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Domain Adaptation Evaluation for Deep Image Segmentation

Kevin Je-Kuan Lin

(ABSTRACT)

Advances in deep learning approaches for medical image segmentation show increas-

ingly impressive results for disease detection. More specifically, these approaches have

demonstrated a strong capability to detect and quantify cellular features despite sig-

nificant differences in diseases, location, histopathology staining, size of the data,

and imaging techniques. The goals of this dissertation are to develop a framework

for medical image segmentation approaches, compare an existing domain adaptation

approach with other methods, and create a new approach for future domain adap-

tation research. The first part of this dissertation focuses on evaluating the dice

scores of the leading medical image segmentation model, U-Net, and using Monte

Carlo Dropout to produce an entropy quantification metric to quantify and visualize

areas where this model has difficulty in detection. Applicability of this approach

is first proven with a baseline Brain Tumor Segmentation (BraTS) challenge 2021

dataset and then verified through segmentation evaluation on the private Eosinophilic

Esophagitis (EoE) dataset. The created Monte Carlo Dropout U-Net maintains com-

parable dice scores on the EoE dataset and allows for a visualization of the entropy

which highlighted detected cells and areas of interest. The second part of this disser-

tation focuses on extracting the entropy metric from the first part of this dissertation

to separate observations into domains representing varying levels of entropy, using

these domains to create a Multi-Domain Adversarial Network (MDAN)[105], and

comparing this MDAN performance to that of a Denoising Diffusion Probabilistic
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Models (DDPM)[36]. The motivation for the MDAN approach stems from the fact

that adversarial network approaches are robust to the lack of available training data

common in deep medical image segmentation. The third part of this dissertation

introduces a new domain adaptation approach named Extremity-Ranked Domain

Selection (ERDS) which ranks observations by their extremity and performs a full

factorial experimental design to evaluate the impact of this domain choice on a MDAN

dice score. An observation has high extremity if removing that observation’s data in

training has a large impact on the performance of the model. Observation extrem-

ity represents a new but important parameter in domain adaptation approaches for

medical image segmentation. By successfully evaluating and creating domain adap-

tation techniques, both the medical and data science field benefit through greater

understanding of how current deep medical image segmentation approaches detect

diseases. Through these findings, future researchers can trust and leverage domain

adaptation techniques on image segmentation applications.
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Chapter 1

Introduction

1.1 Biomedical Image Segmentation

Deep image segmentation has been a proven approach to help pathologists understand

disease progression [91]. The process starts with medical providers taking biopsies

from patients to help inform a patient’s condition. These biopsies are placed on slides,

stained, and finally digitized, creating whole-slide-images (WSIs) which are then di-

vided into smaller “patches.” A visualization of a contemporary WSI scanner, biopsy

slides, and a patch from a biopsy image is shown in Figure 1.1. Medical researchers

Figure 1.1: Whole Slide Imaging (WSI) Scanner, Biospy Slide, and Patch Creation[21]
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then annotate these patches, “labeling” key cell types and extracting disease infor-

mation. This “labeling” can be extremely costly as WSIs datasets are significantly

large. For example, a typical WSI may contain 100,000x100,000 pixels and patients

may have multiple WSIs for a biopsy [88]. Therefore, researchers only label small

portions of the entire WSI per patient. As these “labeled” cell types typically have

similar characteristics, there is significant potential for deep learning, more specif-

ically image segmentation, to assist pathologists in labeling and extracting disease

information while reducing the cost of analyzing these WSIs. Current approaches in

medical image segmentation have demonstrated the performance of various architec-

tures including ResNet [35], DenseNet[75], and PCANet [10]. In 2015, Ronnenburger

created the U-Net Convolutional Neural Network (CNN) specifically for biomedical

image segmentation and cell-tracking [71]. Modern U-Net architectures including

Vanilla U-Net, Residual U-Net, R2U-Net, and Attention U-Net have produced im-

pressive results [2].

Like other machine learning models, U-Nets are highly sensitive to different domains.

More explicitly, the performance of a U-Net trained from a particular source domain

can drop (or increase) significantly if transferred to a different target domain. Addi-

tionally, similarities in source domain do not necessarily mean similarities in U-Net

performance in the target domain. In the world of medical image segmentation, pro-

viding medical researchers complete information about a disease phenotype must be

the priority given the direct impact a diagnosis has on patients. Increasing prediction

results can be a difficult process with common approaches such as increasing model

size and tuning model parameters risking significant issues in overfitting and cost.

One of the most significant limitations of segmentation methods is that the predicted

label output shows only distinct classes. In the binary class case, all pixels are either
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classified as 0 or 1. However, this result is produced through a simple threshold value

over predicted probabilities. For example, a threshold value of 0.5 would mean any

pixel with a predicted probability of less than 0.5 would be classified as 0 and any

pixel with a predicted probability of 0.5 or greater would be classifed as 1. This

creates a deceivingly simple output map when the model is actually outputting prob-

abilities that widely vary over the values from 0 to 1. A representation of this entropy

would give valuable information into how deep segmentation models detect cells or

areas of interest. On the medical side, this entropy would give medical researchers

insight into deep phenotyping of cells in different observations, informing fields such

as histology and morphology.

Continuing with this effort of providing more information to data scientists and med-

ical researchers, leveraging the proper source domain for a given target domain can

provide opportunities to consider observation-level characteristics. There are many

different approaches for domain adaptation but it is currently unclear which methods

are most appropriate for deep learning computer vision problems[92][39][15]. Most

researchers perform domain adaptation evaluations for convolutional neural network

(CNN)-based approaches on very small images[73]. This is likely due to the com-

putational rigor of evaluating larger images. Therefore, it is still largely unknown

what optimization methods are feasible and most efficient for segmentations involv-

ing large, high-resolution images. Since segmenting large medical images typically

requires dividing the image into smaller patches for each observation, domain adap-

tation can be a possible approach to determine which observations contribute most to

a model’s ability to identify cells or areas of interest. The model can be further evalu-

ated through an entropy metric to analyze how intentionally sub-setting observations

can drive segmentation results.
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1.2 Problem Statement

The goal of this dissertation is to evaluate the effectiveness and feasibility

of various domain adaptation methods on the image segmentation appli-

cation. For clarification, this work will be testing various combinations of source and

target domain choices and sizes, focusing on observation-level dice score evaluation

and entropy quantification. This work will not be focused on evaluating all current

approaches in domain adaptations. Currently, there is a lack of interpretability of

medical deep learning models where even though a predicted label is created, little

information is given as to what is actually happening in the model when creating

this prediction. This research will directly address this gap through an entropy vi-

sualization finding areas in images where deep learning models are likely to make

incorrect predictions. Furthermore, there is currently an overreliance on training

models that treat all observations as equal. Recent research on major datasets such

as a Lizard, PanNuke, and CoNSep, focuses more on detecting and identifying cells or

areas of interest regardless of observation-level analysis. This observation-level analy-

sis includes consideration of individual patient characteristics. This focus on patients

is justified through the National Institutes of Health (NIH)’s priority of “patient-

centered care [that] focuses on the individual’s particular health care needs” [70] and

former President Barack Obama’s $215 Precision Medicine Initiative (PMI) in 2015.

The PMI “takes into account individual differences in people’s genes, environments,

and lifestyles”[64] verifying that the highest levels of the United States Government

support observation-level approaches. Grouping all patients in datasets and creat-

ing a blanket model over all patients’ training data should not reflect actual medical

practices and should not be what data science researchers pursue.
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The findings of this research can be extended to any deep computer vision task that

requires large and high-resolution image inputs. The evaluation of these methods

will assess trade-offs between model performance, computation time, and memory re-

sources required. Additionally, finding an appropriate method for domain adaptation

can minimize the need for more training data to improve performance. Particularly

in the medical imaging field, training data can be costly to obtain due to privacy

concerns.

To demonstrate that the most efficient domain adaptation techniques can compare

well across wide-ranging datasets, these models will be evaluated on various datasets

from current research. The first dataset will be brain MRI images taken from the

Brain Tumor Segmentation (BraTS) challenge 2021 dataset which consists of images

that are 240x240 large and are separated into 28,075 images for training and 3,043

images for testing. This dataset will be treated as the baseline dataset to train models

since numerous researchers have used this dataset to assess segmentation performance

[101][66][6][40][20]. The second dataset consists of annotations of eosinophil white

blood cells in biopsy images for patients diagnosed with Eosinophilic Esophagitis

(EoE). Detecting and quantifying eosinophils is essential to diagnosing and managing

the EoE disease. The dataset is obtained from the Gastroenterology Data Science

Lab from UVA Hospital patient data. Each image is 512x512x3 large and there are

514 images/masks in the dataset spanning 30 UVA Medical Center patients.

1.3 Dissertation Overview

The following is the overview of this dissertation. The second chapter is the literature

review that presents image segmentation approaches, evaluation metrics, and domain
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adaptation techniques. The third chapter details segmentation approaches and en-

tropy visualizations for two different biomedical datasets. The fourth chapter explains

the methodology of the experimental setup and introduction of the Extremity-Ranked

Domain Selection (ERDS) method. The fifth chapter provides the results of the ERDS

and lists the performance improvement from using a observation-level metric to cre-

ate source and target domains. Finally, the sixth chapter provides conclusions and

explores future work for consideration.

This dissertation contributed to many fields including data science, image segmenta-

tion, machine learning, deep learning, computer vision, artificial intelligence, medical

image analysis, domain adaptation, and more. The following is a list of some of the

major contributions:

• Demonstrated through experimentation that Bayesian optimization, specifically

through Monte-Carlo Dropout, can produce entropy visualizations per patch

that provide insight into the abilities of deep segmentation approaches and into

the deep phenotyping present in medical data observations.

• Evaluated through experimentation that Multi-Domain methods have compara-

ble performance to Diffusion based methods while providing more control over

model training. This control allows observation-level analysis in determining

the effect each observation has on deep segmentation model results.

• Created a new metric for evaluating deep learning approaches by dropping

subsets of training data and evaluating the effects of these omissions. This

metric is a direct representation of a deep learning model’s reliance on a subset of

a dataset and can provide valuable information about what model performance

will be when certain features of a dataset are not present.
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• Showed the relationship of domain size, domain choice, and threshold value

in domain adaptation. Full factorial designs encompass each pairing of these

parameters driving efforts to improve future domain adaptation techniques.

Furthermore, segmentation results vary between different source/target domain

pairings. Intentionally setting source and target domains based off of the impact

of each observation improves deep segmentation results.

• Produced optimal domain adaptation parameters that verified the importance

of the new patient observation extremity (POE) metric on deep learning mod-

els. Setting these parameters significantly increased a multidomain adaptation

method’s dice score, demonstrating that the model is able to better identify

areas of interest in an input image. Accompanying observation-level entropy

quantification results provide information into how each observation contributes

to model results.

• Used a traditional statistical approach through a full factorial design to evalu-

ate a multi-domain adaptation approach created by the new extremity metric.

Bonding a traditional approach with a modern one and achieving strong re-

sults indicates that future work should consider using traditional statistical and

mathematical methods to support current approaches.

• Improved the detection performance of two different biomedical image segmen-

tation projects that all have critical clinical importance.

There is a lack of research on evaluating domain adaptation techniques on medical

images particularly for multi domain methods[1][80]. The motivation behind most

domain adaptation research has been to address the cost needed to collect and an-

notate large scale training data and minimize the possible shift between training and
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test samples. This has lead to the creation of single-source, single-target approaches

focusing on knowledge transfer from a labeled source domain to an unlabeled target

domain and exploring domain-invariant structure and representations[46]. However,

the labeled data for many of these domain adaptation techniques may come from

multiple domains with different distributions. As a result, naive application of the

single-source-single-target domain adaptation algorithms may lead to suboptimal so-

lutions. Such problem calls for an efficient technique for multiple source domain

adaptation. Additionally, there have also been problems in medical image segmenta-

tion research with not having sufficient labeled data in a domain to produce accurate

results[48]. Multidomain adaptation approaches have the potential to use other source

domains in addition to domains with insufficient labeled data to bridge this gap. Ad-

ditionally, multidomain adaptation approaches can allow deep segmentation models

to focus on differences in observations. Most medical segmentation approaches treat

all observations (which contain data from patients) equally which creates a discon-

nect with the medical field that focuses treating each observation as unique. Medical

segmentation approaches typically focus only on detecting and identifying areas of

interest independent of observation characteristics. Another way to view this differ-

ence is that medical care is given and adjusted based on patient-specific information.

