. Assigning a type requires

information about the semantics of an interaction. For example, the semantics of Collision

are that it is generated in response to a modelling event in which two entities collide. Since

256

the collision has occurred already and its effects on the sender and receiver are certain,

Collision is a Type 0 interaction. ArtyRadioMessage is a request by a commanding officer

to perform a task. Since an entity may discard the request, ArtyRadioMessage is a Type 3

interaction. For the ChangeCourse interaction, we assumed that a change in the course of

an entity is a request whose outcome is uncertain.

We determine the interactions that our Platoon-Tanks MRE can send and receive. In

Table 28, we list the interactions that Platoon, Tank1 and Tank2 can send and receive. In

the first column, we list the name of an interaction as the name in the OIT along with a

suffix that indicates whether Platoon, Tank1 or Tank2 sends or receives that interaction.

For example, the interaction Collision can be sent by an entity of class Entity. Since Entity

is a base class of Platoon, Tank1 and Tank2, we distinguish the interaction Collision sent

by these three entities as Collision-P, Collision-T1 and Collision-T2 respectively. In the

second column, we indicate whether the Platoon-Tanks MRE sends (S) or receives (R) the

interaction. In the third column, we list the attributes affected by the interaction directly,

i.e., we list the setaffectsfor the interaction. These attributes are determined from the OIT.

TABLE 27: Object Interaction Table for JPSD

Interaction Sender Class
Sender

Attributes
Receiver

Receiver
Attributes

Interaction Parameters ISR Type

Collision Entity Location,
Velocity,
Orientation,
Appearance,
Damage_State

Entity Location,
Velocity,
Orientation,
Appearance,
Damage_State

Issuing_ID, Colliding_ID, Mass,
Relative_Location, Event_ID, Velocity

ISR 0

Detonation Munition Appearance,
Damage_State

Entity Velocity,
Appearance,
Damage_State

Munition_ID, Location, Velocity,
Firing_ID, Target_ID ,Event_ID,
Detonation_Result, Burst_Descriptor

ISR 0

Weapon_Launch Platform none Munition none Launch_Platform_ID, Weapon_ID ISR 3

DisaggregateRequest Aggregate none Aggregate AggregateState,
Subordinates

entity_ID, aggregate_ID,
detection_range, aggregate_state

ISR 3

ArtyRadioMessage ModSafCommander none Land Location,
Orientation,
Velocity

message_type, command, gun_ID,
full_message

ISR 3

ChangeCourse Entity Location,
Velocity,
Orientation

Entity Location,
Velocity,
Orientation

New_Location, New_Velocity,
New_Orientation

IR 3

257

In the fourth column, we list the attributes affected by the interaction indirectly, i.e., we

list the setaffects+ for the interaction. These attributes can be determined from the ADG in

Figure 70. Finally, we indicate the type of the interaction. Since inUNIFY we do not

aggregate or disaggregate, we do not expect the DisaggregateRequest interaction to occur.

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects+ Type

Collision-P S Location,
Velocity,
Orientation,
Composition

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Appearance1, Appearance2,
Damage_State1,
Damage_State2, Location,
Velocity, Orientation,
Composition

0

Collision-T1 S Location1,
Velocity1,
Orientation1,
Appearance1,
Damage_State1

Location, Velocity,
Orientation, Composition,
Location2, Velocity2,
Orientation2, Appearance2,
Damage_State2, Location1,
Velocity1, Orientation1,
Appearance1, Damage_State1

0

Collision-T2 S Location2,
Velocity2,
Orientation2,
Appearance2,
Damage_State2

Location, Velocity,
Orientation, Composition,
Location1, Velocity1,
Orientation1, Appearance1,
Damage_State1, Location2,
Velocity2, Orientation2,
Appearance2, Damage_State2

0

Weapon_Launch-T1 S 3

Weapon_Launch-T2 S 3

DisaggregateRequest-P S 3

ChangeCourse-P S Location,
Velocity,
Orientation

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Location, Velocity,
Orientation

3

258

ChangeCourse-T1 S Location1,
Velocity1,
Orientation1

Location, Velocity,
Orientation, Location2,
Velocity2, Orientation2,
Location1, Velocity1,
Orientation1

3

ChangeCourse-T2 S Location2,
Velocity2,
Orientation2

Location, Velocity,
Orientation, Location1,
Velocity1, Orientation1,
Location2, Velocity2,
Orientation2

3

Collision-P R Location,
Velocity,
Orientation,
Composition

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Appearance1, Appearance2,
Damage_State1,
Damage_State2, Location,
Velocity, Orientation,
Composition

0

Collision-T1 R Location1,
Velocity1,
Orientation1,
Appearance1,
Damage_State1

Location, Velocity,
Orientation, Composition,
Location2, Velocity2,
Orientation2, Appearance2,
Damage_State2, Location1,
Velocity1, Orientation1,
Appearance1, Damage_State1

0

Collision-T2 R Location2,
Velocity2,
Orientation2,
Appearance2,
Damage_State2

Location, Velocity,
Orientation, Composition,
Location1, Velocity1,
Orientation1, Appearance1,
Damage_State1, Location2,
Velocity2, Orientation2,
Appearance2, Damage_State2

0

Detonation-P R Velocity,
Composition

Velocity1, Velocity2,
Appearance1, Appearance2,
Damage_State1,
Damage_State2, Location,
Velocity, Composition,
Location1, Location2

0

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects+ Type

259

Detonation-T1 R Velocity1,
Appearance1,
Damage_State1

Velocity, Composition,
Location1, Velocity2,
Velocity1, Appearance2,
Appearance1,Damage_State2,
Damage_State1, Location,
Location2

0

Detonation-T2 R Velocity2,
Appearance2,
Damage_State2

Velocity, Composition,
Location2, Velocity1,
Velocity2, Appearance1,
Appearance2,Damage_State1,
Damage_State2, Location,
Location1

0

DisaggregateRequest-P R 3

ArtyRadioMessage-P R Location,
Velocity,
Orientation

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Location, Velocity,
Orientation, Composition

3

ArtyRadioMessage-T1 R Location1,
Velocity1,
Orientation1

Location, Velocity,
Orientation, Location2,
Velocity2, Orientation2,
Location1, Velocity1,
Orientation1

3

ArtyRadioMessage-T2 R Location2,
Velocity2,
Orientation2

Location, Velocity,
Orientation, Location1,
Velocity1, Orientation1,
Location2, Velocity2,
Orientation2

3

ChangeCourse-P R Location,
Velocity,
Orientation

Location1, Location2,
Velocity1, Velocity2,
Orientation1, Orientation2,
Location, Velocity,
Orientation

3

ChangeCourse-T1 R Location1,
Velocity1,
Orientation1

Location, Velocity,
Orientation, Location2,
Velocity2, Orientation2,
Location1, Velocity1,
Orientation1

3

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects+ Type

260

Any subset of the interactions in Table 28 may occur concurrently. Next, we show how

to resolve the effects of concurrent interactions.

C.7 Resolve the Effects of Concurrent Interactions from

the CIT

The effects of concurrent interactions can be resolved by implementing polices from

the CIT. In practice, a designer constructs a CIT specific to the application. Since a CIT is

unavailable in OMT, we construct an example CIT, shown in Table 29.

A designer specifies policies in the CIT for resolving the effects of concurrent

interactions. The CIT consists of sets of concurrent interactions with dependent effects,

policies for resolving them and conditions under which the policies are applicable.

Concurrent interactions that are independent of one another can be resolved by

serialization and are not specified in the CIT. Some interactions may be independent

because they affect disjoint sets of attributes. Other interactions may be independent

because their effects are applied in different time-steps, for example, interactions sent and

received by an entity. Yet other interactions are independent because they are request-

response pairs. Policies must be specified in the CIT for only the remaining interactions.

Policies may be specified for classes of interactions (e.g., the last two rows in Table 29) or

ChangeCourse-T2 R Location2,
Velocity2,
Orientation2

Location, Velocity,
Orientation, Location1,
Velocity1, Orientation1,
Location2, Velocity2,
Orientation2

3

TABLE 28: Effects of Interactions for JPSD Platoon-Tanks MRE

Interaction S/R affects affects+ Type

261

for instances of interactions (e.g., all the other rows in Table 29). An Interaction Resolver

for the Platoon-Tanks MRE applies the policies in the CIT only if the effects of concurrent

interactions conflict. If concurrent interactions do not conflict, they may be serialized.

TABLE 29: Concurrent Interactions Table for JPSD Platoon-Tanks MRE

Concurrent Interactions Condition Policy

Any combination of (Detonation-P,
Detonation-T1, Detonation-T2), any
combination of (Collision-P,
Collision-T1, Collision-T2)

Always Damage to Tanks less than sum of
damages but greater than minimum
of damages; add compensatory
interaction to reduce damage

DisaggregateRequest-P Always Ignore

ArtyRadioMessage-P, any combination
of (ArtyRadioMessage-T1,
ArtyRadioMessage-T2)

Received,
commands
conflicting

Ignore all except
InitiateStrikeCommand-P

ArtyRadioMessage-P, any combination
of (ArtyRadioMessage-T1,
ArtyRadioMessage-T2)

Received,
commands
non-
conflicting

Delay all except
InitiateStrikeCommand-P by one
time-step

Any combination of
(ArtyRadioMessage-P,
ArtyRadioMessage-T1,
ArtyRadioMessage-T2), any
combination of (ChangeCourse-P,
ChangeCourse-T1, ChangeCourse-T2)

All
received

Ignore ChangeCourse-P,
ChangeCourse-T1,
ChangeCourse-T2; Resolve
ArtyRadioMessage-P,
ArtyRadioMessage-T1,
ArtyRadioMessage-T2) as above

ChangeCourse-P, any combination of
(ChangeCourse-T1, ChangeCourse-T2)

All
received

Ignore all except ChangeCourse-P

Type 0, Type 1 All
received

Ignore Type 1

Type 2, Type 3 All
received

Ignore Type 3

Any Interaction Ignored or
Delayed

Ignored or Delayed entirely, i.e., no
partial effects permitted

262

C.8 Construct a Consistency Enforcer and an Interaction

Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE maintain

consistency and resolve concurrent interactions respectively. A CE consists of an ADG

and mapping functions, whereas an IR consists of policies for resolving concurrent

interactions. Figure 71 shows a JPSD Platoon-Tanks MRE. The MRE can interact at

multiple representation levels — the Platoon and Tank levels — concurrently. Moreover,

the concurrent representations within the MRE are consistent at all observation times.

A CE consists of an ADG and application-specific mapping functions. For the

Platoon-Tanks MRE, we presented an ADG in Figure 70 and mapping functions in

Table 26. In Figure 34 (see Chapter 6), we presented an algorithm for implementing a CE.

In §6.3, we discussed how to traverse an ADG and apply mapping functions in order to

keep an MRE internally consistent.

FIGURE 71: JPSD Platoon-Tanks MRE

Platoon

Tank

Platoon-Tanks MRE

Interactions

Interactions

Interaction

Resolver

Consistency
Enforcer

Platoon
Representation

Tank1
Representation

Tank2
Representation

263

An IR consists of application-specific policies for resolving the effects of concurrent

interactions. For the Platoon-Tanks MRE, we presented policies for resolving concurrent

interactions in Table 29. In Figure 47 (see Chapter 7), we presented an algorithm for

implementing an IR. In §7.5, we presented a taxonomy for classifying interactions. Using

this taxonomy, we presented policies for resolving the effects of concurrent interactions.

A CE and an IR ensure that an MRE is internally consistent when concurrent

interactions occur. During a time-step, a number of concurrent interactions may occur. The

IR determines the type of each interaction. Next, the IR applies the effect of each

interaction as if the interaction occurred in isolation. In order to do so, the IR permits the

interactions to take effect one at a time. When an interaction changes an attribute, the CE

traverses an ADG and translates changes to dependent attributes by invoking the

appropriate mapping functions. The CE maintains a list of changes for each attribute as a

result of computing the effects of each interaction. Subsequently, the CE applies the

effects of all the interactions on each attribute. The CE queries the IR about policies to

resolve the effects of dependent concurrent interactions whenever the CE detects conflicts

in the list of changes for an entity. If the IR contains a policy for resolving conflicting

changes, the CE applies the changes accordingly; otherwise, the CE assumes the changes

are independent and applies them in an arbitrary order. When the changes to all attributes

have been applied, the MRE is internally consistent.

264

Knowing is not enough; we must apply. Willing is not enough; we must do.
— Goethe

Appendix D

Real-time Platform Reference

We demonstrate how designers can employUNIFY and Object Model Template

(OMT) to achieve effective Multi-Representation Modelling (MRM). We incorporate

UNIFY in Real-time Platform Reference (RPR) [RPR97], a military model that is part of

the Department of Defence’s High Level Architecture (HLA). RPR is specified using

OMT [OMT98]. From the RPR specifications, we construct an MRE and show how to

maintain consistency within this MRE when concurrent interactions occur.

We construct a Platoon-Tanks Multiple Representation Entity (MRE) from the RPR

specifications. We assume that the jointly-executing models in RPR are a Platoon model

and a Tank model. For brevity, we assume that a Platoon consists of only two Tanks, as

shown in Figure 72. From the OMT tables in the RPR specification, we determine the

attributes in the representations of the Platoon and Tank models. Next, we capture the

relationships among attributes using an Attribute Dependency Graph (ADG) and select

mapping functions to maintain consistency in a Platoon-Tanks MRE. Finally, we select

policies for resolving the effects of concurrent interactions.

265

In §D.1, we present the tables in OMT. In §D.2, we list steps for incorporatingUNIFY

in RPR. We demonstrate each step in subsequent sections. In §D.3, we construct an MRE.

In §D.4 and §D.5, we construct an ADG and select mapping functions for attribute

dependencies in the MRE. In §D.6 and §D.7, we determine and resolve the effects of

concurrent interactions. In §D.8, we construct a CE and IR for the MRE.

D.1 OMT Tables

OMT consists of a number of tables for specifying parts of a model. They are:

1. Object Class Structure Table (OCST): Shows the class hierarchy along with

publishable/subscribable information for each class.

2. Attribute/Parameter Table (APT): Lists object attributes and interaction

parameters along their data type, cardinality, units, resolution, accuracy,

accuracy condition, update type and update condition.

3. Object Interaction Table (OIT): Lists each possible interaction and associated

information, such as its sender, its receiver and the attributes it affects.

4. Enumerated Data Table (EDT): Lists the values of all enumerations.

5. Complex Data Table (CDT): Lists the definitions of all structured data types.

Platoon

Platoon-Tanks MRE

Representation

FIGURE 72: Platoon-Tanks MRE

Tank1
Representation

Tank2
Representation

266

6. Object Class Definitions (OCD): Describes the role of each entity.

7. Object Interaction Definitions (OID): Describes each interaction.

8. Attribute/Parameter Definitions (APD): Describes each object attribute and

interaction parameter.

We augment the OIT with the class of each interaction. Also, we add two tables to

OMT to capture attribute relationships and specify policies for concurrent interactions.

9. Attribute Relationships Table (ART): Lists each attribute dependency, its type,

its mapping function and requirements and properties of the mapping function.

10. Concurrent Interactions Table (CIT): Lists policies for resolving classes and

instances of concurrent interactions.

D.2 Steps

The steps for incorporatingUNIFY in RPR are:

1. Construct an MRE from the OCST and the APT

2. Construct an ADG from the APT and the ART

3. Select Mapping Functions for Dependencies in the ART

4. Determine the Effects of Interactions from the OIT

5. Resolve the Effects of Concurrent Interactions from the CIT

6. Construct a Consistency Enforcer and an Interaction Resolver

D.3 Construct an MRE from the OCST and the APT

We construct a Platoon-Tanks MRE to execute a Platoon model and a Tank model

jointly. Using the OCST for RPR (shown in Table 30), we derive a Platoon from

267

AggregateEntity, and a Tank from MilitaryLandPlatform. Our Platoon-Tanks MRE

consists of the representations of a Platoon and two Tanks, Tank1 and Tank2.

From the APT, we determine the attributes that are part of the concurrent

representations within our Platoon-Tanks MREs. For brevity, Table 31 shows only part of

the APT for RPR. The table lists attributes only for base classes of Platoon and Tank. For

each attribute, the designer may specify information such as its data type, units, resolution,

accuracy, condition under which the specified accuracy is required and update type.

