
Satori: A Course Management System 

 

A Technical Report submitted to the Department of Computer Science 

 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

Joshua Mehr 

Spring, 2022 

Technical Project Team Members 

Ramya Bhaskara 

Christian Scruggs 

 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 

assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

Aaron Bloomfield, Department of Computer Science 

 

 

 

 

 

 



Satori: A Course Management System
Ramya Bhaskara

University of Virginia
rsb4zm@virginia.edu

Joshua Mehr
University of Virginia

jmm3vn@virginia.edu

Cristian Scruggs
University of Virginia
cms3zd@virginia.edu

ABSTRACT

CS 2150: Program and Data Representation, currently hosts
the third largest number of computer science students at
the University of Virginia (393 students in the Spring 2022
semester) but lacks a modern course tool to enhance student’s
learning experiences. Specifically for office hours where stu-
dents must enter an outdated online queue in order to be helped
by a teaching assistant, this results in long queue times for
students waiting for help. This technical report outlines the
work done to create a modern web application to better assist
with students seeking help with the course work. The web
application was written using the Django framework and hosts
a multitude of features that allows for less waiting for the
students and less stress for the Teaching Assistants who lead
office hours. The current web application has proven useful
for handling the workload of CS 2150.

I. INTRODUCTION

This paper details the continued development of Satori, an
application that will be used as the primary course manage-
ment system for CS 2150 (Program and Data Representation)
at the University of Virginia. The current system in use
(referred to as ’Course Tools’), includes two primary function-
alities: a support request management system and an office
hours queue. While Course Tools was a functional solution
in the initial years the course was offered, as the course has
grown in the last decade or two, these course tools no longer
serve their purpose.

CS 2150 is a required course for all computer science majors
and minors, making its enrollment approximately 400 students
per semester. These large enrollment sizes have overwhelmed
the old system, causing long response times, data consistency
glitches, and frequent hangs that render it unusable for long
periods of time. The site is also restricted by a very primitive
user interface. These problems make it difficult for students
to get help on assignments and for teaching assistants to
manage office hours. In order to address these issues, we
present the development of an improved web-based application
that facilitates office hours and eases the handling of support
requests.

II. BACKGROUND

The front and back end of Satori is built using Django 4.0.4,
which is a Python based web development framework, and
the back end consists of a MySQL database. This version of
Django requires that we run it using a python version ˆ3.8. To

help with organizing and gathering our code, we used GitHub,
a version control tool for software development. This is also
suitable considering the nature of this project. Ultimately,
Satori will be deployed in a Docker container to facilitate the
linking of the login system with NetBadge, which is UVAs
centralized login tool. It will ultimately by deployed on UVA
Computer Science servers. More specifically, the production
version will be deployed on the Andromeda server, and the
development version will be deployed on the Pegasus server
(though these are subject to change).

Another consideration is changing course requirements in
the Department of Computer Science. It was recently an-
nounced that the department is introducing a new curriculum
for all new students, which means that CS 2150 will no longer
be offered after the Fall 2022 semester. As such, though the
development will be done with the particular use case of CS
2150 in mind, the ultimate goal is for this tool to easily adapt
to handle additional courses in the future.

III. RELATED WORK

A. Course Tools

As previously mentioned, the Course Tools system was
suitable to CS 2150 in the initial years of the course being
offered, but, as the class size increases, Course Tools becomes
increasingly insufficient and dated. Before the widespread
adoption of Gradescope, the Course Tools had assignment
submission and grades. Now that submission and grading are
dealt with elsewhere, the only use of Course Tools is for
Support Request Tickets and the Office Hours Queue. The
previous tools were made in PHP, which although works for
the intended use, is very much falling out of the mainstream of
coding languages. By switching to Python, the underlying code
should be much more accessible to those who plan to work on
it in the future. Using the Django framework, we should be
able to replicate and potentially improve upon the functionality
of Course Tools while also making it more visually appealing
and professional.