Care that works for one patient is not guaranteed to work on another patient. Med-

ical deep learning approaches must also then consider approaches that can focus on

observation-level analysis and must also minimize grouping large amounts of observa-

tions as equal. Other approaches to improve performance on deep learning computer

vision such as hyperparameter optimization still rely on large amounts of labeled data

for training.

The increased knowledge from this research will be useful for many computer vision
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applications. Multi domain adaptation methods can produce insight into which do-

mains contribute most in segmentation approaches. Additionally, there is currently a

lack of research listing which source/target domains provide the best performance[8].

Testing different combinations of source/target domains will give insight into which

pairings are most effective and potentially give more information regarding domain

adaptation models. Future work in medical imaging would benefit from knowing

which source/target interactions perform best, eliminating the need for traditional

trial and error approaches. If successful, this research has the potential to minimize

and potentially eliminate the requirement for large amounts of labeled data to diag-

nose diseases while cementing trust in the biomedical community for deep learning

models.
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Chapter 2

Review of Literature

Research related to this dissertation falls into three major categories: U-Net image

segmentation models, Monte Carlo Dropout, and domain adaptation. This chapter

focuses on the literature that falls into these categories, connects these approaches

to real-world datasets, and explores the various approaches researchers are using for

analysis. Emphasis will be on exploration of deep learning architectures, mathemat-

ical formulation, and comparison of performance metrics.

2.1 U-Net Image Segmentation

The U-Net is convolutional network architecture for fast and precise segmentation

of images [71]. It has been shown to outperform what was previously considered

the best method (a sliding-window convolutional network) on the ISBI challenge for

segmentation of neuronal structures in electron microscopic stacks. Typically in ex-

periments, the UNet model utilizes 23 convolutional layers with batch normalization.

In both the encoder and decoder steps, ReLU is used as the activation function, and

for the final layer, sigmoid is used as the activation function. Loss is computed us-

ing binary cross entropy and ADAM is used as the optimizer. Early stopping and

data augmentation are implemented to prevent overfitting. The concept relies on

the baseline U-Net architecture shown in Figure 2.1, using the encoder to obtain and
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normalize the transformation of the input volume, using a Leaky ReLU activation

function at each layer. At the bottleneck of this architecture, the volume will be in

the size of 2×2×2 which represents the reduction of dimensionality prior to using

a sigmoid activation function for segmentation. The decoder then up-samples this

transformed 2×2×2 volume to reconstruct the image with this segmentation.

Figure 2.1: UNet Architecture: An input image is passed through an encoder and
decoder in order to create an output mask.[41]

The loss function used for training U-Net models is typically an Intersection-over-

Union (IoU) metric. These techniques tend to outperform cross entropy when the

segmentation is sparse or a small fraction of the total image. One of the most popular

IoU techniques is the Dice similarity coefficient[19]. The dice coefficient is the industry

and academic standard for evaluating medical image segmentation and classification

results. Evaluation is given through a scale of 0 to 1. Given two images X and Y , a

zero dice coefficient indicates that there is no similarity between two images while a

one dice coefficient indicates that the images are exactly the same down to the pixel.

The equation for the metric is given by

DCS =
2|X ∩ Y |
|X|+ |Y |

(2.1)

Most state-of-the-art dice scores on medical images range from 0.3 to 0.7 [95][92].
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Much like a regression metric, a dice score of 0 or 1 are usually causes for concern

since no two images from real-world data are truly the same. Although classifica-

tion accuracy is often used as an evaluation metric, it is important to note that the

dice score may be low even if the overall image training and validation classification

accuracy are high on a given dataset due to significant class imbalances.

Figure 2.2: Segmentation Evaluation of an UNet approach. The green circle shows an
area where the UNet was able to identify the correct location, size, and shape of the
cell. The red circle shows an area where the UNet incorrectly identified a cell. The
blue circle shows an area where the UNet correctly identified the correction location
of the cell but incorrectly identified the size and shape of the cell.

A visual representation of this evaluation is shown in Figure 2.2. Most importantly

from this visualization is the fact that the UNet makes mistakes and sometimes

siginficant ones. The red circle where the UNet mistakenly detected a cell of interest

can be a serious issue when medical providers are relying on correct information to

assist in disease diagnosis. This research will directly address minimization efforts for

incorrect detection through an entropy metric in the next section.
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2.2 Monte Carlo Dropout

With the majority of the dataset stemming from WSIs and other significantly large

sources, scalability and efficiency play a vital role in performance. Due to the signifi-

cantly large dataset, variational approximation, specifically minimizing the Kullback-

Leibler divergence (KL divergence), is needed in order to approximate the distribution

of the affected cells. The KL divergence is a measure of how different two probability

distributions are. KL divergence is given by

KL(q(Z||p(Z|D))) = −(Eq(log p(D,Z))− Eq(log q(Z))) + log p(D) (2.2)

Equation 2.2 illustrates that the KL divergence is just the expected log likelihood

ratio. Since maximizing the evidence lower bound (ELBO) is largely impractical,

Monte-Carlo approximations are commonly used. Work from Gal and Ghahramani

in 2016 [28], suggest that a Monte Carlo Dropout U-Net is equivalent to the deep

Gaussian process used in Bayesian Neural Networks. Essentially, the KL divergence

can be minimized using approximation through Monte Carlo integration to get an

unbiased estimate. Minimizing the KL divergence between the approximate posterior

q(w) and the posterior of the full deep Gaussian Process p(w|X,Y ) is given by the

objective function:

−
∫

q(w) log p(Y |X,w)dw +KL(q(w)||p(w)) (2.3)

The first and second term can be represented by a sum and approximated by Monte

Carlo integration. For the Monte Carlo Dropout U-Net, dropout is applied before

every weight where dropout is defined as switching off neurons at each training step.
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In Bayesian neural networks, each weight is represented by a probability distribution

which is assumed Gaussian instead of just a number. The learning aspect corresponds

to Bayesian inference which uses MC Sampling. Entropy is then calculated for every

pixel using cross-entropy over two classes of “background” (C = 0) (e.g. not pixels

containing the cells of interest) and “foreground” (C = 1) (e.g. pixels containing the

cells of interest) :

U = −(pC=0 · ln(pC=0) + pC=1 · ln(pC=1)) (2.4)

As an additional performance metric, model entropy will verify consistency in the

data. This is given by

Ep(z|D)H[p(y|z, x)] = −
∫

p(z|D)

(∑
y∈Y

p(y|z, x) log p(y|z, x)dw
)

(2.5)

Through literature review, deep learning conferences and researchers refer to this met-

ric as “uncertainty” [44][18] but closer observation into the underlying mathematical

formula yields that this “uncertainty” is merely the same equation as entropy. In

fact, DeVries and Taylor defined model uncertainty as the following:

Model uncertainty z is estimated by calculating the entropy of the averaged proba-

bility vector across the class dimension:

z = −
C∑
c=1

pc log pc where p is the probability vector and c are the classes (2.6)

This “uncertainty” metric has proven to be extremely important in deep segmenta-

tion. Kendall states that “The model’s uncertainty is an effective measure of confi-
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dence in prediction”[44] and DeVries follows with “Uncertainty estimates are capable

of detecting when a neural network is likely to make an incorrect prediction”[18]. In

deep medical segmentation, this measure of how likely a model will make an incor-

rect prediction is a significant motivator as medical researchers are relying on correct

information to assist in deep phenotyping efforts. Some visualizations to assist this

discussion are shown in Figures 2.3 and 2.4. In both figures, the uncertainty visu-

alizations provide insight into what areas the deep segmentation models struggle to

predict.

Figure 2.3: Uncertainty Visualizations from a Bayesian SegNet on various
datasets[44]. High uncertainties are observed at class boundaries and when objects
are visually difficult to identify or appear visually ambiguous.

Although deep learning researchers have referred to this metric as “uncertainty” in

multiple articles. A more proper term would be entropy and this was clarified through



16

Figure 2.4: Uncertainty Visualizations from a Monte Carlo UNet on a skin lesion
dataset[18]. The high uncertainties observed at class boundaries have caused signifi-
cant errors. The red boundary surrounding the skin lesion represents a false positive
in classifying the pixel as a skin lesion when there is not one present in that location.

an exchange between Claude Shannon, the “father of information theory” and the

famous mathematician, John von Neumann, in 1961. Shannon states:

“My greatest concern was what to call it. I thought of calling it ‘informa-

tion,’ but the word was overly used, so I decided to call it ‘uncertainty.’

When I discussed it with John von Neumann, he had a better idea. Von

Neumann told me, ‘You should call it entropy, for two reasons. In the

first place your uncertainty function has been used in statistical mechan-

ics under that name, so it already has a name. In the second place, and

more important, no one knows what entropy really is, so in a debate you

will always have the advantage.’ ”[85]
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In the spirit of one of the greatest mathematicians of all time, the word “entropy”

will be now be used instead of “uncertainty” to represent this metric with the only

exceptions being published works already using the word “uncertainty.”

2.3 Entropy in Medical Image Segmentation

The concept of entropy has been well established in the fields of thermodynamics,

biology, and information theory. Specifically in the field of information theory, entropy

is usually defined as the ”Shannon entropy” in respect for Claude Shannon[47]. The

core concept of information theory is that information transmitted by a message

can be measured. Closely associated with this concept of information is probability.

Taking the example of measured messages, defined a message as m each message

is then associated with a corresponding probability pm, or the probability that the

message is extracted from a set of messages. Shannon entropy is then defined as the

amount of information which is missing before reception[78]. Formally, let H(pm) be

the entropy of a set of messages m, then

H(pm) = −
∑

pm log pm (2.7)

This formula is exactly the same as the one used in Equation 2.6, linking the math-

ematical formulation behind machine learning and information theory. Most signif-

icantly, this Shannon entropy is well regarded as a powerful tool for optimizing the

amount of information involved in the transmission of messages or the storing of data.

As an expansion for this work, Shannon and Weaver further introduced optimum cod-

ing, which depends on the probabilities and on a possible noise that may destroy part
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of the messages[78]. For convenience, Shannon entropy will now be referred to as

merely entropy in this work. Entropy can also be a measure of the ”health” of a sys-

tem through measuring the knowledge observers have of the system[60]. For example,

entropy is low in the case of skewed probability distributions because one event dom-

inates. Conversely, entropy is high in the case of balanced probability distributions

where no event dominates another since the observer has little knowledge of what

the next measure will be. Medical image segmentation problems tend to have serious

class imbalances with the number of positive samples being much smaller than the

number of negative samples[50]. Directly, this means that more of the pixels in the

image are associated with the background instead of being associated with the cells

being detected. This research directly addresses this issue through the choice of the

Dice Similarity Coefficient evaluation metric given in Equation 2.1 which is a more

robust metric in imbalanced problems than other evaluation metrics such as accuracy.

Arguably the most familiar entropy concept in machine learning is cross-entropy.

Cross-entropy loss is one of the most common methods of evaluating a model’s per-

formance[103][50][12]. Cross entropy is typically used to adjust model weights during

training and closely related to the KL divergence shown in Equation 2.2. However,

KL divergence calculates the relative entropy between two probability distributions

while the cross entropy calculates the total entropy between the distributions[67]. As

stated prior, the KL divergence is used in this research’s Monte Carlo Dropout ap-

proach where the goal is minimization in order to approximate the distribution of the

affected cells. Also, as stated before, the cross entropy is not used in this research be-

cause there are significant issues with using this metric on imbalanced problems[50].