TABLE 30: Object Class Structure Table for RPR

Base Class 1st Subclass 2nd Subclass 3rd Subclass 4th Subclass
BaseEntity AggregateEntity

EnvironmentEntity

PhysicalEntity MilitaryEntity MilitaryPlatformEntity MilitaryAirLandPlatform

MilitaryAmphibiousPlatform

MilitaryLandPlatform

MilitarySpacePlatform

MilitarySeaSurfacePlatform

MilitarySubmersiblePlatform

MilitaryMultiDomainPlatform

MunitionEntity

Soldier

CivilPlatform CivilAirLandPlatform

CivilAmphibiousPlatform

CivilLandPlatform

CivilSpacePlatform

CivilSeaSurfacePlatform

CivilSubmersiblePlatform

CivilMultiDomainPlatform

Civilian

EmbeddedSystem Designator

EmitterSystem

RadioReceiver

RadioTransmitter

EmitterBeam TrackJamBeam

SimulationManager

268

TABLE 31: Attribute/Parameter Table for RPR

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type Update Condition

A
gg

re
ga

te
E

nt
ity

AggregateMarking structure 1 static

AggregateState enumeration 1 conditional on change

Dimensions structure 1 conditional AggSizeChange

EntityIDs unsigned long 0+ perfect always conditional on change

ForceID enumeration 1 static

Formation enumeration 1 conditional on change

NumberOfEntities unsigned short 1 1 perfect always conditional on change

NumberOfSilentAggregates unsigned short 1 1 perfect always conditional on change

NumberOfSilentEntities unsigned short 1 1 perfect always conditional on change

NumberOfSubAggregates unsigned short 1 1 perfect always conditional on change

NumberOfVariableDatums unsigned short 1 1 perfect always conditional on change

SilentAggregates structure 0+ conditional on change

SilentEntities structure 0+ conditional on change

SubAggregateIDs unsigned long 0+ perfect always conditional on change

VariableDatums structure 0+ conditional on change

B
as

eE
nt

ity

AccelerationVector structure 1 conditional AccelerationChange

AngularVelocityVector structure 1 conditional AngVelocityChange

DRAlgorithm enumeration 1 conditional on change

EntityType structure 1 static

FederateID structure 1 static

IsFrozen boolean 1 TRUE, FALSE perfect always conditional on change

Orientation structure 1 conditional OrientationChange

Position structure 1 conditional PositionChange

VelocityVector structure 1 conditional VelocityChange

M
ili

ta
ry

E
nt

ity

AlternateEntityType structure 1 static

CamouflageType boolean 1 TRUE, FALSE perfect always conditional on change

FirePowerDisabled boolean 1 TRUE, FALSE perfect always conditional on change

ForceID enumeration 1 perfect always static

IsConcealed boolean 1 TRUE, FALSE perfect always conditional on change

M
ili

ta
ry

P
la

tfo
rm

E
nt

ity AfterburnerOn boolean 1 TRUE, FALSE perfect always conditional on change

HasAmmunitionSupplyCap boolean 1 TRUE, FALSE perfect always static on change

LauncherRaised boolean 1 TRUE, FALSE perfect always conditional on change

269

From the OCST (Table 30) and APT (Table 31), we derive the attributes of a Tank and

a Platoon. Table 32 lists the attributes of Platoon, Tank1 and Tank2. For brevity, we

combine a number of logically-similar attributes derived from the OCST and APT (second

column) into one attribute (fourth column). For example, we combine the attributes

IsFrozen, IsConcealed, FlamesPresent and LifeformState into an attribute called Status.

We combine such attributes so that we can present a simple MRE, for which an ADG will

be presentable and specifying mapping functions will be manageable. Combining similar

attributes is consistent with our discussion about assigning nodes of an ADG (§6.1.1). A

node can be assigned to any subset of a representation for which a designer can specify

how the effects of interactions must be applied. In practice, we expect designers to assign

nodes to individual attributes rather than combined attributes.

P
hy

si
ca

lE
nt

ity

ArticulatedParametersArray structure 0+ conditional on change

ArticulatedParametersCount unsigned short 1 1 perfect always static

DamageState enumeration 1 conditional on change

EngineSmokeOn boolean 1 TRUE, FALSE perfect always conditional on change

FlamesPresent boolean 1 TRUE, FALSE perfect always conditional on change

HasFuelSupplyCap boolean 1 TRUE, FALSE perfect always static on change

HasRecoveryCap boolean 1 TRUE, FALSE perfect always static on change

HasRepairCap boolean 1 TRUE, FALSE perfect always static on change

HatchState enumeration 1 conditional on change

Immobilized boolean 1 TRUE, FALSE perfect always conditional on change

LifeformState enumeration 1 conditional on change

LightsState enumeration 1 conditional on change

Marking structure 1 static on change

PowerPlantOn boolean 1 TRUE, FALSE perfect always conditional on change

RampDeployed boolean 1 TRUE, FALSE perfect always conditional on change

SmokePlumePresent boolean 1 TRUE, FALSE perfect always conditional on change

TentDeployed boolean 1 TRUE, FALSE perfect always conditional on change

TrailState enumeration 1 conditional on change

TABLE 31: Attribute/Parameter Table for RPR

Object/
Interaction

Attribute/Parameter Datatype Cardinality Units Resolution Accuracy
Accuracy
Condition

Update Type Update Condition

270

TABLE 32: Attributes of Platoon, Tank1 and Tank2 (RPR)

Entity Original Attributes Derived From New Attributes
Platoon AccelerationVector BaseEntity Acceleration

AngularVelocityVector AngularVelocity

DRAlgorithm DRAlgorithm

EntityType InitialParameters

FederateID

IsFrozen Status

Orientation Orientation

Position Position

VelocityVector Velocity

AggregateMarking AggregateEntity InitialParameters

ForceID

Dimensions Dimensions

Formation Formation

EntityIDs Composition

AggregateState

NumberOfEntities

NumberOfSilentAggregates

NumberOfSilentEntities

NumberOfSubAggregates

NumberOfVariableDatums

SilentAggregates

SilentEntities

SubAggregateIDs

VariableDatums

271

Tank1 AccelerationVector BaseEntity Acceleration1

AngularVelocityVector AngularVelocity1

DRAlgorithm DRAlgorithm1

EntityType InitialParameters1

FederateID

IsFrozen Status1

Orientation Orientation1

Position Position1

VelocityVector Velocity1

ArticulatedParametersArray PhysicalEntity ArticulatedParameters1

ArticulatedParametersCount

DamageState Status1

EngineSmokeOn

FlamesPresent

HasFuelSupplyCap

HasRecoveryCap

HasRepairCap

HatchState

Immobilized

LifeformState

LightsState

Marking

PowerPlantOn

RampDeployed

SmokePlumePresent

TentDeployed

TrailState

AlternateEntityType MilitaryEntity InitialParameters1

ForceID

CamouflageType Status1

FirePowerDisabled

IsConcealed

AfterburnerOn MilitaryPlatformEntity

HasAmmunitionSupplyCap

LauncherRaised

<none> MilitaryLandPlatform

TABLE 32: Attributes of Platoon, Tank1 and Tank2 (RPR)

Entity Original Attributes Derived From New Attributes

272

Tank2 AccelerationVector BaseEntity Acceleration2

AngularVelocityVector AngularVelocity2

DRAlgorithm DRAlgorithm2

EntityType InitialParameters2

FederateID

IsFrozen Status2

Orientation Orientation2

Position Position2

VelocityVector Velocity2

ArticulatedParametersArray PhysicalEntity ArticulatedParameters2

ArticulatedParametersCount

DamageState Status2

EngineSmokeOn

FlamesPresent

HasFuelSupplyCap

HasRecoveryCap

HasRepairCap

HatchState

Immobilized

LifeformState

LightsState

Marking

PowerPlantOn

RampDeployed

SmokePlumePresent

TentDeployed

TrailState

AlternateEntityType MilitaryEntity InitialParameters2

ForceID

CamouflageType Status2

FirePowerDisabled

IsConcealed

AfterburnerOn MilitaryPlatformEntity

HasAmmunitionSupplyCap

LauncherRaised

<none> MilitaryLandPlatform

TABLE 32: Attributes of Platoon, Tank1 and Tank2 (RPR)

Entity Original Attributes Derived From New Attributes

273

D.4 Construct an ADG from the APT and the ART

We construct an ADG for the Platoon-Tanks MRE from the APT and the ART for

RPR. Since OMT does not support specifying relationships, we construct an example

ART for our MRE (Table 33). In practice, we expect a designer to construct an ART

specific to the models executed jointly. The specification of the relationship may be

accomplished formally; in Table 33, we present informal specifications in the last column.

TABLE 33: Attribute Relationship Table for Platoon-Tanks MRE in RPR

Dependency Type Specification

Position1 → Position Cumulative The position of the platoon
is the centroid of the
position of its tanks.

Position2 → Position Cumulative

Position→ Position1 Distributive

Position→ Position2 Distributive

Velocity1 → Velocity Cumulative The velocity of the platoon
is the average of the velocity
of its tanks.

Velocity2 → Velocity Cumulative

Velocity → Velocity1 Distributive

Velocity → Velocity2 Distributive

Orientation1 → Orientation Cumulative The orientation of the
platoon is the average of the
orientations of its tanks.

Orientation2 → Orientation Cumulative

Orientation→ Orientation1 Distributive

Orientation→ Orientation2 Distributive

Status1 → Composition Cumulative The composition of the
platoon changes if tanks are
fatally damaged.

Status2 → Composition Cumulative

Composition→ Status1 Distributive

Composition→ Status2 Distributive

Velocity → Position Modelling The position of a platoon or
a tank depends on its
velocity.

Velocity1 → Position1 Modelling

Velocity2 → Position2 Modelling

Acceleration→ Velocity Modelling The velocity of a platoon or
a tank depends on its
acceleration.

Acceleration1 → Velocity1 Modelling

Acceleration2 → Velocity2 Modelling

…

274

We construct an ADG for the Platoon-Tanks MRE. From Table 32, which was derived

from the APT, we determine the nodes in the ADG. From the ART in Table 33, we

determine the arcs in the ADG. The ADG is shown in Figure 73. The interaction

dependencies to each attribute exist because interactions with other entities or internal

actions of the MRE may change any attribute.

Dynamic semantics of attribute relationships may be captured by weighting

dependencies. Dependency classes capture static semantics, whereas weights capture

dynamic semantics. For our Platoon-Tanks MRE, we assign a weight of one to each

cumulative dependency, and equal weights to distributive dependencies that have the same

independent attribute. We select these weights in order to keep our subsequent discussion

of mapping functions simple. Other weights for these dependencies are possible.

D.5 Select Mapping Functions for Dependencies in the

ART

We select mapping functions to translate attributes among concurrent representations

within the Platoon-Tanks MRE. Recall from Chapter 6 that mapping functions must

translate values or changes in values of attributes from one to another. Additionally, it is

desirable that mapping functions complete their translations in a time-bound manner, and

that they be composable and reversible. We show mapping functions for some

dependencies in Table 34. The mapping functions are presented as pseudo-code. Error-

checking has been omitted for brevity. Pseudo-code in the second column of Table 34

implements specifications in the last column of Table 33. Mapping functions such as those

shown in Table 34 translate values or changes in values of attributes.

275 FIGURE 73: ADG for the RPR Platoon-Tanks MRE

Cumulative Dependency Interaction DependencyDistributive Dependency Modelling Dependency

Acceleration1

Acceleration2

Acceleration

Velocity1

Velocity2

Velocity

Position1

Position2

Position

Orientation1

Orientation2

Orientation

AngularVelocity1

AngularVelocity2

AngularVelocity

DimensionsInitialParameters DRAlgorithm Formation

ArticulatedParameters1

ArticulatedParameters2

InitialParameters1

InitialParameters2

DRAlgorithm1

DRAlgorithm2

Status1

Status2

Status

Composition

276

The mapping functions shown in Table 34 are composable and reversible. Moreover,

since they are simple in construction, we expect that they will complete in a time-bound

manner, thus ensuring that the Platoon-Tanks MRE is consistent at all observation times.

When an interaction changes the value of any attribute, mapping functions propagate the

change in the attribute to dependent attributes. For example, if an interaction changes the

TABLE 34: Mapping Functions for RPR Platoon-Tanks MRE

Dependency Mapping Function

Position1 → Position Position← fd(Position1, Position2)
fl: Position.X← (Position1.X + Position2.X) / 2

Position.Y← (Position1.Y + Position2.Y) / 2
Position.Z← (Position1.Z + Position2.Z) / 2

Position2 → Position

Position→ Position1 (Position1, Position2) ← gd(Position)
gl: δPosition1.X ← δPosition2.X ← δPosition.X

δPosition1.Y ← δPosition2.Y ← δPosition.Y
δPosition1.Z ← δPosition2.Z ← δPosition.Z

Position→ Position2

Velocity1 → Velocity Velocity← fd(Velocity1, Velocity2)
fv: Velocity.X ← (Velocity1.X + Velocity2.X) / 2

Velocity.Y ← (Velocity1.Y + Velocity2.Y) / 2
Velocity.Z ← (Velocity1.Z + Velocity2.Z) / 2

Velocity2 → Velocity

Velocity → Velocity1 (Velocity1, Velocity2) ← gd(Velocity)
gv: δVelocity1.X ← δVelocity2.X ← δVelocity.X

δVelocity1.Y ← δVelocity2.Y ← δVelocity.Y
δVelocity1.Z ← δVelocity2.Z ← δVelocity.Z

Velocity → Velocity2

Orientation1 → Orientation Orientation← fd(Orientation1, Orientation2)
fo: Orientation.Psi←

(Orientation1.Psi+ Orientation2.Psi)/ 2
Orientation.Theta←

(Orientation1.Theta+ Orientation2.Theta)/ 2
Orientation.Phi←

(Orientation1.Phi+ Orientation2.Phi) / 2

Orientation2 → Orientation

Orientation→ Orientation1 (Orientation1, Orientation2) ← gd(Orientation)
go: δOrientation1.Psi← δOrientation2.Psi←

δOrientation.Psi
δOrientation1.Theta← δOrientation2.Theta←

δOrientation.Theta
δOrientation1.Phi← δOrientation2.Phi←

δOrientation.Phi

Orientation→ Orientation2

…

277

Tank-level attribute, Orientation1, the mapping functionfo changes the dependent Platoon-

level attribute, Orientation. Subsequently, the mapping functiongo changes the Tank-level

attribute, Orientation2. Since fo and go are composable, the change to Orientation1

eventually propagates to Orientation2. Sincefo andgo are reversible, Orientation1 does not

change again as a result of the same interaction.

When an interaction occurs, traversing the ADG in Figure 73 and applying the

mapping functions in Table 34 ensures that the Platoon-Tanks MRE is consistent at all

observation times. Next, we determine and resolve the effects of concurrent interactions.

D.6 Determine the Effects of Interactions from the OIT

We determine the effects of interactions on the Platoon-Tanks MRE from the OIT. We

show an augmented OIT in Table 35. The first column lists the name of the interaction.

The next four columns list the class and affected attributes for the sender and receiver of

the interaction. We augment each interaction in the OIT with its type (see Chapter 7):

Type 0 (certain responses), Type 1 (uncertain responses), Type 2 (certain requests), and

Type 3 (uncertain requests). We do not utilise the ISR (Init/Sense/React) information and

the parameters of an interaction inUNIFY.

The OIT lists interactions among entities, but not internal actions of an entity. For

example, the OIT does not list any interaction corresponding to our Platoon-Tanks MRE

changing its course, because such an interaction is internal to the MRE. InUNIFY, internal

actions are interactions. We add an internal action called ChangeCourse to the interactions

in the OIT (see last row in Table 35) to show thatUNIFY addresses internal actions as well

as interactions with other entities. This interaction initiates a change in the course of an

278

entity. The sender and receiver of ChangeCourse is the same entity. The class of that entity

is Player. The interaction affects the attributes Position, Velocity and Orientation.

The last column in Table 35 lists the type of an interaction. Assigning a type requires

information about the semantics of an interaction. For example, the semantics of

CreateObjectRequest could be that the SimulationManager requests an AggregateEntity to

create a new entity as its constituent. If such a request must always be satisfied by an

AggregateEntity, CreateObjectRequest is a Type 2 interaction. CreateObjectResult is the

response to a CreateObjectRequest. CreateObjectResult could be Type 0 or Type 1, but we

assigned it to Type 1 because the SimulationManager may discard an update about the

created object. For the ChangeCourse interaction, we assumed that a change in the course

of an entity is a request whose outcome is uncertain.

TABLE 35: Object Interaction Table for RPR

Interaction Sender Class Sender Attributes Receiver
Receiver
Attributes

Interaction Parameters ISR Type

ActionRequest SimulationManager none AggregateEntity none ObjectCount, ObjectIDs, Action IR 2

ActionResult AggregateEntity none SimulationManager none ActionResult IR 1

AttributeChangeRequest SimulationManager none AggregateEntity none ObjectCount, ObjectIDs, AttributeValueSet IR 2

AttributeChangeResult AggregateEntity none SimulationManager none ObjectID, AttributeChangeResult,
AttributeValueSet

IR 1

Collision PhysicalEntity Acceleration,
AngularVelocity,
Status,
Orientation,
Position, Velocity

PhysicalEntity Acceleration,
AngularVelocity,
Status,
Orientation,
Position, Velocity

CollidingObjectID, CollidingObjectMass,
CollidingObjectVelocity, CollisionType,
CollisionLocation, EventID, IssuingObjectID

IR 0

CreateObjectRequest SimulationManager none AggregateEntity none ObjectClass, AttributeValueSet IR 2

CreateObjectResult AggregateEntity none SimulationManager none CreateObjectResult IR 1

MunitionDetonation MilitaryPlatformEntity none PhysicalEntity Acceleration,
AngularVelocity,
Status,
Orientation,
Position, Velocity

ArticulatedPartsArray, ArticulatedPartsCount,
DetonationLocation, DetonationResult, EventID,
FiringObjectID, FinalVelocityVector, FuseType,
MunitionObjectID, MunitionType, QuantityFired,
RateOfFire, RelativeDetonationLocation,
TargetObjectID

IR 0

RemoveObjectRequest SimulationManager none AggregateEntity none ObjectCount, ObjectIDs IR 2

RemoveObjectResult AggregateEntity none SimulationManager none RemoveObjectResult IR 1

WeaponFire MilitaryEntity none none EventID, FireControlSolutionRange,
FireMissionIndex, FiringLocation, FiringObjectID,
FuseType, InitialVelocityVector,
MunitionObjectID, MunitionType, QuantityFired,
RateOfFire, TargetObjectID, WarheadType

IR 0

ChangeCourse BaseEntity Position,
Velocity,
Orientation

BaseEntity Position,
Velocity,
Orientation

New_Location, New_Velocity, New_Orientation IR 3

279

We determine the interactions that our Platoon-Tanks MRE can send and receive. In

Table 36, we list the interactions that Platoon, Tank1 and Tank2 can send and receive. In

the first column, we list the name of an interaction as the name in the OIT along with a

suffix that indicates whether Platoon, Tank1 or Tank2 sends or receives that interaction.

For example, the interaction ChangeCourse can be sent by an entity of class BaseEntity.

Since BaseEntity is a base class of Platoon, Tank1 and Tank2, we distinguish the

interaction ChangeCourse sent by these three entities as ChangeCourse-P,

ChangeCourse-T1 and ChangeCourse-T2 respectively. In the second column, we indicate

whether the Platoon-Tanks MRE sends (S) or receives (R) the interaction. In the third

column, we list the attributes affected by the interaction directly, i.e., we list the setaffects

for the interaction. These attributes are determined from the OIT. In the fourth column, we

list the attributes affected by the interaction indirectly, i.e., we list the setaffects+ for the

interaction. These attributes can be determined from the ADG in Figure 73. Finally, we

indicate the type of the interaction.