B. Previous Work on Satori

The development of Satori began in 2019 with the goal of
replacing Course Tools and handling all aspects of the course,
including support requests, office hours, assignments, exams,
and grades. However, shortly after development began, the
course adopted Gradescope for assignment submission, and
the new system no longer needed to implement a separate
system for assignments, exams, and grading. This made it



so that the previous system had a lot of unnecessary built in
complexity, making the codebase very difficult to work with.
This caused a multitude of issues, including the inability to
add courses and create queues. With this new set of issues, the
team decided to restart development from scratch to remove
some of this complexity from the system and make the system
more scalable. The goal of our work was to redesign the old
system to remove some of that built in complexity that made
it unusable.

IV. SYSTEM DESIGN

Using the Django “Groups” feature, each user of the appli-
cation is assigned into the student, teaching assistant (TA), or
faculty group depending on their enrollment for each course
(discussed below). This allows for each user to have set
permissions on which actions they can or cannot perform
given their enrollment; for example, only faculty members
are allowed to create/delete courses. Permissions are checked
redundantly before and after any action is performed by a user
to ensure the security of the applications underlying data.

Satori itself is broken up into 3 primary apps: Core, Queue,
and Tickets. The Core app mostly addresses the high level
management of courses such as creating courses, enrolling
students and teaching assistants to said courses, and dealing
out permissions. The Queue app allows professors to create
any number of queues for courses that they teach. Students
should be able to add and remove themselves from queues for
courses they are enrolled in, and teaching assistants should be
able to remove students from the queue so they can help them.
Finally, the Tickets app functions as a central location where
students can contact the professors for assistance, and view all
relevant communication surrounding their support tickets.

A. Core

The Core app serves as the backbone of the application and
handles most of the interactions with the back-end MYSQL
database. Primarily used by course instructors, the application
defines database tables for Courses, Student Enrollments, and
Netbadge Cookies, the latter of which is used to enable stu-
dents to login with their standard UVA accounts. The features
of the Core application primarily involve users interacting with
this backend database through a series of GET and POST
requests. For example, faculty can create, edit, and populate
the class rosters of courses through simple web pages that
will only allow the users in the faculty group to perform these
actions. The landing page of the webapp is also hosted in
the Core app. This is where students and faculty alike can
authenticate themselves using their UVA accounts, where a
new user entry is made in the database if it is their first time
authenticating to the site. Once logged in, users can easily
navigate to the other applications of the web app using the
links on the landing page which include details about the
courses they’re enrolled in, the support tickets app, and the
queues for each course.

B. Queue

The Queue app is the main course tool of the web appli-
cation and is where students will enter themselves to wait for
help from a TA and where TA’s will pull students one by one
to assist them. Each course can have any number of queues
associated with them but each queue is only associated with a
single course. A queue has an associated name, entries, and an
“is open” field that can be toggled by course staff when office
hours are being hosted. At a high level, when the student enters
a queue, a corresponding queue entry is created in the database
and the student sees their information appear at the bottom of
the queue. As entries are taken by TAs, students move up in
the queue based on when they entered until they are taken off
the queue and assisted by a TA. For TAs, the queue app allows
them to take students off the queue or requeue them to the top
of the list if they were not able to provide adequate assistance
to the student.

As the developers of the application are TAs for the course
themselves, we were able to add additional features to address
some frustrating oversights in the previous application. Firstly,
a queue now auto-updates its entries without needing to be
refreshed by the user. This allows for TAs to not have to waste
time constantly refreshing the page to see new entries in the
queue. Additionally, the queue app also displays the average
wait time for students on the queue based on how quickly
entries are being resolved. This allows for students to have
a better understanding of how long they will need to wait to
be assisted by a TA and TAs to gauge how long they should
spend helping a student to most efficiently move through the
queue.

C. Tickets

The tickets app allows students to submit support requests
to be fulfilled by course staff and is the primary way students
will contact course staff for help. A ticket is associated with a
single course and is submitted by students or faculty members
through POST requests on the tickets homepage. Any number
of support requests can be submitted for a single student and
each ticket consists of a written request for assistance from
course staff. Additionally, each ticket has an associated status;
either pending, stalled, deleted, or resolved based on where
the course staff is with helping the student with the request.
If more information is needed, students and course staff alike
can leave comments on each ticket.