In general, the medical datasets used in this research contain far more background

pixels (e.g. not pixels containing cells of interest) than foreground pixels (e.g. con-
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taining cells of interest). To close, this research will use entropy for medical image

segmentation approaches in two ways: 1) as evaluation metric to inform locations

where a model is likely to make an error and 2) KL divergence (relative entropy) to

approximate the distribution of the affected cells. Therefore, these entropy concepts

will be crucial for both segmentation datasets in Chapter 3 and for setting up

2.4 Domain Adaptation

Deep learning[52] has greatly pushed forward the development of artificial intelligence

and machine learning[45] . As one of the most popular deep learning models, the con-

volutional neural network (CNN) has demonstrated its superiority over conventional

human-engineered imaging features[22][56][108][97][96]. Trained with large-scale la-

beled data in a full supervision manner, the CNN has made breakthroughs in com-

puter vision [102][54][11][86] and medical image analysis[1][93][42][106]. It has been

revealed that the CNN is able to learn generic low-level features (e.g., textures and

edges) that can be transferable to different image analysis tasks [31]. These advance-

ments in deep learning extend to computer vision methods where domain adaptation

has shown impressive results. For supervised domain adaptation, the standard ap-

proach is to transfer models learned on a source domain onto the target domain and

then fine tune the model to try to match the target domain. Some of the approaches

included in literature include PCANet[10], ResNet[75], and U-Net[71]. The advan-

tages of these methods is that having labelled data gives the models a lot more power

in prediction[65]. However, the labels also can potentially create irregularities in the

dataset [31]. One solution here is to partition each class within the image dataset

into a set amount of subsets and then assign new labels to the new set. Furthermore,
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collecting and annotating such large-scale training data is both prohibitively expen-

sive and time-consuming [105]. To solve these limitations, different labeled datasets

can be combined to build a larger one, or synthetic training data can be generated

with explicit yet inexpensive annotations. However, due to the possible shift be-

tween training and test samples, learning algorithms based on these cheaper datasets

still suffer from high generalization error[53]. Domain adaptation (DA) focuses on

such problems by establishing knowledge transfer from a labeled source domain to

an unlabeled target domain, and by exploring domain-invariant structures and repre-

sentations to bridge the gap. Figure 2.5 shows an example of how transfer learning,

which domain adaptation is a subset of, differs from traditional machine learning

approaches. Whereas most traditional machine learning approaches create only task-

specific models, transfer learning strives to extract information about a given (source)

task and match it to a different (target) task[13][30][69][33]. The motivation behind

this approach is that if a model can capture the similarities between the source and

target tasks, new models do not have to be created when new tasks appear. These

similarities are called “domain invariant features.” In the case of deep learning where

training a new model means significant resource requirements, the motivation behind

a transfer learning or domain adaptation method becomes immediately apparent.

Furthermore, domain adaptation techniques are typically divided into two different

fields: divergence based domain adaptation methods and adversarial based domain

adaptation methods. Divergence based domain adaptation methods assumes that

fine-tuning the deep network model with labeled or unlabeled target data can dimin-

ish the shift between the two domains. This fine tuning is done through minimizing

some divergence-based criterion (e.g. KL divergence) between the source and target

distribution. Ideally, this would extract domain invariant features. The advantage
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Figure 2.5: Transfer Learning Comparison: Traditional Machine Learning relies on a
“one task, one model” whereas transfer learning tries to use models for multiple tasks
by minimizing the distance between a source and target task

here is that if the divergence can be learned based on a given dataset, domain adapta-

tion is expected to perform better than other methods. However, the trade-off is that

the divergences are usually non-parametric and not specific to the dataset [89]. This

can lead to the approach taking a significant amount of time to train if the source

and target domains are significantly different from each other.

Adversarial based domain adaptation shares many similarities to the Generative Ad-

versarial Network (GAN) with a generator and discriminator. Applying this concept

to domain adaptation, the generator is just a feature extractor and the discriminator

networks attempt to distinguish between source and target domain features. A gra-

dient reversal layer (GRL) is commonly added to the network in order to evaluate

both gradients in one standard backpropagation step. The main advantage of the

using adversarial based domain adaptation is that it is comparatively simple for im-

plementation. The GRL is easily added to standard Deep Learning models without

further modifications. However, the issue is that the adversarial assumption limits all

experiments to only two domains. Extending this work to other domains will require
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parameter adjustments. Additionally, training can be unstable due to the adversary

training scheme. A solution here would be to use momentum as optimizer [89]. GAN

methods also address one of the most common issues with domain adaptation meth-

ods which is domain shift[95]. An example of an issue with domain shift would be

a drop in model performance on a model trained on a certain source domain when

applied to a different target domain.

Most research focuses on single source and single target domain adaptation for seg-

mentation[87][46] but little work has been done on multiple source and multiple do-

main methods and even less work has been done in determine ideal target domains

given one or more source domains[80][59][46]. One approach that has shown promis-

ing results uses a Multisource Domain Adversarial Network (MDAN) that optimizes

task-adaptive generalization bounds [105]. This approach combines the strengths of

both divergence-based and adversarial-based domain methods by defining worst and

average case classification bounds and using adversarial learning to extract features

with an architecture shown in Figure 2.6. Zhao et al proceeded to test this network on

three different datasets: Amazon Reviews, MNIST Digits Datasets, and WebCamT

Vehicle Counting Dataset. In nearly cases, the MDAN outperformed comparable

Domain-Adversarial Neural Networks (DANNs) shown in Figure 2.7.

Although the approach has shown promising results, the MDAN and other multi-

domain methods have not been used on medical imaging datasets. Testing if this

improvement holds in the case of medical imaging using datasets such as EoE biopsy

slides and Brain Tumor MRI Images can give insight into how multi domain methods

perform in relation to more standard approaches such as UNets. Additionally, this

new approach can help guide future work for using multi domain methods in medical

imaging. However, Zhao et al. did show one case under the “best-Single DANN”
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Figure 2.6: Multi-Domain Adversarial Network (MDAN) Architecture: Gradient re-
versal is separated into two types of approaches. Hard version: uses a source that
achieves the minimum domain classification error for backpropagation. Smooth ver-
sion: all domain classification risks are combined and backpropagated adaptively

Figure 2.7: MDAN Digits Datasets Results: MDAN outperforms the best Domain-
Adversarial Neural Networks (DANNs) on four different digits datasets (Mt: MNIST,
Mm: MNIST-M, Sv: SVHN, Sy: SynthDigits)

where the DANNs did out perform the MDAN slightly[104]. This indicates for future

work that DANNs should be included in experiments to ensure that any MDANs are

actually outperforming standard DANNs.

For a one-source one-target approach, define X the set of images in the dataset and Y

as the set of possible labels. This research only focuses on binary labels so Y = [0, 1].

Define the labeling function as f : X → [0, 1]. Matching images in X to the label in

Y , define DS as the source domain and DT as the target domain. The deep learning

model is then trained on the labeled data from the source domain, DS and tested on

the target domain DT . The goal of the deep learning model is to keep a low target

error. Directly, this means minimizing the probability that the model misclassifies the
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pixels in the image[29]. This is represented by Ben-David in 2010 in Equation 2.8[7]

εT (h) = EX∼DS [|h(x) ̸= f(x)] (2.8)

However, this dissertation focuses on multiple source and target domains. Expanding

Equation 2.8 to multiple domains yields, {DSi
}ki=1 as the source domain and DT as

the target domain. The multidomain error is shown in Equation 2.9 and was created

by Zhao et al in 2017 [105]. Breaking down the two terms in Equation 2.9, the first

term asks for informative feature representations for labelling while the second term

captures the domain invariant feature representations.

max
i∈[k]

(ε̂Si
(h)−minh′∈H∆H(ε̂T,Si

(h′)) (2.9)

One of the core requirements for domain adaptation is that the source and target

domain are different in order to properly evaluate deep learning approaches. This

work will focus on source and target domains that are very similar and come from

the same dataset. This means that the feature spaces between the source and target

domains will have significant overlap. However, the goal of this dissertation is to

assist deep phenotyping on one specific condition through analysis of different ob-

servations. Therefore, the work is focused on how factoring in certain observation

characteristics that vary significantly in the dataset can actually improve a domain

adaptation model’s performance. In Chapter 4 of this dissertation, the observation

characteristics are significantly different between both sets and individual observa-

tions and this actually motivates a domain adaptation technique in order to determine

what is ultimately driving the model behavior. In Chapter 5, the domain adaptation
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is executed and verifies the importance of this observation-level approach. Overall,

this dissertation focuses on only one medical condition in Chapters 4 and 5 in order

to properly evaluate the observation characteristics and factor impacts on a domain

adaptation model. This work produces optimal factor values that clearly show the

observation-level analysis having a positive impact in producing effective segmenta-

tion.

The motivation for using a domain adaptation method centers on modern approaches

that have shown GAN approaches performing extremely effectively for domain adap-

tation methods[107][99][49]. Additionally, GAN approaches can address domain shift

by using a generator to project features to an image space and a discriminator operates

on this projected space[89][74]. Chapter 4 of this dissertation explores a multidomain

GAN approach combining the strengths of GANs on minimizing domain shift with

the observation-level capability of multidomain approaches. Strong performance in

Chapter 4 of this dissertation motivates using a multi domain GAN approach as an

factor evaluation metric.
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Chapter 3

Segmentation Datasets

This chapter illustrates two different medical imaging datasets used for segmentation.

In this work, one public dataset is treated as the baseline, providing context, and one

private dataset is used to introduce a new approach, providing progress in the field

of deep learning. For both datasets, the technical and medical research impact are

explored and presented.

3.1 Brain Tumor MRI Images

Medical image segmentation of brain tumors is one of the most challenging medical

image analysis tasks due to its variable shape and appearance in multi-modal magnetic

resonance imaging [101][20][81][66][6]. Manual segmentation of brain tumors requires

a great deal of medical expertise, which is time-consuming and also prone to human

error. On the other hand, recent improvements in Machine Learning (ML), specifically

in Deep Learning (DL), help in identifying, classifying, and measuring patterns in

medical images, which include image segmentation [55]. With the improvements

convolutional neural networks (CNNs), many CNN models has been able to approach

the human level performance in plethora of applications such as image classification

or microscope image segmentation[100].

However, training an appropriate deep learning model requires not only high a quality
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dataset but also well designed model to learn from the data. Since UNet[71] is the

most popular architecture for brain tumor segmentation, Futrega et al.[25] started

their experiment with several different UNet-like architectures. They found the UNet

architecture achieves the best result for the BraTS21 dataset, and they further opti-

mized this architecture.

Training data for brain tumor detection was obtained through the Brain Tumor Seg-

mentation (BraTS) challenge 2021 datasets. The BraTS’21 challenge bases multi-

institutional pre-operative baseline multi-parametric magnetic resonance imaging (mpMRI)

scans, and focuses on the evaluation of the most advanced methods for the segmen-

tation of intrinsically heterogeneous brain glioblastoma sub-regions in mpMRI scans.

Furthermore, the BraTS’21 challenge also focuses on the evaluation of classification

methods to predict the MGMT promoter methylation status[6].

The BraTS 2021 data of 2,000 cases (8,000 mpMRI scans) represent a superset of the

BraTS 2020 data of 660 cases (2640 mpMRI scans). Ample multi-institutional routine

clinically-acquired multi-parametric MRI (mpMRI) scans of glioma, with patholog-

ically confirmed diagnosis and available MGMT promoter methylation status (for

the glioblastoma cases with such associated data), are used as the training, valida-

tion, and testing data for this year’s BraTS challenge. Specifically, the datasets used

in this year’s challenge have been updated, since BraTS’20, with many more routine

clinically-acquired mpMRI scans. Ground truth annotations of the tumor sub-regions

are created and approved by expert neuroradiologists for every subject included in the

training, validation, and testing datasets to quantitatively evaluate the predicted tu-

mor segmentations. In this work, the BraTS 2021 dataset serves as a baseline dataset

for segmentation as it is publicly available as a segmentation challenge dataset[5].

Therefore, performance will be compared for models trained on this dataset against
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future datasets.

All neural networks require adequate amounts of training data[38][51]. The greater

the amount of the data, the better the classification or segmentation algorithm per-

forms. This means that there may be limitations in access to systems with the

capabilities to process all this data. For this work, there are 28,075 brain images for

training and 3,043 brain images for testing. Total sizes for the two datasets amount

to 670MB. In order to address the potentially large sizes of the segmentation models,

the University of Virginia (UVA) Rivanna high performance computer will be used

for training and testing data.

To prevent overfitting, the following image augmentation methods will be used: Bi-

ased crop (to randomly crop part of the dimensions), Zoom (to sampling from the

picture and zoom the sample with cubic interpolation and mark with the most ad-

jacent interpolation), Flips (voxels are been rotated along the axis x,y,z), Gaussian

Noise (sampling each voxel with Gaussian noise and add them to the input data),

Gaussian Blurring (applied on the input volume), Brightness (the input voxels are

multiplied with a random value), and Contrast (the input voxels are multiplied with

a random value and cropped to its original size).