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affects+ Type

ActionResult-P S 1

AttributeChangeResult-P S 1

CreateObjectResult-P S 1

RemoveObjectResult-P S 1

280

Collision-T1 S Acceleration1,
AngularVelocity1,
Status1,
Velocity1,
Orientation1,
Position1

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2, Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1

0

Collision-T2 S Acceleration2,
AngularVelocity2,
Status2,
Velocity2,
Orientation2,
Position2

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1, Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2

0

WeaponFire-T1 S 0

WeaponFire-T2 S 0

ChangeCourse-P S Position,Velocity,
Orientation

Position1, Velocity1,
Orientation1, Position2,
Velocity1, Orientation2,
Position, Velocity,
Orientation

3

ChangeCourse-T1 S Position1,
Velocity1,
Orientation1

Position, Velocity,
Orientation, Position2,
Velocity2, Orientation2,
Position1, Velocity1,
Orientation1

3

ChangeCourse-T2 S Position2,
Velocity2,
Orientation2

Position, Velocity,
Orientation, Position1,
Velocity1, Orientation1,
Position2, Velocity2,
Orientation2

3

ActionRequest-P R 2

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affects+ Type

281

AttributeChangeRequest-P R 2

CreateObjectRequest-P R 2

RemoveObjectRequest-P R 2

Collision-T1 R Acceleration1,
AngularVelocity1,
Status1,
Velocity1,
Orientation1,
Position1

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2, Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1

0

Collision-T2 R Acceleration2,
AngularVelocity2,
Status2,
Velocity2,
Orientation2,
Position2

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1, Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2

0

MunitionDetonation-T1 R Acceleration1,
AngularVelocity1,
Status1,
Velocity1,
Orientation1,
Position1

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2, Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1

0

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affects+ Type

282

Any subset of the interactions in Table 36 may occur concurrently. Next, we show how

to resolve the effects of concurrent interactions.

MunitionDetonation-T2 R Acceleration2,
AngularVelocity2,
Status2,
Velocity2,
Orientation2,
Position2

Acceleration, Status,
AngularVelocity, Velocity,
Orientation, Position,
Composition,Acceleration1,
Status1, AngularVelocity1,
Velocity1, Orientation1,
Position1, Acceleration2,
Status2, AngularVelocity2,
Velocity2, Orientation2,
Position2

0

ChangeCourse-P R Position,Velocity,
Orientation

Position1, Velocity1,
Orientation1, Position2,
Velocity1, Orientation2,
Position, Velocity,
Orientation

3

ChangeCourse-T1 R Position1,
Velocity1,
Orientation1

Position, Velocity,
Orientation, Position2,
Velocity2, Orientation2,
Position1, Velocity1,
Orientation1

3

ChangeCourse-T2 R Position2,
Velocity2,
Orientation2

Position, Velocity,
Orientation, Position1,
Velocity1, Orientation1,
Position2, Velocity2,
Orientation2

3

TABLE 36: Effects of Interactions for RPR Platoon-Tanks MRE

Interaction S/R affects affects+ Type

283

D.7 Resolve the Effects of Concurrent Interactions from

the CIT

The effects of concurrent interactions can be resolved by implementing polices from

the CIT. In practice, a designer constructs a CIT specific to the application. Since a CIT is

unavailable in OMT, we construct an example CIT, shown in Table 37.

A designer specifies policies in the CIT for resolving the effects of concurrent

interactions. The CIT consists of sets of concurrent interactions with dependent effects,

policies for resolving them and conditions under which the policies are applicable.

Concurrent interactions that are independent of one another can be resolved by

serialization and are not specified in the CIT. Some interactions may be independent

because they affect disjoint sets of attributes. Other interactions may be independent

because their effects are applied in different time-steps, for example, interactions sent and

received by an entity. Yet other interactions are independent because they are request-

response pairs. Policies must be specified in the CIT for only the remaining interactions.

Policies may be specified for classes of interactions (e.g., the last two rows in Table 37) or

for instances of interactions (e.g., all the other rows in Table 37). In RPR, many

interactions do not affect any attributes. Although such interactions can be assumed

independent, we do not make such an assumption. It is likely that the interactions affect

internal attributes in the models. Since OMT is meant to be an interface specification,

internal attributes are not listed in the APT. For consistency maintenance, a designer must

list internal attributes as well in the APT. Since internal attributes are not listed, we will

not assume that interactions that affect disjoint sets of attributes are independent. For

284

example, although ActionRequest-P and RemoveObjectRequest-P affect no attributes,

hence affecting disjoint sets of attributes, we specify policies for resolving these

interactions. An Interaction Resolver for the Platoon-Tanks MRE applies the policies in

the CIT only if the effects of concurrent interactions conflict. If concurrent interactions do

not conflict, they may be serialized.

TABLE 37: Concurrent Interactions Table for RPR Platoon-Tanks MRE

Concurrent Interactions Condition Policy

MunitionDetonation-Ti, Collision-Ti Always Damage to Tanki less than sum of
damages but greater than minimum
of damages; add compensatory
interaction to reduce damage

RemoveObjectRequest-P, any
combination of (ActionRequest-P,
AttributeChangeRequest-P,
CreateObjectRequest-P)

Same
object

Order all before
RemoveObjectRequest-P

CreateObjectRequest-P, any
combination of (ActionRequest-P,
AttributeChangeRequest-P,
RemoveObjectRequest-P)

Same
object

Order all after
CreateObjectRequest-P

ChangeCourse-P, any combination of
(ChangeCourse-T1, ChangeCourse-T2)

All
received

Ignore all except ChangeCourse-P

Type 0, Type 1 All
received

Ignore Type 1

Type 2, Type 3 All
received

Ignore Type 3

Any Interaction Ignored or
Delayed

Ignored or Delayed entirely, i.e., no
partial effects permitted

285

D.8 Construct a Consistency Enforcer and an Interaction

Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE maintain

consistency and resolve concurrent interactions respectively. A CE consists of an ADG

and mapping functions, whereas an IR consists of policies for resolving concurrent

interactions. Figure 74 shows an RPR Platoon-Tanks MRE. The MRE can interact at

multiple representation levels — the Platoon and Tank levels — concurrently. Moreover,

the concurrent representations within the MRE are consistent at all observation times.

A CE consists of an ADG and application-specific mapping functions. For the

Platoon-Tanks MRE, we presented an ADG in Figure 73 and mapping functions in

Table 34. In Figure 34 (see Chapter 6), we presented an algorithm for implementing a CE.

In §6.3, we discussed how to traverse an ADG and apply mapping functions in order to

keep an MRE internally consistent.

Platoon

Tank

Platoon-Tanks MRE

Interactions

Interactions

Interaction

Resolver

FIGURE 74: RPR Platoon-Tanks MRE

Consistency
Enforcer

Platoon
Representation

Tank1
Representation

Tank2
Representation

286

An IR consists of application-specific policies for resolving the effects of concurrent

interactions. For the Platoon-Tanks MRE, we presented policies for resolving concurrent

interactions in Table 37. In Figure 47 (see Chapter 7), we presented an algorithm for

implementing an IR. In §7.5, we presented a taxonomy for classifying interactions. Using

this taxonomy, we presented policies for resolving the effects of concurrent interactions.

A CE and an IR ensure that an MRE is internally consistent when concurrent

interactions occur. During a time-step, a number of concurrent interactions may occur. The

IR determines the type of each interaction. Next, the IR applies the effect of each

interaction as if the interaction occurred in isolation. In order to do so, the IR permits the

interactions to take effect one at a time. When an interaction changes an attribute, the CE

traverses an ADG and translates changes to dependent attributes by invoking the

appropriate mapping functions. The CE maintains a list of changes for each attribute as a

result of computing the effects of each interaction. Subsequently, the CE applies the

effects of all the interactions on each attribute. The CE queries the IR about policies to

resolve the effects of dependent concurrent interactions whenever the CE detects conflicts

in the list of changes for an entity. If the IR contains a policy for resolving conflicting

changes, the CE applies the changes accordingly; otherwise, the CE assumes the changes

are independent and applies them in an arbitrary order. When the changes to all attributes

have been applied, the MRE is internally consistent.

287

One is always a long way from solving a problem
until one actually has the answer.

— Stephen Hawking

Appendix E

Hierarchical Autonomous Agents

We demonstrate how designers can applyUNIFY to achieve effective Multi-

Representation Modelling (MRM) in hierarchical autonomous agents (HAA) [WAS98B].

Hierarchical autonomous agents employ multiple models to achieve a goal. Examples of

the models are a planning model that selects actions that an agent can perform, and a

perception-action model that senses and changes an agent’s surroundings. A HAA may

execute multiple models jointly.

The HAA model we considered is part of a research project undertaken by the Vision

group at the University of Virginia. The agent, Marcus, has been programmed to construct

complex arrangements such as archways from basic building blocks. Marcus is a

hierarchical autonomous agent that has two models — a planner model and a perception-

action (PA) model. Typically, the planner maintains long-term or abstract representation,

whereas the PA system maintains immediate and detailed representation. Each model may

have its own representation of the world in which Marcus operates. Accordingly, each

model may represent building blocks, partially-completed arrangements, obstacles, doors

288

and pathways by a number of relevant attributes such as position, orientation and colour.

Marcus considers relationships among blocks that are stacked or placed next to each other

as an arrangement. We construct an MRE for Marcus and show how to maintain

consistency within this MRE when concurrent interactions occur.

The jointly-executing models in Marcus

are a planner model and a PA model. We

determine the attributes in the planner and

PA representations and construct a Multiple

Representation Entity (MRE) for Marcus, as

shown in Figure 75. Next, we capture the

relationships among attributes using an Attribute Dependency Graph (ADG) and select

mapping functions to maintain consistency in the Marcus MRE. Finally, we select policies

for resolving the effects of concurrent interactions.

In §E.1, we list steps for incorporatingUNIFY in Marcus. We demonstrate each step in

subsequent sections. In §E.2, we construct an MRE. In §E.3 and §E.4, we construct an

ADG and select mapping functions for attribute dependencies in the MRE. In §E.5 and

§E.6, we determine and resolve the effects of concurrent interactions. In §E.7, we

construct a CE and IR for the MRE.

E.1 Steps

The steps for incorporatingUNIFY in Marcus are:

1. Construct an MRE from Planner and PA Representations

2. Construct an ADG for the MRE

Planner Representation

M
ar

cu
s

M
R

E

FIGURE 75: Marcus MRE

PA Representation

289

3. Select Mapping Functions for Dependencies in the ADG

4. Determine the Effects of Interactions

5. Resolve the Effects of Concurrent Interactions

6. Construct a Consistency Enforcer and an Interaction Resolver

E.2 Construct an MRE from Planner and PA

Representations

In order to construct an MRE for Marcus, we must determine what constitutes the

representations of the planner and PA models. In HAAs, the representation of a planner or

PA consists of attributes that capture properties of objects that are that are important for

the current goal. In order to achieve a goal, an agent decomposes the goal into tasks and

sub-tasks. Different models in a hierarchical agent architecture view an agent’s tasks at

different levels of abstraction. Deciding what tasks an agent must execute will be based on

the agent’s goals and capabilities. Marcus’s goal is to build an archway out of coloured

blocks scattered throughout a room. This goal can be refined to the planner tasks of

build-tower and span-towers-with-block. The PA model accomplishes these tasks by

executing tasks such asgoto-block, pick-up-block, put-down-block, stack-block-on-block

andspan-blocks-with-block.

After the tasks and sub-tasks have been identified, the representation for each model

can be constructed by identifying the objects relevant to the agent’s tasks. These objects

are parts of the environment that are affected by a task. For example, in thebuild-tower

task,tower is a relevant object. Likewise, in thestack-block-on-block task, two blocks are

the relevant objects. A model represents objects relevant to its current tasks. Attributes are

290

properties of these objects described using traditional data structures. During the

execution of a task, the representation for a model may consist of many attributes for each

object in the task. Given Marcus goal of constructing an archway from blocks, we list the

attributes of objects represented by the PA and planner (Table 38).

Wasson addresses how tasks can be decomposed and representation identified for

jointly-executing models in HAAs [WAS99].

E.3 Construct an ADG for the MRE

We construct an Attribute Relationship Table (ART) for the attributes in the planner

and PA representations. We construct an example ART for our MRE (Table 39); in

practice designers provide ARTs for their applications. The specification of the

relationship may be accomplished formally; in Table 39, we present informal

specifications in the last column.

TABLE 38: Attributes of planner and PA (Marcus)

Entity Object Attributes

Planner Tower1 T1.position, T1.orientation, T1.height, T1.width, T1.stacked, …

Tower2 T2.position, T2.orientation, T2.height, T2.width, T2.stacked, …

Arch A.position, A.orientation, A.height, A.width, A.connected, …

PA Block1 B1.position, B1.orientation, B1.height, B1.width, B1.colour, …

Block2 B2.position, B2.orientation, B2.height, B2.width, B2.colour, …

Block3 B3.position, B3.orientation, B3.height, B3.width, B3.colour, …

Block4 B4.position, B4.orientation, B4.height, B4.width, B4.colour, …

Block5 B5.position, B5.orientation, B5.height, B5.width, B5.colour, …

291

We construct an ADG for the Marcus MRE. From Table 38, we determine the nodes in

the ADG. From the ART in Table 39, we determine the arcs in the ADG. The ADG is

shown in Figure 76. The interaction dependencies to some attributes exist because

interactions with the environment may change those attributes.

The ADG in Figure 76 is constructed by Marcus as it progresses towards its goal.

Initially, the ADG in Marcus consists of only nodes corresponding to the attributes at all

representation levels. As Marcus stacks blocks to construct a tower or spans towers to

construct an arch, it adds arcs to its ADG. If a previously-stacked tower falls apart, a CE in

TABLE 39: Attribute Relationship Table for Marcus MRE

Dependency Type Specification

B1.position→ T1.position Cumulative The positions of blocks determine the
position of a tower andvice versa.B2.position→ T1.position Cumulative

T1.position→ B1.position Distributive

T1.position→ B2.position Distributive

B1.orientation→ T1.orientation Cumulative The orientations of blocks determine
the orientation of a tower andvice
versa.

B2.orientation→ T1.orientation Cumulative

T1.orientation→ B1.orientation Distributive

T1.orientation→ B2.orientation Distributive

B1.height→ T1.height Cumulative The heights of blocks determine the
orientation of a tower andvice versa.B2.height→ T1.height Cumulative

T1.height→ B1.height Distributive

T1.height→ B2.height Distributive

T1.height→ T1.stacked Modelling A tower with indeterminate height or
orientation is not stacked.T1.orientation→ T1.stacked Modelling

T1.position→ A.position Cumulative The positions of towers determine the
position of an arch andvice versa.T2.position→ A.position Cumulative

A.position→ T1.position Distributive

A.position→ T2.position Distributive

A.width → A.stacked Modelling A tower with indeterminate width or
orientation is not connected.A.orientation→ A.stacked Modelling

…

292 FIGURE 76: ADG for the Marcus MRE

Cumulative Dependency Interaction DependencyDistributive Dependency Modelling Dependency

T
1 .stacked

B
1 .colour

B
2 .colour

T
2.

st
ac

ke
d

B
3.

co
lo

ur

B
4.

co
lo

ur

B
1 .position

B
2 .position

T
1 .position

B
1 .height

B
2 .height

T
1 .height

B
1 .orientation

B
2 .orientation

T
1 .orientation

B
1 .w

idth

B
2 .w

idth

T
1 .w

idth

B
3.

po
si

tio
n

B
4.

po
si

tio
n

T
2.

po
si

tio
n

B
3.

he
ig

ht

B
4.

he
ig

ht

T
2.

he
ig

ht

B
3.

or
ie

nt
at

io
n

B
4.

or
ie

nt
at

io
n

T
2.

or
ie

nt
at

io
n

B
3.

w
id

th

B
4.

w
id

th

T
2.

w
id

th

B5.position

B5.height

B5.orientation

B5.width

B5.colour

A.position

A.height

A.connected

A.orientation

A.width

293

Marcus can detect that a relationship among the constituent blocks of the tower no longer

holds. Subsequently, the CE changes the values of attributes in the ADG to denote that the

tower is no longer stacked. At a future time, the planner model in Marcus can attempt to

reconstruct the tower by stacking blocks.

E.4 Select Mapping Functions for Dependencies in the

ADG

We select mapping functions to translate attributes among concurrent representations

within the Marcus MRE. Recall from Chapter 6 that mapping functions must translate

values or changes in values of attributes from one to another. Additionally, it is desirable

that mapping functions complete their translations in a time-bound manner, and that they

be composable and reversible.

We show mapping functions for some dependencies in Table 40. The mapping

functions are presented as pseudo-code. Error-checking has been omitted for brevity.

Pseudo-code in the second column of Table 40 implements specifications in the last

column of Table 39. The position of a tower is identical to the position of its lowermost

block. Conversely, the position of the lowermost block in a tower is identical to the

position of the tower. If the positions of other blocks are desired, then appropriate

dependencies must be specified, for example, dependencies between the height of the

lowermost block and the position of the block immediately above it. If either the height or

the orientation of a tower is invalid, the tower is not stacked. The orientation of a tower

can become invalid if its constituent blocks are oriented differently. A similar condition

may be specified for the height of a tower. Similar mapping functions for other

294

dependencies can be constructed. Mapping functions such as those shown in Table 40

translate values or changes in values of attributes.

The mapping functions shown in Table 40 are composable and reversible. Moreover,

since they are simple in construction, we expect that they will complete in a time-bound

manner, thus ensuring that the Marcus MRE is consistent at all observation times. When

an interaction changes the value of any attribute, mapping functions propagate the change

in the attribute to dependent attributes. For example, if an interaction changes the PA-level

attribute, B1.orientation, the mapping functionfo changes the dependent planner-level

attribute, T1.orientation. Subsequently, the mapping functiongo changes the PA-level

attribute, B2.orientation. Sincefo and go are composable, the change to B1.orientation

eventually propagates to B2.orientation. Sincefo andgo are reversible, B1.orientation does

not change again as a result of the same interaction.

