Rotation Sensing Using Atom Interferometry in a Magnetic Trap

Author: ORCID icon orcid.org/0000-0001-8318-5642
Moan, Edward, Physics - Graduate School of Arts and Sciences, University of Virginia
Advisors:
Sackett, Cass, Physics, University of Virginia
Abstract:

This dissertation documents the implementation of a dual Sagnac interferometer using atoms confined to a magnetic trap at the University of Virginia. This matter-wave interferometer serves as a proof-of-principle system for rotation sensing applications. The trap provides cylindrical symmetry to a 87Rb Bose-Einstein condensate. We use Bragg laser pulses to split the condensate, and we are able to use the oscillatory motion of the atoms afterwards to characterize the trap in an effort to make it suitable for interferometry. We split the condensate such that two conjugate interferometers are implemented simultaneously to provide common-mode noise rejection, which isolates the rotation signal. Finally, we were able to demonstrate gyroscope operation by rotating the optical table on which the experiment was performed.

Degree:
PHD (Doctor of Philosophy)
Keywords:
Bose-Einstein condensates, Rotation sensors, Sagnac effect, Atom interferometry
Language:
English
Rights:
All rights reserved (no additional license for public reuse)
Issued Date:
2020/07/29