After this, for each training sample, three of the MRI modalities are combined to-

gether as one multi-channel image. In order have the image size fit in the model,

images are resized to to 128x128x128 and normalized. This normalization is con-

sistent with all other approaches to the Brain Tumor Segementation (BraTS) 2021

challenge as images must be resized in order to be properly used as training data

in deep learning models. To resolve any resulting issues with normalized values ap-

proaching zero, one extra voxel channel has been created, which employs the one hot

encoding to distinguish the foreground and background, and this mask was added as
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one extra channel for each image. Training will be for 100 epochs, yielding a runtime

of approximately 30 seconds per epoch.

For evaluation, loss is calculated through combination of the Binary Cross Entropy

Loss and Sørensen-Dice Loss given by the Dice Coefficient.

Figure 3.1: Results from Brain Segmentation: Verifies UNet Approach for Segmen-
tation and Illustrates an Entropy Visualization

For the testing output shown in Figure 3.1, there are some cases where the model

struggles on the segmentation tasks. Even in the first row of images with the highest

dice score shown, there appears to be a “ghost” segmentation floating to the upper

right of the correct segmentation. This segmentation may not seem significant in a

general model evaluation since the overall dice score remains a respectable 0.87 but

incorrect or misleading segmentations can severely impact medical staff in interpreta-
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tion. In the case of brain tumor detection where results will almost certainly change a

patient’s life, any deep learning model must be careful to list limitations and explore

segmentation results.

3.2 Eosinophilic Esophagitis Biopsy Images[58]

Eosinophilic esophagitis (EoE) is an inflammatory disease of the esophagus charac-

terized by the prevalence of a type of white blood cell (eosinophil). Approximately

0.5-1.0 in 1,000 people have EoE and it can be seen in 2-7% of patients that un-

dergo endoscopies [16]. Although the cause of EoE remains unclear, pathologists

believe EoE to be triggered by a patient’s diet. Furthermore, EoE is only increasing

in prevalence [9] leading to an increased load on pathologists. Patients with EoE

typically present with swallowing difficulties, food impaction, and chest pain [72][23].

A diagram illustrating the mechanism of EoE is shown in Figure 3.2.

To diagnose EoE, patients must undergo an endoscopy where eosinophils biopsy tissue

samples are then evaluated for concentration of eosinophils. Pathologists diagnose

the patient with EoE if at least one High-Power Field (HPF; 400× magnification

adjustment) within a patient’s tissue biopsy slide contains 15 or more eosinophils

[24]. In order to assist in counting these eosionphils, this biopsy sample is placed

on a slide and observed through a Whole Slide Image (WSI). These images can

be of significant size with sizes of 100,000 x 100,000 pixels not uncommon[88]. In

these WSIs, medical providers are looking for specific cells of interest which may be

indicators that provide information about a patient’s condition. In this work, EoE

data gathered from the Gastroenterology Data Science Laboratory at the University

of Virginia Medical Center spans the training dataset. The hematoxylin and eosin



31

Figure 3.2: Eosinophilic esophagitis: Clinical and Pathophysiologic Overview[23]

stained (H&E) biospy images in the dataset are taken from 30 patients who have

all been diagnosed with EoE by pathologists. The overall summary of the patient

characteristics is given in Table 3.1. Immediately apparent is that the EoE patient

data taken from UVA Medical Center seems to have observations from non-Hispanic

white patients almost universally. Therefore, this research has serious limitations for

applications to the wider community as underrepresented groups have zero (or nearly

zero) incorporation in this dataset. Additionally, approximately a third of all EoE

patients were already diagnosed with EoE before receiving the biopsy present in this

dataset. This means that some patients may have been receiving treatment when

their EoE data was extracted.

A sample image is given in Figure 3.3. Each image is 512x512x3 large and there
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Characteristic UVA (n=30)
Male (%) 18 (60)
Age in years, median (IQR) 26 (36.5-12.5)
Race
-          White, n (%) 29 (97%)
-          African American, n (%) 1 (3%)
Ethnicity
-          Non-Hispanic, n (%) 29 (97%)
-          Hispanic, n (%) 1 (3%)
Prior EoE Diagnosis, n (%) 9 (30%)
Treatment at Biopsy
-          Elemental Formula, n (%) 1 (3%)
-          Elimination Diet, n (%) 5 (17%)
-          Nasal Steroid, n (%) 0 (0%)
-          PPI, n (%) 12 (40%)
-          Swallowed Steroid, n (%) 3 (10%)
BMI in kg/m2, mean (SD) 27 (11)

Table 3.1: EoE Data Patient Characteristics: Almost all EoE data is taken from
non-Hispanic white patients. One African American patient is represented and zero
other ethnicities are present. Caution should be taken before using this research on
wider samples with other ethnicities since they are not represented in the training
dataset.
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are 514 images/masks in the dataset spanning 30 UVA Medical Center patients. To

preserve the color information for future works, the three channels [r,g,b] will be

maintained for the image. However, all masks will be imported as grayscale. All data

used in this work is completely de-identified and follows the United States patient

privacy laws including the Health Insurance Portability and Accountability Act of

1996 (HIPAA) and the University of Virginia Medical Center’s own commitment to

patient privacy. Data is used for academic use only.

Figure 3.3: Example Image Data from Gastroenterology Data Science Lab: This
biopsy image is divided into a significant amount of patches in order to assist with
disease diagnosis. Pathologists then analyze these patches to assess cells of importance
and gain information about a patient’s condition.

The UNet is convolutional network architecture for fast and precise segmentation of

images [71][51][2]. It has been shown to outperform what was previously considered

the best method (a sliding-window convolutional network) on the ISBI challenge for

segmentation of neuronal structures in electron microscopic stacks. To execute the

experiment, the UNet model utilized 23 convolutional layers with batch normalization.
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In both the encoder and decoder steps, ReLU was the activation function, and for the

final layer, sigmoid was the activation function. Loss was computed using binary cross

entropy and ADAM was used as the optimizer. Early stopping and data augmentation

were implemented to prevent overfitting. The four models used are MCD UNet,

UNet, DenseNet, and ResNet50. All training was done on 4 NVIDIA A100 GPUs

with 300GB of RAM in TensorFlow/Keras 2.7. Each model run was ran for 100

epochs with a learning rate of 0.001.

At first, the encoder is used to obtain and normalize the transformation of the input

volume, using a Leaky ReLU activation function at each layer. At the bottleneck

of this architecture, the volume will be in the size of 2×2×2 which represents the

reduction of dimensionality prior to using a sigmoid activation function for segmen-

tation. The decoder then up-samples this transformed 2×2×2 volume to reconstruct

the image with this segmentation.

To improve upon Adorno, et. al. [2], training data is augmented through flipping and

rotation for each image. This means that for all input images, there exists a flipped

and rotated image as well in the training data, effectively tripling the input dataset.

Data augmentation here makes the model generalize better due to the larger amount

of training data. For reference, the results from Adorno, et. al. [2] are shown in

Figure 3.4. The size field in Figure 3.4 refers to the total number of parameters of

each model. For comparison, the UNet results are shown in Table 3.2.

Model Size Median Min Max
MCD UNet 494K 0.591 0.470 0.650

UNet 494K 0.598 0.442 0.657
DenseNet 7.2M 0.592 0.369 0.645
ResNet 24M 0.612 0.505 0.651

Table 3.2: Test Results Dice Score: MCD UNet has 20x less parameters than Adorno
et al’s best performing UNet.
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Figure 3.4: Adorno et.al. Dice Values [2]: Adorno’s results illustrate that UNet
approaches have strong dice scores but tend to have a significant number of parameters
needed to train a model.

In comparison with literature, this approach has only ≈ 494,000 parameters while

the smallest model in Adorno et al. had 3.1 million parameters and the largest had

10.9 million parameters. Thus, the work is at least one order of magnitude less in

size than Adorno et al. which means the model is less complex. Given the same

UNet approach, it is tempting to assume, holding all other factors such as GPU

availability constant, this approach runs faster and more efficiently. However, due to

the fact that the dropout layers in the MCD UNet require a non-trivial amount of

time for inference, the approach will not have a full order of magnitude of increase

for speed. For context, the MCD UNet took approximately 10mins to run 100 epochs

on this 494,000 parameter model. Despite the significant difference is model size, the

performance is comparable to Adorno et. al with dice scores around 0.591, matching

their Residual UNet and R2UNet results while outperforming their Attention UNet

results. This results follows current results in published literature with Gadosey

et al using a stripped down UNet and producing competitive results in 2020 [26].

Additionally, these smaller model sizes can make deep learning more accessible for

researchers with low computation budgets.
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Figure 3.5: MCD UNet Results Visualization: Output comparing the true, predicted,
and uncertainty values for an image patch. The uncertainty visualization demon-
strates that the model has high uncertainty at the boundary of the eosinophils and
may detect eosinophils even when they are not present.

Arguably, the strongest result of this approach is the visualization possible due to the

quantification of the model’s uncertainty is shown in Figure 3.5. Please note that this

value is, in fact, the model entropy but the term “uncertainty” will be used in this

section given that this paper was published using the word “uncertainty” to describe

this metric. In this example image, white indicates high amounts of uncertainty while

black indicates low amounts of uncertainty. Additionally, the pixels are nearly white

around the borders of the eosinophils essentially “highlighting” them in the output

image. The high uncertainty on boundary pixels around each eosinophil indicate that

until the model sees more of the eosinophil, the model hesitates to classify the pixels

as an eosinophil. This difficult are is verified by observing that once the model passes

the boundary pixels of each eosinophil, the uncertainty drops significantly and the

interior of the eosinophil is nearly black. This dramatic shift in values from the out-

side of the eosinophil which is black, to the border of the eosinophil which is white,

to the interior of the eosinophil which is black again creates these “rings” of white

in the resulting image. In areas where multiple eosinophils are clustered, the model

seems to struggle to differentiate between the eosinophils leading to a “cloud” of high

uncertainty around the area. However, this output provides valuable information to
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pathologists as the highlighting the general area of interest and reducing the visual

load compared to the original input on the far left. These rings of white for actual

eosinophils in comparison with blurred “ghost” eosinophils provides an important

distinction for how deep learning models operate. Medical research has shown that

deep learning models may be falsely detecting eosinophils when these cells being their

“degranulation” process[14][15]. Eosinophils degranulate when they die which creates

challenges for both medical researchers and deep learning models when attempting to

detect and segment these cells. Particularly in the case of EoE where the diagnostic

criteria is 15 or more eosinophils present in a WSI, these degranulated eosinophils

can significantly impact diagnosis for medical providers and impact model training

for deep learning researchers. In order to check for this possible issue, this uncer-

tainty visualization was sent to the medical researchers at the University of Virginia

Gastroenterology Data Science Laboratory who verified that while the MCD UNet

uncertainty visualization seems to identify red blood cells occasionally, the approach

is not significantly identifying degranulated eosinophils during model validation. Ad-

ditionally, further work into the MCD UNet falsely identifying red blood cells yielded

inconsistent results that had a similar impact as other noise in the dataset.

For analysis, Dice scores of all models are plotted in Figure 3.6. The boxplots over-

lapped, which indicates the results from each neural net are not statistically signifi-

cantly better than others. This is important because uncertainty visualizations can

be obtained from the MCD UNet [18][44], as shown in Figure 3.5, whereas UNet and

ResNet50 do not allow for this. Monte Carlo Dropout allows a visualization of the

uncertainty through the dropout layers since it randomly turns off neurons during

training, which adds this stochastic element.

As the novel piece in this work, the model’s uncertainty is compared first through
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Figure 3.6: Boxplots of Model Dice Scores: All UNet approaches have similar dice
scores indicating that the significantly smaller MCD UNet should be considered in
future works where a vanilla UNet, DenseNet, or ResNet may be used.

an overview of the raw data and through a boxplot for visualization. Furthermore,

the uncertainty of almost all models is comparatively similar with only the DenseNet

having an outlier uncertainty value of 0.05 as shown in Figure 3.3. Considering the

significant difference in the order of magnitude between the sizes of the models, the

relative similarity in the uncertainty values demonstrate that at least at a sufficient

size, model uncertainty stays consistent regardless of the size of the model chosen.