TABLE 40: Mapping Functions for Marcus MRE

Dependency Mapping Function

B1.position→ T1.position T1.position← fp(B1.position, B2.position)
fp: T1.position← B1.positionB2.position→ T1.position

T1.position→ B1.position (B1.position, B2.position)← gp(T1.position)
gp: B1.position← T1.positionT1.position→ B2.position

B1.orientation→ T1.orientation T1.orientation← fo(B1.orientation, B2.orientation)
fo: T1.orientation← B1.orientationB2.orientation→ T1.orientation

T1.orientation→ B1.orientation (B1.orientation, B2.orientation)← go(T1.orientation)
go: B1.orientation← B2.orientation← T1.orientationT1.orientation→ B2.orientation

T1.orientation→ T1.stacked T1.stacked← p1(T1.orientation)
p1: if (T1.orientation = invalid) T1.stacked= false

T1.height→ T1.stacked T1.stacked← p2(T1.height)
p2: if (T1.height = invalid) T1.stacked= false

…

295

When an interaction occurs, traversing the ADG in Figure 76 and applying the

mapping functions in Table 40 ensures that the Marcus MRE is consistent at all

observation times. Next, we determine and resolve the effects of concurrent interactions.

E.5 Determine the Effects of Interactions

We determine the effects of interactions that Marcus can send and receive. Marcus can

interact with its environment only at the PA level. The planner model in Marcus does not

interact with the environment apart from initially receiving a goal and finally reporting on

the success or failure in achieving the goal. However, the planner interacts with the PA

level in order to specify sub-tasks. In Table 41, we list the interactions that the planner and

PA levels can send and receive. In the first column, we list the name of an interaction. In

the second and third columns, we indicate the sender and receiver of an interaction. A

sender or receiver that is not “planner” or “PA”, is external to Marcus and is part of

Marcus’ environment. In the fourth column, we list the attributes affected by the

interaction directly, i.e., we list the setaffectsfor the interaction. We do not list the set

affects+ for the interaction because this set changes as Marcus adds arcs to its ADG while

progressing towards its goal. Finally, we indicate the type of the interaction.

We augment each interaction with its type (see Chapter 7): Type 0 (certain responses),

Type 1 (uncertain responses), Type 2 (certain requests), and Type 3 (uncertain requests).

Assigning a type requires information about the semantics of an interaction. In Marcus,

PA-level interactions are assumed to be certain. For example, the PA model in Marcus is

assumed to be able to sense the position of an object correctly. Likewise, if the PA model

requests the underlying hardware to move Marcus, the hardware will not fail to do so.

296

Hence, interactions between the PA model and the processor are Type 0 or Type 2. In

contrast, planner-level interactions are assumed to be uncertain. For example, Marcus may

not be able to pick up a block as per the planner’s request. Hence, interactions between the

planner model and the PA model are Type 1 or Type 3. Classifying the interactions in this

manner reflects the design philosophy of “trusting sensors more than memory”.

Any subset of the interactions in Table 41 may occur concurrently. Next, we show how

to resolve the effects of concurrent interactions.

TABLE 41: Interactions sent and received by the Marcus MRE

Interaction Sender Receiver affects Type

SenseObject(X) PA processor 2

UpdateObject(X) processor PA X.position,X.orientation,
X.height,X.width, …

0

Move PA processor 2

Swivel PA processor 2

Turn PA processor 2

MoveStatus processor PA 0

SwivelStatus processor PA 0

TurnStatus processor PA 0

PickObject(X) planner PA X.position,X.orientation 3

PutDownObject(X) planner PA X.position,X.orientation 3

StackObject(X, Y) planner PA Y.position,Y.orientation 3

SpanObject(X, Y, Z) planner PA Z.position,Z.orientation 3

GoThroughDoor planner PA 3

Travel planner PA 3

ActionStatus PA planner 1

297

E.6 Resolve the Effects of Concurrent Interactions

The effects of concurrent interactions can be resolved by implementing application-

specific polices. In practice, a designer selects policies specific to the application. We

select example policies, shown in Table 42. A designer specifies policies in a Concurrent

Interactions Table (CIT) for resolving the effects of concurrent interactions. The CIT

consists of sets of concurrent interactions with dependent effects, policies for resolving

them and conditions under which the policies are applicable. Concurrent interactions that

are independent of one another can be resolved by serialization and are not specified in the

CIT. Some interactions may be independent because they affect disjoint sets of attributes.

Other interactions may be independent because their effects are applied in different time-

steps, for example, interactions sent and received by an entity. Yet other interactions are

independent because they are request-response pairs. Policies must be specified in the CIT

for only the remaining interactions. An Interaction Resolver for the Marcus MRE applies

the policies in the CIT only if the effects of concurrent interactions conflict. If concurrent

interactions do not conflict, they may be serialized.

TABLE 42: Concurrent Interactions Table for Marcus MRE

Concurrent Interactions Condition Policy

Type 0, Type 1 Ignore Type 1

Type 2, Type 3 Delay Type 3

Any Interaction Ignored or Delayed Ignored or Delayed entirely, i.e., no
partial effects permitted

298

E.7 Construct a Consistency Enforcer and an Interaction

Resolver

A Consistency Enforcer (CE) and an Interaction Resolver (IR) for an MRE maintain

consistency and resolve concurrent interactions respectively. A CE consists of an ADG

and mapping functions, whereas an IR consists of policies for resolving concurrent

interactions. Figure 77 shows an MRE for Marcus. The MRE can interact at multiple

representation levels — the planner and PA levels — concurrently. Moreover, the

concurrent representations within the MRE are consistent at all observation times.

A CE consists of an ADG and application-specific mapping functions. We presented

an ADG for Marcus in Figure 76 and mapping functions in Table 40. In Figure 34 (see

Chapter 6), we presented an algorithm for implementing a CE. In §6.3, we discussed how

to traverse an ADG and apply mapping functions to keep an MRE internally consistent.

An IR consists of application-specific policies for resolving the effects of concurrent

interactions. For the Marcus MRE, we presented policies for resolving concurrent

Planner

PA

Marcus MRE

Interactions

Interactions

Interaction

Resolver

FIGURE 77: Marcus MRE

Consistency
Enforcer

Planner Representation

PA Representation

299

interactions in Table 42. In Figure 47 (see Chapter 7), we presented an algorithm for

implementing an IR. In §7.5, we presented a taxonomy for classifying interactions. Using

this taxonomy, we presented policies for resolving the effects of concurrent interactions.

A CE and an IR ensure that an MRE is internally consistent when concurrent

interactions occur. During a time-step, a number of concurrent interactions may occur. The

IR determines the type of each interaction. Next, the IR applies the effect of each

interaction as if the interaction occurred in isolation. In order to do so, the IR permits the

interactions to take effect one at a time. When an interaction changes an attribute, the CE

traverses an ADG and translates changes to dependent attributes by invoking the

appropriate mapping functions. The CE maintains a list of changes for each attribute as a

result of computing the effects of each interaction. Subsequently, the CE applies the

effects of all the interactions on each attribute. The CE queries the IR about policies to

resolve the effects of dependent concurrent interactions whenever the CE detects conflicts

in the list of changes for an entity. If the IR contains a policy for resolving conflicting

changes, the CE applies the changes accordingly; otherwise, the CE assumes the changes

are independent and applies them in an arbitrary order. When the changes to all attributes

have been applied, the MRE is internally consistent.

300

They do certainly give very strange and new-fangled names to diseases.
— Plato,The Republic

Indexed Glossary*

Aggregate Model 41

A model at low resolution or high abstraction.

Aggregation 22,42

Composition of a collection of HREs into a single LRE.

Aggregation-disaggregation 9, 20, 54, 76, 85, 97, 172

An MRM approach in which representation levels are transitioned.

Attribute 33

A property of an entity, which can be used to refer to the entity and manipulate

its behavior.

* In the spirit ofUNIFY, this chapter is a glossary as well as an index. The numbers to the right of

each term denote pages in which the term is discussed. The bold number refers to the page in

which we define the term. Below every index entry is an informal definition for the term.

301

Attribute Dependency Graph 7, 27,96, 172

A graph with attributes as nodes and dependencies among attributes as arcs.

Behavior of an Entity 37

The sequence of states for a particular entity.

Behavior of a Model 37

The sequence of states of a model.

Certain Interaction 142, 149

An interaction whose outcome is predictable.

Chain Disaggregation 23,56, 86, 197

Forcible disaggregation of many entities because of LRE-HRE interactions.

Compatible Time-steps 44, 51, 68, 159, 192

If multiple entities never violate any assumptions made by one other during any

time-step, they execute atcompatible time-steps.

Concurrent Interactions 7, 39, 51, 81, 136

Interactions that occur at overlapping times in the simulation.

Concurrent Representations 2, 42, 71

Representations of different simulation entities of the same object or process that

execute jointly and allow interaction at all representation levels.

Consistency Cost 9, 28, 76,174, 177

Cost of maintaining consistency among jointly-executing models.

302

Consistency Enforcer 6, 27,77, 95, 118, 172

Consists of an Attribute Dependency Graph and appropriate mapping functions

for maintaining internal consistency in a Multiple Representation Entity.

Consistency Maintenance 2, 43

Correlating the multiple entity states for the same object or process so that

relationships among attributes hold.

Cost-effectiveness (R3) 9, 49, 173

Simulation and consistency costs should be low.

Cross-level Interactions 58,73, 87

Interactions whose sender and receiver are at different representation levels.

Cumulative Dependencies 96,102, 106

Attribute dependencies wherein the value of a single attribute depends jointly on

the value of many other attributes.

Dependency 37

A static relationship between two attributes.

Dependent Interactions 7, 39, 64, 70, 136

Interactions whose effects are dependent on one another.

Disaggregate Model 42

A model at high resolution or low abstraction.

303

Disaggregation 22,42

Decomposition of an LRE into its constituent HREs.

Distributive Dependencies 96,102, 107

Attribute dependencies wherein the value of a single attribute influences the

value of many other attributes jointly.

Effective Joint Execution 2, 28,46, 70, 170

The joint execution of multiple models that satisfies the requirements of multi-

representation interaction, multi-representation consistency and cost-

effectiveness.

Effects of an Interaction 33

The changes caused in the representations of the sender and receivers because of

the interaction.

Entity 3, 32

A description of an object or process in a simulation.

Entity Representation 32

A collection of the attributes of one entity described using the notation of data

structures.

Environment of a Model 33

Objects and processes external to a model.

Executing a Model 36

Simulating the objects and processes that are part of a phenomenon.

304

Execution of a Multi-model 3

The joint execution of multiple models.

Fundamental Observations 5, 53

Observations that relate the causes of problems in jointly-executing models to a

failure in maintaining consistency among the model representations.

Ghosting 71

With multiple models, executingonly one modeland reflecting changes from

that model to other models.

Guidelines for Designers of Multi-models 10, 161

With multiple models, executingonly one modeland reflecting changes from

that model to other models.

Hierarchical Models 103

Models that bear a relationship of being the composition-decomposition or

abstraction-refinement of one another.

High Resolution Entity (HRE) 22,42, 54, 86

An entity at a low level of abstraction, or high decomposition.

Independent Interactions 39, 144

Interactions whose effects are the same whether they occur in isolation or

concurrently.

Interaction 6, 33,37, 126

The means by which entities exchange information or influence one another.

305

Interaction Dependencies 96,103

Attribute dependencies that denote the effects of interactions.

Interaction Resolver 8, 28,77, 150

Resolves the effects of concurrent interactions on a Multiple Representation

Entity by means of policies based on semantic characteristics of interactions.

Internal Consistency with an MRE 71

Attribute dependencies that denote the effects of interactions.

Joint Execution of Multiple Models 3, 42

Execution of multiple models at overlapping times, possibly with the exchange

of information among the models.

Low Resolution Entity (LRE) 22,42, 54, 86

An entity at a high level of abstraction, or high composition.

Mapping Consistency 8, 80

When entity properties common to different models are translated such that

repeated translations in a given period do not cause abnormal behavior in the

entity during that period, the models exhibit mapping consistency.

Mapping Inconsistency 55, 76, 84, 197

When repeated translations among attributes cause intolerable discontinuities in

the behavior of different models, the models exhibit mapping inconsistency.

306

Mapping Functions 7, 27,43, 50, 70, 110, 159, 172

Methods used to correlate the multiple representations of the same object or

process.

Model 3, 36

An abstraction of some phenomenon that incorporates the behavior of objects

and processes participating in that phenomenon.

Modeling 3, 32

A method to study real-life phenomena.

Modeling Dependencies 96, 102,103

Attribute dependencies inherent in the nature of the object or process being

modeled.

Multi-model 3, 41,42

For some phenomenon, the union of multiple models that may differ in execution

and representation.

Multiple Representation Entity (MRE) 6, 27,70, 92, 95

A conceptual entity that can interact at multiple representation levels

concurrently by maintaining attributes at different representation levels.

Multi-representation Consistency (R2) 8, 48, 172

Jointly-executing models must be related and consistent with one another.

307

Multi-representation Interaction (R1) 8, 47, 76, 171

Entities in each model may initiate and receive interactions that may be

concurrent and dependent.

Multi-representation Modeling (MRM) 3, 32,42, 159

The joint execution of multiple models.

Network Flooding 57, 87, 197

High consumption of network resources because of a large number of messages.

Receiver of an Interaction 33

The entity that receives an interaction.

Relationship between Attributes 33

Indicates that if the value of one attribute changes, the value of the other is likely

to change.

Representation 3, 32, 191

A collection of the objects and processes participating in a phenomenon

described using some rigorous notation.

Representation Level 41

The conceptual context in which a model executes.

Request Interaction 141, 146, 149

An interaction concerned with actions that may take place in the future.

308

Resolving Concurrent Interactions 40, 62, 81, 93, 144, 148, 159, 192

Computing the effects of concurrent, possibly dependent, interactions.

Resolution 41

A representation level in a hierarchical model.

Resolution Level 41

Resolution.

Response Interaction 141, 146, 149

An interaction concerned with actions that have taken place in the past.

Reversible Mapping Functions 44, 80, 83, 115

Mapping functions that return the original attribute when composed.

Selective Viewing 9, 20, 76, 85, 97, 172

An MRM approach in which the most detailed model is simulated at all times.

Sender of an Interaction 33

The entity that initiates an interaction.

Simulation 3, 37

A method to execute a model, usually on a computer with some combination of

executing code, control/display interface hardware and interfaces to real-world

equipment.

Simulation Cost 9, 28, 76,174, 179

Cost of simulating jointly-executing models.

309

Taxonomy of Interactions 7, 28,139

A classification of interactions according to semantic characteristics of

interactions.

Temporal Consistency 8, 78

When multiple entities have consistent views of another entity at overlapping

simulation times, the entities exhibit temporal consistency.

Temporal Inconsistency 91, 197

When multiple entities have differing views of an entity at overlapping

simulation times, they exhibit temporal inconsistency.

Thrashing 57, 86, 197

Repeated transitions by an entity because it transitions representation levels

frequently.

Time-step 36, 65

The duration of time between two consecutive observation times of a model.

Transition Latency 56, 86, 197

Delay encountered when performing an aggregation or disaggregation.

Uncertain Interaction 142, 149

An interaction whose outcome is unpredictable.

UNIFY 8, 5, 47, 54, 70, 159, 191

A framework for effective MRM.

310

QUOTATION, n.
The act of repeating erroneously the words of another. The words erroneously repeated.

— Ambrose Bierce,The Devil’s Dictionary

References

ABADI95 Abadi, M., Lamport, L.,Conjoining Specifications, ACM Transactions on

Programming Languages and Systems, Vol. 17, No. 3, May 1995.

ACK82 Ackerman, W. B.,Data Flow Languages, IEEE Computer, Vol. 15, No. 2,

February 1982.

AGRE87 Agre, P. E., Chapman, D.,Pengi: An Implementation of a Theory of

Activity, American Association for Artifical Intelligence Conference, 1987.

ALBUS97 Albus, J. S.,The NIST Real-time Control System (RCS): an approach to

intelligent systems research, Journal of Experimental and Theoretical

Artificial Intelligence, Vol. 9, 1997.

ALHIR98 Alhir, S. S.,UML in a Nutshell, O’Reilly & Associates Inc., ISBN 1-

56592-448-7, 1998.

ALLEN92 Allen, P. D.,Combining Deterministic and Stochastic Elements in Variable

Resolution Models, Conference on Variable-Resolution Modeling,

Washington, DC, May 1992.

ALLEN96 Allen, P. M., Valle, A. N.,An approach to managing dissimilar unit

interactions in constructive/virtual simulation linkage, 14th DIS Workshop

on Standards for the Interoperability of Distributed Simulations, Orlando,

Florida, September 1996.

311

ALLEN98 Allen, R. J., Garlan, D., Ivers, J.,Formal Modeling and Analysis of the

HLA Component Integration Standard, ACM SIGSOFT, Florida,

November 1998.

AMG95 Architecture Management Group,Preliminary Definition, High Level

Architecture Briefings, Defense Modeling and Simulation Office (DMSO),

Alexandria, Virginia, March 1995.

AMO94 Amoroso, E. D.,Fundamentals of Computer Security Technology, Prentice

Hall PTR, ISBN 0-13-108929-3, 1994.

ARCH86 Archibald, J., Baer, J. L.,Cache Coherence Protocols: Evaluation Using a

Multiprocessor Simulation Model, ACM Transactions on Computer

Systems, Vol. 4, No. 4, November 1986.

ASTRA76 Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P.,

Gray, J. N., Griffiths, P. P., King, W. F., Lorie, R. A., McJones, P. R., Mehl,

J. W., Putzolu, G. R., Traiger, I. L., Wade, B. W., Watson, V.,System R:

Relational Approach to Database Management, ACM Transactions on

Database Systems, Vol. 1, No. 2, June 1976.

