
Software Development Internship Experiential Learning Takeaways
and Observations

CS4991 Capstone Report, 2024

James Nathan Barnette
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
jnb8kry@virginia.edu

ABSTRACT
MessageGears is a midsized tech startup

that has struggled to keep up with much
larger competitors, placing an emphasis on
product development and differentiation to
gain a foothold in the enterprise marketing
space. I became a part of their software
development team to contribute to the product
development pipeline, working on many
subtasks as part of larger product initiatives. I
initially worked on the backend in Java,
writing different tests in JUnit, Mockito, and
Groovy. As I gained experience I started
working on the Angular frontend as well,
learning TypeScript, Selenium, HTML, and
CSS styling to do so. During my last summer
of employment I was on a team responsible
for transitioning the frontend from Angular to
the more modern React framework, in which
I needed to learn Jest, JSX, and system
architecture principles as a whole. I
contributed roughly 1800 lines of production
code shipped in Summer’s 2022 product
release and gained additional responsibilities
in 2023 to help plan the intern program. This
was a very rewarding experience which has
sparked a lot of personal and professional
growth.

1. INTRODUCTION
I started my internship journey as the sole

intern at a tech startup with an engineering
team that was nine people in its entirety. I
finished my last stint four years later with

three direct reports on a scrum team with
eleven members. Our engineering team now
totals over 70 employees. As the company I
worked for grew, I grew with it. I gained
invaluable insight into how software
development projects are segmented into
manageable bite sized pieces. How teams are
structured as a company increases in size to
maximize efficiency. How to communicate
effectively with coworkers - both to get work
done more efficiently and to make our lives
easier. Not to mention any of the hundreds of
practical software development skills I
learned on the job. Most of these technical
learning moments happen in code review.
Because I was writing production code, all of
it had to be meticulously combed over to
make sure I wasn’t introducing any new bugs
to the product. More experienced developers
are very nitpicky with newer employees
during this process, each with their own
preferences. After spending time submitting
code to merge and receiving feedback, I’ve
come to appreciate these nitpicks and
explanations. Learning what I could improve
in my own code, learning why it could be
improved, has proven much more beneficial
to my own development than the binary style
of grading autograders generally use on
assignments in class.
While this technical report will detail the

intricacies of the work I completed at
MessageGears, there is simply too much
ground to cover to discuss every single small



task I completed during my employment.
Instead, I will focus on my contributions from
this previous summer and briefly discuss the
overall technologies and frameworks that
makeup the MessageGears development
stack. Many different decisions are made in
designing the architecture for such a large
scale enterprise software and I gained a lot as
a developer by understanding why
MessageGears uses the technologies that it
does.

2. RELATED WORKS
Agile development is an iterative and

flexible approach to software development
that emphasizes collaboration, adaptability,
and customer satisfaction. Scrum is one of the
most popular frameworks within the agile
methodology. The Scrum process is designed
to help teams deliver high-quality software by
breaking down complex projects into smaller,
more manageable tasks. All of these tasks are
compiled into a product backlog, which a
product manager combs through to determine
an individual sprint’s work. A sprint is a
time-boxed iteration during which a specific
set of tasks or work items are supposed to be
completed. They typically last between two to
four weeks. Each sprint has its own planning
period, daily standups, and a retrospective
review period (Sutherland, 2014). The
engineering teams I was placed on all used a
Scrum workflow, and it was instrumental in
breaking up work into manageable tasks for
team members to individually complete.

My teams also had issues with scaling out
the Angular frontend at times. Parts of the
same SPA application were fragmented and it
was difficult to reuse code. React is a
language meant to solve some of these issues
in web development. It is incredibly modular,
easy to understand, easy to maintain, and easy
to scale (Technologies, 2023). My team lead
was also very excited to be able to use Jest for
unit testing on the frontend.