Model Size Median Min Max
MCD UNet 494K 0.007 0.004 0.016

UNet 494K 0.007 0.005 0.013
DenseNet 7.2M 0.009 0.006 0.05
ResNet 24M 0.008 0.005 0.01

Table 3.3: Model uncertainty: All UNet models have similar uncertainty results
indicating that the smaller MCD UNet maintains comparative dice scores without
sacrificing consistency.

As stewards of patient data, researchers in medical image analysis must ensure all

models perform efficiently and appropriately. This work addresses both concerns

demonstrating MCD UNet’s comparable dice scores with fewer parameters than the

current models and introducing model uncertainty as an evaluation metric. All mod-
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Figure 3.7: Boxplots of Model Uncertainty: Visualization of the uncertainty illustrates
the similarity of UNet approaches with the exception of a few outliers.

els in this work had comparable values in uncertainty indicating that at least af-

ter a model reaches a certain size, the model uncertainty will stay constant. The

model’s uncertainty is then represented through a visualization which highlighted the

eosinophils in the resulting image. Scaling this approach with uncertainty to full size

biopsy images can help pathologists quickly identify eosinophils while also reducing

the mental load. Compared to a screen full of cells and color, the black and white

“rings” circling the eosinophils can at least narrow down eosinophil locations while

having the potential to count all eosinophils and output a mask showing their ex-

act locations. One of the most difficult parts of this work was working with limited

observations which is a common challenge in the field of medical image analysis. A

potential improvement to this work would be to incorporate few-shot learning. While

the dataset exists in a high-dimensional space, the work is limited to the number of

samples available due to the cumbersome nature of acquiring annotated histology im-

ages. Few-shot learning has significantly improved classification accuracy in medical

imaging datasets [48] and likely would produce competitive results.
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Chapter 4

Methodology

This chapter explains the approach on how domain adaptation experiments were de-

signed and executed. The experimental setup and scenarios are presented first. The

motivation for using domain adaptation techniques follows. Next, other competi-

tive approaches towards domain adaptation techniques are discussed and evaluated.

Finally, the tested evaluation metrics are listed and explained.

4.1 Experimental Setup

Prior to starting any work, appropriate work to prevent data leakage was performed

to minimize overfitting. In this case, data leakage would involve allowing some of the

test data to be learn off of information that would not typically be present during

prediction. A common example of this would be having the true label of a model as

a characteristic to be trained upon[81]. In this case, performance would be extremely

high because the model already knows what to look for. However, this does not

produce a useful model because, during prediction, the model will not know what

the true labels look like. In fact, Singh in 2022 writes ”When data leakage occurs, it

usually leads to overly optimistic outcomes during the model building phase, followed

by the unpleasant surprise of poor results after the prediction model is implemented

and tested on new data.” Singh continues by saying that the leakage might lead to
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Figure 4.1: The 514 labelled images input dataset spanning 30 patients was divided
into two groups in order to prevent data leakage prior to model testing.

suboptimal models being produced [81]. One way to combat leakage is by ensuring

that none of the testing data will be present any model training. To that end, two

labelled images are randomly selected per observation and stored separately. It is

important to note that although only two labelled images have been taken from all

observations, some observations may only have 10 patches whereas others may have

significantly more patches. For clarification, the number of patches per patient still

remains the same since the observation-level input data will not change regardless of

domain selection (e.g. Observation E-123 still started with 10 patches for analysis,

even though two the patches are taken for the target domain). A limitation here

is that there is not a significant amount of data so storing some of the data away

can be risky when deep learning models are so data-dependent when creating useful

results. These 60 labelled images will eventually constitute the target domain in the

domain adaptation method and this division is fully visualized through Figure 4.1.

The 454 labelled images will be used to calculate extremity and entropy metrics. The

extremity metric will allow separation of observations into partitions that will be this

research’s the source domains.
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Figure 4.2: The remaining images are used to evaluate each observation’s extremity
value which will allow control over domain choice. Training, Validation, and Test
split was done 60% training, 20% Validation, and 20% test

Next, a Baseline MCD UNet is created in order to observe the dice score with all

observations present in the dataset. Training, Validation, and Test split was done

60% training, 20% Validation, and 20% test. This is visualized in Figure 4.2.

Finally, the MCD UNet’s dice score is evaluated through a Leave-One Out Approach

where patients are one-by-one removed in training but are present in testing. Fig-

ure 4.3which shows an example of this process with observation E-123.

With the Baseline and Leave-One Out MCD UNet defined, an extremity metric can

be calculated. Chapter 5 goes over the formal definition of the extremity metric and

allows the creation of observation-level domains.

Specifically, in domain adaptation, this research will be focused on a multidomain

approach focused on reducing the generalization error shown in Equation 2.9 back in

Chapter 2. For convenience, this equation is restated below

max
i∈[k]

(ε̂Si
(h)−minh′∈H∆H(ε̂T,Si

(h′)) (4.1)
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Figure 4.3: MCD UNet Leave-One Out Approach for Analyzing Observation-Level
Data: For this example, data for observation E-123 is removed in training but present
in testing.

The generalization error shown in Equation 4.1demonstrates the domain adaptation

model will be attempting to find informative feature representations for labeling while

capturing the domain invariant feature representations [105]. The first term is the

empirical source error while the second term represents the Once again, the source

domains are created by placing observations in groups of high and low extremities

and the target domain is the 60 reserved images taken from each observation in the

input dataset. At this point, these 60 images have not been used for training, testing,

or validation in any model for this research which means active efforts were made to

prevent data leakage. Most importantly, in the field of domain adaptation, the source

and target domains are clearly separated. The resulting model will then be attempting

to generalize to an unseen target domain which will provide more information about

how medical conditions appear in deep segmentation models.

One critique of this observation-level Leave-One-Out approach is that it seems simi-

lar to a different concept called K-fold cross-validation[82]. Leave-One-Out methods

have historically been associated heavily with K-fold cross validation methods with
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major Python packages such as sklearn clearly stating that a ”LeaveOneOut()” cross-

validator function is equivalent to ”KFold(n_splits=n)”[76]. However, there is liter-

ature of Leave-One-Out approaches that are not cross validation. ICLR 2024 had a

paper titled ”Leave-One-Out Distinguishability in Machine Learning” by researchers

in the National University of Singapore (Source: https://arxiv.org/pdf/2309.17310)

that also measured the influence of training data points in machine learning, a con-

cept that is core to this dissertation[98]. In this paper, the words ”K-fold”, ”CV” or

”cross-validation” do not appear and the focus is on measuring observation-level data

influence and addressing issues with data leakage. This indicates that the field of data

science is interested and motivated by new work towards Leave-One-Out approaches

that are not cross-validation and that this is a new area gaining traction. Although it

is motivated by previous work such as ”K-fold cross validation” which certainly has

far more work, the approach is distinct and contributes directly to the progress of the

field of data science.

K-fold cross validation typically has the following properties that do not hold in this

dissertation. First, k-fold cross validation has each fold approximately the same size

[3]. In Chapter 5, the observation characteristics vary significantly. Some observations

have 10 images while others can have up to 71 images. In fact, this wide variation

is an extremely important aspect of deep phenotyping as it gives insight into why

certain observations have more labelled data than others. One idea would be that

the people having more labelled data have a more severe case with more cells needing

to be detected. However, the opposite holds in this dissertation which makes k-fold

cross validation a poor choice for this reason. In contrast, domain adaptation methods

regularly deal with source and target domains of different sizes. In fact, one of the

largest motivators for using a domain adaptation method is when the target domain
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is significantly smaller than the source domain[90]. Instead of needing to obtain more

data in order to create an informative model, domain adaptation allows a model

trained on a (typically much larger) source domain to be used on a given target

domain. Second, k-fold cross validation struggles with class imbalances. He and Ma

in 2013 state ”A 10-fold cross-validation, in particular, the most commonly used error-

estimation method in machine learning, can easily break down in the case of class

imbalances, even if the skew is less extreme than the one previously considered” in

their book Imbalanced Learning: Foundations, Algorithms, and Applications[34]. In

the case of medical image segmentation, large class imbalances are common since the

cells of interest are typically the minority class in an image set. The underlying issue

with k-fold cross validation on imbalanced classes is that the model will likely focus

on accurately predicting the majority class. Given that the majority class in medical

image segmentation consists of all the pixels that are not in the areas of interest, the

k-fold cross validation would fail to yield any useful results for this research problem.

In contrast, there have been domain adaptation methods have seen strong advances

targeting problems with large class imbalances[37][84].

To evaluate different domain adaptation approaches, a full factorial statistical design

is used. The three factors are domain size, domain choice, and threshold value. The

evaluation metric will be the validation dice score. This dissertation will focus on a

full factorial design targeting domain adaptation factors on the EoE dataset which

are shown in Table 4.1.

Thus, the experiment will be an exploration of all possible combinations of these

three factors. Continuing this example with the EoE Dataset would give the following

design matrix shown in Table 4.2.

In this approach for the EoE dataset, the eight runs will provide a complete view
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Low (-1) High (+1)
Domain Size 5 15

Domain Choice Random EoE/Not EoE
Threshold Value 0.3 0.5

Table 4.1: EoE Full Factorial Design: This experimental design will have two levels
and three factors. The goal will be to explore the effect Domain Size, Domain Choice,
and Threshold Value have on a multisource domain adversarial network dice score
results.

Run Domain Size Learning Rate Threshold Value
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

Table 4.2: EoE 23 Full Factorial Design Matrix: All factor combinations are tested to
assess their effects on the multisource domain adversarial network dice score results.
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of the domain adaptation techniques results in response to changes in domain size,

domain choice, and threshold value. Results would indicate whether these techniques

can rival existing deep learning approaches and provide insight into how the model

is learning to adapt to different domains.

4.2 Experiment Details

All experiments will be run using GPU nodes on Rivanna, UVA’s high performance

computer. For training, All models will be coded in Python preferably using the

Keras API on TensorFlow back-end as a deep learning framework. If needed, Py-

Torch deep learning framework packages will also be used. For domain adaptation,

there are several libraries that may assist with implementation to include: Awesome

Domain Adaptation Python Toolbox (ADAPT) and Another Domain Adaptation Li-

brary (ADA). Additionally, there is a trade-of between segmentation performance

and computation time. While the dice score for segmentation may continue to im-

prove, eventually the overall optimization run time can become excessive. Excessive

run times can hinder executing all necessary experiments in a timely fashion. The

process that can produce an effective domain adaptation method within a reason-

able time period should is preferred. An early stopping criteria was implemented to

stop training when validation loss did not improve after ten consecutive epochs. The

Adam optimizer was used to train model parameters.
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4.3 Motivation for Domain Adaptation Approaches

for Segmentation

Given that the size of an WSI can be 100,000x100,000px large [88], detecting diseases

using medical images can be an extremely draining task. Recent medical imaging

classification and segmentation efforts have attempted to leverage the strengths of

deep learning to assist medical providers, identifying key areas for possible treatment

and giving information about a patient’s condition. Results have proven to be efficient

and effective [32][75]. However, this progress has not properly addressed one of deep

learning’s most glaring issues: training. Traditional models require large amounts

of data to train which may be difficult or impossible in the field of medical image

diagnosis. Additionally, the training time needed for traditional models can grow

significantly scaling dangerously with the size of the training dataset. Approaches

such as domain adaptation have shown promising results by using source and target

domains to minimize the training constraints. Continuing this progress, diffusion

based methods have show impressive results, outperforming domain adaptation ap-

proaches in some studies [63]. Despite these advances in diffusion based methods,

domain based methods have still shown comparable results, outperforming standard

deep learning approaches and providing valuable information about specific domain

choices [53]. For example, Li, et al from the Nanyang Technological University in Sin-

gapore used a domain adaptation approach to target better generalization capability

to the “unseen” medical data. Li et al’s approach used two different types datasets:

skin lesion and spinal cord gray matter and evaluated domain adaptation methods

using the following performance metrics. Dice Similarity Coefficient (DSC), Jaccard

Index (JI), Conformity Coefficient (CC), True Positive Rate (TPR), and Average
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Figure 4.4: Li, et al.’s [53] Adaptation Method Performance Evaluation: Comparison
of Domain Adaptation Approaches with other models using Dice Score (DSC), Jac-
card Index (JI), Conformity Coefficient (CC), True Positive Rate (TPR), and Average
Surface Distance (ASD) as performance metrics.