BADRI92 Badrinath, B. R., Ramamritham, K.,Semantics-Based Concurrency

Control: Beyond Commutativity, ACM Transactions on Database Systems,

Vol. 17, No. 1, March 1992.

BALZER85 Balzer, R., Automated Enhancement of Knowledge Representations,

International Joint Conference on Artifical Intelligence, 1985.

BAN81 Bancilhon, F., Spyratos, N.,Update Semantics of Relational Views, ACM

Transactions on Database Systems, Vol. 6, No. 4, December 1981.

BARG91 Barghouti, N. S., Kaiser, G. E.,Concurrency Control in Advanced

Database Applications, ACM Computing Surveys, Vol. 23, No. 3,

September 1991.

BARNES80 Barnes, J. G. P.,An Overview of ADA, Software Practice and Experience,

Vol. 10, 1980.

312

BERM94 Berman, D. F., Bartell, J. T., Salesin, D. H.,Multiresolution Painting and

Compositing, ACM Computer Graphics Proceedings Annual Conference

Series, 1994.

BERN81 Bernstein, P. A., Goodman, N.,Concurrency Control in Distributed

Database Systems, ACM Computing Surveys, Vol. 13, No. 2, June 1981.

BERN87 Bernstein, P. A., Hadzilacos, V., Goodman, N.,Concurrency Control and

Recovery in Database Systems, Addison Wesley Publishing Company Inc.,

ISBN 0-201-10715-5, 1987.

BESH85 Beshers, G., Campbell, R.,Maintained and Constructor Attributes, ACM

SIGPLAN 85 Symposium on Language Issues in Programming

Environments, June 1985.

BIRT73 Birtwistle, G. M., Dahl, O-J, Myhrhaug, B. Nygaard, K.,SimulaBegin,

Studentlitteratur and Auerbach Publishers, ISBN 91-44-06211-7, 1973.

BON97 Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P., Slack,

M. G., Experiences with an Architecture for Intelligent Reactive Agents,

Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9, No.

2, 1997.

BORN82 Borning, A. H., Ingalls, D. H. H.,Multiple Inheritance in Smalltalk-80,

American Association for Artifical Intelligence Conference, August 1982.

BRINCH78 Brinch Hansen, P.,Distributed Processes: A Concurrent Programming

Concept, Communications of the ACM, Vol. 21, No. 11, November 1978.

BRAHMA90 Brahmadathan, K., Ramarao, K. V. S.,On the Management of Long-Living

Transactions, Journal of Systems Software, Vol. 11, 1990.

BRILL96 Brill, F., Representation of Local Space in Perception/Action Systems:

Behaving Appropriately in Difficult Situations, Ph.D. Dissertation,

Department of Computer Science, University of Virginia, 1996.

BRILL98 Brill, F., Wasson, G., Ferrer, G., Martin W.,The Effective Field of View

Paradigm: Adding Representation to a Reactive System, Engineering

Applications of Artificial Intelligence issue on Machine Vision for

Intelligent Vehicles and Autonomous Robots, Vol. 11, 1998.

313

BROOKS86 Brooks, R. A.,A Robust Layered Control System For A Mobile Robot,

IEEE Journal of Robotics and Automation, Vol. RA-2, No. 1, March 1986.

BURD95 Burdick, C. D.,Interoperability of Simulations with Different Levels of

Resolution, Defense Modeling and Simulation Office (DMSO) Workshop,

Alexandria, Virginia, November 1995.

BURNS98 Burns, A., Prasad, D., Bondavalli, A., Di Giandomenico, F., Ramamritham,

K., Stankovic, J., Strigini, L.,The Meaning and Role of Value in Scheduling

Flexible Real-Time Systems, Technical Report CS-98-29, Department of

Computer Science, University of Virginia, 1998.

CALD95A Calder, R. B., Peacock, J. C., Panagos, J., Johnson, T. E.,Integration of

Constructive, Virtual, Live, and Engineering Simulations in the JPSD

CLCGF, 5th Conference on Computer Generated Forces & Behavioral

Representation, Orlando, Florida, May 1995.

CALD95B Calder, R. B., Peacock, J. C., Wise, B. P. Jr., Stanzione, T., Chamberlain, F.,

Panagos, J.,Implementation of a Dynamic Aggregation/Deaggregation

Process in the JPSD CLCGF, 5th Conference on Computer Generated

Forces & Behavioral Representation, Orlando, Florida, May 1995.

CARD85 Cardelli, L., Wegner, P.,On Undertanding Types, Data Abstractions, and

Polymorphism, ACM Computing Surveys, Vol. 17, No. 4, December 1985.

CHAM75 Chamberlin, D. D., Gray, J. N., Traiger, I. L.,Views, Authorization, and

Locking in a Relational Database System, American Federation of

Information Processing Societies Conference, 1975.

CHEN76 Chen, P. P.,The Entity-Relationship Model — Toward a Unified View of

Data, ACM Transactions on Database Systems, Vol. 1, No. 1, March 1976.

CLARK76 Clark, J. H., Hierarchical Geometric Models for Visible Surface

Algorithms, Communications of the ACM, Vol. 19, No. 10, October 1976.

CLARK94 Clark, K. J., Brewer, D.,Bridging the Gap Between Aggregate Level and

Object Level Exercises, 4th Conference on Computer Generated Forces &

Behavioral Representation, Orlando, Florida, May 1994.

314

CODD70 Codd, E. F.,A Relational Model of Data for Large Shared Data Banks,

Communications of the ACM, Vol. 13, No. 6, June 1970.

CORMEN89 Cormen, T. H., Leiserson, C. E., Rivest, R. L.,Introduction to Algorithms,

MIT Press, ISBN 0-262-03141-8, 1989.

COX95 Cox, A., Maybury, J., Weeden, N.,Aggregation Disaggregation Research

— A UK Approach, 13th DIS Workshop on Standards for the

Interoperability of Distributed Simulations, Orlando, Florida, September

1995.

DAH95 Dahmann, J., Wood, D. C.,editors, Special Issue of IEEE Distributed

Interactive Simulation, Vol. 83, No. 8, August 1995.

DAHL66 Dahl, O-J., Nygaard, K.,Simula — An Algol-Based Simulation Language,

Communications of the ACM, Vol. 9, No. 9, September 1966.

DATE95 Date, C. J.,An Introduction to Database Systems (Sixth Edition), Addison

Wesley Publishing Company Inc., ISBN 0-201-54329-X, 1995.

DAVIS82 Davis, A. L., Keller, R. M.,Data Flow Program Graphs, IEEE Computer,

Vol. 15, No. 2, February 1982.

DAVIS92 Davis, P. K.,An Introduction to Variable-Resolution Modeling and Cross-

Resolution Model Connection, Conference on Variable-Resolution

Modeling, Washington, DC, May 1992.

DAVIS93 Davis, P. K., Hillestad, R. J.,Families of Models that Cross Levels of

Resolution: Issues for Design, Calibration and Management, Winter

Simulation Conference, 1993.

DAVIS98 Davis, P. K., Bigelow, J. H.,Experiments in Multiresolution Modeling

(MRM), Prepared for the Defense Advanced Research Projects Agency by

RAND’s National Defense Research Institute, ISBN 0-8330-2653-4, 1998.

DEMERS85 Demers, A., Rogers, A., Zadeck, F. K.,Attribute Propagation by Message

Passing, ACM SIGPLAN 85 Symposium on Language Issues in

Programming Environments, June 1985.

DENNIS80 Dennis, J. B.,Data Flow Supercomputers, IEEE Computer, Vol. 13, No. 1,

November 1980.

315

DIS93 DIS Steering Committee,The DIS Vision, A Map to the Future of

Distributed Simulation, Comment Draft, October 1993.

DOD94 Under Secretary of Defense (Acquisition and Technology),Modeling and

Simulation (M&S) Master Plan, Dept. of Defense, September 1994.

EPST85 Epstein, J. M.,The Calculus of Conventional War: Dynamic Analysis

Without Lanchester Theory, The Brookings Institute, 1985.

ERMAN80 Erman, L. D., Hayes-Roth, F., Lesser, V. R., Reddy, D. R.,The Hearsay-II

Speech-Understanding System: Integrating Knowledge to Resolve

Uncertainty, ACM Computing Surveys, Vol. 12, No. 2, June 1980.

ESWA76 Eswaran, K. P., Gray, J. N., Lorie, R. A., Traiger, I. L.,The Notions of

Consistency and Predicate Locks in a Database System, Communications

of the ACM, Vol. 19, No. 11, November 1976.

FIRBY87 Firby, R. J.,An Investigation into Reactive Planning in Complex Domains,

American Association for Artifical Intelligence Conference, 1987.

FOWLER97 Fowler, M., Scott, K.,UML Distilled, Addison Wesley Longman Inc.,

ISBN 0-201-32563-2, 1997.

FRANCE93 Franceschini, R. W.,Intelligent Placement of Disaggregated Entities,

Institute for Simulation and Training, 1993.

FREE90 Freeman-Benson, B. N., Maloney, J., Borning, A.,An Incremental

Constraint Solver, Communications of the ACM, Vol. 33, No. 1, January

1990.

FRÜH92A Frühwirth, T., Herold, A., Küchenhoff, V., Le Provost, T., Lim, P.,

Monfroy, E., Wallace, M.,Constraint Logic Programming — An Informal

Introduction, Logic Programming in Action, LNCS 636, Springer-Verlag,

1992, Technical Report ECRC-92-6i, European Computer-Industry

Research Centre, July 1992.

FRÜH92B Frühwirth, T., Constraint Simplification Rules, Technical Report ECRC-

92-18, European Computer-Industry Research Centre, July 1992.

FUJI90 Fujimoto, R. M.,Parallel Discrete Event Simulation, Communications of

the ACM, Vol. 33, No. 10, October 1990.

316

GAJSKI82 Gajski, D. D., Padua, D. A., Kuck, D. J., Kuhn, R. H.,A Second Opinion on

Data Flow Machines and Languages, IEEE Computer, Vol. 15, No. 2,

February 1982.

GAR87 Garlan, D.,Views for Tools in Integrated Environments, Ph.D. Dissertation,

Technical Report CMU-CS-87-147, School of Computer Science, Carnegie

Mellon University, 1987.

GAR95 Garland, M., Heckbert. P. S.,Fast Polygonal Approximations of Terrains

and Height Fields, Technical Report CMU-CS-95-181, School of

Computer Science, Carnegie Mellon University, September 1995.

GARCIA83 Garcia-Molina, H.,Using Semantic Knowledge for Transaction Processing

in a Distributed Database, ACM Transactions on Database Systems, Vol.

8, No. 2, June 1983.

GARCÍA93 García de la Banda, M., Hermenegildo, M., Marriott, K.,Independence in

Constraint Logic Programs, International Logic Programming

Symposium, MIT Press, 1993.

GAT92 Gat, E., Integrating Planning and Execution in a Heterogeneous

Asychronous Architecture for Controlling Real-World Mobile Robots,

American Association for Artifical Intelligence Conference, 1992.

GIORGI90 Giorgi, F.,Simulation of Regional Climate Using a Limited Area Model

Nested in a General Circulation Model, Journal of Climate, Vol. 3,

September 1990.

GIORGI91 Giorgi, F., Mearns, L. O.,Approaches to the Simulation of Regional

Climate: A Review, Reviews of Geophysics, Vol. 29, No. 2, May 1991.

GOLD80 Goldstein, I. P., Bobrow, D. G.,Descriptions for a Programming

Environment, First Annual Conference of the National Association for

Artificial Intelligence, August 1980, Xerox Technical Report CSL-81-3.

GOOD75 Goodenough, J. B.,Exception Handling: Issues and a Proposed Notation,

Communications of the ACM, Vol. 18, No. 12, December 1975.

GRIM93 Grimshaw, A. S., Strayer, W. T., Narayan P.,Dynamic, Object-Oriented

Parallel Processing, IEEE Parallel and Distributed Technology, May 1993.

317

HAER83 Haerder, T., Reuter, A.,Principles of Transaction-Oriented Database

Recovery, ACM Computing Surveys, Vol. 15, No. 4, December 1983.

HANKS90 Hanks, S., Firby, R. J.,Issues and Architectures for Planning and

Execution, DARPA Workshop on Innovative Approaches to Planning,

Scheduling and Control, San Mateo, CA, November 1990.

HARDY94 Hardy, D., Healy, M.,Constructive & Virtual Interoperation: A Technical

Challenge, 4th Conference on Computer Generated Forces & Behavioral

Representation, Orlando, Florida, May 1994.

HARSH92 Harshberger, E. R., Bennett, B. E., Frelinger, D. R.,An Approach to

Hierarchies of Models: Process Independence, Conference on Variable-

Resolution Modeling, Washington, DC, May 1992.

HECK94 Heckbert, P. S., Garland, M.,Multiresolution Modeling for Fast Rendering,

Graphics Interface, Banff, Canada, May 1994.

HECK97 Heckbert, P. S., Garland, M.,Survey of Polygonal Surface Simplification

Algorithms, Multiresolution Surface Modeling Course, ACM Computer

Graphics Proceedings Annual Conference Series, May 1997.

HENN96 Hennessey, J. L., Patterson, D. A.,Computer Architecture: A Quantitative

Approach (Second Edition), Morgan Kaufmann Publishers, ISBN 1-55860-

329-8, 1996.

HILL 92A Hillestad, R. J., Juncosa, M. L.,Cutting Some Trees to See the Forest: On

Aggregation and Disaggregation in Combat Models, Conference on

Variable-Resolution Modeling, Washington, DC, May 1992, Naval

Research Logistics, Vol. 42, 1995.

HILL 92B Hillestad, R. J., Owen, J., Blumenthal, D.,Experiments in Variable

Resolution Combat Modeling, Conference on Variable-Resolution

Modeling, Washington, DC, May 1992, Naval Research Logistics, Vol. 42,

1995.

HOFER95 Hofer, R. C., Loper, M. L.,DIS Today, Proceedings of the IEEE, Vol. 83,

No. 8, August 1995.

318

HOP79 Hopcroft, J. E., Ullman, J. D.,Introduction to Automata Theory,

Languages, and Computation, Addison Wesley Publishing Company Inc.,

ISBN 0-201-02988-X, 1979.

HOR86 Horwitz, S., Teitelbaum, T.,Generating Editing Environments Based on

Relations and Attributes, ACM Transactions on Programming Languages

and Systems, Vol. 8, No. 4, October 1986.

HORR92 Horrigan, T. J., The “Configuration Problem” and Challenges for

Aggregation, Conference on Variable-Resolution Modeling, Washington,

DC, May 1992.

HOW97 Howard, J. D.,An Analysis of Security Incidents on the Internet 1989-1995,

Ph.D. Dissertation, Engineering and Public Policy, Carnegie Mellon

University, 1997.

HUMBEL96 Humbel, S., Sieber, S., Morokuma, K.,The IMOMO method: Integration of

different levels of molecular orbital approximations for geometry

optimization of large systems: Test forn-butane confirmation andSN2

reaction: RCl+Cl−, Journal of Chemical Physics, Vol. 105, No. 5, August

1996.

JAFFAR92 Jaffar, J., Michaylov, S., Stuckey, P., Yap, R. H. C.,The CLP(ℜ) Language

and System, ACM Transactions on Programming Languages and Systems,

Vol. 14, No. 3, July 1992.

JAFFAR94 Jaffar, J., Maher, M. J.,Constraint Logic Programming: A Survey, Journal

of Logic Programming, Vol. 19, May 1994.

JEFF85 Jefferson, D. R.,Virtual Time, ACM Transactions on Programming

Languages and Systems, Vol. 7, No. 3, July 1985.

JPSD97 —,Federate Object Model for Joint Precision Strike Demonstration, OMT

v1.3, 1997.

JTFP97 —, Federate Object Model for Joint Task Force Prototype, OMT v1.3,

1997.

319

KARR83 Karr, A. F., Lanchester Attrition Processes and Theater-Level Combat

Models, Mathematics of Conflict, Elsevier Science Publishers B.V. (North-

Holland), ISBN: 0 444 86678 7, 1983.

KARR94 Karr, C. R., Root, E.,Integrating Aggregate and Vehicle Level Simulations,

4th Conference on Computer Generated Forces & Behavioral

Representation, Orlando, Florida, 1994.

KERN88 Kernighan, B. W., Ritchie, D. M.,The C Programming Language (Second

Edition), Prentice Hall Inc., ISBN 0-13-110370-9, 1988.

KNUTH68 Knuth, D. E.,Semantics of Context-free Languages, Mathematical Systems

Theory, Vol. 2, No. 2, June 1968.

KNUTH71 Knuth, D. E., Semantics of Context-free Languages: Correction,

Mathematical Systems Theory, Vol. 5, No. 1, March 1971.

KORTH88 Korth, H. F., Speegle, G. D.,Formal Model of Correctness without

Serializability, ACM SIGMOD Record, Vol. 17, No. 3, September 1988.

LAIRD91 Laird, J., Yager, E., Hucka, M., Tuck, C.,Robo-Soar: An Integration of

External Interaction, Planning, and Learning using Soar, Robotics and

Autonomous Systems, Vol. 8, 1991.

LAM78 Lamport, L.,Time, Clocks, and the Ordering of Events in a Distributed

System, Communications of the ACM, Vol. 21, No. 7, July 1978.

LAM94 Lamport, L., The Temporal Logic of Actions, ACM Transactions on

Programming Languages and Systems, Vol. 16, No. 3, May 1994.

LEE98 Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D.,MAPS:

Multiresolution Adaptive Parameterization of Surfaces, Computer

Graphics Proceedings Annual Conference Series, 1998.

LINTON84 Linton, M. A., Implementing Relational Views of Programs, ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, April 1984.

LISKOV79 Liskov, B. H., Snyder, A.,Exception Handling in CLU, IEEE Transactions

on Software Engineering, Vol. SE-5, No. 6, November 1979.

320

LUEBKE97 Luebke, D.,Survey of Polygonal Simplification Algorithms, Technical

Report TR97-045, Department of Computer Science, University of North

Carolina, 1997.