Given the large number of students enrolled in the course, it
was important that the tickets app function properly in order
to keep instructor’s email inboxes from being flooded with
student requests. A challenge of creating the application was
how to best design the user interface for the tickets themselves.
Based on anecdotal feedback from other TAs we decided to
display the comments for a ticket underneath the original ticket
details to have the tickets appear functionally the same as a
traditional email thread, making it much easier for users to
understand in which order responses were made.



Fig. 1. An image of the Office Hour Queue from the TA perspective

V. RESULTS

The major goals of the web application were twofold. The
first was to provide a modern, web application to better handle
the demanding requests made for CS 2150 at UVA. The
success of this was collected anecdotally by gauging reactions
to the new queue from fellow TAs. The reactions have been
mostly positive with a few constructive ones that we used to
make the application better (like the UI changes to support
request comments). The new quality of life features such as
displaying an average wait time and the queue auto-updating
have proven helpful. Additionally, the new queue is far less
prone to crashing than the old one. A visual of the TA view
of the queue is seen in figure 1.

The second goal was to leave the project in a place where
it can be iterated on and refined by future development teams.
This has been done by making sure the code in the repository
is simple yet intuitive so that it may be easily understood in
the future. Additionally, work has been done to comment the
code so that each function’s usage is clearly explained. Finally,
the last few weeks of development will be devoted to writing
clear instructions for maintaining the web app in the future.

VI. CONCLUSION

Satori is a significant first step in reducing long wait times
for students waiting for help in CS 2150 and courses beyond.
The features of the web application have proven to be success-
ful in improving office hours for both TAs and students while
leaving room for improvements in the future. While there
are similar systems to Satori, we are confident that no other
queuing system adequately meets the needs of classes in the
Computer Science department at UVA, especially considering
how large and understaffed some of the classes are. Finally,
although the main requirements of Satori have been completed
and deployed, there are still some additional features that we
would have liked to implement if we had more time with the
project.

VII. FUTURE WORK

We have already implemented all of the core functionalities
intended for Satori. There are a few additional features that
we think could be helpful additions whether it be for cus-
tomizability, a more elegant design, or simple quality-of-life
improvements.

One of which would be a page for instructors to view the
efficiency of their TAs during office hours in order to ensure
that the queue is moving at a reasonable enough speed to
reach every student that comes for help. This page could
also display other statistics about average wait time, number
of students entering the queue, amount of time spent with
individual students and much more. Perhaps it could even be
separated by office hour blocks since TAs are assigned 2 hour
blocks of time where they hold office hours.

Another would be the implementation of an announcement
system in which the TAs could broadcast messages to the
queue for students to see. This could be helpful in times where
there are technical issues or perhaps a simple problem which
many students are encountering that could be summed up and
solved in a couple sentences. Currently with situations such as
this, TAs will either post about it on piazza or hold in person
group sessions in which they explain a concept to several
students at once. With the addition of an announcements
system the large load of students could be decreased for TAs
in many of the labs in CS 2150.

We would also like to include either a way for students to
input their preferred pronouns into Satori or for the website to
take them from the students’ listed pronouns in collab. This
is a requested feature that we feel would be helpful to ensure
that everyone getting help feels more comfortable with how
they’re addressed without forcing them to explicitly tell the
TA helping them every time.

The ability to add additional roles for users would also be
helpful to improve Satori’s overall adaptability since we plan
for it to be used for classes other than just CS 2150 eventually.
Some classes with different structures may want special roles
for TAs that are doing different jobs or to include roles for
Head TAs.

Creating a separate option for students to indicate that
they’re using virtual office hours and an accompanying link to
a Zoom meeting would be a nice quality of life improvement
over copying and pasting Zoom links given in the location
field of a queue entry.

ACKNOWLEDGMENTS

We would like to acknowledge the kind support we’ve
received from all of the TAs of CS 2150 who helped us to
stress test our system and gave us constructive feedback on
each of the core functionalities that we implemented and how
they imagined we could improve them. We would also like to
give thanks to all of the students in CS 2150 that made use
of Satori for their help in introducing us to some of the bugs
in the system.