Surface Distance (ASD). The results are shown in Figure 4.4.

As with many other medical datasets, the concern for the UVA Medical Center EoE

data is that it may not be sufficient for training and any model trained on the datasets

can have issues with model generalization. The dataset only contains 30 patients and

514 labeled images/masks, motivating the effort to not use traditional deep learning

approaches. Before importing the data into a model and extracting the features,

the image distributions of all 30 patients are compared and visualized through a

network diagram shown in Figure 4.5. The network is shown with the most unique

patients towards the edges of the diagram and the most unique patients in the center.

Although all patients were ultimately diagnosed withe EoE at UVA Medical Center,

the network color codes the patients who’s labeled images/masks would meet the “15



50

or more eosinophil” diagnostic criteria. Additionally, the entropy for each patient

is represented this through the circle sizes. This was done through a Monte Carlo

Dropout UNet approximation to the deep Gaussian process used in Bayesian Neural

Networks [27]. Minimizing the KL divergence using an approximation through Monte

Carlo integration to gives an unbiased estimator. The entropy [28] is then given by

the following equation.

Ep(z|D)H[p(y|z, x)] = −
∫

p(z|D)

(∑
y∈Y

p(y|z, x) log p(y|z, x)dw
)

(4.2)

Immediately apparent was that there were some serious differences in patient samples

which are hereby defined as observations. Two quick examples were that observation

E-139 had more than 50 times the entropy of observation E-28 and that observation

E-17 had 71 labelled biopsy images while most observations had only 10 labelled

biopsy images. Overall, it also can be concluded that the higher the entropy, the less

unique an observation is relative to the group. These significant differences gives an

indication that the dataset is far from homogenous and that traditional deep learning

techniques may struggle to detect areas of interest. Thus, domain adaptation and

diffusion approaches are a natural progression from the information gathered in the

deep dive into the observations and from advancements compared to standard deep

learning techniques. This analysis presents progression in both domain adaptation

and diffusion based approaches in medical imaging.
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Figure 4.5: EoE Dataset Network Diagram: Observation-based visualization shows
that there is significant variation between each patient’s dataset that standard deep
learning approaches struggle to address.

4.4 Domain Adaptation and Diffusion Based Meth-

ods[57]

For the domain adaptation approach, the dataset is split into three different domains:

low, medium, and high entropy observations. Since there are 30 observations, each

domain will have 10 observations. Each of the combinations is then trained and

evaluated for average performance calculated through a Fréchet Inception Distance

(FID), precision, and recall. Letting DT be the target domain and DSi
be the source

domain over X, then the generalization bound is given by

The goal in the multisource domain adversarial network approach is to minimize the

generalization bound shown in Figure 4.6. This is typically done through a minimax

saddle point problem and then optimized through adversarial learning

Diffusion based models use variational inference to produce samples matching the
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Figure 4.6: Multisource Domain Adversarial Network Generalization Bound: Com-
bines the worst classification accuracy, distance between the source and target do-
mains, optimal error, and data bias into a generalization bound

Figure 4.7: Multisource Domain Adversarial Network Algorithm: Stores informative
feature representations and captures invariant feature representations between differ-
ent domains.[8]
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data given sufficient time. This is typically done through a parameterized Markov

chain that gradually adds noise to the image until the signal is destroyed. A common

checkpoint in these approaches is to make sure that the noise indeed reduces the

signal to noise ratio to zero (or close to it). In comparison to other deep learning

techniques, diffusion models are straightforward to define and efficient to train but

there has been limited demonstration that they are capable of generating high quality

samples. The following implementation shown in Algorithm 1 will be used to apply

this diffusion based approach to the EoE dataset[36]. This baseline approach will

also be used to compare FID, precision, and recall for both the multisource domain

adversarial network and diffusion approaches. A Monte Carlo Dropout UNet with a

dropout value set to 0.5 will be the baseline model for this work. All training was done

on 4 NVIDIA A100 GPUs with 300GB of RAM in TensorFlow/Keras 2.7/PyTorch

2.1.1. Each model run was ran for 100 epochs with a learning rate of 0.001. For the

domain adaptation and the diffusion based models, the evaluation metric will be a

Fréchet inception distance comparing the generated and real images. For all three

models, precision and recall will also be recorded.

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform(1, . . . , T )
4: ϵ ∼ N(0,I)
5: Take gradient descent step on
6: ∇θ||ϵ− ϵθ(

√
ᾱx0 +

√
1− ᾱϵ, t)||2

7: until converged

Although there are a few papers [63] stating that the Diffusion Probabilistic Models

beat GANs on medical 2-D images, the results in Table 4.3 suggest that there is

at least a space where the GANs may capture feature representations better than

diffusion methods. In addition, these papers also have cases where some GANs had
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Model FID Precision Recall
MCD UNet N/A 0.567 0.495

MDAN 42.56 0.623 0.657
DDPM [36] 50.65 0.489 0.457

Table 4.3: Model Performance Comparison: Multisource domain adversarial network
approach (MDAN) outperforms diffusion methods (DDPM) on EoE Dataset.

Figure 4.8: Diffusion vs GAN [63]: Diffusion methods (Medfusion) have shown strong
performance against adversarial methods (StyleGan-3, cGAN, ProGAN) but some
results are comparable such as the precision of cGAN vs the precision of Medfusion.

performance comparable to diffusion methods as shown in Figure 4.8. In this table,

cGAN has a precision of 0.64 which is close to Medfusion’s precision of 0.66. With a

GAN approach achieving similar results as a diffusion approach, the results observed

from the multisource domain adversarial network approach in Table 4.3 motivate

future works exploring the trade-space between adversarial and diffusion approaches.

Furthermore, the precision and recall metrics for the domain adaptation approach are

better than both the diffusion and the baseline UNet approach.

As a check for the diffusion based methods actually eliminating the signal from a

given image, the EoE images after diffusion shown are plotted in Figure 4.9. Clearly,

the signal is completely destroyed and there is no indication of cellular structures

anywhere in the images. Therefore, the fact that the diffusion based method was able

to extract information from this image being in such a state is impressive.

The strong performance of the domain adaptation methods compared to the diffusion
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Figure 4.9: Destruction of the EoE Signal: Denoising Diffusion methods (DDPM)
require a destruction of an image’s signal by adding noise as an intermediary step
before generating synthetic images.

and the standard UNet approach motivates further work in the domain adaptation

field. Next steps could be to see which of the three domains used were most impactful

to the relatively strong performance and what impact, if any, would their removal from

the dataset be. Additionally, one of the advantages in using a domain adaptation

approach is exploring the relationships between different source and target domains.

Adding different datasets such as the public PanNuke or Lizard dataset to the analysis

can provide different insights into the EoE patients here at UVA and potentially help

other researchers in the field of medical image diagnosis.

4.5 Extremity-Ranked Domain Selection (ERDS)

Deep learning has been well established as an appropriate and effective approach for

medical image segmentation[91]. A major limitation of these deep learning approaches

is the lack of generalization and explainability. Recent approaches to address these

issues are the addition of domain adaptation methods that serve to give insight into

how different models trained on other datasets can assist future efforts to create new

models[105]. The benefits of effectively applied domain adaptation techniques span

multiple research fields including image captioning[17], object detection[87], and med-

ical image segmentation[79]. Out of the these fields, medical image segmentation has

shown rapid progress with UNet[2], diffusion[63], and GAN[95] approaches showing
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strong abilities in detecting cells of importance. However, the core focus of medical

work is observation-centric with improving patient care a number one priority for med-

ical providers and these above methods fail to address observation-level assessment

in their results. In contrast, Extremity Ranked Domain Selection (ERDS) focuses on

the impact each observation has on the model’s performance. ERDS transverses the

entire dataset, individually removing an observation from the training data, calcu-

lates the extremity by assessing how much a baseline MCD UNet dice score decreases

when they are removed, and then ranks the observation by their extremity. This task

yields valuable information on how deep learning models rely on subsets of training

data and how certain subsets of training data may be sufficient enough to span all

necessary features. With these observation rankings, domain selection begins with

creating multiple domains of high and low observation extremity. To assess these

domains, a full factorial experiment is created spanning domain size, domain choice

(random or extremity ranked), and classification threshold value. Ultimately, ERDS

yields the optimal values in the full factorial experiment, demonstrates that the value

of this extremity metric in future works, and motivates further research in analyzing

impacts of varying training data.
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Chapter 5

Results

5.1 Baseline MCD Model

Prior to incorporating a new deep learning approach, baseline models must be cre-

ated to not only produce comparable dice scores but also as a check to ensure that

results are reasonable. In this work, the Monte Carlo Dropout UNet [71] will be the

baseline model. All training in this work will be using 100 epochs, ADAM optimizer,

TensorFlow 2.13.0, 384 GB of storage, and 4 NVIDIA A100 GPUs. Evaluation of

the work will be through the entropy metric calculated in Equation 4.2 and a Dice

Score. For the baseline model, the results of using this approach are shown in Fig-

ure 5.1. To avoid issues with the model outputting high dice scores when training

on “blank” patches, any images with a Dice Score of exactly 1.0 or 0.0 are removed.

Performance of a Monte Carlo UNet yields a median of 0.576 for the dice score which

matches current medical image segmentation research results[2]. To ensure that this

baseline model is performing sufficiently well, a ROC Curve is calculated and shown

in Figure 5.2. The ROC Curve verifies that the model has is appropriate to use as a

baseline with some values closely approaching the top left corner of the graph and an

AUC of 0.971. This indicates that the classification accuracy of the model is high and

clearly better than a true random guess. However, the EoE dataset has severe class

imbalances with the majority of pixels in an image patch not in the eosinophil class.
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Figure 5.1: Baseline model dice scores: Monte Carlo Dropout UNet. The results are
reasonable given previous results shown in Figure 3.6.

In fact, EoE pixels numbered 2,339,280 which is approximately 2% of all pixels while

non-EoE pixels numbered 111,431,116 which is approximately 98% of all pixels. For

this reason, the Dice Score is a far more appropriate evaluation metric. With these

strong preliminary results, ERDS can proceed by using MCD UNet as an appropriate

baseline model.

5.2 ERDS Approach

Extremity-Ranked Domain Selection represents a combination of new domain adap-

tation techniques with statistical approaches to determine the effect of modifying a

training dataset on a MCD UNet dice score. Figure 5.3 illustrates a schematic of the

approach. First, a baseline run is conducted with a Monte Carlo UNet and the full

training dataset. Then, observations are removed with replacement from the training
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Figure 5.2: MCD ROC Curve: EoE pixels = 2,339,280 (≈2%), non-EoE pixels =
111,431,116 (approx98%). Large class differences motivate using Dice Score as an
evaluation metric.

dataset and the same Monte Carlo UNet is run. With each run, the dice score and

entropy are recorded for each observation. Observations are then ranked on their

extremity which is determined by their median dice score and median entropy values.

Domains are created by grouping observations of high extremity and low extremity.

This creates the source domains needed for the Multisource Domain Adversarial Net-

works (MDAN)s. Although the domains use observations from the same EoE dataset,

the observation characteristics are not the same and create the difference needed in

order to define different source and target domains. To be clear, this research is not

focused on evaluating on multiple diseases or multiple datasets. This research is con-

cerned about how EoE presents over this set of observations from the UVA Medical

Center. Given that each observation has unique characteristics including age, sex,

ethnicity, BMI, location of biopsy taken, and time of initial biopsy collection, this

approach will provide information for deep phenotyping efforts in UVA’s eosinophil

detection efforts. In addition to different medical characteristics, observations also

have wide dataset variations. For example, observation E-139 had zero eosinophils
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in 28 out of 41 of their patches while observation E-77 had so many eosinophils their

patches that the number of pixels that had eosinophils approached the number of

pixels that did not have eosinophils. E-77 specifically seemed to have nearly balanced

class sizes in their input patches.