LYNCH83 Lynch, N. A., Multilevel atomicity: a new correctness criterion for

database concurrency control, ACM Transactions on Database Systems,

Vol. 8, No. 4, December 1983.

MAD74 Madnick, S. E., Donovan, J. J,Operating Systems, McGraw-Hill Inc.,

ISBN 0-07-039455-5, 1974.

MARR93 Marriott, K., Stuckey, P. J.,The 3 R’s of Optimizing Constraint Logic

Programs: Refinement, Removal and Reordering, 20th Annual ACM

Symposium on Principles of Programming Languages, 1993.

MATSU96 Matsubara, T., Maseras, F., Koga, N., Morokuma, K.,Application of the

New “Integrated MO+ MM” (IMOMM) Method to the Organometallic

Reaction Pt(PR3)2 + H2 (R = H, Me, t-Bu, and Ph), Journal of Physical

Chemistry, Vol. 100, No. 7, 1996.

MATT89 Mattern, F.,Virtual Time and Global States of Distributed Systems, Parallel

and Distributed Algorithms, Elsevier Science Publishers B.V. (North-

Holland), 1989.

MILLER95 Miller, D. C., Thorpe, J. A.,SIMNET: The Advent of Simulator

Networking, Proceedings of the IEEE, Vol. 83, No. 8, August 1995.

MUNSON96 Munson, J., Dewan, P.,A Concurrency Control Framework for

Collaborative Systems, ACM Conference on Computer Supported

Cooperative Work, 1996.

NAT95 Natrajan, A., Nguyen-Tuong, A.,To disaggregate or not to disaggregate,

that is not the question, ELECSIM, Internet, April-June, 1995, Technical

Report CS-95-18, Department of Computer Science, University of

Virginia, 1995.

321

NAT96 Natrajan, A., Reynolds Jr., P. F., Srinivasan, S.,Consistency Maintenance

using UNIFY, Technical Report CS-95-28, Department of Computer

Science, University of Virginia, 1996, Part of Grant Proposal to DMSO,

1995-1996.

NAT97 Natrajan, A., Reynolds Jr., P. F., Srinivasan, S.,A Flexible Approach to

Multi-Resolution Modeling, Parallel and Distributed Simulation, June

1997.

NAT99 Natrajan, A., Reynolds Jr., P. F.,Resolving Concurrent Interactions, 3rd

International Workshop on Distributed Interactive Simulation and Real

Time Applications, October 1999.

NRC97 Committee on Modeling and Simulation: Opportunities for Collaboration

between the Defense and Entertainment Research Communities,Modeling

and Simulation: Linking Entertainment and Defense, National Research

Council, October 1993.

OMT98 U.S. Department of Defense,High Level Architecture Object Model

Template Specification Version 1.3, IEEE P1516.2, Standard for Modeling

and Simulation, April 1998.

PAPA86 Papadimitriou, C. H.,The Theory of Database Concurrency Control,

Computer Science Press, ISBN 0-88175-027-1, 1986.

PETER77 Peterson, J. L.,Petri Nets, ACM Computing Surveys, Vol. 9, No. 3,

September 1977.

PETRI62 Petri, C. A.,Kommunikation mit Automaten, Ph.D. dissertation, Schriften

des Rheinisch-Westfalischen Institutes für Instrumentelle Mathematik an

der Universitat Bonn, 1962.

PETTY94 Petty, M. D.,The Turing Test as an Evaluation Criterion for Computer

Generated Forces, 4th Conference on Computer Generated Forces &

Behavioral Representation, Orlando, Florida, May 1994.

322

PETTY95 Petty, M. D., Franceschini, R. W.,Disaggregation Overload and Spreading

Disaggregation in Constructive+Virtual Linkages, 5th Conference on

Computer Generated Forces & Behavioral Representation, Orlando,

Florida, May 1995.

PRATT95 Pratt, D. R., Johnson, M. A.,Constructive and Virtual Model Linkage,

Winter Simulation Conference, 1995.

PULLEN95 Pullen, J. M., Wood, D. C.,Networking Technology and DIS, Proceedings

of the IEEE, Vol. 83, No. 8, August 1995.

PUPPO97 Puppo, E., Scopigno, R.,Simplification. LOD and Multiresolution

Principles and Applications, Eurographics, Vol. 16, No. 3, 1997.

REDDY95 Reddy, R., Garrett, R.,Future Technology Challenges in Distributed

Interactive Simulation, Proceedings of the IEEE, Vol. 83, No. 8, August

1995.

REPS84 Reps, T., Teitelbaum, T.,The Synthesizer Generator, ACM SIGSOFT/

SIGPLAN Software Engineering Symposium on Practical Software

Development Environments, Software Engineering Notes, Vol. 9, No. 3,

SIGPLAN Notices, Vol. 19, No. 5, May 1984.

REPS86 Reps, T., Marceau, C., Teitelbaum, T.,Remote attribute updating for

language-based editors, 13th Annual ACM Symposium on Principles of

Programming Languages, 1986.

REYN94 Reynolds Jr., P. F.,DISorientation, ELECSIM 94, Internet, April-June,

1994.

REYN97 Reynolds Jr., P. F., Natrajan, A., Srinivasan, S.,Consistency Maintenance

in Multi-Resolution Simulations, ACM Transactions on Modeling and

Computer Simulation, Vol. 7, No. 3, July 1997.

RISBEY96 Risbey, J. S., Stone, P. H.,A Case Study of the Adequacy of GCM

Simulations for Input to Regional Climate Change Assessments, Journal of

Climate, Vol. 9, July 1996.

ROBKIN92 Robkin, M.,A proposal to Modify the Distributed Interactive Simulation

Aggregate PDU, Hughes Training Inc., February 1992.

323

ROSSER82 Rosser, J. B.,Highlights of the history of the lambda-calculus, Conference

Record of 1982 ACM Symposium on Lisp and Functional Programming,

1992.

RPR97 —,Federate Object Model for Real-time Platform Reference, OMT v1.3,

September 1997.

RUM91 Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.,Object-

Oriented Modeling and Design, Prentice Hall PTR, ISBN 0-13-629841-9,

1991.

SACER74 Sacerdoti, E. D.,Planning in a Hierarchy of Abstraction Spaces, Artificial

Intelligence, Vol. 5, 1974.

SARAS91 Saraswat, V. A., Rinard, M., Panangaden, P.,Semantic Foundations of

concurrent constraint programming, 18th Annual ACM Symposium on

Principles of Programming Languages, 1991.

SEIDEL95 Seidel, D. W., King, B. C., Burke, C. D.,AIM Approach to Simulation

Interoperability,The MITRE Corporation, Preliminary Draft, July 1995.

SHER92 Sherman, R., Butler, B.,Segmenting the Battlefield, Loral WDL, June

1992.

SHLAER92 Shlaer, S., Mellor, S. J.,Object Lifecycles: Modeling the World in States,

Prentice Hall PTR, ISBN 0-13-629940-7, 1992.

SILB91 Silberschatz, A., Peterson, J. L., Galvin, P.,Operating System Concepts

(Third Edition), Addison Wesley Publishing Company Inc., ISBN 0-201-

51379-X, 1991.

SIM94 Simmons, R., Structured Control for Autonomous Robots, IEEE

Transactions on Robotics and Automation, Vol. 10, No. 1, February 1994.

SMITH94 Smith, R. D.,Invited speaker, Department of Computer Science, University

of Virginia, December 1994.

SMITH95 Smith, R. D., The Conflict Between Heterogeneous Simulation and

Interoperability, 17th Inter-Service/Industry Training, Simulation, and

Education Conference (I/ITSEC) Proceedings, November 1995.

324

STEFIK86 Stefik, M., Bobrow, D. G.,Object-Oriented Programming: Themes and

Variations, AI Magazine, Vol. 6, No. 4, 1986.

STEIN94 Steinman, J. S., Wieland, F.,Parallel Proximity Detection and the

Distribution List Algorithm, 1994.

STOBER95 Stober, D. R., Kraus, M. K., Foss, W. F., Franceschini, R. W., Petty, M. D.,

Survey of Constructive+Virtual Linkages, 5th Conference on Computer

Generated Forces & Behavioral Representation, Orlando, Florida, May

1995.

STONE76 Stonebraker, M. R., Wong, E., Kreps, P., Held, G.,The Design and

Implementation of Ingres, ACM Transactions on Database Systems, Vol. 1,

No. 3, September 1976.

STROU91 Stroustrup, B.,The C++ Programming Language (Second Edition),

Addison Wesley Publishing Company Inc., ISBN 0-201-53992-6, 1991.

SULL94 Sullivan, K. J.,Mediators: Easing the Design and Evolution of Integrated

Systems, Ph.D. Dissertation, Technical Report 94-08-01, Department of

Computer Science and Engineering, University of Washington, 1984.

SVEN96A Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S.,

Morokuma, K.,ONIOM: A Multilayered Integrated MO+ MM Method for

Geometry Optimizations and Single Point Energy Predictions. A Test for

Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition, Journal

of Physical Chemistry, Vol. 100, No. 50, 1996.

SVEN96B Svensson, M., Humbel, S., Morokuma, K.,Energetics using the single

point IMOMO (integrated molecular orbital+ molecular orbital)

calculations: Choices of computational levels and model system, Journal of

Chemical Physics, Vol. 105, No. 9, September 1996.

TANEN92 Tanenbaum, A. S.,Modern Operating Systems, Prentice Hall Inc., ISBN 0-

13-595752-4, 1992.

TEXEL97 Texel, P. P., Williams, C. B.,Use Cases combined with Booch/OMT/UML:

Process and Products, Prentice Hall PTR, ISBN 0-13-727405-X, 1997.

325

THOM98 Thomasin, A.,Concurrency Control: Methods, Performances and Analysis,

ACM Computing Surveys, Vol. 30, No. 1, March 1998.

TURING50 Turing, A. M., Computing Machinery and Intelligence, Mind, Vol. 59,

October 1950.

VAN96 Van Hentenryck, P., Saraswat, V. A.,et al, Strategic Directions in

Constraint Programming, ACM Computing Surveys, Vol. 28, No. 4,

December 1996.

WAS98A Wasson, G., Martin, W.,Multi-tiered Representation for Autonomous

Robots, SPIE Conference on Mobile Robots and Autonomous Systems,

November 1998.

WAS98B Wasson, G. S., Natrajan, A., Gunderson, J. P., Ferrer, G. J., Martin, W. N.,

Reynolds Jr., P. F.,Consistency Maintenance in Autonomous Agent

Representations, Technical Report CS-98-06, Department of Computer

Science, University of Virginia, 1998.

WAS99 Wasson, G. S.,Design of Representation Systems for Autonomous Agents,

Ph.D. Dissertation, Department of Computer Science, University of

Virginia, 1999.

WEAT93 Weatherly, R. M., Wilson, A. L., Griffin, S. P.,ALSP — Theory, Experience

and Future Directions, Winter Simulation Conference, 1993.

WEIHL88 Weihl, W. E., Commutativity-Based Concurrency Control for Abstract

Data Types, IEEE Transactions on Computers, Vol. 37, No. 12, December

1988.

WILL 93 Williams, C. C.,Concurrency Control in Asynchronous Computations,

Ph.D. Dissertation, Department of Computer Science, University of

Virginia, 1998.

WIM86 Wimsatt, W. C.,Heuristics and the Study of Human Behavior, in Fiske, D.,

Shweder, R., eds., Meta-Theory in the Social Sciences: Pluralisms and

Subjectives, University of Chicago Press, 1986.

326

YEMINI85 Yemini, S., Berry, D. M.,A Modular Verifiable Exception-Handling

Mechanism, ACM Transactions on Programming Languages and Systems,

Vol. 7, No. 2, April 1985.

ZORIN97 Zorin, D., Schröder, P., Sweldens, W.,Interactive Multiresolution Mesh

Editing, ACM Computer Graphics Proceedings Annual Conference Series,

May 1997.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	1.1 Background
	1.2 UNIFY — An Overview
	Figure 1: Our Approach to MRM

	1.3 Requirements for Effective MRM
	R1: Multi-representation Interaction: Entities in each model may initiate and receive interaction...
	R2: Multi-representation Consistency: The representations of jointly-executing models must be con...
	R3: Cost-effectiveness: The costs of simulating multiple models and maintaining consistency among...

	1.4 Claims and Contributions
	1.5 Evaluation
	1.6 Outline

	Related Work
	2.1 MRM Applications
	2.1.1 Multi-Resolution Graphical Modelling
	2.1.2 Hierarchical Autonomous Agents
	2.1.3 Blackboard Systems
	2.1.4 Cache Coherence
	2.1.5 Abstract Data Types and Object Inheritance
	2.1.6 Views in Databases and Integrated Environments
	2.1.7 Nested Climate Modelling
	2.1.8 Integrated Molecular Modelling
	2.1.9 Multi-Level Computer Games
	2.1.10 Battleﬁeld Simulations
	2.1.11 MRM Applications Summary
	Table 1: Evaluation of Domains employing MRM

	2.2 Multi-Model Execution
	2.2.1 Selective Viewing
	2.2.2 Aggregation-Disaggregation
	2.2.2.1 Full Disaggregation
	Figure 2: Full Disaggregation

	2.2.2.2 Partial Disaggregation
	Figure 3: Partial Disaggregation

	2.2.2.3 Playboxes
	Figure 4: Playbox

	2.2.2.4 Pseudo-Disaggregation
	Figure 5: Pseudo-disaggregation

	2.2.3 Variable Resolution Modelling

	2.3 Maintaining Consistency among Concurrent Representations
	2.4 Chapter Summary

	Foundation
	3.1 Model
	3.2 Interactions
	3.3 Multi-models
	3.3.1 Cross-model Relationships
	3.3.2 Mapping Functions
	3.3.3 Time-Steps
	Figure 6: Possible compatible time-steps

	3.4 Evaluation
	3.5 Assumptions and Rationale
	Existence of representations: A representation exists for an entity and can inﬂuence the behaviou...
	Existence of satisfactory models: Individual models meet their users’ requirements.
	Existence of mapping functions: There exist mapping functions to translate the representation of ...
	Existence of policies for concurrent interactions: There exist policies for resolving the effects...
	Existence of compatible time-steps: The time-steps at which the models execute are compatible.

	3.6 Chapter Summary

	Fundamental Observations
	4.1 Problems with Aggregation-Disaggregation
	4.1.1 Mapping Inconsistency
	Figure 7: Mapping Inconsistency

	4.1.2 Chain Disaggregation
	Figure 8: Chain Disaggregation

	4.1.3 Transition Latency
	4.1.4 Thrashing
	4.1.5 Network Flooding
	4.1.6 Cross-Level Interactions
	4.1.7 Summary of Problems with Aggregation-Disaggregation

	4.2 Fundamental Observations
	4.2.1 Fundamental Observation 1
	FO-1: For effective joint execution, objects or processes should be modelled at representation le...
	Figure 9: Fundamental Observation 1

	4.2.2 Fundamental Observation 2
	FO-2: The effects of concurrent interactions at multiple representation levels must be combined c...
	Figure 10: Reducing transition overheads by limiting propagation of transitions
	Figure 11: Concurrent multi-level interactions

	4.2.3 Fundamental Observation 3
	Figure 12: Dependency considerations
	FO-3: Concurrent interactions may be dependent.

	4.2.4 Fundamental Observation 4
	FO-4: Time differentials may cause inconsistencies.
	Figure 13: Time-steps — Equal and In-phase
	Figure 14: Time-steps — Equal but not In-phase
	Figure 15: Time-steps — Unequal and not In-phase
	Figure 16: Compatible Time-steps
	Figure 17: Eliminating time-step differentials

	4.3 Chapter Summary

	Multiple Representation Entities
	5.1 Description of an MRE
	Figure 18: An MRE
	Figure 19: Multi-representation Interaction

	5.2 Challenges
	5.3 Rationale
	Table 2: Summary of Assumptions made by MRM approaches

	5.4 Execution of an MRE
	Figure 20: Execution of an MRE
	5.4.1 Maintaining Consistency
	5.4.1.1 Temporal Consistency
	Figure 21: T�joint entity

	5.4.1.2 Mapping Consistency

	5.4.2 Resolving Concurrent Interactions
	5.4.3 Storing Attributes in a Core
	Figure 22: Core attributes

	5.4.4 Comparing against Alternative Approaches
	5.4.4.1 Comparing against aggregation-disaggregation
	5.4.4.2 Comparing against selective viewing
	Table 3: Comparison among MRM approaches

	5.5 Beneﬁts of MREs
	Figure 23: Eliminating Chain Disaggregation
	Figure 24: Reducing Network Flooding
	Table 4: Summary of Beneﬁts of MREs

	5.6 Limitations of MREs
	Table 5: Summary of Limitations of MREs

	5.7 Chapter Summary
	Table 6: Comparison among MRM approaches

	Consistency Enforcers
	6.1 Constructing an Attribute Dependency Graph
	Figure 25: Simple ADG
	Figure 26: Platoon-Tanks MRE
	6.1.1 Assigning Nodes to Attributes
	Figure 27: Nodes in the ADG for the Platoon-Tanks MRE

	6.1.2 Assigning Arcs to Dependencies
	Figure 28: Dependencies in the ADG for the Platoon-Tanks MRE

	6.1.3 Assigning Semantics to Dependencies
	6.1.3.1 Cumulative and Distributive Dependencies
	6.1.3.2 Interaction and Modelling Dependencies
	6.1.3.3 Selecting Dependencies
	Table 7: Assigning Cumulative and Distributive Dependencies

	6.1.3.4 Properties of Dependency Classes
	6.1.3.5 Examples of Dependency Classes
	Figure 29: Dependency Classes in the ADG for the Platoon-Tanks MRE

	6.1.3.6 Dependency Weights
	Figure 30: Cumulative Weights
	Figure 31: Distributive Weights

	6.1.3.7 Interaction Semantics

	6.1.4 Summary of Attribute Dependency Graphs

	6.2 Selecting Mapping Functions
	Figure 32: Mapping Value Spaces
	Figure 33: Mapping Changes in Values

	6.3 Traversing an ADG
	6.3.1 Algorithm for Traversing an ADG
	Figure 34: Algorithm for ADG Traversal
	Figure 35: Applying the Effects of an Interaction