3. PROJECT DESIGN
Full stack engineering required me to learn

and use many different development
frameworks across repositories. When I first
started working at MessageGears I was
mainly writing backend unit tests in a
language called Groovy, an offshoot of Java
used for testing. I also converted out of date
unit tests from a testing framework called
EasyMock to a framework named Mockito. I
then graduated to working on small bug fixes
and easier to complete tasks that the very
limited development team had in their sprint.
Initially, these tasks and fixes were
completely written in Java and located on the
backend. Until they weren’t. Fortunately, my
team was starved enough for manpower that
they gave me more responsibility whenever
reasonably possible. I started writing API
tests - learning about REST controllers,
mocking data store services. I learned how
the frontend queries the backend to fetch data
it needs to display. Started to write javascript
logic on the frontend to save myself from
convoluted fixes on the backend. Studied
HTML and CSS to touch up and build out my
own web pages. By the end of my second
internship, pieces of the puzzle that is full
stack development had eased into place.

3.1 SYSTEM ARCHITECTURE REVIEW
The heart of MessageGears’ codebase is

split into 3 repositories bundled together and
shipped to clients as a single product. The
three repositories are separate buckets for the
frontend, backend, and cloud code to be
housed. The frontend houses a Single Page
Application (SPA) which dynamically loads
information from the backend (the database)
and displays it on a styled web page. I did not
work much on the cloud side of things, but
the cloud repository mostly dealt with data
transfer and security, making sure everything
was properly encrypted and secure.

Some older web pages were also written
server-side, in PHP, on the backend. These



pages were notoriously hard to debug and
were very slow compared to SPA pages, load
times sometimes being over ten seconds for
large queries. Because of these issues and in
an effort to update the UI of the app as a
whole, an initiative to convert old PHP pages
began. After mulling over options this
process morphed into an initiative to convert
the entire MessageGears frontend from
Angular to React. React was chosen in part
because of the breadth of the capabilities of
its components. The MessageGears app is
large and spread out, and it was quite difficult
to reuse code in some situations. The nature
of components in react was supposed to ease
these problems.

3.2 REACT CONVERSION PROCESS
This past summer I helped plan the

internship program at MessageGears. I
coordinated with management to discuss an
onboarding process for the group and
personally onboarded half of the group for the
first week of work this summer. Afterwards, I
had three direct intern reports while working
on converting our front-end webapp from a
more out of date framework, Angular, to the
more modernized React framework. The
conversion from Angular to React was slated
to be a year-long process, whose start date
happened to align with the beginning of my
last summer as an intern. To do this
conversion I had to learn the new React
framework, utilize the technical skills I
learned from Angular, and share my
knowledge of how both connected to the
backend to make the transition seamless.
Initially, my team of interns was set to work

as its own independent unit, with questions
from interns bubbling up through me to our
team lead. This carried on for a few weeks
until we ran out of intern work in the backlog.
We then assimilated into the dev team and
acted as normal full fledged software
developers working on the new React
repository.

Due to application size as well as
dependency limitations, we had to create
every single component from scratch for the
new UI. We split the creation of components
into separate buckets, focusing on creating
the smallest, most specific building blocks for
pages first. We made various buttons,
accordion designs, type ahead inputs, and
anything else that product requested be in the
new pages we were focusing on. The building
blocks, called cogs, then went into larger
more comprehensive components called
gears. These gears were then placed on pages
and styled accordingly.

4. RESULTS
Myself and the three interns I worked with

on this team ended up converting a total of
four pages over a two month period,
compared to an additional ten pages
completed by the rest of the full time,
seven-person strong development team. Part
of the reason it took so long to get a page
done was because of the “from scratch”
nature of our work. It became much easier to
build out pages as soon as we had the
necessary components completed to do so.
This level of contribution from a team of

interns was very unexpected - as much was
said in our exit interviews - and yet our
project velocity was still behind projections
when I left MessageGears. We as a team
placed a great deal of emphasis on quality
code output and reusability, wanting to ensure
the new repository had good bones. The
nature of agile development often causes an
inability to predict the length of projects,
showcased by the fact that even with an
added four employees to increase our
production output, we as a team still fell short
of our goals.



REFERENCES

Sutherland, J. (2014). Scrum: The Art of Doing Twice the Work in Half the Time. Crown

Currency.

Technologies, T. (2023, December 20). Top 5 benefits of REACT for interactive web

development. Medium.

https://medium.com/@marketing_26756/top-5-benefits-of-react-for-interactive-web-deve

lopment-69875dd8cab5