Finally, a full factorial experimental design is created focusing on domain size (5,

15), domain choice (Random, Extremity Ranked), and threshold value (0.3, 0.7). For

the target domain, one observation is randomly chosen in these full factorial runs to

be the target domain. The benefit of using a full factorial experiment is that each

of these factors domain size, domain choice, and classification threshold are assessed

to determine their respective effects on the MDAN dice score. Compared to other

approaches, the full factorial design also accounts for interaction terms combining

these factors to see if a subset of them drive the model’s dice score. These results can

be visualized through a standard least squares approach focusing on effect screening

yielding information as to if these factors are an appropriate choice for predicting

MDAN dice score. Finally, optimal combinations of these factors can be calculated,

demonstrating which factors actually drive model dice score and driving future re-

search into sensitivity analysis for these factors. All full factorial design experiments

are conducted on JMP using the Student Licenses.

Before starting, the EoE dataset has some slight class imbalances shown in Table 5.1.

In particular, observations E-17, E-105, and E-139 have significantly more patches

of 71, 63, and 41 patches respectively in comparison to most other observations who

have only 10 patches. Discussion with the medical researchers at the University

of Virginia Gastroenterology Data Science Laboratory showed that some of these

patients visit the hospital multiple times for these biopsy collections and that some

patients may have multiple areas of interest in their WSI. Given that each of these
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Figure 5.3: Extremity Ranked Domain Selection Approach. Model dice score is tested
by individually removing observations from the training dataset prior to training the
model, creating a extremity metric. Observations are then ranked by their extremity
and placed into a domain. A Full Factorial Design of Experiment (DOE) using dice
scores from a multisource domain adversarial networks (MDAN) using the observa-
tions as appropriate source and target domains.

patches are traditionally manually labeled by medical pathologist, observation E-17

with 71 patches would be more resource intensive for disease detection than E-02

with only 10 patches. This seven-fold different in observation class sizes can lead

to different labeling results and motivates the ERDS research of assessing the model

dice score after iteratively removing each observation. Lastly, this indicates that the

observations with higher amounts of patches may have a larger eosinophil distribution

in their WSIs which can lead to more difficulties for medical pathologists to diagnose.

Given that the size of a WSI can be up to 100,000 x 100,000 px and that the patches

are 512x512 px, selecting appropriate patches to label can be significantly resource

heavy. In order to correct these class imbalances, observations will be weighed by
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their amount of images in the dataset.

The extremity results from running the Monte Carlo Dropout UNet and removing

each observation individually are shown in Figures 5.4 and 5.5. The full dataset

results are indicated by a thick horizontal line for comparative analysis. Extremity

for this MDAN approach will be defined as the median dice score instead of the mean

dice score to prevent significant impact from any extreme observations. Formally, let

X be the set of all observations in the dataset, D(Xi) represent the dice score of a

MCD UNet trained on all data except for observation i, and Mdn() represent the

median. The patient observation extremity (POE) metric is then given by:

Patient Observation Extremity(i) = |Mdn(D(X))−Mdn(D(Xi))| (5.1)

Verbally, extremity is then the non-negative difference between a baseline Monte

Carlo Dropout UNet dice score with all observations in the training dataset and a

baseline Monte Carlo Dropout UNet dice score with a specific observation removed.

The graphs also demonstrate that there is not a significant difference between choosing

median or mean dice score as a factor in the extremity ranking metric. As expected,

removing a observation lowers the already relatively small dataset which almost uni-

versally negatively impacts the dice score metric. In fact, the MCD UNet dice score

only improved when observations were removed for ten patients. Removing observa-

tion E-139 had the largest increase in dice score of 0.65, outperforming the baseline

model dice score of 0.62. Correspondingly, removing observation E-139 also had the

smallest entropy of 0.0027 compared to the baseline MCD UNet entropy of 0.014

demonstrating that this observation seems to hinder model dice score. Referring

back to the dataset distribution table shown in Table 5.1, observation E-139 has 41
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Observation Name Number of Patches Percentage of Dataset
E-02 10 1.95%
E-17 71 13.81%
E-21 24 4.67%
E-25 33 6.42%
E-26 15 2.92%
E-28 10 1.95%
E-29 10 1.95%
E-77 10 1.95%
E-81 10 1.95%
E-92 10 1.95%
E-93 10 1.95%
E-103 10 1.95%
E-105 63 12.26%
E-116 37 7.20%
E-123 10 1.95%
E-124 10 1.95%
E-126 10 1.95%
E-127 10 1.95%
E-131 10 1.95%
E-136 10 1.95%
E-139 41 7.98%
E-147 10 1.95%
E-201 10 1.95%
E-218 10 1.95%
E-240 10 1.95%
E-244 10 1.95%
E-247 10 1.95%
E-249 10 1.95%
E-250 10 1.95%
E-251 10 1.95%

Table 5.1: EoE Patient Data Distribution: Wide variation in number of patches
per observation indicate that a more observation-centric approach to deep learning
is appropriate for this EoE dataset. Standard deep learning approaches would not
account for observation-level analysis.
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patches which is the third largest patient dataset. Visual analysis of the patches for

observation E-139 showed zero eosinophils for a majority of the patches and is shown

in Table 5.2. The patches in observation E-139 lack eosinophils which means that

these patches will provide limited information for training the model to detect and

identify eosinophils. The lack of eosinophils in observation E-139’s patches also ex-

plains why the entropy actually decreased when observation E-139 was removed from

the training dataset. The addition of blank true patches only caused the model to

become more stable because the model is already trained on data with large amount

of class imbalances. Remember that the majority of the pixels present in input im-

ages do not correspond to the eosinophils and are considered part of the background

class. To connect this class balance visually, most pixels in the input image are black

(background) instead of white (eosinophils). Nearly all pixels in observation E-139’s

patches were background pixels. Therefore, adding more background pixels to a train-

ing set already heavily imbalanced towards background pixels will reduce the entropy.

Discussion with the UVA Gastroenterology Data Science Lab researchers yielded the

following characteristics for observation E-139. Sex: M, Ethnicity: Non-Hispanic,

Race: White, Age 13, BMI: 28.58. Observation E-139 was also already diagnosed

with EoE prior to biopsy. Observation E-139 likely received treatment for EoE which

would explain the relative lack of eosinophils present in the patches. Because some

patients were already diagnosed with EoE before their biopsy, the deep phenotyping

efforts may be difficult due to the treatment’s effect on the observations.

Conversely, removing observation E-123 had the largest decrease in dice score of 0.287

and correspondingly had the highest entropy of 0.057 demonstrating that this obser-

vation seems to be crucial to obtaining a strong MCD UNet dice score on medical

image segmentation on the EoE dataset. Table 5.1 only shows 10 patches for observa-
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Number of Eosinophils Number of Patches
0 28
1 7
2 4
3 1

Table 5.2: Number of eosinophils present in each patch for observation E-139. The
majority of patches (28/41) have zero eosinophils indicating that the data from ob-
servation E-139 has a severe class imbalance which will impact the model’s ability to
learn how to detect and identify eosinophils.

tion E-123 indicating that the features in this observation’s data seem to completely

span the necessary features needed for the MCD UNet to detect eosinophils. Visual

analysis of the patches for observation E-123 yielded wide variation in eosinophil loca-

tion and orientation which would be necessary to inform a deep segmentation model

trained to detect and identify eosinophils. Discussion with the UVA Gastroenterology

Data Science Lab researchers yielded the following characteristics for observation E-

123. Sex: F, Ethnicity: Non-Hispanic, Race: White, Age 22, BMI: 22.6. Observation

E-123 also was diagnosed with EoE prior to biopsy. Interestingly, observation E-123

still has significant amounts of eosinophils in their patch which means that treatment

may not be as effective in reducing the amount of eosinophils present. One observa-

tion of interest is E-93 who had a relatively average dice score but extremely high

entropy when removed indicating that their data has some stabilizing effect on the

MCD UNet dice score. This stabilizing effect does not seem to translate to the MCD

UNet dice score indicating that some of the dice score results may vary significantly

between runs and different datasets. However, this variation is minimized through

taking multiple runs and taking the median dice scores over the runs. Discussion

with the UVA Gastroenterology Data Science Lab researchers yielded the following

characteristics for observation E-93. Sex: F, Ethnicity: Non-Hispanic, Race: White,
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Age 46, BMI: 33.23. In contrast with the patients discussed before, observation E-93

did not have EoE prior to biopsy. This means that the disease progression most

likely has not been mitigated by treatment and this observation has a higher BMI

than most other observations. These factors can explain part of why there is high

amounts of entropy when this observation is removed from the training dataset. A

final observation of interest is observation E-77 who had the lowest POE value. Vi-

sual inspection of E-77’s patches showed that they differed considerably from other

observations. Whereas most observations have a serious class imbalance with the

minority of pixels associated with eosinophils, the patches of obseration E-77 were

actually rife with eosinophils with an average of over 30 eosinophils per patch. This

means that for this observation, the amount of pixels that were associated with the

background and the amount of pixels associated with the eosinophils were roughly

equivalent. Therefore, removing observation E-77 from the model had little impact

because this observation had data with no class imbalances which differs from the

other observations’ patches. Discussion with the UVA Gastroenterology Data Science

Lab researchers yielded the following characteristics for observation E-77. Sex: M,

Ethnicity: Non-Hispanic, Race: White, Age 35, BMI: 22.96. Observation E-77 was

also not diagnosed with EoE prior to biopsy. Given the significantly larger amounts

of eosinophils present in observation E-77’s patches, this observation’s EoE has also

most likely not been mitigated by treatment. However, observations E-77’s differ-

ences in characteristics make removing this observation in training have a less effect

than observation E-93.

With these results, the POE metric is now defined as the distance between a removed

observation’s median MCD UNet dice score with the baseline MCD UNet dice score

and observation extremity is shown in Table 5.3 and visualized in Figure 5.6. This
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Figure 5.4: Median and Mean Dice Scores: Removing an observation’s training data
negatively impacts the dice score in all but ten cases. Removing observation E-139
had the largest increase in dice score while removing observation E-123 had the largest
decrease in dice score.

distance is non-negative to account for both the positive and negative effects shown

by removing an observation’s data. The top five observationss for extremity: E-

123, E-249, E-25, E-127, and E-251 all negatively impacted the MCD UNet when

their training data was removed. The observation with the highest extremity that

positively impacted the MCD UNet was observation E-139 who was ranked ninth

highest in extremity. This indicates that in medical image segmentation, the lack of

a certain observation’s training data is more likely to have a significantly negatively

impact on model dice score than a positive impact.

These extremity results yielded the following domain selections for two, shown in

Table 5.4 and six domains, shown in Table 5.5. For the two domain approach in

Table 5.4, Domain 1 represents observations with high extremity while Domain 2

represents observations with low extremity. For the six domain approach in Table 5.5,

Domain 1-3 represents observations with high extremity while Domain 4-6 represents

observations with low extremity. With the source domains created, the full factorial
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Observation Name Number of Patches Percentage of Dataset POE
E-02 10 1.95% 0.051051
E-17 71 13.81% 0.093689
E-21 24 4.67% 0.074188
E-25 33 6.42% 0.157987
E-26 15 2.92% 0.038915
E-28 10 1.95% 0.002608
E-29 10 1.95% 0.016137
E-77 10 1.95% 0.002523
E-81 10 1.95% 0.045472
E-92 10 1.95% 0.053975
E-93 10 1.95% 0.022555
E-103 10 1.95% 0.041581
E-105 63 12.26% 0.023355
E-116 37 7.20% 0.029147
E-123 10 1.95% 0.281666
E-124 10 1.95% 0.106203
E-126 10 1.95% 0.026039
E-127 10 1.95% 0.152962
E-131 10 1.95% 0.002639
E-136 10 1.95% 0.013669
E-139 41 7.98% 0.081651
E-147 10 1.95% 0.055281
E-201 10 1.95% 0.071265
E-218 10 1.95% 0.039123
E-240 10 1.95% 0.015329
E-244 10 1.95% 0.08995
E-247 10 1.95% 0.058182
E-249 10 1.95% 0.235778
E-250 10 1.95% 0.079471
E-251 10 1.95% 0.133754

Table 5.3: EoE Observation Extremity: The top eight observations with the highest
extremity had a negative impact on the dice score when their EoE data was removed
in training. Observation E-123 had the highest extremity while observation E-77 had
the lowest extremity.
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Figure 5.5: Median and Mean Entropy: Removing an observation’s training data
decreases the entropy in all but nine cases. Removing observation E-23 had the
largest increase in entropy while removing observation E-139 had the largest decrease
in entropy.

design and MDAN approach can be executed.