	6.3.2 Cyclic Dependencies
	Figure 36: Propagation of Interaction Effects

	6.3.3 Unplanned Dependencies
	6.3.4 Traversal Path
	Table 8: Effects of an Interaction

	6.4 Possible Implementations of a Consistency Enforcer
	6.4.1 As-Is
	6.4.2 Spreadsheets
	6.4.3 Attribute Grammars
	6.4.4 Mediators
	6.4.5 Constraint Solvers

	6.5 Chapter Summary

	Interaction Resolvers
	7.1 Interactions
	7.2 Serialization
	Figure 37: Clients and Server

	7.3 Abandoning Isolation
	7.4 Switches — A Simple System
	7.4.1 Unconstrained System
	Figure 38: Switches
	Figure 39: State Transition Diagram

	7.4.2 Constrained System
	Figure 40: Constrained Switches
	Figure 41: New States
	Figure 42: Constrained State Transition Diagram

	7.4.3 Dependent Concurrent Interactions
	Figure 43: Transitions on Concurrent Interactions

	7.4.4 Complexity

	7.5 A Taxonomy of Interactions
	7.5.1 Properties of a Taxonomy of Interactions
	7.5.2 Interaction Characteristics and Classes
	7.5.2.1 Request and Response
	7.5.2.2 Certain and Uncertain
	7.5.2.3 Combining Characteristics
	Figure 44: Classes of Interactions
	Type�0: Response Ÿ Certain e.g., physical events
	Type�1: Response Ÿ Uncertain e.g., updates
	Type�2: Request Ÿ Certain e.g., reads
	Type�3: Request Ÿ Uncertain e.g., orders

	7.5.3 Evaluating the Taxonomy
	7.5.4 Resolving Effects of Concurrent Interactions
	Property 1: If the concurrent occurrence of interactions is indistinguishable from a sequential o...
	Property 2: If concurrent interactions affect disjoint sets of attributes, they are independent.
	Figure 45: Concurrent Interactions Affecting Sets of Attributes

	Property 3: Concurrent response and request interactions are independent.
	Figure 46: Independent Concurrent Response and Request Interactions

	7.5.5 Policies for Resolving Effects of Interactions

	7.6 Constructing an Interaction Resolver
	7.6.1 Operation of an IR
	Figure 47: Algorithm for Resolving Interactions

	7.6.2 An Example IR
	Table 9: Example Concurrent Interactions
	L1: If Move_Platoon occurs concurrently with Move_Tank1 or Move_Tank2, then Move_Platoon takes ef...
	L2: If Detonation occurs concurrently with Collide_Tank1 or Collide_Tank2, the interactions have ...
	L3: If a change caused by an interaction is discarded, the interaction is discarded entirely, i.e...
	Table 10: Effects of Concurrent Interactions

	7.7 Chapter Summary

	Applying UNIFY: A Process
	8.1 Guidelines for MRM Designers
	G1: Represent entities at levels at which they can interact. This guideline arises from FO�1 in §...
	G2: Maintain concurrent representations for jointly-executing models. Maintaining concurrent repr...
	G3: Make the time-steps of the multiple models compatible. If jointly-executing models have compa...
	G4: Capture cross-model relationships. Capturing relationships among representations involves det...
	G5: Propagate the effects of an interaction to all representation levels. An interaction affects ...
	G6: Select mapping functions for each relationship between representations. These functions trans...
	G7: Identify semantics characteristics of interactions. In §7.5, we presented a taxonomy of inter...
	G8: Select policies for resolving the effects of dependent concurrent interactions. The effects o...

	8.2 Using UNIFY with a Speciﬁcation Methodology
	Table 11: Example Attribute Relationship Table
	Table 12: Example Concurrent Interactions Table

	8.3 Process for Effective MRM
	Figure 48: Process for Effective MRM

	Evaluation
	9.1 Evaluating UNIFY in terms of MRM Requirements
	9.1.1 Multi-Representation Interaction
	9.1.2 Multi-Representation Consistency
	9.1.3 Cost-Effectiveness
	9.1.3.1 Assumptions
	Figure 49: Entity in Synthetic Application

	9.1.3.2 Consistency Cost
	Figure 50: AD — Consistency Cost
	Figure 51: SV — Consistency Cost
	Figure 52: UNIFY — Consistency Cost

	9.1.3.3 Simulation cost
	Figure 53: (Left to Right) AD, SV and UNIFY — Simulation Cost

	9.1.3.4 Expected Costs
	Table 13: Cost Comparison among MRM approaches
	Figure 54: Expected Costs

	9.1.3.5 Experimental Costs
	Figure 55: Simulation Cost varying with Number of Interactions
	Figure 56: Consistency Cost varying with Number of Interactions
	Figure 57: Simulation Cost varying with Rate of Simulation
	Figure 58: Consistency Cost varying with Rate of Simulation
	Figure 59: Simulation Cost varying with Number of Sub-entities
	Figure 60: Consistency Cost varying with Number of Sub-entities
	Figure 61: Simulation Cost varying with Number of Levels
	Figure 62: Consistency Cost varying with Number of Levels
	Figure 63: AD, SV and UNIFY — Cost Comparison

	9.1.3.6 Summary of Cost-Effectiveness

	9.1.4 Summary of Evaluation in Terms of MRM Requirements

	9.2 Applying UNIFY to Existing Models
	9.2.1 Military Models
	9.2.2 Autonomous Agent Model
	Figure 64: Marcus and Archway
	Figure 65: MRE for planner and PA system representations

	9.3 Limitations
	9.4 Chapter Summary

	Conclusions
	10.1 Contributions
	10.2 Future Work

	Examples of Multiple Representations
	A.1 Multi-Resolution Graphical Modelling
	A.2 Hierarchical Autonomous Agents
	A.3 Blackboard Systems
	A.4 Cache Coherence
	A.5 Abstract Data Types and Object Inheritance
	A.6 Views in Databases and Integrated Environments
	A.7 Nested Climate Modelling
	A.8 Integrated Molecular Modelling
	A.9 Multi-Level Computer Games
	A.10 Battleﬁeld Simulations

	Joint Task Force Prototype
	Figure 66: Platoon-Tanks MRE
	B.1 OMT Tables
	B.2 Steps
	B.3 Construct an MRE from the OCST and the APT
	Table 14: Object Class Structure Table for JTFp
	Table 15: Attribute/Parameter Table for JTFp
	Table 16: Attributes of Platoon, Tank1 and Tank2 (JTFp)

	B.4 Construct an ADG from the APT and the ART
	Table 17: Attribute Relationship Table for Platoon-Tanks MRE in JTFp
	Figure 67: ADG for the JTFp Platoon-Tanks MRE

	B.5 Select Mapping Functions for Dependencies in the ART
	Table 18: Mapping Functions for JTFp Platoon-Tanks MRE

	B.6 Determine the Effects of Interactions from the OIT
	Table 19: Object Interaction Table for JTFp
	Table 20: Effects of Interactions for JTFp Platoon-Tanks MRE

	B.7 Resolve the Effects of Concurrent Interactions from the CIT
	Table 21: Concurrent Interactions Table for JTFp Platoon-Tanks MRE

	B.8 Construct a Consistency Enforcer and an Interaction Resolver
	Figure 68: JTFp Platoon-Tanks MRE

	Joint Precision Strike Demonstration
	Figure 69: Platoon-Tanks MRE
	C.1 OMT Tables
	C.2 Steps
	C.3 Construct an MRE from the OCST and the APT
	Table 22: Object Class Structure Table for JPSD
	Table 23: Attribute/Parameter Table for JPSD
	Table 24: Attributes of Platoon, Tank1 and Tank2 (JPSD)

	C.4 Construct an ADG from the APT and the ART
	Table 25: Attribute Relationship Table for Platoon-Tanks MRE in JPSD
	Figure 70: ADG for the JPSD Platoon-Tanks MRE

	C.5 Select Mapping Functions for Dependencies in the ART
	Table 26: Mapping Functions for JPSD Platoon-Tanks MRE

	C.6 Determine the Effects of Interactions from the OIT
	Table 27: Object Interaction Table for JPSD
	Table 28: Effects of Interactions for JPSD Platoon-Tanks MRE

	C.7 Resolve the Effects of Concurrent Interactions from the CIT
	Table 29: Concurrent Interactions Table for JPSD Platoon-Tanks MRE

	C.8 Construct a Consistency Enforcer and an Interaction Resolver
	Figure 71: JPSD Platoon-Tanks MRE

	Real-time Platform Reference
	Figure 72: Platoon-Tanks MRE
	D.1 OMT Tables
	D.2 Steps
	D.3 Construct an MRE from the OCST and the APT
	Table 30: Object Class Structure Table for RPR
	Table 31: Attribute/Parameter Table for RPR
	Table 32: Attributes of Platoon, Tank1 and Tank2 (RPR)

	D.4 Construct an ADG from the APT and the ART
	Table 33: Attribute Relationship Table for Platoon-Tanks MRE in RPR
	Figure 73: ADG for the RPR Platoon-Tanks MRE

	D.5 Select Mapping Functions for Dependencies in the ART
	Table 34: Mapping Functions for RPR Platoon-Tanks MRE

	D.6 Determine the Effects of Interactions from the OIT
	Table 35: Object Interaction Table for RPR
	Table 36: Effects of Interactions for RPR Platoon-Tanks MRE

	D.7 Resolve the Effects of Concurrent Interactions from the CIT
	Table 37: Concurrent Interactions Table for RPR Platoon-Tanks MRE

	D.8 Construct a Consistency Enforcer and an Interaction Resolver
	Figure 74: RPR Platoon-Tanks MRE

	Hierarchical Autonomous Agents
	Figure 75: Marcus MRE
	E.1 Steps
	E.2 Construct an MRE from Planner and PA Representations
	Table 38: Attributes of planner and PA (Marcus)

	E.3 Construct an ADG for the MRE
	Table 39: Attribute Relationship Table for Marcus MRE
	Figure 76: ADG for the Marcus MRE

	E.4 Select Mapping Functions for Dependencies in the ADG
	Table 40: Mapping Functions for Marcus MRE

	E.5 Determine the Effects of Interactions
	Table 41: Interactions sent and received by the Marcus MRE

	E.6 Resolve the Effects of Concurrent Interactions
	Table 42: Concurrent Interactions Table for Marcus MRE

	E.7 Construct a Consistency Enforcer and an Interaction Resolver
	Figure 77: Marcus MRE

	Indexed Glossary
	Aggregate Model 41 A model at low resolution or high abstraction.
	Aggregation 22, 42 Composition of a collection of HREs into a single LRE.
	Aggregation-disaggregation 9, 20, 54, 76, 85, 97, 172 An MRM approach in which representation lev...
	Attribute 33 A property of an entity, which can be used to refer to the entity and manipulate its...
	Attribute Dependency Graph 7, 27, 96, 172 A graph with attributes as nodes and dependencies among...
	Behavior of an Entity 37 The sequence of states for a particular entity.
	Behavior of a Model 37 The sequence of states of a model.
	Certain Interaction 142, 149 An interaction whose outcome is predictable.
	Chain Disaggregation 23, 56, 86, 197 Forcible disaggregation of many entities because of LRE-HRE ...
	Compatible Time-steps 44, 51, 68, 159, 192 If multiple entities never violate any assumptions mad...
	Concurrent Interactions 7, 39, 51, 81, 136 Interactions that occur at overlapping times in the si...
	Concurrent Representations 2, 42, 71 Representations of different simulation entities of the same...
	Consistency Cost 9, 28, 76, 174, 177 Cost of maintaining consistency among jointly-executing models.
	Consistency Enforcer 6, 27, 77, 95, 118, 172 Consists of an Attribute Dependency Graph and approp...
	Consistency Maintenance 2, 43 Correlating the multiple entity states for the same object or proce...
	Cost-effectiveness (R3) 9, 49, 173 Simulation and consistency costs should be low.
	Cross-level Interactions 58, 73, 87 Interactions whose sender and receiver are at different repre...
	Cumulative Dependencies 96, 102, 106 Attribute dependencies wherein the value of a single attribu...
	Dependency 37 A static relationship between two attributes.
	Dependent Interactions 7, 39, 64, 70, 136 Interactions whose effects are dependent on one another.
	Disaggregate Model 42 A model at high resolution or low abstraction.
	Disaggregation 22, 42 Decomposition of an LRE into its constituent HREs.
	Distributive Dependencies 96, 102, 107 Attribute dependencies wherein the value of a single attri...
	Effective Joint Execution 2, 28, 46, 70, 170 The joint execution of multiple models that satisﬁes...
	Effects of an Interaction 33 The changes caused in the representations of the sender and receiver...
	Entity 3, 32 A description of an object or process in a simulation.
	Entity Representation 32 A collection of the attributes of one entity described using the notatio...
	Environment of a Model 33 Objects and processes external to a model.
	Executing a Model 36 Simulating the objects and processes that are part of a phenomenon.
	Execution of a Multi-model 3 The joint execution of multiple models.
	Fundamental Observations 5, 53 Observations that relate the causes of problems in jointly-executi...
	Ghosting 71 With multiple models, executing only one model and reﬂecting changes from that model ...
	Guidelines for Designers of Multi-models 10, 161 With multiple models, executing only one model a...
	Hierarchical Models 103 Models that bear a relationship of being the composition-decomposition or...
	High Resolution Entity (HRE) 22, 42, 54, 86 An entity at a low level of abstraction, or high deco...
	Independent Interactions 39, 144 Interactions whose effects are the same whether they occur in is...
	Interaction 6, 33, 37, 126 The means by which entities exchange information or inﬂuence one another.
	Interaction Dependencies 96, 103 Attribute dependencies that denote the effects of interactions.
	Interaction Resolver 8, 28, 77, 150 Resolves the effects of concurrent interactions on a Multiple...
	Internal Consistency with an MRE 71 Attribute dependencies that denote the effects of interactions.
	Joint Execution of Multiple Models 3, 42 Execution of multiple models at overlapping times, possi...
	Low Resolution Entity (LRE) 22, 42, 54, 86 An entity at a high level of abstraction, or high comp...
	Mapping Consistency 8, 80 When entity properties common to different models are translated such t...
	Mapping Inconsistency 55, 76, 84, 197 When repeated translations among attributes cause intolerab...
	Mapping Functions 7, 27, 43, 50, 70, 110, 159, 172 Methods used to correlate the multiple represe...
	Model 3, 36 An abstraction of some phenomenon that incorporates the behavior of objects and proce...
	Modeling 3, 32 A method to study real-life phenomena.
	Modeling Dependencies 96, 102, 103 Attribute dependencies inherent in the nature of the object or...
	Multi-model 3, 41, 42 For some phenomenon, the union of multiple models that may differ in execut...
	Multiple Representation Entity (MRE) 6, 27, 70, 92, 95 A conceptual entity that can interact at m...
	Multi-representation Consistency (R2) 8, 48, 172 Jointly-executing models must be related and con...
	Multi-representation Interaction (R1) 8, 47, 76, 171 Entities in each model may initiate and rece...
	Multi-representation Modeling (MRM) 3, 32, 42, 159 The joint execution of multiple models.
	Network Flooding 57, 87, 197 High consumption of network resources because of a large number of m...
	Receiver of an Interaction 33 The entity that receives an interaction.
	Relationship between Attributes 33 Indicates that if the value of one attribute changes, the valu...
	Representation 3, 32, 191 A collection of the objects and processes participating in a phenomenon...
	Representation Level 41 The conceptual context in which a model executes.
	Request Interaction 141, 146, 149 An interaction concerned with actions that may take place in th...
	Resolving Concurrent Interactions 40, 62, 81, 93, 144, 148, 159, 192 Computing the effects of con...
	Resolution 41 A representation level in a hierarchical model.
	Resolution Level 41 Resolution.
	Response Interaction 141, 146, 149 An interaction concerned with actions that have taken place in...
	Reversible Mapping Functions 44, 80, 83, 115 Mapping functions that return the original attribute...
	Selective Viewing 9, 20, 76, 85, 97, 172 An MRM approach in which the most detailed model is simu...
	Sender of an Interaction 33 The entity that initiates an interaction.
	Simulation 3, 37 A method to execute a model, usually on a computer with some combination of exec...
	Simulation Cost 9, 28, 76, 174, 179 Cost of simulating jointly-executing models.
	Taxonomy of Interactions 7, 28, 139 A classiﬁcation of interactions according to semantic charact...
	Temporal Consistency 8, 78 When multiple entities have consistent views of another entity at over...
	Temporal Inconsistency 91, 197 When multiple entities have differing views of an entity at overla...
	Thrashing 57, 86, 197 Repeated transitions by an entity because it transitions representation lev...
	Time-step 36, 65 The duration of time between two consecutive observation times of a model.
	Transition Latency 56, 86, 197 Delay encountered when performing an aggregation or disaggregation.
	Uncertain Interaction 142, 149 An interaction whose outcome is unpredictable.
	UNIFY 8, 5, 47, 54, 70, 159, 191 A framework for effective MRM.

	References
	Abadi, M., Lamport, L., Conjoining Specifications, ACM Transactions on Programming Languages and ...
	Ackerman, W. B., Data Flow Languages, IEEE Computer, Vol. 15, No. 2, February 1982.
	Agre, P. E., Chapman, D., Pengi: An Implementation of a Theory of Activity, American Association ...
	Albus, J. S., The NIST Real-time Control System (RCS): an approach to intelligent systems researc...
	Alhir, S. S., UML in a Nutshell, O’Reilly & Associates Inc., ISBN 1- 56592-448-7, 1998.
	Allen, P. D., Combining Deterministic and Stochastic Elements in Variable Resolution Models, Conf...
	Allen, P. M., Valle, A. N., An approach to managing dissimilar unit interactions in constructive/...
	Allen, R. J., Garlan, D., Ivers, J., Formal Modeling and Analysis of the HLA Component Integratio...
	Architecture Management Group, Preliminary Definition, High Level Architecture Briefings, Defense...
	Amoroso, E. D., Fundamentals of Computer Security Technology, Prentice Hall PTR, ISBN 0-13-108929...
	Archibald, J., Baer, J. L., Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulati...
	Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N., Griffiths, P. P....
	Badrinath, B. R., Ramamritham, K., Semantics-Based Concurrency Control: Beyond Commutativity, ACM...
	Balzer, R., Automated Enhancement of Knowledge Representations, International Joint Conference on...
	Bancilhon, F., Spyratos, N., Update Semantics of Relational Views, ACM Transactions on Database S...
	Barghouti, N. S., Kaiser, G. E., Concurrency Control in Advanced Database Applications, ACM Compu...
	Barnes, J. G. P., An Overview of ADA, Software Practice and Experience, Vol. 10, 1980.
	Berman, D. F., Bartell, J. T., Salesin, D. H., Multiresolution Painting and Compositing, ACM Comp...
	Bernstein, P. A., Goodman, N., Concurrency Control in Distributed Database Systems, ACM Computing...
	Bernstein, P. A., Hadzilacos, V., Goodman, N., Concurrency Control and Recovery in Database Syste...
	Beshers, G., Campbell, R., Maintained and Constructor Attributes, ACM SIGPLAN 85 Symposium on Lan...
	Birtwistle, G. M., Dahl, O-J, Myhrhaug, B. Nygaard, K., Simula Begin, Studentlitteratur and Auerb...
	Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P., Slack, M. G., Experiences w...
	Borning, A. H., Ingalls, D. H. H., Multiple Inheritance in Smalltalk-80, American Association for...
	Brinch Hansen, P., Distributed Processes: A Concurrent Programming Concept, Communications of the...
	Brahmadathan, K., Ramarao, K. V. S., On the Management of Long-Living Transactions, Journal of Sy...
	Brill, F., Representation of Local Space in Perception/Action Systems: Behaving Appropriately in ...
	Brill, F., Wasson, G., Ferrer, G., Martin W., The Effective Field of View Paradigm: Adding Repres...
	Brooks, R. A., A Robust Layered Control System For A Mobile Robot, IEEE Journal of Robotics and A...
	Burdick, C. D., Interoperability of Simulations with Different Levels of Resolution, Defense Mode...
	Burns, A., Prasad, D., Bondavalli, A., Di Giandomenico, F., Ramamritham, K., Stankovic, J., Strig...
	Calder, R. B., Peacock, J. C., Panagos, J., Johnson, T. E., Integration of Constructive, Virtual,...
	Calder, R. B., Peacock, J. C., Wise, B. P. Jr., Stanzione, T., Chamberlain, F., Panagos, J., Impl...
	Cardelli, L., Wegner, P., On Undertanding Types, Data Abstractions, and Polymorphism, ACM Computi...
	Chamberlin, D. D., Gray, J. N., Traiger, I. L., Views, Authorization, and Locking in a Relational...
	Chen, P. P., The Entity-Relationship Model — Toward a Unified View of Data, ACM Transactions on D...
	Clark, J. H., Hierarchical Geometric Models for Visible Surface Algorithms, Communications of the...
	Clark, K. J., Brewer, D., Bridging the Gap Between Aggregate Level and Object Level Exercises, 4t...
	Codd, E. F., A Relational Model of Data for Large Shared Data Banks, Communications of the ACM, V...
	Cormen, T. H., Leiserson, C. E., Rivest, R. L., Introduction to Algorithms, MIT Press, ISBN 0-262...
	Cox, A., Maybury, J., Weeden, N., Aggregation Disaggregation Research — A UK Approach, 13th DIS W...
	Dahmann, J., Wood, D. C., editors, Special Issue of IEEE Distributed Interactive Simulation, Vol....
	Dahl, O-J., Nygaard, K., Simula — An Algol-Based Simulation Language, Communications of the ACM, ...
	Date, C. J., An Introduction to Database Systems (Sixth Edition), Addison Wesley Publishing Compa...
	Davis, A. L., Keller, R. M., Data Flow Program Graphs, IEEE Computer, Vol. 15, No. 2, February 1982.
	Davis, P. K., An Introduction to Variable-Resolution Modeling and Cross- Resolution Model Connect...
	Davis, P. K., Hillestad, R. J., Families of Models that Cross Levels of Resolution: Issues for De...
	Davis, P. K., Bigelow, J. H., Experiments in Multiresolution Modeling (MRM), Prepared for the Def...
	Demers, A., Rogers, A., Zadeck, F. K., Attribute Propagation by Message Passing, ACM SIGPLAN 85 S...
	Dennis, J. B., Data Flow Supercomputers, IEEE Computer, Vol. 13, No. 1, November 1980.
	DIS Steering Committee, The DIS Vision, A Map to the Future of Distributed Simulation, Comment Dr...
	Under Secretary of Defense (Acquisition and Technology), Modeling and Simulation (M&S) Master Pla...
	Epstein, J. M., The Calculus of Conventional War: Dynamic Analysis Without Lanchester Theory, The...
	Erman, L. D., Hayes-Roth, F., Lesser, V. R., Reddy, D. R., The Hearsay-II Speech-Understanding Sy...
	Eswaran, K. P., Gray, J. N., Lorie, R. A., Traiger, I. L., The Notions of Consistency and Predica...
	Firby, R. J., An Investigation into Reactive Planning in Complex Domains, American Association fo...
	Fowler, M., Scott, K., UML Distilled, Addison Wesley Longman Inc., ISBN 0-201-32563-2, 1997.
	Franceschini, R. W., Intelligent Placement of Disaggregated Entities, Institute for Simulation an...
	Freeman-Benson, B. N., Maloney, J., Borning, A., An Incremental Constraint Solver, Communications...
	Frühwirth, T., Herold, A., Küchenhoff, V., Le Provost, T., Lim, P., Monfroy, E., Wallace, M., Con...
	Frühwirth, T., Constraint Simplification Rules, Technical Report ECRC- 92-18, European Computer-I...
	Fujimoto, R. M., Parallel Discrete Event Simulation, Communications of the ACM, Vol. 33, No. 10, ...
	Gajski, D. D., Padua, D. A., Kuck, D. J., Kuhn, R. H., A Second Opinion on Data Flow Machines and...
	Garlan, D., Views for Tools in Integrated Environments, Ph.D. Dissertation, Technical Report CMU-...
	Garland, M., Heckbert. P. S., Fast Polygonal Approximations of Terrains and Height Fields, Techni...
	Garcia-Molina, H., Using Semantic Knowledge for Transaction Processing in a Distributed Database,...
	García de la Banda, M., Hermenegildo, M., Marriott, K., Independence in Constraint Logic Programs...
	Gat, E., Integrating Planning and Execution in a Heterogeneous Asychronous Architecture for Contr...
	Giorgi, F., Simulation of Regional Climate Using a Limited Area Model Nested in a General Circula...
	Giorgi, F., Mearns, L. O., Approaches to the Simulation of Regional Climate: A Review, Reviews of...
	Goldstein, I. P., Bobrow, D. G., Descriptions for a Programming Environment, First Annual Confere...
	Goodenough, J. B., Exception Handling: Issues and a Proposed Notation, Communications of the ACM,...
	Grimshaw, A. S., Strayer, W. T., Narayan P., Dynamic, Object-Oriented Parallel Processing, IEEE P...
	Haerder, T., Reuter, A., Principles of Transaction-Oriented Database Recovery, ACM Computing Surv...
	Hanks, S., Firby, R. J., Issues and Architectures for Planning and Execution, DARPA Workshop on I...
	Hardy, D., Healy, M., Constructive & Virtual Interoperation: A Technical Challenge, 4th Conferenc...
	Harshberger, E. R., Bennett, B. E., Frelinger, D. R., An Approach to Hierarchies of Models: Proce...
	Heckbert, P. S., Garland, M., Multiresolution Modeling for Fast Rendering, Graphics Interface, Ba...
	Heckbert, P. S., Garland, M., Survey of Polygonal Surface Simplification Algorithms, Multiresolut...
	Hennessey, J. L., Patterson, D. A., Computer Architecture: A Quantitative Approach (Second Editio...
	Hillestad, R. J., Juncosa, M. L., Cutting Some Trees to See the Forest: On Aggregation and Disagg...
	Hillestad, R. J., Owen, J., Blumenthal, D., Experiments in Variable Resolution Combat Modeling, C...
	Hofer, R. C., Loper, M. L., DIS Today, Proceedings of the IEEE, Vol. 83, No. 8, August 1995.
	Hopcroft, J. E., Ullman, J. D., Introduction to Automata Theory, Languages, and Computation, Addi...
	Horwitz, S., Teitelbaum, T., Generating Editing Environments Based on Relations and Attributes, A...
	Horrigan, T. J., The “Configuration Problem” and Challenges for Aggregation, Conference on Variab...
	Howard, J. D., An Analysis of Security Incidents on the Internet 1989-1995, Ph.D. Dissertation, E...
	Humbel, S., Sieber, S., Morokuma, K., The IMOMO method: Integration of different levels of molecu...
	Jaffar, J., Michaylov, S., Stuckey, P., Yap, R. H. C., The CLP(¬) Language and System, ACM Transa...
	Jaffar, J., Maher, M. J., Constraint Logic Programming: A Survey, Journal of Logic Programming, V...
	Jefferson, D. R., Virtual Time, ACM Transactions on Programming Languages and Systems, Vol. 7, No...
	—, Federate Object Model for Joint Precision Strike Demonstration, OMT v1.3, 1997.
	—, Federate Object Model for Joint Task Force Prototype, OMT v1.3, 1997.
	Karr, A. F., Lanchester Attrition Processes and Theater-Level Combat Models, Mathematics of Confl...
	Karr, C. R., Root, E., Integrating Aggregate and Vehicle Level Simulations, 4th Conference on Com...
	Kernighan, B. W., Ritchie, D. M., The C Programming Language (Second Edition), Prentice Hall Inc....
	Knuth, D. E., Semantics of Context-free Languages, Mathematical Systems Theory, Vol. 2, No. 2, Ju...
	Knuth, D. E., Semantics of Context-free Languages: Correction, Mathematical Systems Theory, Vol. ...
	Korth, H. F., Speegle, G. D., Formal Model of Correctness without Serializability, ACM SIGMOD Rec...
	Laird, J., Yager, E., Hucka, M., Tuck, C., Robo-Soar: An Integration of External Interaction, Pla...
	Lamport, L., Time, Clocks, and the Ordering of Events in a Distributed System, Communications of ...
	Lamport, L., The Temporal Logic of Actions, ACM Transactions on Programming Languages and Systems...
	Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., Dobkin, D., MAPS: Multiresolution Adaptive...
	Linton, M. A., Implementing Relational Views of Programs, ACM SIGSOFT/SIGPLAN Software Engineerin...
	Liskov, B. H., Snyder, A., Exception Handling in CLU, IEEE Transactions on Software Engineering, ...
	Luebke, D., Survey of Polygonal Simplification Algorithms, Technical Report TR97-045, Department ...
	Lynch, N. A., Multilevel atomicity: a new correctness criterion for database concurrency control,...
	Madnick, S. E., Donovan, J. J, Operating Systems, McGraw-Hill Inc., ISBN 0-07-039455-5, 1974.
	Marriott, K., Stuckey, P. J., The 3 R’s of Optimizing Constraint Logic Programs: Refinement, Remo...
	Matsubara, T., Maseras, F., Koga, N., Morokuma, K., Application of the New “Integrated MO + MM” (...
	Mattern, F., Virtual Time and Global States of Distributed Systems, Parallel and Distributed Algo...
	Miller, D. C., Thorpe, J. A., SIMNET: The Advent of Simulator Networking, Proceedings of the IEEE...
	Munson, J., Dewan, P., A Concurrency Control Framework for Collaborative Systems, ACM Conference ...
	Natrajan, A., Nguyen-Tuong, A., To disaggregate or not to disaggregate, that is not the question,...
	Natrajan, A., Reynolds Jr., P. F., Srinivasan, S., Consistency Maintenance using UNIFY, Technical...
	Natrajan, A., Reynolds Jr., P. F., Srinivasan, S., A Flexible Approach to Multi-Resolution Modeli...
	Natrajan, A., Reynolds Jr., P. F., Resolving Concurrent Interactions, 3rd International Workshop ...
	Committee on Modeling and Simulation: Opportunities for Collaboration between the Defense and Ent...
	U.S. Department of Defense, High Level Architecture Object Model Template Specification Version 1...
	Papadimitriou, C. H., The Theory of Database Concurrency Control, Computer Science Press, ISBN 0-...
	Peterson, J. L., Petri Nets, ACM Computing Surveys, Vol. 9, No. 3, September 1977.
	Petri, C. A., Kommunikation mit Automaten, Ph.D. dissertation, Schriften des Rheinisch-Westfalisc...
	Petty, M. D., The Turing Test as an Evaluation Criterion for Computer Generated Forces, 4th Confe...
	Petty, M. D., Franceschini, R. W., Disaggregation Overload and Spreading Disaggregation in Constr...
	Pratt, D. R., Johnson, M. A., Constructive and Virtual Model Linkage, Winter Simulation Conferenc...
	Pullen, J. M., Wood, D. C., Networking Technology and DIS, Proceedings of the IEEE, Vol. 83, No. ...
	Puppo, E., Scopigno, R., Simplification. LOD and Multiresolution Principles and Applications, Eur...
	Reddy, R., Garrett, R., Future Technology Challenges in Distributed Interactive Simulation, Proce...
	Reps, T., Teitelbaum, T., The Synthesizer Generator, ACM SIGSOFT/ SIGPLAN Software Engineering Sy...
	Reps, T., Marceau, C., Teitelbaum, T., Remote attribute updating for language-based editors, 13th...
	Reynolds Jr., P. F., DISorientation, ELECSIM 94, Internet, April-June, 1994.
	Reynolds Jr., P. F., Natrajan, A., Srinivasan, S., Consistency Maintenance in Multi-Resolution Si...
	Risbey, J. S., Stone, P. H., A Case Study of the Adequacy of GCM Simulations for Input to Regiona...
	Robkin, M., A proposal to Modify the Distributed Interactive Simulation Aggregate PDU, Hughes Tra...
	Rosser, J. B., Highlights of the history of the lambda-calculus, Conference Record of 1982 ACM Sy...
	—, Federate Object Model for Real-time Platform Reference, OMT v1.3, September 1997.
	Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object- Oriented Modeling and De...
	Sacerdoti, E. D., Planning in a Hierarchy of Abstraction Spaces, Artificial Intelligence, Vol. 5,...
	Saraswat, V. A., Rinard, M., Panangaden, P., Semantic Foundations of concurrent constraint progra...
	Seidel, D. W., King, B. C., Burke, C. D., AIM Approach to Simulation Interoperability, The MITRE ...
	Sherman, R., Butler, B., Segmenting the Battlefield, Loral WDL, June 1992.
	Shlaer, S., Mellor, S. J., Object Lifecycles: Modeling the World in States, Prentice Hall PTR, IS...
	Silberschatz, A., Peterson, J. L., Galvin, P., Operating System Concepts (Third Edition), Addison...
	Simmons, R., Structured Control for Autonomous Robots, IEEE Transactions on Robotics and Automati...
	Smith, R. D., Invited speaker, Department of Computer Science, University of Virginia, December 1...
	Smith, R. D., The Conflict Between Heterogeneous Simulation and Interoperability, 17th Inter-Serv...
	Stefik, M., Bobrow, D. G., Object-Oriented Programming: Themes and Variations, AI Magazine, Vol. ...
	Steinman, J. S., Wieland, F., Parallel Proximity Detection and the Distribution List Algorithm, 1...
	Stober, D. R., Kraus, M. K., Foss, W. F., Franceschini, R. W., Petty, M. D., Survey of Constructi...
	Stonebraker, M. R., Wong, E., Kreps, P., Held, G., The Design and Implementation of Ingres, ACM T...
	Stroustrup, B., The C++ Programming Language (Second Edition), Addison Wesley Publishing Company ...
	Sullivan, K. J., Mediators: Easing the Design and Evolution of Integrated Systems, Ph.D. Disserta...
	Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S., Morokuma, K., ONIOM: A Mul...
	Svensson, M., Humbel, S., Morokuma, K., Energetics using the single point IMOMO (integrated molec...
	Tanenbaum, A. S., Modern Operating Systems, Prentice Hall Inc., ISBN 0- 13-595752-4, 1992.
	Texel, P. P., Williams, C. B., Use Cases combined with Booch/OMT/UML: Process and Products, Prent...
	Thomasin, A., Concurrency Control: Methods, Performances and Analysis, ACM Computing Surveys, Vol...
	Turing, A. M., Computing Machinery and Intelligence, Mind, Vol. 59, October 1950.
	Van Hentenryck, P., Saraswat, V. A., et al, Strategic Directions in Constraint Programming, ACM C...
	Wasson, G., Martin, W., Multi-tiered Representation for Autonomous Robots, SPIE Conference on Mob...
	Wasson, G. S., Natrajan, A., Gunderson, J. P., Ferrer, G. J., Martin, W. N., Reynolds Jr., P. F.,...
	Wasson, G. S., Design of Representation Systems for Autonomous Agents, Ph.D. Dissertation, Depart...
	Weatherly, R. M., Wilson, A. L., Griffin, S. P., ALSP — Theory, Experience and Future Directions,...
	Weihl, W. E., Commutativity-Based Concurrency Control for Abstract Data Types, IEEE Transactions ...
	Williams, C. C., Concurrency Control in Asynchronous Computations, Ph.D. Dissertation, Department...
	Wimsatt, W. C., Heuristics and the Study of Human Behavior, in Fiske, D., Shweder, R., eds., Meta...
	Yemini, S., Berry, D. M., A Modular Verifiable Exception-Handling Mechanism, ACM Transactions on ...
	Zorin, D., Schröder, P., Sweldens, W., Interactive Multiresolution Mesh Editing, ACM Computer Gra...