The full factorial design represents a robust statistical method to determine optimal

parameter estimates. The full factorial design used consists of three factors and two

levels, yielding eight total runs. The factors and levels are domain size (5, 15), domain

choice (Random, Extremity Ranked), and classification threshold (0.3, 0.7). Using the

MDAN, the full factorial design provides the following results shown in Figures 5.7 and

Figure 5.8. The strong R2 value of 0.9845 and strong linear correlation on the standard

least squares output indicate that the choice of factors for this model is appropriate.

Furthermore, the graphs at the top of Figure 5.8 are 2-d representations equivalent to

a response surface and illustrate that the optimal combination of factors to maximize

the MDAN dice score are domain size of 15, domain choice of Extremity Ranked,

and classification threshold of 0.3. Finally, the JMP output displays a desirability

metric that maximizes the geometric average of multiple two-sided transformations of

each response [4]. The desirability of the optimal factor combination is shown to be
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Domain 1 Domain 2
E-17 E-02
E-21 E-26
E-25 E-28
E-92 E-29
E-123 E-77
E-124 E-81
E-127 E-93
E-139 E-103
E-147 E-105
E-201 E-116
E-244 E-126
E-247 E-131
E-249 E-136
E-250 E-218
E-251 E-240

Table 5.4: Two Domain Division: Domain 1 consists of observations with high ex-
tremity. Domain 2 consists of observations with low extremity.

Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Domain 6
E-25 E-17 E-21 E-02 E-29 E-28
E-123 E-124 E-92 E-26 E-93 E-77
E-127 E-139 E-147 E-81 E-105 E-131
E-249 E-244 E-201 E-103 E-116 E-136
E-251 E-250 E-247 E-218 E-126 E-240

Table 5.5: Six Domain Division: Domains 1-3 consist of observations with high ex-
tremity. Domains 4-6 consist of observations with low extremity.
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Figure 5.6: Observation Extremity: Visualization of Table 5.3 indicates the wide
differences in effect of removing a observation’s EoE data in training a model.

0.946 in comparison to the least optimal factor combination which has a desirability

of 0.168.



72

Figure 5.7: JMP output showing Standard Least Squares Plot to assess Effect Screen-
ing. Strong R2 value of 0.9845 indicates the factors are appropriate choices but the
p-value of 0.2314 is relatively high. This can be effected by the large variance created
by the relatively small dataset.
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Figure 5.8: JMP output showing Full Factorial Experimental Design Setup and Op-
timal Factor Values: The optimal values for maximizing a multisource domain adver-
sarial network dice score are Domain Size: 15, Domain Choice: Extremity Ranked,
and Classification Threshold of 0.3.
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Chapter 6

Conclusions and Future Work

In this dissertation, deep learning methods were first evaluated on two different

biomedical image segmentation projects. The first dataset focusing on Brain Im-

age Segmentation represented a strong baseline dataset[40] in which many current

deep learning approaches are evaluated on. The results from using a MCD UNet

on the the Brain Image Segmentation dataset justified further approaches in using

the UNet on future medical image datasets. Furthermore, the MCD UNet provided

a valuable visualization of the entropy present in prediction results. This research

shows that this entropy is highly sensitive to data perturbations. A direct exam-

ple of this is through observation E-139 where the lack of perturbations led to this

observation having the largest negative impact on the model’s entropy. Although

the MCD UNet did not directly outperform Adorno et al’s[2] approach, the MCD

UNet median dice score of 0.591 was well within the range of the median dice scores

Adorno et al observed which ranged from 0.517 - 0.665, illustrating comparable re-

sults. Additionally, this UNet provided an entropy visualization through the Monte

Carlo Dropout. This introduced the second dataset with Eosinophilic Esophagitis

taken from UVA Medical Center. To verify applicability of the UNet on this medi-

cal dataset, this Monte Carlo Dropout UNet segmentation dice score was compared

against other segmentation approaches including Adorno et al[2]. With the current

rise in Diffusion and Domain Adaptation as appropriate approaches for improving
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segmentation performance, a Denoising Diffusion Probabilistic Model (DDPM)[36]

and a Multi-Domain Adversarial Network (MDAN)[105] performance were compared

on the EoE dataset by treating all observations but one as the source domain and

then using the remaining observation as the target domain. Results showed that the

MDAN approach showed comparable performance to the DDPM while allowing more

flexibility in how to conduct deep learning training. Furthermore, with the medical

field firmly rooted in “patient” based results and placing “patients first” in care, the

domain adaptation approach allows a deep learning method to focus on specific pa-

tients or groups of patients to assist analysis. Finally, the extremity ranked domain

selection (ERDS) approach combines this MDAN approach with a extremity metric

to assess the effect of removing a patient’s observations or groups of patients’ ob-

servations through a full factorial statistical design. ERDS provides strong evidence

that the training data should be adequately analyzed before performing any serious

deep learning approaches. This work also gives motivation towards further work in

domain adaptation due to the incorporation of observation-centric analysis.

This research focuses specifically on an EoE dataset with source and target domains

taken from the same dataset. One of the most important aspects of domain adap-

tation is ensuring that the source and target domains are different in order to test a

model’s performance. This research fulfills this requirement since patient character-

istics such as age, sex, ethnicity, BMI, location of biopsy taken, and time of initial

biopsy collection are not the same across all observations. Thus, even though the

source and target domains come from the same dataset for the same medical condi-

tion, this research provides valuable information as to the different ways EoE presents

in patients and provides insight into the different disease phenotypes present. This

research is disease specific and only focuses on EoE. As a possible future work, ex-
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panding on this approach and using other datasets for other medical conditions can

provide information as to how segmentation models trained on EoE observations can

help inform other disease phenotypes.

By having observation-based results drive a subsequent approach, this deep learning

method parallels how actual medical providers care for patients. Finally, combin-

ing a traditional statistical approach with a new deep learning method demonstrates

that although deep learning is moving extremely quickly as a field, some traditional

techniques may have use and can produce powerful results. The full factorial de-

sign demonstrated that optimally selecting the factors of domain size (5, 15), domain

choice (Random, Extremity Ranked), and classification threshold (0.3, 0.7) can sig-

nificantly improve the dice score. For comparison, the baseline MCD UNet had a

median dice score of 0.576 while the MDAN approach with optimal factors selected

had a median dice score of 0.642.

As stated in the introduction, this dissertation contributed to many fields including

data science, image segmentation, machine learning, deep learning, computer vision,

artificial intelligence, medical image analysis, domain adaptation, and more. For

clarity, the major contributions are repeated below:

• Demonstrated through experimentation that Bayesian optimization, specifically

through Monte-Carlo Dropout, can produce entropy visualizations per patch

that provide insight into the abilities of deep segmentation approaches and into

the deep phenotyping present in medical data observations. The evaluation

of these experimentations through a Dice Score directly addresses some of the

issues Kobayashi saw in CVPR 2023 regarding using typical approaches such

as Binary Cross Entropy on imbalanced problems[50]. Additionally, the en-
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tropy metric represents the variability of the predicted labels, giving medical

researchers more information about areas of interest and medical image seg-

mentation detection capabilities.

• Evaluated through experimentation that Multi-Domain methods have compa-

rable performance to Diffusion based methods while providing more control

over model training. This control allows observation-level analysis in determin-

ing the effect each observation has on deep segmentation model results. The

motivation centers on modern approaches that have shown GAN approaches

performing extremely effectively for domain adaptation methods[107][99][49].

Additionally, GAN approaches can address domain shift by using a genera-

tor to project features to an image space and a discriminator operates on this

projected space[89][74]. With multidomain methods giving researchers more

control over the model, a multidomain approach with GANs can leverage the

strong performance of GANs with domain adaptation and allow observation-

level analysis.

• Created a new metric called patient observation extremity (POE) for evaluating

deep learning approaches by dropping subsets of training data and evaluating

the effects of these omissions. This metric is a direct representation of a deep

learning model’s reliance on a subset of a dataset and can provide valuable infor-

mation about what model performance will be when certain features of a dataset

are not present. Based on literature review, the Leave-One-Out approaches in

deep learning are limited to only cross validation in order to evaluate mod-

els[43]. In this research, the Leave-One Out approach focuses on observation-

level differences in the training data that are not captured in standard deep

learning approaches. A limitation of this Leave-One-Out approach for training
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is that the computational cost increases significantly when the training dataset

increases. Given N observations, the model has to be re-trained N times in

order to obtain the POE metric for each observation. This cost becomes even

more of a factor if a model with more parameters is used.

• Showed the relationship of domain size, domain choice, and threshold value in

domain adaptation. Full factorial designs encompass each pairing of these pa-

rameters driving efforts to improve future domain adaptation techniques. Fur-

thermore, segmentation results vary between different source/target domain

pairings. Intentionally setting source and target domains based off of the im-

pact of each observation improves deep segmentation results. This contribution

mirrors what Senhaji, et al observed in 2021 with their adaptive multidomain

approach. Namely, choosing domains effectively in multidomain approaches can

have significant impact on results due to the different characteristics represented

in the domains[77].

• Produced optimal domain adaptation parameters that verified the importance

of the new patient observation extremity (POE) metric on deep learning mod-

els. Setting these parameters significantly increased a multidomain adaptation

method’s dice score, demonstrating that the model is able to better identify

areas of interest in an input image. Accompanying observation-level entropy

quantification results provide information into how each observation contributes

to model results. This directly addresses the main issue and problem for this

dissertation - the lack of an observation-level approach for tuning segmentation

models. This research creates a proven approach for future medical image seg-

mentation: focus on the various features represented by the observations in the

training data and use these features to create effective domains that will inform
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decisions.

• Used a traditional statistical approach through a full factorial design to evalu-

ate a multi-domain adaptation approach created by the new extremity metric.

Bonding a traditional approach with a modern one and achieving strong re-

sults indicates that future work should consider using traditional statistical and

mathematical methods to support current approaches. Deep learning methods

tend to focus on optimizing architectures[45], minimizing the reliance on labeled

data[83], and better detection [62][61]. Future work should supplement these

approaches with traditional statistical methods to analyze observation-level fac-

tor contributions.

• Improved the detection performance of two different biomedical image segmen-

tation projects that all have critical clinical importance. The current field of

medical image segmentation has a wealth of research towards cellular detection

and identification [38][68][94][30][58]. Furthering these efforts allow medical

researchers to gain more insight into how each of these conditions present in

different datasets.

Discussion with medical researchers at the UVA GI Data Science lab has revealed

a few possible future approaches for work. First, the multi-domain adaptation can

be expanded to address imbalances in the amount of data observations have. The

number of cells in the patches in the EoE dataset vary significantly with some patches

containing cells in over half of all pixels in the patch to other patches with large areas

with no cells at all. Given that training a model to identify cells performs better when

there is more information about what the cells looks like and also what other cells

around the interested cells look like, the patches can be placed into high, medium, and
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low cell densities for domains and deep learning models can be evaluated on them.

Furthermore, there is not a specific size at which a biopsy is deemed insufficient and

to safeguard against not being able to make a diagnosis, clinicians collect multiple

biopsies from each region of concern. In the case of EoE, clinicians collect multiple

biopsies from each region of the esophagus for patients who are being investigated

for EoE, thereby increasing the likelihood that some of the samples will be sufficient.

This led to some patient samples having only 10 labeled patches in the dataset while

some other patient samples had over 70. This dissertation focused on extremity but

using the number of patches as possible way of defining different domains in deep

learning approaches can provide insight into if observations with larger amount of

patches significantly affect dice scores or other measures of segmentation performance.

Finally, one of the most significant limitations of this work is that the EoE dataset

only has one person of color represented with the rest of the 29 patients being non-

Hispanic white people. Future work should immediately strive to find data that

encompasses a wider amount of diversity to ensure that effective deep phenotyping is

not only driven by people of one race or one ethnicity.
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Observation Images
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Figure A.1: Observation E-123 Images 1 of 2
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Figure A.2: Observation E-123 Images 2 of 2
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Figure A.3: Observation E-77 Images 1 of 2
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Figure A.4: Observation E-77 Images 2 of 2
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Figure A.5: Observation E-139 Images 1 of 4
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Figure A.6: Observation E-139 Images 2 of 4
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Figure A.7: Observation E-139 Images 3 of 4
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Figure A.8: Observation E-139 Images 4 of 4
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